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Simulation of dimensionally reduced super Yang-Mills-Chern-Simons theory
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A supersymmetric formulation of a three-dimensional super Yang-Mills-Chern-Simons theory using light-
cone quantization is presented, and the supercharges are calculated in the light-cone gauge. The theory is
dimensionally reduced by requiring all fields to be independent of the transverse dimension. The result is a
nontrivial two-dimensional supersymmetric theory with an adjoint scalar and an adjoint fermion. We perform
a numerical simulation of this super Yang-Mills-Chern-Simons theory4nl1dimensions using supersym-
metric discrete light-cone quantization. We find that the character of the bound states of this theory is very
different from previously considered two-dimensional supersymmetric gauge theories. The low-energy bound
states of this theory are very “QCD-like.” The wave functions of some of the low mass states have a striking
valence structure. We present the valence and sea parton structure functions of these states. In addition, we
identify BPS-like states which are almost independent of the coupling. Their masses are proportional to their
parton number in the large-coupling limit.
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[. INTRODUCTION (2+1)-dimensional supersymmetric Yang-Mill§SYM)
theories by this metho@8,9], so it is clear that SYM-CS

Chern-Simons(CS) theories are certainly some of the theories are within our reach.
most interesting field theories in+21 dimensions. Among In this paper we will start with SYM-CS theory in+21
the interesting phenomena one sees in these theories are tienensions and dimensionally reduce it to two dimensions
quantum Hall effect, Landau levels, nontrivial topological by requiring all of the fields to be independent of the trans-
structures, vortices, and anyons. For a review of these phererse coordinate. This is an interestingH1)-dimensional
nomena sefl]. Some of these (2 1)-dimensional phenom- supersymmetric theory in its own right. It is a good starting
ena have been observed experimentally in condensed matteoint for our numerical simulations because we can solve
systems. CS theories are also often described as topologiddlis problem using two completely independent codes, one a
theories[2] since for most gauge groups the CS couplingMATHEMATICA code and the other a++ code. When we
must obey a quantization condition for the theory to remainmove on to 21 dimensions in future work, the
gauge invariant. Within this rich literature on CS theories(1+1)-dimensional results will be related to the
there is also considerable work on super Yang-Mills-(2+1)-dimensional results in a nontrivial way. We found
(SYM-)CS theories. These theories have their own remarkthis to be the case in our previous work on
able properties. It has been shown that there is a finit¢2+ 1)-dimensional SYM theories, and it will most probably
anomaly that shifts the CS couplif@], and it has been be the case here as well. This will provide us an important
conjectured by Witten4] that this theory spontaneously check on our code for solving the ¢21)-dimensional prob-
breaks supersymmetry for some values of the CS couplindem. It is important to develop this chain of numerical
There are other related reasons for interest in CS theorieshecks, since there are no analytical or other numerical so-
Witten [5] has conjectured that string field theory is essendutions to check our results against.
tially a noncommutative CS theory. Recently this led to a Many of the most interesting aspects of CS theory will be
conjecture by SusskinfB] that relates string theory to the lost by this reduction, most notably the quantization of the
fractional quantum Hall effect. CS coupling. However, one particularly interesting property

Since these theories are interesting from so many differerthat will be preserved is the fact that the CS term simulates a
points of view, it is certainly useful to numerically simulate mass for the theory. It is well known that supersymmetric
them. The method we will use is SDLC@upersymmetric Abelian CS theory is simply the theory of a free massive
discrete light-cone quantizatiprirhis is a numerical method fermion and a free massive boson. In the non-Abelian theory
that can be used to solve any theory with enough supersynadditional interactions are introduced, but we expect to also
metry to be finite. The central point of this method is thatsee this mass effect. This is particularly interesting here be-
using DLCQ we can construct a finite dimensional represeneause dimensionally reducei=1 SYM theory is a very
tation of the superalgebi&]. From this representation of the stringy theory. The low-mass states are dominated by Fock
superalgebra, we construct a finite-dimensional Hamiltoniarstates with many constituents, and as the size of the superal-
which we diagonalize numerically. We repeat the process fogebraic representation is increased, states with lower masses
larger and larger representations and extrapolate the soluti@and more constituents appei@—20. The connection be-
to the continuum. We have already solved standardween string theory and supersymmetric gauge theory leads
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one to expect this type of behavior; however, these gauge 2i _
theories are not very QCD-like. Ultimately one might like to Leg= €™M ALd, A+ 3 IAAA, | F20T.
make a connection with the low-mass spectrum observed in 2.4
nature. '
We expect to find states in SYM-CS theory that are muchThe two components of the spind!=2*1’4(f) are in the
more QCD-like, because of the effective mass for the congdjoint representation df (N..) or SU(N.). We will work in

