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From big crunch to big bang
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We consider conditions under which a universe contracting towards a big crunch can make a transition to an
expanding big bang universe. A promising example is 11-dimensional M theory in which the eleventh dimen-
sion collapses, bounces, and reexpands. At the bounce, the model can reduce to a weakly coupled heterotic
string theory and, we conjecture, it may be possible to follow the transition from contraction to expansion. The
possibility opens the door to new classes of cosmological models. For example, we discuss how it suggests a
major simplification and modification of the recently proposed ekpyrotic scenario.
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[. INTRODUCTION ing Friedmann-Robertson-Walker background and use them
to demonstrate the difference between our proposal and the
Since the discovery of the cosmic microwave backgroundpre-big-bang scenario. In Sec. IV, we reformulate the theory
the predominant view has been that the Universe originateth variables which are finite as the scale factor shrinks to
from a cosmic singularity. An important consequence is thagero and which suggest a natural way to match solutions at
the universe has a finite age and a finite causal horizon dighe bounce. Section V solves for the evolution before and
tance. For the standard hot big bang model, this leads to th@fter the bounce in cases where the bounce is elastic and time
horizon puzzle that inspired inflationary cosmolddy. By symmetric and cases where it is inelastic and time asymmet-
introducing a period of superluminal expansion, inflation al-fic. Section VI compares the singularity considered here to
leviates the horizon puzzle, but it is generally believed thafounces and singularities considered in other contexts in
an initial singularity is still required at the outset. string theory. Section VIl focuses on the bounce itself where,
In this paper, we consider the possibility that the singularWe argue, string theory must play a critical role in passage
ity is actually a transition between a contracting big crunchthrough the singularity. We conjecture that the cosmological
phase and an expanding big bang phase. If true, the universéngularity connects contracting and expanding solutions in a
may have existed for a semi-infinite time prior to the putativemanner analogous to the conifold and flop transitions. In Sec.
big bang. The horizon puzzle would be nullified, eliminating VIIl, we discuss the implications of our results for cosmol-
one of the prime motivations for inflation. The analysis 09y, Particularly the ekpyrotic scenard2]. We suggest a
opens the door to alternative cosmologies with other solutajor modification of the scenario in which the hot big bang
tions to the remaining cosmological puzzles. phase is created in a collision between two boundary branes,
The discussion in this paper focuses dmimensional removing the need for bulk branes.
field theory and is not specific to any particular cosmological
model. A crucial role in our analysis is played by a massless
scalar field—a modulugThe cosmology of such fields has Il REVERSAL AND THE NULL ENERGY CONDITION
been analyzed by many authd®-4].) We eschew any use  The reversal problem is notoriously difficult because a
of branes and strings until absolutely necessary. String theoRyg|ation of the null energy condition is required. Consider a
will become important at the point where the Universegeneral 4D theory of scalar fields< coupled to gravity. We

bounces from contraction to expansion. _ _ are free to Weyl transform to the Einstein frame:
Here, our discussion is closely related to considerations of

the reversal problem in the pre-big-bang scenarios of Ven-
ezianoet al. [2,5,6] and related scenarig¥—10]. A notable . 1 1 K L
difference, as we shall emphasize below, is that the reversal SZJ d*x\-g FGNR_EQM Giy(¢™)dud'dud
in the pre-big-bang model occurs in the limit of strongly
coupled string theory whereas we are interested in reversal in K
the limit of weakly coupled string theory,11]. The differ- —V($), @)
ences have profound consequences for both cosmology and
fundamental physics.

In Sec. I, we show that reversal requires either a violatiorwhere g, is the spacetime metrifin Minkowski space,
of the null energy condition or passage through a singularityy,,=(—1,+1,+1+1)], R is the Ricci scalar, an@, ;(¢")
where the scale factor shrinks to zero. The remainder of thies the metric on field space. We consider unitary theories in
paper explores the second possibility. In Sec. Ill, we obtairwhich G,; is positive definite. The energy momentum tensor
the solutions for a single scalar field evolving in a contract-is
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1 case where the potenti® ¢) =0. This kind of model arises
T,,=G13d,¢'d,4°—g,, Ega'gGlaﬂa¢|05¢J+V » (2 in the low energy approximation to type IIA and IIB string
theory for d=10. It also arises whenever a
where the repeated Greek or Roman indices follow the starfd+1)-dimensional gravity theory is compactified dodi-
dard summation convention. If we assume homogeneity antnensions, where (the “radion”) determines the length of
isotropy, theng,,, is a Friedmann-Robertson-Walker metric the compact dimension.

