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We consider minimal 5-dimensional extensions of the standard model compactifiedSdfzarrbifold, in
which the SU(2) and U(1), gauge fields and Higgs bosons may or may not all propagate in the fifth
dimension while the observable matter is always assumed to be confined to a 4-dimensional subspace. We pay
particular attention to consistently quantize the higher-dimensional models in the geneRiligadge and
derive analytic expressions for the mass spectrum of the resulting Kaluza-Klein states and their couplings to
matter. Based on recent data from electroweak precision tests, we improve previous limits obtained in the
5-dimensional standard model with a common compactification radius and extend our analysis to other pos-
sible 5-dimensional standard-model constructions. We find that the usually derived lower bottdd o&V
on a universal compactification scale may be considerably relaxe®tdlreV in a minimal scenario, in which
the SU(2) gauge boson is the only field that feels the presence of the fifth dimension.
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[. INTRODUCTION SM gauge fields could also propagate independently within a
higher-dimensional subspace, where the size of the new extra
String theory provides the only known theoretical frame-dimensions is of order TeV for phenomenological reasons
work within which gravity can be quantized and so undeni-[11-16. Since such low string-scale constructions may ef-
ably plays a central role in our endeavours of unifying allfectively result in different higher-dimensional extensions of
fundamental forces of nature. A consistent quantumihe SM[9,10], the actual limits on the compactification ra-
mechanical formulation of a string theory requires the exis-dius are, to some extent, model dependent. Nevertheless, in
tence of additional dimensions beyond the four ones we exthe existing literature the derived phenomenological limits
perience in our everyday life. These new dimensionswere obtained by assuming that the SM gauge fields propa-
however, must be sufficiently compact so as to escape detegate all freely in a common higher-dimensional space, in
tion. In the original string-theoretic consideratiofld, the  which the compactification radius is universal for all the ex-
inverse length R of the extra compact dimensions and thetra dimensions.
string massMg turned out to be closely tied to the In this paper we wish to lift the above restriction and
4-dimensional Planck masgp=1.9x 10'® TeV, with allin-  extend the analysis to models which minimally depart from
volved mass scales being of the same order. More recemihe assumption of a universal higher-dimensional scenario.
studies, however, have shoW2-6] that there could still be  Specifically, we will consider 5-dimensional extensions of
conceivable scenarios of a stringy nature wheRdidM,  the SM compactified on ar§'/Z, orbifold, where the
may be lowered independently &, by several or many SU(2)_ and U(1), gauge bosons may not both live in the
orders of magnitude. In particular, R€5] considers the same higher-dimensional space, the so-called bulk. For ex-
radical possibility thaMM ¢ is of order TeV and represents the ample, one could imagine that the SU(2jauge field propa-
only fundamental scale in the universe at which unificationgates in the bulk whilst the U(%)gauge boson is confined to
of all forces of nature occurs. In this model, the compactifi-our observable 4-dimensional subspace and vice versa. This
cation radius related to the higher-dimensional gravitationabbservable 4-dimensional subspace is often termed 3-brane
interactions lies in the submillimeter range, i.eR¥10 2  or simply brane and is localized at one of the two fixed
eV, so Cavendish-type experiments may potentially test th@oints of theS'/Z, orbifold, the boundary. In the aforemen-
model by observing deviations from Newton’s |d®,7] at  tioned higher-dimensional scenarios, all SM fermions and
such small distances. The model also offers a wealth of phehe Higgs boson should necessarily be brane fields, such that
nomenological implications for high-energy collidéfs. an explicit breaking of the 4-dimensional gauge symmetry of
The above low string-scale framework could be embedthe original(classical Lagrangian is avoided.
ded within, e.g., type | string theori¢4], where the standard Another issue of particular interest to us is related to our
model (SM) may be described as an intersection of higher-ability of consistently quantizing the higher-dimensional
dimensionalD p-branes[5,6,9. As such intersections may models under study in the so-callBgd gauge. In particular, it
naturally be higher dimensional, in addition to gravitons thecan be shown that higher-dimensional gauge-fixing condi-

0556-2821/2002/68)/08503722)/$20.00 65 085037-1 ©2002 The American Physical Society



MUCK, PILAFTSIS, AND RUCKL PHYSICAL REVIEW D 65 085037

tions can always be found that reduce to the uajauge  dimensional non-Abelian theory and discuss the basic struc-
after the compact dimensions have been integrated out. Sughre of the gauge sector after compactification. In Sec. IV we
a quantization procedure can be successfully applied to botstudy 5-dimensional extensions of the SM, in which the
Abelian and non-Abelian theories that include Higgs boson$SU(2). and U(1), gauge fields and Higgs bosons may or
living in the bulk and/or on the brane. Tl gauge has the may not all feel simultaneously the presence of the compact
attractive theoretical feature that the unphysical sector dedimension while the fermionic matter is always assumed to
couples from the theory in the limit of the gauge-fixing pa- be confined on the brane. In fact, we distinguish three cases:
rameteré—oe, thereby allowing for explicit checks of the (i) both SU(2) and U(1), gauge bosons are bulk fields)
gauge independence of physical observables, such aly the U(1), gauge boson is a bulk field while the SU(2)
S matrix elements. one is a brane field, an@ii) only the SU(2) gauge boson
After compactification of the extra dimensions, we obtainresides in the bulk while the U(%)one is restricted to the
an effective 4-dimensional theory which is usually describedorane. Technical details of our study have been relegated to
by infinite towers of massive Kaluza-KleifKK) states. In the Appendixes A and B. In Sec. V we perform a fully
the 5-dimensional extensions of the SM under consideratiorfledged global-fit analysis to the aforementioned
such infinite towers generically consist of KK excitations of 5-dimensional extensions of the SM, based on recent data on
the W boson, theZ boson, and the photon. Since the mass ofhigh-precision electroweak observables. Section VI summa-
the first excited KK state is typically set by the inverse of therizes our conclusions.
compactification radiu®, one expects that the KK effect on
high-precision electroweak observables will become more Il. 5-DIMENSIONAL ABELIAN MODEL
significant for higher values oR. Thus, if all SM gauge i ) ] ] )
bosons live in the bulk, compatibility of this model with the 10 describe as well as motivate our higher-dimensional

present electroweak data gives rise to a lower bddaj of gaug_e-fixi_ng quantization procedu_re, it i; very instructive to
~4 TeV on 1R at the 2 level. consider first a simple Abelian 5-dimensional model, such as

On the other hand, the possibilities that the SY(gauge ~ >-dimensional5D) quantum electrodynamidQED) where
boson is a brane field with the U({ )jauge boson living in (€ €xtra spatial dimension is compactified onSZ; or-
the bulk and vice versa are phenomenologically even mor&ifold. Then, we shall extend our quantization procedure to
challenging. In such cases, we find that the lower limit on the"0€ general Abelian models with bulk and/for brane Higgs

compactification scale ® can become significantly weaker, "€'0S: _ , ,
i.e., LIR=3 TeV. This new result emerges partially from the . AS_ a strgrtlng point, let us consider the 5D-QED Lagrang-
ian given by

fact that some of the most constraining high-precision elec*

troweak observables are getting differently affected by the 1

presence of the KK states within these mixed brane-bulk £(x,y)=— —Fn(XY)FMN(X,y) + Loe(X,Y) + Leo(X,Y),

scenaria. For example, the muon lifetime does not directly 4

receive contributions from KK excitations if thé&/ boson 2.)

lives on the brane, but only indirectly when the analytic re-\nere

sult is expressed in terms of t@Zeboson mass in the context

of our adopted renormalization scheme. Most interestingly, Fun(XY)=duAn(X,Y) — InNAM(X,Y) (2.2

unlike in the frequently investigated model with all SM

gauge fields in the bulk, other competitive observables, sucfenotes the 5-dimensional field strength tensor, and

asA2; andA®, [17], do now possess additional distinct ana- £eH(X,Y) andLex(x,y) are the gauge-fixing and the induced

lytic dependences on the compactification scaR Within FadQeev—Popov ghost terms, respectively. In a 5-dimensional

these novel brane-bulk models. As a consequence, the resuft9elian model, one may neglect the Faddeev-Popov ghost

of the performed global-fit analysis become substantially dif-ferm Lep induced byLgr, as the Abelian ghosts are nonin-

ferent for these scenaria. teracting and hence they cannot occuiSimatrix elements.
The paper is organized as follows. In Sec. Il we consideMVe shall return to this point in Sec. Ill, when discussing

a 5-dimensional Abelian model compactified on &z,  quantization of h|gher-d|menS|ona}I npn—Abellar_1 theo_rles.

orbifold, in which the gauge field propagates in the bulk. The Through_out the_paper, Lorentz indices in 5 dimensions are

model is quantized by prescribing the proper higher-denoted with capital Roman letters, e.§1,N=0,1,2,3,5,

dimensional gauge-fixing condition which leads to the usuatvhile the respective indices pertaining to the ordinary 4 di-

class ofR, gauges after the extra dimension has been intelensions are symbolized by Greek letters, e.g.»

grated out. The same gauge-fixing procedure may success-0,1,2,3. Furthermore, we use the abbreviatigag(x°,x)

fully be implemented for Abelian models augmented by oneand y=x° to denote the coordinates of the usual

Higgs boson which could either be a bulk or a brane field, o1+ 3)-dimensional Minkowski space and the coordinate of

even for more general models with two Higgs bosons wherg¢he fifth compact dimension, respectively.

the one Higgs boson can live on the brane and the other one In a 5-dimensional theory, the gauge-boson fidig)

in the bulk. In Sec. Il we also present analytic expressiongransforms as a vector under the Lorentz groug1S9. In

for the masses of the physical KK gauge bosons and for thethe absence of the gauge-fixing and ghost teffsand L

mixings with the corresponding weak eigenstates. In Sec. llin Eq. (2.1), the 5D-QED Lagrangian is invariant under a

we extend our gauge-fixing procedure to a higher-U(1) gauge transformation
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1/n

An(X%Y) = An(Xy) +ImO (X,y). 2.3 1 ~[1 »
T 2T w3 gAML

LO)== 7 FuFot nZl
Being consistent with the above property of gauge symmetry, -
we can compactify the theory on & Z, orbifold, such that n
the following equalities are satisfied: +‘9MA(n)5) (—

= Al A

+Ler(X), 2.7)

