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Simulation of dimensionally reduced super Yang-Mills-Chern-Simons theory
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A supersymmetric formulation of a three-dimensional super Yang-Mills-Chern-Simons theory using light-
cone quantization is presented, and the supercharges are calculated in the light-cone gauge. The theory is
dimensionally reduced by requiring all fields to be independent of the transverse dimension. The result is a
nontrivial two-dimensional supersymmetric theory with an adjoint scalar and an adjoint fermion. We perform
a numerical simulation of this super Yang-Mills-Chern-Simons theory in 111 dimensions using supersym-
metric discrete light-cone quantization. We find that the character of the bound states of this theory is very
different from previously considered two-dimensional supersymmetric gauge theories. The low-energy bound
states of this theory are very ‘‘QCD-like.’’ The wave functions of some of the low mass states have a striking
valence structure. We present the valence and sea parton structure functions of these states. In addition, we
identify BPS-like states which are almost independent of the coupling. Their masses are proportional to their
parton number in the large-coupling limit.
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I. INTRODUCTION

Chern-Simons~CS! theories are certainly some of th
most interesting field theories in 211 dimensions. Among
the interesting phenomena one sees in these theories ar
quantum Hall effect, Landau levels, nontrivial topologic
structures, vortices, and anyons. For a review of these p
nomena see@1#. Some of these (211)-dimensional phenom
ena have been observed experimentally in condensed m
systems. CS theories are also often described as topolo
theories@2# since for most gauge groups the CS coupli
must obey a quantization condition for the theory to rem
gauge invariant. Within this rich literature on CS theori
there is also considerable work on super Yang-Mil
~SYM-!CS theories. These theories have their own rema
able properties. It has been shown that there is a fi
anomaly that shifts the CS coupling@3#, and it has been
conjectured by Witten@4# that this theory spontaneous
breaks supersymmetry for some values of the CS coupl
There are other related reasons for interest in CS theo
Witten @5# has conjectured that string field theory is ess
tially a noncommutative CS theory. Recently this led to
conjecture by Susskind@6# that relates string theory to th
fractional quantum Hall effect.

Since these theories are interesting from so many diffe
points of view, it is certainly useful to numerically simula
them. The method we will use is SDLCQ~supersymmetric
discrete light-cone quantization!. This is a numerical method
that can be used to solve any theory with enough supers
metry to be finite. The central point of this method is th
using DLCQ we can construct a finite dimensional repres
tation of the superalgebra@7#. From this representation of th
superalgebra, we construct a finite-dimensional Hamilton
which we diagonalize numerically. We repeat the process
larger and larger representations and extrapolate the solu
to the continuum. We have already solved stand
0556-2821/2002/65~8!/085046~11!/$20.00 65 0850
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(211)-dimensional supersymmetric Yang-Mills~SYM!
theories by this method@8,9#, so it is clear that SYM-CS
theories are within our reach.

In this paper we will start with SYM-CS theory in 211
dimensions and dimensionally reduce it to two dimensio
by requiring all of the fields to be independent of the tran
verse coordinate. This is an interesting (111)-dimensional
supersymmetric theory in its own right. It is a good starti
point for our numerical simulations because we can so
this problem using two completely independent codes, on
MATHEMATICA code and the other aC11 code. When we
move on to 211 dimensions in future work, the
(111)-dimensional results will be related to th
(211)-dimensional results in a nontrivial way. We foun
this to be the case in our previous work o
(211)-dimensional SYM theories, and it will most probab
be the case here as well. This will provide us an import
check on our code for solving the (211)-dimensional prob-
lem. It is important to develop this chain of numeric
checks, since there are no analytical or other numerical
lutions to check our results against.

Many of the most interesting aspects of CS theory will
lost by this reduction, most notably the quantization of t
CS coupling. However, one particularly interesting prope
that will be preserved is the fact that the CS term simulate
mass for the theory. It is well known that supersymmet
Abelian CS theory is simply the theory of a free mass
fermion and a free massive boson. In the non-Abelian the
additional interactions are introduced, but we expect to a
see this mass effect. This is particularly interesting here
cause dimensionally reducedN51 SYM theory is a very
stringy theory. The low-mass states are dominated by F
states with many constituents, and as the size of the sup
gebraic representation is increased, states with lower ma
and more constituents appear@8–20#. The connection be-
tween string theory and supersymmetric gauge theory le
©2002 The American Physical Society46-1
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one to expect this type of behavior; however, these ga
theories are not very QCD-like. Ultimately one might like
make a connection with the low-mass spectrum observe
nature.