and the energy densify and the pressurg are We further simplify by restricting ourselves to a mini-
superspace consisting of spatially flat, homogeneous and iso-

1 tropic  solutions with metric ds*=a?(t)[ - N?(t)dt?
P:T00:§G|J¢ o +V 3 +3971(dx)?]. In the gaugeN=1, t is conformal time.
Then, the solutions to the equations of motion up to a shift in
1 . 1 Co t are
p=_§9”Tij=§G|J¢I¢J_V, (4)
. . L _ 1/(d—2) _ 2(d—-1)
where dots denote proper time derivatives, aje1,2,3. a=a(1)[t| and  ¢=¢(1)+ 7\ —5=5 lodlt],
A problem arises because scalar fields satisfy the null en- (8)

ergy condition:

_ 13 wheren=*1 anda(1l) and¢(1) are integration constants
ptp=G,d ¢7=0. ®)  set by the initial conditions. Each solution has two branches.

or t<0, the Universe contracts to a big crunchtas0.

In a Friedmann-Robertson-Walker universe, the expansioE . ; L
. : , ort>0, the Universe expands from a big bang beginning at
rate is set by the parametét=a/a, wherea is the scale 5+

factor. The time variation oH assuming a flat universe is At t=0, the solutions are singular ant— . In the

given by case of type IlA(or heterotig string theory ind=10, the
string coupling isgs=e? [see discussion of E¢25) below],
so the two solutions at the boun¢ast—0) correspond to

: i i weak and strong coupling, respectively.
If H<0, then reversal from contractioi(<0) to expansion We will find it useful to reexpress the model in terms of

(H>0) is not possible. Hence, we obtain the theorem: Giver{he “string metric” g(8) = e#/c wherec= J/(d—2)/2. The
a flat universe and a unitary theory with terms second ordeéction bagsed on thgeﬂgtring r?]/ézric is ( )/2.

in field derivatives, then the contracting big crunch phase
and the expanding big bang phase are separated by a singu-

H=—47Gy(p+p)=—47G\G,;¢' ¢$’<0. (6)

larity. Similar theorems and considerations of ways of cir- f d9x /_QKSBEfw(R(g(s))+ng(s)waﬂ¢(9v¢)_ (9)
cumventing them have been discussed in the literature
[6-8,13.

This definition of the string metric agrees with the standard
IIl. TWO APPROACHES TO THE REVERSAL PROBLEM metric ford=10 and the string metric fat=4 as defined in
the pre-big-bang literaturi,5].
Both the pre-big-bang model and the scenario we consider The two solutions in Eq(8) are easily transformed to the
entail the problem of reversal from contraction to expansionstring framegﬁ:ai??w, where we can compare them to
in the Einstein frame. In pre-big-bang models, the commonsp|utions in the pre-bang scenario. We can express the solu-

approach has been to consider violating one of the assum@ons in terms of string-frame FRW time, where dr,
tions of the theorem derived aboys-8,13. For example, — g dt:

by introducing higher derivative terms in the action, the null
energy condition can be violated and reversal might take
place without reaching the singularity. In this paper, we con-
sider the alternative possibility of proceedingde-0 and

bouncing without introducing new terms in the action. [ 2
Both approaches can be modeled by an action with a sca- ¢=¢(0)+ d—2(77 Vd—1-1)log|7g. (10
lar field ¢ plus gravity:

as= as(1)| 7's| 7ha-1

1 Using these we find
S= f d“w—g{R(g)— 59" b=V($) |, (D |

.= as 7 1
where R(g) is the Ricci scalar based on the metgg,, . STas Jd—1 s
Here we have generalized tbdimensions and simplified to

the case of a single fiel¢p, and we have chosen units in 5 1
which the coefficient ofR in the d-dimensional Einstein- b=\ —=(pJd—1-1)=
frame Lagrangian is unity. For the moment, we consider the d-2 Ts
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strong weak H 3
coupling coupling

FIG. 1. Phase diagrams fa=4 comparing
the (a) pre-big bang(PBB) model with (b) the
©>0 bounce scenario considered here. The four rays
= connected at the origin represent the four solu-
= . - . tions to the potential-less equations of motion.
¢ =0-3H; ¢ =¢-3Hg The large arrows indicate the two solutions that
<0 are joined together in each of the two cosmolo-
s gies. Reversal from contraction to expansion con-

s nects the two weak coupling regimes(in.

