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Dynamics near the critical point: The hot renormalization group in quantum field theory
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The perturbative approach to the description of long-wavelength excitations at high temperature breaks
down near the critical point of a second order phase transition. We study the dynamics of these excitations in
a relativistic scalar field theory at and near the critical point via a renormalization group approach at high
temperature and ane expansion ind552e space-time dimensions. The long-wavelength physics is deter-
mined by a nontrivial fixed point of the renormalization group. At the critical point we find that the dispersion
relation and width of quasiparticles of momentump are vp;pz and Gp;(z21)vp , respectively, and the
group velocity of quasiparticlesvg;pz21 vanishes in the long-wavelength limit at the critical point. Away
from the critical point forT*Tc we find vp;j2z@11(pj)2z#1/2 andGp;(z21)vp(pj)2z/@11(pj)2z# with
j the finite temperature correlation lengthj}uT2Tcu2n. The new dynamical exponentz results from aniso-
tropic renormalization in the spatial and time directions. For a theory withO(N) symmetry we findz51
1e(N12)/(N18)21O(e2). This dynamical critical exponent describes a new universality class for dynami-
cal critical phenomena in quantum field theory. Critical slowing down, i.e., a vanishing width in the long-
wavelength limit, and the validity of the quasiparticle picture emerge naturally from this analysis.
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I. INTRODUCTION

The experimental possibility of studying the phase tran
tions of QCD via ultrarelativistic heavy ion collisions wit
the current effort at the BNL Relativistic Heavy Ion Collide
~RHIC! and the forthcoming program at the CERN Lar
Hardron Collider~LHC! motivates a theoretical effort to un
derstand the dynamical aspects of phase transitions at
temperature. QCD is conjectured to feature two phase t
sitions, the confinement-deconfinement~or hadronization!
and the chiral phase transitions. Detailed lattice studies@1#
seem to predict that both transitions occur at about the s
temperatureTc;170 MeV.

While lattice gauge theories furnish a nonperturbative t
to study the thermodynamic equilibrium aspects of the tr
sition the dynamicalaspects cannot be accessed with t
approach.

In a condensed matter experiment the temperature is t
cally a control parameter and it can be varied sufficien
slowly so as to ensure that a phase transition occurs in l
thermodynamic equilibrium. In an ultrarelativistic heavy io
collision the current theoretical understanding suggests th
thermalized quark-gluon plasma may be formed at a t
scale of order 1 fm/c with a temperature larger than critica
This quark-gluon plasma then expands hydrodynamic
and cools almost adiabatically, the temperature falling off
a power of timeT(t);Ti(t i /t)1/3 until the transition tem-
perature is reached at a time scale;10–50 fm/c depending
on the initial temperature@2#.
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Whether the phase transition occurs in local thermo
namic equilibrium or not depends on the ratio of the cooli
time scaletcool;T(t)/Ṫ(t) to the relaxation or thermaliza
tion time scale of a fluctuation of a given wavelengthp21,
t rel(p). If tcool@t rel then the fluctuation relaxes on tim
scales much shorter than that of the temperature varia
and reaches local thermodynamic equilibrium. If, on t
other hand,tcool!t rel the fluctuation does not have time t
relax to local thermodynamic equilibrium and freezes o
For these fluctuations the phase transition occurs very
and out of equilibrium. Thus an important dynamical asp
is to understand the relaxation time scales for fluctuation

A large body of theoretical, experimental, and numeri
work in condensed matter physics reveals that while ty
cally short-wavelength (p@T) fluctuations reach local ther
mal equilibrium, near a critical point long-wavelength flu
tuations relax very slowly, and undergocritical slowing
down@3,4#. A phenomenological description of the dynami
near a phase transition typically hinges on the tim
dependent Landau-Ginzburg equation which is generali
to include conservation laws@3,4#. In the simplest case of a
nonconserved order parameter, such as in a scalar
theory with discrete ~Ising-like! symmetry, the time-
dependent Landau-Ginzburg equation is purely dissipativ

While phenomenological, this approach has proved v
successful in a variety of experimental situations and
likely to provide a suitable description of the dynamics f
macroscopic, coarse-grained systems such as binary
tures, etc.@3#. The phenomenological approach based on
time-dependent Landau-Ginzburg equations, which are
order in time derivatives, seems to provide a suitable
scription of coarse-grained macroscopic dynamics innonrel-
ativistic systems. However, it is clear that this approach is n
©2002 The American Physical Society38-1
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justified in a relativistic quantum field theory, since the u
derlying equations of motion are second order and time
versal invariant.

In particular, in the case of a purely dissipative tim
dependent Landau-Ginzburg~phenomenological! description
@3,4#, frequency and momenta enter with different powers
the propagators, and at the mean field~or tree! level this
results in a dynamical scaling exponentz52. This situation
must be contrasted with that of a relativistic quantum fi
theory where at tree level~mean field! frequencies and mo
menta enter with the same power in the propagator, lead
to a dynamical scaling exponentz51. Furthermore, critical
slowing down is automatically built into the phenomenolo
cal description, even at tree level, as a consequence o
dissipative equations of motion@5#. Clearly, this is not the
case in a relativistic quantum field theory. For a detai
discussion of the differences of nonequilibrium dynami
aspects between the time-dependent Landau-Ginzburg
proach and quantum field theory, see Ref.@5#.

There are important nonequilibrium consequences of s
dynamics near critical points. If the cooling time scale
much shorter than the relaxation time scale of lon
wavelength fluctuations, these freeze out and undergo s
odal instabilities when the temperature falls below critic
@3,5# during continuous~no metastability! phase transitions
These instabilities result in the formation of correlated d
mains that grow in time@3,5# with a law that in genera
depends on the cooling rate@6#.

In ultrarelativistic heavy ion collisions during the expa
sion of the quark-gluon plasma the critical point for the c
ral phase transition may be reached. If long-wavelength fl
tuations freeze out shortly before the transition, the ensu
instabilities may lead to distinct event by event observab
@7# in the pion distribution as well as in the photon spectru
at low energies@8#.

Thus an important aspect of the chiral phase transitio
to establish the relaxation time scales of long-wavelen
fluctuations, and whether critical slowing down and free
out of long-wavelength fluctuations can ensue.

In the strict chiral limit with massless up and dow
quarks, QCD has a SU(2)R^ SU(2)L symmetry which is
spontaneously broken to SU(2)R1L at the chiral phase tran
sition, the three pions being the Goldstone bosons assoc
with the broken symmetry. It has been argued that the
energy theory that describes the chiral phase transition
the same universality class as the Heisenberg ferromag
i.e., the O(4) linear sigma model@9#. This argument has
been used@9# to provide an assessment of the dynami
aspects of low energy QCD based on the phenomenolog
time-dependent Landau-Ginzburg approach to dynam
critical phenomena in condensed matter@3#. While the uni-
versality arguments are appealing, a more microscopic
derstanding of dynamical critical phenomena in quant
field theory is needed and has begun to emerge only rece
@10,11#.

In Ref. @10# a Wilsonian renormalization group extende
to finite temperature was implemented in a scalar qua
field theory. In this approach only one-loop diagrams ente
the computation of the beta functions, and the imaginary p
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of the self-energy, which arises first at two-loop order forT
.Tc , is accounted for by an imaginary part in the effecti
quartic coupling@10#. There it is found that the relaxatio
rate of zero momentum fluctuationsg reveals critical slow-
ing down in the formg;uT2Tcun lnuT2Tcu with n;0.53
being the critical exponent for the correlation length@10#.

In Ref. @11# the width of quasiparticles near the critic
point was studied via the largeN approximation. This study
revealed that at high temperature the effective coupling
driven to a~Wilson-Fischer! fixed point, a result that is in
agreement with the numerical evidence presented in R
@10#. While the results in leading order in the largeN limit
found in @11# hinted at critical slowing down, albeit in a
manner different from the numerical evidence of Ref.@10#,
they also hinted at the breakdown of the quasiparticle p
ture. A conclusion in@11# is that, while the largeN limit
provides a partial resummation of the perturbative exp
sion, further resummation is needed to fully address the
laxation of quasiparticles.

The largeN limit in static critical phenomena presents
similar situation: while it sums the series of bubbles repl
ing the bare vertex by the effective coupling that is driven
the fixed point in the infrared, the self-energy still featur
infrared logarithms that require further resummation@4#.
Such a resummation is provided by the renormalizat
group @4#.

While our motivation for studying dynamical critical phe
nomena near critical points is driven by the experimen
program in ultrarelativistic heavy ion collisions to study th
QCD phase transitions, the underlying questions are m
overarching and of a truly interdisciplinary nature. In pa
ticular, we mention an impressive body of work on aspects
quantum phase transitionsin condensed matter systems@12#
that addresses very similar questions. The work in Ref.@12#
focuses on understanding the static, dynamical, and trans
properties of low dimensional systems in the quantum
gime, in which the frequency and momentum of excitatio
is v;p@T.

Our study in this article is complementary to that progra
in that we focus on the dynamical aspects of lon
wavelength quasiparticles withv;p!T. As discussed in
@12,13# and in detail below, this is closer to theclassical
regime.

A. The goals

In this article we study thedynamicalaspects of quasipar
ticles near the critical point in a scalar quartic field theory
implementing a renormalization group program at high te
perature. While the renormalization group has been gene
ized to finite temperature in various formulations@14,15#,
mainly to study critical phenomena associated with fin
temperature phase transitions in field theory, onlystatic as-
pects were studied with these approaches.

Instead we focus on dynamical aspects, in particular
dispersion relations and relaxation rates of long-wavelen
excitations at and near the critical point. Already at the te
nical level one can see the differences: to understand
namical aspects, in particular relaxation, a consistent tr
8-2
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DYNAMICS NEAR THE CRITICAL POINT: THE HOT . . . PHYSICAL REVIEW D 65 085038
ment of the absorptive parts of the self-energies is requi
This aspect is notoriously difficult to implement in a Wils
nian approach in Euclidean field theory@14#. Reference@10#
proposes a method to circumvent this problem but a co
plete treatment that manifestly includes the absorptive p
of the self-energy contributions is still lacking in this a
proach. Other approaches using the Euclidean version o
renormalization group adapted to finite temperature fi
theory were restricted to static quantities@15# and, in fact, as
will be seen in detail below, miss important phenomena t
will be at the heart of the results presented here.

B. Brief summary of results

Long-wavelength phenomena at high temperatureT imply
a dimensional reduction from the decoupling of Matsub
modes with nonzero frequency@16,17#. The coupling in the
dimensionally reduced theory islT, wherel is the quartic
coupling. For dimensional reasons, the perturbative exp
sion in four space-time dimensions is in terms of the dim
sionless ratiolT/m with m the typical momentum scale
which is strongly relevant in the infrared. As a result, a p
turbative approach to studying long-wavelength phenom
breaks down. This is manifest in the breakdown of the q
siparticle picture in naive perturbation theory~see@11# and
below!.

In 52e space-time dimensions, the effective coupling
the high temperature, long-wavelength limit isg(m)
5lTm2e. We implement ane expansion aroundfive space-
time dimensions and a renormalization group resumma
program at high temperature withT@s,m near the critical
point, with s,m the typical frequency and momentum scale
We analyze the high temperature behavior of the relev
graphs and find that it is dominated fore.0 by the zero
Matsubara mode, while the sum of the nonzero modes g
subdominant contributions. The effective renormalized c
pling is driven to an infrared stable fixed pointg* 5O(e),
which for smalle allows a consistent perturbative expansi
near the fixed point.

An important feature that emerges clearly in this a
proach, and that has been missed in most other treatmen
renormalization group at finite temperature, is theaniso-
tropic scaling between spatial and time directions, which
manifest in a nontrivial renormalization of the speed of lig
This is a consequence of the fact that in the Euclidean
mulation at finite temperature time is compatified to 0<t
<1/T; thus space and time or momentum and frequency p
different roles. This results in a novel dynamical critical e
ponent z, which determines the anisotropic scaling. T
renormalization group leads to scaling in the infrared reg
in terms of anomalous dimensions which can be compu
systematically in thee expansion. In particular, to lowes
order ine we find for a scalar theory with discrete symmet
z511e/271O(e2), which describes a new universalit
class for dynamical critical phenomena in quantum fi
theory. All dynamical aspects, such as the relaxation ra
and dispersion relations, depend on this critical expon
while the static aspects are completely described by the u
critical exponents.
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We provide a renormalization group analysis of the qu
siparticle properties near the critical point, such as their d
persion relation and width, complemented by an expl
evaluation to lowest order in thee expansion. The main re
sults obtained in this article are the following. AtT5Tc we
find that the dispersion relation and width of quasiparticles
momentump are vp;pz and Gp;(z21)vp , respectively,
with a vanishing group velocity of quasiparticles in the lon
wavelength limit highlighting the collective nature of th
quasiparticle excitations. ForT.Tc but uT2Tcu!T we find
vp;j2z@11(pj)2z#1/2 and Gp;(z21)vp(pj)2z/@1
1(pj)2z# with j the finite temperature correlation lengthj
}uT2Tcu2n. In the case ofO(N) symmetry we find to low-
est order in the epsilon expansion that the dynamical ex
nentz511e(N12)/(N18)21O(e2).

