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We study the formation oR-balls in the early universe, concentrating on potentials with a cubic or quartic
attractive interaction. Larg®-balls can form via solitosynthesis, a process of gradual charge accretion, pro-
vided some primordial charge assymetry and initial “se€dballs exist. We find that such seeds are possible
in theories in which the attractive interaction is of the fofhl* s, with s a complex scalar and a light
Higgs field. Condensate formation and fragmentation is only possible for magsaeshe sub-eV range; these
Q-balls may survive until present.
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[. INTRODUCTION and therefore can naturally satisfy the required self-
interactiong 9].

Q-balls are lumps of coherent scalar field that can be de- Another cosmologically interesting feature Qtballs is
scribed semiclassically as non-topological solitons. They cathat solitosynthesis in the false vacuum can result in a phase
arise in scalar field theories with a conserved globél) transition[10]. Accretion of charge proceeds until a critical
charge and some kind of attractive interactiéh In a sector ~charge is reached, at which point it becomes energetically
of fixed charge, th&-ball is the ground state of the theory. favorable for theQ-ball to expand, filling space with the true
Q-balls generically occur in supersymmetric extensions ofvacuum phase.
the standard mod¢PR]. In these theories, baryon and lepton
number play the role of conserved charge. Il. Q-BALLS

Q-balls come in two types. Type D-balls are associated . . : :
with the flat directions of the potential, which are a generic C_onS|dc_er a theory of an interacting scalar figidthat
feature of supersymmetric theories. The vacuum expectatioﬁamesf unit charge under some conserlad) charge. The
value (VEV) inside theQ-ball depends upon its charge. The Potential has a global minimurd (0)=0 at #=0. We also
formation of this type of-balls through fragmentation of an €auire that the potential admi@-ball solutions, i.e.,
Affleck-Dine- (AD-) like condensate has been studied exten- 20(d)
sively in the literature[3-5]. Type | Q-balls on the other _ < — i _
hand are characterized by a potential that is minimized at a Ko 2 min, - for ¢=¢o#0. @)
finite VEV, independent of the charge of tieball. We have
analyzed under which conditions this type @fball can be  The Q-balls solutions are of the form()z,t)zéwt¢(§), The
formed in the early universe. In this paper we present thgharge and energy of such a configuration is
results.

Large Q-balls can form via solitosynthesis, a process of _ 3.2
gradual charge accretion similar to nucleosynthesis, provided Q_“’j d*x¢*, 2
some primordial charge assymetry exigfs7]. The bottle-
neck for this process to occur then is the presence of initiaknd
“seed” Q-balls. Most potentials do not allow for small
Q-balls which makes solitosynthesis improbable. The excep- E= f PBx
tions are theories in which the attractive interaction is pro-
vided by a cubic term in the Lagrangian of the form
AHy* o, with a light “Higgs” mass. Condensate formation With
does occur for light fields, for masses in the rangg<eV. 1
If this leads to fragmentation, the thus form@xballs can U,(¢)=U(¢)— = w?¢>. (4)
survive evaporation if their binding energies are large. 2

Q-balls formed during a phase transition do not survive

evaporation, unless the phase transition takes place at eMinimizing the energy for a fixea is equivalent to finding
tremely low temperature= 10‘6m¢,. a 3D bounce for tunneling in the potentidl,. The bounce

If Q-balls survive until present they can be part of theSolution exists fop,<w< yU"(0) by virtue of Eq.(1), and

dark matter of the universe. Recently it was proposed that thi SPherically symmetri¢1]. The equations of motion are
dark matter could be self-interacting; this would overcome — — —

various discrepancies between observations and predictions d_¢ z d_¢_ U () —0 ®)
based on collisionless dark matter, such as weakly interacting dr2 rodr ad ’

massive particle$WIMPs) and axiond 8]. Because of their

extended natur&-balls have relatively large cross sections, with boundary conditiong’(0)=0 and¢(»)=0.

1 —
5IVE2U,(0)| +0Q, 3
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We will consider scalar potentials of the form erotic EgX Eg string theory compactified on a Calabi-Yau
manifold, one of théeg's contains the SM whereas the other
is some hidden sector.

We will assume an initial charge asymmetry, i.e., an ex-
cess of particles over anti-particles. This asymmetry may be
B 2 .2 4 6. created through a mechanism similar to those invoked to
Ua(¢)= §m¢¢ —AP NS () explain the baryon asymmetry in the universe, such as the

Affleck-Dine mechanisni13].

