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Minimal higher-dimensional extensions of the standard model and electroweak observables
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We consider minimal 5-dimensional extensions of the standard model compactified on anS1/Z2 orbifold, in
which the SU(2)L and U(1)Y gauge fields and Higgs bosons may or may not all propagate in the fifth
dimension while the observable matter is always assumed to be confined to a 4-dimensional subspace. We pay
particular attention to consistently quantize the higher-dimensional models in the generalizedRj gauge and
derive analytic expressions for the mass spectrum of the resulting Kaluza-Klein states and their couplings to
matter. Based on recent data from electroweak precision tests, we improve previous limits obtained in the
5-dimensional standard model with a common compactification radius and extend our analysis to other pos-
sible 5-dimensional standard-model constructions. We find that the usually derived lower bound of;4 TeV
on a universal compactification scale may be considerably relaxed to;3 TeV in a minimal scenario, in which
the SU(2)L gauge boson is the only field that feels the presence of the fifth dimension.
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I. INTRODUCTION

String theory provides the only known theoretical fram
work within which gravity can be quantized and so unde
ably plays a central role in our endeavours of unifying
fundamental forces of nature. A consistent quantu
mechanical formulation of a string theory requires the ex
tence of additional dimensions beyond the four ones we
perience in our everyday life. These new dimensio
however, must be sufficiently compact so as to escape de
tion. In the original string-theoretic considerations@1#, the
inverse length 1/R of the extra compact dimensions and t
string mass Ms turned out to be closely tied to th
4-dimensional Planck massMP51.931016 TeV, with all in-
volved mass scales being of the same order. More re
studies, however, have shown@2–6# that there could still be
conceivable scenarios of a stringy nature where 1/R andMs
may be lowered independently ofMP by several or many
orders of magnitude. In particular, Ref.@5# considers the
radical possibility thatMs is of order TeV and represents th
only fundamental scale in the universe at which unificat
of all forces of nature occurs. In this model, the compact
cation radius related to the higher-dimensional gravitatio
interactions lies in the submillimeter range, i.e., 1/R&1023

eV, so Cavendish-type experiments may potentially test
model by observing deviations from Newton’s law@5,7# at
such small distances. The model also offers a wealth of p
nomenological implications for high-energy colliders@8#.

The above low string-scale framework could be emb
ded within, e.g., type I string theories@4#, where the standard
model ~SM! may be described as an intersection of high
dimensionalDp-branes@5,6,9#. As such intersections ma
naturally be higher dimensional, in addition to gravitons t
0556-2821/2002/65~8!/085037~22!/$20.00 65 0850
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SM gauge fields could also propagate independently with
higher-dimensional subspace, where the size of the new e
dimensions is of order TeV21 for phenomenological reason
@11–16#. Since such low string-scale constructions may
fectively result in different higher-dimensional extensions
the SM @9,10#, the actual limits on the compactification ra
dius are, to some extent, model dependent. Nevertheles
the existing literature the derived phenomenological lim
were obtained by assuming that the SM gauge fields pro
gate all freely in a common higher-dimensional space,
which the compactification radius is universal for all the e
tra dimensions.

In this paper we wish to lift the above restriction an
extend the analysis to models which minimally depart fro
the assumption of a universal higher-dimensional scena
Specifically, we will consider 5-dimensional extensions
the SM compactified on anS1/Z2 orbifold, where the
SU(2)L and U(1)Y gauge bosons may not both live in th
same higher-dimensional space, the so-called bulk. For
ample, one could imagine that the SU(2)L gauge field propa-
gates in the bulk whilst the U(1)Y gauge boson is confined t
our observable 4-dimensional subspace and vice versa.
observable 4-dimensional subspace is often termed 3-b
or simply brane and is localized at one of the two fix
points of theS1/Z2 orbifold, the boundary. In the aforemen
tioned higher-dimensional scenarios, all SM fermions a
the Higgs boson should necessarily be brane fields, such
an explicit breaking of the 4-dimensional gauge symmetry
the original~classical! Lagrangian is avoided.

Another issue of particular interest to us is related to o
ability of consistently quantizing the higher-dimension
models under study in the so-calledRj gauge. In particular, it
can be shown that higher-dimensional gauge-fixing con
©2002 The American Physical Society37-1



u
bo
on

d
a-
e

in
e

io
of
o

he
n
or

e

o
th
r,
e

lec
th
u
ct

re
t

gl
M
uc
a

su
dif

de

h
er
ua
te
e
n

, o
er
o

on
he
. I
er

ruc-
we
he
or
act
to

ses:

d to
ly
ed
a on

a-

nal
to
as

to
gs

g-

nd
d

onal
ost
-

ng

are

di-

al
of

a
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tions can always be found that reduce to the usualRj gauge
after the compact dimensions have been integrated out. S
a quantization procedure can be successfully applied to
Abelian and non-Abelian theories that include Higgs bos
living in the bulk and/or on the brane. TheRj gauge has the
attractive theoretical feature that the unphysical sector
couples from the theory in the limit of the gauge-fixing p
rameterj→`, thereby allowing for explicit checks of th
gauge independence of physical observables, such
S-matrix elements.

After compactification of the extra dimensions, we obta
an effective 4-dimensional theory which is usually describ
by infinite towers of massive Kaluza-Klein~KK ! states. In
the 5-dimensional extensions of the SM under considerat
such infinite towers generically consist of KK excitations
theW boson, theZ boson, and the photon. Since the mass
the first excited KK state is typically set by the inverse of t
compactification radiusR, one expects that the KK effect o
high-precision electroweak observables will become m
significant for higher values ofR. Thus, if all SM gauge
bosons live in the bulk, compatibility of this model with th
present electroweak data gives rise to a lower bound@13# of
;4 TeV on 1/R at the 2s level.

On the other hand, the possibilities that the SU(2)L gauge
boson is a brane field with the U(1)Y gauge boson living in
the bulk and vice versa are phenomenologically even m
challenging. In such cases, we find that the lower limit on
compactification scale 1/R can become significantly weake
i.e., 1/R*3 TeV. This new result emerges partially from th
fact that some of the most constraining high-precision e
troweak observables are getting differently affected by
presence of the KK states within these mixed brane-b
scenaria. For example, the muon lifetime does not dire
receive contributions from KK excitations if theW boson
lives on the brane, but only indirectly when the analytic
sult is expressed in terms of theZ-boson mass in the contex
of our adopted renormalization scheme. Most interestin
unlike in the frequently investigated model with all S
gauge fields in the bulk, other competitive observables, s
asAFB

b andALR
e @17#, do now possess additional distinct an

lytic dependences on the compactification scale 1/R within
these novel brane-bulk models. As a consequence, the re
of the performed global-fit analysis become substantially
ferent for these scenaria.

The paper is organized as follows. In Sec. II we consi
a 5-dimensional Abelian model compactified on anS1/Z2
orbifold, in which the gauge field propagates in the bulk. T
model is quantized by prescribing the proper high
dimensional gauge-fixing condition which leads to the us
class ofRj gauges after the extra dimension has been in
grated out. The same gauge-fixing procedure may succ
fully be implemented for Abelian models augmented by o
Higgs boson which could either be a bulk or a brane field
even for more general models with two Higgs bosons wh
the one Higgs boson can live on the brane and the other
in the bulk. In Sec. II we also present analytic expressi
for the masses of the physical KK gauge bosons and for t
mixings with the corresponding weak eigenstates. In Sec
we extend our gauge-fixing procedure to a high
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dimensional non-Abelian theory and discuss the basic st
ture of the gauge sector after compactification. In Sec. IV
study 5-dimensional extensions of the SM, in which t
SU(2)L and U(1)Y gauge fields and Higgs bosons may
may not all feel simultaneously the presence of the comp
dimension while the fermionic matter is always assumed
be confined on the brane. In fact, we distinguish three ca
~i! both SU(2)L and U(1)Y gauge bosons are bulk fields,~ii !
only the U(1)Y gauge boson is a bulk field while the SU(2)L
one is a brane field, and~iii ! only the SU(2)L gauge boson
resides in the bulk while the U(1)Y one is restricted to the
brane. Technical details of our study have been relegate
the Appendixes A and B. In Sec. V we perform a ful
fledged global-fit analysis to the aforemention
5-dimensional extensions of the SM, based on recent dat
high-precision electroweak observables. Section VI summ
rizes our conclusions.

II. 5-DIMENSIONAL ABELIAN MODEL

To describe as well as motivate our higher-dimensio
gauge-fixing quantization procedure, it is very instructive
consider first a simple Abelian 5-dimensional model, such
5-dimensional~5D! quantum electrodynamics~QED! where
the extra spatial dimension is compactified on anS1/Z2 or-
bifold. Then, we shall extend our quantization procedure
more general Abelian models with bulk and/or brane Hig
fields.

As a starting point, let us consider the 5D-QED Lagran
ian given by

L~x,y!52
1

4
FMN~x,y!FMN~x,y!1LGF~x,y!1LFP~x,y!,

~2.1!

where

FMN~x,y!5]MAN~x,y!2]NAM~x,y! ~2.2!

denotes the 5-dimensional field strength tensor, a
LGF(x,y) andLFP(x,y) are the gauge-fixing and the induce
Faddeev-Popov ghost terms, respectively. In a 5-dimensi
Abelian model, one may neglect the Faddeev-Popov gh
term LFP induced byLGF, as the Abelian ghosts are nonin
teracting and hence they cannot occur inS-matrix elements.
We shall return to this point in Sec. III, when discussi
quantization of higher-dimensional non-Abelian theories.

Throughout the paper, Lorentz indices in 5 dimensions
denoted with capital Roman letters, e.g.,M ,N50,1,2,3,5,
while the respective indices pertaining to the ordinary 4
mensions are symbolized by Greek letters, e.g.,m,n
50,1,2,3. Furthermore, we use the abbreviationsx5(x0,xW )
and y5x5 to denote the coordinates of the usu
(113)-dimensional Minkowski space and the coordinate
the fifth compact dimension, respectively.

In a 5-dimensional theory, the gauge-boson fieldAM
transforms as a vector under the Lorentz group SO~1,4!. In
the absence of the gauge-fixing and ghost termsLFP andLGF
in Eq. ~2.1!, the 5D-QED Lagrangian is invariant under
U~1! gauge transformation
7-2
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MINIMAL HIGHER-DIMENSIONAL EXTENSIONS OF . . . PHYSICAL REVIEW D 65 085037
AM~x,y!→AM~x,y!1]MQ~x,y!. ~2.3!

Being consistent with the above property of gauge symme
we can compactify the theory on anS1/Z2 orbifold, such that
the following equalities are satisfied:

AM~x,y!5AM~x,y12pR!,

Am~x,y!5Am~x,2y!,

A5~x,y!52A5~x,2y!,

Q~x,y!5Q~x,y12pR!,

Q~x,y!5Q~x,2y!. ~2.4!

As we will see below, the fact thatAm(x,y) is taken to be
even underZ2 results in the embedding of conventional QE
with a massless photon into our 5D QED. Notice that
other constraints on the fieldA5(x,y) and the gauge param
eterQ(x,y) in Eq. ~2.4! follow automatically if the theory is
to remain gauge invariant after compactification.