Critical slowing down emerges near the critical point a
in the e expansionGp /vp!1, confirming the quasiparticle
picture.

We discuss some relevant cases of threshold singular
in which the usual~Breit-Wigner! parametrization of the
quasiparticle propagator is not available since the real pa
the inverse Green’s function vanishes at the quasiparticle
quency with an anomalous power law.

In Sec. II we introduce the model and discuss the bre
down of naive perturbation theory. In Sec. III we introdu
the e expansion and analyze the static case. In Sec. IV
renormalization aspects and the anisotropic scaling are
lyzed in detail. Section V presents the renormalization gro
in the effective, dimensionally reduced theory both at a
near the critical point. This section contains the bulk of o
results, which are summarized in Sec. VI. Our conclusio
and a discussion of potential implications are presented
Sec. VII. The high temperature behavior of the relevant d
grams is computed in the Appendixes.

II. THE THEORY AND THE NECESSITY
FOR RESUMMATION

The low energy sector of QCD with two massless~up and
down! quarks is conjectured to be in the same universa
class as theO(4) Heisenberg ferromagnet@9# described by
the O(4) linear sigma model. Furthermore, since we are
terested in describing the dynamical aspects associated
critical slowing down and freeze-out of long-waveleng
fluctuations just before the chiral phase transition, we fo
on T→Tc

1 .
While our motivation for studying critical slowing down

stems from the experimental program in ultrarelativis
heavy ion collisions, the questions are of a fundamental
ture.

To understand the dynamical aspects near the crit
point, we focus on the simpler case of a single scalar fi
theory, and we will recover the case ofO(N) symmetry at
the end of the discussion. We thus focus on the theory
scribed by the Lagrangian density

L5
1

2
~]mF!21

1

2
m0

2F22
l0

4!
F4 ~2.1!
8-3
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D. BOYANOVSKY AND H. J. de VEGA PHYSICAL REVIEW D65 085038
where the subscripts in the mass and coupling refer to b
quantities. The case ofN components in the unbroken pha
T>Tc differs from the single scalar field by combinator
factors that change the critical exponents quantitativ
These factors will be included at the end of the calculation
obtain an estimate of the critical exponents for theO(N)
theory in Sec. VI.

We are interested in obtaining the relaxation properties
long-wavelength excitations near the critical temperatu
which in this scalar theoryTc;umRu/AlR with mR ,lR being
the renormalized mass and coupling. Thus the regime of
terest for this work isp,v!T;Tc with p,v being the mo-
mentum and frequency of the long-wavelength excitation.
will become clear below it is convenient to work in the Ma
subara representation of finite temperature field the
which is more amenable to the implementation of the~Eu-
clidean! renormalization group.

In the Matsubara formulation Euclidean timet is com-
pactified in the interval 0<t<b51/T whereas space is in
finite; bosonic fields are periodic in Euclidean time and c
be expanded as@18–20#

F~xW ,t!5
1

AbV
(

n52`

` E d3p

~2p!3
f~pW ,vn!e2 ivnt1 ipW •xW

~2.2!

vn52pnT, n50,61,62, . . . . ~2.3!

Thus we see that, while the spatial momentum is a c
tinuum variable, the Matsubara frequencies are discrete
consequence of the compactification of Euclidean time. T
feature of Euclidean field theory at finite temperature will
seen to lead toanisotropicrescaling between space and tim
and therefore, as will be clear below, new dynamical criti
exponents. Anticipating anisotropic rescaling, we then int
duce the bare speed of propagationv0 of excitations in the
medium by writing the Euclidean Lagrangian in the form

LE5
1

2

~]tF!2

v0
2

1
1

2
~,F!21

1

2
M2~T!F2

1
lR

4!
F41

1

2
dm2~T!F21

dl

4!
F4 ~2.4!

where we have introduced the effective renormaliz
temperature-dependentmassM (T) and the counterterms, in
particular the mass countertermdm2(T)52M2(T)2m0

2,
are adjusted order by order in perturbation theory so that
inverse two-point function obeys

G (2)~pW 50; vn50!5M2~T!. ~2.5!

The critical point is defined with~the inverse susceptibility!
M2(T)[0. We will begin our study by focusing our atten
tion on the critical theory for whichM (T)50. We will later
consider the theory near the critical point but in a regime
which M (T)!T;Tc . Thus, the general regime to be studi
is pW ,v,M (T)!T;Tc .
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A. Infrared behavior of the critical theory: Static limit
in three space dimensions

In order to highlight the nature of the infrared behavi
when pW ,v!T we focus first on the critical theory in th
static limit, when the Matsubara frequencies of all exter
legs in then-point functions vanish. For the purpose of u
derstanding the nature of the infrared physics in the st
limit we will set v051 in this and the next section, and w
will recover this variable, the speed of light, when we stu
the dynamics in Sec. IV.

1. The scattering amplitude in DÄ3

We consider first the 2→2 scattering amplitude, or four
point function, to one-loop order in three spatial dimensio
The full expression is given by

G (4)~pW 1 ,s1 ,pW 2 ,s2 ,pW 3 ,s3 ,pW 4 ,s4!

52l01l0
2@H~pW 11pW 2 ,s11s2!1H~pW 11pW 3 ,s11s3!

1H~pW 11pW 4 ,s11s4!#1O~l0
3!, ~2.6!

wheresi52pTmi , 1< i<4, andmiPZ,

H~p,s!5
T

2 (
nPZ

E d3q

~2p!3

3
1

@q21~2pTn!2#@~qW 1pW !21~2pT!2~n1m!2#
,

~2.7!

s[2pTm. Since the external momentump!T it is clear
from the above expression that the dominant infrared beh
ior of H(p,0) is determined by the zero Matsubara frequen
in the sum. As will be explicitly shown below, the contribu
tion from the nonzero Matsubara frequencies will introduc
renormalization of the bare coupling which in the limitT
@p is independent of the external momentum~this will be
seen explicitly in the next section!. Keeping only the zero
internal Matsubara frequency and carrying out the thr
dimensional integral explicitly, we find

Hir ~p,0!5
T

16p
. ~2.8!

Thus, defining the effective coupling constant at the symm
ric point pW i5 P̄i where

P̄i• P̄j5~4d i j 21!
m2

4
~2.9!

in the static limit, one finds that in the infrared limitm/T
!1

le f f~m!5l0F12
3l0T

16m G1O~l0
3!. ~2.10!

Two important features transpire from this expression.
8-4
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~i! the factorT/m can be explained by dimensional arg
ments: in the Matsubara formulation for each loop there
factor T from the sum over internal Matsubara frequenci
The infrared behavior form!T is obtained by considering
only the zero internal Matsubara frequency in the loop. T
integral has only one scale and sincel is dimensionless in
three spatial dimensions the one-loop contribution must
proportional toT/m. A similar argument shows that for
diagram withm internal loops and transferred momentu
scalem there will be a powerTm from the Matsubara sums
the infrared behavior is obtained by the contribution withall
the internal Matsubara frequencies equal to zero, which
dimensional power counting must be of the form (T/m)m.
Therefore a diagram withm internal loops will contribute to
the scattering amplitude byl(lT/m)m. In taking only the
zero internal Matsubara frequency we are assuming tha
internal loop momenta are cut off at a scale belowT.

Thus, at the critical point the most important infrared b
havior is that of thedimensionally reducedthree-dimensiona
theory @16,17#. The reason for this dimensional reduction
clear: at finite temperatureT the Euclidean time is compac
tified to a cylinder of radiusL51/T for transferred momenta
m and the spatial resolution is on distancesd;1/m. There-
fore for m!T→d@L; thus the compactification radius
effectively zero insofar as the long distance~infrared! phys-
ics is concerned.

We will study below the contribution from the nonze
Matsubara frequencies.

~ii ! For a transferred momentum scalem perturbation
theory breaks down form!lT since the contribution from
higher orders is of the forml(lT/m)m. This suggests that a
resummation scheme is needed to study the infrared li
This situation is similar to that in critical phenomena, whe
infrared divergences must be summed and the renorma
tion group provides a consistent and systematic resumma
procedure. We can obtain a hint of how to implement
renormalization group in finite temperature field theory
the limit whenT is much larger than any other scale~masses,
momenta, and frequencies! by realizing that, from the argu
ment presented above, the perturbative expansion is act
in terms of the dimensionless couplingg05lT/m. Therefore
from Eq. ~2.10! we can write

ge f f~m!5g0F12
3

16
g0G1O~g0

3!. ~2.11!

We can improve the scattering amplitude via the renorm
ization group~RG! by considering the RGb function

bg5m
]ge f f~m!

]m U
l0 ,T

52ge f f1
3

8
ge f f

2 1O~ge f f
3 !.

~2.12!

The first term~with the minus sign! just displays the scaling
dimension~for fixed lT) of the effective coupling; that this
dimension is21 is a consequence of the dimensional red
tion sincelT is the effective dimensionful coupling of th
three-dimensional theory.
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We thus see that the renormalization group improved c
pling runs to the infrared fixed point

g* 5
8

3
~2.13!

as the momentum scalem→0. Comparing with the renor-
malization group beta function of critical phenomena@4,21–
25# we see that this is the Wilson-Fischer fixed point in thr
dimensions, again revealing the dimensional reduction of
low energy theory. The resummation of the effective co
pling and the fixed point structure can also be understoo
the largeN limit @11#. As described in@11# the largeN limit
can be obtained by replacing the interaction in the Lagra
ian density by@26#

Lint5
l̄

2N
~FW •FW !2 ~2.14!

with FW 5(f1 ,•••fN), and the form of the quartic coupling
has been chosen for consistency with the notation of R
@11#. The leading order in the largeN limit for the scattering
amplitude is obtained by summing the geometric series
one-loop bubbles in thes channel~only this channel out of
the three contributes to leading order in the largeN limit !,
each one proportional toN, which is the number of fields in
the loop. As a result one finds that the effective scatter
amplitude at a momentum transferm is given by@11#

l̄e f f~m!5
l̄

11l̄T/4m
. ~2.15!

Thus, introducing the dimensionless effective coupli
ḡe f f(m)5l̄e f f(m)(T/m) one finds that

lim
m→0

ḡe f f~m!54, ~2.16!

i.e., the effective coupling constant goes to the thr
dimensional fixed point@11#.

2. The two-point function in DÄ3

The two-point function in the static limit is given by

G (2)~p,0!5p21dm2~T!2S~p,0!1O~l3! ~2.17!

whereS(p,0) stands for the two-loop sunset diagram at ze
external Matsubara frequency and the countertermdm2(T)
will cancel the momentum-independent but temperatu
dependent parts of the self-energy. The two-loop self-ene
for external momentumpW and Matsubara frequencyvm
52pTm is given by
8-5
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S~p,vm!5
l2T2

6 (
l , j PZ

E d3q

~2p!3

d3k

~2p!3

1

@q21v l
2#@k21v j

2#@~pW 1kW1qW !21~v l1v j1vm!2#
~2.18!
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with v j52p jT. The static limit is obtained by settingvm
50 (m50). In this limit the dominant contribution in the
infrared for T@p arises from the terml 5 j 50 in the sum.
The termslÞ0, j Þ0 for which we can takep50 ~sincep
!T) will be canceled by the counterterm. A straightforwa
calculation leads to

G (2)~p,0!u ir 5p2F11
l2T2

12~4p!2p2
lnS p2

m2D G1O~l3!

~2.19!

wherem is a renormalization scale. This expression clea
reveals the effective couplinglT/p which becomes very
large in the limit p!lT. Clearly, we need to implement
resummation scheme that will effectively replace the b
dimensionless coupling constant by an effective coupl
that goes to a fixed point in the long-wavelength limit, a
also ensure that at this fixed point the effective coupling
small so that perturbation theory near this fixed point is
liable. This is precisely what the renormalization group co
bined with thee expansion achieves in critical phenome
@4,21–25#.

B. Dynamics in DÄ3

The two-loop contribution to the self-energy forvÞ0 is
obtained from a dispersive representation of the self-ene
in terms of the spectral density,

S~p,v!5E dn

p

r~p,n!

n2v2 i01
. ~2.20!

