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Small note onpp-wave vacua in 6 and 5 dimensions
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We discuss Kowalski-Glikman typepp-wave solutions with unbroken supersymmetry in 6 and 5 dimen-
sional supergravity theories.
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In this Brief Report we want to discusspp-wave solutions
with unbroken supersymmetry, the so-called Kowals
Glikman ~KG! solutions, in lower dimensional supergravi
theories. The known KG solutions@1–3# consist of some
covariantly constant field strength and a metric which has
form of a pp-wave: i.e.,

dsd
252 du~dv1A du!1dxi dxi , ~1!

where A5xiAi j x
j ( i , j 51, . . . ,d22). For this metric, the

only nonvanishing component of the Ricci curvature isRuu
52h i j Ai j and by introducing light-cone coordinates in th
tangent space we find that the only nonvanishing compon
of the spin connection isv” m52dum] iAg i 1.1

The basic problem one is faced with when looking f
nontrivial solutions of supergravity theories that preserve
supersymmetry are the dilatino variations, since they are
gebraic in nature. Clearly, the easiest way to avoid s
trouble is by not having dilatino equations in the first plac
Sometimes, however, one can make use of special prope
of the dilatino equations in order to find nontrivial vacu
The first example isd510, N51 supergravity where one
can use the chirality of the theory@4# in order to find a
solution that preserves all supersymmetry. Another exam
is type IIB supergravity, where one can find such solutio
notably the ADS5^ S5 solution and the Kowalski-Glikman
type solution presented in@2#, with a Ramond-Ramond~RR!
five-form flux since the dilatino equation does not contain
contribution from the five-form field strength@5#. The fact
that the type IIB dilatino variation does not depend on
five-form field strength, however, is due to the fact that it
self-dual and that the spinors are chiral. One is theref
tempted to say that nontrivial solutions with unbroken sup
symmetry exist whenever there are no dilatinos or when
theory is chiral, and it is these kinds of theories we are go
to examine.

There are not many supergravity theories that are chira
have no dilatinos, so that the investigation of the existenc
KG solutions is rather limited. The highest dimensional p
sibilities have already been presented in the literatu
namely, by Kowalski-Glikman in the case of M theory@1#

1We use the mostly minus signature for the metric, theg matrices
satisfy $gm,gn%52gmn, and the covariant derivative on spinors
taken to be¹e5de2421v” e. We also introduce the light-con
combinationsg15gu and g25gv1Agu, which satisfy$g1,g2%
52 and$g6,g6%5$g6,g i%50.
0556-2821/2002/65~8!/087501~2!/$20.00 65 0875
-

e

nt

ll
l-
h
.
ies
.

le
,

a

e

re
r-
e
g

or
of
-
e,

and by Blauet al. for type IIB @2#. The next on the list is
N51, d510 supergravity. Such an investigation was carr
out by Kowalski-Glikman@4# who showed that the solu
tion is not of thepp-wave type, but rather has geomet
ADS3^ S3

^ E4. A similar analysis was performed on theN
52, d54 supergravity@3#, showing that the only supersym
metric solutions are the Robinson-Bertotti and the KG so
tions. This means that the only remaining candidates ard
56 (2,0) or (4,0) supergravity andd55, N52 supergrav-
ity. AlthoughN51, d54 supergravity matches the profile,
can be discarded since the integrability condition for t
Killing spinor equation implies that the space must be R
mann flat, i.e., Minkowski.

The d56 (2,0) supergravity is comprised of the gravito
em

a , two symplectic Majorana-Weyl~MW! Rarita-Schwinger
fields, combined into the USp~2! vectorCm , and a two-form
B whose field strengthH5dB is self-dual. As such one is
faced with the same problem as in type IIB supergravity
Lorentz invariant action can, however, be written down
introducing a Lagrange multiplier field@6#, by writing a non-
self-dual action as in@7#, or by adding an antisymmetric
tensor multiplet@8#. However, using the conventions of@9#
the equation of motion for the metric reads

Rmn5 1
4 HmkrHn

kr. ~2!