1
Ui(¢)=5mi ¢ —Ad>+ N g, ()

both havego=A/2\ and uj=m3—A%/2\. U, is a typical
potential that arises in effective field theoriés; is a non- A. Large Q-balls—thin wall approximation
polynomial potential, as the cube term is of the form
(¢* $)%2. It is a typical potential in finite temperature theo-
ries; this is however not interesting in the current contex
since at high temperaturég-balls evaporate quickly. But it
can also arise as an effective field theory. Consider for ex
ample the potential

For largeQ the Q-ball solution can be analyzed using a
thin wall approximation, which consists of neglecting the
leffect of the surface compared to the bulk. TQéall may
be approximated by a sphere of radRtg with ¢= ¢, inside
and zero field value outside. The mass and radius of the
solition are

Ui(p)=mo* g+ miH*H=A'Hy* y+H.c. Mo=xQ. (11)
L g e R and
3 3 1/3
® Ry=22q BQ=( m¢) , (12

T . My 47Tw¢g
where the “Higgs” field H is uncharged undetJ(1),
whereas) c_arries uni_t (_:harge. Further, we take real. Now  \yith ,— o for Q— . The soliton is large and its cross
make the field redefinitions section is given by the geometrical area

1 1 = 7R2 (13
ReH=—¢siné, = — d®cosH, (9) 7Q~ TRq-
\/547 U ﬁ<p

thenU; becomes of thaJ,; form, with ¢» some particular
direction in (H,)-space. We can also calculatg3
=2U/(¢?cog6) in terms of theU; parameters. Taking

B. Small Q-balls

The limit of small charge corresponds éo—m,. In this
limit the solution of the bounce equatidb) is of the form

my=0 and all quartic couplings equal,=A,=X3=\" to [14]
simplify the algebra, this yields EN(mfb— 0?)? % W,’ (14)
12
wh= m2¢— A_ (100  With athe power of the attractive term in the potential. This
3\ solution has the right behavior far—c where ¢—0 and

the quadratic term in the effective potential dominates, and

at o= /4 andpo=4A"/32\". for w—m,, where the zero obl, is near the origin. Using

Potentials of the fornU; are present in the scalar sector the solution to compute the conserved cha@eand taking
of the MSSM, where the Higgs field couples to sparticlethe limit o—m,, one finds a finite, non-zero value only for
fields through a cubic interactid2]. The sparticles carry a 4+ 2D—aD>0, with D the number of spatial dimensions.
conservedJ (1) charge in the form of baryon or lepton num- In D=3 dimensionsJ, admits smallQ-balls butU, does
ber. However, the sparticles and also possibly forQeshlls  not. Therefore, we will only considey , in the remainder of
are unstable, as they can decay into light fermiph%].  this section.
StableQ-balls can be obtained in a model where the standard |n the limit of large w, or equivalently very non-
model (SM) Higgs field is coupled to a charged SM singlet degenerate minima, one can neglect the quartic terms in
[12]. The SM singlety is charged under a hidden sector U (¢). This is the thick wall approximatiofil5]. The ap-
U(1), global symmetry, under which none of the SM par- proximation is valid forQ-balls with chargeQ that satisfies,
ticles are charged. Th@-balls in this model interact with the  for potentialU ;:
SM patrticles only weakly, through the Higgs boson. Another

possibility is that both théd and ¢ field are hidden sector Q< 14.611¢/\/XA,
fields, interacting only gravitationally or through some other
suppressed interaction with the visible sector. Hidden sectors Q< 7.311(2[)/A2. (15

appear in a variety of models, such as technicolor, mirror
symmetry, hidden sector SUSY breaking, and brane worldf the above conditions are met one can define an expansion
models. They also arise naturally from string theory; in het-parameter
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A2
<=
2 t
3s,m; 2

€e=Q (16)

with S,~4.85. The mass of the soliton is

1
1— = €e’+O(e*)

6 . (17

Mq=Qm,
The radius of the&Q-ball can be parametrized:

_Pq

Ro m, QY3 (18

with Bo~O(1).

The Q-balls described above are classically stable for ar
bitrary small charge. However, one expects quantum fluc-
tuations to become important in this regime. Indeed, numer
cal calculations indicate that this is the case, and onl)f
configurations withQ=7 are quantum mechanically stable

[16]. All these calculations are based on the poteritlal

This potential is an effective potential which is well suited
for a semi-classical description of large-balls. But for

small Q-balls the degrees of freedom of the underlying po-
tential U; should be taken into account. In this regime a
treatment in terms of quantum bound states is more appr
priate. Solving the bound state problem in full generality is
not an easy task. However in the limit that all quartic inter-
actions can be neglected, the theory becomes identical to t &
Wick-Cutkosky model. This model can be solved analyti-
cally for the case of a massless exchange particle,mg.,

