
PHYSICAL REVIEW D, VOLUME 65, 085043
Theory with a unique thermal effective potential
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We show that for the pion-nucleon theory the thermal bubble graph is analytic at the origin of the
momentum-frequency space, although the internal propagators in the loop have the same mass. This means
that, for this theory, the thermal effective potential is uniquely defined. We then examine how a slight modi-
fication of the interaction term results in a theory for which the thermal bubble graph displays the usual
nonanalyticity at the origin and the thermal effective potential is not uniquely defined.
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I. INTRODUCTION

It is well known that for most theories at finite temper
ture the self-energy displays a nonanalytic behavior at
origin of the momentum-frequency space@1–4#. This non-
analyticity manifests itself in a difference between the$q0
→0,uqu→0% and $uqu→0,q0→0% limits of the self-energy,
whereq0 andq are the components of the external mome
tum qm5(q0 ,q) and the component listed first goes to ze
first. Consider for example a QED plasma at finite tempe
ture. The first limit is associated with the screening of sta
electric fields by the plasma and gives a leading order
proximation of the Debye mass which is a pole of the pho
propagator and plays the role of the inverse screening len
The second limit has been used for the calculation of
plasma frequency@5–7#. One may argue that the two limit
must differ since they refer to different physics@6#.

This phenomenon was first pointed out in the BCS the
context by Abrahams and Tsuneto@8#. Later it was also seen
to appear in a wide range of theories, for example in ther
QED @9,10# and in thermal three-dimensional QED (QED3)
@11#. In thermal QCD it occurs in the gluon@7,12# and in the
massless quark self-energy@13,14#. Furthermore, it appear
in all one-loop diagrams that have zero or two external ma
less quarks and any number of external gluons@15,16#. The
problem is also present in the graviton self-energy@17,18#
and in higher-order graviton diagrams@19#. Even in the
much simpler case of interacting scalars the nonanalyticit
the self-energy persists@1,20–22#.

The nonanalyticity of the thermal self-energy affects a
the uniqueness of the thermal effective potential. When
standard, nonperturbative method of@23# is used at finite
temperature, the resulting effective potential coincides w
only one way of approaching the singularity of the se
energy at the origin. In order to take into account the nona
lyticity, one can do perturbation over a weak coupling a
then, provided the background field is slowly varying
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space and time, one can apply derivative expansion te
niques. The resulting effective potential will not be unique
defined in this case@22#.

The reason for this behavior is that temperature effe
give rise to Landau terms in the self-energy and these
responsible for the development of a new branch cut in
complex plane of the external momenta with a branch po
at the origin, besides the usual one which is already pre
at zero temperature@4,24#. The usual branch cut exists for

s5q0
22uqu2>4m2

and there is a new branch point at

s5q0
22uqu2<0.

An interesting remark is that, whenever the intern
propagators in a typical loop have different masses, the s
energy is analytic at the origin@25#. In this nondegenerate
mass case the usual branch cut is

s>~m11m2!2

and the new one is

2um1
22m2

2u<s<~m12m2!2

wherem1 and m2 are the masses of the particles in the
ternal loop. The new branch point is not at the origin an
more and the problem disappears from this point, allow
thus the definition of a unique effective potential.

For the degenerate mass case, attempts have been ma
find some way of circumventing the nonanalyticity of th
self-energy at the origin of the momentum-frequency sp
@26,27#. However, Weldon in@1# showed that the analytic
results of@26,27# were an artifact of not taking into accoun
certain subtleties of Feynman parametrization at finite te
perature.

Here we present a theory which exhibits a new and un
pected feature: it has self-energy which is genuinely anal
©2002 The American Physical Society43-1
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at the origin, although the mass is degenerate. The theo
physically meaningful~the pion-nucleon model! and is the
only known case where a thermal effective potential can
defined uniquely. Furthermore we discuss how subtle
new feature is and how the nonanalyticity can develop w
the slightest change in the interaction term.

II. A NEW CASE

A. Commuting limits

We consider the pion-nucleon model~see for example
@28#!

