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Theory with a unique thermal effective potential
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We show that for the pion-nucleon theory the thermal bubble graph is analytic at the origin of the
momentum-frequency space, although the internal propagators in the loop have the same mass. This means
that, for this theory, the thermal effective potential is uniquely defined. We then examine how a slight modi-
fication of the interaction term results in a theory for which the thermal bubble graph displays the usual
nonanalyticity at the origin and the thermal effective potential is not uniquely defined.
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[. INTRODUCTION space and time, one can apply derivative expansion tech-
nigues. The resulting effective potential will not be uniquely

It is well known that for most theories at finite tempera- defined in this casg22].
ture the self-energy displays a nonanalytic behavior at the The reason for this behavior is that temperature effects
origin of the momentum-frequency spagk-4]. This non-  give rise to Landau terms in the self-energy and these are
analyticity manifests itself in a difference between flug responsible for the development of a new branch cut in the
—0,g|—0} and{|q|—0,0,—0} limits of the self-energy, complex plane of the external momenta with a branch point
whereq, andq are the components of the external momen-at the origin, besides the usual one which is aIregdy present
tum qM:(qO'q) and the Component listed first goes to Zeroat Zero temperatu@,24]. The usual branch cut exists for
first. Consider for example a QED plasma at finite tempera-
ture. The first limit is associated with the screening of static S= qS— |q|2>4m2
electric fields by the plasma and gives a leading order ap-
proximation of the Debye mass which is a pole of the photorand there is a new branch point at
propagator and plays the role of the inverse screening length.
The second limit has been used for the calculation of the s=02—|q|?<0.
plasma frequenc}5—7]. One may argue that the two limits
must _d|ffer since they refer. to dn‘ferent phys@@. An interesting remark is that, whenever the internal

This phenomenon was first pointed OUt.'n the BCS theorypropagators in a typical loop have different masses, the self-
context by_Abrahams and Tsune{ﬁj_. Later it was als_o seen nergy is analytic at the origif25]. In this nondegenerate
to appear in a wide range of theories, for example in therm ass case the usual branch cut is
QED [9,10] and in thermal three-dimensional QED (QBD
[11]. In thermal QCD it occurs in the gludi?,12] and in the

2
massless quark self-enerfy3,14. Furthermore, it appears s=(my+mp)
in all one-loop diagrams that have zero or two external mass- .
less quarks and any number of external glufi 16, The ~ and the new one is
problem is also present in the graviton self-eneftjy,18 .
and in higher-order graviton diagranj49]. Even in the —|mi—m;|<=s<(m;—m,)?
much simpler case of interacting scalars the nonanalyticity of
the self-energy persis{4,20-23. wherem; andm, are the masses of the particles in the in-

The nonanalyticity of the thermal self-energy affects alsoternal loop. The new branch point is not at the origin any-
the uniqueness of the thermal effective potential. When thenore and the problem disappears from this point, allowing
standard, nonperturbative method [@3] is used at finite thus the definition of a unique effective potential.
temperature, the resulting effective potential coincides with For the degenerate mass case, attempts have been made to
only one way of approaching the singularity of the self-find some way of circumventing the nonanalyticity of the
energy at the origin. In order to take into account the nonanaself-energy at the origin of the momentum-frequency space
lyticity, one can do perturbation over a weak coupling and26,27. However, Weldon in1] showed that the analytic
then, provided the background field is slowly varying in results of[ 26,27 were an artifact of not taking into account

certain subtleties of Feynman parametrization at finite tem-

perature.
*Email address: hott@feg.unesp.br Here we present a theory which exhibits a new and unex-
"Email address: george.metikas@physik.uni-ulm.de pected feature: it has self-energy which is genuinely analytic
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at the origin, although the mass is degenerate. The theory ferward to calculate; the matrix whose functional determi-
physically meaningfulthe pion-nucleon modgland is the nant we want to evaluate is not diagonal in momentum or in
only known case where a thermal effective potential can be&oordinate space. However, progress can be made if we re-
defined uniquely. Furthermore we discuss how subtle thisvrite Eq.(2) as

new feature is and how the nonanalyticity can develop with

the slightest change in the interaction term. Tetd 1= —i Trin[1—gys(X)S(p)]. 3)
Il. A NEW CASE Now we expand the above expression in powers of the cou-
o pling constant and show that the leading contribution to the
A. Commuting limits one-loop effective action is
We consider the pion-nucleon mod&lee for example - .
1280 ro=S [ i ainai@ @
2) (2m*

LI, pl=g(ib—m)y—iggyshd+Lo[d] (1)

where ¢ is a fermion and¢ a boson.Ly[ ¢] is the free where$(q) is the Fourier transformation af(x) and

Klein-Gordon Lagrangian for the boson. .

