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Dynamics near the critical point: The hot renormalization group in quantum field theory
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The perturbative approach to the description of long-wavelength excitations at high temperature breaks
down near the critical point of a second order phase transition. We study the dynamics of these excitations in
a relativistic scalar field theory at and near the critical point via a renormalization group approach at high
temperature and aa expansion ind=5— e space-time dimensions. The long-wavelength physics is deter-
mined by a nontrivial fixed point of the renormalization group. At the critical point we find that the dispersion
relation and width of quasiparticles of momentyrare w,~p* and I'y)~(z—1)w,, respectively, and the
group velocity of quasiparticlesgfvpz’l vanishes in the long-wavelength limit at the critical point. Away
from the critical point forT=T, we find w,~ & 41+ (p&)?*]*? and [~ (z— 1) w,(p€) /[ 1+ (pé)#] with
£ the finite temperature correlation lengx|T—T,|~”. The new dynamical exponeatresults from aniso-
tropic renormalization in the spatial and time directions. For a theory ®ifN) symmetry we findz=1
+ €e(N+2)/(N+8)%+ O(€?). This dynamical critical exponent describes a new universality class for dynami-
cal critical phenomena in quantum field theory. Critical slowing down, i.e., a vanishing width in the long-
wavelength limit, and the validity of the quasiparticle picture emerge naturally from this analysis.
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[. INTRODUCTION Whether the phase transition occurs in local thermody-
namic equilibrium or not depends on the ratio of the cooling

The experimental possibility of studying the phase transitime scalet,,,~T(t)/T(t) to the relaxation or thermaliza-
tions of QCD via ultrarelativistic heavy ion collisions with tion time scale of a fluctuation of a given wavelength?,
the current effort at the BNL Relativistic Heavy lon Collider t,.,(p). If t.,,>t.e then the fluctuation relaxes on time
(RHIC) and the forthcoming program at the CERN Largescales much shorter than that of the temperature variation
Hardron Collider(LHC) motivates a theoretical effort to un- and reaches local thermodynamic equilibrium. If, on the
derstand the dynamical aspects of phase transitions at higither handt.,, <t the fluctuation does not have time to
temperature. QCD is conjectured to feature two phase trarrelax to local thermodynamic equilibrium and freezes out.
sitions, the confinement-deconfineme(ur hadronization  For these fluctuations the phase transition occurs very fast
and the chiral phase transitions. Detailed lattice stufliés and out of equilibrium. Thus an important dynamical aspect
seem to predict that both transitions occur at about the sarig to understand the relaxation time scales for fluctuations.
temperaturel ;~170 MeV. A large body of theoretical, experimental, and numerical
While lattice gauge theories furnish a nonperturbative toolvork in condensed matter physics reveals that while typi-
to study the thermodynamic equilibrium aspects of the trancally short-wavelengthg>T) fluctuations reach local ther-
sition the dynamicalaspects cannot be accessed with thismal equilibrium, near a critical point long-wavelength fluc-
approach. tuations relax very slowly, and undergmitical slowing
In a condensed matter experiment the temperature is typdown[3,4]. A phenomenological description of the dynamics
cally a control parameter and it can be varied sufficientlynear a phase transition typically hinges on the time-
slowly so as to ensure that a phase transition occurs in localependent Landau-Ginzburg equation which is generalized
thermodynamic equilibrium. In an ultrarelativistic heavy ion to include conservation lawi8,4]. In the simplest case of a
collision the current theoretical understanding suggests thatgonconserved order parameter, such as in a scalar field
thermalized quark-gluon plasma may be formed at a timeheory with discrete (Ising-like) symmetry, the time-
scale of order 1 fn@ with a temperature larger than critical. dependent Landau-Ginzburg equation is purely dissipative.
This quark-gluon plasma then expands hydrodynamically While phenomenological, this approach has proved very
and cools almost adiabatically, the temperature falling off aguccessful in a variety of experimental situations and is
a power of timeT(t)~T;(t;/t)”® until the transition tem- Jikely to provide a suitable description of the dynamics for
perature is reached at a time scal€0-50 fmt depending macroscopic, coarse-grained systems such as binary mix-
on the initial temperaturg2]. tures, etc[3]. The phenomenological approach based on the
time-dependent Landau-Ginzburg equations, which are first
order in time derivatives, seems to provide a suitable de-
*Electronic address: boyan@pitt.edu scription of coarse-grained macroscopic dynamicsanrel-
"Electronic address: devega@Ipthe.jussieu.fr ativistic systemsHowever, it is clear that this approach is not
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justified in a relativistic quantum field theory, since the un-of the self-energy, which arises first at two-loop order Tor
derlying equations of motion are second order and time re>T, is accounted for by an imaginary part in the effective
versal invariant. quartic coupling[10]. There it is found that the relaxation
In particular, in the case of a purely dissipative time-rate of zero momentum fluctuationsreveals critical slow-
dependent Landau-Ginzbughenomenologicaldescription  ing down in the formy~|T—Tg|”In|T—T with »~0.53
[3,4], frequency and momenta enter with different powers inbeing the critical exponent for the correlation lengti].
the propagators, and at the mean fi¢ tree level this In Ref. [11] the width of quasiparticles near the critical
results in a dynamical scaling exponent 2. This situation ~ Point was studied via the large approximation. This study
must be contrasted with that of a relativistic quantum fieldrévealed that at high temperature the effective coupling is
theory where at tree levéiean field frequencies and mo- driven to a(Wilson-Fischer fixed point, a result that is in
menta enter with the same power in the propagator, leadinggreement with the numerical evidence presented in Ref.
to a dynamical scaling exponent 1. Furthermore, critical [10]- While the results in leading order in the larbelimit
slowing down is automatically built into the phenomenologi-found in [11] hinted at critical slowing down, albeit in a
cal description, even at tree level, as a consequence of tHBanner different from the numerical evidence of R&D],
dissipative equations of motiofs]. Clearly, this is not the they also hinted at the breakdown of the quasiparticle pic-
case in a relativistic quantum field theory. For a detailedure. A conclusion in[11] is that, while the largeN limit
discussion of the differences of nonequilibrium dynamicalProvides a partial resummation of the perturbative expan-
aspects between the time-dependent Landau-Ginzburg aplon. further resummation is needed to fully address the re-
proach and quantum field theory, see R8J. axation of quasiparticles.

There are important nonequilibrium consequences of slow  The largeN limit in static critical phenomena presents a
dynamics near critical points. If the cooling time scale isSimilar situation: while it sums the series of bubbles replac-

much shorter than the relaxation time scale of long-iNg the bare vertex by the effective coupling that is driven to

wavelength fluctuations, these freeze out and undergo spirbe fixed point in the infrared, the self-energy still features
odal instabilities when the temperature falls below criticalinfrared logarithms that require further resummatiph.
[3,5] during continuougno metastability phase transitions. Such a resummation is provided by the renormalization
These instabilities result in the formation of correlated do_group_[4]. o ) ) N
mains that grow in timg3,5] with a law that in general While our motivation for studying dynamical critical phe-
depends on the cooling rafé]. nomena near crmca_l points is dflven by _the experimental
In ultrarelativistic heavy ion collisions during the expan- Program in ultrarelativistic heavy ion collisions to study the
sion of the quark-gluon plasma the critical point for the chi-QCD phase transitions, the underlying questions are more
ral phase transition may be reached. If long-wavelength flucoverarching and of a truly interdisciplinary nature. In par-
tuations freeze out shortly before the transition, the ensuin§cular, we mention an impressive body of work on aspects of
instabilities may lead to distinct event by event observable§uantum phase transitioris condensed matter systeifri<?]
[7]in the pion distribution as well as in the photon spectrumthat addresses very similar questions. The work in Re]
at low energieg8]. focuses_, on understa_mdlng_ the static, dyngmlcal, and transport
Thus an important aspect of the chiral phase transition i§roperties of low dimensional systems in the quantum re-
to establish the relaxation time scales of long-wavelengtfgime, in which the frequency and momentum of excitations
fluctuations, and whether critical slowing down and freezelS w;p>T.
out of long-wavelength fluctuations can ensue. Our study in this article is Complementary to that program
In the strict chiral limit with massless up and down in that we focus on the dynamical aspects of long-
quarks, QCD has a SU(RPSU(2), symmetry which is Wavelength _quasmgrtlcles W|t@;p<T. As dlscusseq in
spontaneously broken to SU(R), at the chiral phase tran- [12_,1?3 and in detail below, this is closer to thaassical
sition, the three pions being the Goldstone bosons associatég@9/me.
with the broken symmetry. It has been argued that the low
energy theory that describes the chiral phase transition is in
the same universality class as the Heisenberg ferromagnet,
i.e., theO(4) linear sigma mode[9]. This argument has In this article we study theynamicalaspects of quasipar-
been used9] to provide an assessment of the dynamicalticles near the critical point in a scalar quartic field theory by
aspects of low energy QCD based on the phenomenologicahplementing a renormalization group program at high tem-
time-dependent Landau-Ginzburg approach to dynamicgberature. While the renormalization group has been general-
critical phenomena in condensed maftg}. While the uni- ized to finite temperature in various formulatiofis4,15,
versality arguments are appealing, a more microscopic urmainly to study critical phenomena associated with finite
derstanding of dynamical critical phenomena in quantuntemperature phase transitions in field theory, osttic as-
field theory is needed and has begun to emerge only recentpyects were studied with these approaches.
[10,11. Instead we focus on dynamical aspects, in particular the
In Ref.[10] a Wilsonian renormalization group extended dispersion relations and relaxation rates of long-wavelength
to finite temperature was implemented in a scalar quartiexcitations at and near the critical point. Already at the tech-
field theory. In this approach only one-loop diagrams enter imical level one can see the differences: to understand dy-
the computation of the beta functions, and the imaginary pamamical aspects, in particular relaxation, a consistent treat-

A. The goals
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ment of the absorptive parts of the self-energies is required. We provide a renormalization group analysis of the qua-
This aspect is notoriously difficult to implement in a Wilso- siparticle properties near the critical point, such as their dis-
nian approach in Euclidean field thedid#4]. Referencg10] persion relation and width, complemented by an explicit
proposes a method to circumvent this problem but a comevaluation to lowest order in the expansion. The main re-
plete treatment that manifestly includes the absorptive partgults obtained in this article are the following. At=T_ we

of the self-energy contributions is still lacking in this ap- find that the dispersion relation and width of quasiparticles of
proach. Other approaches using the Euclidean version of tHBomentump are w,~p* and I',~(z—1)wy,, respectively,
renormalization group adapted to finite temperature fieldVith @ vanishing group velocity of quasiparticles in the long-
theory were restricted to static quantitid$] and, in fact, as Wavelength limit highlighting the collective nature of the
will be seen in detail below, miss important phenomena thafiuasiparticle excitations. Far>T, but |T—T¢|<T we find

- 221172 2
will be at the heart of the results presented here. wp~§ 22[1+_(p§) 170 and  Tp~(z—Dep(pd)/[1
+(pé)<*] with £ the finite temperature correlation lenggh

«|T—T.|~". In the case oO(N) symmetry we find to low-

est order in the epsilon expansion that the dynamical expo-
Long-wavelength phenomena at high temperaluiraply ~ nentz=1+ e(N+2)/(N+8)?+ O(€?).

a dimensional reduction from the decoupling of Matsubara Critical slowing down emerges near the critical point and

modes with nonzero frequen¢$6,17. The coupling in the in the e expansionl’,/w,<1, confirming the quasiparticle

dimensionally reduced theory isT, where\ is the quartic  picture.

coupling. For dimensional reasons, the perturbative expan- We discuss some relevant cases of threshold singularities

sion in four space-time dimensions is in terms of the dimenin which the usual(Breit-Wignen parametrization of the

sionless rationT/u with u the typical momentum scale, quasiparticle propagator is not available since the real part of

which is strongly relevant in the infrared. As a result, a per-the inverse Green’s function vanishes at the quasiparticle fre-

turbative approach to studying long-wavelength phenomenguency with an anomalous power law.

breaks down. This is manifest in the breakdown of the qua- In Sec. Il we introduce the model and discuss the break-

siparticle picture in naive perturbation thedigee[11] and  down of naive perturbation theory. In Sec. Il we introduce

below). the e expansion and analyze the static case. In Sec. IV the
In 5— € space-time dimensions, the effective coupling inrenormalization aspects and the anisotropic scaling are ana-

the high temperature, long-wavelength limit ig(u) lyzed in detail. Section V presents the renormalization group

=\Tu™ ¢ We implement are expansion arountive space- in the effective, dimensionally reduced theory both at and

time dimensions and a renormalization group resummatiomear the critical point. This section contains the bulk of our

program at high temperature wiffe>s,u near the critical  results, which are summarized in Sec. VI. Our conclusions

point, with s, u the typical frequency and momentum scales.and a discussion of potential implications are presented in

We analyze the high temperature behavior of the relevan®ec. VII. The high temperature behavior of the relevant dia-

graphs and find that it is dominated fer-0 by the zero grams is computed in the Appendixes.

