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We discuss the renormalization of a Becchi-Rouet-Stora-TY@8#ST) and anti-BRST invariant composite
operator of mass dimension 2 in Yang-Mills theory with general BRST and anti-BRST invariant gauge-fixing
terms of Lorentz type. The interest of this study stems from a recent claim that the nonvanishing vacuum
condensate of the composite operator in question can be an origin of mass gap and quark confinement in any
manifestly covariant gauge, as proposed by one of the authors. First, we obtain the renormalization group flow
of the Yang-Mills theory. Next, we show the multiplicative renormalizability of the composite operator and that
the BRST and anti-BRST invariance of the bare composite operator is preserved under the renormalization.
Third, we perform the operator product expansion of the gluon and ghost propagators and obtain the Wilson
coefficient corresponding to the vacuum condensate of mass dimension 2. Finally, we discuss the connection of
this work with previous works and argue the physical implications of the obtained results.
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I. INTRODUCTION O is invariant under the Becchi-Rouet-Stora-TyutBRST)
[3] and anti-BRST4] transformations in the manifestly Lor-

It is still a challenging and unsolved problem to prove entz covariant gauge, especially in the most gehémalentz
quark confinement in the framework of quantum chromody-gauge[5—-10 and the maximal AbeliaffMA) gauge[11—
namics(QCD). A very beginning question in deriving quark 18]. In Eq. (1.1), the trace is taken over the broken genera-
confinement is in what sense is the quark confined? A simpleors of the Lie algebra of the original groupG when the
criterion of quark confinement which has been widely usedriginal gauge groups is broken toH by a local gauge-
so far is the area law decay of the Wilson lo@efined by fixing condition chosen, i.eG itself in the Lorentz gauge
the vacuum expectation value of the Wilson loop opepator and G/H in the MA gauge corresponding to the maximal
The area law implies the presence of a linear piecepro-  torus groupH of G. Especially, in the limite— 0 (which we
portional to the interquark distancen the static interquark call the Landau gaugethe composite operator reduces to
potentialV(r). The dual superconductivity of QCD vacuum = (Q(P))~ tfdPx tr[ 1/24,,(x) - A,(x)] and hence becomes
[1] is one of the most promising mechanisms of quark congauge invariant, since the contributions from the ghost and
finement compatible with this picture. However, it is well antighost disappear. The vacuum condensate includes the
known that this criterion is not so useful in the presence ofyhost condensation proposed in the MA ga(i@,20 and
dynamical matter, since the interquark force is screened by gduces to the gluon condensation recently proposed by sev-
quark-antiquark pair created from the vacuum and the lineagral author§21-24, see also Refg25,26].
piece no longer appears in the potential. The physical implication of the existence of such a con-

In a previous pap€2], one of the authorK.-I. K.) pro-  densatg(®) has been argued based on the operator product
posed a nonvanishing vacuum condengd® of mass di-  expansion(OPE) of the gluon and ghost propagatditsvo-
mension 2 as the origin of mass gap and quark confinemeoint function$ and the vertex functiorithree-point func-
in Yang-Mills theory. The proposed composite operator oftion) [2,21,24. However, the actual calculation has been per-
mass dimension 2 is given by formed within the tree level.

In order for such a proposal to be meaningful, it is very
— indispensable to show that the whole strategy to derive quark
AL(X) - Au(X) + @i C(X) - C(X) |, confinement based on the novel vacuum condensate survives
the renormalization. In view of this, we focus on the renor-
(1.9 malization of the composite operatdr.1). The main purpose
of this paper is to examine whether or not the composite

1 b 1
O::Wfd X tl’z

where A, is the gauge fieldC(C) is the ghost(antighost
field, and 0® denotes the volume of thB-dimensional

spacetime. It has been shoy&] that the composite operator The precise definition of “the most general” is stated later in the

text. Roughly speaking, the most general Lorentz gauge is obtained
by imposing both the BRST and anti-BRST invariance for the

*Email address: kondo@cuphd.nd.chiba-u.ac.jp gauge fixing term which corresponds to the Lorentz gauge
"Email address: tom@cuphd.nd.chiba-u.ac.jp d*A,(x)=0. The resulting gauge-fixing term has two parameters.
*Email address: sinohara@cuphd.nd.chiba-u.ac.jp The conventional Lorentz gauge is obtained as a special choice of
SEmail address: takahito@physics.s.chiba-u.ac.jp the parameters.
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operator in the integrand @ is renormalizable. In addition, duced in the Landau gauge to photon pairing. Photon pairing
we must clarify the meaning of the BRST and anti-BRSThas also been suggested long ago from the solution of the
symmetry in the renormalized theory. We examine whetheCooper equation, see Refgl3,44. From quite a different
or not the renormalized composite operaf®F is invariant  viewpoint, one of the authof$6] discussed the existence of
under the renormalized BRST and anti-BRST transformaa confinement phase in QED based on the total QED La-
tions. If this is the case, the proposed composite operator a@frangian with the BRST and anti-BRST invariant gauge-
mass dimension 2 and the corresponding vacuum condensdtging terms which is identical to the usual Lagrangian in the
can have a definite physical meaning. The analysis of thikorentz gauge up to a total derivative term. An advantage of
paper is restricted to the most general Lorentz gauge fixingewriting the gauge-fixing part of the Lagrangian into the
since the analysis of the MA gauge is more involved andBRST and anti-BRST exact form is that the hidden super-
hence the result is to be reported in a separate J&7ér symmetry becomes manifest and that the gauge-fixing part in
In the most general Lorentz gauge, the multiplicativefour spacetime dimensions is reduced to @) nonlinear
renormalizability of Yang-Mills theory has been worked out Sigma model in two spacetime dimensions owing to Parisi-
by Baulieu and Thierry-Mie@S] by making use of Slavnov- .SOL.JrIaS dimen§i0n§.l reductiaﬁn view of th|S, the ghOSt is
Taylor identities characterizing the BRST and anti-BRST in-indispensable in this approach even for Abelian gauge theory