Integrating out the fermions, we obtain an effective action ()= tr 1 1 )
for the bosons. The one-loop contribution to this effective 9= (2m)* YSIH—q—mysk—m '
action is
- We note thatI1(q) is just the self-energy bubble diagram
I fd]=—i InDel[IS [¢]] @ for the boson which, after performing the trace, is given by
et DefiS 1]

. : i1(q) 'k __Krkeg, ®)
whereiS™ [ ¢] andiS™" are matrices whose elements in 1q)=- j 7 2 L2 2
coordinate representation are (2m)" [(k+a)"=m7][k"=m"]

(x[iS™y) = (i by—m) S(x—y) This is a typical diagram that usually has a nonanalytic be-
X havior in the limit of vanishing external momenta but we

(XIS~ 1Y) =[iby—m—igysp(X)]18(x—Y). will show that this is not the case here. .
Applying the usual finite temperature techniques to Eq.

Since the bosonic field depends on the coordinates, the fun¢6), we find the following expression for the thermal bubble
tional determinant DS [ ¢#]] in Eq. (2) is not straight-  diagram:

d*k 1 B(+qp) B(Q—0qp) Bw
1'[(q0,|q|)—f(2 7 %0 Q{Zw tanh > +tanh 2 +Q+w—qo [wq0+kq]tanh7
Q- 1
+[q§—Qq0+kq]tanhﬁ( ZqO)}+Q+w+q [— wq0+kq]tanh'8—+[q0+Qq0+kq]tanhﬂ(—QO)

[wget+ kq]tanh’B— [q0+Qq0+ kq]tanh [—wge+ kq]tanhﬁz—w

B(Q+QO)}+ 1

T 0-etq, 2 Q—w—0o
~[a3- nqo+kq]tanhﬂ(—_q°)ﬂ @)
where
w=VkKZ+m? Q=Jk+qZ+rm? qo=i 2%] =integer. (8)
From the above definition af, follows that
efldo=1 (9)

and consequently, disappears from all the hyperbolic tangents of Ef):
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Bw 2 BQ
[wqo+ kq]tanhT +[a5—Qqo+ kq]tanhT

11 Ja= | P ant?
(Go.lab= | 5 5700 |4 M 0 e—q,

1 ‘ Bo oo B8Q
t O wrqg|l” @dotkaltantio- 4 [Go+ Qo+ kg]tanto-
— k hﬂ— Qg+ k hﬁ_ﬂ 1
+Q—w+q [wgo+kq]tan [q0+ go+kqg]Jtan m
Bw 5 BQ
X [—wq0+kq]tanh—2 —[qo—quJrkq]tanh—2 . (10

In the above expressidi0), the last two terms are the Lan- the integrand of Eq.10) whereas the other two regular terms
dau terms whose denominators vanish when the frequen@s well as the Landau terms vanish in this limit.
and momentum are set to zero. We will be referring to the Of course, in the evaluation of the above limits, we inter-
rest of the terms in Eq10) as the regular terms. The de- changed the limits with both the integration over the momen-
nominators of the regular terms do not vanish when the fretum |k| and with the angular integration ovér so our con-
guency and the momentum are set to zero. We also note thelusion is not entirely reliable so far. In principle, one should
the Landau terms vanish at zero temperature and the onfyerform the integrations ovek| and @ first, and then take
contribution left comes from the regular terms. the limit. Unfortunately, in our case, the integration olidr

We analytically continue Eq10) to Minkowski space by cannot be done analytically. However, we can perform the
letting the frequencyyy be real. In fact, we should add to the angular integration ovef before evaluating the limits.
real gy an infinitesimal imaginary paiite whose sign deter- Furthermore, instead of just taking the two successive
mines whether we are evaluating advanced, retarded or Felimits {q,—0,g|—0} and {|g|—0,go—0}, which in the
nmann self-energies. Let us neglect for the moment this inmomentum-frequency plane correspond to approaching the
finitesimal imaginary part; we will show later that its origin in the direction of one or the other axis, we can ap-
presence does not affect the limits we are calculating. proach the origin through any other curve, for example in the