Matsubara mode, while the sum of the nonzero modes gives

subdominant contributions. The effective renormalized cou- Il. THE THEORY AND THE NECESSITY

pling is driven to an infrared stable fixed poigt = O(e), FOR RESUMMATION

which for smalle allows a consistent perturbative expansion

near the fixed point.

B. Brief summary of results

The low energy sector of QCD with two masslésp and
An important feature that emerges clearly in this ap_down) guarks is conjectured to be in the same universality

proach, and that has been missed in most other treatments %@ss as th@(4) Heisenberg ferromagng®] described by
renormalization group at finite temperature, is theiso- the O(4) linear sigma model. Furthermore, since we are in-

tropic scaling between spatial and time directions, which isterested in describing the dynamical aspects associated with

manifest in a nontrivial renormalization of the speed of light,¢'itical slowing down and freeze-out of long-wavelength

This is a consequence of the fact that in the Euclidean forfluctuations just before the chiral phase transition, we focus
+

mulation at finite temperature time is compatified t<® N T—Tc - o _ - ,

<1/T; thus space and time or momentum and frequency play While our motlvatlon_for studying crltlcz_;ll slowing dpv_vn_

different roles. This results in a novel dynamical critical ex-Stéms from the experimental program in ultrarelativistic

ponent z, which determines the anisotropic scaling. Theheavy ion collisions, the questions are of a fundamental na-

renormalization group leads to scaling in the infrared regiorfure- _ B

in terms of anomalous dimensions which can be computed 10 understand the dynamical aspects near the critical

systematically in thee expansion. In particular, to lowest POINt, we focus on the simpler case of a single scalar field

order ine we find for a scalar theory with discrete symmetry th€ory, and we will recover the case G(N) symmetry at

z=1+ €/27+ O(€?), which describes a new universality the end of the discussion. We thus focus on the theory de-

class for dynamical critical phenomena in quantum fielgScribed by the Lagrangian density

theory. All dynamical aspects, such as the relaxation rates

and dispersion relations, depend on this critical exponent,

while the static aspects are completely described by the usual [= }(& D)2+ lmijz_ @(I)Al 2.1)

critical exponents. 2\ 270 4! '
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where the subscripts in the mass and coupling refer to bare A. Infrared behavior of the critical theory: Static limit
quantities. The case & components in the unbroken phase in three space dimensions

T=T, differs from the single scalar field by combinatoric |, orger 1o highlight the nature of the infrared behavior
factors that change the critical exponents quantltatlvely

These factors will be included at the end of the calculation ‘%&EQ ﬁrr?:t<vth\(lavr? tfr?gul\ja:tlgitbgrna t}f:g ﬁg?]i?é;hoioéﬁ g(t:ahr?\al
obtain an estimate of the critical exponents for BéN) q

; legs in then-point functions vanish. For the purpose of un-
theory in Sec. V1. erstanding the nature of the infrared physics in the static
We are interested in obtaining the relaxation properties o g pny

long-wavelength excitations near the critical temperaturewwl'trévceo\\;\glrl ;ﬁ; ‘\)/%n ;big tmz ingggeopﬁxatsigﬁgg V?:it‘a’g
which in this scalar theor§ .~ |mg|/\Ag With mg,\g being P 9 y

the renormalized mass and coupling. Thus the regime of mthe dynamics in Sec. V.

terest for this work i9,w<T~T. with p,w being the mo-
mentum and frequency of the Iong—wavelength excitation. As ) ) ) )
will become clear below it is convenient to work in the Mat- ~ We consider first the 2.2 scattering amplitude, or four-
subara representation of finite temperature field theoryPOint function, to one-loop order in three spatial dimensions.
which is more amenable to the implementation of tge-  1he full expression is given by
clidean renormalization group. @y 2 - - -

In the Matsubara formulation Euclidean timeis com- I"(p1,81,P2,52,P3,53,P4,54)
pactified in the interval & r<B=1/T whereas space is in-
finite; bosonic fields are periodic in Euclidean time and can

1. The scattering amplitude in B=3

= —NoH+ A H(P1+P2,S1+52) +H(Py+ P, S +3)

be expanded gd8-20 +H(51+54,81+S4)]+O(>\8), (2.6
i5-x heress=2#7Tm , 1<i<4, andm;e Z
b X J' ) —lwpT+ip-X w i i ’ i )
=5 2, | GaatPene
(2.2 f
H(p,s)=
(PS)=3 2 | 5
w,=2mnT, n=0,+1+2,.... (2.3

1

Thus we see that, while the spatial momentum is a con- X e ,
tinuum variable, the Matsubara ?requencies are discrete as a [0+ (27 Tm2I[(q+p)*+(27T)*(n+m)?]
consequence of the compactification of Euclidean time. This 2.7
feature of Euclidean field theory at finite temperature will be
seen to lead tanisotropicrescaling between space and time S=27Tm. Since the external momentum<T it is clear
and therefore, as will be clear below, new dynamical criticalffom the above expression that the dominant infrared behav-
exponents. Anticipating anisotropic rescaling, we then introdor of H(p,0) is determined by the zero Matsubara frequency
duce the bare speed of propagatignof excitations in the in the sum. As will be explicitly shown below, the contribu-
medium by writing the Euclidean Lagrangian in the form tion from the nonzero Matsubara frequencies will introduce a

renormalization of the bare coupling which in the linit

1(9,0)? >p is independent of the external momentytiis will be

Le=5——+ E(Vfb)z*' EMZ(T)CI)2 seen explicitly in the next sectipnKeeping only the zero
Yo internal Matsubara frequency and carrying out the three-
ANe o, 1 , O\, dimensional integral explicitly, we find

-
where we have introduced the effective renormalized p

temperature-dependentassM(T) and the counterterms, in
particular the mass counterterdm?(T)=—M?(T)—m3,

are adjusted order by order in perturbation theory so that th
inverse two-point function obeys 2

= = I
P,PJ:(45”_1)T

Thus, defining the effective coupling constant at the symmet-
fic point p;=P; where

(2.9
Ir®(p=0; w,=0)=M3(T). (2.5

in the static limit, one finds that in the infrared limit/T
The critical point is defined witlithe inverse susceptibilijy it

. . : <1
M?(T)=0. We will begin our study by focusing our atten-
tion on the critical theory for whictM (T)=0. We will later 3T 5
consider the theory near the critical point but in a regime in Neri(m)=No/ 1= =5 O(N\p). (2.10
whichM(T)<T~T.. Thus, the general regime to be studied H
is p,w,M(T)<T~T.. Two important features transpire from this expression.
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(i) the factorT/u can be explained by dimensional argu-  We thus see that the renormalization group improved cou-
ments: in the Matsubara formulation for each loop there is gling runs to the infrared fixed point
factor T from the sum over internal Matsubara frequencies.

The infrared behavior fou<T is obtained by considering

only the zero internal Matsubara frequency in the loop. This g* :§ 2.13
integral has only one scale and sincéas dimensionless in 3 '

three spatial dimensions the one-loop contribution must be

proportional toT/u. A similar argument shows that for a as the momentum scaje—0. Comparing with the renor-
diagram withm internal loops and transferred momentum malization group beta function of critical phenoméddz21—
scaleu there will be a powel™ from the Matsubara sums; 25] we see that this is the Wilson-Fischer fixed point in three
the infrared behavior is obtained by the contribution with  dimensions, again revealing the dimensional reduction of the
the internal Matsubara frequencies equal to zero, which byow energy theory. The resummation of the effective cou-
dimensional power counting must be of the forf/4)™.  pling and the fixed point structure can also be understood in
Therefore a diagram wit internal loops will contribute to  the largeN limit [11]. As described if11] the largeN limit

the scattering amplitude by(AT/u)™. In taking only the can be obtained by replacing the interaction in the Lagrang-
zero internal Matsubara frequency we are assuming that than density by[26]
internal loop momenta are cut off at a scale belbw

Thus, at the critical point the most important infrared be-
havior is that of thedlimensionally reducethree-dimensional N
theory[16,17]. The reason for this dimensional reduction is Eint:m(q)'q)) (214
clear: at finite temperatur€ the Euclidean time is compac-
tified to a cylinder of radius = 1/T for transferred momenta
p and the spatial resolution is on distana@es1/u. There-
fore for u<T—d>L; thus the compactification radius is
effectively zero insofar as the long distan@efrared phys-
ics is concerned.

We will study below the contribution from the nonzero
Matsubara frequencies.

(i) For a transferred momentum scale perturbation
theory breaks down fop<<\T since the contribution from
higher orders is of the formm(AT/u)™. This suggests that a
resummation scheme is needed to study the infrared limit.

This situation is similar to that in critical phenomena, where N
infrared divergences must be summed and the renormaliza- reff(,“): -
tion group provides a consistent and systematic resummation 1+N\T/4u
procedure. We can obtain a hint of how to implement the

trﬁn?_rm?lizr?tioTn_ grour)hi? finiteihtemperattuhre fiegntheory iNThus, introducing the dimensionless effective coupling

e limit whenT is much larger than any other scéieasses, - -3 :
momenta, and frequencieBy realizing that, from the argu- Geri( ) =Neri(w) (T/u) one finds that
ment presented above, the perturbative expansion is actually

with cf>=(¢l,- -~ ¢y), and the form of the quartic coupling
has been chosen for consistency with the notation of Ref.
[11]. The leading order in the large limit for the scattering
amplitude is obtained by summing the geometric series of
one-loop bubbles in the channel(only this channel out of
the three contributes to leading order in the lahgdimit),
each one proportional tN, which is the number of fields in
the loop. As a result one finds that the effective scattering
amplitude at a momentum transferis given by[11]

(2.19

in terms of the dimensionless coupligg=\T/u. Therefore lim gore( ) =4, (2.16
from Eq.(2.10 we can write u—0
B 3 3 i.e., the effective coupling constant goes to the three-
9err(1) =Go| 1~ 7590| + O(90)- (21D dimensional fixed poinl1].
We can improve the scattering amplitude via the renormal- 2. The two-point function in D=3

ization group(RG) by considering the RG function The two-point function in the static limit is given by

d9etf( 1)

3
™ =~ Gerrt ger+ OGer)- r®(p,0)=p2+smi(T)—2(p,0+ON%) (217

Ao T

(212 whereZ, (p,0) stands for the two-loop sunset diagram at zero
The first term(with the minus sighjust displays the scaling external Matsubara frequency and the countertémd(T)
dimension(for fixed AT) of the effective coupling; that this Will cancel the momentum-independent but temperature-
dimension is— 1 is a consequence of the dimensional reducdependent parts of the self-energy. The two-loop self-energy
tion since\T is the effective dimensionful coupling of the for external momentumﬁ and Matsubara frequency,,
three-dimensional theory. =27 Tm s given by

Bg=p
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A2T? d3q  d%k 1
f (2.189
l,jeZ

>(Prom) =g (2m)* 2m)° [a*+ of [T+ o] [L(P+K+a)*+ (0 o)+ on)?]

with w;=2mjT. The static limit is obtained by setting,,  Clearly, the static limito—0 of the self-energy coincides
=0 (m=0). In this limit the dominant contribution in the with Eq.(2.19. The two-point function is therefore given by
infrared for T>p arises from the ternh=j=0 in the sum.