We expect to find states in SYM-CS theory that are mu
more QCD-like, because of the effective mass for the c
stituents introduced by the CS term. We will see that som
the low-mass states will be dominated by valence-like F
states that have only a few constituents. As we go to la
and larger representation of the superalgebra, we will res
these states better and better, and any new states that a
will be heavier. We will also find highly mixed states witho
a valence structure. Finally, we find that at strong coupl
the low-energy spectrum is dominated by states that a
reflection of the Bogomol’nyi-Prasad-Sommerfield~BPS!
states of the SYM theory in 111 dimensions@20# and are
therefore independent of the couplingg.

From the wave functions of the bound states we will
able to find the structure functions of both the valence a
sea partons. Some of the highly mixed states will hav
double-humped structure function. Some of these struc
functions are similar to those conjectured in various pheno
enological calculations; they are the result of the solution
a nontrivial gauge theory.

In Sec. II we give a general discussion of supersymme
light-cone-quantized SYM-CS theory in light-cone gaug
We then give the dimensionally reduced discrete formulat
of the supercharges and discuss the other symmetries o
theory. In Sec. III we discuss our numerical method a
some of the new wrinkles that appear in CS theory. We a
present and discuss in this section the spectrum of bo
states as well as a variety of properties of these states inc
ing their structure functions. We will see that it is a ve
QCD-like theory as opposed to pure SYM theory, which
very stringy. Finally, in Sec. IV, we summarize the resu
and discuss the prospects and challenges for calculatin
the full (211)-dimensional theory.

II. SUPERSYMMETRIC CHERN-SIMONS THEORY

We will considerN51 supersymmetric CS theory in
11 dimensions as the starting point of our discussion. Wh
we will reduce this theory to a (111)-dimensional theory
for numerical simulation here, we eventually plan to simul
the full theory, and it is therefore useful to present a deta
light-cone formulation in light-cone gauge. The Lagrangi
of this theory is

L5TrS 2
1

4
LYM1 iLF1

k

2
LCSD , ~2.1!

wherek is the CS coupling and

LYM5FmnFmn, ~2.2!

LF5C̄gmDmC, ~2.3!
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LCS5emnlS Am]nAl1
2i

3
gAmAnAlD12C̄C.

~2.4!

The two components of the spinorC5221/4(x
c) are in the

adjoint representation ofU(Nc) or SU(Nc). We will work in
the large-Nc limit. The field strength and the covariant de
rivative are

Fmn5]mAn2]nAm1 ig@Am ,An#,

Dm5]m1 ig@Am ,#. ~2.5!

The supersymmetric variations of the fields are

dAm5 i ēgmC, ~2.6!

dC5
1

4
i emnlglFmn5

1

4
GmneFmn , ~2.7!

where1

g05s2 , g15 is1 , g25 is3 ,

Gmn[
1

2
$gm,gn%5 i emnlgl . ~2.8!

This leads to the supercurrentQ(m) in the usual manner via

dL5 ē]mQ(m). ~2.9!

Light-cone coordinates in 211 dimensions are (x1,x2,x')
where x15x2 is the light-cone time andx'52x' . The
totally anti-symmetric tensor is defined bye122521. The
variations of the three parts of the Lagrangian in Eq.~2.1!
determine the~‘‘chiral’’ ! componentsQ6 of the supercharge
via Eq. ~2.9! to be

E d2xQ(1)5S Q1

Q2 D5
i

2E d2x Gabg1CFab .

~2.10!

Explicitly they are

Q252 i23/4E d2x c~]1A22]2A11 ig@A1,A2# !,

Q152 i25/4E d2x c~]1A22]2A11 ig@A1,A2# !.

~2.11!