Now we can have a first indication that the two successivalirection of any straight ling,=alq|, wherea can be any
limits {qo—0,/q|— 0} and{|q|—0,go,— 0} coincide for the real number. If the limijg|—0 of I1(a|q|,|q|) is indepen-
thermal bubblg(10) of the pion-nucleon model, which thus dent ofa, we will have a more general indication that the
does not display the usual nonuniqueness property function is analytic at the origin, i.e., it does not depend on

the way one approaches the origih25]. Before doing so

we recast Eq(10) in a more convenient form by means of

kq Bw

I1(0,|q) = f S [zwtanh’B—Q+ tanh— the transformatiok— — (k+q) wherever the integrand con-
(2m) 0l Qtow 2 tains tanhBQ/2):
Q k Q
+tanh’8— d tanhﬁ—w—tanh'B—H d*k (2 Bo _ Bw
2] Q-0 2 I(qo,|al) = —tanh—-+(do—g*)tanh—-
ldol—0 1 P (277)3 w 2 2
* w
— | ‘d(z)\/(x) —m tanhT. (11) 1 1 1 1
T m —_
XZwQ JQot+tQ+w qO—Q—w+qO+Q—w
Similarly we find the other limit 1
. (13
qO_Q+ w
k1 BQ 1
H(qo,O)zf (2m)% 200 4o tanh——+ qO 0 To perform the angular integration, we change variables
from co9 to () and perform the integration ovér:
)
an
1 (= 0}
20+ Go 2 (qo.|a)=— dw\/wz—mztanh'e—
900 9 w2 ) m| 2
——>—2 dw\/wz— ztanh— (12
|mi qS—IQIZr do  Bo
tanh——
o 2la Jimi(2m)2 2
We conclude that the limits coincide. Moreover, the only
term that contributes to the unique result is the first one in X[L1+L2+L3+L4] (14
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where
O tetqg O t+w—qo
L1(qo oD =Ing o L2(Go.JaD) =Ing——— -
_ Q+—w+q0 _ Q+_w_q0
L3(do, q|)_|nQ_——w+qo’ L4(Qo7|CI|)—|n_Q__w_q0
with

Qo =V([k[+[ah?+m?, Q= ([k|-[a)*+m?.

It is worth mentioning at this point that we still cannot

perform analytically the integration ovék| (or equivalently

PHYSICAL REVIEW D65 085043

Hr(do.|a)=TI(qe+ie,|q]),
a(go.la)=TI(go—ie,|q]),

I(qo.|a))=TI(qo+ieqp,|ql),

wheree—07. The real parts of these self-energies coincide
whereas the imaginary parts are related according to

ImIIg=—ImII,=sgnqg)Im Il (18
where sgng) is the sign of the frequenayp.

Following [1] we shall not concern ourselves with the
Feynman self-energy. Using the fact thats infinitesimal,

over ) in Eg. (14). In other words, interchanging the order the real part of the self-energy can be shown to be

of the integrations ovetk| and # does not enable us to

perform thelk| integration.

We proceed to the parametrizatiqgg=a|q| and examine
the behavior of the self-energy &g — 0. The limits of the
regular termd.1 andL2 are independent @, as they should
be. It is easy to see that

lim {(a®—1)|qg|(L1+L2)}=(a?—1)0In1=0. (15
lal—0

What is quite unexpected is that, for this particular model,

the contributions coming from the Landau terrh8, andL 4,
vanish independently dd, that is

lim {(a®—1)|qg|(L3+L4)}=(a?-1)0In1=0. (16)
la|—0

This limit is less straightforward than E¢L5), because the
argument of the logarithm is an indefinite form jag— 0.
However, we can Taylor-expanfl, and Q_ around |q]|
=0 and cancel a power ¢f|> from numerator and denomi-
nator to see that

Q. — 2_a2 2

lim (L3+L4)= fim In w)2 2|q|2
lgl—0 -0 (Q_—w)*—a%q|
k| m?

im In[({qu Ll
lo|—0 @

2w°

2
k| m?q|
+O(q2) _az)/<{—;+ 2w3
2
+0(q?) —aZ)]zlnlzo. (17)

B. Imaginary parts

If gg is made complex and continuous, the only poles or

zeros of the sum of’s in Eq. (14) occur forgg on the real

1 ©
ReH(qO,|q|)=—2J dw\/wz—mztanhﬁ—w
w2 J|mi 2

2 2
— o0 d
do—1q| J' w tanhﬁ—w
2lal Jim2m)2 2
X[ReL1l+RelL2+RelL3+RelL4]
(19
where
Q++(A)+qo
RELl(QO,|Q|)—|n Q_+w+q0 !
Q,+o—0qo
Rel.2(qo.laD=In 5= =4 "
Q+_(1)+q0
ReL3(Qo,|Q|)—|nQ__—w+qO,
Q,—0—0qg
ReL4(Qo,|Q|)—|n Q,—w—qo '