variance of the theorysee, e.g., Refs[28—34). In the where the ghost decouples and is usually considered to be

course of renormalizing the composite operator, howevert!"Necessary. In the analysis of quark confinement, it is most

there is a subtle problem of the operator mixing. In order tgmportant to understar_]d the (_)rigin of the scale or t_he mec_:ha-
discuss the renormalization of a composite operator, we mu rsgn?ér?:sasir?:%(zgillz r:j V;Z';P ;;I:Sopct):]izoi;i?ar :/Cilfrggl?g-s
take into account all the contributions coming from all the rted in a' later paper y

other composite operators of the same mass dimension ahd baper.

. . This paper is organized as follows. In Sec. Il, we summa-
the same symme_try property. I_n the OPE, the Wilson COEsz"rize the BRST and anti-BRST transformations and their
cient corresponding to an arbitrary vacuum condensate ¢

b lculated b turbation th n th L A operties which are necessary in the following analyses. In
€ calculated by perturbation theory. In the usual Lorentzg, Ill, we examine how the renormalization in QED is

gauge, the Wilson coefficient associated with the ghgst Co_nf)erformed S0 as to preserve BRST and anti-BRST symmetry.
densateC-C) in the OPE of the propagator vanishes identi- This section is a preliminary step for dealing with non-
cally due to a special property of the three-point gluon-ghostapelian gauge theory in the subsequent sections.
antighost vertex as pointed out in R¢85]. In the most In Sec. IV, we consider the most general Lagrangian of
general Lorentz gaud®,9], however, we show in this paper yang-Mills theory which has manifest Lorentz covariance,
that operator mixing between two composite operatorgobal gauge invariance, and BRST and anti-BRST symme-
1/2A,- A, andiC-C of mass dimension 2 does exist in gen- try. The gauge-fixing term contains two gauge-fixing param-
eral due to the presence of four-ghost interactexcept for  eters. We give the Feynman rules of this theory and calculate
the case which is reduced to the conventional Lorentzhe renormalization constants in the one-loop level. Although
gauge. We explicitly calculate the matrix of renormalization some materials in this section are a reconfirmation of the
factors of the composite operator in the one-loop level. results obtained by Baulieu and Thierry-Migg], it is nec-
For the Landau gauge, the vacuum condensate of magssary to make this paper self-contained and to give basic
dimension 2 in Yang-Mills theory is nothing but the gluon ingredients in the subsequent sections.
pair condensation. A possibility of gluon pair condensation In Sec. V, we obtain the renormalization group flow in the
was already suggested from the existence of the tachyon pofgarameter space of the theory. To one-loop order, we specify
in the two gluon channel by approximately solving the the location of the fixed points and obtain the equation of the
Bethe-Salpeter equation; see, e.g., R§8] and [38]. A  lines of connecting fixed points.
gluon pair can be identified as a Cooper pair which is a In Sec. VI, we discuss the main subject of this paper: the
bound state caused by the attractive force. Hence the gluaenormalization of the composite operat@rof mass dimen-
condensation is regarded as the Bose condensation of tls#on 2. First, we show when the composite operélas both
gluon with spin 1. Aremarkable point of our treatment that iISBRST and anti-BRST invariant. Next, we evaluate the renor-
different than the previous one is the retention of the manimalization of© by taking into account the mixing of opera-
fest Lorentz covariance and gau@e BRST and anti-BRSJT  tors with the same mass dimensions and the same symmetry.
invariance. Hence the introduction of the ghost field is indis-To the best of our knowledge, the renormalization of the
pensable in this approach. It is important to clarify how thecomposite operator of mass dimension 2 has not been fully
inclusion of the ghost influences the dynamics of a gluon tadiscussed except for a special case, i.e., the Landau gauge in
recover the gauge invariance. This paper is a preliminargonventional Lorentz gauge fixirl@2].
work toward the complete understanding of this problem. In Sec. VII, we perform the operator product expansion of
Another purpose of this paper is to point out that thethe gluon and ghost propagators and obtain the Wilson coef-
composite operator discussed above has an analogue in the
Abelian gauge theory, especially, quantum electrodynamics———
(QED). This suggests that a confinement phase can exist?This formulation has been applied to QED at finite temperature
even in QED, probably in the strong coupling regionand a new confining phase is claimed to exist, see Réi, and
[39-47. In QED, the vacuum condensate in question is re+eferences therein.
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ficient associated with the vacuum condensates in question. 55C(x)=0, (2.7
In the final section, we give the conclusions of this paper and
discuss future directions of our research. In the Appendix, we 55C(X)=1B(x), (2.79

give some of the calculations omitted in the text.