An(X,y)=An(xy+2mR),
where Lg(x) = [2™dy Lg(x,y). Note that the invariance

ALXY)=ALX—Y), of £(x) under the transformatior(®.6) becomes manifest in
the absence of the gauge-fixing tefg(x,y).
As(X,Y) = —As(X,~Y), In addition to the usual QED terms involving the massless

field Afg), the other terms in the effective 4-dimensional La-
grangian(2.7) describe two infinite towers of massive vector
excitationsAf‘n) and (pseud¢ scalar modesA(Sn) that mix
with each other, fon=1. The scalar modeAfn) play the
0(x,y)=0(x,~y). (2.4 role of the would-be Goldstone modes in a nonlinear realiza-
tion of an Abelian Higgs model, in which the corresponding
As we will see below, the fact thak ,(x,y) is taken to be Higgs fields are taken to be infinitely massive.
even undet, results inthe_ embedding of convent_ional QED  As in usual Higgs models, one may seek for a higher-
with a massless photon into our 5D QED. Notice that allgimensjonal generalization of 't Hooft's gauge-fixing condi-
other constraints on the fiels(x,y) and the gauge param- yion for which the mixing terms bilinear iAf) andA, are
eter®(x,y) in Eq. (2.4) follow automatically if the theory is eliminated from the effective 4-dimensional Lagrangian

to remain gauge invariant after compactification. . . .
Given the periodicity and reflection propertiesAyf, and (2.7). For instance, the covariant gauge-fixing te/@

undery in Eqg. (2.4), we can expand these quantities in a
Fourier series as follows:

O(x,y)=0(x,y+27R),

1 My 2
Le(X,y)=— 57(IuA™) (2.8
Ay = A0+ 1Aﬂ<>s(”y) *
X,y)= X — x)cos =,
V= RO & R R
does not lead to a complete cancellation of the bilinear op-
] ny eratorsAf‘n)&MAf’n) in Eg. (2.7), with the exception of the
AS(x,y)= 2 —A?n)(x)sin(ﬁ), Feynman gaug&€=1. Taking, however, advantage of the
n=1 y7R fact that orbifold compactification generally breaks ($@)
invariance[ 18], one can abandon the requirement of covari-
1 1 ny ance of the gauge fixing condition with respect to the extra
O(x,y)= \/ﬁ@(o)(ngl \/ﬁﬁ)(n)(x)co{ E) . dimension. In this context, we are free to choose the follow-

ing noncovariant generalizeR, gauge’

(2.9

The Fourier coefficientzé\&)(x), also called KK modes, turn 1
out to be the mass eigenstates in 5D QED. However, this is _ 2

. ; . ) ' Y)=— == ("*A,— € dsAs)". 2.9
not a generic feature of higher-dimensional models, namely, Lor(x.y) 25( w= §95hs) 2.9
the Fourier modes cannot always be identified with the KK
mass eigenstates. Below we will encounter examples, in
which the Fourier modes will mix to form the KK mass Nevertheless, the gauge-fixing term in E8.9) is still in-

eigenstates. _ variant under ordinary 4-dimensional Lorentz transforma-
From Egs.(2.3) and(2.5), one can now derive the corre- tions. Upon integration over the extra dimension, it is not
sponding gauge transformations for the KK mogé}s difficult to see that all mixing terms involvingfs A%, in

Eqg. (2.7 drop out up to irrelevant total derivatives. As a
consequence, the propagators for the fiélf}s andAf’n) take
on their usual forms that describe massive gauge fields and
n their respective would-be Goldstone bosons of an ordinary
A A -=0 . 2.6 . . . ) .
ms(¥) = Ams() = 2O m(X) 2.8 4-dimensional Abelian-Higgs model in tfiR; gauge:

Ay (X)) = Ay u(X) + 3,0 () (X),

Integrating out they dimension vyields the effective
4-dimensional Lagrangian IFor a related suggestion made recently, see Ré.
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(n) ) (1=)k* kv
— i 7
[TV aVa VAV VENZ ——Ekz—(%) g + —sz_é(%) (2.10
o i
k2—-£(2) (2.1

Therefore, we shall often refer to tig,, fields as Goldstone 1 * 1 ny
modes, even though these KK modes do not d|reqtly result h(X,y)= —=h(o)(X)+ Z —h(n)(x)co{ﬁ),
from a mechanism of spontaneous symmetry breaking in the v27R =1 7R
usual sense.
Havirjg defined. the appropriat®; gauge through the_ 1 S} ny
gauge—ﬁxmg term in _Eq(.2.9), we can recover the _usual uni- X(X,y)=——=——=x)(X)+ 2 —X(n)(x)cos( ﬁ)
tary gauge in the limig—oc. This limit is also equivalent to V2mR =1 7R
the gauge-fixing conditiomg(x,y)=0 or equivalently to (2.1
Af’n)(x)=0, where all unphysical KK scalar modes are ab- ] ) ]
sent from the theor20]. Thus, for the case at hand, we have AS We will see below, our choice of an evéa parity for the
seen how starting from a noncovariant higher-dimensionapulk Higgs scalab ensures that the lowest lying KK modes
gauge-fixing condition, we can arrive at the known covarianidescribe a conventional 4-dimensional Abelian Higgs model.
4-dimensionalR, gauge after compactification. As we will Instead, if & were odd underZ,, this would not allow
see below, the above quantization procedure can be extend¥dkawa interactions of the Higgs scalars with fermions lo-
to more elaborate higher-dimensional models that may incalized on a brane/=0 and the generation of fermion
clude brane and/or bulk Higgs fields. masses through the Higgs mechanism would be impossible
in this case.
Let us now turn our attention to the effective Higgs sector
of our Abelian model. The effective 4-dimensional Lagrang-
Here, we shall discuss an extension of the Abelian modeian associated with the Higgs fields may conveniently be
outlined above by adding a bulk Higgs scalar. The 5D La-given by
grangian of this theory reads

A. Abelian model with a bulk Higgs boson

1 1 u n , 242
L(x,y)= = ZF"NFyn+(Dy®)* (DMD) - V(®) Lriged )= 5 2 | (3,0 (?*New) 51Ty =y
+ LeX,Y), (2.12
¢ +(hoy) [+, (2.17

whereD\,=dy +iesAy is the covariant derivativegg de-

notes the 5-dimensional gauge coupling, ank,y) is the s 2 _ o )
5-dimensional complex scalar field where u“=uz and the ellipses denote quartic interactions

which involve the Higgs field$,) and x(,y and which all
1 depend om=A5/(27R)>0. In Eq.(2.17), the mass terms
D(x,y)=—=[h(x,y)+i x(x,y)] (2.13 proportional to n?R?> arise from compactifying the
V2 y-dimension. As in the usual 4-dimensional case,#é#0,
the zero KK Higgs mod@(o)z(h(o)+ix(0))/\/§ acquires a

that transforms under a() gauge transformation as non-vanishing vacuum expectation valy@eV)
P(x,y)—exd —ies0(x,y)J®(xy).  (2.14 1 v
(P o)) =—7=(he) =7, (2.18

In Eqg. (2.12), the 5-dimensional Higgs potential is given by V2 V2

V(D)= ud| |2+ \g|D|%, (2.15  Wwhich breaks the 1) symmetry. Moreover, it can be shown

that as long as the phenomenologically relevant condition
with A s>0. <1/Ris met,hq) will be the only mode to receive a nonzero
After imposing the S'/Z, compactification conditions VEV, i.e.,v=/|u|?/\.

O(x,y)=P(x,y+27R) and PD(x,y)=P(x,—y) on After spontaneous symmetry breaking, the effective ki-
d(x,y), we can perform a Fourier decomposition of the sca-netic Lagrangian of the theory for theKK mode may be
lar fieldsh(x,y) and x(x,y) in terms of cosines cast into the form
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2

(QMAM_ g (?5A5+ es

)

1
A(n)ﬂAan) LeHX,y)=— 2_§

1 1[n?
LI =— 2FmFmut 5(; +e%v?
2.2
+ L ad,A O*A +1 Jd a* o
2 (TuAms) (I Ams) 5 (IuX(m) (7 Xm) Taking Eq.(2.22 into account, we arrive at the total effec-
tive kinetic Lagrangian

1/n 2
5| gXm e Ams

=

1 1
Lian00= = ZFEFmurt 3 MamAmuAl ~ 5z (9uA)?
+oeee, (2.19

n
+A'€Ln)(9ﬂ<§A(n)5+ ev X(n) 1 g
+ 5 (9,5 (9“Gm) =~ 5 Mawy Gy
wheree=e5/\27R and the dots indicate the omission of
bilinear terms involvingh,, . From Eq.(2.19), it is evident
that the mass spectrum of the zero KK modes is identical to
that of a convegti_onal Abelian Higgs model, i.enp ) 1 1
=ev andmyy=v2\v. This is so, becausA is absent - “ T2 .2
and we areh?g,)ft with the standard 4—dimens(i(()))r?al terms only. 2 (9uhi) () = 5 Moy Ny - 2.23
To determine the complete mass spectrum for the higher KK
modes, we first introduce tHpseudagscalar KK modes3,)  In the above,my,= J(n?/R?)+2\v? are the KK Higgs
anda(n) through the orthogonal linear transformations boson masses amdy ) andm,,) are the KK masses &,

anda, given after Eq(2.21). Observe finally that the limit

1 1,
+ E(ﬂﬂa(n))(ﬁ”a(n)) ~ 5 Mam)3(n)

n2 12 &—x in Eq. (2.23 consistently corresponds to the unitary
G(ny= §+e’-’uz) (ﬁA(n)5+ ev X(n)), gauge.
" B. Abelian model with a brane Higgs boson
) _
n n A qualitatively different way of implementing the Higgs
am=| — +e’v? ev Aps— = : qu ) . . ) . \
m (RZ v ) ( v Ams RX(”)) sector in a higher-dimensional Abelian model is to localize

(2.20 the Higgs field at thegy=0 boundary of theS'/Z, orbifold.
The 5-dimensional Lagrangian of this theory reads

Then, with the aid of Eq(2.20), E(km in Eq. (2.19 can be 1
rewritten in the more compact form L(X,y)=— ZFMNFMN+ 8(Y)[(D,®)*(D*®)—V(P)]

1 1 + LX) Y). (2.249
Lin00== ZFF mut 5 (MaAmut 7,Gm) ©
Here, the covariant derivativie ,=d,+iesA ,(X,y) and the
Higgs potentialV(®)= u?|®|2+ \|®|* have their familiar
4-dimensional forms, and thé function §(y) confines the
1 Higgs sector on the brane=0. Under a gauge transforma-