The only difference between Eq4.9) and(14) is that in the
former the absolute value of the arguments of the logarithms
is taken. It is easy to show that the limit of the real part of the
regular terms is

lim {(a®—1)|q|(ReL1+ReL2)}=0,
lg]—0

(20

and the limit of the real part of the Landau terms is

lim {(a®—1)|qg|(ReL3+ReL4)}=0.
lg]—0

(21)

axis. It is perfectly appropriate to have singularities on theThese limits coincide with the limits of Eq$15) and (16).

real axis. Thus the analytic extension of K@) is trivially

The reason is that, dg|—0, the arguments of the corre-

obtained by lettingy, be real. There are three self-energiessponding logarithms in Eq$15) and (16) tend to the posi-

on the real axis:

tive number 1 for any rea.
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We note that the real part of the self-energy is even under ) g°
Jo— — o, Since it can be written as a function qf, if we V= 7R€‘H(0,0)¢2
combine the logarithms. It is also even under —q, since
it depends only onq|.

Now we turn to the imaginary part which we calculate 1 (= S Bw
making use of the following form of the delta function: Rell(0,0= ?flmldwvw —mtanh-. (24)
ol | | ! ! 22 IIl. THE USUAL CASE
(X)_Z ! L X+ie x—ie| (22 '

In this section we consider a model of fermions interact-
The imaginary part is ing with scalar bosons whose only difference from the one
which we examined in the previous section is that its inter-
action term does not contain thg matrix

10 d3%k 1 Bw
ImHRz—ImHA=§f—Zm(qg—qz)tanh? o o o
(2m) L[4, ¢]= i b—m)yy—igppd+Lo[ ¢]. (25

As we shall soon see, this simple modification of the inter-
—8(go— O+ w)]. (23 action term has far-reaching consequences as far as the ana-
o o lytic properties of the thermal self-energy are concerned.
We note that it is odd undego— — 0. However it is even  Starting from Eq.(25) and following the procedure of the

underq— —q, because we can simultaneously change thgrevious section we find that the one-loop effective action is
integration variabl&k— — k. This means that, unlike the real

part, the imaginary part of the retarded or advanced thermal ) _ A
self-energy does not contribute to the effective action. As we et @l=—1Trin[1-gé(x)S(p)] (26)
can see from Eq4), the integrand of the effective action is

#(do,q) P(—do,—a)I1(qg,q) and therefore the contribu-

tion $(qg,q) #(—ag,—q)ImII(qe,q) is odd under the

combined transformationgy— —q, and g— —q and van- - d*k k?+ktq, +m?

ishes, when integrated ovéfq. As we are interested only in HI (q)=4f (2m) [(k+q)2— m?][K2— m?] (27)
the effective action and the effective potential for the bosons,

we will not concern ourselves with the imaginary part of the\ynich can be written as

thermal bubble for the rest of this section. For a discussion of

the physical significance of the imaginary part of the thermal _— ) o
bubble, se¢3,24]. i1 (q)=—ill(q)+i11"(q),

X[8(got QN+ w)—6(q—Q—w)+ 6(ggt+ Q—w)

and the self-energy bubble is given by

) , where
C. Effective potential

The theory of this section is very special; although the
Landau terms are not well-behaved at the origin of the iH”(q)=4f
momentum-frequency space, a unique effective potential up
to second order in the coupling constant can be defined
thanks to the kinetic term in the numerator of H43), As we saw in the previous section Réa|q|,|q|) does not
namelyg3—qg?. The one-loopg? order contribution to the depend ora, when|q|—0. We will see that RE"(alq],|q|)

4 2

2m
(2m)* [(k+q)2—m?][k?2—m?]’

effective potential is does. At finite temperature,
1 o f dk 1 1 1 Bo 1 1 Be
(q0||q|)_ m (277-)3m Q+w—q0+Q—w+q0 tan 2 + Q+w+qo+Q_w_qo tan 2
1 1 O+ 1 1 Q-
+ - anhﬁ( %) t hﬁ( %) (28)

We now let the frequency be real. As in the previous section, we are not concerned with the infinitesimal imaginary parts.
Interchanging the two successive limits with the integrations yields

085043-5
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T olah = f d*k 1 [ 2m? Bo BQ
(0Jah)=— (ZW)SE 070 tan 5 +tanh—2
2m? h,B_w BQ
Rroy tan 5 —tanh—2

lal=0 1 (o
———| doyo’-m?
w2 Jml

m’  Bo BM . Bo
X[Etanh?—gCOSh > (29
and
11"(90,0) f ok 1[ 2’ + 2’ tantt
,0)=— — an
do (2m)% w?|20—0o  20+0o 2
W0 9 re m? w
—_— dw\/wz—mz—tanhﬁ—.
(30

The two successive limits of the thermal bubble do not com-
mute. In order to better establish this conclusion, we perform
the angular integration first and then evaluate the limits.