Given the periodicity and reflection properties ofAM and
Q undery in Eq. ~2.4!, we can expand these quantities in
Fourier series as follows:

Am~x,y!5
1

A2pR
A(0)

m ~x!1 (
n51

`
1

ApR
A(n)

m ~x!cosS ny

R D ,

A5~x,y!5 (
n51

`
1

ApR
A(n)

5 ~x!sinS ny

R D ,

Q~x,y!5
1

A2pR
Q (0)~x!1 (

n51

`
1

ApR
Q (n)~x!cosS ny

R D .

~2.5!

The Fourier coefficientsA(n)
m (x), also called KK modes, turn

out to be the mass eigenstates in 5D QED. However, th
not a generic feature of higher-dimensional models, nam
the Fourier modes cannot always be identified with the
mass eigenstates. Below we will encounter examples
which the Fourier modes will mix to form the KK mas
eigenstates.

From Eqs.~2.3! and ~2.5!, one can now derive the corre
sponding gauge transformations for the KK modes@6#

A(n)m~x!→A(n)m~x!1]mQ (n)~x!,

A(n)5~x!→A(n)5~x!2
n

R
Q (n)~x!. ~2.6!

Integrating out the y dimension yields the effective
4-dimensional Lagrangian
08503
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L~x!52
1

4
F (0)mnF (0)

mn1 (
n51

` F2
1

4
F (n)mnF (n)

mn1
1

2 S n

R
A(n)m

1]mA(n)5D S n

R
A(n)

m 1]mA(n)5D G1LGF~x!, ~2.7!

whereLGF(x)5*0
2pRdy LGF(x,y). Note that the invariance

of L(x) under the transformations~2.6! becomes manifest in
the absence of the gauge-fixing termLGF(x,y).

In addition to the usual QED terms involving the massle
field A(0)

m , the other terms in the effective 4-dimensional L
grangian~2.7! describe two infinite towers of massive vect
excitationsA(n)

m and ~pseudo! scalar modesA(n)
5 that mix

with each other, forn>1. The scalar modesA(n)
5 play the

role of the would-be Goldstone modes in a nonlinear reali
tion of an Abelian Higgs model, in which the correspondi
Higgs fields are taken to be infinitely massive.

As in usual Higgs models, one may seek for a high
dimensional generalization of ’t Hooft’s gauge-fixing cond
tion, for which the mixing terms bilinear inA(n)

m andA(n)
5 are

eliminated from the effective 4-dimensional Lagrangi
~2.7!. For instance, the covariant gauge-fixing term@6#

LGF~x,y!52
1

2j
~]MAM !2 ~2.8!

does not lead to a complete cancellation of the bilinear
eratorsA(n)

m ]mA(n)
5 in Eq. ~2.7!, with the exception of the

Feynman gaugej51. Taking, however, advantage of th
fact that orbifold compactification generally breaks SO~1,4!
invariance@18#, one can abandon the requirement of cova
ance of the gauge fixing condition with respect to the ex
dimension. In this context, we are free to choose the follo
ing noncovariant generalizedRj gauge:1

LGF~x,y!52
1

2j
~]mAm2j ]5A5!2. ~2.9!

Nevertheless, the gauge-fixing term in Eq.~2.9! is still in-
variant under ordinary 4-dimensional Lorentz transform
tions. Upon integration over the extra dimension, it is n
difficult to see that all mixing terms involvingA(n)

m ]mA(n)
5 in

Eq. ~2.7! drop out up to irrelevant total derivatives. As
consequence, the propagators for the fieldsA(n)

m andA(n)
5 take

on their usual forms that describe massive gauge fields
their respective would-be Goldstone bosons of an ordin
4-dimensional Abelian-Higgs model in theRj gauge:

1For a related suggestion made recently, see Ref.@19#.
7-3
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Therefore, we shall often refer to theA(n)
5 fields as Goldstone

modes, even though these KK modes do not directly re
from a mechanism of spontaneous symmetry breaking in
usual sense.

Having defined the appropriateRj gauge through the
gauge-fixing term in Eq.~2.9!, we can recover the usual un
tary gauge in the limitj→`. This limit is also equivalent to
the gauge-fixing conditionA5(x,y)50 or equivalently to
A(n)

5 (x)50, where all unphysical KK scalar modes are a
sent from the theory@20#. Thus, for the case at hand, we ha
seen how starting from a noncovariant higher-dimensio
gauge-fixing condition, we can arrive at the known covari
4-dimensionalRj gauge after compactification. As we wi
see below, the above quantization procedure can be exte
to more elaborate higher-dimensional models that may
clude brane and/or bulk Higgs fields.

A. Abelian model with a bulk Higgs boson

Here, we shall discuss an extension of the Abelian mo
outlined above by adding a bulk Higgs scalar. The 5D L
grangian of this theory reads

L~x,y!52
1

4
FMNFMN1~DMF!* ~DMF!2V~F!

1LGF~x,y!, ~2.12!

whereDM5]M1 i e5AM is the covariant derivative,e5 de-
notes the 5-dimensional gauge coupling, andF(x,y) is the
5-dimensional complex scalar field

F~x,y!5
1

A2
@h~x,y!1 i x~x,y!# ~2.13!

that transforms under a U~1! gauge transformation as

F~x,y!→exp@2 i e5Q~x,y!#F~x,y!. ~2.14!

In Eq. ~2.12!, the 5-dimensional Higgs potential is given b

V~F!5m5
2uFu21l5uFu4, ~2.15!

with l5.0.
After imposing the S1/Z2 compactification conditions

F(x,y)5F(x,y12pR) and F(x,y)5F(x,2y) on
F(x,y), we can perform a Fourier decomposition of the s
lar fieldsh(x,y) andx(x,y) in terms of cosines
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h~x,y!5
1

A2pR
h(0)~x!1 (

n51

`
1

ApR
h(n)~x!cosS ny

R D ,

x~x,y!5
1

A2pR
x (0)~x!1 (

n51

`
1

ApR
x (n)~x!cosS ny

R D .

~2.16!

As we will see below, our choice of an evenZ2 parity for the
bulk Higgs scalarF ensures that the lowest lying KK mode
describe a conventional 4-dimensional Abelian Higgs mod
Instead, if F were odd underZ2, this would not allow
Yukawa interactions of the Higgs scalars with fermions
calized on a braney50 and the generation of fermio
masses through the Higgs mechanism would be imposs
in this case.

Let us now turn our attention to the effective Higgs sec
of our Abelian model. The effective 4-dimensional Lagran
ian associated with the Higgs fields may conveniently
given by

LHiggs~x!5
1

2 (
n50

` F ~]mh(n)!~]mh(n)!2
n2

R2
h(n)

2 2m2h(n)
2

1~h↔x!G1•••, ~2.17!

where m25m5
2 and the ellipses denote quartic interactio

which involve the Higgs fieldsh(n) and x (n) and which all
depend onl5l5 /(2pR).0. In Eq. ~2.17!, the mass terms
proportional to n2/R2 arise from compactifying the
y-dimension. As in the usual 4-dimensional case, form2,0,
the zero KK Higgs modeF (0)5(h(0)1 ix (0))/A2 acquires a
non-vanishing vacuum expectation value~VEV!

^F (0)&5
1

A2
^h(0)&5

v

A2
, ~2.18!

which breaks the U~1! symmetry. Moreover, it can be show
that as long as the phenomenologically relevant conditiov
,1/R is met,h(0) will be the only mode to receive a nonzer

VEV, i.e., v5Aumu2/l.
After spontaneous symmetry breaking, the effective

netic Lagrangian of the theory for then-KK mode may be
cast into the form
7-4
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L kin
(n)~x!52

1

4
F (n)

mnF (n)mn1
1

2 S n2

R2
1e2v2D A(n)mA(n)

m

1
1

2
~]mA(n)5!~]mA(n)5!1

1

2
~]mx (n)!~]mx (n)!

2
1

2 S n

R
x (n)2ev A(n)5D 2

1A(n)
m ]mS n

R
A(n)51ev x (n)D1•••, ~2.19!

where e5e5 /A2pR and the dots indicate the omission
bilinear terms involvingh(n) . From Eq.~2.19!, it is evident
that the mass spectrum of the zero KK modes is identica
that of a conventional Abelian Higgs model, i.e.,mA(0)

5ev and mh(0)5A2lv. This is so, becauseA(0)5 is absent
and we are left with the standard 4-dimensional terms o
To determine the complete mass spectrum for the higher
modes, we first introduce the~pseudo!scalar KK modesG(n)
anda(n) through the orthogonal linear transformations

G(n)5S n2

R2
1e2v2D 21/2S n

R
A(n)51ev x (n)D ,

a(n)5S n2

R2
1e2v2D 21/2S ev A(n)52

n

R
x (n)D .

~2.20!

Then, with the aid of Eq.~2.20!, L kin
(n) in Eq. ~2.19! can be

rewritten in the more compact form

L kin
(n)~x!52

1

4
F (n)

mnF (n)mn1
1

2
~mA(n)A(n)m1]mG(n)!

3~mA(n)A(n)
m 1]mG(n)!1

1

2
~]ma(n)!~]ma(n)!

2
1

2
ma(n)

2 a(n)
2 1•••, ~2.21!

with mA(n)
2 5ma(n)

2 5(n2/R2)1e2v2. From this last expres
sion for L kin

(n) , we readily see thatG(n) plays the role of a
Goldstone mode in an Abelian Higgs model, while the ps
doscalar fielda(n) describes a physical KK excitation dege
erate in mass with the KK gauge modeA(n)m . In particular,
since the zero KK modes of the fields are expected to
much lighter than their first KK excitations, i.e.,ev!1/R,
the masses of all highern-KK gauge and Higgs modes ar
approximatelym(n)5n/R and the Goldstone modesG(n)
may almost be identified withA(n)5, i.e., G(n)'A(n)5 as in
5D QED.

From the above discussion, it becomes now clear that
appropriate gauge-fixing Lagrangian in Eq.~2.12! for a
5-dimensional generalizedRj gauge should be
08503
to
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LGF~x,y!52
1

2j F ]mAm2jS ]5A51e5

v

A2pR
x D G 2

.

~2.22!

Taking Eq.~2.22! into account, we arrive at the total effec
tive kinetic Lagrangian

L kin
(n)~x!52

1

4
F (n)

mnF (n)mn1
1

2
mA(n)

2 A(n)mA(n)
m 2

1

2j
~]mA(n)

m !2

1
1

2
~]mG(n)!~]mG(n)!2

j

2
mA(n)

2 G(n)
2

1
1

2
~]ma(n)!~]ma(n)!2

1

2
ma(n)

2 a(n)
2

1
1

2
~]mh(n)!~]mh(n)!2

1

2
mh(n)

2 h(n)
2 . ~2.23!

In the above,mh(n)5A(n2/R2)12lv2 are the KK Higgs
boson masses andmA(n) andma(n) are the KK masses ofA(n)
anda(n) given after Eq.~2.21!. Observe finally that the limit
j→` in Eq. ~2.23! consistently corresponds to the unita
gauge.

B. Abelian model with a brane Higgs boson

A qualitatively different way of implementing the Higg
sector in a higher-dimensional Abelian model is to local
the Higgs field at they50 boundary of theS1/Z2 orbifold.
The 5-dimensional Lagrangian of this theory reads

L~x,y!52
1

4
FMNFMN1d~y!@~DmF!* ~DmF!2V~F!#

1LGF~x,y!. ~2.24!

Here, the covariant derivativeDm5]m1 ie5Am(x,y) and the
Higgs potentialV(F)5m2uFu21luFu4 have their familiar
4-dimensional forms, and thed function d(y) confines the
Higgs sector on the braney50. Under a gauge transforma
tion, the brane Higgs fieldF(x) transforms as

F~x!→exp@2 i e5Q~x,0!#F~x!. ~2.25!