_Emg(n)a(zn)+ o (2.21) tion, the brane Higgs field(x) transforms as

1
X(mA(n)A’{h) + (SWG(I‘])) +§(&Ma(n))(&“a(n))

O (x)—exd —ies0(x,0)]P(x). (2.25

with mj = m2, = (n%/R?) +e%?2 From this last expres-
sion for £{, we readily see thaG, plays the role of a Under Eq.(2.25 and the local transformatio2.3) of the
Goldstone mode in an Abelian Higgs model, while the pseugauge fieldAy(x,y), the theory exhibits W) invariance.
doscalar fielda,) describes a physical KK excitation degen- Notice that the bulk scalar fields(x,y) vanishes on the
erate in mass with the KK gauge mo#ég,, . In particular, braney=0 as a r_e_sul'g of its oqlé[z parity. )
since the zero KK modes of the fields are expected to be After compactification and integration over tiyedimen-
much lighter than their first KK excitations, i.eep <1/R, sion, the effective Lagrangian of the model under discussion
the masses of all higherKK gauge and Higgs modes are Will be the sum of two terms: the effective Lagrangiéh?)
approximatelymg,=n/R and the Goldstone modeS,  ©f 5D QED and the square bracKet- -], in Eq. (2.24.
may almost be identified With s, i.e., Gy~Aqms as in  Obviously,®=(h-+ix)/\2 being a brane field does not pos-
5D QED. sess KK excitations and, fqe?<0 (with A>0), acquires a

From the above discussion, it becomes now clear that th¥EV (®)=(h)/\2=v/\/2. After spontaneous symmetry
appropriate gauge-fixing Lagrangian in E(.12 for a  breaking, masses are generated for all the KK gauge modes
5-dimensional generalize®; gauge should be Aln - However, unlike in the Abelian model with a bulk
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Higgs boson discussed in Sec. Il A, the corresponding gauge- 1 1 > n 2
boson mass matrix here is no longer diagonal and has theLgg(x)=— Z—(aMAfg))Z— 2¢ E ﬁﬂA{n)—gﬁA(nﬁ
form 3 €1
2 2 2 ”
m V2m V2m o +ev x(d,Alh)+V2evx D, (9,Al)
, | V2m? 2m?+(1R)? 2m? co n=1
M = ’

A 2 2 2 2 w
2m 2m 2m-+(2/R) n &
\/—. . ) -¢ \/Eev anl ﬁA(n)S_ Eeévz)(zﬁ(O). (2.3)

(2.26 On theSY/Z, orbifold, the § function may be represented by
wherem?=e?y? denotes the mass generated by the Higgs

mechanism. The eigenvalues Mf follow from: 1 o1 ny
) s(y)= 27TR+Z‘1 —c08 & . (2.32
de(MZ—\1)= nljl (nZ/RZ—M) which implies
- 1 1 o1
x| m-r—2m2y, ——— 80)= 5=+ —. (2.33
( ngl (n/R)z_)\) 27R =1 7R
—0. (2.2 It is interesting to verify whether our 5-dimensional gauge-

fixing term in Eq.(2.30 does consistently lead to the gener-
Sincex =(n/R)? is not a solution as can be easily seen, thealizedR, gauge after integration over the extra dimension. In
mass eigenvaluas,, are given by the zeros of the second doing so, we apply théR.-gauge-fixing prescription indi-
big bracket in Eq(2.27). This is equivalent to solving the vidually to each KK gauge mode in the effective Lagrangian,

transcendental equation instead of using Eq(2.30. It is then not difficult to obtain
A=m =7 m?Rcot{ 7 myR), 2.2 1 n - 2
VA= MR @2 @e=- % aMAz‘n)—é(ﬁA(n)ﬁ V2t~ ndey x)
with ma(ny =My . The respective KK mass eigenstag, (2.34
are given by , , o ) -
This analytic result coincides with the one stated in Eq.
A ) o m(Zn) -2 (2.31, providedes= y27R e and Eq.(2.33 are used. As is
Am=|1+7mR t— also expected from a generalizBgd gauge, all mixing terms
m

of the gauge modeA(;, with A5 and y disappear up to
80 total derivatives. Hence, the eigenvalueg, as derived
—— Afy. (229 from Eq.(2.28 do represent the physical masses.
V2 The unphysical mass spectrum of the Goldstone modes
may be determined by diagonalizing the following

To find the appropriate form of the gauge-fixing term ¢-dependent mass matrix of the fielgisand A ys:
Lee(x,y) in Eq. (2.24), we follow Eq.(2.22), but restrict the

scalar fieldy to the braney=0, viz.

X
A
1 ¢ o 5 o Aws
Lar(x,Y)= = 5 0,A"— € dsAsTes x 8(Y) 1} LmastX) == 50 Aws A - IMe| 5 T
(2.30 :
. . . - . (2.39
Then, the effective 4-dimensional gauge-fixing Lagrangian
LX) is given by with
e%? 1+, 2) V2(1R)ev  V2(2/R)ev
n=1
M2= V2(1R)ev (1/R)2 0 | (2.36

V2(2IR)ev 0 (2/R)?
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It can be shown that the characteristic ponnom|aM3§ is  that both complex scalar fields acquire real VEV's. Thus, we

formally identical to the one o3 given in Eq.(2.27): may linearly expandb, and®, around their VEV's as fol-
lows:
de(MZ—\I)=de(MZ—\I). (2.37
1 U,
Consequently, the mass eigenvalues/dfare given bym, Dy(x,y)= NN +hi(X,y) +i x2(Xy) |,

in Eq.(2.28. Thus, as is expected from & gauge, we find
an one-to-one correspondence of each physical vector mode
of massm(, to an unphysical Goldstone mode with gauge-

dependent mass/Em(n) Moreover, the Goldstone mass :i .
eigenstates are given by P2() \/—[Uﬁh’Z(X)JrI X2(X)]: (2.42

(2.41

1/2
& 14 72 2R2+m(2n) Adopting the commonly used notation in 2-Higgs models,
(M= mm m2 we definev,;=v cosB andv,=v sing, i.e., tanB=v,/v;.
In this 5-dimensional Abelian 2-Higgs model, the effec-
“ 2(j/R)m tive mass matrixM3 of the Fourier modes\(;, is given by a
X \/§X+Z — =R (2.3 sum of two matrices
iI=1 mi,—(J/R)

In the unitary gaugé—c°, the fieldsG, , or equivalently MA=Manct M- (2.43

the fieldsA s andx, are absent from the theory. Therefore,
as opposed to the bulk-Higgs model of Sec. Il A, the prese
brane-Higgs model does not predict other KK massive sca
lars apart from the physical Higgs boshn

r]]'he first matrixM 2 ., Which includes the KK masses, may
be obtained by EQq(2.26 after replacmgm =e%v? with
m?=e%v smz/s’ The second matriM2,, is proportional to
unity, M2, = €?v2cog€B1. Because of the particular structure
of Mf\ in this model, the mass eigenvalues of the KK gauge

. . . i . modes are given by
It is now interesting to consider a model with two com-

plex Higgs fields: one Higgs field®(x,y) propagating in mi(n):m(zn)+Am(2n)’ (2.44)
the bulk and the other field,(x) localized on a brane at
y=0. The 5-dimensional Lagrangian of this Abelian 2-Higgs
model is given by

C. Abelian 2-Higgs model

whereAm¢, =e??cogB andm, are the roots of the tran-
scendental equatio(2.28. The corresponding mass eigen-

1 statesA y may in turn be determined by Eq2.29, after
Lxy)= = 7F"Fyn+(Dy®1)* (DY) + (y) ma, has been replaced with3, —AmZ, .
Following a similar R.-gauge-fixing prescription as
X(D,®2)* (D Py) = V(P 1,Py) + LHX,Y), above, we may eliminate the mixing terms betwdéfy and

(2.39 the fieldsA)s, x1(n) and x, by choosing

where V is the most general Higgs potential allowed by

1
gauge invariance LoeX,y)= ~2g| On d,A*—§&| dsAs+es

v
———cos
R B x1

2/t T )2 1, 4 2
V(®1,D)=pui(PP1) + N1 (P;P1)“+ 6(y) Eﬂz(q)zq)z)

+e5U Sinﬂ X25(y) (245)

1 1
2 ot < febh 124 — T
M D1 P2) + Z A P2P2)"F FA5(P1Py) In Appendix A, we show that the resulting Goldstone modes

1 G(n) in this model have massqgmA(n). These Goldstone
X(DID,) + S Ay (DID,) (DID,) modes may be expressed in terms of the other pseudoscalar
fields Anys, x1(n) andx, as follows:

+A5(P]D2) %+ Ng(D] D) (D]D,) .
G(n)=E(XZ)xZ+; (EW Xl(j)+E5-\rg)5A(j)5)a (2.49

T t 0
A DI, (DID,) +H.c.|. (2.40
. . , . with
Note that all terms involving the brane fiefb, are multi-
plied by aé_functlpn. Here, we shall restrict ourselves to a 1 1 \/Eev sinB(j/R)
CP-conserving Higgs sector, i.e., the paramet@fs, \s, Eg(“z):ﬁ, EQ TN e —.
\e, and\- in Eq. (2.40 are real. Furthermore, we assume 0 (j/R)?+e*v’co$B—my
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1 e’w?singcosB
EP =-5 , AL AR 43,08
X1(0) N ezv zcogﬂ_ mi(n) (0)u (0)m o)~

fabCE 21- 5m0®(m)

1
2.2 m=0

. X (14 Smo) Al
w 1 \J2e?v2sin B cosp (14 Om o) Am
oo™ N (j/IR)2+ 62202 B— M2, (2.47
] v7COS B— My 1
o Aty Ayt IuO iy~ \/— 2, V2! mody,
Smn c
1 mi(n) X[\/— (1+5mn)A(\m n|)p,+A(m+n),u]a

N2==
2 m3 . —e??codp

) Mam — €?v2cosB
e?v?sir’B '

1+ 72ev?sirt B R?

n 1 95
Alys—Alms~ g Om ™ abcE V21 omo 0

R 2 ‘/ m=0

X[sgrtn—m)Aam,nwAfmm)s], (3.4

(2.48

The masses of the lowest-lying KK Higgs scalars stronglyivheren=1. As opposed to the Abelian case, the new feature
depend on the details of the Higgs potential, whereas th@ere is that the KK modes can now mix with each other
masses of the higherKK Higgs modes are approximately under a gauge transformation. As a result of this mixing, any
n/R. attempt to truncate the theory at a given KK mode

We conclude this section by remarking that even for the=n,  will explicitly break gauge invariance.
most general Abelian case, an appropriate higher- |t is straightforward to generalize the gauge-fixing term of
dimensional gauge-fixing condition analogous to E45 5D QED given in Eq(2.9) to the 5D-QCD case. The gauge-
can always be found that leads after compactification to thgixing term in 5D QCD is given by
usualR, gauge as known from ordinary 4-dimensional theo-
ries. In the following, we shall see how the above gauge-
fixing quantization procedure can be extended to non- Lep(X,y)=— g[F""(Aa)] (3.9
Abelian models as well.

with
I1l. HIGHER-DIMENSIONAL NON-ABELIAN THEORY

. . . . F3(A?) = gHA2 — £ 9sA2. .
In this section, we shall consider a pure non-Abelian (A=A, =& Ishs 3.6

theory, such as 5-dimensional Quantum Chromodynamic
(5D QCD), without interactions to matter. The 5D-QCD La-
grangian takes on the simple general form

th this generalize®R; gauge, all mixing term#&\(,, *Af,5
disappear, so the Fourier modes represent mass eigenstates.
As in the Abelian case, the latter is spoiled by a Higgs
mechanism involving brane interactions.