S5B(x)=0, (2.7d
II. BRST AND ANTI-BRST TRANSFORMATIONS

We consider general non-Abelian gauge theory with avhereA,, B, C, andC are the Abelian gauge field, the NL
gauge groupS. In the following we use the notation auxiliary field, and the FP ghost and antighost fields, respec-

tively. The anti-BRST transformation is reduced to
F‘G::FAGA, F2==F~F, (FXG)A==fABCFBGC,

2.1 8pa,(x)=3,C(x), (2.8
wheref”BC are the structure constants of the Lie algebat S
the gauge grougs. 0gC(x)=0, (2.8b
For non-Abelian gauge theory, we define the BRST trans- _ _
formation by 6gC(x)=iB(x), (2.80
9g.A,(X) =D, [ A]C(X):=3,C(x) + g[A,(x) XC(X)], 55B(x)=0, (2.8d
(2.29
1 whereB is defined by
osC(X) = — EQ[C(X)XC(X)], (2.2b _
B(x)=—B(x). (2.9
SeC(X)=1B(x), (2.29

IIl. QED IN THE LORENTZ GAUGE

oaB(x) =0, (2.29 As a warming-up problem, we consider quantum electro-

dynamics. As is well known, the total Lagrangian of QED is

where A, , B, C, andC are the non-Abelian gauge field, the given by

Nakanishi-Lautrup(NL) auxiliary field, and the Faddeev-

Popov(FP) ghost and antighost fields, respectively. Another 1 _ o
BRST transformation, i.e., anti-BRST transformatian, is EtgtED= - Zf”“”fwwL Y(iy*d,—m)y—egy*ya,+ Lo p,
defined by (3.1)

0 Au(X) =D, [AIC(X):=,C(X) + gL AL(X) X C(X)], with a gauge-fixing GF) term plus a FP ghost terfigr. p.
(2.38  The explicit form of the GF-FP term depends on the gauge
chosen. In this paper we adopt the most familiar covariant

_ 1 _ .
5sC(X) = — Eg[C(x)XC(x)], (2.3b gauge, i.e., the Lorentz gauge
o o d*a,=0. 3.2
6gC(X)=1B(x), (2.309
Therefore, the GFFP term is given by
8sB(x)=0, (239

_ o—
_ L =idg| Co*a,+ -CB
whereB is defined by CFrFP B( ko2 )

B(x)=~B(x) +ig[C(x) X C(x)]. (2.5 ~Bi'a,+ 5B>+iCi#9,C. (33

The BRST and anti-BRST transformations are nilpotent and
they anticommute: Although the ghost and antighost fields are free and decouple
from other fields, we have included them to study the rela-
S505=0, 08gdz=0, Ogdg+ Sz0s=0. (2.6)  tionship with the non-Abelian case which will be discussed
in the next section.
For Abelian gauge theory, the BRST transformation reads As pointed out in Ref[36], the GF+-FP term(3.3) is

rewritten into the BRST and anti-BRST exact form:
oga,(x)=d,C(x), (2.7

1 a —
—aMa“+—|CC

5 5 . (3.9

Lopsrp=i 5B§B

3The last transformation is equivalent to
5aB(X)=—gC(X) X B(X). (2.4 In fact, this is cast into the form
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Lrrpp=16g

. o —
(5Ba")aﬂ—§iC5BC)

, (3.9

_ o
=i55(a#0aﬂ—§cs

which agrees with E¢(3.3) up to a total-derivative term.

If the NL field B is eliminated by performing the func-
tional integration or by making use of the equation of mo-

tion, then we obtain
, 1 _—

The on-shell BRST transformation is given by

dga,(x)=d,C(x), (3.79
85C(x)=0, (3.7b
85C(X)=— i;&”aﬂ(x), (3.70

while the on-shell anti-BRST transformation is

82, (x)=d,C(X), (3.8a
55C(x)=0, (3.8b
S5C(x)=+ !;ﬁ“aﬂ(x). (3.80

PHYSICAL REVIEW D 65 085034

(So0e-+ B330)C(X) = — — #7,C(x),
(3.11b

(8505 + 8505)C(X) =+ i;aﬂaﬂax).
(3.110

Now we define the composite operatfrof mass dimen-
sion 2 as

1 D
O==wJ d®xQ(x),

Q(x) :=%aﬂ(x)a"(x)+aiE(x)C(x). (3.12

This composite operator is BRST and anti-BRST invariant,
since

85900 ="[a,(X)C(\)], F5Q(x)=d*[a,(x)C(X)].
(3.13

We consider the renormalization of the composite opera-
tor Q. The Abelian case is very simple due to the trivial
renormalization factore,2, Zcc for the composite fields

1/2a*a, andiCC. Therefore, we only have to take into
account the renormalization factor of the fundamental field,
a,,C,C, and the gauge-fixing parameter QED is known

to be multiplicatively renormalizable in the sense that the
divergences are absorbed by introducing the renormalization
factors in the following way:

