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From big crunch to big bang
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We consider conditions under which a universe contracting towards a big crunch can make a transition to an
expanding big bang universe. A promising example is 11-dimensional M theory in which the eleventh dimen-
sion collapses, bounces, and reexpands. At the bounce, the model can reduce to a weakly coupled heterotic
string theory and, we conjecture, it may be possible to follow the transition from contraction to expansion. The
possibility opens the door to new classes of cosmological models. For example, we discuss how it suggests a
major simplification and modification of the recently proposed ekpyrotic scenario.
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I. INTRODUCTION

Since the discovery of the cosmic microwave backgrou
the predominant view has been that the Universe origina
from a cosmic singularity. An important consequence is t
the universe has a finite age and a finite causal horizon
tance. For the standard hot big bang model, this leads to
horizon puzzle that inspired inflationary cosmology@1#. By
introducing a period of superluminal expansion, inflation
leviates the horizon puzzle, but it is generally believed t
an initial singularity is still required at the outset.

In this paper, we consider the possibility that the singu
ity is actually a transition between a contracting big crun
phase and an expanding big bang phase. If true, the univ
may have existed for a semi-infinite time prior to the putat
big bang. The horizon puzzle would be nullified, eliminati
one of the prime motivations for inflation. The analys
opens the door to alternative cosmologies with other so
tions to the remaining cosmological puzzles.

The discussion in this paper focuses ond-dimensional
field theory and is not specific to any particular cosmologi
model. A crucial role in our analysis is played by a massl
scalar field—a modulus.~The cosmology of such fields ha
been analyzed by many authors@2–4#.! We eschew any use
of branes and strings until absolutely necessary. String the
will become important at the point where the Univer
bounces from contraction to expansion.

Here, our discussion is closely related to consideration
the reversal problem in the pre-big-bang scenarios of V
ezianoet al. @2,5,6# and related scenarios@7–10#. A notable
difference, as we shall emphasize below, is that the reve
in the pre-big-bang model occurs in the limit of strong
coupled string theory whereas we are interested in revers
the limit of weakly coupled string theory@4,11#. The differ-
ences have profound consequences for both cosmology
fundamental physics.

In Sec. II, we show that reversal requires either a violat
of the null energy condition or passage through a singula
where the scale factor shrinks to zero. The remainder of
paper explores the second possibility. In Sec. III, we obt
the solutions for a single scalar field evolving in a contra
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ing Friedmann-Robertson-Walker background and use th
to demonstrate the difference between our proposal and
pre-big-bang scenario. In Sec. IV, we reformulate the the
in variables which are finite as the scale factor shrinks
zero and which suggest a natural way to match solution
the bounce. Section V solves for the evolution before a
after the bounce in cases where the bounce is elastic and
symmetric and cases where it is inelastic and time asymm
ric. Section VI compares the singularity considered here
bounces and singularities considered in other contexts
string theory. Section VII focuses on the bounce itself whe
we argue, string theory must play a critical role in passa
through the singularity. We conjecture that the cosmologi
singularity connects contracting and expanding solutions
manner analogous to the conifold and flop transitions. In S
VIII, we discuss the implications of our results for cosmo
ogy, particularly the ekpyrotic scenario@12#. We suggest a
major modification of the scenario in which the hot big ba
phase is created in a collision between two boundary bra
removing the need for bulk branes.

II. REVERSAL AND THE NULL ENERGY CONDITION

The reversal problem is notoriously difficult because
violation of the null energy condition is required. Conside
general 4D theory of scalar fieldsfK coupled to gravity. We
are free to Weyl transform to the Einstein frame:

S5E d4xA2gH 1

16pGN
R2

1

2
gmnGIJ~fK!]mf I]nfJ

2V~fK!J , ~1!

where gmn is the spacetime metric@in Minkowski space,
hmn5(21,11,1111)#, R is the Ricci scalar, andGIJ(fK)
is the metric on field space. We consider unitary theories
which GIJ is positive definite. The energy momentum tens
is
©2002 The American Physical Society07-1



ta
an
ic

e

io

s

e
d
s

in
ir

tu

id
io
o
m

ul
ak
on

sc

n

th

g
a

f

i-
iso-

t in

s
es.