stituents introduced bythe CS term We will see that some Othe |argeNC limit. The field Strength and the covariant de-
the low-mass states will be dominated by valence-like Fockiyative are

states that have only a few constituents. As we go to larger

and larger representation of the superalgebra, we will resolve Fu=0,A,—d,A,+ig[A, Al
these states better and better, and any new states that appear
will be heavier. We will also find highly mixed states without D,=d,+ig[A,.]. (2.5

a valence structure. Finally, we find that at strong coupling
the low-energy spectrum is dominated by states that are &he supersymmetric variations of the fields are
reflection of the Bogomol'nyi-Prasad-Sommerfie{BPS —
states of the SYM theory int1 dimensiong20] and are oA, =Tey, W, (2.6
therefore independent of the coupligg

From _the wave functions of'the bound states we will be SV = lieﬂmhF ,,:EF’U'VEF o 2.7
able to find the structure functions of both the valence and 4 mY 4 "
sea partons. Some of the highly mixed states will have a
double-humped structure function. Some of these structur@here

functions are similar to those conjectured in various phenom- 0_ 1. 5
enological calculations; they are the result of the solution of Y =02, y=lon, vy =los,
a nontrivial gauge theory. 1
In Sec. Il we give a general discussion of supersymmetric [Hr= EW’ yh=iely, . 2.9

light-cone-quantized SYM-CS theory in light-cone gauge.

We then give the dimensionally reduced discrete formulation _ )
of the supercharges and discuss the other symmetries of tH&iS leads to the supercurre@*) in the usual manner via
theory. In Sec. Il we discuss our numerical method and _

some of the new wrinkles that appear in CS theory. We also oL= EauQ(M)- 29
present and discuss in this section the spectrum of bound. ) . _ ) .
states as well as a variety of properties of these states inclu&—'ght'cofe coordinates in£1 dimensions ftrex(*,x X7)
ing their structure functions. We will see that it is a very Wherex” =x_ is the light-cone time anc 5o The
QCD-like theory as opposed to pure SYM theory, which istotally anti-symmetric tensor is defined lay ~*=—1. The
very stringy. Finally, in Sec. IV, we summarize the resultsVariations of tK]e _thr?e parts of the Lagrangian in E3j1)
and discuss the prospects and challenges for calculating fgtermine the“chiral” ) componentQ™ of the supercharge
the full (2+ 1)-dimensional theory. via Eq.(2.9) to be

" .
2 (+) — Q — I_ 2 af .+
Il. SUPERSYMMETRIC CHERN-SIMONS THEORY J d xQ (Q) Zj d*xT Y \PFQB.
(2.10

We will considerA’=1 supersymmetric CS theory in 2
+1 dimensions as the starting point of our discussion. Whileexplicitly they are
we will reduce this theory to a (£1)-dimensional theory
for numerical simulation here, we eventually plan to simulate _
the full theory, and it is therefore useful to present a detailed Q
light-cone formulation in light-cone gauge. The Lagrangian
of this theory is

= —i23’4f d?x y(a" A" — 9 AT +ig[AT,AT]),

Q"= —i25’4f d? (9t A2— At +ig[AT,A?]).
(2.1

One can convince oneself by calculating the energy-
momentum tensof#” that the supercharge satisfies the su-
persymmetry algebra