One can convince oneself by calculating the ener
momentum tensorTmn that the supercharge satisfies the s
persymmetry algebra

1This choice of representation for the Dirac matrices is differ
from that of Ref.@1# by the interchange ofg1 andg2 but is more
natural for light-cone quantization. In this representation the spi
term of the CS Lagrangian enters Eq.~2.4! with a plus sign.
6-2
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$Q6,Q6%52A2P6, $Q1,Q2%524P'. ~2.12!

In order to express the supercharge in terms of the ph
cal degrees of freedom, we have to use equations of mo
some of which are constraint equations. The equations
motion for the gauge fields are

DnFna52Ja, ~2.13!

where

Ja5
k

2
eanlFnl12gC̄gbC. ~2.14!

For a51 this is a constraint forA2,

D2A252~D22k!A22
1

D2
~D22k!]2A1

12g
1

D2
C̄g1C. ~2.15!

In light-cone gauge,A150, this reduces to

D2A25
1

D2
@~k2D2!D2A212gC̄g1C#. ~2.16!

The equation of motion for the fermion is

gmDmC52 ikC. ~2.17!

Expressing everything in terms ofc andx leads to the equa
tions of motion

A2D1c5~D21k!x, ~2.18!

A2D2x5~D22k!c, ~2.19!

the second of which is a constraint equation. The constr
equations are used to eliminatex andA2.

We now reduce the theory dimensionally to two dime
sions by settingf5A2 and]2→0 for all fields. This yields,
from Eq. ~2.11! and the constraints,

Q2523/4gE dx2S i @f,]2f#12cc2
k

g
]2f D 1

]2
c.

~2.20!

The mode expansions in two dimensions are

f i j ~0,x2!5
1

A2p
E

0

` dk1

A2k1
@ai j ~k1!e2 ik1x2

1aji
† ~k1!eik1x2

#,

c i j ~0,x2!5
1

2Ap
E

0

`

dk1@bi j ~k1!e2 ik1x2

1bji
† ~k1!eik1x2

#. ~2.21!
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To discretize the theory we impose periodic boundary con
tions on the boson and fermion fields alike, and obtain
expansion of the fields with discrete momentum modes. T
the discrete version of the CS part of the supercharge is

QCS
2 5S ig221/4AL

p D ~2 ih !(
n

1

An
„A†~n!B~n!

1B†~n!A~n!…, ~2.22!

whereh[Apk/g is a rescaled CS coupling andA andB are
rescaled discrete field operators

A~n![Ap

L
ai j ~np/L !, B~n![Ap

L
bi j ~np/L !.

~2.23!

The ordinary supersymmetric part of the supercharge is lis
elsewhere@8#. It is important to note that the supercharge f
N51 SYM theory in 211 dimensions has a contribution o
the form

Q'
25S 27/4iApL

L'
D (

n,n'

n'

An
„A†~n,n'!B~n,n'!

2B†~n,n'!A~n,n'!…. ~2.24!

Of course, the light-cone energy is (k'
2 1m2)/k1, so k' be-

haves like a mass, and here we see thath appears in a very
similar way tok' and therefore behaves in many ways like
mass.

When comparing the two contributions to the sup
charge, we see that we have a relativei between them. Thus
the usual eigenvalue problem

2P1P2uw&5A2P1~Q2!2uw&

5A2P1~QSYM
2 1QCS

2 !2uw&5Mn
2uw&

~2.25!

has to be solved by using fully complex methods.
We retain2 the S-symmetry, which is associated with th

orientation of the large-Nc string of partons in a state@21#. In
a (111)-dimensional model this orientation parity is usua
referred to as aZ2 symmetry, and we will follow that here. I
gives a sign when the color indices are permuted

Z2 :ai j ~k!→2aji ~k!, bi j ~k!→2bji ~k!. ~2.26!

We will use this symmetry to reduce the Hamiltonian mat
size and hence the numerical effort. All of our states will
labeled by theZ2 sector in which they appear. We will no
attempt to label the states by their normal parity; in the lig
cone this is only an approximate symmetry. Such a labe
could be done in an approximate way, as was shown

2We note that in three dimensions the CS term breaks transv
parity.
6-3
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Hornbostel@22#, and might be useful for comparison pu
poses if at some point there are results from lattice sim
tions of the present theory.