at

of

rd

e
o
olu-

KHOURY, OVRUT, SEIBERG, STEINHARDT, AND TUROK PHYSICAL REVIEW D65 086007
Tmn5GIJ]mf I]nfJ2gmnF1

2
gabGIJ]af I]bfJ1VG , ~2!

where the repeated Greek or Roman indices follow the s
dard summation convention. If we assume homogeneity
isotropy, thengmn is a Friedmann-Robertson-Walker metr
and the energy densityr and the pressurep are

r5T005
1

2
GIJḟ IḟJ1V ~3!

p52
1

3
gi j Ti j 5

1

2
GIJḟ IḟJ2V, ~4!

where dots denote proper time derivatives, andi , j 51,2,3.
A problem arises because scalar fields satisfy the null

ergy condition:

r1p5GIJḟ IḟJ>0. ~5!

In a Friedmann-Robertson-Walker universe, the expans
rate is set by the parameterH5ȧ/a, wherea is the scale
factor. The time variation ofH assuming a flat universe i
given by

Ḣ524pGN~r1p!524pGNGIJḟ IḟJ<0. ~6!

If Ḣ<0, then reversal from contraction (H,0) to expansion
(H.0) is not possible. Hence, we obtain the theorem: Giv
a flat universe and a unitary theory with terms second or
in field derivatives, then the contracting big crunch pha
and the expanding big bang phase are separated by a s
larity. Similar theorems and considerations of ways of c
cumventing them have been discussed in the litera
@6–8,13#.

III. TWO APPROACHES TO THE REVERSAL PROBLEM

Both the pre-big-bang model and the scenario we cons
entail the problem of reversal from contraction to expans
in the Einstein frame. In pre-big-bang models, the comm
approach has been to consider violating one of the assu
tions of the theorem derived above@5–8,13#. For example,
by introducing higher derivative terms in the action, the n
energy condition can be violated and reversal might t
place without reaching the singularity. In this paper, we c
sider the alternative possibility of proceeding toa50 and
bouncing without introducing new terms in the action.

Both approaches can be modeled by an action with a
lar field f plus gravity:

S5E ddxA2gHR~g!2
1

2
gmn]mf]nf2V~f!J , ~7!

where R(g) is the Ricci scalar based on the metricgmn .
Here we have generalized tod-dimensions and simplified to
the case of a single fieldf, and we have chosen units i
which the coefficient ofR in the d-dimensional Einstein-
frame Lagrangian is unity. For the moment, we consider
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case where the potentialV(f)50. This kind of model arises
in the low energy approximation to type IIA and IIB strin
theory for d510. It also arises whenever
(d11)-dimensional gravity theory is compactified tod di-
mensions, wheref ~the ‘‘radion’’! determines the length o
the compact dimension.

We further simplify by restricting ourselves to a min
superspace consisting of spatially flat, homogeneous and
tropic solutions with metric ds25a2(t)@2N2(t)dt2

1( i 51
d21(dxi)2#. In the gaugeN51, t is conformal time.

Then, the solutions to the equations of motion up to a shif
t are

a5a~1!utu1/(d22) and f5f~1!1hA2~d21!

d22
logutu,

~8!

whereh561 anda(1) andf(1) are integration constant
set by the initial conditions. Each solution has two branch
For t,0, the Universe contracts to a big crunch ast→02.
For t.0, the Universe expands from a big bang beginning
t→01.

At t50, the solutions are singular andf→7`. In the
case of type IIA~or heterotic! string theory ind510, the
string coupling isgs5ef @see discussion of Eq.~25! below#,
so the two solutions at the bounce~as t→0) correspond to
weak and strong coupling, respectively.

We will find it useful to reexpress the model in terms
the ‘‘string metric’’ gmn

(s)5ef/cgmn wherec5A(d22)/2. The
action based on the string metric is

E ddxA2g(s)e2cf
„R~g(s)!1c2g(s)mn]mf]nf…. ~9!

This definition of the string metric agrees with the standa
metric ford510 and the string metric ford54 as defined in
the pre-big-bang literature@2,5#.

The two solutions in Eq.~8! are easily transformed to th
string framegmn

(s)5as
2hmn , where we can compare them t

solutions in the pre-bang scenario. We can express the s
tions in terms of string-frame FRW timets , where dts
5asdt:

as5as~1!utsuh/Ad21

f5f~0!1A 2

d22
~hAd2121!logutsu. ~10!