=0. The various approaches used in the literature, e.g. th
ladder approximation, Feshback-Villars formulation, and
variational-perturbative calculatioid7—-19, all lead to the

same result that the bound state spectrum is discrete with t

nth state having an enerdyo lowest order inx):

a? 1 A2
>, = (19

En:2m¢(1—@ —ﬁm—zw
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Yip-scattering iso .y, yy= S|M|2/167TE§m. For scattering
through Higgs boson exchange, governed by the cubic inter-
action, this gives at tree level

1 A/4 T<A'
— ~mRj. (21

a.cubi(:% .
1287mj, E*
Here E=maxXT,my}. At low temperatureI<A’, which are
the temperatures of interest, the cross section quickly ap-
proaches the unitarity bound and higher order diagrams can-
not be neglected. In this regime we will approximate the
cross section by~ TrRi with R,=2m/m,, the Compton
wavelength. Scattering through the quartic point interaction
has an amplitudéM|=\". And thus the requirement that
the repulsive quartic interactions are negligibly small,

gdvartice eubic s satisfied for all quartic couplings’ <1. It

imay be that also for non-perturbative values of the quartic

ouplings bound states persist; but this certainly cannot be
analyzed perturbatively. As it seems unnatural to have quar-
tic couplings larger than one, we will ignore this possibility.

On the other hand, the quartic couplings cannot be arbi-
trarily small or else nd@-ball solution exists: for the case of
zero Higgs mass and all quartic couplings equa§,>0
translates into)\’>A’2/3m2¢, as follows from Eq.(10).1
\Non-zero, but small Higgs massH<10‘2m¢ does not alter
this result noticeably. The quartic couplings do not have to
be all equal, but at least one of them has to(il(é\’/md,)z.

r A'=m,, Q-ball solutions exist for
example for {4,A5,N3)=(0.4,0.4,0.4,(1,0.01,0.01) and
(0.05,0.8,0.3).

Both the quantum bound states discussed above and
-balls describe the same objects—stable bound states with
a fixed global charge—but in a different language. In both

r%escriptions the existence and stability of the bound state

relies on the trilinear coupling and the conserved global
charge(that is, conserved particle numbeFor large bound
states quantum fluctuations can be neglected, and a semi-
classical description as@-ball becomes a good approxima-
tion. The trilinear coupling makes it possible for the energy
of a bound state with a fixed charge to be less than a collec-

limit of a massless boson exchange. No analytic results aréMall particle numbe(global chargg it becomes necessary

known for massive scalar exchange. However, numeric
studies show that bound states still form, provided thas

dio treat the full quantum problem because the semiclassical

approximation breaks down. The trilinear term can be

larger than some critical value. We estimate, based on th&€wed as an attractive interaction between #hearticles,

results in[19], that bound states exist for

2
(20)

My My
a>amin~=2— 10| —
m m,//

That is, the Higgs mass needs to be sufficiently smgll
=10 %(A’/m,)?’m,,. The energy of the bound state is of the

same parametric form as for the massless case.

which makes it possible for bound states to form. The lowest
level bound state is the stable ground state, as charge conser-
vation forbids it to lower its energy through annihilationgf
particles.

IConditionu3>0 corresponds to the requirement tiat 0 is the
global minimum of the potentialQ-ball solutions do exist fokb
=0 alocal minimum. In the potentiald, andU, this possibility is

The other assumption thgt went _into the derivation.of Ednot realized, since at low temperatures the field will end up in the
(19 is the absence of quartic couplings. We expect this to b&ue vacuum[U;: at the temperaturd that the minimum at
a good approximation in the regime where quartic interac+0 becomes global the energy barrier4d0"2AT*. U,: at high

tions are negligibly small. The cross section

for temperaturem?(T)<0.]

085035-3



MARIEKE POSTMA PHYSICAL REVIEW D 65 085035

It is tempting to compare the ground state resak:() of  synthesis. It requires an initial charge asymmetry not unlike
Eq. (19 with the g=2 result obtained in the thick wall ap- the baryon asymmetry of the universe. Freeze out of any of
proximation (17): both mass formulas give the same para-the reactions involved will put a halt to solitosynthesis.
metric dependence. However, in the overlapping regime both In this section we will describe the thermodynamics of
approximations are taken beyond their domain of validity:Q-balls in terms of a gas of non-relativisti¢ particles in
for equal masses,=m,, bound states can only form for thermal equilibrium. They particles can bind together
large «, and for g=2 a semi-classical treatment breaksthrough the exchange of a light scalar particle, as given by
down. Of course both approximations are similar in that theythe cubic interaction inU;. For large Q-balls a semi-
neglect the quartic interactions. classical description in terms &f; suffices, andy can be