PHYSICAL REVIEW D65 085043

other anymore. Consequently, E§1) is valid provided we
do not take the limifq,— 0,/g|— 0} in the integral.

Performing the angular integration, settigg=a|q| and
following the steps of the previous section yields the effec-
tive potential

”n gz ”n
(V&)= 5 Rell"(0,0/¢?

1 ® w
Rell”(0,0)=— —; ‘ ‘dw\/wz— m? tanh'[%
er m
o™ m (32)
0’ (0’—m?)w?—a’e? .

The value of the thermal bubble at the origin of the
momentum-frequency space depends on how the origin is
approached. Foa— o we obtain the result of Eq30). We

are still not allowed to take the lima— 0 into the integral,

but after an integration by parts, we find, @1,

1 (= o m?
Rd’[”(O,O)=——2J dan/coz—mztanh'g——2
7 J|m| 2

If we use Eq.(9) and apply the transformatiok— — (k 1 Bw|”
+q) to the terms containing tanB(2/2), Eq.(28) reads T2 G(w)tanhT .
d*k 1 Bw 1 ” B _,Bw
" — 9m2 il — dwG(w)=cosh “—— (33
11"(do,|al) = —2m f(277)3 P hakir N Qo+ Q+w [m 2 2
1 N 1 1 where
qo—Q—w q0+Q—w qO—Q-i-w ’ 2 5
m m+yl—a‘w
(31 G(w)=5—12Jw*—m’+awIn| ————
()= 2 m—\1-a%w
The transformatiork— — (k+q) which was perfectly per- > ——s
missible in the previous section is not so here. The reason is l—am-ofajo’-m _ (34)
that, if we interchange the limifq,—0,g|—0} with the 1-a’m+w+ajw’—m?

integrations, we see that, while in E&8) the Landau terms
are finite in this limit, in Eq.(31), that is after the transfor- Now we may safely perform the— 0 limit to find the result
mation, the Landau terms diverge. These divergencies cancef Eg. (29).

out in the combination in which the Landau terms appear in As in the previous section, the imaginary part does not

Eq. (28), but once we split the terms of E(R8) and trans-
form only the last two, the divergencies do not cancel eachive potential for the theory of this section is

2
(V&= 97[ —Rell(0,0)+ Rell"(0,0)]¢?

m4

9 (" oot 14 ™4 #? it a#0
- wyVyw~—Mm~tan — )
272 ) |m| 2 0’ (0’—m?)w?—a’w’

B 2 2 22 (35)
*® m m
=97 do oz tanh—ﬁzw{ 1+ — _Fm ] @2 if a=0.

272 ) |m| w2 B Bw sinhBw

085043-6
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This effective potential is not uniquely defined, because itNambu—Jona-Lasinio modg31] expressed in terms of aux-
depends ora which can take any real value. Comparing Eq.iliary fields.

(6) to Eq.(27), we see that droppings from the interaction In general, with the exception of the pion-nucleon model
resulted in changing the relative sign between the momendiscussed above and, possibly, other special cases, when fi-
tum terms andn? in the numerator. This slight change was nite temperature symmetry restoration is discussed by em-
enough to allow for the development of a self-energy whichploying nonperturbative results for the effective potential,
is nonanalytic at the origin. these may not match the perturbative results. The nonpertur-
bative results, for exampl&3,27], when expanded perturba-
tively, reproduce only the=0 case of those calculated by

) _ means of perturbation theory. Therefore the question of sym-

We have shown that, in the pion-nucleon model, the efynetry restoration at finite temperature should be reanalyzed
perature. We have also shown that this is not true when thgn this and other related issues is in progress.
interaction term is slightly modified, the reason for that being
the nonanalytic behavior which appears in the thermal
bubble diagram.

A further consequence of the analyticity displayed by the The authors wish to thank Professor I.J.R. Aitchison for
pion-nucleon theory is that the Debye mass at leading ordguroviding the opportunity for the commencement of this
(12) and the plasma frequency at leading orde®) coincide.  work as well as for numerous illuminating discussions. G.M.
This is not the case for the modified theory as we can sethanks Professor G. Alber for many insightful remarks on
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