L@c̄,c,f#5c̄~ i ]”2m!c2 igc̄g5cf1L0@f# ~1!

where c is a fermion andf a boson.L0@f# is the free
Klein-Gordon Lagrangian for the boson.

Integrating out the fermions, we obtain an effective act
for the bosons. The one-loop contribution to this effect
action is

Ge f f@f#52 i ln
Det†iS21@f#‡

Det@ iS21#
~2!

where iS21@f# and iS21 are matrices whose elements
coordinate representation are

^xu iS21uy&5~ i ]” x2m!d~x2y!

^xu iS21@f#uy&5@ i ]” x2m2 igg5f~x!#d~x2y!.

Since the bosonic field depends on the coordinates, the f
tional determinant Det†iS21@f#‡ in Eq. ~2! is not straight-
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forward to calculate; the matrix whose functional determ
nant we want to evaluate is not diagonal in momentum o
coordinate space. However, progress can be made if we
write Eq. ~2! as

Ge f f@f#52 i Tr ln@12gg5f~ x̂!S~ p̂!#. ~3!

Now we expand the above expression in powers of the c
pling constant and show that the leading contribution to
one-loop effective action is

G (2)5
ig2

2 E d4q

~2p!4
f̃~2q!iP~q!f̃~q! ~4!

wheref̃(q) is the Fourier transformation off(x) and

iP~q!5E d4k

~2p!4
trFg5

1

k”1q”2m
g5

1

k”2m
G . ~5!

We note thatiP(q) is just the self-energy bubble diagra
for the boson which, after performing the trace, is given

iP~q!524E d4k

~2p!4

k21kmqm2m2

@~k1q!22m2#@k22m2#
. ~6!

This is a typical diagram that usually has a nonanalytic
havior in the limit of vanishing external momenta but w
will show that this is not the case here.

Applying the usual finite temperature techniques to E
~6!, we find the following expression for the thermal bubb
diagram:
P~q0 ,uqu!5E d3k

~2p!3

1

2vV H 2vF tanh
b~V1q0!

2
1tanh

b~V2q0!

2 G1
1

V1v2q0
F @vq01kq#tanh

bv

2

1@q0
22Vq01kq#tanh

b~V2q0!

2 G1
1

V1v1q0
F @2vq01kq#tanh

bv

2
1@q0

21Vq01kq#tanh
b~V1q0!

2 G
1

1

V2v1q0
F @vq01kq#tanh

bv

2
2@q0

21Vq01kq#tanh
b~V1q0!

2 G1
1

V2v2q0
F @2vq01kq#tanh

bv

2

2@q0
22Vq01kq#tanh

b~V2q0!

2 G J ~7!

where

v5Ak21m2 V5A~k1q!21m2 q05 i
2pn

b
, n5 integer. ~8!

From the above definition ofq0 follows that

ebq051 ~9!

and consequentlyq0 disappears from all the hyperbolic tangents of Eq.~7!:
3-2
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P~q0 ,uqu!5E d3k

~2p!3

1

2vV H 4v tanh
bV

2
1

1

V1v2q0
F @vq01kq#tanh

bv

2
1@q0

22Vq01kq#tanh
bV

2 G
1

1

V1v1q0
F @2vq01kq#tanh

bv

2
1@q0

21Vq01kq#tanh
bV

2 G
1

1

V2v1q0
F @vq01kq#tanh

bv

2
2@q0

21Vq01kq#tanh
bV

2 G1
1

V2v2q0

3F @2vq01kq#tanh
bv

2
2@q0

22Vq01kq#tanh
bV

2 G J . ~10!
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In the above expression~10!, the last two terms are the Lan
dau terms whose denominators vanish when the freque
and momentum are set to zero. We will be referring to
rest of the terms in Eq.~10! as the regular terms. The de
nominators of the regular terms do not vanish when the
quency and the momentum are set to zero. We also note
the Landau terms vanish at zero temperature and the
contribution left comes from the regular terms.