III. NUMERICAL RESULTS

We convert the mass eigenvalue problem 2P1P2uM &
5M2uM & to a matrix eigenvalue problem by introducing
basis whereP1 is diagonal. In SDLCQ this is done by firs
discretizing the superchargeQ2 and then constructingP2

from the square of the supercharge:P25(Q2)2/A2. To dis-
cretize the supercharge, we introduce discrete longitud
momentak1 as fractionsnP1/K of the total longitudinal
momentumP1, whereK is an integer that determines th
resolution of the discretization and is known in DLCQ as t
harmonic resolution@23#. Because light-cone longitudina
momenta are always positive,K and eachn are positive in-
tegers; the number of constituents is then bounded byK. The
integrals in Q2 are approximated by a trapezoidal form
The continuum limit is then recovered by taking the lim
K→`.

In constructing the discrete approximation we drop
longitudinal zero-momentum mode. For some discussion
dynamical and constrained zero modes, see the review@24#
and previous work@10#. Inclusion of these modes would b
ideal, but the techniques required to include them in a
merical calculation have proved to be difficult to develo
particularly because of nonlinearities. For DLCQ calcu
tions that can be compared with exact solutions, the ex
sion of zero modes does not affect the massive spect
@24#. In scalar theories it has been known for some time t
constrained zero modes can give rise to dynamical symm
breaking@24#, and work continues on the role of zero mod
and near zero modes in these theories@25#.

To obtain the spectrum of the CS theory we solve
complex eigenvalue problem, Eq.~2.25!. For the numerical
evaluation we can exploit the structure of the supercharg

Q25S 0 A1 iB

AT2 iBT 0 D , ~3.1!

whereA andB are real matrices. The Hamiltonian has th
an easy decomposition into a real and imaginary part in
bosonic sector

Pboson
2 5AAT1BBT1 i ~BAT2ABT!, ~3.2!

and the fermionic sector

Pfermion
2 5ATA1BTB1 i ~ATB2BTA!. ~3.3!

Our earliest SDLCQ calculations were done using a c
written in MATHEMATICA and performed on a PC. This cod
was then rewritten inC11 and substantially revised. It run
on aLINUX workstation with 2 GB of RAM and can handl
as many as 2000000 Fock states. The present calculation
done in both codes as a check. We limit the calculation
resolutionK59 because it seems sufficient here and beca
the presentC11 code, which was primarily written for (2
11)-dimensional models, would require some nontriv
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modifications to run at higher longitudinal resolutions. F
111 dimensions the matrices involved are not large; atK
59 the total basis size is 2192.

The low-energy spectrum, withh51.0, is fit to M2

5M`
2 1b(1/K). These fits are shown in Fig. 1 for some

the low-energy states. In principle, higher energy states
also be found, but at these couplings the states just ab
these are difficult to disentangle because of level crossin
In theZ2 even sector we find the continuum masses to be~in
units of g2Nc /p) M`

2 54.30, 18.33, 27.46, and 43.20
whereas in theZ2 odd sector we haveM`

2 510.06, 29.13,
32.83, 39.52, and 47.40.

The CS term in this theory effectively generates a m
proportional to the CS coupling. Therefore, we expect
low-mass states will only have a few partons. This prope
will be even more apparent as we increase the CS coup
This is interesting and important for two reasons. First
stands in stark contrast toN51 SYM theory, which is very
stringy and has a large number of low-mass states wit
large number of partons. Second, this behavior of the
theory is reminiscent of QCD. In Fig. 2 we plot the spectru
of the theory as a function of the scaled CS couplingh. We
see that the masses of the bound states grow with the
coupling, i.e. the effective mass of the constituents. We a
see that there are a lot of level crossings which make it h
to follow the trajectories of individual states.