(a) (b)

— . 2 2 1 ag=ald-22g 70+ g9,
o= DNGg3""" Va7

a;=all 2 e rd—_grd),

(12

where the dot denotes differentiation with respectgo

There is a key difference between the pre-big-bang sce-
nario and the reversal considered here. We approach weak
coupling ast—0~ corresponding to they=+1 branch of Wwhere y=(d—2)/8(d—1). Their range fora>0 and ¢
Eq. (8). The pre-big-bang scenario approaches strong cou€al is the quadrarda.. >0 or ap=|a,.
pling ast—0~ corresponding to they=—1 solution. The The effective Lagrangian fov=0 is transformed t¢12]
two scenarios may be compared by mapping their trajecto- d—1 4d-1)

ries in the plane spanned lyandH,, a method commonly N ay’+a’]=—
introduced[5] to describe the pre-big-bang picturedr-4. ( )
Note that the ratio

1 _
a.=5(apray)= ald-2l2g=ye

ma;a’_ , (13)

where primes denote derivatives with respect to conformal
time t. In the moduli space spanned bgy(a;) we identify
- ag (a1) as a time-like(space-likg variable anda.. as light-
ﬂz _ 2(d-1) (11  cone coordinates. We shall consider trajectories which
Hg K d-2 bounce aa=0 corresponding to a point on the moduli space
boundaryay=a;# 0. Without loss of generality the value of
, , , , _. . tatthe bounce can be chosen totle0.
is negative ford>2 if »=+1 (our solution and positive if We cannot describe exactly what occurstat0. How-
n=—1. This expression describes the four solutions showryer, what is encouraging is that we have found a choice of
in Fig. 1. As noted above, for the pre-big-bang model, theayiaples a, ; that remain finite fot<0 andt>0, and there
7= —1 solution in whiché runs to+ (strong couplingis  annears to be a natural way to match=a0. It is instructive

chosen fort<0. It has been proposef—8,13 that new 5 change variables for the solution to E8) with 7=+ 1 to
terms in the action appear in the strong coupling limit that

violate the null energy conditioe.g., by introducing high y=er?®
derivative interactions and potentipismaking it possible to (14)
avoid ¢ running off to +«, as shown by the dashed curve. sz ¢_4/(d_2)9w-

Whatever physics is involved, it is presumed to freeze the
dilaton[so Eq.(8) is no longer applicableand create radia- This leads to a reformulated action
tion that dominates the Universe. Nevertheldds,is posi-

tive andg= —(d—1)vy2/(d—2)H, (assumingg is frozen s:f d%\—g ¥*R(Q), (15)
is negative. Hence, the Universe joins onto a path similar to

what IS shoyvn in the flgure: By contrast, the trajectory Pro- i no kinetic term fory. We use a parametrization such
posed in this paper maintaing= +1 throughout. This is a

. . . . 2 . .
fundamental difference that distinguishes everything we sa:[y;\?vtag]sepcgseig\'gem OR in Eq.(15)Is ¢~ to ensure that it is

in the remainder of this paper from the pre-big-bang sce- — —
pap pre-big-bang The scale factor of the metrig,,, is a= ¢~ 2@~ 2a. The

nario.
solution to the equations of motion in E) (with =
+1) become

IV. HOW SINGULAR IS THE SINGULARITY? _
_ _ _ a=A and y¢=B|t|? (16)
A key step in tracking the Universe across the bounce at
a=0 is to find variables which are finite @#s-0. Consider with A andB positive constants. By rescaling tledimen-
the change of variabld42,14: sional coordinates one can always 8et1. In terms of the
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original metricg,,,,, the Universe shrinks to a point &t 0. Xo

However, we see that the metig,, is smooth there. . e, L X

One should not read too much into this. The change of i NN g
variables does not make the problem entirely regular. First
and foremost, sincg(t=0)=0, the Planck scale vanishes at
the bounce in these coordinates. Hence, there is the concern
that quantum fluctuations become uncontrollet=a0. Note
also thaty’ is singular att=0, so higher dimension opera-
tors are also important at the bounce. Therefore, even in
these variables, we see the importance of going beyond the
field theoretic descriptions to understand the physics at
=0.