1
L(X,y)=— ZFﬁANFaMN—'— Loet+ Lep, (3.1 In non-Abelian theories, thR, gauge induces an interact-
ing ghost sector, which is described by the Faddeev-Popov
Lagrangian
where
a a
Fain= ImAL— InAR + gsTA0AL AS (3.2 Lesny) = AD)
’ 56°
and f2°¢ are the structure constants of the gauge group
S_L_J(N), with N=3 for 5_D QCD. In Eq.(3.1), the gauge- :g[aﬂ(aﬁab_gsfab%;)_505(555%
fixing term Lgr and the induced Faddeev-Popov Lagrangian
Lep Will be determined later in this section. —gsfaPCAE) ]cP. 3.7

As we did for the Abelian case, we compactify each of the
N gauge fieldsAj,(x,y) separately onS'/Z, through the In the abovec?(x,y) denote the higher-dimensional ghost
constraints(2.4). Moreover, under a SUN) gauge transfor- fields, which are even undet,: c?(x,y)=c?(x,—vy), i.e.,
mation, Ay, (x,y) transforms as they share the same transformation properties with the group
parameter®?(x,y).
M (Y) = AR (XY) + In®3(x,y)

=950 (X, y) AR (X,Y). 3.3 2To overcome this difficulty, recent papef1,22 suggested to
] ) match the truncated theory with a manifestly gauge-invariant non-
After a Fourier expansion OfAZ(X'Y): Ad(x,y), and  Apelian chiral-type Lagrangian. Although the two theories agree
0?(x,y) according to Eq.(2.5, one finds that the local well for n<ny,,., they have a significantly different mass spectrum
SU(N) transformation(3.3) amounts td 6] close to the truncation energy scale, i.e., for KK modesn;nc.
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( 1 ) (6k,0%61,0+6m,0+1)

o k,l,m
3-boson vertex: fobe (9" (k —p)°
+9" (p—q)*
+ 9™ (g — k)]
a,
"1, (m) L\
N\ (k) —ig foeg” (ﬁ)(ﬁ) Ok tm FIG. 1. Feynman rules for the
vertex with 1 scalar: -=---c l L\ Emot)) - triplg gauge boson couplingy | m
Pa q - (E ) ( ﬁ) k,m,l] andé ,  are defined in Eq(3.8).
(1) '
b, v
a
‘\: (m)
s (k) (6ro+1) -
vertex with 2 scalars: \y\N.‘\_/\/\, c, W g (%) Ot em [ we(p— k)
bx,’ q
4
l
b7 (1)

In Figs. 1 and 2, we exhibit the Feynman rules for the
self-interactions of the KK modea(;, and Af,s in the
effective 4-dimensional theory in the; gauge(3.5). In the = Okt1-m-n,0" O%k—I+m+n,0T Ok—1+m-n0
unitary gauge, i.e.§—o=, the 5D-QCD Feynman rules re- iy s 3.9
duce to those presented in R¢23]. The factorséy m, k=1-m+n,0" “k=1-m-n,0: '
B ms Ocimn, and 8. m imply selection rules for the
triple and quartic coupling of the KK modés,, , andA(,s,
which are typical for the interactions between bulk fields.

5k,|,m,n: — O+ +m+not 5k+|+mfn,o+ S+ —m+n,0

for the quartic gauge boson coupling.

These factors are given by IV. 5-DIMENSIONAL EXTENSIONS OF THE STANDARD
MODEL
Ok l.m= Ok+1+mot Ok+1-moT Sk—1+mot Sk—1-mo> In this section we shall study minimal 5-dimensional ex-

tensions of the SM compactified on &1/Z, orbifold, in
~ which the SU(2) and U(1), gauge bosons as well as the
Okl,m= = Ok+1+m ot Ok+1-mo~ Ok-1+mot Sk—1-m,o: Higgs doublets may not all propagate in the bulk. In all these
(3.8 higher-dimensional scenarios, we shall assume that the chiral
fermions are localized on a brane at fve 0 fixed point of
for the triple gauge boson coupling and the S'/Z, orbifold.

Okl.mn= T Ok+1+m+n,0T Ok+1+m-n,0T Ok+1-m+n,0 A. SU(2) . ®U(1)y-bulk model

To start with, we shall first consider the most frequently
investigated model, where all electroweak gauge fields
+ Sk 1-m+not Sk—1-m-n0> propagate in the bulk and couple to both a brane and a bulk

+ é\k+l—m—n,0+ 5k—| +m+ n,0+ 5k—|+m—n,0

(6k,0+61,0+5m,0+5n,0+2)
a8 1
—19"Ok,l,mn 73

[fa.cefbde ( guugpa _ guogup )
+ fabefcde (gupgua _ g;wgup)
FIG. 2. Feynman rules for the

de ¢b
+ fodefree (grgrT — g#0g77 )] quartic gauge boson coupling.
8ci.mn and 8y o m are defined in

4-boson vertex:

a, c
(k) // . g 1 (6k,0+6n,0) - Eq (39)
A tg (ﬁ) ki dim
vertex with 2 scalars:
(n) \\ 2g;u/ [facefbde + fadefbce]
N

m N

b, v (m) d
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Higgs doublets. The Lagrangian of the gauge-Higgs sector of 9
this higher-dimensional standard modeDSM) is given by FA(A%)=3,A% —£pl dsA5—i \/ZS—R(CDJ{Ta(I)o
an
1 1
L(x.y) == 7 BunB"N= ZFiFaM N+ (Dy @) "(DM D) —®§rD;)cosp—i g5(P 7D
t —
+8(y)(D,, D) (DHD ) V(P 1, ®;) + Loe(X,Y) _0lAd,)sing 8(y) |, 4.5
+ Lee(X,Y), (4.
where Byy and Fyy [a=1,2,3 for SU2)] are the field F(B)=d,B"— &g 9B _ii(qﬁq)
strength tensors of the U(})and SU(2) gauge fields, re- g Bl 2\27R* 0
spectively. As usual, we define the covariant derivaiyg o
. 9I5
as —®ld;)cosB—i 7(cbgcpo
Dy=du—i Aara—ig—éB 4.2
M=~ G5Am 2 oM : —dd,)sing d(y)|, (4.6
The Higgs potential/(d,P,) of this SU(2) ® U(1)y-bulk with
model has the very same analytic form as in E240),
where®,(x,y) is a bulk Higgs doublet and,(x) a brane 10
one. After spontaneous symmetry breaking, the Higgs dou- ® __( ) v=/02+02. 4.
blets will linearly be expanded about their VEVs, i.e., 0 V2\v)’ e @7
Xi To avoid gauge-dependent photdrmnixing terms at the tree

level, we will assume in the following that it is always,

heti ) = ¢g=£&. Under this assumption, the gauge-fixing Lagrang-
J27R 1T ian Lge(x,y) in Eq. (4.1) may be expressed in terms of the
real gauge-fixing functions?(A%) andF(B) as follows:

V2

Dy(x,y)= 1( vy

+
X2

dy(x)=| 1 _ : 4.3
? E(UzﬂL ha+ixo)

1 1
Ler(x,y)=— z—g[Fa(Aa)]z—z—g[F(B)]Z- (4.8

Furthermore, the Faddeev-Popov teflgs(x,y) in Eq. (4.1
is induced by the variations d¥?(A®) and F(B) with re-
Here, we shall not repeat the calculational steps for determirspect to SU(2) and U(1), gauge transformations. More ex-

ing the particle mass spectrum of the SU(@JJ(1)y-bulk  plicitly, £¢x(x,y) may be computed in the standard way by
model, as they are analogous to those of the Abelian model

discussed in Sec. Il Gsee also Appendix B In fact, the _ SF3(AY)
above analogy in the derivation of the particle mass spectrum Leg(X,y)=c?
becomes rather explicit if the bulk gauge fields are written in

terms of their higher-dimensional mass eigenstates

cb+EéF(B)
S5OP o0

c, (4.9

wherec?(x,y) andc(x,y) are the 5-dimensional ghost fields
associated with the SU(2)and U(1), gauge groups, respec-

We = i(Al TiAZ) tively. As in the 5D QCD, the ghost fields are even under
M J2 M7 In the aboveR;-gauge-fixing prescription, the complete
kinetic Lagrangian of the gauge sector written in terms of the
fields defined in Eq(4.4) becomes rather analogous to the
Zu= 1 (4.4 corresponding one of the Abelian model investigated in Sec.

II C. In Appendix B, we give the propagators of the KK
gauge and Goldstone modes in tRe gauge, together with
the exact analytic results for the couplings of the gauge
bosons to fermions to be discussed in Sec. IV D.