1 K
L=Tr| — Z’CYM_’_IEF—‘F E,CCS , (21)

wherex is the CS coupling and

Lym=F ,,F*, 2.2 This choice of representation for the Dirac matrices is different
from that of Ref.[1] by the interchange of* and y? but is more
_ natural for light-cone quantization. In this representation the spinor
Le=Vy, DV, (2.3  term of the CS Lagrangian enters H8.4) with a plus sign.
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{Q*,Q"}=2\2P*, {Q",Q }=-4P'. (2.12  Todiscretize the theory we impose periodic boundary condi-
tions on the boson and fermion fields alike, and obtain an
In order to express the supercharge in terms of the physiexpansion of the fields with discrete momentum modes. Thus
cal degrees of freedom, we have to use equations of motioithe discrete version of the CS part of the supercharge is
some of which are constraint equations. The equations of

motion for the gauge fields are

D Fre=—J¢ (2.13
where
K _
J“=§e“””Fv)\+29\Ify5‘P. (2.14
For a= + this is a constraint foA™,
1
D_A =—(D,— k)A?— D—(DZ—K)aZN
1 —
+2gD—\Ify*\If. (219
In light-cone gaugeA™ =0, this reduces to
1 _
D_A_=D—[(K—D2)D_A2+Zg\lfy+‘lf]. (2.16
The equation of motion for the fermion is
YD, ¥ =—ikV. (2.17

Expressing everything in terms gfand y leads to the equa-
tions of motion

V2D, ¢p=(Dy+ k),
V2D _x=(D,— ),

(2.18
(2.19

the second of which is a constraint equation. The constraint

equations are used to elimingteand A™.

We now reduce the theory dimensionally to two dimen-
sions by settingh=A, andd,— 0 for all fields. This yields,
from Eg.(2.11) and the constraints,

Q =2%4 fdx (|[¢a ¢]+2¢¢——a ¢l ¢/;.

(2.20
The mode expansions in two dimensions are
_ +
¢ij(0,x7)= \/—J 2k+[ (ke
+a;ri(k+)eik Xf]’
1 (» N
(0= = | el oy ye
2 wJo
+bi(k")ek * 7. (2.20)

i(AT(n)B n)
N (

ingM\/E)
a

Qcs= (—ih@

+BT(n)A(n)), (2.22

whereh=\/7«/g is a rescaled CS coupling ardandB are
rescaled discrete field operators

T aT
A(n)= \[Eaij(nﬂ'/L), B(n)= \[Ebij(nﬂ-/L).

(2.23

The ordinary supersymmetric part of the supercharge is listed
elsewherd8]. It is important to note that the supercharge for
N=1 SYM theory in 2+ 1 dimensions has a contribution of
the form

o[

—B'(n,n,)A(n,n,)).

2714 \/E

Ly

R

nn,

(AT(n n,)B(n,n,)

(2.29

Of course, the light-cone energy &%+ m?)/k", sok, be-
haves like a mass, and here we see thappears in a very
similar way tok, and therefore behaves in many ways like a
mass.

When comparing the two contributions to the super-
charge, we see that we have a relaiilmtween them. Thus
the usual eigenvalue problem

2P"P 7o) =12P"(Q7)?|¢)
= V2P (Qgym+ Qce?l @) =M?¢)
(2.25

has to be solved by using fully complex methods.

We retairf the Ssymmetry, which is associated with the
orientation of the largd, string of partons in a staf1]. In
a (1+1)-dimensional model this orientation parity is usually
referred to as @, symmetry, and we will follow that here. It
gives a sign when the color indices are permuted

Zy:a(k)— —ai(k),  bjj(k)——bj(k). (2.2

We will use this symmetry to reduce the Hamiltonian matrix
size and hence the numerical effort. All of our states will be
labeled by theZ, sector in which they appear. We will not
attempt to label the states by their normal parity; in the light
cone this is only an approximate symmetry. Such a labeling
could be done in an approximate way, as was shown by

2We note that in three dimensions the CS term breaks transverse
parity.
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Hornbostel[22], and might be useful for comparison pur- M?
poses if at some point there are results from lattice simula- 50
tions of the present theory.