We must assume that the field theories considered here are NN i
low energy approximations to some more fundamental o X

theory. The action in Eq15) in terms of andg,,, is just FIG. 2. Sketch of the compactified Milne univerdetched re-

the Einstein-Hilbert action ford+ 1)-dimensional gravity gion) embedded in a Minkowski background, whefeandx® are
theory compactified ta dimensions. To see that, consider the time and space coordinates. The dashed surfaces are surfaces of
the (d+1)-dimensional metric constant.

X

ds*= y(x)*dw?+g,,,dx*dx” (17 through one another. The variables anda, defined above
are given byay,=1+B?|t|, a;=1—B?|t|, so these bounce at
t=0. Finally, note that the proper distance between the
branes in the Milne metric iB2|t|, and we see the physical
interpretation of the constarB? as the magnitude of the
relative velocity of the branes.
= — - In the usual Kaluza-Klein reduction from+1 to d di-

V—glitt R(g(d+l)):‘ﬂz\/__gR(g)_Z%(\/__ggW‘?v‘ﬂz)’ mensions the variables defined in H42) parametrize the

(18 geometry as follows. The scale factor of the noncompact

whereg(®*1) is the metric ind+ 1 dimensions. Constraining d-dimensional space  as mea;(ltjj[ez? by _ the - canonical

w to lie in the rangg 0,1], the (d+ 1)-dimensional Hilbert- (d+1)-dimensional metric im=a’™ ', which has been
Einstein action is reduced to E(.5). For example, the com- set to unity. The size of the extra dimension is proportional to
pactification can be on a circle, as in Kaluza-Klein theory, or®-/@+, which can take on any positive value. Thus the
on an interval, whereb or ¢ can be interpreted as a radion. ange ofé is —«<¢<c. Other @+ 1)-dimensional theo-
If the compactified dimension is a line segment there are twéi€S can reduce to the sanedimensional effective field
boundary branes at the en$5-17. Then,a=0 corre- thepry, but the ge(_)metrlcal meaning of th]gﬁ variables and
sponds to a circle collapsing to a point or the branes collidingheir range may differ. For example, consider Adunded

and let it depend only on thd-dimensional variablex*.
(For simplicity, we neglect the vector field arising from the
u—Ww components of the metricA straightforward calcula-
tion leads to

att=0. y a positive and a negative tension brane. The induced scale
Substituting Eq(16) into the metric, we obtain factor on the positivgnegative tension brane is, (ay),
with 0<a;<a, so thate is restricted to be less than zero.
ds?=B*2dw?+ 7, dx“dx". (199 The distance between the branes is proportional to

log(ag/ay), which agrees with the Kaluza-Klein result at
The space-time is remarkably simple. It is sim@®~!  short distances where the variation of the warp factor is neg-
X M2, where thed— 1 dimensions are Euclidean and?is ligible. We note that more general compactifications with
a 2—d compactified Milne universéFig. 2 with ds’=  additional dimensions lead to more complicated actions
—dt*+B*%dw?. Each branch of our solutions spans a wedgewhich depend on several moduli. If the moduli space can be
in Minkowski space compactified on an interwale [0,1] reformulated in terms of variables analogousato that are
with end points identified. Equivalently, if the metric is re- finite at the bounce, a similar analysis should hold. Alterna-
expressed in Minkowski light cone coordinatess’ tively, the bounce trajectories are restricted to cases where
=dxtdx™ wherex™==*te” BZW, then M2 corresponds to the time derivatives of the additional fields are zero and the
flat Minkowski space modded out by the boost" theory reduces to the current examples. However, the simple
—expBd)x*, x”—exp(—B?)x". Such a compactified Milne interpretation ofg,, in Eq. (17) as a time-independent met-
universe has been discussed by Horowitz and §i8ff Our  ric is only valid for compactifications of a single dimension.
bounce connects two branches 6 at t=0. As men- When the theory in Eq(15) is derived from compactifi-
tioned, if the extra dimension is a circle, it contracts to zerocation as in Eq.(18), the bounce solution corresponds to
att=0, and reexpands. If the extra dimension is an intervalshrinking the compact dimension to zero size and then ex-
the two boundary branes follow the heavy lines in Fig. 2,panding it again(In the work of Brandenberger, Vafa, and
bouncing off each other. Equivalently, as the figure suggestdseytlin [19,20, they considered the situation where one
one can say that the two boundary branes meet and paspatial dimension collapsed and a different one opened up.
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This is also an interesting possibility which may be equally dg t—oco
good for our purposesThroughout this process the metric in
the noncompact dimensions as measured by the S oe=+1