Using these we find

Hs[
ȧs

as
5

h

Ad21

1

ts

ḟ5A 2

d22
~hAd2121!

1

ts
7-2
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FIG. 1. Phase diagrams ford54 comparing
the ~a! pre-big bang~PBB! model with ~b! the
bounce scenario considered here. The four ra
connected at the origin represent the four so
tions to the potential-less equations of motio
The large arrows indicate the two solutions th
are joined together in each of the two cosmol
gies. Reversal from contraction to expansion co
nects the two weak coupling regimes in~b!.
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ḟ̄[ḟ2~d21!A 2

d22
Hs52A 2

d22

1

ts
,

where the dot denotes differentiation with respect tots .
There is a key difference between the pre-big-bang s

nario and the reversal considered here. We approach w
coupling ast→02 corresponding to theh511 branch of
Eq. ~8!. The pre-big-bang scenario approaches strong c
pling as t→02 corresponding to theh521 solution. The
two scenarios may be compared by mapping their traje

ries in the plane spanned byḟ̄ andHs , a method commonly
introduced@5# to describe the pre-big-bang picture ind54.
Note that the ratio

ḟ̄

Hs
52hA2~d21!

d22
~11!

is negative ford.2 if h511 ~our solution! and positive if
h521. This expression describes the four solutions sho
in Fig. 1. As noted above, for the pre-big-bang model,
h521 solution in whichf runs to1` ~strong coupling! is
chosen fort,0. It has been proposed@6–8,13# that new
terms in the action appear in the strong coupling limit th
violate the null energy condition~e.g., by introducing high
derivative interactions and potentials! making it possible to
avoid f running off to1`, as shown by the dashed curv
Whatever physics is involved, it is presumed to freeze
dilaton @so Eq.~8! is no longer applicable# and create radia
tion that dominates the Universe. Nevertheless,Hs is posi-

tive and ḟ̄52(d21)A2/(d22)Hs ~assumingf is frozen!
is negative. Hence, the Universe joins onto a path simila
what is shown in the figure. By contrast, the trajectory p
posed in this paper maintainsh511 throughout. This is a
fundamental difference that distinguishes everything we
in the remainder of this paper from the pre-big-bang s
nario.

IV. HOW SINGULAR IS THE SINGULARITY?

A key step in tracking the Universe across the bounce
a50 is to find variables which are finite ast→0. Consider
the change of variables@12,14#:
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a05a(d22)/2~e2gf1egf!,

a15a(d22)/2~e2gf2egf!,
~12!

a65
1

2
~a06a1!5a(d22)/2e7gf

where g5A(d22)/8(d21). Their range fora.0 and f
real is the quadranta6.0 or a0>ua1u.

The effective Lagrangian forV50 is transformed to@12#

d21

N~d22!
@2a08

21a18
2#52

4~d21!

N~d22!
a18 a28 , ~13!

where primes denote derivatives with respect to conform
time t. In the moduli space spanned by (a0 ,a1) we identify
a0 (a1) as a time-like~space-like! variable anda6 as light-
cone coordinates. We shall consider trajectories wh
bounce ata50 corresponding to a point on the moduli spa
boundarya05a1Þ0. Without loss of generality the value o
t at the bounce can be chosen to bet50.

We cannot describe exactly what occurs att50. How-
ever, what is encouraging is that we have found a choice
variables,a0,1 that remain finite fort,0 andt.0, and there
appears to be a natural way to match att50. It is instructive
to change variables for the solution to Eq.~8! with h511 to

c5egf

~14!
ḡmn5c24/(d22)gmn .

This leads to a reformulated action

S5E ddxA2ḡ c2R~ ḡ!, ~15!

with no kinetic term forc. We use a parametrization suc
that the coefficient ofR in Eq. ~15! is c2 to ensure that it is
always positive.

The scale factor of the metricḡmn is ā5c22/(d22)a. The
solution to the equations of motion in Eq.~8! ~with h5
11) become

ā5A and c5Butu1/2 ~16!

with A and B positive constants. By rescaling thed dimen-
sional coordinates one can always setA51. In terms of the
7-3
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KHOURY, OVRUT, SEIBERG, STEINHARDT, AND TUROK PHYSICAL REVIEW D65 086007
original metricgmn , the Universe shrinks to a point att50.
However, we see that the metricḡmn is smooth there.