The spectral densityr(p,n) was obtained in Ref.@11# in the
high temperature limit@27# in D53. Using the expression
given in @11# for the spectral density at two loops in the hig
temperature limit, and after some lengthy but straightforw
algebra, we find

r~p,n!5
p

12S lT

4p D 2

sgn~n!FQ~ unu2p!1
unu
p

Q~p2unu!G .
~2.21!

Carrying out the dispersive integral~2.20! and subtracting
off the terms that are independent ofp,v which are absorbed
by the counterterm, we find

S~p,v!52
1

12S lT

4p D 2F lnS p22~v1 i01!2

m2 D
2

v

p
lnS v1 i012p

v1 i011p
D G . ~2.22!
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Clearly, the static limitv→0 of the self-energy coincide
with Eq. ~2.19!. The two-point function is therefore given b

G (2)~p,v!5p22v21
1

12S lT

4p D 2F lnUp22v2

m2 U
2

v

p
lnUv2p

v1pUG2 ir~p,v! ~2.23!

with r(p,v) given by Eq.~2.21!.
There are several features of this expression that are n

worthy.
It is clear that forlT@p,v the-two loop contribution is

much larger than the tree level termp22v2. This already
signals the breakdown of perturbation theory in the high te
perature regime whenlT@p,v in the dynamical case.

Consider thereal part of the two-point function asv
→p, i.e., near the mass shell:

ReG (2)~p,v'p!

'2p2H S 12
v

p D F11
1

24S lT

4ppD 2

lnS uv2pu
m D G

1
1

12S lT

4ppD 2

lnS 2p

m D J . ~2.24!

This expression reveals thatv5p is not the position of the
mass shell of the~quasi!particle. The coefficient of (1
2v/p) hints at wave function renormalization but the fa
that the two-point function does not vanish at this point p
vents such identification. Furthermore, we see that the t
that does not vanish atv5p hints at a momentum-depende
shift of the position of the pole, i.e., a correction to the d
persion relation. However, forlT/p@1 both contributions
are nonperturbatively large and the analysis is untrustwor

Now consider the width of the quasiparticle,

gp52
Im S~p,v5p!

2p
5

pp

12 S lT

4ppD 2

~2.25!

so thatgp /p@1 for lT/p@1. This signals the breakdown o
the quasiparticle picture.

A similar analysis reveals the breakdown of perturbat
theory away from but near the critical point withuT2Tcu
!T. The imaginary part of the two-loop self-energy atpW

50W and in terms of the temperature-dependent massmR(T)
can be obtained straighforwardly inthree spatial dimensions
@11,13# in the limit T@m(T). It is found to be@11,13#

Im S (2)
„pW 50,v5mR~T!…}l2T2. ~2.26!
8-6
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Consequently, at two-loop order the width of the zero m
mentum quasiparticle in three spatial dimensions is given
@11,13#

G}
l2T2

mR~T!
@mR~T!. ~2.27!

This behavior is different from that of gauge theories
high temperature where low order fermion or gauge bo
loops are infrared safe and determined by the hard ther
loop contributions@28#. This is so because for fermions the
is no zero Matsubara frequency, while in the case of ga
bosons the vertices are momentum dependent. While the
ond term inside the square brackets in expression~2.23! de-
termined by Landau damping is infrared finite and is simi
to the leading contribution in the hard thermal loop progr
@19,28#, the first term arises from the three-particle cut. T
dependence of this term on the renormalization scalem
arises from the subtraction of the mass term at the crit
point and reveals the infrared behavior. Furthermore, in
hard thermal loop program@19,28# one finds thermal masse
of ordergT with g the gauge coupling, and widths of ord
g2T ~up to logarithms!, so thatGp /vp!1 in the weak cou-
pling limit, while in the scalar theory under consideration E
~2.27! suggests thatGp /vp@1 in naive perturbation theory

We note at this stage that the high temperature li
p,v!T of the self-energy calculated from the spectral re
resentation~2.20! can be directly obtained by computin
S(p,vm) in the Matsubara representation given by E
~2.18! by setting the internal Matsubara frequenciesv l5v j
50 and analytically continuingvm→2 iv101.

We highlight this observation since it will be the basis
further analysis in what follows:the high temperature limit
of the self-energy p,v!T can be obtained by setting th
internal Matsubara frequencies to zero and analytically co
tinuing in the external Matsubara frequency, i.e.,

S~p,v!up,v!T[
l2T2

6 E d3q

~2p!3

d3k

~2p!3

3
1

q2k2@~pW 1kW1qW !21vm
2 #
U

vm→2 iv101

.

~2.28!

We provide one- and two-loop examples of this statemen
Appendixes A and B and formal proof of this statement
one-loop order in Appendix C.

The result for the width of the quasiparticle at two loo
was anticipated in Refs.@11,13#. This width is purely classi-
cal since the productlT is independent of\ @11#. This result
for the damping rate of long-wavelength quasiparticles.
the critical theory is in striking contrast with that forT@Tc
which has been studied in detail in@29,30#. For T@Tc the
thermal mass ismth}AlT @29# while the two-loop contribu-
tion to the imaginary part of the self-energy forT@Tc ,p is
still proportional tol2T2. Thus, the damping rate of long
wavelength excitations isg}l3/2T!l1/2T in the weak cou-
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pling limit. Therefore forT@Tc long-wavelength excitations
are true weakly coupled quasiparticles with narrow width

III. THE e EXPANSION: STATIC CASE

The analysis of the previous section points out that na
perturbation theory at finite temperature breaks down at
critical point for momenta,lT. The reason for this break
down, as revealed by the analysis of the previous section
the following. In four space-time dimensions the quartic co
pling is dimensionless; however, each loop diagram in
perturbative expansion has a factorT from the sum over the
Matsubara frequencies. After performing the renormalizat
of the mass including the finite temperature corrections
setting the theory at~or near! the critical point, the effective
expansion parameter for long-wavelength correlation fu
tions islT, which has dimensions of momentum. If a give
diagram has a momentum transfer scalem, the effectivedi-
mensionlessexpansion parameter is thereforelT/m, which
becomes very large form!lT, i.e., the effective coupling is
strongly relevant in the infrared. The analysis based on
RG beta function~2.12!,~2.13! suggests that the effectiv
coupling g5lT/m is driven to the three-dimensiona
~Wilson-Fischer! fixed point in the infrared, obviously a con
sequence of the dimensional reduction in the high temp
ture limit. This is confirmed by the largeN resummation of
the scattering amplitude~2.15!,~2.16!. If the value of the cou-
pling at the fixed point is!1 then a perturbative expansio
near the fixed pointbe reliable; however, the value of th
coupling at the fixed point isg* ;O(1), which of course is a
consequence of the fact that for fixedlT the effective cou-
pling scales with dimension of inverse momentum in t
infrared. This situation is the same as in critical phenome
for theories that are superrenormalizable, in which the inf
red divergences are severe.

The remedy in critical phenomena is to study the pert
bative series via thee expansion, wherein the value of th
coupling at the fixed point isO(e) @4,21–23,25# and sum the
perturbative series via the renormalization group. We n
implement this program in the high temperature limit.

In five space-time dimensions the quartic couplingl has
the canonical dimension of inverse momentum, therefore
productlT that occurs in the perturbative expansion in t
dimensionally reduced low energy theory isdimensionless.
Then in a perturbative expansion at~or very near! the critical
point we expect that infrared divergences will be manifes
the form of logarithms of the momentum scale in the loo
This implies that the effective coupling is marginal. Cons
ering the theory in 42e spatial dimensions and one Euclid
ean~compactified! time dimension, the effective coupling o
the dimensionally reduced theory,lT, has dimensions ofme

with m being a momentum scale. Therefore the effect
dimensionless coupling for diagrams with a transferred m
mentum scalem is g(m)5lTm2e. Thus, for fixedT the
scaling dimension of this effective coupling is2e; hence we
expect a nontrivial fixed point at which the couplingg*
;O(e).

Therefore fore!1 we can perform a systematic pertu
bative expansion near the fixed point. This is the spirit of
8-7
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e expansion in critical phenomena which, when combin
with a resummation of the perturbative series via the ren
malization group, has provided a spectacular quantitative
qualitative understanding of critical phenomena@4,21–25#.

While dimensional regularization and thee expansion
have been used to study the dimensionally reduced high
perature theory insofar as thermodynamic quantities are
cerned, i.e., static phenomena@15–17#, we emphasize tha
our focus is to studydynamicsat and near the critical point
which is fundamentally different from the studies of sta
phenomena in these references.

As a prelude to the study of the dynamics, we now rec
sider the scattering amplitude at one-loop level and the s
energy at two-loop level in 42e spatial dimensions at high
temperature in the static limit. The one-loop self-energy
momentum independent and is absorbed in the definitio
the thermal mass@29#, which is set to zero at the critica
point. There are two main purposes of this exercise: the
is to quantify the role of the higher Matsubara modes and
second to obtain a guide for the infrared running of the c
pling constant.

A. Scattering amplitude

The one-loop contribution in the static limit, i.e., when t
external Matsubara frequencies are zero, is given by

H~p,0!5
T

2 (
nPZ

E ddq

~4p!d

3
1

@q21~2pTn!2#@~qW 1pW !21~2pTn!2#
,

d542e, ~3.1!

In the high temperature limit the nonzero Matsubara ter
give subdominant contributions. This property can be arg
in different ways. For example, thelÞ0 terms in Eq.~3.1!
can be interpreted as Feynman diagrams ind542e dimen-
sions with mass (2pTl)2. Such contributions are negligibl
for p!T @31,32#.

We find, for high temperatures~see Appendix A!,

H~p,0! 5
T@p,s

Hasi~p,0!

2T12e
G~11e/2!z~21e!

192p41e/2

p2

T2 F11OS p2

T2D G ,

~3.2!

whereHasi(p,) stands for thel 50 contribution to the sum
~3.1! plus the dominant high temperature limit of the su
over the lÞ0 terms, which is obtained by settingp50.
Separating thel 50 mode and settingp50 in the contribu-
tion from the sum overlÞ0, we find
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Hasi~p,0!5
Tp2e

2~4p!22e/2
GS e

2D FG2~12e/2!

G~22e!

12S 4p2T2

p2 D 2e/2

z~e!G ~3.3!

with z Riemann’s zeta function, which has the followin
properties@33#:

z~0!52
1

2
, lim

e→1
z~e!5

1

e21
1g, ~3.4!

where g50.577216 . . . stands for the Euler-Mascheron
constant.

Near four space dimensionse→0 we find

Hasi~p,0!52
T

2~4p!2 F logS p2

4T2D22G1O~e!. ~3.5!

There isno pole in e and the argument of the logarithm
reveals thatT acts as an ultraviolet cutoff. The reason th
there is no pole in epsilon ase→0 is that the poles ine
should be independent of temperature and should be thos
the zero temperature theory. However, in dimensional re
larization one-loop integrals have no poles in odd space-t
dimensions@34#. On the other hand, near three space dim
sionse→1 we find

Hasi~p,0!5
T

16p F12
1

p2

p

T
ln

T

mG1
1

~4p!2~e21!
,

~3.6!

where the pole term ate51 corresponds to the usual cou
pling constant renormalization. This divergent term is te
perature independent, as expected; the ln(T) is reminiscent of
an upper momentum cutoff for the high temperature lim
The first term is precisely what we obtained in Eq.~2.8! by
setting the internal Matsubara frequency to zero, i.e., the
sult of the dimensionally reduced theory. After subtracti
the pole near three space dimensions, the first term gives
leading infrared contribution in the limitT/p@1, whereas
the logarithm is subleading.

This expression coincides with that given in Refs.@16,17#.
In these references the four-dimensional high tempera
static theory was studied and a systematic analysis of Fe
man diagrams in the dimensionally reduced theory~three
dimensions! was performed. Thee21 in our expressions
should be mapped onto 2e for comparison with the results in
these references.

For e.0 we can neglect the terms of the form (T/p)2e in
Eq. ~3.3! in the limit T/p@1. And for 1@e.0 we find that
the static scattering amplitude at a symmetric point~2.9! in
the limit in which the temperature is much larger than t
external momentum scales is given by

G (4)~pi5 P̄i ,0!52le f f~m,T!52lF12
3

~4p!d/2

lTm2e

e G .

~3.7!
8-8
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The factorT arising from the Matsubara sum is such thatlT
has dimensions of (momemtum)e so that in 52e space time
dimensionslTm2e is dimensionless. Thus, introducing the
dimensionless renormalized coupling

gR~m!5
le f f~m,T!Tm2e

~4p!d/2
, d542e, ~3.8!

we find

bg5m
]g

]m U
l,T

52eg13g21O~g3!. ~3.9!

Therefore this effective coupling in the infrared limit
driven to a nontrivial fixed point
he

n
n-
th

n

tic

08503
g* 5
e

3
. ~3.10!