Under Eq.~2.25! and the local transformation~2.3! of the
gauge fieldAM(x,y), the theory exhibits U~1! invariance.
Notice that the bulk scalar fieldA5(x,y) vanishes on the
braney50 as a result of its oddZ2 parity.

After compactification and integration over they dimen-
sion, the effective Lagrangian of the model under discuss
will be the sum of two terms: the effective Lagrangian~2.7!
of 5D QED and the square bracket@•••#y50 in Eq. ~2.24!.
Obviously,F5(h1 ix)/A2 being a brane field does not po
sess KK excitations and, form2,0 ~with l.0), acquires a
VEV ^F&5^h&/A25v/A2. After spontaneous symmetr
breaking, masses are generated for all the KK gauge mo
A(n)

m . However, unlike in the Abelian model with a bul
7-5
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Higgs boson discussed in Sec. II A, the corresponding gau
boson mass matrix here is no longer diagonal and has
form

MA
25S m2 A2m2 A2m2

•••

A2m2 2m21~1/R!2 2m2
•••

A2m2 2m2 2m21~2/R!2
•••

A A A �

D ,

~2.26!

wherem25e2v2 denotes the mass generated by the Hig
mechanism. The eigenvalues ofMA

2 follow from:

det~MA
22lI!5S )

n51

`

~n2/R22l!D
3S m22l22lm2(

n51

`
1

~n/R!22l
D

50. ~2.27!

Sincel5(n/R)2 is not a solution as can be easily seen,
mass eigenvaluesmA(n) are given by the zeros of the secon
big bracket in Eq.~2.27!. This is equivalent to solving the
transcendental equation

Al5m(n)5p m2R cot~p m(n)R!, ~2.28!

with mA(n)5m(n) . The respective KK mass eigenstatesÂ(n)
m

are given by

Â(n)
m 5S 11p2m2R21

m(n)
2

m2 D 21/2

3(
j 50

`
2m(n)m

m(n)
2 2~ j /R!2 S 1

A2
D d j ,0

A( j )
m . ~2.29!

To find the appropriate form of the gauge-fixing ter
LGF(x,y) in Eq. ~2.24!, we follow Eq.~2.22!, but restrict the
scalar fieldx to the braney50, viz.

LGF~x,y!52
1

2j
$]mAm2j@]5A51e5v x d~y!#%2.

~2.30!

Then, the effective 4-dimensional gauge-fixing Lagrang
LGF(x) is given by
e-
he

s

e

n

LGF~x!52
1

2j
~]mA(0)

m !22
1

2j (
n51

` S ]mA(n)
m 2j

n

R
A(n)5D 2

1ev x~]mA(0)
m !1A2 evx (

n51

`

~]mA(n)
m !

2j A2ev x (
n51

`
n

R
A(n)52

j

2
e5

2v2x2d~0!. ~2.31!

On theS1/Z2 orbifold, thed function may be represented b

d~y!5
1

2pR
1 (

n51

`
1

pR
cosS ny

R D , ~2.32!

which implies

d~0!5
1

2pR
1 (

n51

`
1

pR
. ~2.33!

It is interesting to verify whether our 5-dimensional gaug
fixing term in Eq.~2.30! does consistently lead to the gene
alizedRj gauge after integration over the extra dimension.
doing so, we apply theRj-gauge-fixing prescription indi-
vidually to each KK gauge mode in the effective Lagrangia
instead of using Eq.~2.30!. It is then not difficult to obtain

L GF
(n)~x!52

1

2j F]mA(n)
m 2jS n

R
A(n)51A2(12dn,0)ev x D G2

.

~2.34!

This analytic result coincides with the one stated in E
~2.31!, providede55A2pR e and Eq.~2.33! are used. As is
also expected from a generalizedRj gauge, all mixing terms
of the gauge modesA(n)

m with A(n)5 and x disappear up to
total derivatives. Hence, the eigenvaluesm(n) as derived
from Eq. ~2.28! do represent the physical masses.

The unphysical mass spectrum of the Goldstone mo
may be determined by diagonalizing the followin
j-dependent mass matrix of the fieldsx andA(n)5:

L mass
j ~x!52

j

2
~x,A(1)5,A(2)5, . . . !M j

2S x

A(1)5

A(2)5

A
D ,

~2.35!

with
M j
25S e2v2S 11 (

n51

`

2D A2~1/R!ev A2~2/R!ev •••

A2~1/R!ev ~1/R!2 0 •••

A2~2/R!ev 0 ~2/R!2
•••

A A A �

D . ~2.36!

085037-6
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It can be shown that the characteristic polynomial ofM j
2 is

formally identical to the one ofMA
2 given in Eq.~2.27!:

det~M j
22lI!5det~MA

22lI!. ~2.37!

Consequently, the mass eigenvalues ofM j
2 are given bym(n)

in Eq. ~2.28!. Thus, as is expected from anRj gauge, we find
an one-to-one correspondence of each physical vector m
of massm(n) to an unphysical Goldstone mode with gaug
dependent massAj m(n) . Moreover, the Goldstone mas
eigenstates are given by

Ĝ(n)5S 11p2m2R21
m(n)

2

m2 D 21/2

3S A2x1(
j 51

`
2~ j /R!m

m(n)
2 2~ j /R!2

A( j )5D . ~2.38!

In the unitary gaugej→`, the fieldsĜ(n) , or equivalently
the fieldsA(n)5 andx, are absent from the theory. Therefor
as opposed to the bulk-Higgs model of Sec. II A, the pres
brane-Higgs model does not predict other KK massive s
lars apart from the physical Higgs bosonh.

C. Abelian 2-Higgs model

It is now interesting to consider a model with two com
plex Higgs fields: one Higgs fieldF1(x,y) propagating in
the bulk and the other fieldF2(x) localized on a brane a
y50. The 5-dimensional Lagrangian of this Abelian 2-Hig
model is given by

L~x,y!52
1

4
FMNFMN1~DMF1!* ~DMF1!1d~y!

3~DmF2!* ~DmF2!2V~F1 ,F2!1LGF~x,y!,

~2.39!

where V is the most general Higgs potential allowed
gauge invariance

V~F1 ,F2!5m1
2~F1

†F1!1l1~F1
†F1!21d~y!F1

2
m2

2~F2
†F2!

1m12
2 ~F1

†F2!1
1

2
l2~F2

†F2!21
1

2
l3~F1

†F1!

3~F2
†F2!1

1

2
l4~F1

†F2!~F2
†F1!

1l5~F1
†F2!21l6~F1

†F1!~F1
†F2!

1l7~F2
†F2!~F1

†F2!1H.c.G . ~2.40!

Note that all terms involving the brane fieldF2 are multi-
plied by ad function. Here, we shall restrict ourselves to
CP-conserving Higgs sector, i.e., the parametersm12

2 , l5 ,
l6, and l7 in Eq. ~2.40! are real. Furthermore, we assum
08503
de
-

,
nt
a-

that both complex scalar fields acquire real VEV’s. Thus,
may linearly expandF1 andF2 around their VEV’s as fol-
lows:

F1~x,y!5
1

A2
F v1

A2pR
1h1~x,y!1 i x1~x,y!G ,

~2.41!

F2~x!5
1

A2
@v21h2~x!1 i x2~x!#. ~2.42!

Adopting the commonly used notation in 2-Higgs mode
we definev15v cosb andv25v sinb, i.e., tanb5v2 /v1.

In this 5-dimensional Abelian 2-Higgs model, the effe
tive mass matrixMA

2 of the Fourier modesA(n)
m is given by a

sum of two matrices

MA
25Mbrane

2 1Mbulk
2 . ~2.43!

The first matrixMbrane
2 , which includes the KK masses, ma

be obtained by Eq.~2.26! after replacingm25e2v2 with
m25e2v2sin2b. The second matrixMbulk

2 is proportional to
unity, Mbulk

2 5e2v2cos2b I. Because of the particular structur
of MA

2 in this model, the mass eigenvalues of the KK gau
modes are given by

mA(n)
2 5m(n)

2 1Dm(n)
2 , ~2.44!

whereDm(n)
2 5e2v2cos2b andm(n) are the roots of the tran

scendental equation~2.28!. The corresponding mass eige
statesÂ(n)

m may in turn be determined by Eq.~2.29!, after
m(n)

2 has been replaced withmA(n)
2 2Dm(n)

2 .
Following a similar Rj-gauge-fixing prescription as

above, we may eliminate the mixing terms betweenA(n)
m and

the fieldsA(n)5 , x1(n) andx2 by choosing

LGF~x,y!52
1

2j F ]mAm2jS ]5A51e5

v

A2pR
cosb x1

1e5v sinb x2d~y!D G 2

. ~2.45!

In Appendix A, we show that the resulting Goldstone mod
Ĝ(n) in this model have massesAjmA(n) . These Goldstone
modes may be expressed in terms of the other pseudos
fields A(n)5 , x1(n) andx2 as follows:

Ĝ(n)5Ex2

(n)x21(
j 50

`

~Ex1( j )

(n) x1( j )1EA( j )5

(n) A( j )5!, ~2.46!

with

Ex2

(n)5
1

N
, EA( j )5

(n) 52
1

N

A2ev sinb~ j /R!

~ j /R!21e2v2cos2b2mA(n)
2

,

7-7
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Ex1(0)

(n) 52
1

N

e2v2sinb cosb

e2v2cos2b2mA(n)
2

,

Ex1( j )

(n) 52
1

N

A2e2v2sinb cosb

~ j /R!21e2v2cos2b2mA(n)
2

, ~2.47!

and

N25
1

2

mA(n)
2

mA(n)
2 2e2v2cos2b

S 11p2e2v2sin2b R2

1
mA(n)

2 2e2v2cos2b

e2v2sin2b
D . ~2.48!

The masses of the lowest-lying KK Higgs scalars stron
depend on the details of the Higgs potential, whereas
masses of the highern-KK Higgs modes are approximatel
n/R.

We conclude this section by remarking that even for
most general Abelian case, an appropriate high
dimensional gauge-fixing condition analogous to Eq.~2.45!
can always be found that leads after compactification to
usualRj gauge as known from ordinary 4-dimensional the
ries. In the following, we shall see how the above gau
fixing quantization procedure can be extended to n
Abelian models as well.

III. HIGHER-DIMENSIONAL NON-ABELIAN THEORY

In this section, we shall consider a pure non-Abeli
theory, such as 5-dimensional Quantum Chromodynam
~5D QCD!, without interactions to matter. The 5D-QCD La
grangian takes on the simple general form

L~x,y!52
1

4
FMN

a FaMN1LGF1LFP, ~3.1!

where

FMN
a 5]MAN

a 2]NAM
a 1g5f abcAM

b AN
c ~3.2!

and f abc are the structure constants of the gauge gro
SU(N), with N53 for 5D QCD. In Eq.~3.1!, the gauge-
fixing termLGF and the induced Faddeev-Popov Lagrang
LFP will be determined later in this section.

As we did for the Abelian case, we compactify each of t
N gauge fieldsAM

a (x,y) separately onS1/Z2 through the
constraints~2.4!. Moreover, under a SU(N) gauge transfor-
mation,AM

a (x,y) transforms as

AM
a ~x,y!→AM

a ~x,y!1]MQa~x,y!

2g5f abcQb~x,y!AM
c ~x,y!. ~3.3!