One should not read too much into this. The change
variables does not make the problem entirely regular. F
and foremost, sincec(t50)50, the Planck scale vanishes
the bounce in these coordinates. Hence, there is the con
that quantum fluctuations become uncontrolled att50. Note
also thatc8 is singular att50, so higher dimension opera
tors are also important at the bounce. Therefore, even
these variables, we see the importance of going beyond
field theoretic descriptions to understand the physics at
50.

We must assume that the field theories considered here
low energy approximations to some more fundamen
theory. The action in Eq.~15! in terms ofc and ḡmn is just
the Einstein-Hilbert action for (d11)-dimensional gravity
theory compactified tod dimensions. To see that, consid
the (d11)-dimensional metric

ds25c~x!4dw21ḡmndxmdxn ~17!

and let it depend only on thed-dimensional variablesxm.
~For simplicity, we neglect the vector field arising from th
m2w components of the metric.! A straightforward calcula-
tion leads to

A2g(d11)R~g(d11)!5c2A2ḡR~ ḡ!22]m~A2ḡḡmn]nc2!,
~18!

whereg(d11) is the metric ind11 dimensions. Constraining
w to lie in the range@0,1#, the (d11)-dimensional Hilbert-
Einstein action is reduced to Eq.~15!. For example, the com
pactification can be on a circle, as in Kaluza-Klein theory,
on an interval, wheref or c can be interpreted as a radio
If the compactified dimension is a line segment there are
boundary branes at the ends@15–17#. Then, a50 corre-
sponds to a circle collapsing to a point or the branes collid
at t50.

Substituting Eq.~16! into the metric, we obtain

ds25B4t2dw21hmndxmdxn. ~19!

The space-time is remarkably simple. It is simplyRd21

3M 2, where thed21 dimensions are Euclidean andM 2 is
a 22d compactified Milne universe~Fig. 2! with ds25
2dt21B4t2dw2. Each branch of our solutions spans a wed
in Minkowski space compactified on an intervalwP@0,1#
with end points identified. Equivalently, if the metric is r
expressed in Minkowski light cone coordinatesds2

5dx1dx2 where x656te6B2w, then M 2 corresponds to
flat Minkowski space modded out by the boostx1

→exp(B2)x1, x2→exp(2B2)x2. Such a compactified Milne
universe has been discussed by Horowitz and Steif@18#. Our
bounce connects two branches ofM 2 at t50. As men-
tioned, if the extra dimension is a circle, it contracts to ze
at t50, and reexpands. If the extra dimension is an interv
the two boundary branes follow the heavy lines in Fig.
bouncing off each other. Equivalently, as the figure sugge
one can say that the two boundary branes meet and
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through one another. The variablesa0 anda1 defined above
are given bya0511B2utu, a1512B2utu, so these bounce a
t50. Finally, note that the proper distance between
branes in the Milne metric isB2utu, and we see the physica
interpretation of the constantB2 as the magnitude of the
relative velocity of the branes.

In the usual Kaluza-Klein reduction fromd11 to d di-
mensions the variables defined in Eq.~12! parametrize the
geometry as follows. The scale factor of the noncomp
d-dimensional space as measured by the canon
(d11)-dimensional metric isā5a1

2/(d22) , which has been
set to unity. The size of the extra dimension is proportiona
a2 /a1 , which can take on any positive value. Thus t
range off is 2`,f,`. Other (d11)-dimensional theo-
ries can reduce to the samed dimensional effective field
theory, but the geometrical meaning of thea, f variables and
their range may differ. For example, consider AdS5 bounded
by a positive and a negative tension brane. The induced s
factor on the positive~negative! tension brane isa0 (a1),
with 0,a1,a0, so thatf is restricted to be less than zer
The distance between the branes is proportional
log(a0 /a1), which agrees with the Kaluza-Klein result a
short distances where the variation of the warp factor is n
ligible. We note that more general compactifications w
additional dimensions lead to more complicated actio
which depend on several moduli. If the moduli space can
reformulated in terms of variables analogous toa6 that are
finite at the bounce, a similar analysis should hold. Altern
tively, the bounce trajectories are restricted to cases wh
the time derivatives of the additional fields are zero and
theory reduces to the current examples. However, the sim
interpretation ofḡmn in Eq. ~17! as a time-independent me
ric is only valid for compactifications of a single dimensio