40
Ill. NUMERICAL RESULTS \

30

We convert the mass eigenvalue proble® ™2~ |M) M
=M?|M) to a matrix eigenvalue problem by introducing a 20
basis whereP* is diagonal. In SDLCQ this is done by first oo °
discretizing the supercharg@™ and then constructing®
from the square of the superchardgs: = (Q~)?/\/2. To dis-
cretize the supercharge, we introduce discrete longitudinal
momentak* as fractionsnP*/K of the total longitudinal (@ %05 01 015 0.2 0.25 0.3
momentumP™, whereK is an integer that determines the
resolution of the discretization and is known in DLCQ as the M

10

harmonic resolution23]. Because light-cone longitudinal 50
momenta are always positivi, and eacm are positive in-
tegers; the number of constituents is then boundel.byhe 40

integrals inQ~ are approximated by a trapezoidal form.

The continuum limit is then recovered by taking the limit 30
K00 \N

In constructing the discrete approximation we drop the 20
longitudinal zero-momentum mode. For some discussion of
dynamical and constrained zero modes, see the rej2dyv 10 eo9o—9o o
and previous worK10]. Inclusion of these modes would be 1
ideal, but the techniques required to include them in a nu- -
merical calculation have proved to be difficult to develop, (b) : : '
particularly because of nonlinearities. For DLCQ calcula- ) ) ) )
tions that can be compared with exact solutions, the exclu- FIG: L. Low-lying spectrum of the two-dimensional theory in
sion of zero modes does not affect the massive spectrufits of 9"Nc/m at Chern-Simons coupling=1.0 for the(a) Z,
[24]. In scalar theories it has been known for some time thafVen Sector antb) Z, odd sector.
constrained zero modes can give rise to dynamical symmetry
breaking[24], and work continues on the role of zero modesmaodifications to run at higher longitudinal resolutions. For

and near zero modes in these theof25]. 1+1 dimensions the matrices involved are not largeKat
To obtain the spectrum of the CS theory we solve the=9 the total basis size is 2192.
complex eigenvalue problem, E.25. For the numerical The low-energy spectrum, witth=1.0, is fit to M?

evaluation we can exploit the structure of the supercharge —\j2 4 p(1/K). These fits are shown in Fig. 1 for some of

0 A+iB the low-energy states. In principle, higher energy states can
- , (3.1 also be found, but at these couplings the states just above
A'—IB 0 these are difficult to disentangle because of level crossings.
In the Z, even sector we find the continuum masses tdibe
M2=4.30, 18.33, 27.46, and 43.20,

sz

whereA and B are real matrices. The Hamiltonian has thus . ¢ 42N,/
an easy decomposition into a real and imaginary part in th&nits of g°Nc/m)

bosonic sector whereas in theZ, odd sector we havé12=10.06, 29.13,
32.83, 39.52, and 47.40.
Pooso= AAT+BBT+i(BAT—ABT), (3.2 The CS term in this theory effectively generates a mass
o proportional to the CS coupling. Therefore, we expect the
and the fermionic sector low-mass states will only have a few partons. This property
P —ATA+B'B+i(ATB—BTA). 3.3 will be even more apparent as we increase the CS coupling.

This is interesting and important for two reasons. First, it

Our earliest SDLCQ calculations were done using a codétands in stark contrast t§=1 SYM theory, which is very
written in MATHEMATICA and performed on a PC. This code Stringy and has a large number of low-mass states with a
was then rewritten irc++ and substantially revised. It runs 1arge number of partons. Second, this behavior of the CS
on aLINUX workstation with 2 GB of RAM and can handle theory is reminiscent of QCD. In Fig. 2 we plot the spectrum
as many as 2000000 Fock states. The present calculation wakthe theory as a function of the scaled CS couplnyVe
done in both codes as a check. We limit the calculation tsee that the masses of the bound states grow with the CS
resolutionK =9 because it seems sufficient here and becauseoupling, i.e. the effective mass of the constituents. We also
the present++ code, which was primarily written for (2 see that there are a lot of level crossings which make it hard
+1)-dimensional models, would require some nontrivialto follow the trajectories of individual states.
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FIG. 3. Average parton number of the 15 lowest bosonic states
FIG. 2. Bosonic spectrum of the two-dimensional theory in unitsat K =9 as a function oh for the (a) Z, even sector antb) Z, odd
of g°N./7 at K=9 as a function of the Chern-Simons coupling  sector.
for the (@) Z, even sector an¢b) Z, odd sector.
higher states shown have mixed content. We have looked at

pmany of the higher mass states, and we find other nearly pure

lowest states in each sector as a function of the CS couplinétates’ but almost always with an even number of partons.