After a Fourier expansion ofAm
a (x,y), A5

a(x,y), and
Qa(x,y) according to Eq.~2.5!, one finds that the loca
SU(N) transformation~3.3! amounts to@6#
08503
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A(0)m
a →A(0)m

a 1]mQ (0)
a 2

1

2

g5

A2pR
f abc(

m50

`

212dm,0 Q (m)
b

3~11dm,0!A(m)m
c ,

A(n)m
a →A(n)m

a 1]mQ (n)
a 2

1

2

g5

A2pR
f abc(

m50

`

A212dm,0 Q (m)
b

3@A22dm,n~11dm,n!A(um2nu)m
c 1A(m1n)m

c #,

A(n)5
a →A(n)5

a 2
n

R
Q (n)

a 2
1

2

g5

A2pR
f abc(

m50

`

A212dm,0 Q (m)
b

3@sgn~n2m!A(um2nu)5
c 1A(m1n)5

c #, ~3.4!

wheren>1. As opposed to the Abelian case, the new feat
here is that the KK modes can now mix with each oth
under a gauge transformation. As a result of this mixing, a
attempt to truncate the theory at a given KK moden
5ntrunc will explicitly break gauge invariance.2

It is straightforward to generalize the gauge-fixing term
5D QED given in Eq.~2.9! to the 5D-QCD case. The gauge
fixing term in 5D QCD is given by

LGF~x,y!52
1

2j
@Fa~Aa!#2, ~3.5!

with

Fa~Aa!5]mAm
a 2j ]5A5

a . ~3.6!

In this generalizedRj gauge, all mixing termsA(n)m
a ]mA(n)5

a

disappear, so the Fourier modes represent mass eigens
As in the Abelian case, the latter is spoiled by a Hig
mechanism involving brane interactions.

In non-Abelian theories, theRj gauge induces an interac
ing ghost sector, which is described by the Faddeev-Po
Lagrangian

##LFP~x,y!5 c̄a
dFa~Aa!

dQb
cb

5 c̄a@]m~]mdab2g5f abcAm
c !2j ]5~]5dab

2g5f abcA5
c!#cb. ~3.7!

In the above,ca(x,y) denote the higher-dimensional gho
fields, which are even underZ2 : ca(x,y)5ca(x,2y), i.e.,
they share the same transformation properties with the gr
parametersQa(x,y).

2To overcome this difficulty, recent papers@21,22# suggested to
match the truncated theory with a manifestly gauge-invariant n
Abelian chiral-type Lagrangian. Although the two theories ag
well for n!ntrunc, they have a significantly different mass spectru
close to the truncation energy scale, i.e., for KK modesn'ntrunc.
7-8



MINIMAL HIGHER-DIMENSIONAL EXTENSIONS OF . . . PHYSICAL REVIEW D 65 085037
FIG. 1. Feynman rules for the
triple gauge boson coupling.dk,l ,m

andd̃ l ,k,m are defined in Eq.~3.8!.
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In Figs. 1 and 2, we exhibit the Feynman rules for t
self-interactions of the KK modesA(n)m

a and A(n)5
a in the

effective 4-dimensional theory in theRj gauge~3.5!. In the
unitary gauge, i.e.,j→`, the 5D-QCD Feynman rules re
duce to those presented in Ref.@23#. The factorsdk,l ,m ,
d̃ l ,k,m , dk,l ,m,n , and d̃k,n,l ,m imply selection rules for the
triple and quartic coupling of the KK modesA(n)m

a andA(n)5
a ,

which are typical for the interactions between bulk field
These factors are given by

dk,l ,m5dk1 l 1m,01dk1 l 2m,01dk2 l 1m,01dk2 l 2m,0 ,

d̃k,l ,m52dk1 l 1m,01dk1 l 2m,02dk2 l 1m,01dk2 l 2m,0 ,

~3.8!

for the triple gauge boson coupling and

dk,l ,m,n51dk1 l 1m1n,01dk1 l 1m2n,01dk1 l 2m1n,0

1dk1 l 2m2n,01dk2 l 1m1n,01dk2 l 1m2n,0

1dk2 l 2m1n,01dk2 l 2m2n,0 ,
08503
.

d̃k,l ,m,n52dk1 l 1m1n,01dk1 l 1m2n,01dk1 l 2m1n,0

2dk1 l 2m2n,02dk2 l 1m1n,01dk2 l 1m2n,0

1dk2 l 2m1n,02dk2 l 2m2n,0 , ~3.9!

for the quartic gauge boson coupling.

IV. 5-DIMENSIONAL EXTENSIONS OF THE STANDARD
MODEL

In this section we shall study minimal 5-dimensional e
tensions of the SM compactified on anS1/Z2 orbifold, in
which the SU(2)L and U(1)Y gauge bosons as well as th
Higgs doublets may not all propagate in the bulk. In all the
higher-dimensional scenarios, we shall assume that the c
fermions are localized on a brane at they50 fixed point of
the S1/Z2 orbifold.

A. SU„2…L‹U„1…Y-bulk model

To start with, we shall first consider the most frequen
investigated model, where all electroweak gauge fie
propagate in the bulk and couple to both a brane and a b
.

FIG. 2. Feynman rules for the

quartic gauge boson coupling

dk,l ,m,n and d̃k,n,l ,m are defined in
Eq. ~3.9!.
7-9
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Higgs doublets. The Lagrangian of the gauge-Higgs secto
this higher-dimensional standard model~HDSM! is given by

L~x,y!52
1

4
BMNBMN2

1

4
FMN

a FaMN1~DMF1!†~DMF1!

1d~y!~DmF2!†~DmF2!2V~F1 ,F2!1LGF~x,y!

1LFP~x,y!, ~4.1!

where BMN and FMN
a @a51,2,3 for SU~2!# are the field

strength tensors of the U(1)Y and SU(2)L gauge fields, re-
spectively. As usual, we define the covariant derivativeDM
as

DM5]M2 i g5AM
a ta2 i

g58

2
BM . ~4.2!

The Higgs potentialV(F1 ,F2) of this SU(2)L ^ U(1)Y-bulk
model has the very same analytic form as in Eq.~2.40!,
whereF1(x,y) is a bulk Higgs doublet andF2(x) a brane
one. After spontaneous symmetry breaking, the Higgs d
blets will linearly be expanded about their VEVs, i.e.,

F1~x,y!5S x1
1

1

A2
S v1

A2pR
1h11 ix1D D ,

F2~x!5S x2
1

1

A2
~v21h21 ix2!D . ~4.3!

Here, we shall not repeat the calculational steps for determ
ing the particle mass spectrum of the SU(2)L ^ U(1)Y-bulk
model, as they are analogous to those of the Abelian mo
discussed in Sec. II C~see also Appendix B!. In fact, the
above analogy in the derivation of the particle mass spect
becomes rather explicit if the bulk gauge fields are written
terms of their higher-dimensional mass eigenstates

WM
65

1

A2
~AM

1 7 i AM
2 !,

ZM5
1

Ag5
21g58

2 ~g5AM
3 2g58BM !, ~4.4!

AM5
1

Ag5
21g58

2 ~g58AM
3 1g5BM !.

Proceeding as in the Abelian case, we may easily de
mine the appropriateRj-gauge-fixing functions for the
SU(2)L and U(1)Y gauge bosons:
08503
of
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m
n

r-

Fa~Aa!5]mAam2jAF ]5A5
a2 i

g5

A2pR
~F1

†taF0

2F0
†taF1!cosb2 i g5~F2

†taF0

2F0
†taF2!sinb d~y!G , ~4.5!

F~B!5]mBm2jBF ]5B52 i
g58

2A2pR
~F1

†F0

2F0
†F1!cosb2 i

g58

2
~F2

†F0

2F0
†F2!sinb d~y!G , ~4.6!

with

F05
1

A2
S 0

v D , v5Av1
21v2

2. ~4.7!

To avoid gauge-dependent photon-Z-mixing terms at the tree
level, we will assume in the following that it is alwaysjA
5jB5j. Under this assumption, the gauge-fixing Lagran
ian LGF(x,y) in Eq. ~4.1! may be expressed in terms of th
real gauge-fixing functionsFa(Aa) andF(B) as follows:

LGF~x,y!52
1

2j
@Fa~Aa!#22

1

2j
@F~B!#2. ~4.8!

Furthermore, the Faddeev-Popov termLFP(x,y) in Eq. ~4.1!
is induced by the variations ofFa(Aa) and F(B) with re-
spect to SU(2)L and U(1)Y gauge transformations. More ex
plicitly, LFP(x,y) may be computed in the standard way b

LFP~x,y!5 c̄a
dFa~Aa!

dQb
cb1 c̄

dF~B!

dQ
c, ~4.9!

whereca(x,y) andc(x,y) are the 5-dimensional ghost field
associated with the SU(2)L and U(1)Y gauge groups, respec
tively. As in the 5D QCD, the ghost fields are even underZ2.

In the aboveRj-gauge-fixing prescription, the complet
kinetic Lagrangian of the gauge sector written in terms of
fields defined in Eq.~4.4! becomes rather analogous to th
corresponding one of the Abelian model investigated in S
II C. In Appendix B, we give the propagators of the K
gauge and Goldstone modes in theRj gauge, together with
the exact analytic results for the couplings of the gau
bosons to fermions to be discussed in Sec. IV D.

B. SU„2…L-brane, U„1…Y-bulk model

Let us now consider a new minimal 5-dimensional alt
native to the SM, in which only the U(1)Y gauge boson
propagates in the bulk, while the SU(2)L gauge field lives on
7-10
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the y50 boundary of theS1/Z2 orbifold. The Lagrangian of
this SU(2)L-brane, U(1)Y-bulk model is

L~x,y!52
1

4
BMNBMN1d~y!F2

1

4
Fmn

a Famn

1~DmF!†~DmF!2V~F!G1LGF~x,y!1LFP~x,y!.

~4.10!

Observe that only a brane Higgs doublet

F~x!5S x2
1

1

A2
~v1h1 ix!D ~4.11!

can be added in this model. The reason is that a bulk Hi
doublet would destroy the gauge invariance of the theory
the bulk if one coupled it to the covariant derivativeDm

5]m2 i g Am
a (x)ta2 i (g58/2)Bm(x,0) on they50 brane. As a

consequence, the Higgs potential of this model has
known SM formV(F)5m2uFu21luFu4.

In the SU(2)L-brane, U(1)Y-bulk model, only the
Bm(x,y) boson has to be expanded in Fourier modes.
though theW-boson sector is completely standard, the n
tral gauge sector gets complicated by the brane-bulk mix
of Bm(x,y) with Am

3 (x) through the VEV of the brane Higg
field F(x). To be more precise, we find the effective ma
matrix Lagrangian of the neutral gauge sector

L mass
N ~x!5

1

2
~A3m,B(0)

m ,B(1)
m , . . . !MN

2 S Am
3

B(0)m

B(1)m

A
D

~4.12!

with

MN
2 5S m2

g2

g82
2m2

g

g8
2A2m2

g

g8
•••

2m2
g

g8
m2 A2m2

•••

2A2m2
g

g8
A2m2 2m21~1/R!2

•••

A A A �

D
~4.13!

andg585g8A2pR, m25g82v2/4. The mass matrixMN
2 con-

tains a zero eigenvalue which corresponds to a massless
ton Âm , i.e.,

Âm5swAm
3 1cwB(0)m , ~4.14!
08503
s
n

e
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where sw5A12cw
2 5g8/Ag21g82 is the sine of the weak

mixing angle. The other nonzero mass eigenvaluesmZ(n) of
MN

2 in Eq. ~4.13! may be determined by the roots of th
transcendental equation

mZ(n)5p m2R cot~p mZ(n)R!1
g2

g82

m2

mZ(n)
. ~4.15!