In conclusion, the potentidd; admits stable, two-particle replaced byg in all the formulas.
bound states at low temperatufeglow the binding energy
provided the Higgs mass is sufficiently light, and the quartic A. Q-balls in thermal equilibrium
repulsive interactions small. We repeat that our assumption

here is that non-zero quartic couplings do not destabilize the, At non-relativistic temperatureb<m,,, the number den-
artic cubic sities of a distribution of-balls and freg) particles in ther-

bound state provided (5™ ;5 <043 44 this should be a= S
checked by an explicit calculation. For the potential to havemaI equilibrium are governed by the Boltzmann distribution:

a global minimum ai) =0, or equivalently forQ-ball solu- 312
tions to exist into which the bound states can grow, the cou- nQ(T)=gQ(2—Q> glrQ=MQ)/T, (24)
plings cannot be too small: m

N'=<1 repulsive forces small, and
12 _ m(/,T 32 (py—my)IT
mH510‘2<—2) m, small Higgs boson mass,(22) n¢,(T)—g¢,( 277) e 29
m
Y
A2 Heregg is the internal partition function of th@-ball, and
N'>—— Q-balls exist. g,=2, the number of degrees of freedom of a complex field.
m2(,, Solitosynthesis is only possible if capture rates are large

compared to the expansion rate of the universe, otherwise the
A possible set of parameters ks ~0.5, A’~m, andmy  densities are frozen. If so, the gasyparticles andQ-balls
=10 °m,. The binding energy for the bound state is thenis in chemical equilibrium, and the accretion and absorption
B,= a?18~5X% 10‘5m¢, and,uo~0.6m¢. reactions
We will further assume that similar bound states of more
than two particles can exist, and that they have energies (Q)+¢—(Q+1) (26)

2

Q8

1 A2 enforce a relation between the various chemical potentials:
T (23 1q=Qgu,. This allows one to express tf@-ball number
v density in terms of thes-number density

1-f

with fQ some unknown factor depending on the cha@e

the mass of the exchange particle and the strength of the no(T)= g_Qng

guartic interactions. gg
The binding energy of &-ball isBq=Qm,—Mg. Two-

particle bound states are only stable at temperatures belowith Bo=Qm,—Mg>0 the binding energy of &@-ball.

the binding energyT<B,~ /8. From then on they can Similar equations can be written down for the number den-

grow by capturing charged particles. A non-relativistic par-sities of antig’s and antiQ-balls.

ticle with kinetic energyE,~T has energyl + B, inside the We will assume a primordial asymmetry ¢fs over * s,

Q-ball’/lbound state. For it to be captured it has to lose any=(n,—n,)/n,, wheren7=2.4'l"°;/7r2 is the photon num-

amount larger thaif in the collision. Assuming isotropy, on ber density. Initially one has botl¥ and ¢* particles. For

average a particle will lose half of its energy. Therefore, forlarge asymmetry the anti-particle density can be neglected.

temperature§ <Bg a considerable amount of the particles Also, if the Higgs mass is light then pair annihilation occurs,

scattering with theQ-ball will be captured. We approximate and at non-relativistic temperature anti-particles deplete rap-

the absorption cross section,d Q) for a Q-ball with charge idly. The annihilation reaction enforcgs, = — u,«, which

Q by the scattering cross sectiomébs(Q)~7-rR(2?. in the non-relativistic limit leads to

M 3/2 2 3(Q—-1)/2
( ) ( ) eBQ’ (27)
T ,
I Iz// I Iz//

_ — 2, 1T
lll. SOLITOSYNTHESIS Nyx=nye o' (29)

In thermal equilibrium, the production of larg@-balls  For temperaturd <m,, the chemical potentigk~m,,; oth-
through gradual charge accretion is very efficient. This proerwise the Boltzmann suppression gxp-m)/T] is tremen-
cess is dubbed solitosynthesis for its similarity with nucleo-dous and the charge conservation equation
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— _ * T T
7N, =N,—Nyx+2QNg+2Q* Ngx (29 ) \\ﬂ ]
can never be satisfied. Annihilation is efficient until the den-
sity of anti-particles is negligibly small. The number density T e N
of stabley-particles is then 28
—_ -3
GeV g — =102
ny~mn,, 7=2.5x10"8Q h*—— 30 s T L
m, L
The local density can be higher if clustering occurs. This is  .s T— e e A
not to be expected until the matter dominated 8rpsiTe, .
%5.5(Qoh2)7lev. \\\ T
The photon temperature may in general be different from ¢ ——
the temperature of th@-ball system. Particle species that % L . - - + - . _12
decouple from the heat bath when they are highly relativistic Loal a1