FIG. 1. Low-lying spectrum of the two-dimensional theory
units of g2Nc /p at Chern-Simons couplingh51.0 for the~a! Z2

even sector and~b! Z2 odd sector.
6-4
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SIMULATION OF DIMENSIONALLY REDUCED SUPER . . . PHYSICAL REVIEW D65 085046
In Fig. 3 we plot the average parton number in the fifte
lowest states in each sector as a function of the CS coup
for resolutionK59. The average parton numbers range
tween 2 and the maximally allowed̂n&59 at h50 and
decrease to below 4 ath52.5. The disrupted trajectorie
^n&(h) are, of course, due to the level crossings. M
prominently we have crossings ath'0.6 andh'1.3, cf. Fig.
2, which are reflected in the discontinuities of the^n&(h)
trajectories at these points. The apparent lack of states
^n&'2 for 0,h,0.5 can be explained by the mixing o
very light states of very different parton content. Ath50 we
have 2(K21) massless states which have parton number
the way up to 9. These states mix to give the very light sta
at h.0, which eventually are distinct enough to form ind
pendent̂ n&(h) trajectories.

In Fig. 4 we plot the probability of the nine lowest-energ
bound states to have a specific number of partons. In theZ2
even sector, the two lowest states are nearly pure t
particle and four-particle bound states, respectively, while

FIG. 2. Bosonic spectrum of the two-dimensional theory in un
of g2Nc /p at K59 as a function of the Chern-Simons couplingh
for the ~a! Z2 even sector and~b! Z2 odd sector.
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higher states shown have mixed content. We have looke
many of the higher mass states, and we find other nearly p
states, but almost always with an even number of parto
Similarly in the Z2 odd sector we find that the two lowes
states are nearly pure but now have three and five part
Again the high states shown are of mixed parton number,
there are other higher mass states not shown that are n
pure but almost always have an odd number of partons.
probabilities for the degenerate fermionic bound states
not shown, but they are virtually identical to these in t
respective sectors. The fermionic states for the most part
have one of the bosons replaced by a fermion.

The general structure of the supercharge for this
theory is

Q25gQSYM
2 1kQCS

2 , ~3.4!

whereQSYM
2 is the supercharge of theN51 SYM theory of

adjoint fermions and adjoint bosons, which was studied
tensively in@20#, andQCS

2 is the contribution of the CS in-
teraction to the supercharge, given in Eq.~2.22!. The Hamil-

s
FIG. 3. Average parton number of the 15 lowest bosonic sta

at K59 as a function ofh for the ~a! Z2 even sector and~b! Z2 odd
sector.
6-5
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J. R. HILLER, S. S. PINSKY, AND U. TRITTMANN PHYSICAL REVIEW D65 085046
tonian is the square of the supercharge, and we there
expect that as a function ofg and k the spectrum of this
theory will grow quadratically in both variables. In Fig. 2 w
see this behavior as a function ofh5Apk/g at fixed g. In
Fig. 5 we see this general behavior at fixedk as a function of
g as well. There are, however, a number of very special st
visible in this figure. These states are reflections of the B
states that we found in the pure SYM theory@20#. Since the
central charge is zero in that theory, the BPS states are
actly massless and are annihilated by the superchargeQSYM

2 .
The special states that we see in Fig. 5 are essentially t
BPS states arranged with a fixed number of particles. T
the masses of these states are approximately independe
g and proportional to the number of partons squared. In
theory at strong coupling, clearly the low-mass states

FIG. 4. Parton probability distributions for the 9 states in Fig
for the ~a! Z2 even sector and~b! Z2 odd sector.
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these BPS related states. We have already found these
states in the (211)-dimensional SYM theory@14,16#, and,
therefore, we expect that these states will dominate the l
energy spectrum of the (211)-dimensional CS theory a
strong coupling.