for resolutionK=9. The average parton numbers range be- imilarly in the Z, odd sector we find that the two lowest
tween 2 and the maximally alloweth)=9 at h=0 and states are nearly pure but now have three and five partons.

decrease to below 4 &t=2.5. The disrupted trajectories Again the high states shown are of mixed parton number, but

(n)(h) are, of course, due to the level crossings Mostthere are other higher mass states not shown that are nearly

prominently we have crossingslat-0.6 andh~1.3, cf. Fig. pure but almost always have an odd number of partons. The

2, which are reflected in the discontinuities of tre)(h) probabilities for the degenerate fermionic bound states are

trajectories at these points. The apparent lack of states witho! shown, but they are virtually identical to these in the

(ny=2 for 0<h<0.5 can be explained by the mixing of respective sectors. The fermionic states for Fhe most part just
. . have one of the bosons replaced by a fermion.

very light states of very different parton content.li& 0 we .

. The general structure of the supercharge for this CS
have 2K —1) massless states which have parton numbers a“weor is
the way up to 9. These states mix to give the very light states y
ath>0, which ev_entua!ly are distinct enough to form inde- Q™ =9Qsym+ «Qcs, (3.9
pendentn)(h) trajectories.

In Fig. 4 we plot the probability of the nine lowest-energy whereQgy,, is the supercharge of th&=1 SYM theory of
bound states to have a specific number of partons. IZshe adjoint fermions and adjoint bosons, which was studied ex-
even sector, the two lowest states are nearly pure twatensively in[20], andQcg is the contribution of the CS in-
particle and four-particle bound states, respectively, while theéeraction to the supercharge, given in E2.22. The Hamil-

In Fig. 3 we plot the average parton number in the fiftee

085046-5



J. R. HILLER, S. S. PINSKY, AND U. TRITTMANN PHYSICAL REVIEW D65 085046

pI‘Ob._ T T T T T T T L :[\/_[2
: 100

0.8
0.6
04
0.2
0 A ———— |
1
0.8
0.6
0.4
02
0 T T T T T T T
1
0.8
0.6
0.4
0.2
o1 | | i I | ! |
1
0.8
0.6
0.4

0.2
0 L | —t— { | { { 1 {

NUHBRSRERAREOE

M2=38.16

80

0 05 1 15 2 25
g

()
MZ

(a) number of partons 100

l.!§| !-l-l:g_l !'|_

80

M2=42.68

o
-0 -3
171717 T
o
_:| m—j‘
B
o
Or
~H

8 $ 60

e
-
T T 17T

M?=34.12

ol | ! | | L 40
1:é 3 1 5 3 v 8 5

M?=29.78 20

o900
o
T T T

j

o-n !
1F 2 3 ! 5 ) 7 8 )

0 05 1 15 2 25
g

o
-]
AR RERE
Ladalalyl
o

M2=26.84 -
S S S N JSE 2 T 2 (b)

i

FIG. 5. Bosonic spectrum of the two-dimensional theory in units
, of k?N; as a function of the gauge couplirgyat fixed Chern-
2 3 4 5 6 7 8 9 Simons couplinge for the (a) Z, even sector an¢h) Z, odd sector.
The values of the gauge coupling are defined in units ¢f. The
resolution isKk=9.

FIG. 4. Parton probability distributions for the 9 states in Fig. 1
for the (a) Z, even sector antb) Z, odd sector.
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LML

(b) number of partons

these BPS related states. We have already found these BPS
states in the (2 1)-dimensional SYM theory14,16], and,
tonian is the square of the supercharge, and we therefort@erefore, we expect that these states will dominate the low-
expect that as a function @ and « the spectrum of this energy spectrum of the (21)-dimensional CS theory at
theory will grow quadratically in both variables. In Fig. 2 we strong coupling.

see this behavior as a function bt \7r«/g at fixedg. In We would expect that aj=0 all states have massbs’