maintain an equilibrium distribution with temperatuiie
«R~L. The photon temperature redshifts Bs=g, I*R?,
and thus the difference in temperatures is given by a fact
=[09,«(Tp) — 9, <(T)]*3, with T the temperature at which
the Q-ball system decouples. When tlgeparticles only in-
teract gravitationally~10, whereas it can be much lower
for more general interactiongy™* <X, where X are light i 3 ] 3
particles that do not carry the samin(1) charge as the function of c£*# for various values ofq . For largec*7,
y-particles. We parametrize = (T, with {~1-10. Eqg. (33 _ha_ls.no solution; here absorbtion dominates at all
The Q-ball densities can start growing when the exponenfon-relativistic temperatures.
in Eq. (27) dominates over the potentially small factor in ~ FOr largeH mass and early freeze out*the charge asym-
front. SinceBg grows withQ, formation of largeQ-balls is ~ Mety may be small, as then both and ¢* -densities are
favored. The evolution of a singl®-ball is given by the Igrge at free;e ou_t while annihilation is negligible. Both par-
absorption and evaporation ratesjoparticles by &Q-ball of tlc_Ie (_smd antl—partlcl_e number are conserved, and one can in
chargeQ [6]. These can be found using detailed balanceo””c_'p'e have growingQ- and antlQ—baIIs at the same time.
arguments. In chemical equilibrium we have, for the procesd this case however, the formation of small se@dalls,

FIG. 1. Accretion timeTy plotted as a function ot¢3y for
0Yarious values of 5/m,,. For large values ot 3 7—to the left of
where the lines stop—accretion dominates over evaporation at all
(non-relativistig temperatures.

=1. For largeQ-balls | g=m,— uo. Figure 1 showd; as a

in Eqg. (26) which are necessary to start the fusion process, appears to be
a major obstacle.
n,v wa'abs(Q):nQJrlreval{Q_l'l)- (31
B. Freeze out
and . . .
For solitosynthesis to wory must be higher thaif o,
dQ the temperature at which the absorption reactions (26).

a:rabs(Q)_reva[{Q)

NQ

Tand Q) —

Tand Q— 1)} . (32

=Ny

The Q-ball starts growing wherr ;,{Q)>Tr¢,{Q). This
happens folT<T, with

T _
my

lqg/my

3

(33
3 [Ty
- Eln(m> —|H(C§37])

and

Here c=(Q/Q—1)"¥%g4/go_,, which goes to one for
large Q, and c~10 in the limit Q—2. I is the binding
energy with which a singlg-particle is bound to th€-ball.

For very smallQ-balls IQ/m,/,=an2/8. Accretion of the

smallest Quin)-ball starts WhenT~|Qmin<1O*6m¢ for A’

freeze out. This occurs when the reaction rate for accretion
becomes smaller than the expansion rate of the universe:

I'[(Q)+¢y—(Q+1)]=H. (35
The Hubble constant during the radiation dominated era is
H=1.792T%/My; itis H=1.79;2T¥*TIZIM  in the matter
dominated era. The effective degrees of freedom @gre
=10 for T,=10 MeV and g,s~100 for 0.1 Ge\.T,
=<10° GeV. The accretion rate 8= Ny 0 and Q). Neglect-
ing the charge density subsiding@balls, then for stables
particlesn,, is given by Eq(30). At non-relativistic tempera-
turesv ,= (T/2mrm,) Y2

We are interested in temperaturés T ; then the cross
section isogps™ wRé and freeze out occurs for temperatures,

for Teo>Te=5.5(C20h?) "1 TeV:

|

1/2\ 12/3

9
10

10°°
gBQQZ/:%

And for Teo<Tgq:

0.3
Q h?

my

Tro ’
GeV

=
my

(36)
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0.3 1/2 91/2
QN2 10 - (37) As discussed in Sec. Il B, smal-ball solutions are only
v stable for potentials with a cubic interaction. Two-particle
bound states can form through scalar exchange, provided the
For A'~m,, {~10 andm,=<GeV freeze out of the accre- mass of the exchange boson is sufficiently small and the
tion reactions for the smalle€@-balls (Q=2) occurs after quartic interactions can be neglected. In this case seed
the accretion phaselro<T,. In this case solitosynthesis Q-balls can be formed copiously and solitosynthesis can
can start at photon temperaturd ,= §T9~10‘5m¢, start. If the mass of the scalar mass is of the same order as
=10 eV. Note thatIQt><(A’/m¢)4 decreases rapidly for the mass of the charged particles, two-particle bound states
smaller cubic couplings an@i;o<<Tg4 can only be satisfied do not form, but it may still be that sma@)-balls with charge
for increasingly lowy-mass. In the matter dominated era the Q,,;,>2 are stable. Numerical calculations indicate that in
reaction rate, and thus the freeze out temperature, can kiee thick wall approximatioriwhich hasmy=m,) Q-balls
increased through clustering. For an overdensity-df® in are quantum mechanically stable @Qf,;,=7 [16].
galaxies, we find that foA’ ~0.1m,, solitosynthesis occurs For Q>2, Q-ball formation is suppressed compared to
for m,=GeV, starting at temperaturds,<eV. For smaller the two-particle bound state, by the requirement tQat
valuesA’=<0.1 or m,=MeV, solitosynthesis occurs in the charges should be simultaneously in a volume of radius
future, at temperatures smaller than the present day tempera-R,,. DefineP(q) to be the probability to find a chargein
ture T, <Ty=2.35X 10 %eV. the volume of aQ-ball, quRg. The mean charge W is
With the accumulation of charge iQ-balls the number g=n,V,, whereas the variance iso?=((Aq)?)
density of s particle decreases and the system freezes out-T(jg7gu); ,=0q. Since
Since the accretion is such an explosive process, this will '
generally not happen until almost all charge resides in _ 3 T
Q-balls. More quantitatively, when thg-density decreases q~1.0{ ﬂQ(m—> <1 (40)
to 10% of its original valueT g decreases only by a factor v
10"%". The back reaction is only important whd3~Tro,  a discrete distribution is needed, the Poisson distribution:
and it shuts off the growth o@Q-balls immediately; in all
other cases most charge will end upQrballs. e—an (n,Vy)
The accretion rate of a singl@-ball is limited by the P(q):—mﬁ
diffusion rate. However, diffusion of charge is only impor- a: q!