Hence fore!1 the fixed point theory can be studied pertu
batively. This of course is the basis of thee expansion in
critical phenomena@4,21–25# and will be the important point
upon which our analysis will hinge.

B. Two-loop self-energy

As mentioned above, the one-loop contribution to t
self-energy is momentum independent and absorbed into
definition of the thermal mass. The two-loop contribution
the static limit ind spatial dimensions is given by
S (2)~k,0!5
l2T2

6 (
l

(
m

E ddp

~2p!d

ddq

~2p!d

1

@q21v l
2#@p21vm

2 #@~p1q1k!21~v l1vm!2#
. ~3.11!
tur-
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We now introduce two Feynman parameters, separate tl
5m50 term from the Matsubara sums, and takeT@p in the
sums withl ,mÞ0, to find

S (2)~k,0!5
g2

6

G~211e!G3~12e/2!

G~323e/2!
k2F k2

m2G2e

1g2T2F T2

m2G2e

C~d! ~3.12!

with C(d) depending only on the dimensionality. The seco
term proportional toT422e does not depend on the mome
tum and is therefore canceled by the mass counterterm
defines the critical theory. Therefore fore.0 but small we
find

G (2)~k,0!5p22@S~k,0!2S~0,0!#

5k2F11
g2

12e
2

g2

12
lnS k2

m2D G1O~g3!.

~3.13!

We introduce the wave function renormalization in dime
sional regularization by the usual relation

GR
(2)~k,0!5ZfG (2)~p,0! ~3.14!

and choose

Zf512
g2

12e
1O~g3!. ~3.15!

Therefore the renormalized two-point function in the sta
high temperature limit is given by
d

at

-

,

GR
(2)~k,0!5k2F12

g

12
lnS k2

m2D G1O~g3!. ~3.16!

The infrared behavior is obtained by resumming the per
bative series via the renormalization group@4,21–25# which
leads to the scaling form of the two-point function in th
infrared limit,

GR
(2)~k!}k22h, ~3.17!

with

h5
g* 2

6
5

e2

54
1O~e3!. ~3.18!

This is the anomalous dimension to lowest order ine @4,21–
25#.

C. The strategy

The analysis of the static case above has highlighted
eral important features of the infrared behavior near the c
cal point, which determine the strategy for studying the d
namical case.~a! The infrared behavior in the limit whenT
@p with p the typical momentum of the Feynman diagram
determined by the dimensionally reduced theory obtained
setting theinternal Matsubara frequencies to zero.~b! Naive
perturbation theory breaks down in three space dimens
because the dimensionless coupling islT/m with m the ex-
ternal momentum scale in the Feynman diagram, whil
large N or renormalization group resummation suggests
nontrivial infrared stable fixed point. The coupling at th
fixed point is ofO(1). ~c! Just as in critical phenomena th
perturbative expansion can be systematically controlled in
e expansion aroundfour spatial dimensionscorresponding to
8-9
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a theory dimensionally reduced from 52e space time di-
mensions. The effective dimensionless coupling of the
mensionally reduced theory~four dimensional! is lT, which
is marginal. This combination is independent of\—this can
be seen by restoring powers of\l→\l, T→T/\—so that
the low energy, dimensionally reduced theory is classical
42e spatial dimensions the effective dimensionless coup
g5lTm2e is driven to the infrared stable Wilson-Fisch
fixed point of O(e) by the renormalization group trajecto
ries. Thus, the strategy to follow becomes clear: we will n
study the dynamics by including the contribution from t
external Matsubara frequency, focusing on the infrared
havior for p,v!T near the critical point in a systematice
expansion aroundfour spatial dimensions.

We note that the theory in 52e dimensions is formally
nonrenormalizable in the ultraviolet; however, this is irre
evant for the infrared which is the region of interest he
The analysis provided above in the limite→0 clearly shows
that near five space-time dimensions there are no pole
dimensional regularization in one-loop diagrams as expe
@31#. The potential poles are replaced by ln(T). The low en-
ergy theory must be understood with a cutoff ofO(T) and
the dimensionally regularized integrals in five space-time
mensions clearly display this cutoff in the arguments of lo
rithms. The long-wavelengthm/T!1 and thee→0 limits do
not commute: keeping the subleading terms in the high t
perature limit and takinge→0 results in poles ine actually
translating into logarithms of the cutoffT. On the other hand
keepinge.0 and small, theT/m→` limit can be taken and
the subleading high temperature corrections vanish. Cle
it is the latter limit that has physical relevance, since ev
tually we are interested in studying the infrared behavior
the physical theory in three space dimensions. Hence in w
follows we consider the long-wavelength limit fore.0 but
small and approach the physical dimensionalitye→1 in a
consistente expansion improved via the renormalizatio
group. This is the strategy in classical critical phenomena
well, where fore.0 and small the ultraviolet cutoff can b
taken to infinity.

At this stage it is important to highlight the differenc
between the main focus of this work and that in Re
@16,17#. The work of Refs.@16,17# studies thestatic limit of
the dimensionally reduced theory nearthree spatial dimen-
sions arising from the high temperature limit of a fou
dimensional Euclidean theory compactified in the time dir
tion. In contrast, we here focus on studying thedynamicsin
the limit whenp,v!T, which as emphasized by the analys
above will be studied in ane expansion in a dimensionall
reduced theory nearfour space dimensions.

The limit of physical intereste→1 must be studied by
improving the perturbative expansion via the renormalizat
group@4,21–25# and eventually by other nonperturbative r
summation methods, such as Pade´ approximants or Bore
resummation, that will extend the regime of validity of thee
expansion@23#.

IV. DYNAMICS NEAR THE CRITICAL POINT

We now turn to the dynamics. Our main goal is to stu
the feasibility of a quasiparticle description of low ener
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excitations at and near the critical point. Of particular inter
is the dispersion relation as well as the damping rates
these excitations. This information is contained in the tw
point functionG (2)(p,vn) which is the inverse propagato
analytically continued tovn→2 iv101. The region of in-
terest isp,v!T and if the theory is~slightly! away from the
critical pointM (T)!T as well. In principle for a fixedvn or
fixed external Matsubara frequencies in the external legs
n-point functions, one must perform the sum over the int
nal Matsubara frequencies first and then take the ana
continuation. However, as was shown above in detail in
static case, the largest infrared singular contribution ari
from setting the internal Matsubara frequencies to zero. T
this is also the case in the dynamics can be seen by con
ering a diagram withm internal lines, rerouting the externa
Matsubara frequency through one of the lines. All of t
lines are equivalent since rerouting the external Matsub
frequency corresponds to a shift in one of the sums. T
other m21 lines contain propagators in which the intern
Matsubara frequency acts as a mass ofO(2p lT). These are
the superheavy modes in the description of Re
@16,17,31,32#. The contribution that is dominant in the infra
red is from the region of loop momenta!T which is largest
when the mass of the propagator is zero, i.e., the zero M
subara frequency. Keeping nonzero Matsubara frequencie
any of them21 legs will lead to subleading contributions i
the limit p,v!T.

Once the internal Matsubara frequencies have been s
zero we can analytically continue the external Matsubara
quency to a continuous Euclidean variablevn→s to obtain
the Euclidean two-point function. The dispersion relation a
damping rate are obtained by further analytical continuat
s→2 iv101.

As anticipated in Sec.~II !, because Euclidean time i
compactified and plays a different role from the spatial
mensions, we must consider the anisotropic Lagrangian d
sity ~2.4!, which includes the velocity of light multiplying
the derivatives with respect to Euclidean time. If this velo
ity of light is simply a constant it can be reabsorbed into
trivial redefinition of the time variable. However, as it wi
become clear below, this velocity of light acquires a no
trivial renormalization as a consequence of the anisotr
between space and time directions at finite temperature
will run with the renormalization group. Thus, the Euclide
propagator is generalized to

G~k,vm!5
1

k21vm
2 /v0

2
. ~4.1!

A. The scattering amplitude

We begin by studying the scattering amplitude, now a
function of external momenta and frequencies. The one-l
contribution is determined by the functionH(p,s) given by
Eq. ~2.7!, which for p,s!T is given by~see Appendix A!
8-10
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H~p,s! 5
T@p,s

Hasi~p,s!2
G~11e/2!z~21e!

192p41e/2T11e

3F p21
s2

v0
2 ~12e!GF11OS p2,s2/v0

2

T2 D G ,

~4.2!

whereHasi(p,s) stands for thel 50 contribution to the sum
~2.7! plus the dominant high temperature limit of the su
over thelÞ0 terms, which is obtained by settingp,s50,

Hasi~p,s!5
T

2E ddq

~2p!d

1

q2@~qW 1pW !21s2/v0
2#

1
G~11e/2!z~e!

8p21e/2e
T12e, ~4.3!

This integral is computed in Appendix A with the result

Hasi~p,s!52
G~e/221!

2~4p!22e/2
TS s2

v0
2

1p2D 2e/2

3FS e

2
,12

e

2
;22

e

2
;

p2

p21s2/v0
2D

1
G~11e/2!z~e!

8p21e/2e
T12e, ~4.4!

where F(a,b;c;z) stands for the hypergeometric functio
For e.0 and p,s/v0!T we can neglect the second term
since it is proportional toT12e!T(p21s2/v0

2)2e/2. We note
that the infrared dominant contribution can be written in t
form Tp2eF(s2/v2p2) the factorT thus combines with the
couplingl to give the effective coupling of dimensionme in
d542e spatial dimensions.

For e.0 but small and neglecting the second term, E
~4.4! can be expanded ine, leading to

l0Hasi~p,s!5
g~m!

2 F2

e
2S 11

s2

v0
2p2D lnS s21p2v0

2

m2v0
2 D

1
s2

v0
2p2

lnS s2

v0
2m2D 1 ln 4p122g1O~e!G

~4.5!

where we introduced the dimensionless bare coupling

g~m!5
l0Tm2e

~4p!d/2
. ~4.6!

We remark that one cannot takee→0 in this expression
since in this limit the pole is actually canceled by the seco
term in Eq.~4.4! above. As emphasized above, this expr
sion must be understood fore.0 but small so that the con
tributions of the form (T/s,T/p)2e→0 for T@s,p. There-
08503
.

d
-

fore, the expression above must be understood in the s
that ~i! T@s,p with fixed e.0 and~ii ! e!1, and the result-
ing expressions have a Laurent expansion for smalle.

B. The self-energy at two loops

Neglecting the contribution from the nonzero Matsuba
frequencies which will be absorbed by the mass countert
in the definition of the critical temperature@or M2(T) away
from the critical point# and also neglecting terms that vanis
in the limit T@p,s, the dominant contribution in the infrare
to the two-loop self-energy is

S~p,s!5
l0

2T2

6 E ddq

~2p!d

3E ddk

~2p!d

1

q2k2@~q1k1p!21s2/v0
2#

5
l0

2T2

6~4p!d

G2~d/221!G~32d!

G~d22!

3E
0

1

dx~12x!d23x12d/2F xp21
s2

v0
2G d23

.

~4.7!

While this expression can be written in terms of hyperge
metric functions, it is more convenient to expand it ine with
the result that

G (2)~p,s!5p21
s2

v0
2

1
g2~m!

6e F p2

2
1

2

e

s2

v0
2

2e
p2

2
lnS p2

m2D
22

s2

v0
2

lnS s2

v0
2m2D G1O~g2e0,g2e,g3! ~4.8!

with g(m) given by Eq.~4.6!.

C. Renormalization

The forms of the two- and four-point functions immed
ately suggest a renormalization scheme akin to the fam
one used in critical phenomena@21–23,25# with one impor-
tant difference: we see from Eq.~4.8! that the velocity of
light v0 must also be renormalized. The wave function ren
malization is introduced as usual via

GR
(2)~p,s,vR!5ZfG (2)~p,s,v0!. ~4.9!

The renormalized mass as a function of temperature is
fined as

GR
(2)~0,0!5M2~T!. ~4.10!

This definition, however, defines the inverse susceptibility
correlation length, rather than the pole mass; the criti
theory is defined byM2(T)50. Coupling constant and ve
locity of light renormalization are achieved by
8-11
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lR5Zf
2 Zll0 ,

GR
(4)~pi5 P̄i , s50!52lR , ~4.11!

vR
25v0

2 Zv

Zf
. ~4.12!

The renormalization conditions that determine the consta
Zf ,Zl ,Zv are

]GR
(2)

]p2 U
p25m2, s2/vR

25m2

51,

]GR
(2)

]s2 U
p25m2, s2/vR

25m2

5
1

vR
2

,

G (4)~pi5 P̄i ; s50!52lR . ~4.13!

Consistently with thee expansion, we choose the renorma
ization constantsZf ,Zl ,Zv in the minimal subtraction
scheme to lowest order, since keeping higher powers of
coupling or e results in higher order corrections in thee
expansion.