The respective mass eigenstates are given by

Ẑ(n)
m 5

1

N F mZ

mZ(n)
cwA3m

2(
j 50

` A2mZ(n)mZ

mZ(n)
2 2~ j /R!2 S 1

A2
D d j ,0

swB( j )
m G , ~4.16!

wheremZ5Ag21g82v/2,

N25
1

2 F cw
2

sw
2 S mZ

2

mZ(n)
2

22D 1sw
2 p2mZ

2R21
mZ(n)

2

mZ
2sw

2
11G .

~4.17!

Notice that the KK mass eigenmodeẐ(0) has to be identified
with the observableZ boson.

In analogy to the SM-bulk model, the appropriateRj

gauge-fixing functions for this brane-bulk model are writt

Fa~Aa!5]mAam1j ig~F†taF02F0
†taF!, ~4.18!

F~B!5]mBm2jF]5B52 i
g58

2
~F†F02F0

†F!d~y!G ,
~4.19!

with

F05
1

A2
S 0

v D . ~4.20!

Nevertheless, because of the specific brane-bulk structur
the higher-dimensional model, the corresponding gau
fixing Lagrangian has now the form

LGF~x,y!52
1

2j
@Fa~Aa!#2d~y!2

1

2j
@F~B!#2.

~4.21!

Like the charged gauge sector, the charged scalar sect
completely standard in this model. The neutral scalar sec
however, has a structure very similar to the one of the A
lian model discussed in Sec. II B. Again, one can show
existence of an one-to-one correspondence between the
gauge modes with massmZ(n) and their associate would-b
Goldstone modes with massAjmZ(n) . The latter KK modes
are given by

Ĝ(n)
0 5

1

N S x2
g8v

A2
(
j 51

`
j /R

mZ(n)
2 2~ j /R!2

B( j )5D , ~4.22!
7-11
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where the normalization factorN is defined in Eq.~4.17!.
The Faddeev-Popov LagrangianLFP can also be obtained

in the standard fashion. Taking the brane-bulk structure
the model into account, we may determineLFP by

LFP~x,y!5 c̄a~x!
dFa@Aa~x!#

dQb~x!
cb~x!d~y!

1 c̄~x,y!
dF@B~x,y!#

dQ~x,y!
c~x,y!, ~4.23!

where the (x,y) dependence of the different quantities i
volved is explicitly indicated.

C. SU„2…L-bulk, U„1…Y-brane model

Another minimal 5-dimensional extension of the SM
complementary to the one discussed in Sec. IV B, emerg
the SU(2)L gauge boson is the only field that feels the pr
ence of the fifth compact dimension. By analogy, the L
grangian of this model reads

L~x,y!52
1

4
FMN

a FaMN1d~y!F2
1

4
BmnBmn

1~DmF!†~DmF!2V~F!G1LGF~x,y!1LFP~x,y!,

~4.24!

with Dm5]m2 i g5Am
a (x,0)ta2 i (g8/2)Bm(x). As in the

model discussed in the previous section, there is only
Higgs field on the braney50 and the Higgs potential is o
the SM form. Because only the SU(2)L gauge boson lives in
the bulk, the charged gauge sector of this higher-dimensio
standard model is equivalent to that of the SM-bulk mo
discussed in Sec. IV A in the limit sinb→1, i.e., only the
Higgs field restricted to the braney50 acquires a nonvan
ishing VEV. Thus, the SU(2)L-bulk, U(1)Y-brane model pre-
dicts a KK tower ofW-boson excitations, while the neutra
gauge sector is quite analogous to the one discussed in
previous section. Specifically, the effective mass-matrix
grangian of the neutral gauge sector is given by

L mass
N ~x!5

1

2
~Bm,A(0)

3m ,A(1)
3m , . . . !MN

2 S Bm

A(0)m
3

A(1)m
3

A
D , ~4.25!

with

MN
2 5S m2

g82

g2
2m2

g8

g
2A2m2

g8

g
•••

2m2
g8

g
m2 A2m2

•••

2A2m2
g8

g
A2m2 2m21~1/R!2

•••

A A A �

D ,

~4.26!
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g55gA2pR and m25g2v2/4. Again, we find that the zero
KK mode given by the linear combinationÂm5swA(0)m

3

1cwBm represents a massless vector field, the photon.
higher KK modes are massive and their masses may be
tained by the solutions of the transcendental equation

mZ(n)5p m2R cot~p mZ(n)R!1
g82

g2

m2

mZ(n)
. ~4.27!

The Z boson, denoted asZ(0) , and its heavier KK mass
eigenmodes may be conveniently expressed in terms of
gauge eigenstates as

Ẑ(n)
m 5

1

N F (
j 50

` A2mZ(n)mZ

mZ(n)
2 2~ j /R!2 S 1

A2
D d j ,0

cwA( j )
3m2

mZ

mZ(n)
swBmG ,

~4.28!

where

N25
1

2 F sw
2

cw
2 S mZ

2

mZ(n)
2

22D 1cw
2 p2mZ

2R21
mZ(n)

2

mZ
2cw

2
11G .

~4.29!

In close analogy to the previous section, the high
dimensional gauge-fixing functions leading to the gene
ized Rj gauge are given by

Fa~Aa!5]mAam2j@]5A5
a2 ig5~F†taF02F0

†taF!d~y!#,

~4.30!

F~B!5]mBm1j i
g8

2
~F†F02F0

†F!, ~4.31!

giving rise to the gauge-fixing Lagrangian

LGF~x,y!52
1

2j
@Fa~Aa!#22

1

2j
@F~B!#2d~y!.

~4.32!

The charged scalar sector of this model is identical to tha
the SM-bulk model of Sec. IV A, with the presence of
Higgs field on they50 boundary only. On the other hand
the neutral scalar sector predicts a KK tower of would-
Goldstone modes associated with the longitudinal polar
tion degrees of the massive KK gauge modesẐ(n) . The
would-be KK Goldstone modes are determined by

Ĝ(n)
0 5

1

N S x1
gv

A2
(
j 51

`
j /R

mZ(n)
2 2~ j /R!2

A( j )5
3 D ,

~4.33!

with N as defined in Eq.~4.29!. The Faddeev-Popov La
grangian can be calculated as in the model described ea
in Sec. IV B @see Eq.~4.23!#, by considering the obvious
modifications that take account of the complementary bra
bulk structure of the model.
7-12
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D. Localization of fermions on the brane

In the minimal 5-dimensional extensions of the SM w
have been studying, we have assumed that all the SM fe
ons are localized at they50 fixed point of theS1/Z2 orbi-
fold. Therefore, upon integrating out they dimension, both
the effective kinetic terms of fermions and the effecti
Yukawa sector take on the usual 4-dimensional SM struct
Clearly, the SM fermions do not have KK modes. Unde
gauge transformation, the left- and right-handed fermio
transform according to

CL~x!→exp@ ig5Qa~x,0!ta1 ig58Y
LQ~x,0!#CL~x!,

CR~x!→exp@ ig58Y
RQ~x,0!#CR~x!. ~4.34!

The corresponding covariant derivatives that couple the
ral fermions to the gauge fields are given by

Dm
L 5]m2 i g5Am

a ta2 i g58Y
LBm ,

Dm
R5]m2 i g58Y

RBm . ~4.35!

It is obvious that the effective coupling of a fermion to
gauge boson restricted to the same braney50 has its SM
value. On the other hand, the effective interaction Lagra
ian describing the coupling of a fermion to a gauge bos
living in the bulk has the generic form

Lint~x!5C̄gm~gV1gAg5!CS A(0)m1A2(
n51

`

A(n)mD .

~4.36!

Again, the coupling parametersgV and gA are set by the
quantum numbers of the fermions and receive their SM v
ues. Because the KK mass eigenmodes generally differ f
the Fourier modes, their couplings to fermionsgV(n) and
gA(n) have to be calculated for each model individually
taking into account the appropriate weak-basis transfor
tions. The precise values ofgV(n) and gA(n) will be very
important for our phenomenological discussion in the n
section. The Feynman rules for the interactions of the
gauge mass eigenmodes to fermions are exhibited in Ap
dix B.

Likewise, the Feynman rules for the interaction of t
Goldstone modes to fermions can also be obtained from
SM Yukawa sector by relating the KK weak modes to t
respective KK mass eigenmodes. It is worth remarking h
that although theZ2-odd fifth component of a bulk gaug
bosonAM , A5, does not couple directly to the brane ferm
ons,A5 is involved in fermionic couplings due to its mixin
with the CP-odd Higgs fields which are even underZ2. In
particular, one can show that the resulting Goldstone c
plings to fermions have the proper analytic structure to
sure gauge invariance in the computation ofS-matrix ele-
ments.
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V. GLOBAL-FIT ANALYSIS

In this section, we shall evaluate the bounds on the co
pactification scale 1/R of minimal higher-dimensional exten
sions of the SM by analyzing a large number of high pre
sion electroweak observables. To be specific, we procee
follows. We relate the SM predictionO SM for an elec-
troweak observable to the predictionO HDSM for the same
observable obtained in the higher-dimensional SM under
vestigation through

O HDSM5O SM~11DO
HDSM!. ~5.1!

Here,DO
HDSM is the tree-level modification of a given obser

ableO from its SM value due to the presence of one ex
dimension. To enable a direct comparison of our predictio
with the electroweak precision data@17#, we include SM
radiative corrections toO SM. However, we neglect SM- a
well as KK-loop contributions toDO

HDSM as higher order ef-
fects.

As input SM parameters for our theoretical prediction
we choose the most accurately measured ones, namely
Z-boson massMZ , the electromagnetic fine structure co
stanta and the Fermi constantGF . In all the 5-dimensional
models under study, the tree-levelZ-boson massmZ(0) gen-
erally deviates from its SM formmZ5Ag21g82v/2. There-
fore, we parametrize this deviation as follows:

mZ(0)
2 5mZ

2~11DZX!, ~5.2!

where

X5
p2

3

mZ
2

M2
~5.3!

~with M51/R) represents the typical scale factor quantifyi
the higher-dimensional effect andDZ is a model-dependen
parameter of order unity. Since the massless photon ret
its SM properties through the entire process of compactifi
tion, the electromagnetic fine structure constant is still giv
by its SM value

a5
e2

4p
. ~5.4!

Instead, the Fermi constantGF as determined by the muo
lifetime may receive direct as well as indirect contributio
due to KK states. We may account for this modification
GF by writing

GF5
pa

A2sw
2 cw

2 mZ(0)
2 ~11DGX!, ~5.5!

where the order unity parameterDG strongly depends on the
details of the 5-dimensional model under consideration.

In the computation of the electroweak precision obse
ables, it will be necessary to express the weak mixing an
uw in terms of the input parametersa, mZ(0)

2 , andGF , by
7-13
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means of Eq.~5.5!. In this respect, it is useful to define a
effective weak mixing angleûw using the tree-level SM re
lation

GF5
pa

A2ŝw
2 ĉw

2 mZ(0)
2

. ~5.6!

With the above definition forûw and Eq.~5.5!, we may relate
the squared sines of the two weak mixing angles by

ŝw
2 5sw

2 ~11DuX!. ~5.7!