tant whenl=Rq, with I~I‘;j the mean free path. The ra- . . . .

- The density of lumps with charg® in a volumeV, is
diusRp of a Q-ball becomes equal to the mean free path for q

1S "o Q au P ng="P(q)/Vy. The reaction rate for the bound statel'ig”d

a large charge: brd ) )

~04 Ng so that the chance that in a Hubble time a
“Q-lump” forms a bound state is- nqab”dH ~1. Multiplying
this with the total number ofQ-lumps in a Hubble volume
gives the number oR-ball seedsN,~n2oe"H “. Taking
Ro~1/m,, this yields

10—13 mw 3/2
§BQQ2/3 GeV

(41)

3

Quir(T)~ 107 . (39

m,/T|"/10/°1 0.3 m,
B anh? GeV

10 ] V¢

{

For Q> Qg diffusion is important. The total amount of T \6Q-8/ M |4
charge inside a Hubble volume @tota|=an‘3 Ng~ nq(abnomzw) m—w) (m—z> . (42
o My /T 107 * Gev\* Q,h? Assumingo "< o, this gives an upper bound di,. Only
Qrota( T)~10° 10 g |\ m, 03 | B9 for smallg=2,3,4 or so isN,, larger than unity, and there is
9 seed-forming.

For small masse® 4 may be_lower than_the total charge B. Primordial seeds
inside a Hubble volume; in this caggy will be an upper .
limit on the charge of th&)-balls formed during solitosyn- The seecQ-_baIIs may alsq b@-ball_s _fprmed at an earlier
thesis. epoch. For this to be possible the init@tballs should be

large enough to survive the period of evaporation. The

evaporation rate is given by the detailed balance equation
IV. SEEDS (31). Ignoring absorbtion, which is subdominant for< T,

(note that the evaporation rate decreases exponentially with

Solitosynthesis is a very efficient way to form large yomperature one gets that the smalle@tball to survive has

Q-balls, provided there are some initial se@eballs at tem-

peratures above freeze out. These seeds may be remnantscg? "9e(6]

an earlier epoch, formed during a phase transition or via the B8 (GeV\3 (T e 'a/m\3

decay of a Bose-Einstein condensate. Another option is that Q.~1 77/2(—) (J dT ) , (43
small stableQ-balls can form in the gas ap-particles. g\ My T lolT
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with T; the temperature at formation. Fdgo, T¢<T;, the To analyze the stability of the condensate one can con-
integral can be approximated by exp(—lq/T;)/(1+1o/T;).  sider fluctuations in the homogeneous background. From the
Only for massesn,<eV is Q, smaller than the total number dispersion relation it follows that fluctuations are amplified
of particles available in a Hubble volume &f~m,, Eq. for wavelengths smaller thai,, [3,22):

(39), and is there a change for very large primordiaballs

to survive the period of thermal evaporation. p2
Another possibility is that formation happens at the onset kzmaxz—4— U" (o). (46)
or during the accretion phas&;=<Ty. For large binding 0

energy | o—m,, (which is possible for largeQ-balls) and
large %', accretion dominates over evaporation at non-For p2—¢éU”(¢o)<0 the above equation does not have a
relativistic temperatures, see Fig. 1. physical solution and the condensate is stable.