The termsl #0, j#0 for which we can tak@=0 (sincep 1 (AT\2 2_ 2
2) 2_ 2 P
<T) will be canceled by the counterterm. A straightforward [2(p,w)=p"~ o™+ 5| 7—| | In|=—
calculation leads to K
w |w—p
\2T2 p? ——Inj—— | —ip(p,w) (2.23
r'@p,0|,=p3 1+ ————In| —| |+ O\® P |otp

219 with p(p,w) given by Eq.(2.21).

There are several features of this expression that are note-
orthy.

It is clear that forAT>p,w the-two loop contribution is
much larger than the tree level terpf— w?. This already

where u is a renormalization scale. This expression cIearIyW
reveals the effective couplingT/p which becomes very
large in the limitp<<\T. Clearly, we need to implement a

rgsummaﬂon schemg that will effectively replqce the b‘."‘resignals the breakdown of perturbation theory in the high tem-
dimensionless coupling constant by an effective coupllngperature regime whenT>p,w in the dynamical case

that goes to a fixed point in the _Iong-wavelength I|m|t,_ anq Consider thereal part of the two-point function as»
also ensure that at this fixed point the effective coupling is

small so that perturbation theory near this fixed point is re- P 1€ Near the mass shell
liable. This is precisely what the renormalization group com-

(2) ~
bined with thee expansion achieves in critical phenomena Rel™*(p,0=p)

[4,21-25. 002l [1-©|[4 1/ AT 2| |w—p|
~ep E +Zl 47p : m
B. Dynamics inD=3
o , 1 (AT \? [2p
The two-loop contribution to the self-energy far#0 is + 2\ 275 Inf —|;. (2.29
obtained from a dispersive representation of the self-energy 7P M

in terms of the spectral density, _ ) ) .
P y This expression reveals that=p is not the position of the

v p(p,v) mass shell of the(quasjparticle. The coefficient of (1
(po)= | —— . (220  —w/p) hints at wave function renormalization but the fact
T v-w—i0 that the two-point function does not vanish at this point pre-

vents such identification. Furthermore, we see that the term
The spectral density(p, v) was obtained in Ref11]inthe  that does not vanish at=p hints at a momentum-dependent
high temperature limif27] in D=3. Using the expression ghit of the position of the pole, i.e., a correction to the dis-
given in[11] for the spectral density at two loops in the high persion relation. However, foxT/p>1 both contributions
temperature limit, and after some lengthy but straightforwardyre nonperturbatively large and the analysis is untrustworthy.

algebra, we find Now consider the width of the quasiparticle,
7 [NT\? v Im3(p,o=p) @p( AT |2
( ,V)=—(—) sgr(v)| O(|v|—p)+ —O(p—|v|)|. __m2p.o=p) mp AT
p(p.v)= 15| 7| S9 vI=p)+ =5 O(p=| Y 50 12| 3mp (2.29

(2.21

Carrying out the dispersive integré®.20 and subtracting
off the terms that are independentmi» which are absorbed
by the counterterm, we find

so thaty,/p>1 for AT/p>1. This signals the breakdown of
the quasiparticle picture.

A similar analysis reveals the breakdown of perturbation
theory away from but near the critical point with —T|

T2 2 (w02 <T. The imaginary part of the two-loop self-energy ﬁtt
S(p,w)=— _<_) (w) =0 and in terms of the temperature-dependent nmagisT)
12\ 4m w2 can be obtained straighforwardly fhree spatial dimensions
) [11,13 in the limit T>m(T). It is found to be[11,13
o [w+i0T—p
——=In| ——||. (2.22 -
P \w+iot+p Im3®)(p=0,0=mg(T))x\?T2. (2.26)
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Consequently, at two-loop order the width of the zero mo-pling limit. Therefore forT>T, long-wavelength excitations

mentum quasiparticle in three spatial dimensions is given byre true weakly coupled quasiparticles with narrow widths.

(11,13

P Ill. THE € EXPANSION: STATIC CASE

AT

—mR(T) >mg(T). The analysis of the previous section points out that naive
perturbation theory at finite temperature breaks down at the

This behavior is different from that of gauge theories atc'itical point for momenta<iT. The reason for this break-
high temperature where low order fermion or gauge boso own, as _revealed by the ar_laly3|§ of th? previous section, is
loops are infrared safe and determined by the hard thermdi'€ following. In four space-time dimensions the quartic cou-

T« (2.27)

loop contributiong 28]. This is so because for fermions there pling is Qimensionlgss; however, each loop diagram in the
erturbative expansion has a facliofrom the sum over the

atsubara frequencies. After performing the renormalization

is no zero Matsubara frequency, while in the case of gaug@
bosons the vertices are momentum dependent. While the seldl

of the mass including the finite temperature corrections and

ond term inside the square brackets in expres&o?3 de- ) . X .
d P setting the theory afor neaj the critical point, the effective

termined by Landau damping is infrared finite and is similar ; .
expansion parameter for long-wavelength correlation func-

to the leading contribution in the hard thermal loop program

[19,28, the first term arises from the three-particle cut. Thellons ISAT, which has dimensions of momentum. If a given

dependence of this term on the renormalization sqale

arises from the subtraction of the mass term at the criticai" : ! e
becomes very large fqu<\T, i.e., the effective coupling is

point and reveals the infrared behavior. Furthermore, in th
hard thermal loop prografi9,28 one finds thermal masses
of ordergT with g the gauge coupling, and widths of order
g°T (up to logarithmy so thatl',/w,<1 in the weak cou-
pling limit, while in the scalar theory under consideration Eqg.
(2.27) suggests thal',/w,>1 in naive perturbation theory.

We note at this stage that the high temperature limi
p,w<T of the self-energy calculated from the spectral rep
resentation(2.20 can be directly obtained by computing
3(p,oy) in the Matsubara representation given by Eq.
(2.18 by setting the internal Matsubara frequenci@s- w;
=0 and analytically continuing,,— —iw+0".

We highlight this observation since it will be the basis of
further analysis in what followsthe high temperature limit
of the self-energy w<T can be obtained by setting the
internal Matsubara frequencies to zero and analytically con-
tinuing in the external Matsubara frequenaye.,

J
L

X > > =
QPRA(PHk+a) 7+,

)\ZTZ

d3q d%k
E(pvw)|p,w<TE 6

2m)° (27)°

——iw+0*

(2.28

diagram has a momentum transfer scalethe effectivedi-
ensionlesg&xpansion parameter is therefoxd/w, which

strongly relevant in the infrared. The analysis based on the
RG beta function(2.12),(2.13 suggests that the effective
coupling g=AT/u is driven to the three-dimensional
(Wilson-Fischey fixed point in the infrared, obviously a con-
sequence of the dimensional reduction in the high tempera-

ture limit. This is confirmed by the largdl resummation of
_the scattering amplitud@.15),(2.16). If the value of the cou-

pling at the fixed point is<1 then a perturbative expansion
near the fixed poinbe reliable; however, the value of the
coupling at the fixed point ig* ~ (1), which of course is a
consequence of the fact that for fixad the effective cou-
pling scales with dimension of inverse momentum in the
infrared. This situation is the same as in critical phenomena
for theories that are superrenormalizable, in which the infra-
red divergences are severe.

The remedy in critical phenomena is to study the pertur-
bative series via the expansion, wherein the value of the
coupling at the fixed point i®(¢) [4,21-23,2%and sum the
perturbative series via the renormalization group. We now
implement this program in the high temperature limit.

In five space-time dimensions the quartic couplndpas
the canonical dimension of inverse momentum, therefore the
product\T that occurs in the perturbative expansion in the
dimensionally reduced low energy theorydanensionless
Then in a perturbative expansion(at very neay the critical
point we expect that infrared divergences will be manifest in

We provide one- and two-loop examples of this statement inthe form of logarithms of the momentum scale in the loop.
Appendixes A and B and formal proof of this statement toThis implies that the effective coupling is marginal. Consid-

one-loop order in Appendix C.

The result for the width of the quasiparticle at two loops
was anticipated in Ref$11,13. This width is purely classi-
cal since the produatT is independent of [11]. This result

ering the theory in 4 e spatial dimensions and one Euclid-
ean(compactified time dimension, the effective coupling of
the dimensionally reduced theoiyT, has dimensions gf ¢
with o being a momentum scale. Therefore the effective

for the damping rate of long-wavelength quasiparticles. indimensionless coupling for diagrams with a transferred mo-

the critical theory is in striking contrast with that foe> T,
which has been studied in detail j29,30. For T>T, the
thermal mass isng, VAT [29] while the two-loop contribu-
tion to the imaginary part of the self-energy fo&-T.,p is
still proportional toA?T?. Thus, the damping rate of long-
wavelength excitations ig<A¥?T<\Y2T in the weak cou-

mentum scalew is g(u)=ATw™ €. Thus, for fixedT the
scaling dimension of this effective coupling-ise; hence we
expect a nontrivial fixed point at which the couplirgf
~QO(e).

Therefore fore<1 we can perform a systematic pertur-
bative expansion near the fixed point. This is the spirit of the
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e expansion in critical phenomena which, when combined Tp© e\[T2(1—e/2)
with a resummation of the perturbative series via the renor- Hasi(p,0)= - (—)
malization group, has provided a spectacular quantitative and 2(4m)2~ <2 \2]| T'(2—e)
qualitative understanding of critical phenomdgde21—213. 9o\ —el2

While dimensional regularization and the expansion 2(477 T ) Z(E)l 3.3
have been used to study the dimensionally reduced high tem- p?

perature theory insofar as thermodynamic quantities are con-
cerned, i.e., static phenomefi5-17, we emphasize that with { Riemann’s zeta function, which has the following
our focus is to studglynamicsat and near the critical point, propertieq33]:
which is fundamentally different from the studies of static 1 1
phenomena in these references. __ = ; -

As a prelude to the study of the dynamics, we now recon- {o= 2’ lim £(e)= e—1 ML 3.4
sider the scattering amplitude at one-loop level and the self-
energy at two-loop level in 4 e spatial dimensions at high where y=0.57725 ... stands for the Euler-Mascheroni
temperature in the static limit. The one-loop self-energy isconstant.
momentum independent and is absorbed in the definition of Near four space dimensiors-0 we find
the thermal mas$29], which is set to zero at the critical
point. There are two main purposes of this exercise: the first T p
is to quantify the role of the higher Matsubara modes and the Hasi(p,0) =~ 2(4m)2 ﬁ) —2
second to obtain a guide for the infrared running of the cou-
pling constant. There isno polein e and the argument of the logarithm
reveals thafl acts as an ultraviolet cutoff. The reason that
there is no pole in epsilon as—0 is that the poles ire
should be independent of temperature and should be those of
The one-loop contribution in the static limit, i.e., when the the zero temperature theory. However, in dimensional regu-

e—1

log +0(e). (3.9

A. Scattering amplitude

external Matsubara frequencies are zero, is given by larization one-loop integrals have no poles in odd space-time
dimensiong 34]. On the other hand, near three space dimen-
T ddq sionse—1 we find
H(p.0=5 > f .
nez ) (4m) T 1p T 1
1 HaSI(pao) 16p|:l 772 Tln/.L +(4’7T)2(6_1),

[+ a2+ P2+ (2T 9
where the pole term a¢=1 corresponds to the usual cou-
pling constant renormalization. This divergent term is tem-
d=4-¢ (3.1 perature independent, as expected; th€)lig reminiscent of
an upper momentum cutoff for the high temperature limit.