(d+1)-dimensional metric in Eq(17) is unchanged. Such a ‘ a
an intuitive picture suggests that indeed the two branches of - '

the solution in Eq(8) [or in terms of the coordinates  in e=-1 o
Eq. (15)] are indeed connected. However, it should be e

stressed that the dimensional reduction frdm 1 dimen- finite t Y i-0
sions tod dimensions makes the bounce natural but it does
not prove that it exists. ay

V. APPROACHING THE BOUNCE

. . . FIG. 3. The moduli space iay anda, or, equivalently, light-
We have the machinery in hand to track the evolution aggne coordinatea.. . The physical regime is the upper light cone

the Universe approaches the boun@e rebounds after- (quadrant The two trajectories correspond to the exact solutions
wards. From varying the action in Eq13) with respect t0  for the potential discussed in the text for 0. The bounce occurs at
N, we obtain the constraint-ay?+a;?=0. (Expressed in  t=0. By construction the solutions are time symmetric. The dashed
terms ofa and ¢, this corresponds to the Friedmann equa-solution corresponds te= + 1 and the dotted solution corresponds
tion.) Consequently, we are only permitted solutions wherdgo e=—1.
ag=*a; . The minus sign solution must apply if the branes
are to collide. The incoming trajectory intersects the light-hand approaches« att—0™", it increases, reaches a maxi-
like boundary of moduli space,=a, along a light-like tra- mum value at some fixet and then slides back te « as
jectory. If we assume that no radiation is produced, then ta— . For negative times the picture is symmetric. In par-
satisfy the energy constraint, the solution after collision musticular, the universe is contracting &s>0".
also be light-like. There then appears only one natural pos- For negativee the potential is negative. In this case the
sibility for the trajectory to follow, which is to bounce solution Eq.(22) cannot be trusted beyond a critical value of
straight back off the light conegg<a;, as occurs in the t=ty wherea, vanishes. At that poina=0 and ¢= +.
Milne universe example explained above. Since the potential is not bounded from below, it is not sur-
Returning to the Lagrangian in Eql13), we now prising that¢ reachese in finite time. In the brane picture,
add a potential term,—NaV(¢)=—N(a,a_)¥@2)  the repulsion makes the higher dimensional space infinite in
X V((1/2y)log(a_/a.)). Up to an unimportant constant, the a finite time. We have no reason to expect another bounce at
total Lagrangian becomes this point. Again, the picture is symmetric aroutyed0. The
two solutions are represented in Fig. 3.
In the examples considered thus far, the bounce-at
—o is time symmetric. The potential is taken to vanish in
that limit, and the trajectory in theag,a,) plane intersects
where the functiorF is related to the potential. Since our the boundary of moduli space,=a, along a light-like di-
convention is that the weak coupling regiondgis- —, the  rection. After the bounce it simply reverses, corresponding to
potential should vanish in that limit or, equivalently, the matching conditior;, ,(out)= —a ,(in). This could be
F(a-/a.) should vanish for small values of its argument. described as aglastic collision, since the internal states of
As an exercise, it is instructive to consider a case whergne two branes are unchanged after collision.
the equations of motion are exactly solvable: As the velocity approaches zero, the boundary brane col-
di(d—2) lision may be nearly elastic, resulting in no radiation being
(21) produced on the branes. But at finite velocity, we should
expect entropy production as radiation modes are excited
) both in the bulk and on the colliding branes.
where e=*1. This example corresponds toV Let us consider the description of fluids produced on the
~eexp([d/y2(d—1)(d—2)]¢). In the gaugeN=1 the so-  pranes at the collision. The action for a fluid in a background

lution up to a shift oft aroundt=0 is metric @W is —fddxx/—ép, where p is implicitly deter-