Primordial Q-balls may also form during a first order  We parametrize the charge densitypis 7N,
phase transitiof20] from the false ‘Q-ball vacuum” to the
true vacuum. At the Ginzburg temperature thermal transi- Q .h?
tions between regions of false and true vacuum freeze out; p~3X 10%{%)(
any region of false vacuum with a charge larger than the '
minimum charge of a stabl@-ball surviving below this tem-
perature will become &-ball. The potentials under consid- A. Non-relativistic limit
eration do not exhibit the required first order phase transition
(see footnote 1 One could add additional terms to the po-
tential to get a phase transition. However, the survival o
regions of false vacuum is exponentially suppressed wit
size, and correspondingl@-ball formation is exponentially
suppressed with charge. If formed, tQeballs are expected
to be smallQ~ Q. Unless there is a mechanism to delay
the phase transition to very low temperatufies 10‘6mw,
theseQ-balls quickly evaporate and are cosmologically un-
important.

Formation of primordiaQ-balls through fragmentation of 2_ 44 5 6
a condensatf3] is studied in the next section. P1=do=3AdgtaNdo, for Uy

GeV
—|T=7'T%. (4D
Mg

At zero temperature the charge dengityT® is zero, and
IIhere is no condensate. At non-zero temperature condensate
ﬁormation will occur if the charge is larger than the number
of excited states.

In the non-relativistic limit the finite-temperature correc-
tions to the potential are small, and as a first approximation
we can use the zero temperature resV(iu,¢)=U(¢)
—1/2u”¢? with U(¢) the classical potential, Eq$6),(7).
Equation(45) givesp= u ¢2. The minimum ofV(q, ¢) is at

2__ 44 6 8
V. BOSE-EINSTEIN CONDENSATION p2=ho~4Ado+ BN,  for Uy. (48)

We will now study whether there will be condensation. A At low temperaturesu—1 and p~¢2<1. In this limit a

condensate that is unstable under fluctuation can fragme%ssime condensate is unstable against decay for valyes

into possibly largeQ-balls. We will consider the effective _3a/8)\ for U, and ¢o<A/3\ for U,, as follows from Eq.

potentialsU, andU,. In this sectiorm,=1, i.e., all quanti- (46).

ties are expressed in units of mass. _ o To see whether a condensate actually forms one has to
We will assume that the number density of anti-particlescompute the density of thermal states. At low temperatures

can be neglected angd=n,, . The state of the system is given the cubic and quartic terms in the potential become negligi-

by the minimum of the effective potential for a fixed charge pjy small, and the theory approaches the free theory. In this

Q limit the number of thermal states is
V(g,¢)=V(u,d)+ up, 44
(9, 6)=V(p, ) +up (44) . ((32) e o
with V(u, @) the effective potential for a fixed chemical po- Famse

tential. In this sectiong denotes the classical background

field, and ¢ its value at the minimum o¥/(q,#). Anon-  gince T2, at low temperature all charge will be in the

zero value of¢, signals the existence of a condensate. Atgycited states and the condensate is empty. The only chance

finite temperature the frequenay of the Q-ball can be iden- 5 have a filled condensate is 6 1 and7' large, so that

tified with the chemical potentiagk [21]. The charge density p>ny or 7' T¥2> £(3/2)/(2)%?~0.17. Note however that

can be solved from in the limit T—1 the non-relativistic approximation breaks
down, whereas in the limi’ T3—1 the free field approxi-

dv(q,¢)

W =0 = p=p(u). (45) mation breaks down.

Eliminating x in Eq. (44) then gives the effective potential in B. Relativistic limit

a fixed charge section. A stable configuration lies at the mini- We will first consider the potentidl ;. The effective po-
mum of V(q, ¢). tential for fixed chemical potential to highest orderTiris
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2

T 1
V(. §)=U2AL+NT?I3= u?) 62— Ad>+ N — > Vi, ¢)=5(1=FAT? = u?) >+ GAT? - A) §*+1.¢°
+c(T)+0O(T), 50 T?
(M+O(M 0 —,u2§+c(T)+O(T). (55)
with ¢(T) some temperature dependent constant which we
will drop. From this it follows that For this case, the equivalent of E&J) is
p=ud>+ uT?. (51) L, A1
i +l—2<ﬁ' (56)

The first term in the above equation is the charge in the

condensate, the second term represents the charge in excitgfl|arge temperature a stable condensate will form vgth

states. The charge fraction in the condensatepis(ds  ~ JAI2+672/2yx for small asymmetry ogbo~T for large

fixed charge density in the relativistic limit becomes limit T—1 for large»’. The condensate may be unstable in
this limit.
1 ) P 3 4 To conclude this section, at non-relativistic temperatures
V(q’¢)_§ 1+§T P"—Ad NS there is no condensate and all charge resides in excited
states. At temperaturés=m,, consensation occurs for large
3p? asymmetries;’ = 1/9, corresponding to massesg,<eV. The
+ m (52 condensate becomes unstable in the lifhit m, and frag-

ments intoQ-balls. Caution should be taken, as the high
temperature expansion breaks down in this limit. If the bind-
ing energy of theQ-balls is sufficiently largeA?/2x=10"?

the period of evaporation is absent, see Fig. 1, and these
Q-balls survive.