Again, Du in Eq. ~5.7! is a model-dependent parameter
order unity to be determined below.

A. SU„2…L‹U„1…Y-bulk model

Before we present predictions for the electroweak obse
ables in the SU(2)L ^ U(1)Y-bulk model, let us first give the
KK modifications for some of the fundamental parameters
the theory. The KK modifications of theZ- and W-boson
masses are found to be

DZ52sb
4 ,

DW52sb
4 ĉw

2 , ~5.8!

whereDW is defined in analogy to Eq.~5.2!. In Eq. ~5.8! and
in the following, we will often use the following short-han
notations for trigonometric functions:sx5sinx, cx5cosx,
s2x5sin 2x, c2x5cos 2x.

KK effects also cause tree-level shifts to theW- and
Z-boson gauge couplings. The physical gauge-boson c
plings are given by

gW(0)5g~12sb
2 ĉw

2 X!,

gZ(0)5g~12sb
2X!. ~5.9!

These last two relations are approximate, i.e., they are
tained by expanding the exact analytic results for the ma
and couplings, stated in Appendix B, to leading order in
parameterX defined in Eq.~5.3!. Finally, the KK tree-level
shift DG of the Fermi constantGF is

DG5 ĉw
2 S 122sb

22
ŝw

2

ĉw
2

sb
4 D , ~5.10!

which implies

Du52
ĉw

4

ĉ2w
S 122sb

22
ŝw

2

ĉw
2

sb
4 D . ~5.11!

Notice thatDu determining the difference betweensw andŝw
is a key parameter in the computation of many precis
observables, as it additionally enters via the vector coup
of the Z boson.

In our calculations of the electroweak observables to le
ing order inX, we consistently usemZ(n)'mW(n)'n/R and
08503
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gZ(n)'gW(n)'A2g for n>1. Within this approximative
framework, we compute the following high precision obse
ables: theW-boson massMW , the Z-boson invisible width
GZ(nn̄), Z-boson leptonic widthsGZ( l 1l 2), the Z-boson
hadronic widthGZ(had), the weak charge of cesiumQW
measuring atomic parity violation, various ratiosRl and Rq
involving partial Z-boson widths and theZ-boson hadronic
width, fermionic asymmetriesAf at theZ pole, and various
fermionic forward-backward asymmetriesAFB

(0,f ) at vanishing
polarization. A complete list of the considered observab
along with the SM predictions and their experimental valu
is given in Appendix C.

In Table I, we present predictions for the parame
DO

HDSM/X in the SM-bulk model, whereDO
HDSM and X are

defined by Eqs.~5.1! and ~5.3!, respectively. Moreover, the
auxiliary parameters that occur in Table I are given by

DV5
4 Qfŝw

2

2T3 f24Qfŝw
2

Du ,

D f5
8 ŝw

2 Qf~2T3 f24Qfŝw
2 !

~2T3 f24Qfŝw
2 !21~2T3 f !

2
Du ,

Dh5

8 ŝw
2 (

q
Qq~2T3q24Qqŝw

2 !

(
q

@~2T3q24Qqŝw
2 !21~2T3q!2#

Du ,

QW
SM5~Z2N!24 Zŝw

2 , ~5.12!

whereQf andT3 f are the electric charge and the third com
ponent of the weak isospin of a fermionf, respectively,q
5u,d,c,s,b and N578 is the number of neutrons andZ
555 the number of protons in the cesium nucleus. In E
~5.12!, the parametersDV , D f andDh are all proportional to
Du , since they arise from substitutingsw

2 by ŝw
2 into the

different electroweak observables. In detail,DV parameter-

TABLE I. Predictions forDO
HDSM/X in the SU(2)L ^ U(1)Y-bulk

model. The auxiliary parametersDV , D f , andDh are defined in Eq.
~5.12!.

Observable DO
HDSM/X

MW
1
2Ssb

4ŝw
21

ŝw
2

ĉw
2

DuD
GZ(nn̄) ŝw

2 (sb
221)221

GZ( l 1l 2) ŝw
2 (sb

221)2211D l

GZ(had) ŝw
2 (sb

221)2211Dh

QW(Cs) @(12sb
2)214Z(QW

SM)21Du# ŝw
2

Rl 2D l1Dh

Rq Dq2Dh

Af DV2D f

AFB
(0,f ) DV2D f1 f↔e
7-14
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izes the KK shift in the vector coupling of theZ boson to
fermions.D f results from an analogous KK shift in the su
of the squared vector and axial vector couplings for a giv
fermion f. Similarly, Dh gives the KK shift in the total had
ronic width of theZ boson.

Employing the results ofDO
HDSM in Table I, we can com-

pute the predictions for all the electroweak observables lis
in Appendix C, by virtue of Eq.~5.1!. We will confront these
predictions with the respective experimental values, wh
are also listed in Appendix C. To do so, we perform ax2 test
to obtain bounds on the compactification scaleM51/R as a
function of the bulk-brane angle sinb. Thus, in our global-fit
analysis ~ignoring correlation effects between the obse
ables to first approximation!, a compactification radius is
considered to be compatible at thens confidence level
~C.L.!, if x2(R)2xmin

2 ,n2, where

x2~R!5(
i

~O i
exp2O i

HDSM!2

~DOi !
2

~5.13!

andxmin
2 is the minimum ofx2 for a compactification radius

in the physical region, i.e., forR2.0. In Eq. ~5.13!, i runs
over all the observables listed in Table VI in Appendix
From this table, one easily sees that the total experime
and theoretical uncertainty (DOi)

2 of an observableOi is
dominated by its experimental uncertainty.

Figure 3 shows lower bounds on the compactificat
scale 1/R coming from different types of observables
functions of sin2b, where we take into account only one o
servable at a time. In addition, Fig. 3 displays the res
obtained by a globalx2 fit. For a model dominated by a
brane Higgs field (sinb51), the most stringent bound on 1/R
is set by the forward-backward asymmetry involvingb
quarks, while for a bulk-Higgs dominated model~with

FIG. 3. Lower bounds on the compactification scaleM51/R at
the 3s level from precision observables and ax2 analysis in the
SM-bulk model.
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sinb50) 1/R is most severely constrained by the hadron
Z-boson width. A globalx2 analysis yields a lower bound o
1/R of about 4 TeV at the 3s C.L., for the two limiting cases
for which only one Higgs field that either lives in the bulk o
on the y50 brane has a nonvanishing VEV. The low
bound on 1/R may decrease to;3 TeV, for a mixed brane-
bulk Higgs scenario with sin2b;0.5. This is so, because a
the observables but the variousZ-boson widths do not lead to
useful lower limits on 1/R in the region of sin2b;0.5.

B. SU„2…L-brane, U„1…Y-bulk model

Next we shall investigate the model, in which only th
U(1)Y gauge boson feels the presence of the extra dim
sion, whereas the SU(2)L gauge boson is confined on they
50 brane. In this case, we have

DZ52 ŝw
2 ,

DW50. ~5.14!

Obviously, theW-boson mass does not change by KK e
fects. However, the modification of theZ-boson coupling to
fermions becomes more involved in this model. Specifica
KK effects induce nonfactorizable shifts both in the vec
and axial part of theZ f̄ f coupling, when the result is ex
pressed in terms of theZ-boson mass eigenstate. To leadi
order in X, we can account for these new nonfactorizab
modifications by parametrizing theZ f̄ f -coupling in terms of
an effective electric chargeQf (0) and an effective third com-
ponent of the weak isospinT3(0) :

Qf (0)5Qf~12X!,

T3 f (0)5T3 f~12 ŝw
2 X!, ~5.15!

with Qf5T3 f1Yf . The exact relations betweenQf (0) and
Qf and betweenT3 f (0) andT3 f are given in Appendix B.

Taking the above results into account, we find

DG52 ŝw
2 ~5.16!

and, thereby,

Du5
ŝw

2 ĉw
2

ĉ2w
2

. ~5.17!

The simplicity of the above results is a consequence of
fact that the charged gauge sector lives on the brane
hence is not affected by KK effects.

With the help of the new auxiliary parameters, we exhi
in Table II the tree-level KK shiftsDO

HDSM to the different
electroweak observables. The parametersdV anddA give the
KK modifications in the vector and axial-vector part of th
Z f̄ f coupling, except of the modifications which are pure
due to the difference betweenuw and ûw ; i.e.,
7-15
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dV5
22T3 f ŝw

2 14Qfŝw
2

2T3 f24Qfŝw
2

,

dA52 ŝw
2 . ~5.18!

The parameterd f quantifies the KK shift in the sum of th
squared vector and axial vector couplings of a given ferm
f to the Z boson in this SU(2)L-brane, U(1)Y-bulk model.
The parameterd f is given by

d f5
~216T3 f

2 116T3 fQf !ŝw
2 1~16T3 fQf232Qf

2!ŝw
4

~2T3 f24Qfŝw
2 !21~2T3 f !

2
.

~5.19!

In analogy withDh , we finally define (q5u,d,c,s,b)

dh5

(
q

@~216T3q
2 116T3qQq!ŝw

2 1~16T3qQq232Qq
2!ŝw

4 #

(
q

@~2T3q24Qqŝw
2 !21~2T3q!2#

.

~5.20!

Moreover, the parametersDV , D f , andDh are defined in Eq.
~5.12! with Du given by Eq.~5.17!.

Following the procedure outlined in the previous sectio
we can now evaluate the lower bounds on the compactifi
tion scaleM51/R in the SU(2)L-brane, U(1)Y-bulk model.
In Table III, we display the lower limits on 1/R for each
observable separately, together with that found by a glo
analysis. The most restrictive bound is obtained by
b-quark forward-backward asymmetry, giving rise to a low
limit on 1/R of ;4.4 TeV at the 3s C.L. Finally, our global-
fit analysis leads to the slightly less restrictive lower bou
1/R*3.5 TeV.

C. SU„2…L-bulk, U„1…Y-brane model

Let us finally consider the complementary scenario,
which only the SU(2)L gauge boson propagates in th
higher-dimensional space. In this case, the KK-mass sh
for the Z andW bosons are computed to be

TABLE II. Predictions for DO
HDSM/X in the SU(2)L-brane,

U(1)Y-bulk model. See text for the definition of the delta para
eters.

Observable DO
HDSM/X

MW
1
2 ( ŝw

2 ĉw
2 / ĉ2w)

GZ(nn̄) 2 ŝw
2

GZ( l 1l 2) ŝw
2 1D l1d l

GZ(had) ŝw
2 1Dh1dh

QW(Cs) 4 Z(QW
SM)21ŝw

2 Du

Rl 2D l1Dh2d l1dh

Rq Dq2Dh1dq2dh

Af DV2D f2d f1dV1dA

AFB
(0,f ) DV2D f2d f1dV1dA1 f↔e
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DZ5DW52 ĉw
2 . ~5.21!

By analogy, the KK effects on theZ f̄ f coupling can also be
taken into account by introducing an effective third comp
nent of the weak isospin

T3 f (0)5T3 f~12 ĉw
2 X!. ~5.22!

Unlike in the model discussed in the previous section,
electric-charge term in theZ f̄ f -coupling remains unaffected
by KK effects, i.e.,Qf (0)5Qf . Thus, from the muon decay
we calculate

DG52 ĉw
2 , ~5.23!

which leads to

Du5
ĉw

4

ĉ2w
2

. ~5.24!