1
—Na;a’,—N(a+a,)d’(d*2)F(a,/a+) (20)

F(a_/a,)= -
(a- a+)—€;

a_=plt| mined in terms otj,“, by the fluid equations. In the present
context, where the matter couples to the higher dimensional
d-2 metric, we should take,, to be g,, given in Eq.(14),
- d+2)/(d— d—2)/(d— . Iy my . .
a;=a(0)+ 63d—2p( FANAm2)|f|(d=2)d=2), (22)  rather than the Einstein-frame four dimensional megric .
This difference is very important. Whereas the Einstein
wherep is an arbitrary positive constant. frame scale factom vanishes at the singularity, the scale

Consider first the case @f positive, i.e. a positive poten- factora is finite there. In consequence, fluids couplingato
tial. The Universe haa=0 att=0 wherea_=0. For posi- have finite density and temperature at the singularity. The
tive t, the universe expands to infinite sizé.on the other usual infinite blueshift caused by the vanishingaois pre-
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cisely cancelled by an infinite “fifth force” redshift due to clearly at infinite distance in moduli space. The way we man-
the coupling tog, as¢— — . We see once more that within age to reach it at finite time is to consider a motion not only
the context we are discussing, the big crunch—big bang sirin the ¢ moduli space but in an extended space including
gularity is remarkably non-singular. also the scale size of the noncompact dimens@anSince

Let us consider as an example the case where the inconthis extended space has Lorentzian signature, the proper dis-
ing state has no radiation, and the potentiéd) asymptotes tance to ¢p= —o,a=0) can be finite even when it is infinite
to zero as¢— —x, and remains zero after the collision. to any generia.
Assume also that a small amount of radiation is produced, so The fact thata vanishes at the singularity has profound
the collision is slightly “inelastic.” The “elastic” matching implications. Unlike the other singularities which are field
condition discussed abovag ,(out)= —ag ,(in), cannot ap-  theoretic, here gravity cannot be ignored. Therefore, the
ply, since it would be incompatible with the Friedmann con-physics of the singularity cannot be described by local quan-
straint, which reads tum field theory coupled to weakly coupled gravity. It is an
important challenge to find other such singularities and to
describe them in detail.

1 p(a)a. (23

aé(out)z—ai(out)zz(

VIl. PASSAGE THROUGH THE SINGULARITY

As stressed above, each term in this equation is perfectly AND THE ROLE OF STRING THEORY

finite at a=0 (the “singularity”). But the presence of the
positive radiation-matter density term on the right hand side To prove that the transition past=0 can occur smoothly,
means that the outgoing trajectory must be time-like in theone must have a consistent theory at short distances and
(ag,a;) plane. complete control of the dynamics at the singularity. Here is
The details of the microscopic physics determine thewhere string theory becomes an essential element. To deter-
amount of radiation which is generated by the collision. Inmine what happens at=0, it is natural to try to embed our
terms of the long distance effective theory that we have beesolution in string theory which provides a complete theory of
using the microscopic physics also determines the precisguantum gravity.
boundary conditions oag anda; . If before the collision the Our equations can be embedded in string theory in several
system has no radiation and the potential vanishespfor  different ways. The most straightforward way is to embed it
— oo, the trajectory in field space hits the boundary along an type IIA or the heterotic string il=10 by identifying ¢
light-like curve. As we said, because of H@3) if radiation ~ with the dilaton. As pointed out in the discussion following

is being generated, it bounces off the boundary along a timeeq. (17), E,uv of Eqg. (14) is the ten-dimensional metric mea-

like curve and the trajectory is not time symmetric. sured in M theory units. So our background is M theory on
This discussion will be further elaborated upon in Ref.R®x A12, where M ? is the 2D compactified Milne space
[21]. described by the metric in EG17).
Is our background a solution of the M theory equations of
VI. DISTANCE TO THE SINGULARITY motion? The fact that the M theory metrio;l/(,gw,) is flat

might suggest that the answer to this question is positive.