W(gsAfA—géBM),
5 5

1
A= ———(05AN +JsBy).
NS
B. SU(2), -brane, U(1)y-bulk model

Proceeding as in the Abelian case, we may easily deter- Let us now consider a new minimal 5-dimensional alter-
mine the appropriateR.-gauge-fixing functions for the native to the SM, in which only the U(%)gauge boson
SU(2), and U(1), gauge bosons: propagates in the bulk, while the SU(29auge field lives on
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they=0 boundary of thes'/Z, orbifold. The Lagrangian of wheres,,= \/1—cfv=g’/\/gz+g’2 is the sine of the weak

this SU(2) -brane, U(1)-bulk model is mixing angle. The other nonzero mass eigenvatugg, of
1 1 MZ in Eq. (4.13 may be determined by the roots of the
L(X,y)=— ZBMNBMN+ 5(y){ ~7 FoFa” transcendental equation
2 m2

+(D,®)"(D*®) V(D)

_ 2
+’CGF(Xiy)+£FP(X!y)- mz(n)— T m RCO'[(’IT mz(n)R)‘*’E mz(n) . (415)

(410  The respective mass eigenstates are given by

Observe that only a brane Higgs doublet . 1| my
Zh=1 CuA%
+ N| Mz(n)
X2 5
* j.0
d(x)=| 1 , (4.11 _ —\/fmz(n)mz 17 B4 |, (4.16
St P ey b M

can be added in this model. The reason is that a bulk Higgd/N€reéMz=v8"+g"v/2,
doublet would destroy the gauge invariance of the theory in 1lc2( m2 m2
the bulk if one coupled it to the covariant derivatiig, N2=— C_W Z _o +ngwzm§Rz+ Zm g
=d,—19 A%(x) 7—i(g5/2)B,(x,0) on they=0 brane. As a 2(s5,\ m3 ) 2s2
consequence, the Higgs potential of this model has the (4.17

known SM formV(®) = u?|®|2+ \|D|%. .
In the SU(2)-brane, U(1)-bulk model, only the Notice that the KK mass eigenmodgy has to be identified

B*(x,y) boson has to be expanded in Fourier modes. AlWith the observabl& boson.

though theW-boson sector is completely standard, the neu- In analogy to the SM-bulk model, the approprie®g

tral gauge sectorsgets complicated by the brane-bulk mixingauge-fixing functions for this brane-bulk model are written

of B,(x,y) with A® (x) through the VEV of the brane Higgs .

fieIde)(x). To be more precise, we find the effective mass—Fa(Aa):aMAaM+f'g(q)TTa(bo_q)gTaq))' (4.18

matrix Lagrangian of the neutral gauge sector

!

.9
JsBs—i ?S(CDT‘I’O_CD(E‘D) 5()’)} ,

A3 F(B)=d,B"—¢
L 5 . (4.19
0
Lmasgx)zi(Asﬂ'BfLO)’Bﬁ)’ e )Mﬁ B g with
(Du
1/0
(4.12 (DOZE( ) (4.20
v
with o
Nevertheless, because of the specific brane-bulk structure of
) the higher-dimensional model, the corresponding gauge-
m2 2 _ 2m22 o fixing Lagrangian has now the form
12 ’ ’
g g 9 LeH(x y)=—i[Fa(Aa)]Zﬁ(y)—i[F(B)]z-
p— m2_ m2 \/Emz e , 25 2§
Mlz\l: g, (4.2])
g Like the charged gauge sector, the charged scalar sector is
- \/Emza 2m?  2m?+(1R)? - .. completely standard in this model. The neutral scalar sector,

however, has a structure very similar to the one of the Abe-
lian model discussed in Sec. Il B. Again, one can show the
existence of an one-to-one correspondence between the KK
(4.13 ) . .
gauge modes with mass;(, and their associate would-be
andgg=g'V27R, m*=g'%?/4. The mass matrif{ con-  Goldstone modes with mas&my, . The latter KK modes
tains a zero eigenvalue which corresponds to a massless phare given by

tonA,, ie.,

i/R

e Bys|, (42
2 S mg - (i/R)2° 422

AMZSWAi‘f‘ CWB(O),u' (414)
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where the normalization factdt is defined in Eq(4.17).

The Faddeev-Popov Lagrangid@ipe can also be obtained
in the standard fashion. Taking the brane-bulk structure o
the model into account, we may determifigs by

a[ a( X)]

gs=gy27R andm?=g?v?/4. Again, we find that the zero

*(K mode given by the linear comblnatloA SWAO
+c,B, represents a massless vector field, the photon The
hlgher KK modes are massive and their masses may be ob-
tained by the solutions of the transcendental equation
Lee(X,y) =CA(x) c®(x)a(y)

12 m2

4.27

mz(n): rg m2R COT(’7T mz(n)R)+? m

_ SF[B(x,y)] 4.23 2(n)

+c(x,y) 50 (x.y) c(x,y),
The Z boson, denoted aZ,, and its heavier KK mass
eigenmodes may be conveniently expressed in terms of the

gauge eigenstates as

where the X,y) dependence of the different quantities in-
volved is explicitly indicated.

C. SW(2) -bulk, U(1)y-brane model

Another minimal 5-dimensional extension of the SM, Zx 2 m i) CuATE— Mz s, B*|,
complementary to the one discussed in Sec. IV B, emerges if " =0 Z(n) —(jIR)? J2 Vomg
the SU(2) gauge boson is the only field that feels the pres- (4.29
ence of the fifth compact dimension. By analogy, the La-
grangian of this model reads where

1 1 2 2
L(X,y)= ——Fﬁ,,NFaMNJr(S(y) 2B B" Nz;} ﬁ( Mz _, o2 m?m2R%+ Z(n)+1 _
2|l m%(n) mcy,
(4.29

+(D, @) (D#®) = V(P) |+ LeeX,Y) + LeeX,Y),

(4.29

witr:j IDo,r_:aﬂ—ioglz;5_A§;E]x,0)ra—_i(g'/z)BH(x).hAs in thle
model discussed in the previous section, there is only one_a yay_ - paup_ a tar  atoa
Higgs field on the brang=0 and the Higgs potential is of FAAT) = 0,A% = L 05As —1g5( D1 7Po = Do @) (y) ],

In close analogy to the previous section, the higher-
dimensional gauge-fixing functions leading to the general-
ized R; gauge are given by

the SM form. Because only the SU(2yauge boson lives in (4.30
the bulk, the charged gauge sector of this higher-dimensional ,
standard model is equivalent to that of the SM-bulk model F(B)=d,B"+¢ ig?(q)‘rq)o_q)gq))' (4.3
discussed in Sec. IVA in the limit sig—1, i.e., only the
Higgs field restricted to the brane=0 acquires a nonvan- ) - _
ishing VEV. Thus, the SU(2)}bulk, U(1),-brane model pre- 9iving rise to the gauge-fixing Lagrangian
dicts a KK tower ofW-boson excitations, while the neutral 1
gauge sector is quite analogous to the one discussed in the _ ay12_ _— 2
previous section. Specifically, the effective mass-matrix La- Ler(x.y) g[F (AD]= S[F(B)] oy)-
grangian of the neutral gauge sector is given by (4.32
B, The charged scalar sector of this model is identical to that of
A(SO) the SM-bulk model of Sec. IVA, with the presence of a
Llﬁasgx) (BM A(O)'A(l)’ ) )M A3 1, (4.25 Higgs field on they=0 bounda_ry only. On the other hand,
(L) the neutral scalar sector predicts a KK tower of would-be
: Goldstone modes associated with the longitudinal polariza-
ith tion degrees of the massive KK gauge mo@g). The
wi would-be KK Goldstone modes are determined by
12 ’
g o]
m2=—  —m? —\2m . 1 ji/IR
2 0 3
G + — —A e |
gg, 7N A f 2 M3~ (1R
22 2 2 (4.33
Mﬁ: m 9 m \/Em ,
g’ with N as defined in Eq(4.29. The Faddeev-Popov La-
—2m2=  \2m? 2m?+(1R)? grangian can be calculated as in the model described earlier
9 in Sec. IVB [see EQq.(4.23], by considering the obvious
modifications that take account of the complementary brane-
(4.26 bulk structure of the model.
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D. Localization of fermions on the brane V. GLOBAL-FIT ANALYSIS

In the minimal 5-dimensional extensions of the SM we . .
have been studying, we have assumed that all the SM fermi- [N this section, we shall evaluate the bounds on the com-
ons are localized at thg=0 fixed point of theS/Z, orbi- pactification scale R of minimal higher-dimensional exten-
fold. Therefore, upon integrating out tlyedimension, both ~ Sions of the SM by analyzing a large number of high preci-
the effective kinetic terms of fermions and the effective Sion electroweak observables. To be spg&mc, we proceed as
Yukawa sector take on the usual 4-dimensional SM structurdollows. We relate the SM predpﬂoﬁéw for an elec-
Clearly, the SM fermions do not have KK modes. Under atfoweak observable to the predictidd™>" for the same
gauge transformation, the left- and right-handed fermion&bservable obtained in the higher-dimensional SM under in-

transform according to vestigation through
W, (x)—exdigs®3(x,0) 72 +igLY 0 (x,00 W (x), OMPSM= 0 SM(1 + AHPSM). (5.0
Here,A"PMis the tree-level modification of a given observ-

Wr(x)—exfigs YO (x,0]Wg(X). (4.34  aple © from its SM value due to the presence of one extra
dimension. To enable a direct comparison of our predictions
The corresponding covariant derivatives that couple the chiwith the electroweak precision dafd7], we include SM
ral fermions to the gauge fields are given by radiative corrections t@ SM. However, we neglect SM- as
well as KK-loop contributions ta\°*™ as higher order ef-
fects.

As input SM parameters for our theoretical predictions,
we choose the most accurately measured ones, namely, the
DR=4,—igiYRB,. (4.35  Z-boson masdM;, the electromagnetic fine structure con-

g . stanta and the Fermi constai@g . In all the 5-dimensional
models under study, the tree-lew&boson massny ) gen-

It is obvious that the effective coupling of a fermion to a erally deviates from its SM fornm, = g+ g'%v/2. There-
gauge boson restricted to the same brgred has its SM fore, we parametrize this deviation as follows:

value. On the other hand, the effective interaction Lagrang-
ian de_scnblng the coupling of a fermion to a gauge boson m%(o):mg(lJrAzx), (5.2
living in the bulk has the generic form

DL=0,-igsA%7—igiY'B,,

where

o0

LinX) =¥ y*“(gy+9day’)¥| Ayt \/En§=:1 Amyu | - 7% m3

X= (5.3
(4.3

BERYE

(with M =1/R) represents the typical scale factor quantifying

the higher-dimensional effect ankl, is a model-dependent

parameter of order unity. Since the massless photon retains
s SM properties through the entire process of compactifica-

the Fourier modes, their couplings to fermioggy and o, ‘the electromagnetic fine structure constant is still given
dan) have to be calculated for each model individually by by its SM value

taking into account the appropriate weak-basis transforma-
tions. The precise values @,y and ga, Will be very g2

important for our phenomenological discussion in the next a=—-—. (5.9
section. The Feynman rules for the interactions of the KK
gauge mass eigenmodes to fermions are exhibited in Apper|1
dix B.