We analytically continue Eq.~10! to Minkowski space by
letting the frequencyq0 be real. In fact, we should add to th
real q0 an infinitesimal imaginary parti e whose sign deter-
mines whether we are evaluating advanced, retarded or
nmann self-energies. Let us neglect for the moment this
finitesimal imaginary part; we will show later that it
presence does not affect the limits we are calculating.

Now we can have a first indication that the two success
limits $q0→0,uqu→0% and $uqu→0,q0→0% coincide for the
thermal bubble~10! of the pion-nucleon model, which thu
does not display the usual nonuniqueness property

P~0,uqu!5E d3k

~2p!3

1

vV H 2v tanh
bV

2
1

kq

V1v F tanh
bv

2

1tanh
bV

2 G1
kq

V2v F tanh
bv

2
2tanh

bV

2 G J
—→
uq0u→0 1

p2Eumu

`

dvAv22m2 tanh
bv

2
. ~11!

Similarly we find the other limit

P~q0 ,0!5E d3k

~2p!3

1

2vV H 4v tanh
bV

2
1q0

2F 1

2v2q0

1
1

2v1q0
G tanh

bv

2 J
—→
q0→0 1

p2Eumu

`

dvAv22m2 tanh
bv

2
. ~12!

We conclude that the limits coincide. Moreover, the on
term that contributes to the unique result is the first one
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the integrand of Eq.~10! whereas the other two regular term
as well as the Landau terms vanish in this limit.

Of course, in the evaluation of the above limits, we inte
changed the limits with both the integration over the mom
tum uku and with the angular integration overu, so our con-
clusion is not entirely reliable so far. In principle, one shou
perform the integrations overuku and u first, and then take
the limit. Unfortunately, in our case, the integration overuku
cannot be done analytically. However, we can perform
angular integration overu before evaluating the limits.

Furthermore, instead of just taking the two success
limits $q0→0,uqu→0% and $uqu→0,q0→0%, which in the
momentum-frequency plane correspond to approaching
origin in the direction of one or the other axis, we can a
proach the origin through any other curve, for example in
direction of any straight lineq05auqu, wherea can be any
real number. If the limituqu→0 of P(auqu,uqu) is indepen-
dent of a, we will have a more general indication that th
function is analytic at the origin, i.e., it does not depend
the way one approaches the origin@1,25#. Before doing so
we recast Eq.~10! in a more convenient form by means o
the transformationk→2(k1q) wherever the integrand con
tains tanh(bV/2):

P~q0 ,uqu!5E d3k

~2p!3 H 2

v
tanh

bv

2
1~q0

22q2!tanh
bv

2

3
1

2vV F 1

q01V1v
2

1

q02V2v
1

1

q01V2v

2
1

q02V1vG J . ~13!

To perform the angular integration, we change variab
from cosu to V and perform the integration overV:

P~q0 ,uqu!5
1

p2Eumu

`

dvAv22m2 tanh
bv

2

1
q0

22uqu2

2uqu E
umu

` dv

~2p!2
tanh

bv

2

3@L11L21L31L4# ~14!
3-3
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where

L1~q0 ,uqu!5 ln
V11v1q0

V21v1q0
, L2~q0 ,uqu!5 ln

V11v2q0

V21v2q0

L3~q0 ,uqu!5 ln
V12v1q0

V22v1q0
, L4~q0 ,uqu!5 ln

V12v2q0

V22v2q0

with

V15A~ uku1uqu!21m2, V25A~ uku2uqu!21m2.

It is worth mentioning at this point that we still cann
perform analytically the integration overuku ~or equivalently
over v) in Eq. ~14!. In other words, interchanging the ord
of the integrations overuku and u does not enable us t
perform theuku integration.

We proceed to the parametrizationq05auqu and examine
the behavior of the self-energy asuqu→0. The limits of the
regular termsL1 andL2 are independent ofa, as they should
be. It is easy to see that

lim
uqu→0

$~a221!uqu~L11L2!%5~a221!0 ln 150. ~15!

What is quite unexpected is that, for this particular mod
the contributions coming from the Landau terms,L3 andL4,
vanish independently ofa, that is

lim
uqu→0

$~a221!uqu~L31L4!%5~a221!0 ln 150. ~16!