The GF+FP Lagrangianlge, g and the total Lagrangian

LIS,‘ED with L&, gp are separately invariant under the on-shell Y= Z%/Z R (3.14
BRST and on-shell anti-BRST transformations. The nilpo-
tency of the on-shell BRST and anti-BRST transformations a,=27%%R (3.15
is realized only when the equation of motion for the ghost a K’
and antighost fields is used, since C=27.CR C= ZEER, (3.16
(8g)%a,(x)=0, (3.93
B (B=2;128R), (3.17
(88)°C(x)=0, (3.9b
m=2Z,Z, 'mR, (3.18
— i
(68)°C(x)=— 5 9uC(X) (3.99 a=2,aR (3.19
and e=2,7,'z5 V%R (3.20
(EB)ZaM(X):o, (3.10a  The renormalization factors are not independent to each
other. In fact, the coupling constant is renormalized as
_ i _
(8g)%C(x)=+ —34,C(x), (3.10h e=2Z5 %R, (3.20)
— = as a consequence of the Ward relation
(8g)°C(x)=0. (3.100

Moreover, we obtain a similar result for the anticommut-

ability:

(8p0s+ 508)a,(X) =0, (3.113

Z]_: 22 . (322
Moreover, the Ward-Takahashi identity yields

Z,=23. (3.23
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The result of perturbative renormalization in QED is well V. YANG-MILLS THEORY IN THE MOST GENERAL
known and can be seen in the textbooks. The result LORENTZ GAUGE

A. Lagrangian
We consider the most general quantum Lagrangian den-
means that both the ghost and antighost are free and receivhY that is a local function of the fieldd,, , 5%, ¢, " and
no renormalization in the perturbation thedtiis is not so  Satisfies the following conditions. The Lagrangian(1s of
in the non-Abelian cageConsequently, we arrive at the re- Mass dimension 42) Lorentz invariant(3a BRST invari-

sult that the composite operator is renormalized as ant, (3b) anti-BRST invariant,(4) Hermitian, (5) of zero
ghost number6) global gauge invariant, and the theory with

1 this Lagrangian i$7) (multiplicative) renormalizable. Here it
0=7,0%, QRzz—aR(x)a“R(x)JraRiER(x)CR(x). is implicitly assumed that the Lagrangian is written as the
2~ polynomial of the fields, and that there are no higher deriva-
329 e terms, since there is no intrinsic mass scale in Yang-
Mills theory. It should be remarked that we have imposed
Therefore, the BRST invariant combination of two compos-BRST and anti-BRST invariance instead of gauge invariance
ite operators with mass dimension 2 is preserved under thgve do not require gauge invariance for the Lagrangian

renormalization. Such a Lagrangian was given by Baulieu and Thierry-Mieg
In view of the above results, the renormalized BRST[g 9] as

transformation is defined by

1
Lo =— "¢ o FH At ase o Y FPO
B=2825, SR=2375. (3.26 et i
_ — o
This is shown as follows. The Noether current of the BRST +i6g0g(agA, - A¥+ayC-C)+ - BB, (4.1)
symmetry is obtained as
JE=BJ*C—g*BC—a,(f*'C). (3.27)  Whereq; (i=1,2,3,4) is an arbitrary constant aAg and &g

are the BRST and anti-BRST transformations. The first term
is the Yang-Mills Lagrangian and the second term is the to-
pological term which is not discussed in this paper and omit-
ted hereafter. The first and second terms are gauge invariant.
, On the other hand, the third and the fourth terms are identi-
[iAQp, P(X)]=A 6P (x), (328  fied as the GF and FP terms, since they break the gauge
invariance of the Lagrangian. After rescaling the parameters
is given by and the field redefinitions, we can cast the total Lagrangian
of the Yang-Mills theory into the form

The Noether charge, i.e., the BRST cha@gas the genera-
tor of the BRST transformation

QB=f d3ng=f d®x[Ba°C—3d°BC].  (3.29 1
L= =7 Fur P+ Loprre, 4.2

In a similar way, the anti-BRST charg@g can also be de-

fined as the Noether charge for the anti-BRST transformayth the GF+ FP term[8-10]

tion. Therefore we can define the renormalized BRST charge

Qg as

!

o—=(1 a. -\ «a
£GF+FP:|5358<§AMAM_EICC +7BB (43)

ngzé’zQB:f d3x[BR#PCR—3°BRCR].  (3.30

i o , =—i55(—&MC-A"+EC~B—I—agC~(C><C)
This ensures the renormalization of the BRST transformation 2 4

(3.26). The renormalized BRST transformation for the renor- ,

malized field has the same form as the bare BRST transfor- + a_B.B_ (4.9
mation for the bare field. Thus, the composite oper&ds 2

a BRST invariant and multiplicatively renormalizable opera-

tor for arbitrary gauge parameter. The renormalized GF The final term is allowed for the renormalizability of the
+FP term has the same form as the bare one: total Lagrangian and is written in either a BRST exact or

anti-BRST exact form

a,R

1 _
Lorirp=16868 = aRa*R+ —iCRCR|.  (3.3)