Fig. 5 we see this general behavior at fixeds a function of =n? in units of k?N., wheren is an even(odd) integer in

g as well. There are, however, a number of very special statethe Z, even(odd sector of the theory. Ayy=0 only the CS
visible in this figure. These states are reflections of the BP$art of the supercharge is present, and it is basically a parton
states that we found in the pure SYM the¢80]. Since the number operator. What we find, however, are states with
central charge is zero in that theory, the BPS states are exvell-defined masses, not only Bt?=n?, but also at inter-
actly massless and are annihilated by the supercl@ggg.  mediate values, which are in general highly degenerate. The
The special states that we see in Fig. 5 are essentially theskegeneracy is lifted as the coupliggs turned on, and in the
BPS states arranged with a fixed number of particles. Thustrong coupling limit all but the BPS states decouple, as can
the masses of these states are approximately independentls seen in Fig. 5. A closer inspection of the convergence of
g and proportional to the number of partons squared. In thishe eigenvalues immediately reveals that the states=dl
theory at strong coupling, clearly the low-mass states arare actually multi-particle states built out of constituents with
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TABLE I. Average parton and fermion numbers for the lowest 15 states id tleven and odd sectors at
K=9. While masses and average parton numbers are identical in the bosonic and fermionic sectors, the
average fermion numbe(®i)g and(ng)g, respectively, are obviously different.

No. M§2=+1 (n) (Ne)e (Ne)e Mgzz—l (n) (Ne)e (Ne)e

1 4.2344 2.0543 0.1095 1.1061 9.7197 3.0982 0.2012 1.1945
2 17.3049 4.1229 0.2539 1.2449 26.8372 5.1282 0.2674 1.2572
3 25.6130 2.3138 1.7763 1.3675 29.7822 3.2386 1.8603 1.2995
4 31.8181 4.1052 2.0004 1.4683 34.1192 3.3053 0.5905 1.1407
5 32.0114 24724 0.7135 1.1135 39.9376 4.5267 2.0000 1.3423
6
7
8
9

34.4887 3.9241 1.9292 1.3323 40.5369 4.7211 0.6094 1.2480
35.4751 3.8048 0.6713 1.1965 42.6751 3.8168 1.9404 2.5317
38.1566 6.0990 0.2467 1.2336 43.8869 4.8453 0.5371 1.2022
38.3108 3.6778 1.9026 1.3923 44.4106 4.7409 1.9689 1.3118
10 39.3822 4.0123 0.6590 1.2340 46.8487 3.9974 1.9260 1.3716
11 39.5958 2.8320 1.8687 2.3274 48.1737 3.9713 1.8218 1.2551

12 44.5659 3.6840 1.8453 1.3832 49.2253 4.1032 0.5985 1.1508
13 46.2064 3.6026 0.7155 1.1640 49.7721 4.4400 2.1560 1.6061
14 47.5226 2.8625 1.6782 1.2451 51.1264 7.0836 0.1898 1.1802

15 48.3041 4.7750 1.9301 2.6179 51.9753 3.8548 2.0888 1.5990

“mass” proportional tox. This is very much like what hap- HereA stands for either a boson or a fermion. The sum runs
pens in the largé\; limit of adjoint QCD, [26]. Actually, the  over all parton numberg, and the Kronecker deltaﬁ| se-

2 . .
DLCQ spectraM{(K), as a function of resolutiof, 100k |gcts partons with matching statistiés. The discrete ap-

almost exactly like the analogous plots in Ref6], and we ~ oyimationg, to the structure functiorj, with harmonic
suppress them here. They are consistent with the DLCQ e 'esolutionsl(gig U

pression for the kinetic energy of free particles. For example,
the two-particle formula is

M%(K) M2(n) M2(K—n) K q
K - n + K—n . (35) gA(n): 2 2 5( iZ]_ ni—K)

Of course, the physics of the two theories is very different, q
and this easily explains the few differences of the spectra. XE
The crucial point is that we thusompletelyunderstand the =1
spectrum ag=0—and also at largg. It is very interesting
that we produce all multi-particle states @0, and that 3
only the mass of the lowest state in each set of states with
fixed parton number stays finite in the large-coupling limit. gp
In this sense the theory is dominated by the underlying su-
persymmetry, although the BPS symmetry seems slightly i
broken.