This limit is less straightforward than Eq.~15!, because the
argument of the logarithm is an indefinite form asuqu→0.
However, we can Taylor-expandV1 and V2 around uqu
50 and cancel a power ofuqu2 from numerator and denomi
nator to see that

lim
uqu→0

~L31L4!5 lim
uqu→0

ln
~V12v!22a2uqu2

~V22v!22a2uqu2

5 lim
uqu→0

lnH S F uku
v

1
m2uqu

2v3

1O~q2!G 2

2a2D Y S F2
uku
v

1
m2uqu

2v3

1O~q2!G 2

2a2D J 5 ln150. ~17!

B. Imaginary parts

If q0 is made complex and continuous, the only poles
zeros of the sum ofL’s in Eq. ~14! occur forq0 on the real
axis. It is perfectly appropriate to have singularities on
real axis. Thus the analytic extension of Eq.~14! is trivially
obtained by lettingq0 be real. There are three self-energi
on the real axis:
08504
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PR~q0 ,uqu!5P~q01 i e,uqu!,

PA~q0 ,uqu!5P~q02 i e,uqu!,

PF~q0 ,uqu!5P~q01 i eq0 ,uqu!,

wheree→01. The real parts of these self-energies coinc
whereas the imaginary parts are related according to

Im PR52Im PA5sgn~q0!Im PF ~18!

where sgn(q0) is the sign of the frequencyq0.
Following @1# we shall not concern ourselves with th

Feynman self-energy. Using the fact thate is infinitesimal,
the real part of the self-energy can be shown to be

ReP~q0 ,uqu!5
1

p2Eumu

`

dvAv22m2 tanh
bv

2

1
q0

22uqu2

2uqu E
umu

` dv

~2p!2
tanh

bv

2

3@ReL11ReL21ReL31ReL4#

~19!

where

ReL1~q0 ,uqu!5 lnUV11v1q0

V21v1q0
U,

ReL2~q0 ,uqu!5 lnUV11v2q0

V21v2q0
U,

ReL3~q0 ,uqu!5 lnUV12v1q0

V22v1q0
U,

ReL4~q0 ,uqu!5 lnUV12v2q0

V22v2q0
U.

The only difference between Eqs.~19! and~14! is that in the
former the absolute value of the arguments of the logarith
is taken. It is easy to show that the limit of the real part of t
regular terms is

lim
uqu→0

$~a221!uqu~ReL11ReL2!%50, ~20!

and the limit of the real part of the Landau terms is

lim
uqu→0

$~a221!uqu~ReL31ReL4!%50. ~21!

These limits coincide with the limits of Eqs.~15! and ~16!.
The reason is that, asuqu→0, the arguments of the corre
sponding logarithms in Eqs.~15! and ~16! tend to the posi-
tive number 1 for any reala.
3-4
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We note that the real part of the self-energy is even un
q0→2q0, since it can be written as a function ofq0

2, if we
combine the logarithms. It is also even underq→2q, since
it depends only onuqu.

Now we turn to the imaginary part which we calcula
making use of the following form of the delta function:

d~x!5
i

2p
lim

e→01
F 1

x1 i e
2

1

x2 i eG . ~22!

The imaginary part is

Im PR52Im PA5
1

2E d3k

~2p!2

1

2vV
~q0

22q2!tanh
bv

2

3@d~q01V1v!2d~q02V2v!1d~q01V2v!

2d~q02V1v!#. ~23!

We note that it is odd underq0→2q0. However it is even
under q→2q, because we can simultaneously change
integration variablek→2k. This means that, unlike the rea
part, the imaginary part of the retarded or advanced ther
self-energy does not contribute to the effective action. As
can see from Eq.~4!, the integrand of the effective action
f̃(q0 ,q)f̃(2q0 ,2q)P(q0 ,q) and therefore the contribu
tion f̃(q0 ,q)f̃(2q0 ,2q)Im P(q0 ,q) is odd under the
combined transformationsq0→2q0 and q→2q and van-
ishes, when integrated overd4q. As we are interested only in
the effective action and the effective potential for the boso
we will not concern ourselves with the imaginary part of t
thermal bubble for the rest of this section. For a discussio
the physical significance of the imaginary part of the therm
bubble, see@3,24#.