Consider the case,<T; then the potential is minimized at
¢o=0 (and thus the approximation is consisjemirovided

o N 1

VI. CONCLUSIONS

To summarize, solitosynthesis is a very efficient way to
This can also be seen from the second derivat{/€q,0)  form large Q-balls provided some primordial charge asym-
=1+\/3T?—97'*T?, which becomes negative for largé.  metry and initial seed)-balls exist. Most theories do not
Thus if condition(53) is obeyed there is no condensate. Forallow small stableQ-ball or bound state solutions, and soli-
fine-tuned values oh*/\ a second minimum of the potential tosynthesis does not start. The exceptions are theories in
may develop, but since in the limit of large temperature theyhich the attractive interaction is provided by a cubic term
only minimum is at¢o=0 the field will not end up there.  of the form AHy* ¢. Bound states can form if the Higgs

Consider then the potentially more interesting case thafass is light My /my= 10*3A2/m2¢,). No bound state calcu-
7' is large, and conditiori53) is not satisfied. TheW”(0)  |ations have been done in the presence of quartic coupling.
<0 and the potential is minimized at non-zero field value.we assume that for quartic interactions that are small com-
Minimization in the limit T> ¢, as well as in the limitT  pared to interactions governed by the cubic term bound states
<¢)0 does not yleld a consistent solution. It follows that thepersist Q\Sl) We note that if this assumption turns out to
minimum is at¢o~T. This is confirmed by numerical cal- be too optimistic, and stable bound states require smaller
culations. The charge density in the condensate is compguartic coulings, then small bound states and |aggealls
rable to that in excited states. The condensate is unstable fgecome mutually exclusive. This is because for the potential

k2,0, Eq.(46), with to admitQ-ball solutions the quartic coupling cannot be too
small ()\EAZ/mﬁ). Successful solitosynthesis will occur if
7'2T6 1 the accretion phase happens before the system falls out of
krznax:—4 - §MT2+ 36¢3)+6Ado—1. (54  equilibrium. All these conditions together limit the parameter
bo space severely.

For solitosynthesis to have happened in the early universe
At large temperaturegho<\ ! and the second term in the one needsA=0.1-1m,, at least one of the quartic cou-
above equation dominates, as can be verified numericallplings A~1, my=10"“m,, and MeV=m,<GeV. This
The condensate is stable for large The condensate be- rules out models in which thel field is the standard model
comes unstable in the limit— 1. As this is also the limit in  Higgs field, such as the MSSM and the model studied in
which the high temperature expansion breaks down, it is unf12]. The temperature at whick-balls start growing de-

clear whether the condensate really fragments. creases very rapidly witt: Tg/mwoc(A/mw)“. For smaller
The analysis for potentidl, is similar. At high tempera- values of the masses or of the cubic coupling than given
ture the effective potential becomes above, solitosynthesis may still happen in the future.

085035-8



SOLITOSYNTHESIS ORQ-BALLS PHYSICAL REVIEW D 65 085035

Q-balls that survive until present can be part of the darkuntil present if accretion dominates over evaporation at non-
matter in the Universe. For them to play a role during structelativistic temperatures. This is possible forballs with a
ture formation they must have been formed before the unilarge binding energy,Q=mw—(mi—AZ/Z)\)l’Zzlo‘zmw.
verse became matter dominated, that is at temperafiyfes ~ The potentials studied do not allow for a first order phase
=Te=5.5(0h?) "t eV. This is only possible foA’~1  transition from the false Q-ball vacuum” to the true
and m,~GeV. Whether theQ-balls can fulfill the required vacuum. One could try and add terms to the potential so that
cross section to mass ratio to overcome the problems witBuch a phase transition occurs. However, @uballs that
cold dark matter as proposed[®] remains another question. may form during the phase transition are small and will
More (numerica) studies are needed to determine if solito- evaporate quickly.
synthesis results in a fe®@-balls with a very large charge, or ~ Solitosynthesis can lead to a phase transition from the
in a large number o@Q-balls with lesser charge. false to true vacuum. This will not happen for the potentials

Condensate formation is only possible for large asymmestudied in this paper, as for these the field will always end up
tries, or equivalentlyn,<eV. Symmetries of the order one in the true vacuum.
can be generated through the Affleck-Dine mecharjisah.

Early decoupling increases the number of charged particles

by a factors® with £=[g, (Tp) - gx <(T)]¥%, which favors ACKNOWLEDGMENTS
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