When the theory in Eq.~15! is derived from compactifi-
cation as in Eq.~18!, the bounce solution corresponds
shrinking the compact dimension to zero size and then
panding it again.~In the work of Brandenberger, Vafa, an
Tseytlin @19,20#, they considered the situation where o
spatial dimension collapsed and a different one opened

FIG. 2. Sketch of the compactified Milne universe~hatched re-
gion! embedded in a Minkowski background, wherex0 andx1 are
the time and space coordinates. The dashed surfaces are surfa
constantt.
7-4
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FROM BIG CRUNCH TO BIG BANG PHYSICAL REVIEW D65 086007
This is also an interesting possibility which may be equa
good for our purposes.! Throughout this process the metric
the noncompact dimensions as measured by
(d11)-dimensional metric in Eq.~17! is unchanged. Such
an intuitive picture suggests that indeed the two branche
the solution in Eq.~8! @or in terms of the coordinatesā, c in
Eq. ~15!# are indeed connected. However, it should
stressed that the dimensional reduction fromd11 dimen-
sions tod dimensions makes the bounce natural but it d
not prove that it exists.

V. APPROACHING THE BOUNCE

We have the machinery in hand to track the evolution
the Universe approaches the bounce~or rebounds after-
wards!. From varying the action in Eq.~13! with respect to
N, we obtain the constraint,2a08

21a18
250. ~Expressed in

terms ofa and f, this corresponds to the Friedmann equ
tion.! Consequently, we are only permitted solutions wh
a0856a18 . The minus sign solution must apply if the bran
are to collide. The incoming trajectory intersects the lig
like boundary of moduli spacea05a1 along a light-like tra-
jectory. If we assume that no radiation is produced, then
satisfy the energy constraint, the solution after collision m
also be light-like. There then appears only one natural p
sibility for the trajectory to follow, which is to bounce
straight back off the light cone,a08↔a18 , as occurs in the
Milne universe example explained above.

Returning to the Lagrangian in Eq.~13!, we now
add a potential term,2NadV(f)52N(a1a2)d/(d22)

3V„(1/2g)log(a2 /a1)…. Up to an unimportant constant, th
total Lagrangian becomes

2
1

N
a18 a28 2N~a1a2!d/(d22)F~a2 /a1! ~20!

where the functionF is related to the potential. Since ou
convention is that the weak coupling region isf→2`, the
potential should vanish in that limit or, equivalentl
F(a2 /a1) should vanish for small values of its argumen

As an exercise, it is instructive to consider a case wh
the equations of motion are exactly solvable:

F~a2 /a1!5eS a2

a1
D d/(d22)

~21!

where e561. This example corresponds toV
;e exp„@d/A2(d21)(d22)#f…. In the gaugeN51 the so-
lution up to a shift oft aroundt50 is

a25putu

a15a1~0!1e
d22

3d22
p(d12)/(d22)utu(3d22)/(d22), ~22!

wherep is an arbitrary positive constant.
Consider first the case ofe positive, i.e. a positive poten

tial. The Universe hasa50 at t50 wherea250. For posi-
tive t, the universe expands to infinite size.f on the other
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hand approaches2` at t→01, it increases, reaches a max
mum value at some fixedt, and then slides back to2` as
t→`. For negative times the picture is symmetric. In pa
ticular, the universe is contracting ast→02.

For negativee the potential is negative. In this case th
solution Eq.~22! cannot be trusted beyond a critical value
t5t0 wherea1 vanishes. At that pointa50 andf51`.
Since the potential is not bounded from below, it is not s
prising thatf reaches̀ in finite time. In the brane picture
the repulsion makes the higher dimensional space infinit
a finite time. We have no reason to expect another bounc
this point. Again, the picture is symmetric aroundt50. The
two solutions are represented in Fig. 3.

In the examples considered thus far, the bounce atf→
2` is time symmetric. The potential is taken to vanish
that limit, and the trajectory in the (a0 ,a1) plane intersects
the boundary of moduli spacea05a1 along a light-like di-
rection. After the bounce it simply reverses, corresponding
the matching conditiona0,18 (out)52a0,18 (in). This could be
described as anelastic collision, since the internal states o
the two branes are unchanged after collision.

As the velocity approaches zero, the boundary brane
lision may be nearly elastic, resulting in no radiation bei
produced on the branes. But at finite velocity, we sho
expect entropy production as radiation modes are exc
both in the bulk and on the colliding branes.