Likewise, the Feynman rules for the interaction of the
Goldstone modes to fermions can also be obtained from th
SM Yukawa sector by relating the KK weak modes to the
respective KK mass eigenmodes. It is worth remarking here o
that although theZ,-odd fifth component of a bulk gauge Gr=—=5 55— (1+AcX), (5.5)
bosonAy,, As, does not couple directly to the brane fermi- \/Eswcwmz(o)
ons,As is involved in fermionic couplings due to its mixing
with the CP-odd Higgs fields which are even undgs. In  where the order unity paramet&g strongly depends on the
particular, one can show that the resulting Goldstone coudetails of the 5-dimensional model under consideration.
plings to fermions have the proper analytic structure to as- In the computation of the electroweak precision observ-
sure gauge invariance in the computationSaatrix ele-  ables, it will be necessary to express the weak mixing angle
ments. 6,, in terms of the input parametets mi(o), andGg, by

Again, the coupling parametes, and g, are set by the
guantum numbers of the fermions and receive their SM val
ues. Because the KK mass eigenmodes generally differ fro

nstead, the Fermi constafy as determined by the muon
lifetime may receive direct as well as indirect contributions
due to KK states. We may account for this modification of
8F by writing
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means of Eq(5.5). In this respect, it is useful to define an  TABLE I. Predictions forAf°S"/X in the SU(2) ® U(1)y-bulk
effective weak mixing angI@W using the tree-level SM re- model. The auxiliary parametess,, A;, andA,, are defined in Eq.

lation (5.12.
HDSM
. . 56 Observable ALPYIX
F:W' : -
2s;com -
With the above definition fod,, and Eq.(5.5), we may relate _ o Cw
the squared sines of the two weak mixing angles by I'z(vv) ) sa(sz—1)°—1
" rZ(1717) S2(s2—1)2—1+A4,
SW: SW(1+A9X) (57) Fz(had) ASVZV(S%_l)Z_l‘f‘Ah
- - : Qw(Cs) [(1—52)2+4Z(QSM 1A ,]s2
Again, A, in Eqg. (5.7) is a model-dependent parameter of B w 0lSw
order unity to be determined below. R —AF 4,
Rq Ag— Ay
A Ay—A
A. SU(2)_ ®U(1)y-bulk model f voaf
( )L ( )Y A(O’f) AV—Af-i-fHe

Before we present predictions for the electroweak observ- e
ables in the SU(2)® U(1)y-bulk model, let us first give the
KK modifications for some of the fundamental parameters obz(n)mgw(n)% J2g for n=1. Within this approximative
the theory. The KK modifications of th&- and W-boson  framework, we compute the following high precision observ-
masses are found to be ables: theW-boson masd,, the Z-boson invisible width

A= —gh I',(vv), Z-boson leptonic widths,(I1"17), the Z-boson
‘ B hadronic widthT'z(had), the weak charge of cesiu@y

A A2 (5.9 measuring atomic parity violation, various ratiBs and R,
w BEw ' involving partial Z-boson widths and th&-boson hadronic

whereA,, is defined in analogy to EG5.2). In Eq.(5.8) and ~ Width, fermionic asymmetries at theZ poolfe), and various
in the following, we will often use the following short-hand fermionic forward-backward asymmetneé_é at vanishing
notations for trigonometric functionss,=sinx, c,=cosx, Polarization. A complete list of the considered observables

Soy=SIN X, Cpy=COS X. along with the SM predictions and their experimental values

KK effects also cause tree-level shifts to thé and IS given in Appendix C. o
Z-boson gauge couplings. The physical gauge-boson cou- [N Table I, we present predictions for the parameter

p”ngs are given by ABIDSM/X in the SM-bulk mOdel, WherﬁgDSM and X are
defined by Eqgs(5.1) and(5.3), respectively. Moreover, the
gw(o):g(l_séagvx), auxiliary parameters that occur in Table | are given by
92(0)=9(1—S5X). (5.9 4Q;sy,
\Y 6

= ﬁ
These last two relations are approximate, i.e., they are ob- 2T3—4QrSy

tained by expanding the exact analytic results for the masses

and couplings, stated in Appendix B, to leading order in the A 855,Q1(2T3—4Q;s5)
parametetX defined in Eq.(5.3). Finally, the KK tree-level f= (2T3f—4Qf§2)2+(2T3f)2 61
shift Ag of the Fermi constanB is v
o2 22 22
- 8 2T3,— 4
Ag=C2| 1-2s5— %s@), (5.10 SW; Qu(2T3q~4QqSk)
CW Ah: Ag,
2T 34— 4QgS5)2+(2T3q)?
which implies % [(2Tsq™4QqSw)"+(2T3q)"]
~ ~ -
C SM_ /> _ N —
Af,z—A—W(l—zsg— %s“ﬁ). (5.11) w=(Z-N)-4Zs,, (512
Cow Cw

whereQ; andT5; are the electric charge and the third com-
Notice thatA , determining the difference betweep ands, ~ Ponent of the weak isospin of a fermidnrespectively,q

is a key parameter in the computation of many precision™ Y,d,C,S,b and N=78 is the number of neutrons antl

observables, as it additionally enters via the vector coupling ©> theé number of protons in the cesium nucleus. In Eq.
of the Z boson. 5.12, the parameterd, A; andAy, are all proportional to

In our calculations of the electroweak observables to leadA 4, since they arise from substitutimj, by %@ into the
ing order inX, we consistently usenz,~my,~n/R and different electroweak observables. In detal, parameter-
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sinB=0) 1R is most severely constrained by the hadronic
Z-boson width. A globa)? analysis yields a lower bound on
1/R of about 4 TeV at the & C.L., for the two limiting cases
for which only one Higgs field that either lives in the bulk or
on the y=0 brane has a nonvanishing VEV. The lower
bound on 1R may decrease te-3 TeV, for a mixed brane-
bulk Higgs scenario with sfi8~0.5. This is so, because all
the observables but the variodgoson widths do not lead to
useful lower limits on 1R in the region of siA8~0.5.

5000

4000

3000

2000 B. SU(2) -brane, U(1)y-bulk model

Next we shall investigate the model, in which only the
U(1)y gauge boson feels the presence of the extra dimen-
sion, whereas the SU(2)gauge boson is confined on tle
=0 brane. In this case, we have

1000

Compactification scale 1/R [GeV]

AZZ _éfv,

sin? 3

Ay=0. (5.19
FIG. 3. Lower bounds on the compactification scslle- 1/R at

the 30 level from precision observables andy& analysis in the  Obviously, theW-boson mass does not change by KK ef-
SM-bulk model. fects. However, the modification of th&boson coupling to

fermions becomes more involved in this model. Specifically,
izes the KK shift in the vector coupling of th& boson to KK effects induce nonfactorizable shifts both in the vector
fermions.A¢ results from an analogous KK shift in the sum gng axial part of thezZff coupling, when the result is ex-
of the squared vector and axial vector couplings for a givemyressed in terms of th&-boson mass eigenstate. To leading
fermionf. Similarly, A, gives the KK shift in the total had- order in X, we can account for these new nonfactorizable

ronic width of theZ boson. modifications by parametrizing theff -coupling in terms of

: HDSM ;
Employing the results od,™" in Table I, we can com- n effective electric charg®;y and an effective third com-
gonent of the weak isospifg):

pute the predictions for all the electroweak observables liste

in Appendix C, by virtue of Eq(5.1). We will confront these

predictions with the respective experimental values, which

are also listed in Appendix C. To do so, we perforng%atest

to obtain bounds on the compactification scslle= 1/R as a R
. . . _ 2

function of the bulk-brane angle sih Thus, in our global-fit Tat(0)= Tar(1—s3X), (5.19

analysis (ignoring correlation effects between the observ-

ables to first approximation a compactification radius is with Q;=Ts+Y;. The exact relations betweed; ), and

considered to be compatible at ther confidence level Qf and betweer ;) and T3¢ are given in Appendix B.

Qt(0)= Q(1—X),

(C.L., if 3(R)— x2,,<n?, where Taking the above results into account, we find
(OP—0[1PM)2 Ag=—&2 5.1
: [

and, thereby,

and 2, is the minimum ofy? for a compactification radius s

in the physical region, i.e., foR?>0. In Eq.(5.13, i runs A ~ SuwCw 51
over all the observables listed in Table VI in Appendix C. 0 2 (5.17
From this table, one easily sees that the total experimental 2w

and theoretical uncertaintyA(®)® of an observabled is The simplicity of the above results is a consequence of the
dominated by its experimental uncertainty. fact thatptheychar ed gauge sector lives on ?he brane and
Figure 3 shows lower bounds on the compactification ; ged gaug
hence is not affected by KK effects.

scale 1R coming from different types of observables as . . .
. : . With the help of the new auxiliary parameters, we exhibit
functions of sifB, where we take into account only one ob- in Table Il the tree-level KK shifte O™ to the different
servable at a time. In addition, Fig. 3 displays the resulf? '3v'€ € tree-leve s 0 0 the ditiere
electroweak observables. The parametgrand 5, give the

obtained by a globak? fit. For a model dominated by a A : )
brane Higgs field (si=1), the most stringent bound onRL/ KE modifications in the vector and axial-vector part of the

is set by the forward-backward asymmetry involvig ~Zff coupling, except of the modifications which are purely
quarks, while for a bulk-Higgs dominated modélith due to the difference betweet), and 6,,; i.e.,
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TABLE II. Predictions for APPSM/X in the SU(2)-brane, TABLE III. Lower bounds (in TeV) on the compactification
U(1)y-bulk model. See text for the definition of the delta param-scale 1R at the 3 C.L. in models where either only the U({L pr
eters. only the SU(2) gauge boson propagates in the higher-dimensional

space.
Observable APPSMyx
NUUEA Observable U(1y in bulk SU(2) in bulk

Mw 2(siCu/ Cau)

— ~ M 1.2 1.2
Ty (vv) -5, w

_ - I's(h . 2.
E e o 5
~ W . .
I',(had) 2+ Ah+§h ALH 4.4 2.4
Qw(Cs) 4Z(QRY) 'siA, A, 25 1.4
R —A+Ap— 6+ 6y R, 1.0 0.5
Ry Ag—Ap+ 64—y global analysis 3.5 2.6
Af AV_Af_6f+ 5\/"‘ 5A
AL Ay—A— 8+ Sy+ Sp+fe
_ 22 22 —
= 2T3fsw+4?fsw By analogy, the KK effects on th&ff coupling can also be
2T3—4QS% taken into account by introducing an effective third compo-

nent of the weak isospin
Sp=—S¢,. (5.18

The parametep; quantifies the KK shift in the sum of the
squared vector and axial vector couplings of a given fermiorypjike in the model discussed in the previous section, the
f to the Z boson in this SU(Z}brane, U(1)-bulk model. electric-charge term in th& ff-coupling remains unaffected