2k 2 B-B=—i8g(C-B)=i8g(C-B). (4.5
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However, the GF-FP term(4.4) is simultaneously BRST where we have defined the two paraméters
and anti-BRST exact, i.edgdg(*), only if «’'=0. If we

impose one more condition, e.g., the FP ghost conjugation N=at+a', &= al2 _ i_ 4.12
invariance ata’ 2\
A LA A — A A A A . A In this form, it is easy to eliminate the Nakanishi-Lautrup
o=l O BB, B=-b field B. We call the gaugé4.11) the most general Lorentz
auge hereafter.
(AR AR, 4p 9
the second term of Eq4.4) is excluded, namely, only the B. Feynman rules
choicea’=0 is allowed. We obtain the following Feynman rules for the Yang-
By performing the BRST and anti-BRST transformations,Mills theory of the Lagrangiari4.2) with Eq. (4.11) where
we obtain the NL field is eliminated.

r ata’ 5.8 . CXT Bt B3 A 1. Propagators
- . — —1 X . + .
CRFFFT 2 219(6x0) a (a) Gluon propagator:

o X 25 A ]
+iC 9, DLAICH 5 g% (CX0) - (CXC), 4.7 7““"";_","""‘3’”21‘05?:—]% g#,,—(l—)\)]% §4B.
a+a’ a. — (4.13
=~ B:B=5ig(CXC)-B+B-d,A* (b) Ghost propagator:
_ _ — - - . 1
+iC- 0, DML A]C+ %gz(iCXC) (iCx0). (4.9 A-g—Boigrr - — "

(4.19
The GFHFP term includes the ghost self-interaction where . .
the strength is proportional to the parameter 2. Three-point vertices
When «=0, this theory reduces to usual Yang-Mills  (c) Three-gluon vertex:
theory in the Lorentz-type gauge fixing with the gauge-fixing
parameter’:

!

o _ = 9F*PC (@~ 1ugpo + (T = P)pGou + (P — )0 uo] -
Lorirp=— B-B+B-3,A"+iC-3,D'[AIC. (4.9 e o v

(4.15
This is consistent with the FP prescription. 4 Gl h iah )
Whena# 0, there exists a quartic ghost interaction WhiCh( ) Gluon-ghost-antighost vertex:
cannot be implemented by the usual FP prescription. There- »
fore we must go beyond the FP prescription. The+G#P C /A
term is further rewritten as M\I\/\JN\ =igf*BC[e(p—q) — p]*.
B
1 — \
Lerspp= _ﬁ(fwv‘lﬂ)z*‘(l_f)'c' a,DFLA]C (4.16
1 3. Four-point vertices
+&iC-DHA]d,C+ FM(1=6goICX0)-(CXC) (e) Four-gluon vertex:
A - s TR A c
+§[B‘+)\ I A,—Eg(CXO)T7, (4.10 H P
— _i292(fEABfECDIyV,pa
1 , - B B,v Do + fEACfEBD[M)’VU
=—z—(d*A,)"+iC-9,0*C—(1—-&)giA*-(9,CC)
2\ iz M I  fEAD pEBC ]W’Vp»
_ 1 _ _
+EGLAF- (X 3,0)+ 5 NE-HEICXO)-(1CXT) 4.17
A — 4- ' H H :
FTBEN"L9k A — & %012 _ The parametera, a’, \, §in this paper correspond, respectively,
2 (BN A, = E1g(CX O], (4.11 to A¢, Ay, N, ain Ref.[9] anda, a’, \, &/2 in Ref.[8].
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\(/}I;’]'e:rel p,v,ﬁu’::(g,u,pg vo g;urg Vp) /2 (al) /-.-\ (32) 343)%
our-ghost vertex: vw( )’W i E
N\ /
AN 7 B

X = —A(1—&)g? (fACEfBDE - fADEfBCE) ) FIG. 1. Vacuum polarization of the gluon.
Y

1
419 + 5 rér(1- )

C. Multiplicative renormalization 2 RUERY i AR IR
i ] Xgr(iC™XCT) - (IC"XCT)
It has been proved by Baulieu and Thierry-Mi&j based

on mathematical induction that the Yang-Mills theory in the

RipR -1 R : Ry, 7R 2
most general Lorentz gaudé.1l) is multiplicatively renor- + 7(8 AR AL~ ERIGRCTXCT)T, (4.22h
malizable. We introduce the renormalization constémt
renormalization factgrfor the field LO0:=(4.21)—(4.22D. (4.229

1/2 4R _—=12,R ~_ —-1/25R
Au=Zp Ay, C=2cC, C=27C, Here/:tOtR is obtained by setting all renormalization factors

Z=1 in Eq. (4.2 and hence it is written in terms of the
renormalized fields and renormalized parameters and has the
same form as the bare Lagrangisff},, while £ is the
counterterm defined by the differeneg&y, — £t°tR.