Let us consider the description of fluids produced on
branes at the collision. The action for a fluid in a backgrou

metric ĝmn is 2*ddxA2ĝr, where r is implicitly deter-
mined in terms ofĝmn by the fluid equations. In the presen
context, where the matter couples to the higher dimensio
metric, we should takeĝmn to be ḡmn given in Eq. ~14!,
rather than the Einstein-frame four dimensional metricgmn .
This difference is very important. Whereas the Einste
frame scale factora vanishes at the singularity, the sca
factor ā is finite there. In consequence, fluids coupling toā
have finite density and temperature at the singularity. T
usual infinite blueshift caused by the vanishing ofa is pre-

FIG. 3. The moduli space ina0 and a1 or, equivalently, light-
cone coordinatesa6 . The physical regime is the upper light con
~quadrant!. The two trajectories correspond to the exact solutio
for the potential discussed in the text fort.0. The bounce occurs a
t50. By construction the solutions are time symmetric. The das
solution corresponds toe511 and the dotted solution correspond
to e521.
7-5
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KHOURY, OVRUT, SEIBERG, STEINHARDT, AND TUROK PHYSICAL REVIEW D65 086007
cisely cancelled by an infinite ‘‘fifth force’’ redshift due t
the coupling tof, asf→2`. We see once more that withi
the context we are discussing, the big crunch–big bang
gularity is remarkably non-singular.

Let us consider as an example the case where the inc
ing state has no radiation, and the potentialV(f) asymptotes
to zero asf→2`, and remains zero after the collisio
Assume also that a small amount of radiation is produced
the collision is slightly ‘‘inelastic.’’ The ‘‘elastic’’ matching
condition discussed above,a0,18 (out)52a0,18 (in), cannot ap-
ply, since it would be incompatible with the Friedmann co
straint, which reads

a08~out!22a18~out!25S d22

d21D r~ ā!ād. ~23!

As stressed above, each term in this equation is perfe
finite at a50 ~the ‘‘singularity’’!. But the presence of the
positive radiation-matter density term on the right hand s
means that the outgoing trajectory must be time-like in
(a0 ,a1) plane.

The details of the microscopic physics determine
amount of radiation which is generated by the collision.
terms of the long distance effective theory that we have b
using the microscopic physics also determines the pre
boundary conditions ona08 anda18 . If before the collision the
system has no radiation and the potential vanishes forf→
2`, the trajectory in field space hits the boundary alon
light-like curve. As we said, because of Eq.~23! if radiation
is being generated, it bounces off the boundary along a ti
like curve and the trajectory is not time symmetric.

This discussion will be further elaborated upon in R
@21#.

VI. DISTANCE TO THE SINGULARITY

When referring to the moduli space in string theory, o
usually has in mind the moduli of the compact dimensio
keeping the noncompact dimensions unchanged. In par
lar, the scale size of the noncompact dimensionsa is not
usually considered to be one of the coordinates on mo
space. Most of the singularities which are studied in str
theory are at finite distance in moduli space. At such a s
gularity the presence of gravity can be neglected, and
essential physics of the singularity is described by lo
quantum field theory. The latter can be either a wea
coupled quantum field theory with new light degrees of fre
dom which become massless at the singularity, or a stron
coupled quantum field theory at a nontrivial fixed point
the renormalization group. A typical example of such a s
gularity is the smallE8 instanton transition in which a bulk
brane hits the boundary brane@22–24#. This is the singular-
ity which was proposed to be the initiation of the big ba
phase in the ekpyrotic model@12#.

The singularity of interest here is of a totally differe
nature. We are interested in the singularity atf52`. The
metric on (a,f) space is given from the kinetic terms in th
action ~13!. After a trivial scaling ofa the line element is
proportional to2da21a2df2. For fixeda, the singularity is
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clearly at infinite distance in moduli space. The way we ma
age to reach it at finite time is to consider a motion not o
in the f moduli space but in an extended space includ
also the scale size of the noncompact dimensionsa. Since
this extended space has Lorentzian signature, the proper
tance to (f52`,a50) can be finite even when it is infinite
to any generica.

The fact thata vanishes at the singularity has profoun
implications. Unlike the other singularities which are fie
theoretic, here gravity cannot be ignored. Therefore,
physics of the singularity cannot be described by local qu
tum field theory coupled to weakly coupled gravity. It is a
important challenge to find other such singularities and
describe them in detail.