In the high temperature limit the nonzero Matsubara termérhe first term is precisely what we obtained in E2.8) by

give subdominant contributions. This property can be argueceiettlng the |n.ternaI.Matsubara frequency to zero, i.e., thg re-
in different ways. For example, the:0 terms in Eq.(3.1) sult of the dimensionally reduced theory. After subtracting

can be interpreted as Feynman diagramd#n4— e dimen- the pole.near three sp.ace.dimensions, the first term gives the
sions with mass (2T1)2. Such contributions are negligible leading |_nfrar¢d contnbgtlon in the limit/p>1, whereas
the logarithm is subleading.
forvejgn?lf’;z}m h temperaturesee Appendix A This expression coincides with that given in R¢f6,17).
' 9 P PP In these references the four-dimensional high temperature
static theory was studied and a systematic analysis of Feyn-
T>p,s man diagrams in the dimensionally reduced the@hree
H(p,0) = Hasi(p,0) dimensiong was performed. Thee—1 in our expressions
, should be mapped ontaeZor comparison with the results in
p
+ O( _IT2>

these references.
whereH ,si(p,) stands for thé =0 contribution to the sum

_T(1+e2)((2+¢€) p?
2|1 ' For e>0 we can neglect the terms of the forif/p) € in
(3.1) plus the dominant high temperature limit of the sum

.
T 1927T4+ €l2 T2

Eqg. (3.3 in the limit T/p>1. And for 1> >0 we find that
(320 the static scattering amplitude at a symmetric péth®) in
the limit in which the temperature is much larger than the
external momentum scales is given by

over thel#0 terms, which is obtained by setting=0. F(“)(p:ﬁ 0)=— Ao, T)=—A| 1— 3 AT ® _
Separating thé=0 mode and setting=0 in the contribu- P e (4m¥2 €
tion from the sum ovet+0, we find (3.7)
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The factorT arising from the Matsubara sum is such tRhat €
has dimensions of (momemtufrgo that in 5- € space time g* =3 (3.10
dimensionsA T~ € is dimensionlessThus, introducing the
dimensionless renormalized coupling
Hence fore<1 the fixed point theory can be studied pertur-
Netr(p, T)Tp™€ batively. This of course is the basis of tleexpansion in

9rlm) = (477)(1/2 , d=4-e, (3.8 critical phenomenf4,21-25 and will be the important point
upon which our analysis will hinge.
we find
a9 ) 3 B. Two-loop self-energy
'Bg:'uﬂ N T: BEARC IR 3.9 As mentioned above, the one-loop contribution to the

self-energy is momentum independent and absorbed into the
Therefore this effective coupling in the infrared limit is definition of the thermal mass. The two-loop contribution in

driven to a nontrivial fixed point the static limit ind spatial dimensions is given by
|
2T2 dd dd 1
3 @)(k,0)= 2 2 f pd 5 . . (3.11
2m® 2m)* [a®+ o{ ][ P?+ Rl (p+a+K)+ (0 + 0p)®]

We now introduce two Feynman parameters, separaté the g k2
=m=0 term from the Matsubara sums, and tdkep in the r'(k,00=k? 1— ol =
sums withl,m#0, to find

+0(g%®. (3.1

The infrared behavior is obtained by resumming the pertur-

_ 2
g L(-1+9T*1-¢2) 2| K bative series via the renormalization grdup21—25 which

3 @)(k,0 =

I'(3—3€/2) u? leads to the scaling form of the two-point function in the
)—e infrared limit,
+9°T? —| C(d) (3.12 Ir®(k)eck? 7, (3.17
with C(d) depending only on the dimensionality. The secondith
term proportional tol*~2¢ does not depend on the momen- x2 2
tum and is therefore canceled by the mass counterterm that = g_: —+0O(€%). (3.18
. ! 7776 " 5a
defines the critical theory. Therefore fer-0 but small we
fi . . .
ind This is the anomalous dimension to lowest ordee {@,21—
r®(k,0)=p*~[2(k,0)~%(0,0] 25}
2 2 k2
=Kk2 1+ g_ — g_| (_2 + 0(93) C. The strategy
12¢ 12 The analysis of the static case above has highlighted sev-

(3.13 eral important features of the infrared behavior near the criti-
' cal point, which determine the strategy for studying the dy-
We introduce the wave function renormalization in dimen-namical case(a) The infrared behavior in the limit when

sional regularization by the usual relation >p with p the typical momentum of the Feynman diagram is
determined by the dimensionally reduced theory obtained by
Ir'&(k,0=2,®(p,0) (3.14  setting theinternal Matsubara frequencies to zefb) Naive
perturbation theory breaks down in three space dimensions
and choose because the dimensionless coupling & w with u the ex-

ternal momentum scale in the Feynman diagram, while a
large N or renormalization group resummation suggests a
nontrivial infrared stable fixed point. The coupling at this
fixed point is of O(1). (c) Just as in critical phenomena the
Therefore the renormalized two-point function in the static,perturbative expansion can be systematically controlled in an
high temperature limit is given by € expansion arountbur spatial dimensionsorresponding to

gz
Zy=1- 15 +(’)(g3) (3.15
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a theory dimensionally reduced from—% space time di- excitations at and near the critical point. Of particular interest
mensions. The effective dimensionless coupling of the diis the dispersion relation as well as the damping rates of
mensionally reduced theo§our dimensionalis AT, which  these excitations. This information is contained in the two-
is marginal. This combination is independent/iof-this can  point functionI'?)(p,w,) which is the inverse propagator,
be seen by restoring powers dh —#\, T—T/A—so that  gnaiviically continued tas,— —iw+0". The region of in-

the low energy, dimensionally reduced theory is classical. Nerest isp,w<T and if the theory igslightly) away from the
4— e spatial dimensions the effective dimensionless COUp“n%riticaI pointM(T)<T as well. In principle for a fixeds, or

g=ATu € is driven to the infrared stable Wilson-Fischer _ .
fixed point of O(e) by the renormalization group trajecto- fixed external Matsubara frequencies in the external legs of

ries. Thus, the strategy to follow becomes clear: we will now™P0int functions, one must perform the sum over the inter-
study the dynamics by including the contribution from thenal Matsubara frequencies first and then take the analytic
external Matsubara frequency, focusing on the infrared becontinuation. However, as was shown above in detail in the
havior for p,w<<T near the critical point in a systematic  static case, the largest infrared singular contribution arises
expansion arountbur spatial dimensions. from setting the internal Matsubara frequencies to zero. That
We note that the theory in-5e dimensions is formally this is also the case in the dynamics can be seen by consid-
nonrenormalizable in the ultraviolet; however, this is irrel- ering a diagram wittm internal lines, rerouting the external
evant for the infrared which is the region of interest here.\jatsubara frequency through one of the lines. All of the
The analysis provided above in the lineit-0 clearly shows  |ines are equivalent since rerouting the external Matsubara
that near five space-time dimensions there are no poles ifaqyency corresponds to a shift in one of the sums. The
dimensional regularization in one-loop diagrams as eXpeCtegtherm—l lines contain propagators in which the internal
[31]. The potential poles are replaced byTn(The low en- Matsubara frequency acts as a mas©@2IT). These are

ergy theory must be understood with a cutoff@fT) and the superheavy modes in the description of Refs.

the dimensionally regularized integrals in five space-time di- L . . . .
mensions clearly display this cutoff in the arguments of Ioga-[16’17’31'32 The contribution that is dominant in the infra-

rithms. The long-wavelength/T<1 and thee— 0 limits do red is from the region of loop momgntaT W.hiCh Is largest
not commute: keeping the subleading terms in the high temWhen the mass of the propagator Is zero, i.e., the zero _Ma'g-
perature limit and taking— O results in poles ire actually ~ subara frequency. Keeping nonzero Matsubara frequencies in
translating into logarithms of the cutdft On the other hand, &Ny Of them—1 legs will lead to subleading contributions in
keepinge>0 and small, thd/— o limit can be taken and the limit p,o<T.
the subleading high temperature corrections vanish. Clearly, Once the internal Matsubara frequencies have been set to
it is the latter limit that has physical relevance, since evenzero we can analytically continue the external Matsubara fre-
tually we are interested in studying the infrared behavior ofquency to a continuous Euclidean variablg—s to obtain
the physical theory in three space dimensions. Hence in whalne Euclidean two-point function. The dispersion relation and
follows we consider the long-wavelength limit fer>0 but ~ damping rate are obtained by further analytical continuation
small and approach the physical dimensionality1 ina s——iw+0".
consistente expansion improved via the renormalization As anticipated in Sec(ll), because Euclidean time is
group. This is the strategy in classical critical phenomena asompactified and plays a different role from the spatial di-
well, where fore>0 and small the ultraviolet cutoff can be mensions, we must consider the anisotropic Lagrangian den-
taken to infinity. sity (2.4), which includes the velocity of light multiplying

At this stage it is important to highlight the difference the derivatives with respect to Euclidean time. If this veloc-
between the main focus of this work and that in Refs.jty of light is simply a constant it can be reabsorbed into a
[16,17. The work of Refs[16,17 studies thestaticlimit of  yjyja| redefinition of the time variable. However, as it will
the dimensionally reduced theory nelairee spatial dimen-  phacome clear below, this velocity of light acquires a non-
sions arising from the high temperature limit of a four-yia| renormalization as a consequence of the anisotropy
dimensional Euclidean theory compactified in the time d'recbetvveen space and time directions at finite temperature and

:'r?ni. In.tcoEtrast, vLeTherE_f(r)]cus on sr:udylng gwtlra]\mlcsr: . will run with the renormalization group. Thus, the Euclidean
e limit whenp,w<T, which as emphasized by eanays'spropagator is generalized to

above will be studied in am expansion in a dimensionally
reduced theory nedour space dimensions.

The limit of physical interese—1 must be studied by
improving the perturbative expansion via the renormalization Gk, wy)= _
group[4,21-23 and eventually by other nonperturbative re- T2t wZlvd
summation methods, such as Paajgproximants or Borel
resummation, that will extend the regime of validity of the

expansior| 23]. A. The scattering amplitude

4.9

We begin by studying the scattering amplitude, now as a
function of external momenta and frequencies. The one-loop
We now turn to the dynamics. Our main goal is to studycontribution is determined by the functidt(p,s) given by
the feasibility of a quasiparticle description of low energy Eq. (2.7), which for p,s<T is given by(see Appendix A

IV. DYNAMICS NEAR THE CRITICAL POINT
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> fore, the expression above must be understood in the sense
T>p.s F(1+el2)g(2+ ’ e o
H(p,s) = Has(p,S)— (1+€/2){(2+e) that (i) T>s,p with fixed e>0 and(ii) e<1, and the result-
p. asilPs 4+ €l2T1+€ . . .
192777 €T ing expressions have a Laurent expansion for small
2 2 27,2
x| p?+ S—Z(l— ell1+0 P :_2/00) ], B. The self-energy at two loops
Uo

Neglecting the contribution from the nonzero Matsubara
4.2 frequencies which will be absorbed by the mass counterterm
in the definition of the critical temperatufer M?(T) away
whereHsi(p,s) stands for thé =0 contribution to the sum  from the critical point and also neglecting terms that vanish
(2.7) plus the dominant high temperature limit of the sumin the limit T>p, s, the dominant contribution in the infrared

over thel #0 terms, which is obtained by settimgs=0, to the two-loop self-energy is
T ddq 1 \2T2 ddq
H ( pvs) = _f > > E S)= Y j
! 2) 2m)® 9} (q+p)2+s?vi] (P9)="5 (2m)d
[(1+el2)¢(e d 1
4—-5———5:—%§£—2T1*f, (4.3 J
8" %€ (2m)9 q?k?[(q+k+p)?+s?/v3]

This integral is computed in Appendix A with the result RSTZ I'2(d/2—1)T'(3—d)

F(el2-1) (2 )\ % T 6(4m) T(d—2)
Hasi(P,S)=— ———5T| 5+
2(4m) Vo 1 21d-3
) XJ dx(1-x)973x "9 xp?+ —
XF(El——'Z—E'p—> 0 Vo
212272 (47
T(1+el2){(e)_, While this expression can be written in terms of hypergeo-
Tz, 5 (4.4 metric functions, it is more convenient to expand itimith
™€ the result that
where F(a,b;c;z) stands for the hypergeometric function. 2 g [p? 2 9 2
For e>0 andp,s/vy<T we can neglect the second term, I'®(p,s)=p2+ — gmip __6p_|n L
since it is proportional ta™* ~¢<T(p?+s%/v3) ~ <2 We note v Be |2 €ypd 2 |42
that the infrared dominant contribution can be written in the ) )
form Tp~ <F(s?/v?p?) the factorT thus combines with the s S 00 .2 3
couplingX to give the effective coupling of dimensiqef in —Zv—gln 0202 +0(g°e.9%.g°) (4.9

d=4- e spatial dimensions.
For >0 but small and neglecting the second term, Eqwith g(u) given by Eq.(4.6).
(4.4) can be expanded ig, leading to

5 C. Renormalization
2 (1),

- n

€ vop?

s+ pzvg

2,2
K Uo

)\oHasi(p,S)I%ﬂ)

The forms of the two- and four-point functions immedi-
ately suggest a renormalization scheme akin to the familiar
one used in critical phenomenal-23,23 with one impor-

2 2
+ i In 25 +Indm+2—y+0(e) tant difference we see from Eq(4.8) that the velopity of
vep? \vou? light v must also be renormalized. The wave function renor-
45 malization is introduced as usual via
(2) = (2)

where we introduced the dimensionless bare coupling IR (p,s,vr) =Z4"(p,s,vo). (4.9

NeT 1€ The renormalized mass as a function of temperature is de-

g(p)= O_'LLW (4.6) fined as
(4m)9?

r'#(0,00=M3(T). (4.10
We remark that one cannot take—0 in this expression

since in this limit the pole is actually canceled by the secondrhis definition, however, defines the inverse susceptibility or
term in Eq.(4.4) above. As emphasized above, this expres-correlation length, rather than the pole mass; the critical
sion must be understood fa>0 but small so that the con- theory is defined byM?(T)=0. Coupling constant and ve-
tributions of the form [/s,T/p) ¢—0 for T>s,p. There- locity of light renormalization are achieved by
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)\Rzziz)\)\oy the internal loop freque_ncies as well as one power qf the
coupling constank ; for dimensional reasons the dimension-
less coupling is obtained by multiplying by €.