As in the previous section, we introduce the auxiliary p
rametersDV , D f , Dh , dV , dA , d f , anddh , which enables
us to cast the tree-level KK shiftsDO

HDSM to the electroweak
observables in Table IV. The meaning of these auxiliary
rameters are the same as in Secs. V A and V B. In particu

-
TABLE III. Lower bounds ~in TeV! on the compactification

scale 1/R at the 3s C.L. in models where either only the U(1)Y or
only the SU(2)L gauge boson propagates in the higher-dimensio
space.

Observable U(1)Y in bulk SU(2)L in bulk

MW 1.2 1.2
GZ(had) 0.8 2.3
QW(Cs) 0.4 0.8
AFB

(0,b) 4.4 2.4
At 2.5 1.4
Rt 1.0 0.5
global analysis 3.5 2.6

TABLE IV. Predictions for DO
HDSM/X in the SU(2)L-bulk,

U(1)Y-brane model. See text for the definition of the auxiliary p
rameters.

Observable DO
HDSM/X

MW
1
2 ( ŝw

2 ĉw
2 / ĉ2w)

GZ(nn̄) 2 ĉw
2

GZ( l 1l 2) ĉw
2 1D l1d l

GZ(had) ĉw
2 1Dh1dh

QW(Cs) 4 Z(QW
SM)21ŝw

2 Du

Rl 2D l1Dh2d l1dh

Rq Dq2Dh1dq2dh

Af DV2D f2d f1dV1dA

AFB
(0,f ) DV2D f2d f1dV1dA1 f↔e
7-16
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DV , D f , Dh are given by Eq.~5.12!, with Du in Eq. ~5.24!,
while dV , dA , d f , anddh are, respectively, found to be (q
5u,d,c,s,b)

dV52
2T3 f ĉw

2

2T3 f24Qfŝw
2

,

dA52 ĉw
2 ,

d f5
~216T3 f

2 116T3 fQf ŝw
2 !ĉw

2

~2T3 f24Qfŝw
2 !21~2T3 f !

2
,

dh5

(
q

~216T3q
2 116T3qQqŝw

2 !ĉw
2

(
q

@~2T3q24Qqŝw
2 !21~2T3q!2#

.

~5.25!

In Table III, we also present the lower bounds on 1/R for
the different type of observables. In the present model,
b-quark forward-backward asymmetry offers the most str
gent lower bound on the compactification scale as w
1/R*2.4 TeV at the 3s C.L. Most interestingly, we observ
that this lower bound on 1/R is much more relaxed than th
one found in the previous models. The same observa
applies to our global fit as well, i.e., ax2 analysis constrains
the compactification scaleM51/R to be higher than abou
2.6 TeV at the 3s C.L.

In Table V, we summarize the lower bounds on 1/R ob-
tained by our global fits in the minimal higher-dimension
extensions of the SM under discussion. We find that thex2

values increase rapidly as the compactification scale
creases, such that the lower bounds on 1/R at higher confi-
dence levels are relatively stable. Thus, from Table V, we
again that the lower bound on the compactification scal
the smallest in the SU(2)L-bulk, U(1)Y-brane model.

VI. CONCLUSIONS

We have studied new possible 5-dimensional extens
of the SM compactified on anS1/Z2 orbifold, in which the
SU(2)L and U(1)Y gauge fields and Higgs bosons may
may not all experience the presence of the fifth dimens
Moreover, the fermions in these models are considered t
confined to one of the two boundaries of theS1/Z2 orbifold.

TABLE V. Lower bounds~in TeV! on the compactification scal
1/R at 2s, 3s, and 5s C.L.s.

Model 2s 3s 5s

SU(2)L-brane, U(1)Y-bulk 4.3 3.5 2.7
SU(2)L-bulk, U(1)Y-brane 3.0 2.6 2.1
SU(2)L-bulk, U(1)Y-bulk
~brane Higgs! 4.7 4.0 3.1
SU(2)L-bulk, U(1)Y-bulk
~bulk Higgs! 4.6 3.8 3.0
08503
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We have paid special attention to consistently quantize
higher-dimensional models in the generalizedRj gauges.
Specifically, we have been able to identify the appropri
higher-dimensional gauge-fixing conditions which should
imposed on the theories so as to yield the knownRj gauge
after the fifth dimension has been integrated out. Based
the so-quantized effective Lagrangians, we have derived a
lytic expressions for the KK-mass spectrum of the gau
bosons and for their interactions to the fermionic matter.

The aforementioned analytic expressions have pro
very essential to obtain accurate predictions for low-ene
as well as high-energy electroweak observables measure
CERN e1e2 collider LEP and SLAC linear collider~SLC!.
In particular, we have performed an extensive global
analysis of recent high-precision electroweak data to th
different 5-dimensional extensions of the SM:~i! the
SU(2)L ^ U(1)Y-bulk model, where all SM gauge bosons a
bulk fields,~ii ! the SU(2)L-brane, U(1)Y-bulk model, where
only the W bosons are restricted to the brane, and~iii ! the
SU(2)L-bulk, U(1)Y-brane model, where only the U(1)Y
gauge field is confined to the brane. After carrying out ax2

test, we obtain different sensitivities to the compactificati
radiusR for the above three models. For the often-discus
first model, we find the 2s (3s) lower bounds on 1/R:
1/R*4.6 ~3.6! and 4.7~4.0! TeV, for a Higgs boson living in
the bulk and on the brane, respectively. For the second
third models, the corresponding 2s (3s) lower limits are
4.3 ~3.5! and 3.0~2.6! TeV. Consequently, we observe th
the bounds on 1/R may be reduced by even up to 1 TeV,
the W bosons are the only fields that propagate in the bu

The analysis presented here involves a number of assu
tions which are inherent in any nonstringy field-theore
treatment of higher-dimensional theories. Although the
sults obtained in the higher-dimensional models with o
compact dimension are convergent at the tree level, they
come divergent if more than one extra dimensions are c
sidered. Also, the analytic results are ultraviolet~UV! diver-
gent at the quantum level, since the higher-dimensio
theories are not renormalizable. Within a string-theore
framework, the above UV divergences are expected to
regularized by the string mass scaleMs . Therefore, from an
effective field-theory point of view, the phenomenologic
predictions will depend to some extend on the UV cut
procedure@24# related to the string scaleMs . Nevertheless,
assuming validity of perturbation theory, we expect th
quantum corrections due to extra dimensions will not exc
the 10% level of the tree-level effects we have been study
here. Finally, we have ignored possible model-depend
winding-number contributions, which become relevant wh
the compactification scale 1/R andMs turn out to be of com-
parable size@25#.

The lower limits on the compactification scale derived
the present global analysis indicate that resonant produc
of the first KK state may only be accessed at the CE
Large Hadron Collider~LHC!, at which heavy KK masses u
to 6–7 TeV@9,15# might be explored. In particular, if theW
bosons propagate in the bulk with a compactification rad
R;3 TeV21, one may still be able to probe resonant effe
originating from the second KK state, and so differentiate
7-17
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model from other 4-dimensional new-physics scenaria.
Note added. Shortly after completion of our paper, w

became aware of Refs.@26# and @27#. The focus of these
papers is the SM-bulk model, in which KK effects on hig
energy scattering processes at LEP2 and other colliders
analyzed. In addition to being complementary by concent
ing on high-precision electroweak observables, we have
vestigated new minimal higher-dimensional extensions of
SM, where the SU(2)L and U(1)Y gauge bosons may no
both propagate in the higher-dimensional space. In particu
we find that the lower limits on 1/R may be substantially
relaxed in one of these scenarios. Finally, we address
issue of a consistent quantization of the higher-dimensio
field theory in the generalizedRj gauge.

Finally, after our paper had been communicated, Ref.@28#
has appeared, which also discusses theRj gauge before com
pactification in fermionless non-Abelian theories.
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APPENDIX A: GOLDSTONE MODES
IN THE ABELIAN 2-HIGGS MODEL

In this appendix, we wish to show that the KK Goldsto
modes given in Eq.~2.46! have the properties of true Gold
stone particles as these are known from spontaneous sym
r

ui
xi

q
a

-
i-

n
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try breaking models. The higher-dimensional gauge-fix
Lagrangian in Eq.~2.45! induces at each KK leveln the
gauge fixing terms

L GF
(n)52

1

2j F ]mA(n)
m 2jSAn2

R2
1e2v2cos2bG(n)

1A212dn,0 ev sinbx2D G 2

, ~A1!

where the factor ofA2 stems from thed function @see Eq.
~2.32!#. In the Abelian 2-Higgs model, the fieldsG(n) are
defined analogously with Eq.~2.20! as

G(n)5S n2

R2
1e2v2cos2b D 21/2S n

R
A(n)51ev cosbx1(n)D .

~A2!

Thus, thej-dependent mass terms of the scalar modes in
x2G(n) basis are given by

L mass
j ~x!52

j

2
~x2 ,G(0) ,G(1) , . . . !M j

2S x2

G(0)

G(1)

A
D ,

~A3!

with
M j
25S e2v2S 11 (

n51

`

2D sin2b e2v2sinbcosb A2evc1sinb •••

e2v2sinbcosb e2v2cos2b 0 •••

A2evc1 sinb 0 ~1/R!21e2v2cos2b •••

A A A �

D ~A4!
KK

de-
lly,

ld-
mass
In
of

tic

go-
andcn5A(n/R)21(ev cosb)2. The infinite sum in the uppe
left entry of M j

2 is due tod(0) according to Eq.~2.33!. We
expect that only the Goldstone modes of the theory acq
gauge-dependent masses coming from the gauge-fi
terms. Computing the characteristic polynomial ofM j

2 , we
find

det~M j
22lI!52l det~MA

22lI!, ~A5!

where MA
2 is the gauge-boson mass matrix given in E

~2.43!. As a consequence, we may assign a Goldstone m
eigenstateĜ(n) with massAjmA(n) for each KK gauge eigen
mode with massmA(n) . This constitutes a necessary cond
tion in order to obtain gauge-invariantS-matrix elements
within theRj class of gauges. From Eq.~A5!, we observe the
existence of an additional degree of freedom which does
re
ng

.
ss

ot

acquire aj-dependent mass with no correspondence to a
gauge mode. This additionalCP-odd scalar field will gener-
ally receive a gauge-independent mass that will entirely
pend on the parameters of the Higgs potential. Additiona
it may mix with the other physicalCP-odd states to form
mass eigenstates~see discussion below!.

On the other hand, in a consistent theory, the KK Go
stone modes should not acquire any gauge-independent
term apart from theirj-dependent mass mentioned above.
addition to the KK mass terms, the physical mass matrix
the KK scalar modes is determined by the Higgs kine
terms in Eq.~2.39! and the Higgs potential~2.40!. Since the
CP-even Higgs modes do not mix withA(n)5 in the
CP-conserving case, the scalar mass matrix is block dia
nal and we can concentrate on theCP-odd mass matrix
MCP odd

2 , as it appears in the original Lagrangian
7-18
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FIG. 4. KK gauge- and
Goldstone-boson propagators
the 5-dimensional extensions o
the SM in the generalizedRj

gauge.
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L mass
CP odd~x,y!52

1

2
~x1 ,x2!MCP odd

2 S x1

x2
D , ~A6!

before integrating out they dimension. After a straightfor-
ward computation from Eq.~2.40!, this CP-odd mass matrix
may be cast into the form

MCP odd
2 5d~y!S mx11

2 mx12
2

mx12
2 mx22

2 D , ~A7!

where

mx11
2 52tanbm12

2 12v2sin2b l51
1

2
v2sinb cosbl6

1
1

2
v2sin2b tanbl7 . ~A8!