To lowest order, one loop for the four-point function an
two loops for the two-point function, we find from the resu
~4.5! and ~4.8!

Zl512
3g~m!

e
⇒gR5g~m!2

3g2~m!

e
,

gR5
lRTm2e

~4p!d/2
, Zf512

g2

12e
, ~4.14!

Zv512
g2

3e2
. ~4.15!

Thus, the renormalized two-point function reads

GR
(2)~p,s!5p2F12

g2

12
lnS p2

m2D G1
s2

vR
2 F12

g2

3e
lnS s2

vR
2m2D G

1O~g3,g2e!. ~4.16!

V. THE RENORMALIZATION GROUP

Before we embark on the resummation program via
renormalization group, it is important to highlight two im
portant features.

The contributions that are dominant in the infrared in t
limit T@p,s correspond to the terms with internal Matsuba
frequencies equal to zero; the nonzero Matsubara frequen
give subleading contributions fore.0. This in turn results in
the dependence on temperature being solely through th
fective couplingg5lTm2e. This can be seen from the fac
that each loop has a factorT from the Matsubara sum ove
08503
ts

e

e

ies

ef-

the internal loop frequencies as well as one power of
coupling constantl; for dimensional reasons the dimensio
less coupling is obtained by multiplying bym2e.

The velocity of lightv always enters in the forms/v since
this is the form that enters in the propagators and the re
malization conditions above.

A. The critical point

The baren-point functions are independent of the reno
malization scalem, and this independence leads to the ren
malization group equations~we now suppress the subscri
R, understanding that all quantities are renormalized!

Fm ]

]m
1bg

]

]g
1bv

]

]v
2

N

2
gG

3G (N)S p1 ,
s1

v
;p2 ,

s2

v
; . . . ,pN ;

sN

v
;g,m D50 ~5.1!

with

bg5m
]g

]m U
l0 ,T,v0

, ~5.2!

bv5m
]v
]m U

l0 ,T,v0

, ~5.3!

g5m
] ln Zf

]m U
l0 ,T,v0

. ~5.4!

To lowest order we find

bg52eg13g21O~g3,g2e!, ~5.5!

bv5
1

2 F2g2

3e
2gG v1O~g3,g2e!, ~5.6!

g5
g2

6
1O~g3,g2e!. ~5.7!

While we can write down the general solution of the R
equation~5.1! for an arbitraryN-point function, our focus is
to understand the quasiparticle structure, which is obtai
from G (2).

SinceG (2) has dimension 2, it follows that

G (2)S p,
s

v
,g,m D5m2FS p

m
,

s

vm
,gD ; ~5.8!

therefore

G (2)S etp,
ets

v
,g,m D5e2tG (2)S p,

s

v
,g,me2tD . ~5.9!

This scaling property then leads to

F ]

]t
1m

]

]m
22GG (2)S etp,

ets

v
,g,m D50, ~5.10!
8-12
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which combined with the RG equation~5.1! leads to the
following equation that determines the scaling properties
the two-point function:

F2
]

]t
1bg

]

]g
1bv

]

]v
2~g22!GG (2)S etp,

ets

v
,g,m D50.

~5.11!

The solution of this equation is standard@21–23#:

G (2)S etp,
ets

v
,g,m D

5e*0
t dt8[22g(t8)]G (2)S p,

s

v~ t !
,g~ t !,m D ~5.12!

with

]g~ t !

]t
5bg„g~ t !…, g~0!5gR~m!,

]v~ t !

]t
5bv„v~ t !,g~ t !…, v~0!5vR~m!,

g~ t !5g„g~ t !,v~ t !…. ~5.13!

As t→2`, i.e., the momentum and frequency are sca
toward the infrared, we see from the RGb function~5.5! that
the coupling is driven to its fixed point

lim
t→2`

g~ t !5g* 5
e

3
1O~e2!, ~5.14!

which in turn implies that

lim
t→2`

g~ t !5h5
e2

54
1O~e3!, ~5.15!

lim
t→2`

v~ t !5v~0! e(z21)t, ~5.16!

where we introduced the newdynamicalcritical exponent

z511
1

2
~h t2h!1O~e2!,

h t5
2g* 2

3e
5

2e

27
1O~e2!. ~5.17!

Therefore, in the asymptotic infrared limit we find that

G (2)S etp,
ets

v
,g,m D5et(22h)G (2)S p,

se(12z)t

v~0!
,g* ,m D .

~5.18!

It is convenient to redefinepet5P, set5S, to find
08503
f

d

G (2)S P,
S

v
,g,m D

5et(22h)G (2)S Pe2t,
S

v~0!
e2te(12z)t,g* ,m D ,

~5.19!

and finally writing P5met and using the property~5.8! we
find the scaling form in the infrared limit

G (2)S P,
S

v
,g,m D5m2F P

mG22h

F~q!,

q5S S

v~m!m12zPzD 2

. ~5.20!

The solution of the RG equation clearly shows that the tw
point function in the infrared limit is ascalingfunction of the
ratio s/v(m)m12zpz highlighting the role of the new dynami
cal exponentsz given by Eq.~5.17! with h t to lowest order
given by Eq.~5.17!.

The emergence of the new dynamical exponentz is a
consequence of the anisotropic renormalization between
mentum and frequency, or space and time, manifest in
renormalization of the speed of light. This novel pheno
enon can be traced back to the different role played by t
~compactified! and space in the Euclidean formulation at
nite temperature. A similar anisotropic rescaling emerges
different context, a Heisenberg ferromagnet with correla
impurities @35# with similar renormalization group results.

While the formal solution does not yield the functionF,
we can find it by matching to the lowest order perturbat
expansion~4.16! when the coupling is at the nontrivial fixe
point. From the form of the perturbative renormalized tw
point function given by Eq.~4.16! and assuming the expo
nentiation of the leading logarithms via the renormalizati
group near the nontrivial fixed point,

GR
(2)~p,s;g* !5p2F12h lnS p

m D G1
s2

vR
2 F12h t lnS s

vRm D G
'p22hmh1S s

vR
D 22h t

mh t, ~5.21!

which can immediately be written in the scaling form

GR
(2)~p,s;g* !;p22hmhF11S s

v~m!m12zpzD 22h tG
z5

22h

22h t
.11

1

2
~h t2h!. ~5.22!

Clearly, this form coincides with the scaling solution of th
renormalization group and the perturbative expansion in
regime in which it is valid. We note, however, that in th
computation ofh t we have neglected contributions to th
renormalization of the velocityv of O(g3/e), which would
8-13
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appear at next order and would lead to anO(e2) contribution
to h t , which is of the same order ash in z. Thus, consis-
tently we must neglect the contribution ofh to the dynamical
exponentz, which to lowest order is therefore

z511
h t

2
1O~e2!511

e

27
1O~e2!. ~5.23!

Quasiparticles and critical slowing down

The quasiparticle structure of the theory is obtained fr
the Green’s function G21(p,v)5G (2) (p,s52 iv
101,g* ). In particular, the dispersion relation and the wid
of the quasiparticle are obtained from the real and imagin
parts, respectively.

While the general solution of the RG equation does
determine the scaling functionF in Eq. ~5.20!, the fact that
it is only a function of the scaling ratioq allows us to ex-
tract the quasiparticle structure. The analytic continuat
s→2 iv101 leads to the analytic continuation of the sca
ing variableq→2Ã22 i sgn(Ã)01 with

Ã5
v

v~m!m12zpz
. ~5.24!

Writing the scaling functionF analytically continued in
terms of the real and imaginary partsF„q52Ã2

2 i sgn(Ã)01
…5FR(Ã)1 iF I(Ã), the position of the qua-

siparticle pole corresponds to the value ofÃ for which the
real part vanishes. We call this dimensionless real num
Ã* ; hence it is clear that the dispersion relation for the q
siparticles obeys

vp5Ã* v~m!m12zpz. ~5.25!

Furthermore, assuming thatFR vanishes linearly atÃ* we
can write the Green’s function near the position of the pole
the form

G~v,p!.
1

m2@p/m#22h

1

~Ã2Ã* !FR8 ~Ã* !1 iF I~Ã* !
.

~5.26!

Alternatively, we can write the RG improved propagator ne
the quasiparticle pole in the Breit-Wigner form

GBW~v,p!;
Zp

v2vp1 iGp
~5.27!

with the dispersion relation, residue at the quasiparticle p
and quasiparticle width given by

vp5Ã* v~m!m12zpz, ~5.28!

vg5~z!Ã* v~m!m12zpz21, ~5.29!

Zp5
v~m!m12zpz

m2@p/m#22hFR8 ~Ã* !
, ~5.30!
08503
ry
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e,

Gp5
F I~Ã* !v~m!m12zpz

FR8 ~Ã* !
[

vpF I~Ã* !

Ã* FR8 ~Ã* !
.

~5.31!

The imaginary partF I(Ã) must be proportional to the
anomalous dimensions and hence perturbatively small in
e expansion~this will be seen explicitly below to lowes
order!.

The definite values forÃ* , FR(Ã* ), andF I(Ã* ) must
be found by an explicit calculation. However, the above q
siparticle properties, such as the position of the pole, gr
velocity, residue, and width, areuniversal in the sense tha
they depend only on the fixed point theory. For a posit
dynamical exponentz the above analysis reveals a vanishi
group velocity and width for long-wavelength quasiparticl
at the critical point.

Furthermore, the expression for the width given by E
~5.31! displays not only the phenomenon of critical slowin
down, i.e., the width of the quasiparticle vanishes in t
long-wavelength limit, but also the validity of the quasipa
ticle picture, sinceGp /vp!1 in thee expansion.

Threshold singularities. While we have assumed abov
that the real part of the scaling function vanishes linearly
the quasiparticle pole, this need not be the general situa
It is possible that the real part vanishes with an anomal
power law, i.e.,

FR~V!;uV2V* u11x, x5x (1)e1x (2)e21•••.
~5.32!

In this case a quasiparticle width cannot be defined as
residue will either vanish or diverge depending on the sign
x. It is also possible thatF I(V) also vanishes with an
anomalous power atV* . We refer to these cases as thresho
singularities and we will find below an example of this cas
Another example of this situation has been found in de
QCD as a result of the breakdown of Fermi liquid theory
the normal phase@36#. Clearly, only a detailed calculation o
the scaling functions can reveal whether the real part of
scaling function vanishes linearly or with an anomalo
power law atV* . The set of quasiparticle properties give
above~5.28!–~5.31! is valid only provided the real part van
isheslinearly.

We can go further and find the explicit form of the scalin
function by focusing on the renormalization group improv
propagator obtained in lowest order in thee expansion given
by Eq. ~5.22!. The analytic continuation to real frequencie
of the RG improved two-point function to lowest order give
by Eq. ~5.22! leads to

G21~p,v!5p22hmhF12S uvu

v~m!m12zpzD 22h t

3S 11 i
ph t

2
sgn~v! D G ~5.33!

where we have approximated cos(pht/2)'1, sin(pht/2)
'ph t/2 to lowest order.
8-14
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From this expression we see that the dispersion rela
vp , group velocity vg(p), width G(p), and quasiparticle
residueZp are of the form given by Eqs.~5.28!–~5.31! with
Ã* 51, and with the following explicit expressions to lea
ing order in thee expansion:

uvpu5v~m!m12zpz, ~5.34!

vg~p!5zv~m!m12zpz21, ~5.35!

G~p!5
ph t

4
v~m!m12zpz[

ph t

4
uvpu, ~5.36!

Zp5
1

2
v~m!m12zpz21, ~5.37!

with z given by Eq.~5.23! above.
Several important features of these expressions mus

highlighted.
The dispersion relation~5.25! features ananomalous di-

mensiongiven by the dynamical exponentz'11h t/251
1e/27. The productv(m)m12z is a renormalization group
invariant as can be seen from Eqs.~5.3! and ~5.6! evaluated
at the fixed point. Thus, all of the above quantities that
scribe the physical quasiparticle properties are manife
renormalization group invariant.

The group velocity ~5.35! vanishes in the long-
wavelength limit as a power law completely determined
the dynamical anomalous dimensionz. This feature high-
lights the collective aspects of the long-wavelength exc
tions.

Critical slowing downis explicitly manifest in the width
G(p) sinceG(p)→0 asp→0. Furthermore, we also empha
size the validity of the quasiparticle picture, the ra
G(p)/vp'ph t/2;O(e)!1. Thus, the quasiparticles ar
narrow in the sense that their width is much smaller than
position of the pole. Even consideringe51, corresponding
to dynamical critical phenomena in three spatial dimensio
Gp /vp;0.1.