C. Effective potential

The theory of this section is very special; although t
Landau terms are not well-behaved at the origin of
momentum-frequency space, a unique effective potentia
to second order in the coupling constant can be defi
thanks to the kinetic term in the numerator of Eq.~13!,
namelyq0

22q2. The one-loop,g2 order contribution to the
effective potential is
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Ve f f
(2)5

g2

2
ReP~0,0!f2

ReP~0,0!5
1

p2Eumu

`

dvAv22m2 tanh
bv

2
. ~24!

III. THE USUAL CASE

In this section we consider a model of fermions intera
ing with scalar bosons whose only difference from the o
which we examined in the previous section is that its int
action term does not contain theg5 matrix

L8@c̄,c,f#5c̄~ i ]”2m!c2 igc̄cf1L0@f#. ~25!

As we shall soon see, this simple modification of the int
action term has far-reaching consequences as far as the
lytic properties of the thermal self-energy are concern
Starting from Eq.~25! and following the procedure of the
previous section we find that the one-loop effective action

Ge f f8 @f#52 i Tr ln@12gf~ x̂!S~ p̂!# ~26!

and the self-energy bubble is given by

iP8~q!54E d4k

~2p!4

k21kmqm1m2

@~k1q!22m2#@k22m2#
~27!

which can be written as

iP8~q!52 iP~q!1 iP9~q!,

where

iP9~q!54E d4k

~2p!4

2m2

@~k1q!22m2#@k22m2#
.

As we saw in the previous section ReP(auqu,uqu) does not
depend ona, whenuqu→0. We will see that ReP9(auqu,uqu)
does. At finite temperature,
parts.
P9~q0 ,uqu!52m2E d3k

~2p!3

1

vV H F 1

V1v2q0
1

1

V2v1q0
G tanh

bv

2
1F 1

V1v1q0
1

1

V2v2q0
G tanh

bv

2

1F 1

V1v1q0
2

1

V2v1q0
G tanh

b~V1q0!

2
1F 1

V1v2q0
2

1

V2v2q0
G tanh

b~V2q0!

2 J . ~28!

We now let the frequencyq0 be real. As in the previous section, we are not concerned with the infinitesimal imaginary
Interchanging the two successive limits with the integrations yields
3-5
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P9~0,uqu!52E d3k

~2p!3

1

vV H 2m2

V1v F tanh
bv

2
1tanh

bV

2 G
1

2m2

V2v F tanh
bv

2
2tanh

bV

2 G J
—→
uqu→0

2
1

p2Eumu

`

dvAv22m2

3H m2

v2
tanh

bv

2
2

bm2

2v
cosh22

bv

2 J ~29!

and

P9~q0,0!52E d3k

~2p!3

1

v2 H 2m2

2v2q0
1

2m2

2v1q0
J tanh

bv

2

—→
q0→0

2
1

p2Eumu

`

dvAv22m2
m2

v2
tanh

bv

2
.

~30!

The two successive limits of the thermal bubble do not co
mute. In order to better establish this conclusion, we perfo
the angular integration first and then evaluate the limits.

If we use Eq.~9! and apply the transformationk→2(k
1q) to the terms containing tanh(bV/2), Eq. ~28! reads

P9~q0 ,uqu!522m2 E d3k

~2p!3

1

vV
tanh

bv

2 H 1

q01V1v

2
1

q02V2v
1

1

q01V2v
2

1

q02V1vJ .

~31!

The transformationk→2(k1q) which was perfectly per-
missible in the previous section is not so here. The reaso
that, if we interchange the limit$q0→0,uqu→0% with the
integrations, we see that, while in Eq.~28! the Landau terms
are finite in this limit, in Eq.~31!, that is after the transfor
mation, the Landau terms diverge. These divergencies ca
out in the combination in which the Landau terms appea
Eq. ~28!, but once we split the terms of Eq.~28! and trans-
form only the last two, the divergencies do not cancel e
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other anymore. Consequently, Eq.~31! is valid provided we
do not take the limit$q0→0,uqu→0% in the integral.