The other entries of theCP-odd mass matrixMCP odd
2 can be

related tomx11
2 via

mx22
2 5mx11

2 /tan2b and mx12
2 5mx21

2 52mx11
2 /tanb.

~A9!

In deriving Eqs.~A7!, ~A8!, and~A9!, we have made use o
the minimization conditions on the Higgs potential, i.
^]V/]F i&50, with i 51,2. In particular, the latter enabled u
to cast theCP-odd mass matrix into the simple form of Eq
~A7!, where all entries are proportional to an over
d-function. Note that the absence of bulk mass terms or
nating from the Higgs potential is a characteristic of t
CP-odd scalar sector of the model under consideration.

After integrating out they dimension in Eq.~A7!, we
obtain the effective mass matrix for all theCP-odd KK
modesx1(n) , x2, and A(n)5. From this effectiveCP-odd
mass matrix including the KK mass terms, it is straightf
ward, although somehow tedious, to show that the would
Goldstone modes~2.46! do not receive indeed any gaug
independent mass from the Higgs potential, whereas
08503
,
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-
e
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physical CP-odd mass eigenstates should acquire h
enough mass eigenvalues to avoid conflict with experime
data.

APPENDIX B: MASSES, COUPLINGS AND FEYNMAN
RULES

Here, we shall present exact analytic results for
masses and the couplings of the KK gauge modes to fe
ons in the minimal 5-dimensional extensions of the SM d
cussed in Sec. IV.

To start with, we display in Fig. 4 the propagators for t
KK gauge and Goldstone modes in theRj gauge. In addition,
the masses of the KK gauge bosons may be determine
follows

~i! SU(2)L ^ U(1)Y-bulk model:

mg(n)5
n

R
, ~B1!

AmW(n)
2 2mW

2 cos2b

5pmW
2 sin2bR cot~pRAmW(n)

2 2mW
2 cos2b!, ~B2!

AmZ(n)
2 2mZ

2cos2b

5pmZ
2sin2bR cot~pRAmZ(n)

2 2mZ
2cos2b!, ~B3!

wheren50,1,2, . . . , mW5gv/2 andmZ5Ag21g82 v/2.

~ii ! SU(2)L-brane, U(1)Y-bulk model:

mZ(n)5pmZ
2sin2uwRcot~pRmZ(n)!1

mZ
2

mZ(n)
cos2uw . ~B4!

Note that there are no KK excitations for the photon andW
boson in this model.
7-19
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~iii ! SU(2)L-bulk, U(1)Y-brane model:

mW(n)5pmW
2 R cot~pRmW(n)!, ~B5!

mZ(n)5pmZ
2cos2uwR cot~pRmZ(n)!1

mZ
2

mZ(n)
sin2uw . ~B6!

There are no KK excitations for the photon field in th
model.

In the following, we will give the exact analytic expres
sions for the couplings of KK gauge bosons to fermions.
this end, we first define the following generic interacti
Lagrangian

Lint5(
n

gW(n)~Ŵ(n)m
1 JW

1m1Ŵ(n)m
2 JW

2m!1(
n

gZ(n)Ẑ(n)mJZ
m

1(
n

e(n)Â(n)mJEM
m , ~B7!

with

JW
1m5

1

2A2
@ n̄ ig

m~12g5!ei1ūig
m~12g5!djVi j #,

JZ
m5

1

4 cosuw
f̄ gm@~2T3 f (n)24Qf (n)sin2uw!

22T3 f (n)g
5# f , ~B8!

JEM
m 5 f̄ Qfg

m f

and n i5(ne ,nm ,nt), ei5(e,m,t), ui5(u,c,t), and di
5(d,s,b). In addition, f denotes all the 12 SM fermions
After a basis transformation from the weak to the ma
08503
o

s

eigenstates, we obtain the following effective gauge a
quantum couplings related to the three different high
dimensional models (n50,1,2, . . . ).

~i! SU(2)L ^ U(1)Y-bulk model:

e(0)5e, e(n>1)5A2e,

gZ(n)5A2gS 11
mZ

2sin2b

mZ(n)
2 2mZ

2cos2b

1
p2 mZ

4sin4b

M2 ~mZ(n)
2 2mZ

2cos2b!
D 21/2

,

gW(n)5A2gS 11
mW

2 sin2b

mW(n)
2 2mW

2 cos2b

1
p2 mW

4 sin4b

M2 ~mW(n)
2 2mW

2 cos2b!
D 21/2

, ~B9!

T3 f (n)5T3 f , Qf (n)5Qf ,

with M51/R.

~ii ! SU(2)L-brane, U(1)Y-bulk model:

gZ(n)5g,

T3 f (n)5
T3 f

cw

mZ(n)
2

mZ
2 F 1

sw
2 S 1

2
2

mZ(n)
2

mZ
2 D 1

sw
2

2cw
2

3S p2
mZ(n)

2

M2
1

mZ(n)
2

mZ
2sw

2
1

mZ(n)
4

mZ
4sw

4 D G21/2

,

s

e

FIG. 5. Feynman rules for
couplings of the KK gauge boson
to fermions in the minimal
5-dimensional extensions of th
SM.
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Qf (n)5
Qf

cw
S mZ(n)

2

mZ
2sw

2
2

cw
2

sw
2 D F 1

sw
2 S 1

2
2

mZ(n)
2

mZ
2 D

1
sw

2

2cw
2 S p2

mZ(n)
2

M2
1

mZ(n)
2

mZ
2sw

2
1

mZ(n)
4

mZ
4sw

4 D G21/2

.

~B10!

~iii ! SU(2)L-bulk, U(1)Y-brane model:

gZ(n)5g, gW(n)5A2gS 11
mW

2

mW(n)
2

1
p2mW

4

M2mW(n)
2 D 21/2

,

T3 f (n)5
T3 f

sw

mZ(n)
2

mZ
2 F 1

cw
2 S 1

2
2

mZ(n)
2

mZ
2 D 1

cw
2

2sw
2 S p2

mZ(n)
2

M2

1
mZ(n)

2

mZ
2cw

2
1

mZ(n)
4

mZ
4cw

4 D G21/2

, ~B11!

Qf (n)5
Qf

sw
F 1

cw
2 S 1

2
2

mZ(n)
2

mZ
2 D 1

cw
2

2sw
2 S p2

mZ(n)
2

M2
1

mZ(n)
2

mZ
2cw

2

1
mZ(n)

4

mZ
4cw

4 D G21/2

.

In Fig. 5 we display the Feynman rules for the couplin
of the KK gauge bosons to fermions that pertain to the ab
minimal 5-dimensional extensions of the SM.

APPENDIX C: INPUT PARAMETERS, OBSERVABLES,
AND SM PREDICTIONS

In this appendix, we list the numerical values of the inp
parameters and electroweak observables, along with t
SM predictions. These numerical values were used in Se
to constrain the parameters of the 5-dimensional models

As input parameters for our theoretical predictions,
use the most accurately determined ones, namely the F
constantGF measured in muon decay, the fine structure c
stant a determined by the quantum Hall effect and t
Z-boson massMZ @17#:

GF51.16637~1!31025 GeV22,

a51/137.0359895~61!, ~C1!

MZ591.1872~21! GeV ,

where the numbers in parentheses indicate the 1s uncertain-
ties.

@1# For a review, see, e.g., M.B. Green, J.H. Schwarz, and E. W
ten, Superstring Theory~Cambridge University Press, Cam
bridge, England, 1987!.

@2# I. Antoniadis, Phys. Lett. B246, 377 ~1990!.
@3# J.D. Lykken, Phys. Rev. D54, 3693~1996!.
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Given the above input parameters, predictions can
made for a number of high-precision observables within
SM framework. The results of these predictions may
found in Ref.@17#, together with experimental values of th
observables. For the reader’s convenience, the actual va
taken into account in our analysis are also listed in Table
The theoretical values in this table are obtained by assum
a light SM Higgs boson.

As was already discussed in Sec. V, we introduce an
fective weak mixing angleûw by enforcing the tree-level SM
relation

GF5
pa

A2sin2ûwcos2ûwMZ
2

. ~C2!

If renormalization-group running of the parameters is
cluded, e.g.,a(MZ)51/128.92(3), we find

sin2ûw50.23105~8!, ~C3!

which is the value used for theZ-pole observables in Sec. V

t- @4# E. Witten, Nucl. Phys.B471, 135 ~1996!; P. Hořava and E.
Witten, ibid. B460, 506 ~1996!; B475, 94 ~1996!.

@5# N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett.
429, 263 ~1998!; I. Antoniadis, N. Arkani-Hamed, S. Di-
mopoulos, and G. Dvali,ibid. 436, 257 ~1998!; N. Arkani-

TABLE VI. Precision measurements and the corresponding
predictions for all observables considered in our analysis~notation
as in Ref.@17#!.

Observable Exp. value (O EXP) SM prediction (O SM)

MW 80.448~62! GeV 80.378~20! GeV
GZ(had) 1.7439~20! GeV 1.7422~15! GeV
GZ( l 1l 2) 83.96~9! MeV 84.00~3! MeV

GZ(nn̄) 498.8~15! MeV 501.65~15! MeV

QW(Cs) 272.06(44) 273.09(03)
Re 20.803~49! 20.740~18!

Rm 20.786~33! 20.741~18!

Rt 20.764~45! 20.786~18!

Rb 0.21642~73! 0.2158~2!

Rc 0.1674~38! 0.1723~1!

Ae 0.15108~218! 0.1475~13!

Am 0.137~16! 0.1475~13!

At 0.1425~44! 0.1475~13!

Ab 0.911~25! 0.9348~1!

Ac 0.630~26! 0.6679~6!

As 0.85~9! 0.9357~1!

AFB
(0,e) 0.0145~24! 0.0163~3!

AFB
(0,m) 0.0167~13! 0.0163~3!

AFB
(0,t) 0.0188~17! 0.0163~3!

AFB
(0,b) 0.0988~20! 0.1034~9!

AFB
(0,c) 0.0692~37! 0.0739~7!

AFB
(0,s) 0.0976~114! 0.1035~9!
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Hamed, S. Dimopoulos, and G. Dvali, Phys. Rev. D59,
086004~1999!.

@6# K.R. Dienes, E. Dudas, and T. Gherghetta, Phys. Lett. B436,
55 ~1998!; Nucl. Phys.B537, 47 ~1999!.

@7# A. Kehagias and K. Sfetsos, Phys. Lett. B472, 39 ~2000!.
@8# The following is a rather incomplete list of references: G

Giudice, R. Rattazzi, and J.D. Wells, Nucl. Phys.B544, 3
~1999!; T. Han, J.D. Lykken, and R.-J. Zhang, Phys. Rev. D59,
105006~1999!; E.A. Mirabelli, M. Perelstein, and M.E. Pes
kin, Phys. Rev. Lett.82, 2236 ~1999!; J.L. Hewett,ibid. 82,
4765 ~1999!; T.G. Rizzo, Phys. Rev. D59, 115010 ~1999!;
S.A. Abel and S.F. King,ibid. 59, 095010~1999!.

@9# I. Antoniadis and K. Benakli, Int. J. Mod. Phys. A15, 4237
~2000!.

@10# I. Antoniadis, E. Kiritsis, and T.N. Tomaras, Phys. Lett. B486,
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