Thus, we see that the renormalization group resumma
has led to a consistent quasiparticle picture, but in terms
dispersion relation that features an anomalous dimension
a group velocity that vanishes in the long-wavelength lim
Obviously these features of the quasiparticles cannot be
tracted from a naive perturbative expansion.

B. Away from the critical point: TœTc

Having studied the quasiparticle aspects at the crit
point, we now turn our attention to their study slightly aw
from the critical point. The critical region of interest isuT
2Tcu!Tc . Critical behavior in the broken symmetry pha
near the critical point withT&Tc will be studied elsewhere
with particular attention to the critical dynamics of Gol
stone bosons. In this article we restrict our attention to
normal phase near the critical point.

In the Lagrangian density~2.4! the term M2(T) is the
exactmass~rather than the exact inverse susceptibility! de-
termined by the condition~2.5! and the countertermdm2(T)
08503
n
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e

is adjusted consistently in perturbation theory to fulfill th
condition. However, to relate the mass to the departure a
from the critical temperature it is more convenient to re
range the perturbative expansion in a manner that explic
displays the departure fromTc . This is achieved as follows
Consider the one-loop contribution to the self-energy in
masslesstheory ind spatial dimensions:

S (1)52
lT

2 (
m

E ddq

~2p!d

1

q21vm
2

52lTd21A~d!1z.t.t.

~5.38!

whereA(d) depends only on the spatial dimensionality a
z.t.t. stands for zero temperature terms. It is convenien
group this contribution with the bare mass term in the L
grangian in the form

m2~T!52m0
22S (1)5lTd21A~d!2mR

2~0!

'a~T2Tc! for T;Tc5F mR
2

lA~d!
G1/(d21)

~5.39!

where the zero temperature contributions@denoted by z.t.t. in
Eq. ~5.38!# have been absorbed inmR

2(0). Wereorganize the
perturbative expansion by rewriting the Euclidean Lagra
ian in the form

LE5
1

2

~]tF!2

v0
2

1
1

2
~¹F!21m2~T!F21

lR

4!
F4

1
1

2
dm2~T!F21

dl

4!
F4 ~5.40!

where now the countertermdm2(T) is simply the one-loop
tadpole diagram evaluated for zero mass given by Eq.~5.38!,
it is of O(l) and is included in the perturbative expansi
consistently.

To one-loop order the two-point function is now given b

G (2)~p,s!5p21
s2

v0
2

1m2~T!2SS ,

SS5@S2dm2~T!#

5
lT

2 (
m

E ddq

~2p!d

m2~T!

~q21vm
2 !@q21vm

2 1m2~T!#
.

~5.41!

The integral above is of the typical form are those studied
the previous sections@see Eq.~3.3!#. Separating them50
Matsubara contribution from themÞ0 for which we can set
m2(T)}(T2Tc)'0 for T2Tc!Tc , we obtain
8-15
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(
m

E ddq

~2p!d

m2~T!

~q21vm
2 !@q21vm

2 1m2~T!#

5m2~T!FG~e/2!G~12e/2!

~4p!d/2G~d/2!
m2e~T!1C~d!T2eG .

~5.42!

Again, fore.0 we can neglect the second term in the squ
brackets in the limitT@m(T). Expanding ine to obtain the
lowest order contribution consistently in thee expansion, we
obtain the two-point function to one-loop order:

G (2)~p,s!'p21
s2

v0
2

1m2~T!F12
g~m!

e
1

g~m!

2
lnS m2~T!

m2 D G .

~5.43!

The renormalized mass parametermR(T) is defined by

Zfm2~T!5Zm mR
2~T! ~5.44!

andZm is fixed by the renormalization condition

G (2)~p50, s50, mR
25m2!5m2. ~5.45!

Since Zf receives corrections atO(g2) we chooseZm to
lowest order in thee expansion to be

Zm511
g~m!

e
1O~g2,ge!. ~5.46!

1. Static aspects

Before we embark on a full discussion of the dynam
away from the critical point, it proves convenient and ill
08503
e

s

minating to discuss the static aspects first. In particular, si
we will study thep50 case butTÞTc a relevant quantity is
the inverse susceptibilityx21(T), which is defined as

x21~T!5M2~T!5GR
2~p50; s50!, ~5.47!

which near the critical point and the nontrivial fixed pointg*
given by Eq.~5.14! is given by

M2~T;Tc!'mR
2~T!F11

g*

2
lnS mR

2~T!

m2 D G
'@mR

2~T!#11g* /2, ~5.48!

where we anticipated an exponentiation of the leading lo
rithms via the renormalization group, which will be born
out by the renormalization group analysis below. Recall
that m2(T)}uT2Tcu by Eq. ~5.39!, we find

x21~T;Tc!}uT2Tcug, g511
e

6
1•••. ~5.49!

The critical exponentg is seen to be the correct one@4,21–
23#.

Just as in the case of the theory at the critical point stud
above, we now study the dynamics of the theory in ane
expansion and implement a resummation of the leading
frared divergences via the renormalization group.

2. Dynamics away from the critical point

As argued above the leading infrared behavior is obtai
by setting the internal Matsubara frequencies to zero in
two-loop self-energy. Ind542e spatial dimensions, the
self-energy at two loops is
S (2)
„p;s;m~T!…5

l2T2

6 E ddq

~2p!dE ddk

~2p!d

3
1

@q21m2~T!#@k21m2~T!#@~q1k1p!21s2/v0
21m2~T!#

. ~5.50!

The loop integrals are evaluated by introducing two Feynman parameters leading to

S (2)
„p;s;m~T!…5g2~m!G~211e!m2eE

0

1

dxE
0

1

dy@x~12x!#e/221ye/221

3F x~12x!y~12y!p21~12y!x~12x!m2~T!1ym2~T!1yx
s2

v0
2G 12e

. ~5.51!
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It is convenient to separate the static contribution from
dynamical part by writing

S (2)
„p;s;m~T!…5S (2)

„p;0;m~T!…1S̃ (2)
„p;s;m~T!…,

S̃ (2)
„p;s;m~T!…

[S (2)
„p;s;m~T!…2S (2)

„p;0;m~T!….

~5.52!

The static contributionS (2)
„p;0;m(T)… leads to wave func-

tion renormalization, a renormalization of the mass, a
O(e2) corrections to the static anomalous dimensions, wh
will be neglected to leading order in thee expansion. The
second, dynamical contribution is obtained consistently in
e expansion: the regions of the integrals in the Feynm
parameters that lead to inverse powers ofe in ane expansion
arex;0,1 andy;0. The contributions of these regions ca
be isolated by partial integration, and after some straight
ward algebra we find

S̃ (2)
„p;s;m~T!…5

g2~m!

6e F2
2

e

s2

v0
2

12
s2

v0
2

lnS m2~T!

m2 D
12S m2~T!1

s2

v0
2D lnS 11

s2

v0
2m2~T!

D G
1O~e0,e!. ~5.53!

Thus, putting together the one-loop contribution found p
viously and the two-loop contribution found above, the tw
point function at zero spatial momentum but away from
critical point is found to be

G (2)
„p;s;m~T!…5p2F11

g2~m!

12e
1O~g2e0!G1

s2

v0
2

1m2~T!F12
g~m!

e
1

g~m!

2
lnS m2~T!

m2 D G
1

g2~m!

6e F2

e

s2

v0
2

22
s2

v0
2

lnS m2~T!

m2 D
22S m2~T!1

s2

v0
2D lnS 11

s2

v0
2m2~T!

D G
1O~g2,g2e!, ~5.54!

where we have neglected logarithmic corrections that w
exponentiate to anomalous dimensions ofO(e2) for
momentum-dependent terms. We have displayed only
contribution that will be canceled by wave function reno
malization just as in the critical case.

Obviously them2(T)50 limit coincides with the two-
point function at the critical point~4.8! to leading order
O(e). In the above expression we have not included
two-loop contribution to the statics50 part, since it will
08503
e

d
h

n
n
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e
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e
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lead to anO(e2) correction to the critical exponent for th
correlation length~inverse susceptibility!.

The renormalization conditions for the two-point functio
away from the critical point are now summarized as follow

GR
(2)
„p,s,vR ;mR~T!…5ZfG (2)

„p,s,v0 ;m~T!…,

vR
25v0

2 Zv

Zf
, Zfm2~T!5mR

2~T!Zm ,

]GR
(2)

]p2 U
p25m2, s2/vR

25m2

51,

]GR
(2)

]s2 U
p25m2, s2/vR

25m2

5
1

vR
2

, ~5.55!

GR
(2)
„p50, s50; mR

2~T!5m2
…5m2, ~5.56!

along with the renormalization conditions on the four po
function ~4.11!. To leading order in thee expansion the
renormalization constantsZf ,Zv , andZm are given by Eqs.
~4.14!, ~4.15!, and~5.46!, respectively.

Thus, we find the renormalized two-point function at tw
loop order and to leading order in thee expansion~since
g* ;e):

GR
(2)
„p;s;mR~T!…5p21m2~T!F11

g~m!

2
lnS mR

2~T!

m2 D G
1

s2

vR
2 F12

g2~m!

3e
lnS mR

2~T!

m2 D G
2

g2~m!

3e S mR
2~T!1

s2

v0
2D

3 lnS 11
s2

v0
2mR

2~T!
D 1O~g2,g2e!

~5.57!

SincemR
2(T) has dimension it is convenient to introduce t

dimensionless quantity

m̄25
mR

2~T!

m2
~5.58!

and the corresponding renormalization group beta functio

bm̄5m
]m̄2

]m
U

m0 ,T,l0

5~gm̄22! m̄2, ~5.59!

gm̄5g1O~g2,ge!, ~5.60!

where we have used Eqs.~5.44! and ~5.46!.
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The renormalization group equation for theN-point func-
tion away from the critical point is now given by

Fm
]

]m
1bg

]

]g
1bv

]

]v
1bm̄

]

]m̄2
2

N

2
gG

3G (N)S p1 ,
s1

v
;p2 ,

s2

v
; . . . ,pN ;

sN

v
;g,m̄,m D50. ~5.61!

The new ingredient as compared to the critical case~5.1! is
the dependence onm̄. Following the same steps as for th
critical case, we now find that the solution of the renorm
ization group equation for the two-point function obeys

G (2)S etp,
ets

v
,g,m̄,m D

5e*0
t dt8[22g(t8)]G (2)S p,

s

v~ t !
,g~ t !,m̄2~ t !,m D

~5.62!

with m̄(t) the solution of the differential equation

]m̄2~ t !

]t
5bm̄„g~ t !,v~ t !,m̄~ t !… ~5.63!

with the initial condition

m̄2~0!5
mR

2~T,m!

m2
}uT2Tc~m!u. ~5.64!

In the infrared the coupling is driven to the nontrivial fixe
point g* 5e/3 and

m̄2~ t !→m̄2~0!e(g
m̄
* 22)t, gm̄

* 5
e

3
. ~5.65!

Just as in the solution of the renormalization group equa
at criticality near the fixed point~5.18!,~5.19!, introducing
pet[P, set[S we now find

G (2)S P,
S

v
,g,m D

5et(22h)G (2)

3S Pe2t,
S

v~0!
e2te(12z)t,g* ,m̄2~0!e(g

m̄
* 22)t,m D .

~5.66!

Following the analysis of the critical case, and the scal
property ~5.8! and writing P5met we find the following
scaling form:
08503
-

n

g

G (2)S P,
S

v
,g,m D5m2F P

mG22h

FS S

v~m!m12zPz
;Pj D ,

j5
1

m FmR
2~T,m!

m2 G 1/(g
m̄
* 22)

. ~5.67!

j is therefore identified with thecorrelation length@4,21–23#

j;uT2Tcu2n, n5
1

22gm̄
*

;
1

2
1

e

12
1•••. ~5.68!

It is important to note at this stage that the correlation len
j is a renormalization group invariant, as can be eas
checked by using Eq.~5.58! with the renormalization group
beta function~5.59!.

To study the limit of zero spatial momentum it is mo
convenient to rewrite the above scaling solution in the f
lowing form:

G (2)S P,
S

v
,g,m D5m2F j

mG2(22h)

CS Sjz

v~m!m12z
;Pj D .

~5.69!

From the definition of the inverse susceptibilityM2(T)
5x21(T)5G (2) (p50, s50) we find the known result
@4,21–23,25#

x21~T!}uT2Tcu2g, g5
22h

22gm̄
*

5n~22h!.

~5.70!

Furthermore, the two-point function is a function of tw
renormalization group invariant, dimensionless scaling va
ables

G (2)
„p,s,mR

2~T,m!…5m2FmR
2~T,m!

m2 G (22h)/(22g
m̄
* )

C~w,d!