4 _p _ —
TR pi=Pi, s=0)=—\g, (411 The velocity of lightv always enters in the fors/v since
this is the form that enters in the propagators and the renor-
2_ 2% 41 malization conditions above.
UR_U°Z¢,' (4.12

o . . A. The critical point
The renormalization conditions that determine the constants

Z4.Z\,Z, are The baren-point functions are independent of the renor-
malization scalex, and this independence leads to the renor-
ﬁF(RZ) malization group equationg@ve now suppress the subscript
o7 =1, R, understanding that all quantities are renormalized
p

d Jd N

p2:#2‘ 32/U§:#2 p

are 1
2 T2 s S s
95" Ipeop2, sn2-u2 VR xF(N)(pl,f;pz,f; . ,pN;;N:g,M> =0 (59
I(p=P;; s=0)=—\g. (413 with
Consistently with thes expansion, we choose the renormal- Jg
ization constantsZ,,Z,,Z, in the minimal subtraction Bg:’“ﬁ : (5.2
scheme to lowest order, since keeping higher powers of the Ao T.vg
coupling or e results in higher order corrections in thke
expansion. B, - v 5.3
To lowest order, one loop for the four-point function and v Mé’,u N ’ ’
two loops for the two-point function, we find from the results oo
(4.5 and (4.9 dinZ,
Y=n : (5.9
3g(w) 39%(w) N N
Z\=1- =0r=0(u)— ) 0:10

€
To lowest order we find

ART ™€ g By=— €9+ 392+ O(g°,9%), (5.9
i ST e o g

1[2g? s s
g2 ﬂvzi 36 - U+O(g 1g 6)1 (56)
Z,=1- —. (4.15
3e g2
=%t 0(g%,g%). (5.7)

Thus, the renormalized two-point function reads

5 2 > 2 > While we can write down the general solution of the RG
(2) T P A S_9 s tion(5.1) for an arbitraryN-point function, our f i
r®(p,s)=p? 1 In + 1 In equation(5.1) for an arbitraryN-point function, our focus is
127\ w2 | vg| 3€ \vdu? to undfzzr)stand the quasiparticle structure, which is obtained
from I''<).
+0(g°,9%). (4.16 SinceI'® has dimension 2, it follows that
V. THE RENORMALIZATION GROUP r@ p,i,g,ﬂ)zﬂzq)(ﬂ,i,g ; 5.9
Before we embark on the resummation program via the v movR
renormalization group, it is important to highlight two im- therefore
portant features.
The contributions that are dominant in the infrared in the @) ot e's _ o S L
limit T>p,s correspond to the terms with internal Matsubara o ep, g =" p.—gue . (5.9

frequencies equal to zero; the nonzero Matsubara frequencies
give subleading contributions fer>0. This in turn results in  This scaling property then leads to
the dependence on temperature being solely through the ef-
fective couplingg=ATu ™ €. This can be seen from the fact
that each loop has a factdrfrom the Matsubara sum over

t

J e's
e‘p,T,g,,u)zo, (5.10

J
—tpu—-2

re
ot u
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which combined with the RG equatiob.1) leads to the
following equation that determines the scaling properties of

the two-point function:

a+ a+ i 2) ([T ¢t es =0
3 Bg@ Bogr = (v=2) ep.— 9| =0.
(5.11
The solution of this equation is standd2iL—23:
t
I“Z)(etp,ﬁ,g,n)
1%
N PRV e I )
el it 2P (p,v(t),g(t),u (5.12
with
ag(t
Y py@v), 0(0)=ga(w)
dv(t)
o - Pu(0,9D), v(0)=ve(k),
y(t)=y(g(t),v(1)). (5.13

S
(2) et
r (P,U,g,,u)

_ =772

S
—t —to(1=2)t ~%
Pe ,—U(O)e e N TAN

(5.19

and finally writing P= ue' and using the propert(s.8) we
find the scaling form in the infrared limit

@p S bl
r (P,;,Q,M):M; ®(19)l
S 2
= — (5.20
v(p)put*P?

The solution of the RG equation clearly shows that the two-
point function in the infrared limit is acalingfunction of the
ratio s/v () u'~?p? highlighting the role of the new dynami-
cal exponentgz given by Eq.(5.17) with 7, to lowest order
given by Eq.(5.17).

The emergence of the new dynamical exponens a
consequence of the anisotropic renormalization between mo-
mentum and frequency, or space and time, manifest in the
renormalization of the speed of light. This novel phenom-
enon can be traced back to the different role played by time

As t— —c, i.e., the momentum and frequency are scaledcompactifiedl and space in the Euclidean formulation at fi-

toward the infrared, we see from the R&Function (5.5) that
the coupling is driven to its fixed point

lim g(t)=g*=§+(’)(ez), (5.14
t——x
which in turn implies that
. 62 3
tﬂr[lwy(t)= n=gz+0(€), (5.19
lim v(t)=v(0) e VY, (5.16

t— —oo

where we introduced the nedlynamicalcritical exponent
1 2
z=1+5(m=m+0(€),

_2g*?  2e
T3¢ 27

O(€?). (5.17

Therefore, in the asymptotic infrared limit we find that

Se(1fz)t
v(0)

e's
[‘(2)( etpaT-Q:M

:et(z_ﬂ)r(2)< p, ,g*,/_L)_
(5.18

It is convenient to redefinpe'=P, sé=S, to find

nite temperature. A similar anisotropic rescaling emerges in a
different context, a Heisenberg ferromagnet with correlated
impurities[35] with similar renormalization group results.
While the formal solution does not yield the functidn
we can find it by matching to the lowest order perturbative
expansion4.16) when the coupling is at the nontrivial fixed
point. From the form of the perturbative renormalized two-
point function given by Eq(4.16 and assuming the expo-
nentiation of the leading logarithms via the renormalization
group near the nontrivial fixed point,

2
p S S
r'®p,s:g*)=p? 1- In(— +—=|1- In(—”
kR (P,S;g%)=p 7in 2 min| o
S 2_77[
~p? T+ | — w™, (5.21)
UR

which can immediately be written in the scaling form

Mt

I@(p.sig*)~p* "u”| 1+

2
S
1-z z)
v(p)pp

714 S ) (5.2
1= —= = - . .
7 2 m—n

Clearly, this form coincides with the scaling solution of the
renormalization group and the perturbative expansion in the
regime in which it is valid. We note, however, that in the
computation ofz, we have neglected contributions to the
renormalization of the velocity of O(g®/€), which would

085038-13



D. BOYANOVSKY AND H. J. de VEGA

appear at next order and would lead to@f?) contribution
to #;, which is of the same order ag in z Thus, consis-
tently we must neglect the contribution gfto the dynamical
exponentz, which to lowest order is therefore

n

z=1+ 5

+O(2)=1+ 217+0(62). (5.23

Quasiparticles and critical slowing down

PHYSICAL REVIEW D65 085038

r— ‘Dl(m*)v(ﬂ)ﬂl_zpzz wp®(w™)
p q)l,?(m*) _’w*@&(ﬁr*).

(5.3)

The imaginary part®,(w) must be proportional to the
anomalous dimensions and hence perturbatively small in the
e expansion(this will be seen explicitly below to lowest
ordep.

The definite values fots*, ®g(w*), andd,(w*) must

The quasiparticle structure of the theory is obtained frompe found by an explicit calculation. However, the above qua-

the Green's function G (p,0)=T'® (p,s=—iw

siparticle properties, such as the position of the pole, group

+0%,g*). In particular, the dispersion relation and the width velocity, residue, and width, aneniversalin the sense that
of the quasiparticle are obtained from the real and imaginaryhey depend only on the fixed point theory. For a positive

parts, respectively.

dynamical exponert the above analysis reveals a vanishing

While the general solution of the RG equation does nogroup velocity and width for long-wavelength quasiparticles

determine the scaling functioi in Eq. (5.20, the fact that
it is only a function of the scaling rati@ allows us to ex-

at the critical point.
Furthermore, the expression for the width given by Eq.

tract the quasiparticle structure. The analytic continuatior{5-31 displays not only the phenomenon of critical slowing

s——iw+0" leads to the analytic continuation of the scal-

ing variabled— —w?—i sgn(w)0™ with

(O]

w= 1-z.2"
v(pm)pp

(5.29

Writing the scaling functiond analytically continued in
terms of the real and imaginary part®(9=—w?
—isgn@)0")=®(w)+id,(w), the position of the qua-
siparticle pole corresponds to the valuewffor which the

down, i.e., the width of the quasiparticle vanishes in the
long-wavelength limit, but also the validity of the quasipar-
ticle picture, sincd’,/w,<1 in the e expansion.

Threshold singularitiesWhile we have assumed above
that the real part of the scaling function vanishes linearly at
the quasipatrticle pole, this need not be the general situation.
It is possible that the real part vanishes with an anomalous
power law, i.e.,

@24 ...

DR(Q)~|Q—Q* |1, .
(5.32

x=xMe+x

real part vanishes. We call this dimensionless real humber
w*; hence it is clear that the dispersion relation for the quain this case a quasiparticle width cannot be defined as the

siparticles obeys

(5.29

Furthermore, assuming thdtg vanishes linearly ats* we

wp=w*v(u)u' P

can write the Green'’s function near the position of the pole irb

the form

1
CWApIp]?T (m—wt ) D(w ) +id (w*)
(5.26

G(w

)

Alternatively, we can write the RG improved propagator near

the quasiparticle pole in the Breit-Wigner form

Zp
Gsw(w,p)~m

(5.27

residue will either vanish or diverge depending on the sign of
x- It is also possible thatb,({}) also vanishes with an
anomalous power & * . We refer to these cases as threshold
singularities and we will find below an example of this case.
Another example of this situation has been found in dense
CD as a result of the breakdown of Fermi liquid theory in
the normal phasg36]. Clearly, only a detailed calculation of
the scaling functions can reveal whether the real part of the
scaling function vanishes linearly or with an anomalous
power law atQ)*. The set of quasiparticle properties given
above(5.28—(5.3)) is valid only provided the real part van-
isheslinearly.