In Table | we show the masses and the average numbers L
of partons and fermions in several of the lowest mass states /

Sy oplwng, .. ng)?. 37

T T T T J__l_L_I__L_'_J.I T T LI

T
i
1
1
)
T
i
1

at resolutionK =9 for both the bosonic and the fermionic -
sectors of the theory as well as thg even and odd sectors.
While masses and average parton numbers are identical be-
tween bosonic and fermionic sectors, the average fermion
numbers are obviously different.

It is very instructive to look at the structure functions for
the computed bound states, particularly since they are very
QCD-like. We use a standard definition of the structure func- ol v

tions 0 0.2 0.4 0.6 0.8 1
X

1
gA(x)zz f dxq- - -dxqb‘( 2 xi—l) FIG. 6. Convergence of the structure function of the lightest
g Jo =1 state of the theory as the resolutiliris increased from 3 to 9. The
q smooth solid line is a spline interpolation to the datakor9 and
% 2 8(x —X)5ﬁ | P(Xq, . . -Xq)|2- (3.6 the conjectured points at=0 andx=1. The scaled Chern-Simons
=1 ! couplingh is equal to 1.

i S ——
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FIG. 7. Structure functions of the lightest thrg evenbosonicstates, with(a) M?=4.23, (b) M?=17.30,(c) M?=25.60, andd) the
lightestZ, odd state witiVi2=9.72. These masses are in unitgdN,/ at fixedh= 1, and the numerical resolutionli&=9. The top half
of each plot shows the bosonic structure functions, and the bottom half, the fermionic structure functions. Dashed lines represent sea
structure functions; solid lines represent structure functions in the two-parton seci@, dod (c); in the four-parton sector faib); and in
the three-parton sector fdd). For the purpose of visibility, the following functions have been multiplied by 10(aln the fermionic
two-parton and bosonic sea structure functions(b the fermionic four-parton structure function; and(i, the fermionic three-parton
structure function.

The functionsga(n) are normalized so that summation over that have a dominant number and type of particle, which is
the argument gives the average boson or fermion numbewhat one generally refers to as the valence partons. We will
their sum is then the average parton number, and we computeok at both the valence and sea structure functions. Unfor-
these sums as a test. We scale the momentum distribution tanately, we cannot go to high enough resolution here to get
the total longitudinal momentum and plot the structure functhe wee parton structure functions at smallThis is not a
tions as functions of the longitudinal momentum fraction limitation of our computing power, but rather of our code
=k*/P™" carried by an individual parton. Several structurewhich is designed fo(2-+1)-dimensional problems. We esti-
functions are shown in Figs. 6, 7, and 8. mate that a rewritten code could go to resolution 50 with our
We analyze the structure functions of the lowest boundpresent computing power.
states of this theory in some detail. There are, after all, very We have seen that the eigenvalues of the theory converge
few first-principles calculations of structure functions for rapidly, and we therefore expect that the same will be true for
gauge theories. We are particularly interested in the statehe wave functions. We can demonstrate this convergence as

085046-8
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FIG. 8. Same as Fig. 7 but for fermionic states, with only the bosonic sea structure functi@saimd (d) rescaled by 100 and 10,
respectively.

follows. We consider the structure function of the lowesttions. We find that the fermion distributions tend to peak at
mass state in th&, even sector at various values of the low x and are relatively small as compared to the valence
resolutionK and focus on the valence boson distribution ofdistributions. The boson sea distribution, which is primarily
the lowest boson state. This state is dominantly a two-gluofrom the three-parton component of the wave function, does
bound state. For this demonstration we assume that the disot peak at smal. The reason is that the smalleomponent
tributions vanish ak=0 andx=1, which seems sensible for of the three-parton wave function has a nearly equal mixture
valence partons. We see in Fig. 6 that the structure functionf fermion pairs and boson pairs with smallThese smalk
appears to converge to a well-defined curve, supporting thEermions are seen in the fermion distribution. The structure
notion that the wave function as well as the eigenvalues corfunctions of the second lowest bound states in Zhesven
verge rapidly. bosonic sector are shown in Figby. This is a four-gluon
This structure function for the valence gluopghich is  bound state, the analog of what is referred to as an “odd
also shown in Fig. @] in the lowest bosonic state is peaked ball” in QCD. The valence-gluon structure function is ex-
at x=0.5, as one would expect for a two-gluon bound statepected to peak at about=0.25, but we see that the actual
and interestingly the distribution is quite broad. As we know,peak is at smaller values af The various sea distributions
in QCD a glueball state will naturally mix with the fermions are shown in Fig. 7 and again appear to peak at sxnall
in the theory. In Fig. f@) we see the sea fermion structure  The third state in th&, even bosonic sector is a highly
function for this state as well as the sea boson structure funaenixed state containing a nearly equal mixture of fermions
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and gluons and does not appear to have the simple valenb®und states of this theory. We found that the bound states
structure of the lowest two states. In Figc)’we show sepa- are very different from the bound states &4f=1 SYM
rately the distribution of the fermions and bosons. It is nottheory in 1+ 1 dimensions. The bound states of SYM theory
surprising that we find such a mixed state, since in the suare characterized by their stringy nature, that is a set of states
persymmetric theory the fermion and boson are treated on afhere the states with the most partons have the lowest en-