Choosing the self-dual ansatzH5l du`(dx1 dx2

1dx3 dx4) the above equation is solved by choosi
2h i j Ai j 52l2.

The Killing spinor equations in this case read

05dCm5¹me2
1

833!
H” gme. ~3!

By observing that due to the self-duality ofH we have
H” gme5233!lg1g12gme, we can see that Eq.~3! is auto-
matically satisfied in thev direction. The equations in thei
direction read

05] ie2V ie, V i5
1
4 lg1g12g i . ~4!

Following @2,10# these equations, sinceV iV j50, are solved
by e5(11xiV i)j(u). In theu direction Eq.~3! reduces to

]ue2xiAi j g
jg1e2V2e50, ~5!
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where the combinationV25 1
4 lg1g12g2 was used. By

making the ansatzj5exp(V2u)e0, with e0 an unconstrained
constant symplectic MW spinor, allx-independent terms ar
canceled, leaving

xiAi j g
jg1e052 1

8 l2xig ig
1e0 . ~6!

This equation is readily solved byAi j 52 1
8 l2h i j , which is

compatible with the equations of motion.
The d56 (4,0) supergravity is invariant under glob

USp(4);SO(5) ~see Ref.@11# and references therein! and
its field content is a Sechsbein,em

a, four symplectic MW
spinors, which are combined into a SO~5! vector Cm , and
five two-formsBI which have self-dual field strengths an
transform as a vector under SO~5!. The equations of motion
and the supersymmetry transformation are

05Rmn2 1
4 Hmkr

I Hn
krI ,

05dCm5¹me2
1

833!
H” gmG Ie, ~7!

where theG ’s belong to the five-dimensional Euclidean Cli
ford algebra. The~2,0! solution can be embedded into th
~4,0! theory by taking only theI 51 component to be differ-
ent from zero. The calculations are just the same as in
~2,0! case, the only difference being that everyV has to be
multiplied by G1. The result, however, is the same:~4,0!
supergravity admits a KG-type wave solution that breaks
supersymmetry whatsoever.

The last on the shortlist isd55,N52 supergravity@12#.
Its field content consists of a Fu¨nfbein, em

a , two symplectic
Majorana Rarita-Schwinger fieldsCm and a vectorVm
whose field strength will be taken to be

F5du`l i dxi . ~8!

Since the chosen form for the field strength is, given
metric ~1!, covariantly constant and has an overall dep
dence on the differentialdu, the equation of motion for the
vector field is automatically satisfied. The equation of mot
for the metric reads
s

08750
e

o

e
-

n

Rmn5
1

2 FFmkFn
k2

1

6
gmnF2G , ~9!

and leads to the condition 4h i j Ai j 5l il
i . The supersymme-

try variation of the gravitino reads@12#

05dCm5¹me1
1

8A3
F” gme2

1

4A3
Fmngne. ~10!

The analysis is completely analogous to the one for the~2,0!
theory, but for the definitions

V i52
1

4A3
g1@l jg

jg i1l i #, V25
1

4A3
l ig

i~g1g211!.

~11!

One finds that the analogous condition to Eq.~6! reads

xiAi j g
jg1e05xi@V i ,V2#e0 , ~12!

where, as before,e0 is an unconstrained symplectic Majo
rana spinor. After someg manipulations, one finds the ma
trix A to be

Ai j 5
1

24
$3l il j1l ll

lh i j %, ~13!

which is compatible with the equations of motion. Of cour
we could make use of the SO~3! invariance to putl2,350
and we findA to be proportional to diag~4,1,1!.

In this Brief Report we have presented Kowalski-Glikm
type solutions, solutions that do not break any supersym
try and that look likepp waves, in chiral six-dimensiona
supergravities and inN52,d55 supergravity. Since we
used rather restrictive criteria, the absence of dilatinos
chirality, it would be nice to consider other theories and s
whether they admit KG solutions. Work in this direction is
progress.
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