B:Zé/ZBR:ZCZXl/ZBR (419

and for the parameters

AN=2\AR, £=248R, 9= Zg0R- (4.20 1. Renormalization of two-point functions

By substituting Eqs(4.19 and (4.20 into the bare La- First, we calculate the vacuum polarization function of the
grangian, we obtain the total Lagrangian written in terms ofgluon. To the ordeg?, there are three Feynman diagrams,
the renormalized fields, renormalized parameters, and thsee(al), (a2, and(a3 in Fig. 1.

renormalization factors: As a gauge-invariant regularization, we adopt the dimen-
sional regularization. Then we obtain the following result
1 =72 .
£t0t _ ZZA(O-)’MAIE_ ayAs_*—ZgZ,]&lzgRA/R'LXAs)Z (E 2 D/2)
(gu=9%i[1
— al)=Cy(G) MP——7 —|750%0,,
2)1\ ZpZy H(HAR)PHiIZCR- g ,0mCR (D= GG e ¢ 129 9
1
1—Z,ER) ZgZ3?Zcgri A*R(9,CRXCR) 16—~ =109, |, (4.233
—( £SR cIr 6

+ 224737 cErgri AMR(CRX 0,CR)

1
(a2)=5C5(G)

(gu™9%i (19
AB 2
0 (4 ) E q g,uv

1 .
+ Ezngzgz@ng(l—zggR)ngocRx CR)-(icR "
A —gq#qﬁ(l—x)(ngw—q#q»],

CR)+ R Z\(ZeZxY2BR+ 7 1782\ Lo AR
A &C4A A R (423b

~Z,ZZcéRigrCT < C)2, (4.2 (a3)=0, (4.230

The total Lagrangian(4.21) is decomposed into a where C,=C,(G) is the quadratic Casimir operator in the

renormalization-factor independent patt;), otR and the re- adjoint representation of the gauge gro@ defined by
maining partCyy,” as 5"BC,(G) = JACPFBCD Hence the counterterm; and &,
ot OtR . ot c for the transverse and longitudinal part of the vacuum polar-
Lym=Lym + Ly s (4228 jzation tensor are determined so as to satisfy the relation

Emm____((; AR= 3, AR+ g AR X AR) 2~ ! o (AL (al)+(a2)+(a3) ~id1(9%0,,~ 0,9,) °

oL
— _ — -i—aq,q,8"B=0, (4.29
+iCR- 9,0"CR— (1~ &r)gRi A#R- (9,C7XCR) L

+ Ergri AR (CRX 9,,CR) which yields the result
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(b1) (02) o>,
- ——— (
\ / \

\I/

/
7/
-—-»:—..-L_»__

FIG. 2. Vacuum polarization of the ghost.

_(13 A)(gu‘f)z 2(G)
™l6 2/ (4m? €

(gu™9? Cy(G)

5L=—?\§(1—§)W . (4.25

On the other hand, the relationship
Sr=Zp-1=Z0 4, 8 =Z,Z'-1=20 -7+,
(4.26

must hold for the multiplicative renormalizability where we
have defined the renormalization factororder by order of
. Thus we obtain

the loop expansio@=1+2ZM+73)+...
the renormalization factors

Z(Al) =or=

(4.27

13 R)(gﬂ_f)z C(G)
6 2| (4m)?

and

62C G
+x§<1—§>}ﬁ(?fw)) 28

13 M\
X

6 2 €

(4.28

Note thatst and henceZ, is the same as in the FP case
where the four ghost interaction does not exist. When

#0,1, however, we find that, #0 or equivalentlyZ,

#Z, . On the contrary to the FP case, the longitudinal part of
the gluon propagator must be renormalized in this case.
Next, the vacuum polarization function of the ghost is
calculated in a similar way. To orde?, there are two Feyn-
man diagrams, se@l) and(b2) in Fig. 2. The explicit cal-

culation shows that

B R L
(b2)=0. (4.299

The countertermd; is determined from
(b1)+ (b2)—p?8°B5.=0. (4.30

Hence the counterterdo=Zo—1=2%)+---
renormalization consta :

3=\ (gu” 9% Cy(G)

M= 5.=
R VP

(4.3)

This is again the same as in the FP case.

is equal to the

PHYSICAL REVIEW D 65 085034

(c2) P R //
\N\Q N/»{Z:; vw' ) ’\

FIG. 3. Radiative corrections for the gluon-ghost-antighost
vertex.

2. Renormalization of the three-point function

We consider the renormalization of three-point vertex. For
example, the Feynman diagrams for the radiative correction
of the gluon-ghost-antighost vertex to one-loop order is
given in Fig. 3.

If we write the counterterm for the gluon-ghost-antighost
vertex function as

Ha

Cp
M = ign/*" [Er8hoc(p — 4) = Shcep]
q

B\
(4.32

we find the renormalization factors are related as

51

1
Z7(1) (D (4.
o= ZP+zM+zW+ -

= ZZRZZ~1=28"+ 5
(4.33

1
_ 12 1 _71), ~ (1) Dy...
5ACC ZcZy Z 1=27¢ +ZZA +Zg +ee
(4.39

At p=gq, the respective diagram is calculated as

1 i 1A
(c1)p-q=— 5 CalG)*%G° 47 £ 7 0%, (4.35
1 13
(€2)p-q= = 5 CalG)** G\ 77 T b,
(4.35b
(3)p—q=0 (4.359

By substituting Eqs(4.353, (4.35h, and(4.350 into

(CL)poq+(€2) poq+(c3)p—q—igFABCS: -op,,=0,

(4.3
it follows that
1 (gu 9% Ca(G)
51062_5 W 2 . (437)

Hence the renormalization factor is obtained as

1 11 (gu €2 Cx(G)
(1) _ Ty _ T8 - T Tl
z 5 e Za 6 (4m)° €

9 ACC 2
(4.38

At p=0, the respective diagram is calculated as
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1 i
(Cl)p=o:—§C2(G)fABcg3§?\W
1 ( 1 u
XZ (1—§) f—i +Z q~, (4393
1 13
(€2)p-0=— ECZ(G)fABCg3>\§(47T)2 ~29%
(4.399
1
(C3)p=o=—Ecz(G)fABng)\f(l—f)
i 1( 1) .