equal footing, but rather it surprising that the lowest states €rgy. The CS theory is generally very QCD-like. The states
have a valence structure. with more partons tend to be more massive, and many of the

It is also interesting to discuss the fermionic states. At firsfoW-mass states have a valence-like structure. These states
sight it might be surprising that their structure functions,n@ve @ dominant component of the wave function with a

shown in Fig. 8, are so different from those of their bosonicParticular number and type of parton. We have found the
partners. Even more so since they have the same mass a ctrum of these states and studied it as a function of the CS

average parton number, guaranteed by supersymmetry. %ouplmg. We found that, as expected, the CS coupling be-

closer look reveals, however, that the new structures are dys Vo> as an effective mass. As it increases we see that the
- . . . i OY%asses of the bound states generally increase, and the aver-
to the different combinatorics induced by the “extra” fermi-

. ; ge number of partons of the low-mass bound states tends to
onic parton. For example, the valence structure functions o

ecrease.
. 2_ . -
the state wittM“=25.61 are symmetric around-=0.5 in the Also, the SYM theory has an interesting set of massless

bosonic sector, and almost symmetric in the fermionic sectolgpg siates. These states are reflected in the CS theory as a
The asymmetry is clearly induced by the need to have aRe of states whose masses are approximately independent of
additional parzton for the statistics. For the states with g and equal to the square of the sum of the CS masses of the
=9.72 andM*=17.30 it seems as though the curves stay,arions in the bound state. Since these BPS states are also
more or less the same, except that the fermion valence Str“B‘resent in the (2 1)-dimensional SYM theory, we expect to
ture function is greatly enhanced. The lightest state has allpe their reflection in the (21)-dimensional CS theory.
interesting valence structure function: It is exactly as prob- \ve nave investigated the structure functions for these

able to find a boson with momentum fractianas it is 0 5nq states and found that they behave in very interesting

find a fermion with *-x. ways. The distribution for the states with a valence structure
are peaked near the inverse of the number of valence partons,
IV. SUMMARY and the sea distribution appears to peak at smialmost if

got all cases. We also see strongly mixed states with inter-

We have presented an analysis of dimensionally reduced” . .
P 4 y esting double-humped structure functions. There have been

supersymmetric YM theory with a CS term using the numeri-

. int
cal method SDLCQ, which exactly preserves the supersynf—n R ; :
metry of this theory. We constructed finite dimensional rep-N QCD[28], and it is interesting that we actually find such a

resentations of the superalgebra and from them a finitStructure function in the solution of an actual gauge theory.

dimensional Hamiltonian which we solved numerically. As Indsummary, the S_D(L:thsolutlons of d_lmen5|qnally re-b
we go to higher dimensional representations, the solutionguce _supersymmetrlc t eory are very mtere_stmg, maybe
converge rapidly more interesting, at least with respect to their QCD-like

While supersymmetry is not totally essential ift1 di- structure, than are thg squFions for pure supersymmetric
mensions, because the renormalization issues are minor, %{YM theory. Clearly this provides a strong base and encour-

will be important in 2+ 1 dimensions where renormalization agement to move on to21 dimensions.

is more of an issue and the exact supersymmetry insures a
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