VII. PASSAGE THROUGH THE SINGULARITY
AND THE ROLE OF STRING THEORY

To prove that the transition pasta50 can occur smoothly,
one must have a consistent theory at short distances
complete control of the dynamics at the singularity. Here
where string theory becomes an essential element. To d
mine what happens ata50, it is natural to try to embed ou
solution in string theory which provides a complete theory
quantum gravity.

Our equations can be embedded in string theory in sev
different ways. The most straightforward way is to embed
in type IIA or the heterotic string ind510 by identifyingf
with the dilaton. As pointed out in the discussion followin
Eq. ~17!, ḡmn of Eq. ~14! is the ten-dimensional metric mea
sured in M theory units. So our background is M theory
R93M 2, whereM 2 is the 2D compactified Milne spac
described by the metric in Eq.~17!.

Is our background a solution of the M theory equations
motion? The fact that the M theory metric (c4,ḡmn) is flat
might suggest that the answer to this question is posit
However, since the background is obtained by modding
eleven-dimensional space by a boostx6;e6B2

x6, we
should be more careful. Spin half fields transform under t
operation asF6→ze7(1/2)B2

F6 wherez561 is a choice of
spin structure. Therefore, there is no covariantly const
spinor, our background breaks supersymmetry, and it is
clear whether the quantum equations of motion are satisfi
For utu→`, where the circumference of the circle is larg
this breaking is small and we have a good approximation
a solution of the equations of motion. For smallutu near the
singularity the quantum effects become large and a m
careful analysis is needed.

Attempting to proceed to smallt, it is natural to change
variables to the string metricgmn

(s)5c2ḡmn5c3/2gmn . Let f
5 3

2 logc2 be the dilaton in terms of which the action is

E d10xA2g(s)e22f
„R~g(s)!14g(s)mn]mf]nf…. ~24!

The solution of the equations of motion isc;utu1/2, and
using the relations between the various metrics
7-6
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gmn~s!5c2gmn5autuhmn

and
~25!

gs
25e2f5c65butu3

where gs is the string coupling anda and b are arbitrary
positive constants. In terms ofts;t3/2, the string metric is
dss

2;2dts
21ts

2/3( i 51
9 (dxi)2 and gs;utsu. Note that the

string coupling vanishes at the singularity atts50. It is easy
to see that the results in Eq.~25! satisfy the string equation
of motion to leading order ina8 and gs ~where we use the
string metricgmn

(s))

Rmn~gmn
(s) !522¹m¹nf5

3

2t2 ~hmn14dm0dn0!

¹mf¹mf5
1

2
¹2f52

9

4utu3 ~26!

and, therefore, lead to a conformal field theory to lead
order in a8. By choosing the constantsa and b appropri-
ately, we can make the range of validity of this approxim
tion arbitrarily large although not tot50.

In the long time limitutu→`, in the string frame the Uni-
verse expands and becomes large. The string couplinggs
also becomes large. However, the theory is still managea
In type IIA theory, the theory becomes M theory in elev
dimensions where the size of the eleventh dimension is la
@17#.

We can also consider type IIB theory on our backgrou
The low energy theory is still of the form in Eq.~24!, and its
solution can be expressed using the string theory variable
in Eq. ~25!. However, we no longer have the argument
the bounce which is based on the compactification o
higher dimensional theory. Still we can examine the b
havior of each branch of the solution. At long time the stri
coupling is large and we can use S duality to tra
form the solution to another weakly coupled descri
ion with gs

251/butu3. The canonical Einstein metric
gmn5ab21/4utu1/4hmn does not transform and remains larg
but the string metric,gmn

(s)5(a/Abutu)hmn shrinks to a point.
Another context in which our background can arise

string theory is when there are some other compact dim
sions. Consider for example the compactification of
theory on the flat spaceR83M 23S 1. That is, we compac-
tify one of the Euclidean dimensions of the previously me
tioned background on a circle. We consider theS 1 factor as
the M theory circle, and interpret the theory as type I
theory onR83M 2. Since the size of theS 1 is independent
of spacetime, the string coupling is constant. Furthermo
since the metric onR83M 2 is flat ~except perhaps att
50) this is an exact solution of the string equations of m
tion to all orders ina8. As we explained above, the bac
ground breaks supersymmetry and, therefore, we canno
gue that this is also an exact solution to all orders ings . Of
particular interest are the winding modes around the spa
circle in M 2 neart50. They are reminiscent of the tachy
onic winding modes which were recently studied by Ada
et al. @25#. These modes might lead to an instability of o
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system near the singularity and to a divergence of the l
diagrams. One might be tempted to use T duality to tra
form the winding modes to momentum modes. T
T-dual metric and string coupling are2(dt)21@(a8)2/