We can go further and find the explicit form of the scaling
function by focusing on the renormalization group improved
propagator obtained in lowest order in thexpansion given

by Eg. (5.22. The analytic continuation to real frequencies
of the RG improved two-point function to lowest order given
by Eqg.(5.22 leads to

with the dispersion relation, residue at the quasiparticle pole,

and quasiparticle width given by

wp=w*v(u) ', (5.28

vg=(2)w*v(p)u' Pt (5.29
1-z42

v(p)pup (530

P WA plp]? TP N(w)

G H(p,w)=p* "u7 1-

X

(5.33

1+i %sgr(w))

where we have approximated casf/2)~1, sin@n/2)

~ /2 to lowest order.
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From this expression we see that the dispersion relatiors adjusted consistently in perturbation theory to fulfill this
wp, group velocityvy(p), width I'(p), and quasiparticle condition. However, to relate the mass to the departure away
residuez;, are of the form given by Eq$5.28—(5.31) with from the critical temperature it is more convenient to rear-

=1, and with the following explicit expressions to lead- range the perturbative expansion in a manner that explicitly

ing order in thee expansion: displays the departure frof.. This is achieved as follows.
Consider the one-loop contribution to the self-energy in the
|wpl =v(p)u*~?p?, (5.39  masslessheory ind spatial dimensions:
7 1- z z— 1, 5.3 1
vg(P)=2zv(p)p (539 sW—_ 2 2 f = —\T4 1A(d) +z.tt.
(2m g
mn
P(p)= " v ()t =" |y, (5.3 (539
1 where A(d) depends only on the spatial dimensionality and

Z,= _U(M)Ml 2p71, (537 Ztt stands for zero temperature terms. It is convenient to
group this contribution with the bare mass term in the La-

. . grangian in the form
with z given by Eq.(5.23 above.

Several important features of these expressions must be

highlighted. m2(T) = —m§—2(1)=)\Td‘1A(d)—m§(0)
The dispersion relatios.25 features aranomalous di- m2 -1
mensiongiven by the dynamical exponemt=1+ 7,/2=1 ~a(T—-T,) for TNTC:[ R }
+€/27. The product (1) w2 is a renormalization group NA(d)
invariant as can be seen from E@5.3) and(5.6) evaluated (5.39

at the fixed point. Thus, all of the above quantities that de-
scribe the physical quasiparticle properties are manifestl
renormalization group invariant.

The group velocity (5.35 vanishes in the long-
wavelength limit as a power law completely determined by!
the dynamical anomalous dimensian This feature high-
lights the collective aspects of the long-wavelength excita-

Yhere the zero temperature contributidenoted by z.t.t. in
Eq. (5.39] have been absorbed in&(0). Wereorganize the
perturbative expansion by rewriting the Euclidean Lagrang-
ian in the form

tions. 1(9,)2 _— 5 AR,
Critical slowing downis explicitly manifest in the width Le=5—5 13 (V‘I’) +mA(T O+ 7@

I'(p) sincel'(p)—0 asp—0. Furthermore, we also empha- vo

size the validity of the quasiparticle picture, the ratio 1 S\

I'(p)/wy~mn/2~O(e)<1. Thus, the quasiparticles are + §5m2(T)‘1>2+ F‘P“ (5.40

narrow in the sense that their width is much smaller than the

position of the pole. Even considering=1, corresponding

to dynamical critical phenomena in three spatial dimensiongvhere now the counterter®im?®(T) is simply the one-loop

I'y/w,~0.1. tadpole diagram evaluated for zero mass given by(&88),
Thus, we see that the renormalization group resummatiof is of O(A) and is included in the perturbative expansion

has led to a consistent quasiparticle picture, but in terms of gonsistently.

dispersion relation that features an anomalous dimension and To one-loop order the two-point function is now given by

a group velocity that vanishes in the long-wavelength limit.

Obviously these features of the quasiparticles cannot be ex- 2

tracted from a naive perturbative expansion. I'®(p,s)=p?+ S_Z +m¥(T)-3s,
Vo
B. Away from the critical point: T=T,
Having studied the quasiparticle aspects at the critical Ss=[2—6m*(T)]
point, we now turn our attention to their study slightly away d )
from the critical point. The critical region of interest |i$ _ E J’ dq m*(T)
—T.|<T,. Critical behavior in the broken symmetry phase 2 (24r)¢ (q2+w§1)[q2+wr2n+ m4(T)]
near the critical point withf <T will be studied elsewhere
with particular attention to the critical dynamics of Gold- (5.41
stone bosons. In this article we restrict our attention to the
normal phase near the critical point. The integral above is of the typical form are those studied in

In the Lagrangian density2.4) the termM?(T) is the the previous sectionfsee Eq.(3.3)]. Separating then=0
exactmass(rather than the exact inverse susceptibjlie-  Matsubara contribution from th@+ 0 for which we can set
termined by the conditiof2.5) and the counterterm?(T)  m?(T)x(T—T)~0 for T—T.<T,, we obtain
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we will study thep=0 case bufl # T, a relevant quantity is

f ddq m(T) minating to discuss the static aspects first. In particular, since
m the inverse susceptibility ~1(T), which is defined as

(2m) % (4% + 02)[ Q2+ wi+mA(T)]

T(el2)T(1- €l2)

—m2
™) (4m)921 (d/2)

m~<(T)+C(d)T™¢|.

x HT)=M*T)=T3(p=0; s=0), (5.47)

(5.42 which near the critical point and the nontrivial fixed pairft
Again, fore>0 we can neglect the second term in the squardiven by Eq.(5.14 is given by
brackets in the limiffT>m(T). Expanding ine to obtain the
lowest order contribution consistently in teeexpansion, we

i -poi i - : * [ mi(T)
obtain the two-point function to one-loop order: M2(T~Tc)~m§(T) 14 g?ln R .
M
SZ
I®(p,s)~p*+—
’o ~[mg(T)J e (5.48
) g(p)  g(w) [m*T)
+mi(T)| 1- + 2 In 2 where we anticipated an exponentiation of the leading loga-

rithms via the renormalization group, which will be borne
(5.43 out by the renormalization group analysis below. Recalling

_ _ _ thatm?(T)<|T—T,| by Eq.(5.39, we find
The renormalized mass parametes(T) is defined by

20T — 2 €
Z,,sm (T) Zm mR(T) (5-44> X_l(TNTc)oclT_TcPi ,y:1+€_|_. .. (5_49)
andZ,, is fixed by the renormalization condition

F®(p=0, s=0, mﬁz 2= 2, (5.45 ;’2]('9 critical exponenty is seen to be the correct ofi,21

Just as in the case of the theory at the critical point studied
above, we now study the dynamics of the theory inen
expansion and implement a resummation of the leading in-
frared divergences via the renormalization group.

Since Z, receives corrections ab(g?) we chooseZ,, to
lowest order in thes expansion to be

g(p) )
=1+ —+ . . . - .
Zm=1 € Olg”.ge) (5.46 2. Dynamics away from the critical point
As argued above the leading infrared behavior is obtained
by setting the internal Matsubara frequencies to zero in the
Before we embark on a full discussion of the dynamicstwo-loop self-energy. Ind=4—¢ spatial dimensions, the
away from the critical point, it proves convenient and illu- self-energy at two loops is

1. Static aspects

@ (p;s;m(T))=

xZTzf dq [ d%
6 J @2m) (2m)

1
X . 5.5
[6%+m*(T)I[k?*+ m*(T)I[(a+k+p)®+ s%/vg+m?(T)] %%
The loop integrals are evaluated by introducing two Feynman parameters leading to
1 1
3@(p;s;m(T))=g* ()T (— 1+ e)MZEf de dy[x(1—x)]9> ty2
0 0
32 1—€
X X(1=x)y(1=y)p*+ (1= y)X(1=x)m*(T)+ymA(T) +yx—| . (5.51)
Uo
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It is convenient to separate the static contribution from thgead to an®(€?) correction to the critical exponent for the

dynamical part by writing correlation lengthinverse susceptibility
5 The renormalization conditions for the two-point function
S@(p;s;m(T)=3@(p;0;m(T))+3@(p;s;m(T)), away from the critical point are now summarized as follows:
3@ (p;s;m(T)) I'&(p,s,vr:Mr(T)=Z,I@(p,s,00;m(T)),
=3@(p;s;m(T))— 2@ (p;0;m(T)). y
2_. 270V 2 — 2
(552 UR_UOZ_QS’ Z¢m (T)—mR(T)Zm,

The static contributior®,(®)(p;0:m(T)) leads to wave func- T
tion renormalization, a renormalization of the mass, and R =1,
O(€?) corrections to the static anomalous dimensions, which ap?

. . . . p2=pu2, Szlvé=,u.2
will be neglected to leading order in theexpansion. The

second, dynamical contribution is obtained consistently in an

; . - . (2)
e expansion: the regions of the integrals in the Feynman IR :i (5.55
parameters that lead to inverse powerg @f an e expansion s | ,_ 212 2 v"F}' '
arex~0,1 andy~0. The contributions of these regions can prmmt SHvgm
be isolated by partial integration, and after some straightfor- @ ) ) )
ward algebra we find IR’ (p=0, s=0; mg(T)=pu)=pus (5.56
2( ) 5 &2 S m2(T) along with the renormalization conditions on the four point
(2)(p ssm(T))= Kip_z> 2 7 function (4.11). To leading order in thes expansion the
v: g u? renormalization constan®, ,Z,, andZ,, are given by Egs.
X , (4.14), (4.15, and(5.46), respectively.
2| m2(T)+ s 1+ S Thus, we find the renormalized two-point function at two-
v(2) gmz(T) loop order and to leading order in the expansion(since
g*~e):
+O(e%€). (5.53
g(p) [ MR(T)
Thus, putting together the one-loop contribution found pre- T'&(p;s;mg(T))=p?+m?(T)| 1+ —In : 5
viously and the two-loop contribution found above, the two- H
point function at zero spatial momentum but away from the 2 2
critical point is found to be 5_2 19 (1) " mg(T)
vR 36 ILLZ
2
I'®(p;s;m(T))=p? 1 gl(zu) +0(g?€%) | + P | , s?
UO - 36 mR(T) + _2
2 vo
m=(T
(| 1- g(w) , 9(w) [ mAT) &2
€ 2 u? XIn| 1+ ———| +0(g% g%)
voMR(T)
2 2 2 2
g°(u) ES__ s—| m*(T) (5.5
6e |ey2 2 w?
Sincemé(T) has dimension it is convenient to introduce the
2 2 dimensionless quantity
-2 m2(T)+—2 n 1+T
Vo voM=(T) 2
+0(g%9%), (5.54 m= (5.58

where we have neglected logarithmic corrections that willang the corresponding renormalization group beta function
exponentiate to anomalous dimensions 6f(e?) for

momentum-dependent terms. We have displayed only the Im2 -
contribution that will be canceled by wave function renor- Bm=u =(Ym—2) m?, (5.59
malization just as in the critical case. Iu Mo T:Ao
Obviously them?(T)=0 limit coincides with the two-
point function at the critical poin(4.8) to leading order Ym=9+0(g%,ge), (5.60

O(e). In the above expression we have not included the
two-loop contribution to the statis=0 part, since it will where we have used Eq&.44) and(5.46.
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The renormalization group equation for tNepoint func- s pl2-7
tion away from the critical point is now given by F(2)< P, —,g,,u) =,u2[—} —P¢|,
v K v(u)ut ?P?
d d d g N V()
— 4+ Byg—+B,—+ B— — = z 7m
M&,u, Pq a9 Po dv P om2 2 Y = i w (5.67)
M ,u,2
XI‘(N) Sl. SZ. .SN. - =0 56
P1 P2y PN TG M | =0, (5.6D 4is therefore identified with theorrelation length(4,21—23
The new ingredient as compared to the critical cdsé) is _ 1 1 €
— . E~|T-T 7" v= —~5+t—5+ . (5689
the dependence om. Following the same steps as for the 2—y~ 2 12
critical case, we now find that the solution of the renormal- m
ization group equation for the two-point function obeys |t js important to note at this stage that the correlation length

¢ is a renormalization group invariant, as can be easily

t checked by using E(q5.58 with the renormalization group

F(2)< e'p, ﬁ,g,m,ﬂ) beta function(5.59.
v To study the limit of zero spatial momentum it is more
o , s _ convenient to rewrite the above scaling solution in the fol-
=eldt2t )]F(z)( p,v(—t)19(t),m2(t),ﬂ lowing form:
(5.62 —(2=7) z
F(z)(P,§,g,M)=M2[£} ) L;pg)_
with m(t) the solution of the differential equati v K v(p)pt*
quation
(5.69
ama(t) _ From the definition of the inverse susceptibilityl?(T)
pramiad S CIORIORUT) (5.63 =x"YT)=I'® (p=0, s=0) we find the known result

[4,21-23,2%
with the initial condition

_ _ 2—7
XM T=Td ™7 y=o——=v(2=n).