Performing the angular integration, settingq05auqu and
following the steps of the previous section yields the effe
tive potential

~Ve f f
(2)!95

g2

2
ReP9~0,0!f2

ReP9~0,0!52
1

p2 E
umu

`

dvAv22m2 tanh
bv

2

3H m2

v2
1

m4

~v22m2!v22a2v4J . ~32!

The value of the thermal bubble at the origin of th
momentum-frequency space depends on how the origi
approached. Fora→` we obtain the result of Eq.~30!. We
are still not allowed to take the limita→0 into the integral,
but after an integration by parts, we find, fora,1,

ReP9~0,0!52
1

p2Eumu

`

dvAv22m2 tanh
bv

2

m2

v2

2
1

p2 H FG~v!tanh
bv

2 G
umu

`

2E
umu

`

dvG~v!
b

2
cosh22

bv

2 J ~33!

where

G~v!5
m2

2v H 2Av22m21av lnFm1A12a2v

m2A12a2v

3
A12a2m2v1aAv22m2

A12a2m1v1aAv22m2G J . ~34!

Now we may safely perform thea→0 limit to find the result
of Eq. ~29!.

As in the previous section, the imaginary part does
contribute to the effective action. Therefore the total effe
tive potential for the theory of this section is
~Ve f f
(2)!85

g2

2
@2ReP~0,0!1ReP9~0,0!#f2

55 2
g2

2p2Eumu

`

dvAv22m2 tanh
bv

2 H 11
m2

v2
1

m4

~v22m2!v22a2v4J f2 if aÞ0,

2
g2

2p2Eumu

`

dvAv22m2 tanh
bv

2 H 11
m2

v2
2

b2m2

bv sinhbvJ f2 if a50.

~35!
3-6



e
q

e
s

ic

e
m
th

in
a

th
rd

se

n
nit

he

-

el
n fi-

em-
al,
rtur-
-
y
ym-
zed
rk

for
is
M.
on
for
P

e
her-

THEORY WITH A UNIQUE THERMAL EFFECTIVE POTENTIAL PHYSICAL REVIEW D65 085043
This effective potential is not uniquely defined, becaus
depends ona which can take any real value. Comparing E
~6! to Eq. ~27!, we see that droppingg5 from the interaction
resulted in changing the relative sign between the mom
tum terms andm2 in the numerator. This slight change wa
enough to allow for the development of a self-energy wh
is nonanalytic at the origin.

IV. CONCLUSIONS

We have shown that, in the pion-nucleon model, the
fective potential for the bosonic field is unique at finite te
perature. We have also shown that this is not true when
interaction term is slightly modified, the reason for that be
the nonanalytic behavior which appears in the therm
bubble diagram.

A further consequence of the analyticity displayed by
pion-nucleon theory is that the Debye mass at leading o
~11! and the plasma frequency at leading order~12! coincide.
This is not the case for the modified theory as we can
from Eqs.~29! and ~30!.

The models we dealt with in Secs. II and III can be co
sidered together to study chiral symmetry restoration at fi
temperature for example in the Lurie model@29#, the linears
model @30# in its broken chiral symmetry phase and in t
08504
it
.

n-

h

f-
-
e

g
l

e
er

e

-
e

Nambu–Jona-Lasinio model@31# expressed in terms of aux
iliary fields.

In general, with the exception of the pion-nucleon mod
discussed above and, possibly, other special cases, whe
nite temperature symmetry restoration is discussed by
ploying nonperturbative results for the effective potenti
these may not match the perturbative results. The nonpe
bative results, for example@23,27#, when expanded perturba
tively, reproduce only thea50 case of those calculated b
means of perturbation theory. Therefore the question of s
metry restoration at finite temperature should be reanaly
keeping in mind the nonanalyticity of certain graphs. Wo
on this and other related issues is in progress.
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