~5.71!

with

w5F s

v~m!mG2FmR
2~T!

m2 G 2z/(g
m̄
* 22)

[F s jz

v~m!m12zG 2

,

~5.72!

d5
p2

m2 FmR
2~T,m!

m2 G 2/(g
m̄
* 22)

[~p j!2. ~5.73!

The renormalization condition~5.56! determines that
C(0,0)51.

We can now follow the arguments provided in the pre
ous subsection for the critical case. Under the analytic c
tinuations2→2v22 i sgn(v)01:
8-18
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w→2V22 i sgn~V! 01, V5
v jz

v~m!m12z
, ~5.74!

C„w52V22 i sgn~V!01,d…5CR~V,d!1 iC I~V,d!.

~5.75!

The position of the quasiparticle pole in the two-po
Green’s function corresponds to the value ofV5V* (d) for
which CR„V* (d),d…50. This condition determines the dis
persion relation of the quasiparticle and is given by

vp5V* ~d!v~m!m12zj2z. ~5.76!

This expression emphasizes that the dispersion relation
pends onp through the scaling variabled5(p j)2.

Assuming that near the quasiparticle poleCR vanishes
linearly, the Green’s function can be approximated by

G„p,v,mR~T!…

;
~mj!22h

m2

1

~V2V* !CR8 ~V* ,d!1 iC I~V* ,d!
~5.77!

where CR8 (V* ,d)5]CR(V,d)/]VuV5V* . Near the quasi-
particle pole we can further write the above expression in
Breit-Wigner form

GBW„p,v,mR~T!…;
Zp

v2vp1 i Gp
~5.78!

with

vp5V* ~d!
v~m!m12z

jz
, ~5.79!

Zp5CR8 ~V* !
v~m!

m
~mj!22z2h,

~5.80!

Gp5
C I~V* !

CR8 ~V* !

v~m!m12z

jz

[
vpC I~V* !

V* ~d!CR8 ~V* !
}uT2Tcuzn, ~5.81!

where we have suppressed the dependence on the sc
variabled in the arguments of the real and imaginary parts
avoid cluttering of notation. Furthermore, we have made
plicit the combination ofstatic and dynamiccritical expo-
nents using the expression given in Eq.~5.68! for the static
critical exponentn, and the dependence on the momentum
implicit through the dependence on the scaling variabled of
V* as well as the explicit dependence of the real and ima
nary parts.

Again, the imaginary part must be proportional to t
anomalous dimensions, and hence perturbatively small in
e expansion. Therefore the expression for the width~5.81!
reveals both critical slowing down, sinceGp;uT2Tcuzn van-
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ishing atT5Tc , and the validity of the quasiparticle picture
sinceGp /vp!1 in thee expansion.

At this point we recognize a fundamental difference fro
the Wilsonian results of Ref.@10#. While in Ref. @10# the
width was found to be proportional touT2Tcun up to loga-
rithms, we see from Eq.~5.81! that the quasiparticle width
actually involves the new dynamical anomalous exponenz.
The difference can be traced to the fact that the Wilson
approach advocated in Ref.@10# does not include two-loop
diagrams, which are necessary to reveal the anisotro
renormalization through the renormalization of the speed
light and are directly responsible for the new dynamic
anomalous exponentz.

We emphasize that the above Breit-Wigner form as w
as the quasiparticle properties rely on the assumption tha
real part of the scaling function vanishes linearly near
quasiparticle pole. As emphasized before in the critical c
this need not be the general situation, and anomalous po
laws can lead to threshold singularities as discussed abo

While the solution of the renormalization group leads to
scaling form of the two-point correlation function, it doesnot
explicitly specify the scaling functionC. However, we can
obtain the functionC by matching the leading logarithms t
those of the perturbative expression~5.57! evaluated at the
fixed point g* 5e/3 to lowest order in thee expansion.
Matching the leading logarithms and assuming their ex
nentiation via the renormalization group it is straightforwa
to see that the two-point function is given by

G (2)
„p,s,mR

2~T,m!…

;m2FmR
2~T,m!

m2 G (22h)/(22g
m̄
* )

$d1@11w#22z%

~5.82!

where we have used the lowest order results in thee expan-
sion:

gm̄
* 5

e

3
, z511

e

27
, h5O~e2!, ~5.83!

and kept consistently the lowestO(e) in the exponentiation
of the leading logarithms leading to Eq.~5.82!. Thus, we
obtain the lowest order result for the scaling function:

C~w,d!5d1@11w#22z. ~5.84!

We can now obtain an explicit form of the real and imag
nary parts of the scaling function that enter into the qua
particle parameters. This is achieved by performing the a
lytic continuation~5.74!, which leads to

CR~V!1 iC I~V!5d1@12V22 i sgn~V! 01#22z

5d2uV221u22z@11 ip ~z21!

3sgn~V!Q~V221!#. ~5.85!

For p50 i.e.,d50, we see that both the real and imagina
parts of the scaling function vanish atV* 51 with an
8-19
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anomalous power law, providing an explicit example of the
case of threshold singularities mentioned above.

For pÞ0 andTÞTc we find a quasiparticle pole at

V* 2511d1/(22z);11~p j!2z, ~5.86!

where we have approximated the anomalous dimension
its leading order ine usingz511e/27. From this expression
for V* we obtain the dispersion relation for quasiparticle

vp
25v2~m!m2H FmR

2~T,m!

m2 G 2zn

1F p2

m2G zJ ~5.87!

with n given by Eq.~5.68!. In particular, we find that the
frequency of zero momentum quasiparticlesvp50}uT
2Tcuzn. Obviously atT2Tc @mR(T)50] the dispersion re-
lation coincides with that of the critical case given by E
~5.25!. For pÞ0, i.e.,dÞ0, the real part of the scaling func
tion vanishes linearly, the Breit-Wigner approximation~5.78!
near the quasiparticle pole is valid, and the relations~5.79!–
~5.81! describe the properties of the quasiparticles. To low
order in thee expansion we find, using Eq.~5.23!, that

C I~V* !

V* ~d!CR8 ~V* !
5

ph t

4

~pj!2z

11~pj!2z
. ~5.88!

For p50, i.e.,d50, this ratio vanishes andCR8 (V* )}uV*
21uV* 51

12z diverges, displaying the phenomenon of thresh
singularity with a divergent residueZp .

For pÞ0 but T→Tc (d→`) this ratio equals that of the
critical case@see Eq.~5.36!#.

For TÞTc , pÞ0 we finally find the width of the long-
wavelength quasiparticles to be given to lowest order in the
expansion by

Gp;
ph t

4

~pj!2z

11~pj!2z

v~m!m12z

jz
@11~pj!2z#1/2

~5.89!

with the following behavior to lowest order in thee expan-
sion:

Gp;
ph t

4
v~m!m2z3H pz for p fixed, T→Tc ,

p2zjz for j fixed, p→0.
~5.90!

Thus, critical slowing down emerges in both limits; furthe
more, the validity of the quasiparticle picture is warranted
the e expansion, sinceh t.2(z21)52e/271O(e2)!1.

VI. SUMMARY OF RESULTS

Critical phenomena, both static and dynamic, in quant
field theory at finite temperature result in dimensional red
tion since momenta and frequencies arep,v!T and the cor-
relation length isj@1/T. The infrared physics is dominate
by the contribution of the zero Matsubara frequency in int
nal loops, which in turn results in an effective couplinglT in
the perturbative expansion. Naive perturbation theory at h
08503
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temperature breaks down in four space-time dimensions
cause of the strong infrared behavior of loop diagrams n
the critical point for long-wavelength phenomena.

We propose an implementation of the renormalizat
group to studydynamicalcritical phenomena which hinge
upon two main ingredients.

The leading infrared behavior near the critical point
determined by keeping only the zero Matsubara internal
quency in the loops. To control the infrared consistently
implement an expansion ine in 52e space-time dimensions
Dimensional reduction for long-wavelength phenomena n
the critical point results in the perturbative expansion be
in terms ofg(m)}lTm2e wherem is the scale of externa
momenta and frequencies in the diagram. The renormal
effective coupling is driven to a fixed point in the infrare
which is of O(e). Therefore long-wavelength phenomen
can be studied in perturbation theory around this fixed po
for e!1. The perturbative expansion is improved by imp
menting a renormalization group resummation which reve
dynamical scaling phenomena with anomalous dimensio
Eventually the limit of physical intereste→1 must be stud-
ied by further Borel and/or Pade´ resummations.

The second important ingredient is theanisotropicscaling
between space and time. While space is infinite, at fin
temperature in the Euclidean formulation the time direct
is compactified to the interval@0,1/T#. We introduce a new
parameter, the effective speed of light in the medium, wh
is renormalized and runs with the renormalization transf
mations. The infrared renormalization of the speed of lig
results in a newdynamicalanomalous exponent which dete
mines the dispersion relation and all the quasiparticle pr
erties. Thee expansion combined with the renormalizatio
group leads to a consistent quasiparticle description of lo
wavelength excitations near the critical point.

The critical exponents, both static and dynamic, are su
marized for the critical caseT5Tc in Table I as well as for
TÞTc ~Table II! but in the symmetric phase withT→Tc

1 .

TABLE I. Quasiparticles atT5Tc .

vp} pz

vg} pz21

Zp} pz1h22

Gp} h tp
z

h5 e2/541O(e3) (static)
h t5 2e/271O(e2) (dynamic)
z5 11(1/2)(h t2h);11e/271O(e2) (dynamic)

TABLE II. Quasiparticles atT*Tc .

vp
2} @mR

2(T,m)/m2#2zn1@p2/m2#z

Gp} h tvp(p j)2z/@11(pj)2z#

j} uT2Tcu2n

mR
2(T)} uT2Tcu

n5 1/21e/121O(e2) (static)
h t5 2e/271O(e2) (dynamic)
z 5 .11(1/2)(h t2h)511e/271O(e2) (dynamic)
8-20
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The new dynamical exponentz is missed by the Wilsonian
approach advocated in Ref.@10# since two-loop diagrams ar
completely neglected in that approach, and anisotropic
caling of frequency and momenta becomes manifest at t
loop order and beyond.

Critical exponents for O„N… symmetry

At this stage we can generalize our results to the case
scalar theory withO(N) symmetry at or slightly above th
critical point. While the static critical exponents for th
O(N) case are available in the literature@4,21–23,25#, the
dynamical critical exponent to lowest order ine can be ob-
tained simply by recognizing that the symmetry factors c
responding to theO(N) theory multiply the two-loop expres
sion for the self-energy by an overall factor. From t
expression~4.8! we see that the coefficient ofs2/v2 is a
factor 4/e times the coefficient ofp2, which immediately
leads to the result

h t5
4

e
h. ~6.1!

Since for the O(N) theory h5e2(N12)/@2(N18)2#
1O(e3), we find to lowest order ine

h t5e
2~N12!

~N18!2 1O~e2!.

In summary, the static and dynamic critical exponents
lowest order in thee expansion for theO(N) theory are
given in Table III.

VII. CONCLUSIONS, DISCUSSION, AND IMPLICATIONS

We have studied the dynamical aspects of lon
wavelength~collective! excitations at and near the critica
point in scalar quantum field theories at high temperatu
After recognizing that naive perturbation theory breaks do
at high temperature in the long-wavelength limit, we intr
duced ane expansion around 52e space-time dimension
combined with the renormalization group at high tempe
ture to resum the perturbative series.

The effective long-wavelength theory at high temperat
is described by a nontrivial fixed point at which the corre
tion functions feature scaling behavior. The anisotropy
tween spatial and time coordinates in Euclidean space-
at finite temperature leads us to consider the renormaliza
of the speed of light, which, in turn leads to a new dynami
exponentz. All dynamical quantities, such as the dispersi
relation and widths of long-wavelength quasiparticle~collec-

TABLE III. Critical exponents forO(N).

n5 1/21(N12)/4(N18)e1O(e2) (static)
h5 e2(N12)/2(N18)21O(e3) (static)
h t5 e 2(N12)/(N18)21O(e2) (dynamic)
z5 11e(N12)/(N18)21O(e2) (dynamic)
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tive! excitations, depend on this new dynamical exponent
well as the static exponents.

Our results are summarized in Tables I–III in the previo
section.

Two very important aspects emerge from this treatme
~i! critical slowing down, i.e., the relaxation rate of the qu
siparticle, vanishes in the long-wavelength limit or at t
critical point with definite anomalous dimensions determin
by the new dynamical exponentz, and ~ii ! the quasiparticle
picture, i.e., narrow widthsGp!vp , is valid. The group ve-
locity of quasiparticles vanishes at the critical point in t
long-wavelength limit revealing the collective aspects
these excitations. The dynamical exponentz511e(N
12)/(N18)21O(e2) describes anew universality classfor
dynamicalcritical phenomena in quantum field theory.