By substituting Eqs(4.393, (4.39h, and(4.399 into

(C1)p-o+(€2)po+(c3)p-o— gt B RS, .20, =0,
(4.40

it follows that

(gr™ 9% Co(G)

Pnce=| M 5)('5")"% 4m? e
(4.4
Then we obtain
Z(l) 5ACC 5ACC
€\2 C G
=N(¢- 1)(5——)—(%7)) 8,
(4.42

Accordingly, the renormalization constants @fand «’ are
obtained as

13 a) (gu~ )% Cy(G)
(1) — _ =
a (6 4) Tt e 443
and
13 a+ta')(gu 9% Cy(G)
O_ (==
Za’_(e 2 ) (4m)? (4.49

V. RENORMALIZATION GROUP FLOW AND FIXED
POINTS

Using the above result, the renormalization grdR%)
functions are obtained as follows. Tigfunction is obtained
as

gr)=p i €J|2,4L(9IM = QRM(M g -

(5.2

PHYSICAL REVIEW D 65 085034

agR 1

B(9r) = Koon = Tom? gcz(e)g’;;. (5.2

Similarly, we obtain the RG functions

Z(G) 2
Ve Ma_gR 2\Rér(€R—1)| ér— > (477)29

(5.3

and

Ca(G)
2 Pl o7 OR

(5.9

0
= — Np=2\
Y Mﬁ,U« R R

The RG flow in three-dimensional parameter space
(&,N,9) is determined by solving simultaneous differential
equations

d 1| Cx(G)g?
u£=2x§<§—1><5—5)%3— (5.59
N 13 A G
Ma=2>\[§——+7\§(1 g)} (zj ))f’ ,
(5.5b
dg  11Cyx(G)g®
Kon~ 3 @am? (5.59

where we have omitted the subscripfor the renormalized
guantity.
As is well known, Eq.(5.50 is solved exactly,

2 9%(p0) _ 1
W T2C6) , w 2CG) u
gwg(ﬂo)n— 3 @n)? nm}
(5.6

where we have used the boundary conditg(ug) = at
to=Aqcp. The remaining two equation$.59 and (5.5b
cannot be solved exactly.

A. Fixed points

First, we obtain the fixed point of the RG. Note that the
derivative (1¢%) u(d/dux) in Egs.(5.58, (5.5b) is rewritten
as

1 9 22C,G) 0
o?" o 3 (4m)? nAQcoﬂﬂ
22C,(G) 4
==z 2 (5.7
3 (4m) M
dlnin

Agco

It turns out that the3 function does not depend on the gaugeThen the fixed pointo one-loop orderis obtained by solv-

parametera. and ¢

ing the algebraic equation simultaneously:
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TABLE |. Eigenvalues and eigenvectors of the linearized RG equation where the lines II, Ill, IV are
defined below. At the IR fixed point A and UV fixed point B, two eigenvalues are degenerate.

Eigenvalue Eigenvector
139°C,(G) '
(3 (4m)? ) o o
A 1 IR fixed point 1,a any lines
-1 UV fixed point (1, a) (1, a) any lines
C 1 Saddle point (13,3 1, -2 line IV
-1 0,1 0,1 line I
D 1 Saddle point (=13, 3 0,1 line V
-1 1, -2 0,1 line 1l
1 13 A 5
NE(E-D)| 6= 5]=0, N T 5+AE1-§)|=0. D( 1_3)_(7§>~53g CaS) [ (55)
(5.8) Bl @amt | -5 —1] i)
(5.90

We find one line of fixed points and three isolated fixed
points in the(&, \) plane or equivalently four isolated fixed
points in the @,a’) plane.

Similarly, in the (@,a’) plane, we obtain

2
(A) The line of fixed points\ =0, ¢ € R corresponds to an A(0,0): Ya _ E’&?_)( 1 O) ( 5“/),
isolated fixed point &,a’)=(0,0). Yo/ 3 (4m)* 10 1)\0a
(B) (&,\)=(1/2,26/3) corresponds tax(a') = (26/3,0). (5.103
(©) (¢,\)=(0,13/3) corresponds tax «')=(0,13/3).
(D) (&MN)=(1,13/3) corresponds to ofa')=(26/3, B<§3O>( £q )~_1_392C2(G) (1 0)( Sa
—13/3). 37\ Ve 3 (4m? \o 1/\éa’)
If the two parameterg, \ are set equal to one of the fixed (5.100
points, the theory remains forever on the fixed. If the system
starts from other points and the scaleis decreased, it 13| [ v.| 13 g’C,(G) [ 1 0\ Sa
evolves into the infraredR) region according to a couple of 3\ v T3 (@m?Z -1 —1)lsa’)
differential equation$5.59—(5.59. (5.100
2 —
B. RG flow in the neighborhood of fixed points D( _ E 2_6) :( Ya ) ~ 1_3@( 1 0} ba )
: o . 3'3)\ver) 3 (4m? | 1 1/\éa
In the neighborhood of the respective fixed point (5.100

(X7 ,X%) in the plane K1,X5)=(&\) or (a,a’), we can

study the behavior of the RG flow analytically. By taking The respective matrix characterizing the behavior of the RG
into account only the terms which are linear in the infinitesi-flow in the neighborhood of the respective fixed point has the
mal deviationdX;:=X;—XI ,8X,:=X,— X5 from the fixed eigenvalue and the corresponding eigenvector enumerated in
point, a set of RG equatior($.5a and(5.5b is reduced to  Table I. The direction of the flow is determined at the respec-

the form 72)~A(?;;), whereA is a two by two matrix.