We would expect that atg50 all states have massesM2

5n2 in units of k2Nc , wheren is an even~odd! integer in
the Z2 even~odd! sector of the theory. Atg50 only the CS
part of the supercharge is present, and it is basically a pa
number operator. What we find, however, are states w
well-defined masses, not only atM25n2, but also at inter-
mediate values, which are in general highly degenerate.
degeneracy is lifted as the couplingg is turned on, and in the
strong coupling limit all but the BPS states decouple, as
be seen in Fig. 5. A closer inspection of the convergence
the eigenvalues immediately reveals that the states atg50
are actually multi-particle states built out of constituents w

FIG. 5. Bosonic spectrum of the two-dimensional theory in un
of k2Nc as a function of the gauge couplingg at fixed Chern-
Simons couplingk for the ~a! Z2 even sector and~b! Z2 odd sector.
The values of the gauge coupling are defined in units ofkAp. The
resolution isK59.
6-6
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TABLE I. Average parton and fermion numbers for the lowest 15 states in theZ2 even and odd sectors a
K59. While masses and average parton numbers are identical in the bosonic and fermionic sect
average fermion numbers^nF&B and ^nF&F , respectively, are obviously different.

No. MZ2511
2 ^n& ^nF&B ^nF&F MZ2521

2 ^n& ^nF&B ^nF&F

1 4.2344 2.0543 0.1095 1.1061 9.7197 3.0982 0.2012 1.19
2 17.3049 4.1229 0.2539 1.2449 26.8372 5.1282 0.2674 1.25
3 25.6130 2.3138 1.7763 1.3675 29.7822 3.2386 1.8603 1.29
4 31.8181 4.1052 2.0004 1.4683 34.1192 3.3053 0.5905 1.14
5 32.0114 2.4724 0.7135 1.1135 39.9376 4.5267 2.0000 1.34
6 34.4887 3.9241 1.9292 1.3323 40.5369 4.7211 0.6094 1.24
7 35.4751 3.8048 0.6713 1.1965 42.6751 3.8168 1.9404 2.53
8 38.1566 6.0990 0.2467 1.2336 43.8869 4.8453 0.5371 1.20
9 38.3108 3.6778 1.9026 1.3923 44.4106 4.7409 1.9689 1.31

10 39.3822 4.0123 0.6590 1.2340 46.8487 3.9974 1.9260 1.37
11 39.5958 2.8320 1.8687 2.3274 48.1737 3.9713 1.8218 1.25
12 44.5659 3.6840 1.8453 1.3832 49.2253 4.1032 0.5985 1.15
13 46.2064 3.6026 0.7155 1.1640 49.7721 4.4400 2.1560 1.60
14 47.5226 2.8625 1.6782 1.2451 51.1264 7.0836 0.1898 1.18
15 48.3041 4.7750 1.9301 2.6179 51.9753 3.8548 2.0888 1.59
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‘‘mass’’ proportional tok. This is very much like what hap
pens in the largeNf limit of adjoint QCD2 @26#. Actually, the
DLCQ spectraMi

2(K), as a function of resolutionK, look
almost exactly like the analogous plots in Ref.@26#, and we
suppress them here. They are consistent with the DLCQ
pression for the kinetic energy of free particles. For exam
the two-particle formula is

M2~K !

K
5

M2~n!

n
1

M2~K2n!

K2n
. ~3.5!

Of course, the physics of the two theories is very differe
and this easily explains the few differences of the spec
The crucial point is that we thuscompletelyunderstand the
spectrum atg50—and also at largeg. It is very interesting
that we produce all multi-particle states atg50, and that
only the mass of the lowest state in each set of states
fixed parton number stays finite in the large-coupling lim
In this sense the theory is dominated by the underlying
persymmetry, although the BPS symmetry seems slig
broken.

In Table I we show the masses and the average num
of partons and fermions in several of the lowest mass st
at resolutionK59 for both the bosonic and the fermion
sectors of the theory as well as theZ2 even and odd sectors
While masses and average parton numbers are identica
tween bosonic and fermionic sectors, the average ferm
numbers are obviously different.

It is very instructive to look at the structure functions f
the computed bound states, particularly since they are v
QCD-like. We use a standard definition of the structure fu
tions

ĝA~x!5(
q
E

0

1

dx1•••dxqdS (
i 51

q

xi21D
3(

l 51

q

d~xl2x!dAl

A uc~x1 , . . .xq!u2. ~3.6!
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t,
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HereA stands for either a boson or a fermion. The sum ru
over all parton numbersq, and the Kronecker deltadAl

A se-

lects partons with matching statisticsAl . The discrete ap-
proximationgA to the structure functionĝA with harmonic
resolutionsK is

gA~n!5 (
q52

K

(
n1 , . . . ,nq51

K2q

dS (
i 51

q

ni2K D
3(

l 51

q

dn
nldAl

A uc~n1 , . . .nq!u2. ~3.7!