— 2(T, Vm
m*(0)= ycxIT—TC(M)I- (5.64 (5.70

Furthermore, the two-point function is a function of two
In the infrared the coupling is driven to the nontrivial fixed renormalization group invariant, dimensionless scaling vari-

point g* = €/3 and ables
2 - ni2-75)
— J— * € mR(Tl/‘L) m
m*(t) —m(0)eln 2, yr=. (5.65 I'®(p,s,m&(T,u))=pu? o V(e,d)
(5.7))
Just as in the solution of the renormalization group equation
at criticality near the fixed point5.18),(5.19, introducing with
pe'=P, sé=S we now find .
s 17 mm 22(y-~2) s 2
()D: - 5 sl
S U(,U«),LL 2 ( ) 1-z
@ p, = M v(p)p
r (P,U,g,,u) (5.72
=el2=n1(2) "
20(y=-2)
S PP mE(T, ) |7 (p ey 5.73
—t “ta(1-2)t K o2 (y=—2)t T2 2 = . :
X| Pe ,U(O)e e 0%, m(0)e!"m Mt u . M "

(5.660 The renormalization condition(5.56 determines that
v(0,0)=1.
Following the analysis of the critical case, and the scaling We can now follow the arguments provided in the previ-
property (5.8) and writing P=ue' we find the following ous subsection for the critical case. Under the analytic con-
scaling form: tinuations®>— — w2 —i sgn(w)0™*:
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w & ishing atT=T,, and the validity of the quasiparticle picture,
p——0%—isgnQ)0*, Q= — (5.79 sincel’,/w,<1 in the e expansion.
v(pm)p At this point we recognize a fundamental difference from
, N , the Wilsonian results of Ref.10]. While in Ref.[10] the
W(p=—0"=isgnQ)07,8)=Wr((2,5)+iV¥,(Q,5). width was found to be proportional {@—T|” up to loga-

(5.79  rithms, we see from Eq5.8]) that the quasiparticle width

The position of the quasiparticle pole in the two-point actually involves the new dynamical anomalous exporent
Green’s function corresponds to the value(bf Q* () for The difference can be traced to the fact that the Wilsonian
which W(Q* (), 8)=0. This condition determines the dis- approach advocated in RgfL0] does not include two-loop

persion relation of the quasiparticle and is given by diagrams_, which are necessary to _rev_eal the anisotropic
renormalization through the renormalization of the speed of

wp,=Q* (Ov(pw)ut 272 (5.76  light and are directly responsible for the new dynamical
anomalous exponeiat
This expression emphasizes that the dispersion relation de- \We emphasize that the above Breit-Wigner form as well

pends orp through the scaling variablé= (p £)?. as the quasiparticle properties rely on the assumption that the
Assuming that near the quasiparticle polg; vanishes real part of the scaling function vanishes linearly near the
linearly, the Green’s function can be approximated by quasiparticle pole. As emphasized before in the critical case
this need not be the general situation, and anomalous power

G(p,w,mg(T)) laws can lead to threshold singularities as discussed above.

2= 1 While the solution of the renormalization group leads to a

_ o (5.77  scaling form of the two-point correlation function, it dost
w?  (Q=QF)TLQ*,8)+iV,(Q*,5) explicitly specify the scaling functiod’. However, we can

~ obtain the function? by matching the leading logarithms to
where W(Q*,8) =0V R(Q,8)/9Q]_o+. Near the quasi- those of the perturbative expressith57) evaluated at the
particle pole we can further write the above expression in théixed point g* =¢/3 to lowest order in thes expansion.

Breit-Wigner form Matching the leading logarithms and assuming their expo-
= nentiation via the renormalization group it is straightforward
Gaw(p, 0, Mg(T))~ — P (5.78 to see that the two-point function is given by
o—optily,

I'@(p,s,m&(T, 1))
with

2 @-I2-v5)
mMg(T, ) m
1-z 2 R 27
~p = S+[1+
wp:Q*(ﬁ)v(M? | (5.79 I pE {6+[1+¢]"7%
(5.82
Zp:\[}{q(ﬂ*)v(ﬂ) (wé)2~ 7, where we have used the lowest order results inetlesxpan-
~ sion:
(5.80
«_€ _q1. € oy 2
_ WV (QF) v(p)ut? Ym= 3 z=1+ 57 n=0(€), (5.83

wnar) & . . -
and kept consistently the loweSi(€) in the exponentiation

w0, W, (0F) of th_e leading logarithms leading to ECﬁ_.SZ). ThL!s, yve

=————«|T-TJ*, (5.8) obtain the lowest order result for the scaling function:
Q*(8)WR(QY)
V(p,8)=5+[1+¢]* % (5.89)
where we have suppressed the dependence on the scaling
variabled in the arguments of the real and imaginary parts toWWe can now obtain an explicit form of the real and imagi-
avoid cluttering of notation. Furthermore, we have made exhary parts of the scaling function that enter into the quasi-
plicit the combination ofstatic and dynamicritical expo-  particle parameters. This is achieved by performing the ana-
nents using the expression given in E§.69 for the static  Iytic continuation(5.74), which leads to
critical exponenty, and the dependence on the momentum is , . N
implicit through the dependence on the scaling variabts WR(Q) W (Q)=6+[1-0%~isgr(Q) 07>
. o : .
0O* as well as the explicit dependence of the real and imagi- =5 |02 12 1+im(z—1)
nary parts.
Again, the imaginary part must be proportional to the Xsgn)0(Q%-1)]. (5.85

anomalous dimensions, and hence perturbatively small in the
€ expansion. Therefore the expression for the wicl81) Forp=0 i.e.,§=0, we see that both the real and imaginary
reveals both critical slowing down, sinfq,~|T—TC|Z” van- parts of the scaling function vanish &* =1 with an
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anomalous power lawproviding an explicit example of the TABLE I. Quasiparticles aT=T,.
case of threshold singularities mentioned above.
For p#0 andT# T, we find a quasiparticle pole at wp* p*
vgoc pzfl
Q*2=1+6YC"D~14(p H%, (5.8  z,x pZtr-2

. . . I o
where we have approximated the anomalous dimension b);p:

its leading order ire usingz= 1+ €/27. From this expression * _
for Q* we obtain the dispersion relation for quasiparticles ;7‘:

7p*
€2/54+ O(€%) (static)
2€/27+ O(€?) (dynamic)
1+ (12)(p— m)~ 1+ 27+ O(€?) (dynamic)

2zv

2

p

PE

m&(T,u)
u?

z

w2=12 2 _

pm v m [ ] (587 temperature breaks down in four space-time dimensions be-
cause of the strong infrared behavior of loop diagrams near
frequency of zero momentum quasiparticles,_o|T We propose an implementation of the renormalization
—Tc|*”. Obviously atT—T, [mg(T)=0] the dispersion re- group to studydynamicalcritical phenomena which hinges
lation coincides with that of the critical case given by Ed. upon two main ingredients.
(5.29. Forp#0, i.e.,6#0, the real part of the scaling func-  The leading infrared behavior near the critical point is

tion vanishes linearly, the Breit-Wigner approximati@78  determined by keeping only the zero Matsubara internal fre-

near the quasiparticle pole is valid, and the relati@29—  quency in the loops. To control the infrared consistently we
(5.81) describe the properties of the quasiparticles. To Iowesg‘mmemem an expansion inin 5— e space-time dimensions.
order in thee expansion we find, using E¢5.23, that Dimensional reduction for long-wavelength phenomena near
. . the critical point results in the perturbative expansion being
v, (QY) _ T (pé) (5.89 in terms ofg(u)<ATu™ € whereu is the scale of external

momenta and frequencies in the diagram. The renormalized
effective coupling is driven to a fixed point in the infrared
For p=0, i.e., §=0, this ratio vanishes andr ;(Q*)«|Q* which is of O(e). Therefore long-wavelength phenomena

— 1|;L);Z 1 divergeS, d|sp|ay|ng the phenomenon of thresholdgcan be studied in perturbation theory around this fixed pOint

singula=rity with a divergent residug, . for e<1. The perturbative expansion is improved by imple-

For p#0 butT—T, (—) this ratio equals that of the menting a renormalization group resummation which reveals
critical case/see Eq.(EC>.36)]. dynamical scaling phenomena with anomalous dimensions.

For T#T., p#0 we finally find the width of the long- Eventually the limit of physical interegt—1 must be stud-

wavelength quasiparticles to be given to lowest order inethe 1€d Py further Borel and/or Padesummations. _
expansion by The second important ingredient is thrisotropicscaling

between space and time. While space is infinite, at finite

QX (HWHQ*) 4 1+(pe)??

7 (pOZ v(w)pl? temperature in the Euclidean formulation the time direction
Ip~ = > . [1+(pé)Z*2 is compactified to the intervdlo,1/T]. We introduce a new

1+(pé) § parameter, the effective speed of light in the medium, which

(5.89 is renormalized and runs with the renormalization transfor-

with the following behavior to lowest order in theexpan- mations. The infrared renormalization of the speed of light
results in a newdynamicalanomalous exponent which deter-

sion:
mines the dispersion relation and all the quasiparticle prop-
Ty p* for p fixed, T—T, erties. Thee expansion combined with the renormalization
o~ ——v(pu)p X , leads t istent iparticle description of long-
P p%¢ for ¢ fixed, p—o0. group leads to a consistent quasiparticle description of long

(5.90 wavelength excitations near the critical point.
The critical exponents, both static and dynamic, are sum-
Thus, critical slowing down emerges in both limits; further- marized for the critical cas€=T, in Table | as well as for
more, the validity of the quasiparticle picture is warranted inT+T_ (Table 1)) but in the symmetric phase with—T, .
the e expansion, sincey=2(z—1)=2€/27+ O(e?)<1.
TABLE Il. Quasiparticles alT=T,.

VI. SUMMARY OF RESULTS

wp [m(T, ) w2122+ [ p? 2]
Critical phenomena, both static and dynamic, in quantuni = nwp(p )#[1+(pé)?]
field theory at finite temperature result in dimensional reduc<£« [ T—T, ™"
tion since momenta and frequencies pre<T and the cor-  m3(T)« I T-T
relation length is¢>1/T. The infrared physics is dominated »= 1/2+ el12+ O(€?) (static)
by the contribution of the zero Matsubara frequency in inter-y, = 2€/27+ O(€?) (dynamic)
nal loops, which in turn results in an effective couplngin = 7 = =1+ (1/2)(n— ) =1+ €l27T+ O(€?) (dynamic)

the perturbative expansion. Naive perturbation theory at high
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TABLE Ill. Critical exponents forO(N). tive) excitations, depend on this new dynamical exponent, as
well as the static exponents.
v= 1/2+(N+2)/4(N+8)e+ (%) (static) Our results are summarized in Tables I-Ill in the previous
n= €2(N+2)/2(N+8)%+ O(€°) (static) section.
= € 2(N+2)/(N+8)*+0O(€?) (dynamic) Two very important aspects emerge from this treatment:
z= 1+e(N+2)/(N+8)*+O(€?) (dynamic) (i) critical slowing down, i.e., the relaxation rate of the qua-

siparticle, vanishes in the long-wavelength limit or at the
critical point with definite anomalous dimensions determined
The new dynamical exponeatis missed by the Wilsonian by the new dynamical exponent and (i) the quasiparticle
approach advocated in R¢10] since two-loop diagrams are picture, i.e., narrow width§ ,<w,, is valid. The group ve-
completely neglected in that approach, and anisotropic resecity of quasiparticles vanishes at the critical point in the
caling of frequency and momenta becomes manifest at twdong-wavelength limit revealing the collective aspects of

loop order and beyond. these excitations. The dynamical exponert1+ e(N
+2)/(N+8)?+ O(€?) describes mew universality clasgor
Critical exponents for O(N) symmetry dynamicalcritical phenomena in quantum field theory.