B4t2#(dw̃)2 and g̃s(t)5gs(Aa8/B2t). Both the T-dual cur-
vature and the T-dual string coupling are large fort,Aa8
and, therefore, the T-dual picture is not useful. The prec
behavior of these modes and of other effects near the sin
larity is a fascinating issue which we hope to return to in
future publication.

VIII. COSMOLOGICAL IMPLICATIONS

Our conjecture is that the Universe can undergo a tra
tion from a big crunch to a big bang by passing through
string theoretic regime which connects the two phases.
standard in string compactifications to have a singula
which is common to several different classical spaces. T
theory at the singularity is often less singular than one mi
expect classically@26#. The flop @27# and the conifold@28#
transitions are particular examples of this general phen
enon. Even though these singularities are spatial singu
ties, it is also likely that dynamical singularities like our b
crunch and big bang singularities are similarly connected
string theory. If so, what has been perceived as the begin
of time may simply be a bridge to a pre-existing phase of
Universe. The door is thereby opened to whole new clas
of cosmological models, alternatives to the standard big b
and inflationary models.

A particularly pertinent example is the recently propos
‘‘ekpyrotic’’ model of the universe@12#. According to this
model, the universe began in a non-singular, nearly vacu
quasistatic state that lasted for an indefinite period. The
tial state can be described as a nearly BPS~Bogomol’nyi-
Prasad-Sommerfield! configuration of two orbifold boundary
branes and a (311)-dimensional brane in the bulk movin
slowly along the intervening fifth dimension. The bulk bra
is attracted to a boundary brane by a force associated w
negative scalar potential. The radiation that fuels the hot
bang is generated in the collision between the branes.
BPS condition ensures that the Universe is homogeneous
spatially flat. Ripples in the brane surface created by qu
tum fluctuations as the branes approach result in a ne
scale-invariant spectrum of density perturbations after
collision. In short, all of the cosmological problems of th
standard hot big bang model are addressed.

For a bulk-brane–boundary-brane collision, the modu
that determines the distance between the branes remain
nite and gravity is only a spectator. Consequently, this co
sion entails none of the subtleties discussed in this pa
However, in order for the ekpyrotic model to be viable, the
remains an important challenge. In the long wavelen
limit, the brane picture can be described by an effective
field theory with negative potential energy. Beginning from
static state, a negative potential energy causes the effe
4D scale factor to shrink@12#. In the braneworld picture, the
Universe continues to shrink because the boundary bra
are approaching one another@12#. It is essential that a
7-7
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mechanism exist that will reverse contraction to expans
after the bulk and boundary branes collide, a point emp
sized by many people@29#.

In this paper, we have focused on the reversal proc
and, particularly, on the possibility of a collision and rebou
between the boundary branes. Our result suggests tha
reversal to increasinga might be accomplished by a secon
collision between the boundary branes. The essence of
argument is that there exist variables that remain finite
each side of the bounce and that there is a natural wa
match across the bounce. In Ref.@21#, we discuss how per
turbations created during the contracting phase evolve
the expanding phase by identifying a set of perturbation v
ables that also remain finite at the bounce and natur
match across the boundary.

A major modification of the ekpyrotic scenario sugge
itself. Perhaps the scenario can be accomplished with o
the boundary branes and no bulk brane. Qualitatively, i
straightforward to show that, if there is a negative, attract
potential drawing the two boundary branes towards one
rd
.
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other which satisfies the conditions assumed before for
bulk-brane–boundary-brane potential, a nearly sca
invariant spectrum of perturbations will be produced that
mains after the bounce, as discussed in Ref.@21#. We are
currently examining this alternative scenario to determine
the quantitative requirements for the density perturbati
can be met. If so, this would represent a significant simp
cation relying on novel physical processes that occur w
boundary branes collide.
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