When ref_errmg to the modu_h space In string theory’.OneHowever, since the background is obtained by modding flat
usually has in mind the moduli of the compact dimensions, _ . B2+
leven-dimensional space by a boost~e*®'x*, we

ll;er,e?;]neg ;2;: Os?fg rg?at\ﬁtedrllrgﬁgsrlggzcl:ndci;aenr?;gﬁ;nnp:)etlrtlcfhould be more careful. Szpin half fields transform under this
usually considered to be one of the coordinates on modulperation ag . — fe”"8°F . where{=+1 is a choice of
space. Most of the singularities which are studied in stringspin structure. Therefore, there is no covariantly constant
theory are at finite distance in moduli space. At such a sinspinor, our background breaks supersymmetry, and it is not
gularity the presence of gravity can be neglected, and thelear whether the quantum equations of motion are satisfied.
essential physics of the singularity is described by locafFor [t|—2, where the circumference of the circle is large
quantum field theory. The latter can be either a weaklythis breaking is small and we have a good approximation to
coupled quantum field theory with new light degrees of free-a solution of the equations of motion. For smialinear the
dom which become massless at the singularity, or a stronglgingularity the quantum effects become large and a more
coupled quantum field theory at a nontrivial fixed point of careful analysis is needed.
the renormalization group. A typical example of such a sin- Attempting to proceed to smal] it is natural to change
gularity is the smalEg instanton transition in which a bulk variables to the string metrigiflz zngw= ng’zg,w. Let ¢
brane hits the boundary braf22-24. This is the singular- = 3log ¢# be the dilaton in terms of which the action is
ity which was proposed to be the initiation of the big bang
phase in the ekpyrotic modgl2].

The singularity of interest here is of a totally different f dlox‘/_g(sie—w(R(g(s))+4g(s)uv(9ﬂ¢(9v¢). (24)
nature. We are interested in the singularitydat —«. The
metric on @, ¢) space is given from the kinetic terms in the
action (13). After a trivial scaling ofa the line element is The solution of the equations of motion ig~|t|*?, and
proportional to— da?+ a?d¢?2. For fixeda, the singularity is  using the relations between the various metrics
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gu(S) = y2guv=alt| nuv system near the singularity and to a divergence of the loop
diagrams. One might be tempted to use T duality to trans-
form the winding modes to momentum modes. The
T-dual metric and string coupling are- (dt)?+[(a')?/
B*t?](dw)? and g(t)=gs(\/a'/B?t). Both the T-dual cur-
vature and the T-dual string coupling are large fer\a’

and, therefore, the T-dual picture is not useful. The precise
behavior of these modes and of other effects near the singu-
larity is a fascinating issue which we hope to return to in a
future publication.

and

gi=e?’=y°=p|tf* 29

where g is the string coupling andr and 8 are arbitrary

positive constants. In terms af~t%? the string metric is

ds?~—dr2+7272?_,(dX)? and gs~|74. Note that the

string coupling vanishes at the singularityrgt=0. It is easy

to see that the results in E@5) satisfy the string equations
of motion to leading order imx’ andgs (where we use the
string metricg(?)

VIIl. COSMOLOGICAL IMPLICATIONS

3
R, () =-2V V.= =—(7,,+45,05,
wl 8v) W= 52 k09:0) Our conjecture is that the Universe can undergo a transi-

1 g tion from a big crunch to a big bang by passing through a
P T string theoretic regime which connects the two phases. It is
VudVi e 2V ¢ Wg 26 standard in string compactifications to have a singularity
which is common to several different classical spaces. The
gtheory at the singularity is often less singular than one might
expect classically26]. The flop[27] and the conifold 28]
transitions are particular examples of this general phenom-
enon. Even though these singularities are spatial singulari-
ties, it is also likely that dynamical singularities like our big
crunch and big bang singularities are similarly connected in
%tring theory. If so, what has been perceived as the beginning
of time may simply be a bridge to a pre-existing phase of the
Bniverse. The door is thereby opened to whole new classes

. of cosmological models, alternatives to the standard big bang
We can also consider type 1IB theory on our backgroundand inflationary models.