As mentioned in the introduction these phenomena have
enomenological implications for the chiral phase transition
in the quark-gluon plasma with potential observational con-
sequences if long-wavelength pion fluctuations freeze out at

O(N) case are available in the literaturé,21-23,23, the  {he chiral phase transition. An important aspect revealed by
dynamical critical exponent to lowest order éncan be ob-  i4iq program is that the effective coupling.;Tx ¢ is

tained simply by recognizing that the symmetry factors Coryiyen to the Wilson-Fischer fixed point in the infrared: this
responding to th&(N) theory multiply the two-loop expres- i, iy means that in this limik o;r— 0. This may be impor-
sion for the self-energy by an overall factf)dg. I;rpm theiant in the linear sigma model description of low energy
expression(4.8) we see that the cgefﬂc[ent. /v® I8 @ cD near the critical point and may give rise to interesting
factor 4k times the coefficient ofp~, which immediately phenomenological consequences.

leads to the result In this article we focused our attention on the approach to

At this stage we can generalize our results to the case Offi'h
scalar theory withO(N) symmetry at or slightly above the
critical point. While the static critical exponents for the

4 the critical temperature from above; therefore our results re-
mW=—1. (6.1 garding the dynamical exponentre valid in the symmetric
€ phase. An important question that we are currently address-

) ing [37] is the relaxation of pions slightly beloW,. Since
Since for the O(N) theory 7=€*(N+2)/[2(N+8)’]  the scattering amplitude of piorat zero temperatujevan-
+0(€%), we find to lowest order ire ishes in the long-wavelength limit we expect novel behavior

of critical slowing down for pion fluctuations below the criti-
_ 2(N+2) ) cal temperature. We expect to report on our findings on these
=€ (N+8)2 +0O(€). and other related issues sof87].
While we have provided a quantitative implementation of

In summary, the static and dynamic critical exponents tdhe program ofe expansion with resummation via the renor-

lowest order in thee expansion for theO(N) theory are ~Mmalization group, the physical limie—1 requires higher
given in Table III. order calculations with Borel or Padesummations in much

the same way as for static critical phenomena. We have stud-
ied the dynamical aspects to lowest order in éhexpansion
but clearly a formal proof of the consistency of thexpan-

We have studied the dynamical aspects of long-sion to higher orders, just as in the usual critical phenomena,
wavelength(collective) excitations at and near the critical must be explored. While clearly such programs are beyond
point in scalar quantum field theories at high temperatureghe scope and goals of this article, we here provided the first
After recognizing that naive perturbation theory breaks dowrSteps of a program whose potential phenomenological impli-
at high temperature in the long-wavelength limit, we intro- cations as well as intrinsic interest in finite temperature quan-
duced ane expansion around 5e space-time dimensions tum field theory warrant further study.
combined with the renormalization group at high tempera-
ture to resum the perturbative series. _ ACKNOWLEDGMENTS
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APPENDIX A: ONE-LOOP DIAGRAM AT HIGH T>ps
TEMPERATURE [A(Xp.8)] % = (2aT|I))"*=sgrl)

We derive in this appendix the behavior of the one-loop
diagramH(p,s) contributing to the four-point function for
high temperature¥>p,s. Settingv=1 to avoid cluttering EE—
of notation(the velocity of light is not relevant for the dis- 2[27Tl|
cussion in this sectionwe have, from Eq(2.7), X{(1=x)p2+s1—(2+ e)x]}

+O(|TI|7379). (A5)

€
[27TI|*e

eX

H(p.s)= 5 2 f(277

The sum ovel # 0 then yields, in the high temperature limit,

e 2”1*2 2 27’ T FGJldEA el
[a°+(2aTH][(q+p)*+(27T)(n+1)7] 20mz2 12/ Jo X#O[ 1(X,p,8)]
(A1)
where d=4—€ is the number of spatial dimensions. The T>_P~S (27T T(el2)

denominators in Eq(Al) can be combined using Feynman

2—¢€l2
parameters with the result 2(4)

y {(e) €el(2te)
T 127(27wT)?

ddq 1
277)(* DT A DS

H(p.s)=5 Ef
X[p2—s?(1+2e)]+ O(T 3 9. (AB)

T d
sl
2(4) We see that only the first term in the right-hand side is im-

1 portant for 0<e<<1 and high temperature. This term is the
XIEZ . dx[A(x,p,s)]¥?~? (A2) dominant high temperature limit of the sum of nonzero Mat-

subara modes. We then have

where we integrated over the spatial momenta and

H( )T>PvSH (0.9) I'(1+e€l2)¢(2+ e) 22— )]
p.,s) = asilP»S)— . c (p
A(X,P,S)=X(1=X) (p+5?) + (w +XS5)?, 384" T
p
o;=27Tl, s=27Tn. (A3) 1+O(T)}
We single out now the contribution from tthe=0 mode and  \ynhere
study the behavior of the sum oviet 0 for largeT>p,s.
Let us first evaluate the=0 term in the sumA2): Tu < T(el2—1) |2+ p?| 2
T e MasilPr9)=75 (477)2—6’2( W2
—T| 3 f dX[Ag(x,p,s)] €2
2(4m)2 =<2 Hobepsil O I
27 27 2'p*+s?
=;F < J1x‘5’2dx[(1—x)p2+sz]‘€’2 2e-2
2(477)275/2 2 0 N yv F(1+ 6/2)5(6) (A7)
87T2+e/26
_e 2 2\ —€2
_ Tu T(el2-1) [ s*+p
2 (AmZ P\ w? APPENDIX B: TWO-LOOP DIAGRAM
2 AT HIGH TEMPERATURE
€ € € p
xXF 5’1_5'2_5’ p2+52)' (A4) The renormalized two-point function is given kall

quantities are renormalized belpw

where F(a,b;c;z) stands for the hypergeometric function
[33]. r(p,s)=2z,p2+ 552—2<2>(p s)+O\%) (Bl
We have, for thé+ 0 terms in the high temperature limit, ' ¢ v? '
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where3 (?)(p,s) is the two-loop self-energy. Using the renor- 93@(p,s)
malization conditiong4.13 we find for the wave function Zv:l+v2—2' +O(\3).
and velocity of light renormalization Js p=p, S=pv
(B2)
% @)(p,s)
Zy=1l4+—s— O(\3), The two-loop contribution to the self-enerd@(?(p,s) is
p p=pu, S=pv given by
2 2 4—e€ 4—¢€
S@(p.s) = T > d*"¢q d*" %k 1 (B3

12z ) (2m e (2m)* [0+ ol K2+ ol v [(p+K+ )3+ (0 + 0+ 5)%/v?]

wherew;=2=jT, s=2=7Tn.
We combine the propagators in E®3) using Feynman parameters and integrate over the momenta with the result

)\ZTZI‘(E_]_) XE/Z 1
(2) =
2(p.s) 6(4m)4 e uezf f [1 X+XE(1-§)]>

X(1=x)§(1-¢)
1-X+x&(1-§)

1—€

o, 27T ? 2 2 - 2
p +( ” ) [[XEFTIX(A=E)+(j+1+n)7(1—X)] . (B4)

Using the definition(4.6) for the dimensionless coupling, to ordg? we find from Eqs(B2) and (B4)

gz(vu) Lot XA 1=x)£1-9)]
2nT F(E)E 0dxfodg[l—x+xg(1—§)]3_f/2

l,jeZ

—€

X(1=x)&(1-§)
1-x+x&(1-¢)

2
j+|+L> (1-x)

2
v .
(zﬂ) +2xE+HI12x(1— &)+

gz(zﬂ)Hf 11 x9N 1-x) (j+1+oul27T)
=1-= r
S (© 1263 dxf dg [1—x+x&(L1—§)]? <2

1— 1— 2 2 —€
z(—xjiil—g(sz +i2xE+IPx(1—§)+ j+|+2’u_|_) (1-x) (B5)
We find from the definition of the anomalous dimensiémM) and (B5) for y(g,T/u,v),
T I'(e+1) 11 x9(1-x)26(1—¢) T .
_ -2 "7 & — _ _
y(g,ﬂ,v) g 3 |,jEEZ Jodxjods[l—X‘i‘Xf(l_f)]LlEIZX 1 X+2X§(1 g) 1+ v (J+I)
1- 1- 27T “l-e
();(_X:igl_gﬂL( i ) P2xE+1%x(1— §)+(]+I+ ) (1—x) ) +0(g3). (B6)

We split the expression foy(g,T/u,v) as follows: ,l(e+1) (1 1
Yo(9,v)=9 f dXJ d¢

T
9,;10): xH1=x)1E(1-¢)

T
7(91 _,U) = 70(g10)+ Ynz

M X
[1-X+XxE(1— &) P 31— x+2xE(1-§)]

where yq(g,v) is the contribution from the zero Matsubara 5
mode in Eq.(B6) +0(9°),
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and y,(g,T/u,v) stands for the contribution of the nonzero

Matsubara modes.

For T> u, we see from Eq(B6) that y,,(9,T/x,v) de-
creases as T{u) 2 ¢ [Notice that the coefficient of
(T/u) 1€ vanishes by symmetry when summing ovjer
+1.]

Therefore, yo(g,v) dominates forT>u. vyo(g,v) can
easily be computed for smadt>0 with the result

- &)
7o(Q0)= f J dg[l x+x§u. Bk

+0(eg?,9%)

¢ 2 3

—§+O(69 ,9°). (B7)

Therefore,
T 2 2
y(g,;,v =%+O( egz,gg,%>. (B8)

To the lowest nontrivial order ig, that is,g? (two loops, we
find for the functionB,(g,T/w,v)

T v T v d
B, g.;,v ——Ey(g,;,v)—i ,LL@—ZE |OgZU,
(B9)

where the derivatives are now at constdrare g. Using Eq.
(B5) for log Z, yields

Jd
WE(,LL@—ZE)'OQZU
Xe/2—1(1_x)

_ 27TF(6
? uezf f [1—x+x§(1—§)]2—f’2

x§(1=¢) (1-x)e
1—x+x&(1—¢&) mQj (X, €)

XQJ,|(X,§)E‘

+

26(1 )} +1 l] B10
o, Uk (B10)

where

_ X(1-x)§(1-§)
QI O=T 5 e1-0

27T\?
+ 7) [i2XE+12x(1-§)]

2

27T
+(1—X) V(J_}—I)_}—l
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ko

FIG. 1. Contour in the complek, plane.

We find in the high temperature limit> . that this expres-
sion is dominated by its zero mode contributidfy (corre-
sponding toj=1=0),

I'(1+e) (1 (2 X2l 1—x)l-e
— 2
Wo=0"73 jodxfod [1-x+x&(1—§)]%

X§(1—¢) 1 ¢
1-x+x&(1-§) '

which turns out to b& independent.

The sum of nonzero terms gives a subdominant contribu-
tion for T> u ande strictly positive. We find from Eq(B10)
after calculation

ol

" Xe/2—1(1_x)2
[1-x+xE(1— ) %

j2

Xl,jzez [2(1—x+x&)+12x—2jIx €]
2

)7
729

X|1+0 (B1D

For 0<e<1 and for T>u, W, and thereforeW are

dominated by the pole diV, at e=0. That is,

2

29
WT>u,0<e<l —+0

2e . (B12

2e
7
_),g

where we used that> 1= c_.o(2/€) 5(x).
Therefore, we find forB,(g,T/u,v) from Egs. (B9),
(B10), and(B12)
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2

T vg
Bu( g, ;,U)T>,U«.0< e<l—- +0 displayed in Fig. 1. The functiomA(ky,X,p,s)]” % has a cut

running parallel to the real axis which fqr#=0 or in the
massive case for arbitragybegins away from the imaginary
APPENDIX C: FORMAL PROOF axis and the contouE. The contour can now be deformed to

The formal proof to one-loop order begins with the ex-'V'aP around the cut and the analytic continuation —iw
pressionA1) from Appendix A above. We now use the iden- +0" can be performed. F@y,w<T the infrared behavior is

M)Zf} with A(kq,Xx,p,s)=A|(X,p,s;w,= —iky) and the contouC
?

1
—+0(€%
€

tity [18,19 dominated byky<<T for which cothky/2T]~2T/k,, and the
resulting expression features a polekgt=0 while the cut
= begins away from the origin. The cut can be deformed again
=T 2 [A/(X,p,s)] 2 to circle the origin and the integral is simply the residue at
== the pole ko=0. Therefore the infrared dominant term is

‘ given byl =[Ag(X,p,s=—iw+0%)] 2 a result that co-
:f d_k(_)[A(k X,p s)]f’zcotr{—o} (C1) incides with the analysis in terms of the Matsubara sums
4i 07 2T provided in Appendix A.
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