The parametes; is given by by KK effects, i.e.,Qs)=Qs. Thus, from the muon decay,
we calculate

Tag(0y=Tar(1—C2X). (5.22

(— 1675+ 16T 3Qy) S5+ (16T5Q; — 32Q7)s;,

(2T3—4Qs85)%+ (2T3)? 519 Ag=—¢2, (5.23

In analogy withA,,, we finally define ¢=u,d,c,s,b)

o=

which leads to

C4

2, [(~16T5q+16T3qQq)S+ (16T34Qq ~ 32Q)S0] Ag=mat. (5.24
c
5h= 2w
- As in the previous section, we introduce the auxiliary pa-
_ 212 2
% [(2T3q=4QqSw) "+ (2T39)°] rametersAy, A, Ay, 8y, Sa, &;, andS,, which enables

(5.20  us to cast the tree-level KK shifts!">" to the electroweak

) _ observables in Table IV. The meaning of these auxiliary pa-
Moreover, the parameters,, A¢, andA, are defined in EQ.  rameters are the same as in Secs. VA and VB. In particular,
(5.12 with A, given by Eq.(5.17).

Following the procedure outlined in the previous section, TABLE V. Predictions for AHPSMiX in the SU(2)-bulk,

we can now evaluate the lower bounds on the compactificag(1),-brane model. See text for the definition of the auxiliary pa-
tion scaleM =1/R in the SU(2) -brane, U(1)-bulk model.  rameters.
In Table Ill, we display the lower limits on R for each

observable separately, together with that found by a globabbservable APPSMyx
analysis. The most restrictive bound is obtained by the .
b-quark forward-backward asymmetry, giving rise to a lowerMw 3(S5C/ Cau)
limit on 1/R of ~4.4 TeV atthe & C.L. Finally, our global-  I';(vv) —-c
fit analysis leads to the slightly less restrictive lower boundr,(1*17) C2HA+ S
1/R=3.5 TeV. I',(had) 24+ A+ S,
SMy —1a2
C. SW(2) -bulk, U(1)y-brane model (R?lw(CS) fiff\gh)* ;‘j’rAa:
Let us finally consider the complementary scenario, inR, Ag—Ap+ 84— 8y
which only the SU(2) gauge boson propagates in the A, Ay— A= 8¢+ Sy+ S
higher-dimensional space. In this case, the KK-mass shiﬂg(F%f) Ay—Ai— 8+ 8y+ S+ e

for the Z andW bosons are computed to be
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TABLE V. Lower bounds(in TeV) on the compactification scale \We have paid special attention to consistently quantize the

1R at 20, 30, and 5 C.Ls. higher-dimensional models in the generalizRg gauges.
Specifically, we have been able to identify the appropriate
Model 20 3¢ i higher-dimensional gauge-fixing conditions which should be
SU(2),-brane, U(1)-bulk 43 35 27 imposed on the theories so as to yield the knd¥ngauge
SU(2), -bulk, U(1),-brane 3.0 26 21 after the flfth dlmenS|o.n has been_ integrated out. Based on
SU(2), -bulk, U(1),-bulk the so-quantized effective Lagrangians, we have derived ana-

lytic expressions for the KK-mass spectrum of the gauge

(brane Higgs 4.7 4.0 3.1 o ) o
SU(2),-bulk, U(1)y-bulk bosons and for thglr |nteract|on_s to the fermlomc matter.
(bulk Higgs 46 38 30 The aforementioned analytic expressions have proven

very essential to obtain accurate predictions for low-energy

as well as high-energy electroweak observables measured at
b . X i

Ay, A¢, Ay are given by Eq(5.12, with A, in Eq. (5.29), CERNe"e™ collider LEP and SLAC linear collidefSLC).

while 8,, 84, 6;, and 8, are, respectively, found to bej ( In particular, we have performed an extensive global-fit
—udecs b) B ' ' analysis of recent high-precision electroweak data to three

different 5-dimensional extensions of the SMi) the
2T3f6§, SU(2), ® U(1)y-bulk model, where all SM gauge bosons are
=5 bulk fields, (ii) the SU(2) -brane, U(1}-bulk model, where
2T3—4Qssy, only the W bosons are restricted to the brane, aiiid the
~ SU(2) -bulk, U(1)y-brane model, where only the U(l)
on= —Cfv, gauge field is confined to the brane. After carrying out’a
test, we obtain different sensitivities to the compactification
(— 16T§f+ 16T3fo§§v)f:3v radiusR for the above three models. For the often-discussed
f= N 2 first model, we find the & (30) lower bounds on R:
(2T51=4Qrs\)"+ (2Tar) 1/R=4.6(3.6) and 4.7(4.0) TeV, for a Higgs boson living in
the bulk and on the brane, respectively. For the second and
> (—16T§q+ 16T3qu§§/)63v third models, the correspondings2(3c) lower limits are
q 4.3 (3.5 and 3.0(2.6) TeV. Consequently, we observe that

o= the bounds on R may be reduced by even up to 1 TeV, if

E [(2T3q_4Qq53v)2+(2T3q)2] the W bosons are the only fields that propagate in the bulk.
K (5.29 The analysis presented here involves a number of assump-
tions which are inherent in any nonstringy field-theoretic
In Table IlI, we also present the lower bounds oR fdér treatment of higher-dimensional theories. Although the re-
the different type of observables. In the present model, theults obtained in the higher-dimensional models with one
b-quark forward-backward asymmetry offers the most strin-compact dimension are convergent at the tree level, they be-
gent lower bound on the compactification scale as wellcome divergent if more than one extra dimensions are con-
1/R=2.4 TeV at the & C.L. Most interestingly, we observe sidered. Also, the analytic results are ultravigléy/) diver-
that this lower bound on R/ is much more relaxed than the gent at the quantum level, since the higher-dimensional
one found in the previous models. The same observatiotheories are not renormalizable. Within a string-theoretic
applies to our global fit as well, i.e., @ analysis constrains framework, the above UV divergences are expected to be
the compactification scal =1/R to be higher than about regularized by the string mass scalle . Therefore, from an
2.6 TeV at the & C.L. effective field-theory point of view, the phenomenological
In Table V, we summarize the lower bounds o Tb- predictions will depend to some extend on the UV cutoff
tained by our global fits in the minimal higher-dimensional procedure[24] related to the string scals. Nevertheless,
extensions of the SM under discussion. We find thatyhe assuming validity of perturbation theory, we expect that
values increase rapidly as the compactification scale dejuantum corrections due to extra dimensions will not exceed
creases, such that the lower bounds oR &f higher confi- the 10% level of the tree-level effects we have been studying
dence levels are relatively stable. Thus, from Table V, we seBere. Finally, we have ignored possible model-dependent
again that the lower bound on the compactification scale iginding-number contributions, which become relevant when

the smallest in the SU(2)bulk, U(1)y-brane model. the compactification scaleR/andMg turn out to be of com-
parable siz¢?25].
V1. CONCLUSIONS The lower limits on the compactification scale derived by

the present global analysis indicate that resonant production
We have studied new possible 5-dimensional extensionsf the first KK state may only be accessed at the CERN
of the SM compactified on aB'/Z, orbifold, in which the  Large Hadron CollidefLHC), at which heavy KK masses up
SU(2), and U(1), gauge fields and Higgs bosons may orto 6—7 TeV[9,15] might be explored. In particular, if thé/
may not all experience the presence of the fifth dimensionbosons propagate in the bulk with a compactification radius
Moreover, the fermions in these models are considered to blR~3 TeV !, one may still be able to probe resonant effects
confined to one of the two boundaries of 18827, orbifold.  originating from the second KK state, and so differentiate the
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model from other 4-dimensional new-physics scenaria. try breaking models. The higher-dimensional gauge-fixing
Note added Shortly after completion of our paper, we Lagrangian in Eq.2.45 induces at each KK leveh the
became aware of Ref$26] and [27]. The focus of these gauge fixing terms
papers is the SM-bulk model, in which KK effects on high-
energy scattering processes at LEP2 and other colliders were ") " n? -
analyzed. In addition to being complementary by concentrat- £ GF= — 2¢ I Ay~ € R +e%v2co$BGy
2
: (A1)

ing on high-precision electroweak observables, we have in-
vestigated new minimal higher-dimensional extensions of the
SM, where the SU(2) and U(1), gauge bosons may not +/21 %n0ey sinBx>
both propagate in the higher-dimensional space. In particular,
we find that the lower limits on R may be substantially i
relaxed in one of these scenarios. Finally, we address th&here the factor of/2 stems from thes function [see Eq.

issue of a consistent quantization of the higher-dimensiondi2-32]- In the Abelian 2-Higgs model, the field3, are

field theory in the generalizeB, gauge. defined analogously with E42.20 as

Finally, after our paper had been communicated, (2] ) 12
has appeared, which also discussesRhgauge before com- 5 _ n- +e?v2codB (EA 1 ev cosBy .
pactification in fermionless non-Abelian theories. () R? R(MS 1(m)

(A2)
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APPENDIX A: GOLDSTONE MODES L rasdX)=— E(XZ,G(O) Gy, .. )M

IN THE ABELIAN 2-HIGGS MODEL

In this appendix, we wish to show that the KK Goldstone : (A3)
modes given in Eq(2.46) have the properties of true Gold-
stone particles as these are known from spontaneous symmeith

e2? 1+ >, z)sinz,g e?v?sinBcosp J2evc;sing
n=1
M= e?v?sinBcosp e’v?cogp 0 e (A4)