As mentioned in the introduction these phenomena h
phenomenological implications for the chiral phase transit
in the quark-gluon plasma with potential observational co
sequences if long-wavelength pion fluctuations freeze ou
the chiral phase transition. An important aspect revealed
this program is that the effective couplingle f fTm2e is
driven to the Wilson-Fischer fixed point in the infrared; th
in turn means that in this limitle f f→0. This may be impor-
tant in the linear sigma model description of low ener
QCD near the critical point and may give rise to interesti
phenomenological consequences.

In this article we focused our attention on the approach
the critical temperature from above; therefore our results
garding the dynamical exponentz are valid in the symmetric
phase. An important question that we are currently addre
ing @37# is the relaxation of pions slightly belowTc . Since
the scattering amplitude of pions~at zero temperature! van-
ishes in the long-wavelength limit we expect novel behav
of critical slowing down for pion fluctuations below the crit
cal temperature. We expect to report on our findings on th
and other related issues soon@37#.

While we have provided a quantitative implementation
the program ofe expansion with resummation via the reno
malization group, the physical limite→1 requires higher
order calculations with Borel or Pade´ resummations in much
the same way as for static critical phenomena. We have s
ied the dynamical aspects to lowest order in thee expansion
but clearly a formal proof of the consistency of thee expan-
sion to higher orders, just as in the usual critical phenome
must be explored. While clearly such programs are bey
the scope and goals of this article, we here provided the
steps of a program whose potential phenomenological im
cations as well as intrinsic interest in finite temperature qu
tum field theory warrant further study.
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APPENDIX A: ONE-LOOP DIAGRAM AT HIGH
TEMPERATURE

We derive in this appendix the behavior of the one-lo
diagramH(p,s) contributing to the four-point function fo
high temperaturesT@p,s. Settingv51 to avoid cluttering
of notation~the velocity of light is not relevant for the dis
cussion in this section!, we have, from Eq.~2.7!,

H~p,s!5
T

2 (
l PZ

E ddq

~2p!d

3
1

@q21~2pTl !2#@~qW 1pW !21~2pT!2~n1 l !2#
,

~A1!

where d542e is the number of spatial dimensions. Th
denominators in Eq.~A1! can be combined using Feynma
parameters with the result

H~p,s!5
T

2 (
l PZ

E ddq

~2p!dE0

1

dx
1

@q21Al~x,p,s!#2

5
T

2~4p!d/2
GS 22

d

2D
3(

l PZ
E

0

1

dx@Al~x,p,s!#d/222 ~A2!

where we integrated over the spatial momenta and

Al~x,p,s!5x~12x!~p21s2!1~v l1xs!2,

v l52pTl, s52pTn. ~A3!

We single out now the contribution from thel 50 mode and
study the behavior of the sum overlÞ0 for largeT@p,s.

Let us first evaluate thel 50 term in the sum~A2!:

T

2~4p!22e/2
GS e

2D E
0

1

dx@A0~x,p,s!#2e/2

5
T

2~4p!22e/2
GS e

2D E
0

1

x2e/2dx@~12x!p21s2#2e/2

52
Tm2e

2

G~e/221!

~4p!22e/2 S s21p2

m2 D 2e/2

3FS e

2
,12

e

2
;22

e

2
;

p2

p21s2D , ~A4!

where F(a,b;c;z) stands for the hypergeometric functio
@33#.

We have, for thelÞ0 terms in the high temperature limi
08503
@Al~x,p,s!#2e/2 5
T@p,s

~2pTu l u!2e2sgn~ l !
ex

u2pTlu11e

2
e x

2u2pTlu21e

3$~12x!p21s2@12~21e!x#%

1O~ uTlu232e!. ~A5!

The sum overlÞ0 then yields, in the high temperature limi

T

2~4p!22e/2
GS e

2D E
0

1

dx(
lÞ0

@Al~x,p,s!#2e/2

5
T@p,s ~2pT!12eG~e/2!

2~4p!22e/2

3H z~e!

p
2

ez~21e!

12p~2pT!2

3@p22s2~112e!#1O~T232e!J . ~A6!

We see that only the first term in the right-hand side is i
portant for 0,e,1 and high temperature. This term is th
dominant high temperature limit of the sum of nonzero M
subara modes. We then have

H~p,s! 5
T@p,s

Hasi~p,s!2
G~11e/2!z~21e!

384p41e/2T11e
@p22s2~22e!#

3F11OS p2,s2

T2 D G ,
where

Hasi~p,s![2
Tm2e

2

G~e/221!

~4p!22e/2 S s21p2

m2 D 2e/2

3FS e

2
,12

e

2
;22

e

2
;

p2

p21s2D
1

m2e22G~11e/2!z~e!

8p21e/2e
T12e. ~A7!

APPENDIX B: TWO-LOOP DIAGRAM
AT HIGH TEMPERATURE

The renormalized two-point function is given by~all
quantities are renormalized below!

G (2)~p,s!5Zfp21
Zv

v2 s22S (2)~p,s!1O~l3! ~B1!
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whereS (2)(p,s) is the two-loop self-energy. Using the reno
malization conditions~4.13! we find for the wave function
and velocity of light renormalization

Zf511
]S (2)~p,s!

]p2 U
p5m, s5mv

1O~l3!,
ra

08503
Zv511v2
]S (2)~p,s!

]s2 U
p5m, s5mv

1O~l3!.

~B2!

The two-loop contribution to the self-energyS (2)(p,s) is
given by
S (2)~p,s!5
l2T2

6 (
l , j PZ

E d42eq

~2p!42e

d42ek

~2p!42e

1

@q21v l
2/v2#@k21v j

2/v2#@~pW 1kW1qW !21~v l1v j1s!2/v2#
, ~B3!

wherev j52p jT, s52pTn.
We combine the propagators in Eq.~B3! using Feynman parameters and integrate over the momenta with the result

S (2)~p,s!5
l2T2G~e21!

6~4p!42e (
l , j PZ

E
0

1

dxE
0

1

dj
xe/221

@12x1xj~12j!#22e/2

3H x~12x!j~12j!

12x1xj~12j!
p21S 2pT

v D 2

@ j 2xj1 l 2x~12j!1~ j 1 l 1n!2~12x!#J 12e

. ~B4!

Using the definition~4.6! for the dimensionless coupling, to orderg2 we find from Eqs.~B2! and ~B4!

Zf512
g2

6 S vm

2pTD 2e

G~e! (
l , j PZ

E
0

1

dxE
0

1

dj
@xe/2~12x!j~12j!#

@12x1xj~12j!#32e/2

3F x~12x!j~12j!

12x1xj~12j! S vm

2pTD 2

1 j 2xj1 l 2x~12j!1S j 1 l 1
m

2pTD 2

~12x!G2e

,

Zv512
g2

3 S 2pT

vm D 122e

G~e! (
l , j PZ

E
0

1

dxE
0

1

dj
xe/221~12x! ~ j 1 l 1vm/2pT!

@12x1xj~12j!#22e/2

3F x~12x!j~12j!

12x1xj~12j! S vm

2pTD 2

1 j 2xj1 l 2x~12j!1S j 1 l 1
vm

2pTD 2

~12x!G2e

. ~B5!

We find from the definition of the anomalous dimension~5.4! and ~B5! for g(g,T/m,v),

gS g,
T

m
,v D5g2

G~e11!

3 (
l , j PZ

E
0

1

dxE
0

1

dj
xe/2~12x!2j~12j!

@12x1xj~12j!#42e/23S 12x12xj~12j!F11
pT

vm
~ j 1 l !G D

3H x~12x!j~12j!

12x1xj~12j!
1S 2pT

vm D 2F j 2xj1 l 2x~12j!1S j 1 l 1
vm

2pTD 2

~12x!G J 212e

1O~g3!. ~B6!
We split the expression forg(g,T/m,v) as follows:

gS g,
T

m
,v D5g0~g,v !1gnzS g,

T

m
,v D ,

whereg0(g,v) is the contribution from the zero Matsuba
mode in Eq.~B6!
g0~g,v !5g2
G~e11!

3 E
0

1

dx E
0

1

dj

3
xe/2~12x!12ej~12j!

@12x1xj~12j!#323e/2@12x12xj~12j!#e

1O~g3!,
8-23



ro

f

bu-

D. BOYANOVSKY AND H. J. de VEGA PHYSICAL REVIEW D65 085038
andgnz(g,T/m,v) stands for the contribution of the nonze
Matsubara modes.

For T@m, we see from Eq.~B6! that gnz(g,T/m,v) de-
creases as (T/m)222e. @Notice that the coefficient o
(T/m)212e vanishes by symmetry when summing overj
1 l .#

Therefore,g0(g,v) dominates forT@m. g0(g,v) can
easily be computed for smalle.0 with the result

g0~g,v !5
g2

3 E
0

1

dxE
0

1

dj
~12x!j~12j!

@12x1xj~12j!#3

1O~eg2,g3!

5
g2

6
1O~eg2,g3!. ~B7!

Therefore,

gS g,
T

m
,v D5

g2

6
1OS eg2,g3,

m2

T2 D . ~B8!

To the lowest nontrivial order ing, that is,g2 ~two loops!, we
find for the functionbv(g,T/m,v)

bvS g,
T

m
,v D52

v
2

gS g,
T

m
,v D2

v
2 S m

]

]m
22e D logZv ,

~B9!

where the derivatives are now at constant~bare! g. Using Eq.
~B5! for logZv yields

W[S m
]

]m
22e D logZv

5g2
pG~e!

3 (
l , j PZ

E
0

1

dx E
0

1

dj
xe/221~12x!

@12x1xj~12j!#22e/2

3Qj ,l~x,j!2eH F xj~12j!

12x1xj~12j!
11G ~12x!e

pQj ,l~x,j!

1F11
2e~12x!

Qj ,l~x,j! G~ j 1 l !
T

vmJ ~B10!

where

Qj ,l~x,j![
x~12x!j~12j!

12x1xj~12j!

1S 2pT

vm D 2

@ j 2xj1 l 2x~12j!#

1~12x!F2pT

vm
~ j 1 l !11G2

.

08503
We find in the high temperature limitT@m that this expres-
sion is dominated by its zero mode contributionW0 ~corre-
sponding toj 5 l 50),

W05g2
G~11e!

3 E
0

1

dxE
0

1

dj
xe/221~12x!12e

@12x1xj~12j!#22e/2

3F xj~12j!

12x1xj~12j!
11G2e

,

which turns out to beT independent.
The sum of nonzero terms gives a subdominant contri

tion for T@m ande strictly positive. We find from Eq.~B10!
after calculation

Wnz 5
T@m

g2S vm

2pTD 2e G~11e!

3 E
0

1

dx E
0

1

dj

3
xe/221~12x!2

@12x1xj~12j!#22e/2

3 (
l , j PZ

j 2

@ j 2~12x1xj!1 l 2x22 j lx j#11e

3F11OS m2

T2 ,gD G . ~B11!

For 0,e!1 and for T@m, W0 and thereforeW are
dominated by the pole ofW0 at e50. That is,

WT@m,0,e!1
5

2g2

3e
1OF S m

T D 2e

,e0G , ~B12!

where we used thatxe/2215e→0(2/e)d(x).
Therefore, we find forbv(g,T/m,v) from Eqs. ~B9!,

~B10!, and~B12!

FIG. 1. Contour in the complexk0 plane.
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bvS g,
T

m
,v DT@m,0,e!1

5

vg2

3 F1

e
1O~e0!G1OF S m

T D 2eG .
APPENDIX C: FORMAL PROOF

The formal proof to one-loop order begins with the e
pression~A1! from Appendix A above. We now use the ide
tity @18,19#

I 5T (
l 52`

l 5`

@Al~x,p,s!#2e/2

5E
C

dk0

4p i
@A~k0 ,x,p,s!#2e/2 cothF k0

2TG ~C1!
ra
ale
tte
,

s

m

a

. D

n-

08503
with A(k0 ,x,p,s)5Al(x,p,s;wl52 ik0) and the contourC
displayed in Fig. 1. The function@A(k0 ,x,p,s)#2e/2 has a cut
running parallel to the real axis which forpÞ0 or in the
massive case for arbitraryp begins away from the imaginar
axis and the contourC. The contour can now be deformed
wrap around the cut and the analytic continuations→2 iv
101 can be performed. Forp,v!T the infrared behavior is
dominated byk0!T for which coth@k0/2T#;2T/k0, and the
resulting expression features a pole atk050 while the cut
begins away from the origin. The cut can be deformed ag
to circle the origin and the integral is simply the residue
the pole k050. Therefore the infrared dominant term
given by I ir 5@A0(x,p,s52 iv101)#2e/2, a result that co-
incides with the analysis in terms of the Matsubara su
provided in Appendix A.
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