FIG. 6. Convergence of the structure function of the light
state of the theory as the resolutionK is increased from 3 to 9. The
smooth solid line is a spline interpolation to the data forK59 and
the conjectured points atx50 andx51. The scaled Chern-Simon
couplingh is equal to 1.
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FIG. 7. Structure functions of the lightest threeZ2 evenbosonicstates, with~a! M254.23, ~b! M2517.30,~c! M2525.60, and~d! the
lightestZ2 odd state withM259.72. These masses are in units ofg2Nc /p at fixedh51, and the numerical resolution isK59. The top half
of each plot shows the bosonic structure functions, and the bottom half, the fermionic structure functions. Dashed lines repr
structure functions; solid lines represent structure functions in the two-parton sector, for~a! and~c!; in the four-parton sector for~b!; and in
the three-parton sector for~d!. For the purpose of visibility, the following functions have been multiplied by 10: In~a!, the fermionic
two-parton and bosonic sea structure functions; in~b!, the fermionic four-parton structure function; and in~d!, the fermionic three-parton
structure function.
er
be
pu
n

nc

re

n
e
or
at

is
will
for-
get

e
i-
ur

erge
for
e as
The functionsgA(n) are normalized so that summation ov
the argument gives the average boson or fermion num
their sum is then the average parton number, and we com
these sums as a test. We scale the momentum distributio
the total longitudinal momentum and plot the structure fu
tions as functions of the longitudinal momentum fractionx
5k1/P1 carried by an individual parton. Several structu
functions are shown in Figs. 6, 7, and 8.

We analyze the structure functions of the lowest bou
states of this theory in some detail. There are, after all, v
few first-principles calculations of structure functions f
gauge theories. We are particularly interested in the st
08504
r;
te
to
-

d
ry

es

that have a dominant number and type of particle, which
what one generally refers to as the valence partons. We
look at both the valence and sea structure functions. Un
tunately, we cannot go to high enough resolution here to
the wee parton structure functions at smallx. This is not a
limitation of our computing power, but rather of our cod
which is designed for~211!-dimensional problems. We est
mate that a rewritten code could go to resolution 50 with o
present computing power.

We have seen that the eigenvalues of the theory conv
rapidly, and we therefore expect that the same will be true
the wave functions. We can demonstrate this convergenc
6-8
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FIG. 8. Same as Fig. 7 but for fermionic states, with only the bosonic sea structure functions in~a! and ~d! rescaled by 100 and 10
respectively.
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follows. We consider the structure function of the lowe
mass state in theZ2 even sector at various values of th
resolutionK and focus on the valence boson distribution
the lowest boson state. This state is dominantly a two-gl
bound state. For this demonstration we assume that the
tributions vanish atx50 andx51, which seems sensible fo
valence partons. We see in Fig. 6 that the structure func
appears to converge to a well-defined curve, supporting
notion that the wave function as well as the eigenvalues c
verge rapidly.

This structure function for the valence gluons@which is
also shown in Fig. 7~a!# in the lowest bosonic state is peake
at x50.5, as one would expect for a two-gluon bound st
and interestingly the distribution is quite broad. As we kno
in QCD a glueball state will naturally mix with the fermion
in the theory. In Fig. 7~a! we see the sea fermion structu
function for this state as well as the sea boson structure fu
08504
t

f
n
is-

n
e

n-

e
,

c-

tions. We find that the fermion distributions tend to peak
low x and are relatively small as compared to the valen
distributions. The boson sea distribution, which is primar
from the three-parton component of the wave function, d
not peak at smallx. The reason is that the small-x component
of the three-parton wave function has a nearly equal mixt
of fermion pairs and boson pairs with smallx. These small-x
fermions are seen in the fermion distribution. The struct
functions of the second lowest bound states in theZ2 even
bosonic sector are shown in Fig. 7~b!. This is a four-gluon
bound state, the analog of what is referred to as an ‘‘o
ball’’ in QCD. The valence-gluon structure function is e
pected to peak at aboutx50.25, but we see that the actu
peak is at smaller values ofx. The various sea distribution
are shown in Fig. 7 and again appear to peak at smallx.