The I_OW energy theory is still ,Of the form in E4), and_ its A particularly pertinent example is the recently proposed
solution can be expressed using the string theory variables a8pyrotic’ model of the universd12]. According to this

in Eq. (25). However, we no longer have the argument for ,,qe| the universe began in a non-singular, nearly vacuous
the bounce which is based on the compactification of g asistatic state that lasted for an indefinite period. The ini-
h|gher dimensional theory. Still we can examine the ,be'tial state can be described as a nearly BBSgomol'nyi-
havior of each branch of the solution. At long time the stringp»q44_sommerfigldtonfiguration of two orbifold boundary
coupling is Iarge and we can use S duality to tra,ns'branes and a (81)-dimensional brane in the bulk moving
form the S(Z)Iutlon tf another weakly coupled desc’r'pt'slowly along the intervening fifth dimension. The bulk brane
ion with gs=1/g]t|°. The canonical Einstein metric, is attracted to a boundary brane by a force associated with a
9= aB” Yt|V*n,, does not transform and remains large, negative scalar potential. The radiation that fuels the hot big
but the string metricg’?) = (a/\B[t]) 7, shrinks to a point. bang is generated in the collision between the branes. The
Another context in which our background can arise iNnBPS condition ensures that the Universe is homogeneous and
string theory is when there are some other compact dimerspatially flat. Ripples in the brane surface created by quan-
sions. Consider for example the compactification of Mtum fluctuations as the branes approach result in a nearly
theory on the flat spac@®x M 2x S?. That is, we compac- scale-invariant spectrum of density perturbations after the
tify one of the Euclidean dimensions of the previously men-collision. In short, all of the cosmological problems of the
tioned background on a circle. We consider fhefactor as  standard hot big bang model are addressed.
the M theory circle, and interpret the theory as type IIA  For a bulk-brane—boundary-brane collision, the modulus
theory onR8X M 2. Since the size of th€? is independent that determines the distance between the branes remains fi-
of spacetime, the string coupling is constant. Furthermorenite and gravity is only a spectator. Consequently, this colli-
since the metric orR®x M ? is flat (except perhaps a  sion entails none of the subtleties discussed in this paper.
=0) this is an exact solution of the string equations of mo-However, in order for the ekpyrotic model to be viable, there
tion to all orders ina’. As we explained above, the back- remains an important challenge. In the long wavelength
ground breaks supersymmetry and, therefore, we cannot aimit, the brane picture can be described by an effective 4D
gue that this is also an exact solution to all ordergdn Of  field theory with negative potential energy. Beginning from a
particular interest are the winding modes around the spatiadtatic state, a negative potential energy causes the effective
circle in M ? neart=0. They are reminiscent of the tachy- 4D scale factor to shrinkl2]. In the braneworld picture, the
onic winding modes which were recently studied by AdamsUniverse continues to shrink because the boundary branes
et al. [25]. These modes might lead to an instability of ourare approaching one anothgt2?]. It is essential that a

and, therefore, lead to a conformal field theory to leadin
order in«a'. By choosing the constantg and 8 appropri-
ately, we can make the range of validity of this approxima-
tion arbitrarily large although not tb=0.

In the long time limit|t|— <, in the string frame the Uni-
verse expands and becomes large. The string cougling
also becomes large. However, the theory is still manageabl
In type IIA theory, the theory becomes M theory in eleven
dimensions where the size of the eleventh dimension is larg
[17].
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mechanism exist that will reverse contraction to expansiorother which satisfies the conditions assumed before for the
after the bulk and boundary branes collide, a point emphabulk-brane—boundary-brane potential, a nearly scale-
sized by many peoplg29]. invariant spectrum of perturbations will be produced that re-
In this paper, we have focused on the reversal processains after the bounce, as discussed in R2t]. We are
and, particularly, on the possibility of a collision and reboundcurrently examining this alternative scenario to determine if
between the boundary branes. Our result suggests that tiiee quantitative requirements for the density perturbations
reversal to increasing might be accomplished by a second can be met. If so, this would represent a significant simplifi-
collision between the boundary branes. The essence of owgation relying on novel physical processes that occur when
argument is that there exist variables that remain finite orboundary branes collide.
each side of the bounce and that there is a natural way to
match_ across the bounce. In REL1], we discuss how per- ACKNOWLEDGMENTS
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