J2evc, sing 0 (1IR)2+e%2codB

andc,=/(n/R)?+ (ev cosp)?. The infinite sum in the upper acquire a¢-dependent mass with no correspondence to a KK
left entry ofMé is due tos(0) according to Eq(2.33. We  gauge mode. This addition@lP-odd scalar field will gener-
expect that only the Goldstone modes of the theory acquirelly receive a gauge-independent mass that will entirely de-
gauge-dependent masses coming from the gauge-fixingend on the parameters of the Higgs potential. Additionally,
terms. Computing the characteristic ponnomiaIM@, we it may mix with the other physicaCP-odd states to form
find mass eigenstatdsee discussion belgw
On the other hand, in a consistent theory, the KK Gold-
de(MZ—\1)=—\ de{MZ—\I), (A5)  stone modes should not acquire any gauge-independent mass

term apart from theig-dependent mass mentioned above. In
where M3 is the gauge-boson mass matrix given in Eq.addition to the KK mass terms, the physical mass matrix of
(2.43. As a consequence, we may assign a Goldstone masgise KK scalar modes is determined by the Higgs kinetic
e|genstate§3(n) with mass\/—mA(n) for each KK gauge eigen- terms in Eq.(2.39 and the Higgs potentidR.40. Since the
mode with massn,, . This constitutes a necessary condi- CP-even Higgs modes do not mix WItI‘A(n)s in the
tion in order to obtain gauge-invariai@matrix elements CP-conserving case, the scalar mass matrix is block diago-
within the R, class of gauges. From EGAS), we observe the nal and we can concentrate on tkEP-odd mass matrix
existence of an additional degree of freedom which does nd12; .44, as it appears in the original Lagrangian
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: (n) i my (1-€)k k¥
Y(n) Propagator: JTRAVAVAVA VA VS = kT—_Tn—g(—T; —g" + W—em?
WZ.-b tor: (n) i v (1—€)kH k¥
(ny~DOSON propagator: U ANAANNS Y = P - —gh + Fem
N n . v
Zr)-boson propagator: U /v\/(\;\/\, v = o1 <_gur/ + k(;_:gl:_;_&_) FIG. 4. KK gauge- and.
Z(m) Z(n) Goldstone-boson propagators in
the 5-dimensional extensions of
(n) ) the SM in the generalizedR;
A(n)s propagator: Pmmmmm == v = W gauge.
A (n) ;
G{,, propagator: fommmmm v = mzr(n;
At . (n) ;
G(n) propagator: fomm v = W;
g 1 X1 physical CP-odd mass eigenstates should acquire high
Lohe xy)=- E(Xl!XZ)M%podd )’ (A6)  enough mass eigenvalues to avoid conflict with experimental

data.

before integrating out thg dimension. After a straightfor-
ward computation from Eq2.40), this CP-odd mass matrix APPENDIX B: MASSES, COUPLINGS AND FEYNMAN
may be cast into the form RULES

Here, we shall present exact analytic results for the
(A7) masses and the couplings of the KK gauge modes to fermi-
ons in the minimal 5-dimensional extensions of the SM dis-

cussed in Sec. IV.

2 2
m m
2 . x11 x12
M&p odd™ 5(Y)(m2 m2..|
x12 x22

where To start with, we display in Fig. 4 the propagators for the
1 KK gauge and Goldstone modes in tRggauge. In addition,
m)z(n: —tanﬂm§2+ 2v2si?B g+ Evzsinﬁ COSBAg the masses of the KK gauge bosons may be determined as
follows
1
+ zvzsinzﬂ tanB\;. (A8) (i) SU(2).®U(1)y-bulk model:

The other entries of th€ P-odd mass matrit 2,44 can be _n B1

2 . my(n) R’ ( )
related tomy, via

Mip=m2y/tarf8 and m2,=miy=— mf(ll/tan,?Ag) Jm2, .- m2,cod

In deriving Egs.(A7), (A8), and(A9), we have made use of = migsin? BR cot( 7R\/miy ) — MiycosB), (B2)

the minimization conditions on the Higgs potential, i.e.,

(9VI9®;)=0, withi=1,2. In particular, the latter enabled us \mg, —mscos 3

to cast theCP-odd mass matrix into the simple form of Eq. 5 .

(A7), where all entries are proportional to an overall = mmsin’ AR Cotl mR My ) —m;Cos'), (B3)

sfunction. Note that the absence of bulk mass terms origi-

nating from the Higgs potential is a characteristic of theWheren=0,12..., my=gv/2 andmz= g2+ g'2v/2.

CP-odd scalar sector of the model under consideration.
After integrating out they dimension in Eq.(A7), we

obtain the effective mass matrix for all théP-odd KK

modes x1(ny,» X2, and Ays. From this effectiveC P-odd

mass matrix including the KK mass terms, it is straightfor-

ward, although somehow tedious, to show that the would-be

Goldstone mode$2.46) do not receive indeed any gauge- Note that there are no KK excitations for the photon &id

independent mass from the Higgs potential, whereas alboson in this model.

(i) SU(2),-brane, U(1)-bulk model:

2
mz

Mz(n)

Mz (ny = TM5SIN? 6, RCOt TR My () + cosd,. (B4
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(iii ) SU(2),-bulk, U(1)y-brane model:

Myy(ny = TMGR cot TR My (), (B5)

2

My = 7TM5c0< 6,,R cot( 7R My(ny) + S|n20 (B6)

There are no KK excitations for the photon field in this

model.

In the following, we will give the exact analytic expres-
sions for the couplings of KK gauge bosons to fermions. To
this end, we first define the following generic interaction

Lagrangian

Lint:; QW(n)(W&)MJ\X/”+W(_n)MJ\7v”)+; 9z Z(myud%

+; emAm (B7)
with
+u 1 5
Jw _2\/—[V|7 (1-vy )el+u|7 (1-vy )d Vu]
Jo= 4 cosb, £yt [(2T31(n)— 4Q¢(n)SIPby)
—2T 31 v°1f, (B8)
Jtu=TQsy"f
and vi=(ve,v,,v,), €=(eu,7), ui=(u,.c,t), and d
=(d,s,b). In addition, f denotes all the 12 SM fermions.

After a basis transformation from the weak to the mass

f
Aé‘n) = iem) Qr "
f
Vi
Vid = smowm " (1-7°)

€;

Weot = sz awmr* (1=°)Vj;

TYYY
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eigenstates, we obtain the following effective gauge and
quantum couplings related to the three different higher-
dimensional modelsn=0,1,2 . ..).

(i) SU(2).®U(1)y-bulk model:

€n=1)= \/Ee,

e(o): e,

m3sir’3

M5 () — M2C0S B

Oz(m= \/Eg( 1+

s w2 mysin' 8 i
M? (M5, —mzcosB) ,

ma,sirt 8

My~ Maycos B

Ow(n) = \/Eg( 1+

w2 mysint B vz
M? (M) — MipcoS'B)
Tatny=Tars  Qmy= Qs
with M =1/R.

(i) SU(2),-brane, U(1)-bulk model:

gzin)=9,
2
- Tst mZ(n) 1/1 mZ(n) i
M, m2 212 m2 ) 2c?
2 2 —1/2
| —2Mzo Mz M3 (n)
M?2 stW masg,

FIG. 5. Feynman rules for
couplings of the KK gauge bosons
to fermions in the minimal
5-dimensional extensions of the
SM.

= 1=t 92 7 [ (2Ts5(m) — 4Q () sin? 0y ) — 2T35(m)7° ]
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o) m2 2\[1/1 m? TABLE VI. Precision measurements and the corresponding SM
Qiny= I I (OB | el ) predictions for all observables considered in our analfrsisation
Cw\mis? s2/|s2\2 m2 as in Ref[17)).
2 m2,., m2. mio\]M Observabl Exp. valued®™®)  SM prediction (OSV
+i 2 Mz | Mz(n) Z(n)) servable xp. valuef prediction (O ")
2c? M2 m2sZ mist My 80.44862) GeV 80.37820) GeV
B10 [z(had) 1.743@0) GeV 1.742215) GeV
T,(1%17) 83.969) MeV 84.003) MeV
(iii) SU(2) -bulk, U(1)y-brane model: I, (vv) 498.8§15) MeV 501.6515) MeV
" 2 |12 Qu(Cs) —72.06(44) —73.09(03)
wo | T My R 20.80349) 20.74018)
=9, = 29| 1+ , e
9zim=9 Gw(n) \/_g m\ZN(n) Mzm\zl\l(n)) RM 20.78633) 20.74118)
R, 20.76445) 20.78&19)
2 2 2 2
CTamiy| 11 miy) ch [ mi Ro 0.2164273) 0.21582)
= o | 35 s | T T, R 0.167438) 0.17231)
Sw m2 |c2\l2 m 2s M?2
Z w 74 w A 0.15108218 0.147513)
m2 m4 12 A, 0.13716) 0.147513)
+ % + j(”: , (B11) A 0.142544) 0.147513)
mzCy  MzCy A, 0.91%25) 0.93481)
) ) ) 5 A 0.63026) 0.66796)
CQf| 11 mzy, (o ,Mzny | Mz(n) As 0.859) 0.93571)
Q=5 |zl2” e | PYCL VRN ALP 0.014524) 0.01633)
W z aw ALH) 0.016713) 0.01633)
M) -1z AL 0.018817) 0.01633)
t— ALP) 0.098820) 0.10349)
MzCw A%’C)) 0.069237) 0.07347)
)
In Fig. 5 we display the Feynman rules for the couplings”re 0.0976114) 0.10339)

of the KK gauge bosons to fermions that pertain to the above

minimal 5-dimensional extensions of the SM. . . -
Given the above input parameters, predictions can be

made for a number of high-precision observables within the
SM framework. The results of these predictions may be
found in Ref.[17], together with experimental values of the

In this appendix, we list the numerical values of the inputobservables. For the reader’s convenience, the actual values
parameters and electroweak observables, along with thetgken into account in our analysis are also listed in Table VI.
SM predictions. These numerical values were used in Sec. ¥he theoretical values in this table are obtained by assuming
to constrain the parameters of the 5-dimensional models. a light SM Higgs boson.

As input parameters for our theoretical predictions, we As was already discussed in Sec. V, we introduce an ef-
use the most accurately determined ones, namely the Ferrfiéctive weak mixing anglé®,, by enforcing the tree-level SM
constaniGg measured in muon decay, the fine structure conselation
stant « determined by the quantum Hall effect and the

APPENDIX C: INPUT PARAMETERS, OBSERVABLES,
AND SM PREDICTIONS

Z-boson mas$; [17]: Ta
Ge= — —. (C2
Gr=1.166371)x 1075 GeV 2, V25ir? 6,,c08 6, M5
a=1/137.035989551), (cy If renormalization-group running of the parameters is in-
cluded, e.g.@(M,)=1/128.923), we find
M,=91.187221) GeV, N
sirf6,,=0.2310%8), (C3)
where the numbers in parentheses indicate iheidcertain-
ties. which is the value used for th&pole observables in Sec. V.
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