The third state in theZ2 even bosonic sector is a highl
mixed state containing a nearly equal mixture of fermio
6-9
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and gluons and does not appear to have the simple val
structure of the lowest two states. In Fig. 7~c! we show sepa-
rately the distribution of the fermions and bosons. It is n
surprising that we find such a mixed state, since in the
persymmetric theory the fermion and boson are treated o
equal footing, but rather itis surprising that the lowest state
have a valence structure.

It is also interesting to discuss the fermionic states. At fi
sight it might be surprising that their structure function
shown in Fig. 8, are so different from those of their boso
partners. Even more so since they have the same mass
average parton number, guaranteed by supersymmetr
closer look reveals, however, that the new structures are
to the different combinatorics induced by the ‘‘extra’’ ferm
onic parton. For example, the valence structure function
the state withM2525.61 are symmetric aroundx50.5 in the
bosonic sector, and almost symmetric in the fermionic sec
The asymmetry is clearly induced by the need to have
additional parton for the statistics. For the states withM2

59.72 andM2517.30 it seems as though the curves s
more or less the same, except that the fermion valence s
ture function is greatly enhanced. The lightest state has
interesting valence structure function: It is exactly as pr
able to find a boson with momentum fractionx, as it is to
find a fermion with 12x.

IV. SUMMARY

We have presented an analysis of dimensionally redu
supersymmetric YM theory with a CS term using the nume
cal method SDLCQ, which exactly preserves the supers
metry of this theory. We constructed finite dimensional re
resentations of the superalgebra and from them a fi
dimensional Hamiltonian which we solved numerically. A
we go to higher dimensional representations, the soluti
converge rapidly.

While supersymmetry is not totally essential in 111 di-
mensions, because the renormalization issues are min
will be important in 211 dimensions where renormalizatio
is more of an issue and the exact supersymmetry insur
finite result. Also, experience@27# shows that in 111 dimen-
sions SDLCQ tends to converge faster than DLCQ.

From our solutions we extracted the properties of
on
ys

08504
ce

t
u-
an

t
,
c
and

A
ue

of

r.
n

y
c-

an
-

d
-
-

-
te

s

, it

a

e

bound states of this theory. We found that the bound sta
are very different from the bound states ofN51 SYM
theory in 111 dimensions. The bound states of SYM theo
are characterized by their stringy nature, that is a set of st
where the states with the most partons have the lowest
ergy. The CS theory is generally very QCD-like. The sta
with more partons tend to be more massive, and many of
low-mass states have a valence-like structure. These s
have a dominant component of the wave function with
particular number and type of parton. We have found
spectrum of these states and studied it as a function of the
coupling. We found that, as expected, the CS coupling
haves as an effective mass. As it increases we see tha
masses of the bound states generally increase, and the
age number of partons of the low-mass bound states tend
decrease.

Also, the SYM theory has an interesting set of massl
BPS states. These states are reflected in the CS theory
set of states whose masses are approximately independe
g and equal to the square of the sum of the CS masses o
partons in the bound state. Since these BPS states are
present in the (211)-dimensional SYM theory, we expect t
see their reflection in the (211)-dimensional CS theory.

We have investigated the structure functions for the
bound states and found that they behave in very interes
ways. The distribution for the states with a valence struct
are peaked near the inverse of the number of valence par
and the sea distribution appears to peak at smallx in most if
not all cases. We also see strongly mixed states with in
esting double-humped structure functions. There have b
interesting conjectures about structure functions of this t
in QCD @28#, and it is interesting that we actually find such
structure function in the solution of an actual gauge theo

In summary, the SDLCQ solutions of dimensionally r
duced supersymmetric CS theory are very interesting, ma
more interesting, at least with respect to their QCD-li
structure, than are the solutions for pure supersymme
SYM theory. Clearly this provides a strong base and enco
agement to move on to 211 dimensions.
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