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Small note onpp-wave vacua in 6 and 5 dimensions
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We discuss Kowalski-Glikman typpp-wave solutions with unbroken supersymmetry in 6 and 5 dimen-
sional supergravity theories.
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In this Brief Report we want to discugg-wave solutions and by Blauet al. for type IIB [2]. The next on the list is
with unbroken supersymmetry, the so-called Kowalski-N=1, d=10 supergravity. Such an investigation was carried
Glikman (KG) solutions, in lower dimensional supergravity out by Kowalski-Glikman[4] who showed that the solu-
theories. The known KG solutionsl—3] consist of some tion is not of thepp-wave type, but rather has geometry
covariantly constant field strength and a metric which has thé\DS;® S*® Ii,. A similar analysis was performed on the

form of app-wave: i.e., =2, d=4 supergravity 3], showing that the only supersym-
. metric solutions are the Robinson-Bertotti and the KG solu-
dsi=2du(dv+Adu)+dx dx;, (1)  tions. This means that the only remaining candidatesdare

=6 (2,0) or (4,0) supergravity and=5, N=2 supergrav-
where A:x‘Aijxi (i,j=1,...d—2). For this metric, the ity. AlthoughN=1, d=4 supergravity matches the profile, it
only nonvanishing component of the Ricci curvatureRjg,  can be discarded since the integrability condition for the
zzniiAij and by introducing light-cone coordinates in the Killing spinor equation implies that the space must be Rie-
tangent space we find that the only nonvanishing componeripann flat, i.e., Minkowski.
of the spin connection iﬁ>ﬂ=25wﬁiAy'*.l Thed=6 (2,0) supergravity is comprised of the graviton

The basic problem one is faced with when looking forei, two symplectic Majorana-WeyMW) Rarita-Schwinger
nontrivial solutions of supergravity theories that preserve alfields, combined into the U$p) vector¥ ,, and a two-form
supersymmetry are the dilatino variations, since they are aB whose field strengtid =dB is self-dual. As such one is
gebraic in nature. Clearly, the easiest way to avoid sucfliaced with the same problem as in type IIB supergravity. A
trouble is by not having dilatino equations in the first place.Lorentz invariant action can, however, be written down by
Sometimes, however, one can make use of special propertiégroducing a Lagrange multiplier fiel®], by writing a non-
of the dilatino equations in order to find nontrivial vacua. self-dual action as if7], or by adding an antisymmetric
The first example igfl=10, N=1 supergravity where one tensor multiplef8]. However, using the conventions [8]
can use the chirality of the theoiyt] in order to find a the equation of motion for the metric reads
solution that preserves all supersymmetry. Another example
is type 1IB supergravity, where one can find such solutions, R,,=1H, H . )
notably the AD§®S® solution and the Kowalski-Glikman r pEpy
type solution presented [2], with a Ramond-Ramon(RR) .
five-form flux since the dilatino equation does not contain aChoc;smg the self-dual ansatzH=\ du/\(dx"dx® _
contribution from the five-form field strengfs]. The fact +di_x dx®) t?e above equation is solved by choosing
that the type IIB dilatino variation does not depend on theZWJAii:___)‘ - ) o
five-form field strength, however, is due to the fact that it is ' "€ Killing spinor equations in this case read
self-dual and that the spinors are chiral. One is therefore
tempted to say that nontrivial solutions with unbroken super-
symmetry exist whenever there are no dilatinos or when the 0=6V,=V,e— mb" Yu€- (©)
theory is chiral, and it is these kinds of theories we are going '
to examine. ) )

There are not many supergravity theories that are chiral oy 0bserving that gue to the self-duality &f we have
have no dilatinos, so that the investigation of the existence oft 7.€=2X3!\y" y“y,€, we can see that Eq3) is auto-
KG solutions is rather limited. The highest dimensional pos-Matically satisfied in the direction. The equations in the
sibilities have already been presented in the literaturedirection read
namely, by Kowalski-Glikman in the case of M thedr/]

0=die—Qe, Qi=iNy vy (4)

We use the mostly minus signature for the metric, thmatrices
satisfy {y*,y"}=2g"", and the covariant derivative on spinors is
taken to beVe=de—4 ldhe. We also introduce the light-cone
combinationsy™ = 9" and y~ = 9"+ A", which satisfy{y",y"} _ _
=2 and{y~,y"}={y*,y'}=0. due—x'Ajyly e—Q €=0, (5)

Following [2,10] these equations, sin€g;();=0, are solved
by e=(1+x'Q);)&(u). In theu direction Eq.(3) reduces to

0556-2821/2002/68)/0875012)/$20.00 65087501-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW D 65 087501

where the combinatiof) =3\y"y*?y~ was used. By 1
making the ansaté=exp(Q u)e, With €, an unconstrained Ruv=5| FuFi— gngz , 9)
constant symplectic MW spinor, altindependent terms are
canceled, leaving and leads to the conditions/ A;; = \;\'. The supersymme-
. . 4 try variation of the gravitino readd 2]

XAy v eo=— iNX ¥y €. (6)
This equation is readily solved b;; = — %)\277” , Which is 0=0V,=V,e+ iI;‘Eyﬂe— iFwyve. (10
compatible with the equations of motion. 8\3 43

The d=6 (4,0) supergravity is invariant under global
USp(4)~S0O(5) (see Ref[11] and references thergimnd
its field content is a Sechsbeis,?, four symplectic MW
spinors, which are combined into a &pvectorV,, and 1 1
five two-formsB' which have self-dual field strengths and (), = — RWD\WJ%H“]’ Q =—=\Y(y"y +1).

The analysis is completely analogous to the one for(2hH@
theory, but for the definitions

transform as a vector under 8). The equations of motion V3 443
and the supersymmetry transformation are (11
0=R,,— %HLWH kol One finds that the analogous condition to Eg).reads
1 XAy e=X[Q;,Q Jeo, (12
0=0¥,=V.e~ g1 Hy,Ie, () Where, as beforee, is an unconstrained symplectic Majo-

rana spinor. After some manipulations, one finds the ma-

where thel'’s belong to the five-dimensional Euclidean Clif- trix A to be
ford algebra. Thg2,0) solution can be embedded into the
(4,0 theory by taking only thé =1 component to be differ-
ent from zero. The calculations are just the same as in the
(2,0 case, the only difference being that evélyhas to be
multiplied by I't. The result, however, is the sam@,0)  which is compatible with the equations of motion. Of course
supergravity admits a KG-type wave solution that breaks nave could make use of the $8) invariance to pui\, ;=0
supersymmetry whatsoever. and we findA to be proportional to diag,1,1).

The last on the shortlist id=5N=2 supergravity{12]. In this Brief Report we have presented Kowalski-Glikman
Its field content consists of a Rfbein, ei, two symplectic  type solutions, solutions that do not break any supersymme-
Majorana Rarita-Schwinger field¥, and a vectorV, try and that look likepp waves, in chiral six-dimensional

1
A =57 {3NiN NN (13

whose field strength will be taken to be supergravities and ilN=2,d=5 supergravity. Since we
_ used rather restrictive criteria, the absence of dilatinos or
F=du/\\;dx'. (8 chirality, it would be nice to consider other theories and see

. . . . whether they admit KG solutions. Work in this direction is in
Since the chosen form for the field strength is, given theprogress.

metric (1), covariantly constant and has an overall depen-
dence on the differentialu, the equation of motion for the The author would like to thank T. Ortifor encourage-
vector field is automatically satisfied. The equation of motionment. This work was supported in part by the E. U. RTN

for the metric reads program HPRN-CT-2000-00148.
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