(a) (b)

In the (¢, \) plane, the set of linearized RG equations A o .
v ' TERES. vyt I
reads AR PERE IR N\\::.c_k\‘:~~;q -
2 SERRRE- SOSTRES TR
B126 Ve 139g°C,(G) (1 0}/ s¢ i ns xflior e v N e M P
—— ~—— IR D B NN A S
2" 3"\ 3 (4m?* \o 1/\oN) il Bl bl el L NN TR G
1= ! S| ~. * B
(5.99 S (T NN | S L S S Sy
.A:»»,vi‘«««z‘< g S e
N y ooy LR - L NN N
RS EERRE ' ;:';..u\. T
L T O O S S
e O NN
5§ v bamwewlmsmelu ITIHMH. %
I I m m r

o)1) e

3/ "3 @z | 2 21 (c”x)' _ .
3 FIG. 4. RG flows in the(¢ \) plane (a) and in the @,a’)
(5.9b plane(b).
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tive fixed point. We will see that these results are consistent 131 26
with the global flow diagram given in Fig. 4 below. V) A== T3 (5.14¢
C. Global behavior of the RG flow Since the flow is symmetric for the reflection with respect

We find thaté=0, é=1/2, andé=1 are solutions of Eq. to the straight line 1,£§=1/2, we focus on the regiog

(5.53. This implies that the RG flow starting from the point <1/2. The flow st_arting f_rom the_ initial position beIow_IV
on one of the three planes £0g), (1/27.g), (1A,Q), is runs towards the liné of fixed points and eventually arrive
always kept on the respective [;Iane O’n ihe ,th,ree, plane tA. If it arrives at a fixed point o\ with a certain value of

moreover, Eq.(5.5b can be solved exactly. On the plane 'depending OI'? theh inirt]ial é)o.;itic])(ln, then it d?es ncr)]t movel
' ; ; anymore. On the other hand, the flow starting from the initial
<
(1/2).,9), the RG flow in the region &\ <26/3 obeys position above IV runs away into the infinity,= + . Here

T the flow on the line | and Il is not an exception. However, it
) : (5.1)  should be remarked that the fixed poRis IR repulsive in
both directions, while the fixed poi is IR attractive on IV

whereC is a positive constant. We see thaapproaches to and repulsive on Il. In view of these, it turns out that any

. : : ; e fixed point onA is IR stable, while the fixed poirB on | is
the ultraviolet (UV) fixed point A726/3 in the UV limit S . L
i, while X0 m)onotonigally a;w/\qco- On the other @ rather special fixed point which is IR unstablg/ stable.®

hand, the RG flow in the region>26/3 is described by We have shown that the three fixed poiBISC, Dfor the

1+C

In

A()= 26
K 3 AQCD

gauge parameteg, N\ are located on lines I, I, 1l §
26 | 1823 -1 =1/2,0,1), respectively. On lines I, Il, lll, the RG flow is
Nup)= 3( 1—C( InA ) 7 , (5.12 confined in the respective line; the Lagrangian takes the fol-
QCD lowing form.

(I) é=1/2 (i.e., aeR, a’'=0). The GF-FP term is in-
variant under the FP ghost conjugation and the orthosym-
plectic transformation OSp|2) [13]:

where\ approaches to the UV fixed pointf 26/3 in the UV
limit w70, while AT monotonically asu| Agcp. By sub-
stituting  In(u/Aqcp) ={22/3C,(G)/(4m)?g% " into the
above equation, the equation of the RG flow on the plane (1 a

(1/2\,9) is obtained: £GF+Fp:iéBﬁB(§AM~A“— Eic'd' (5.195

2

_26[ (22C2(G)
AN |12 3 a2

13/27 1_ (5.13 There is a four-ghost interaction.
(I) é=0 (i.e., =0, a’ €R). The GF-FP term is invari-
ant under the global shift of antighoSt
The RG flows on the plane (0,g) and (1\,g) are gov-
erned by the same equations which are obtained by replacing ' _
26/3 with 13/3. Lopirp=— BB+ B0, A" +iC-9, D' A]C. (5.16
The global behavior of the RG flow is obtained by solving

Egs. (5.50—(5.5D numerically. In Fig. 4, the RG flow is  There is no four-ghost interaction. This Lagrangian is the
drawn on the plangé, A) and the plane4,a’). The direc-  same as that in the conventional Lorentz gauge.
tion of the arrow denotes the direction towards the IR region (jj1) ¢=1 (i.e., «’ = — 1/2a). The GF+FP term is invari-

and the length of the arrow is proportional to the magnitudeynt under the global shift of ghost
of the vectoru(d/dw)(£,1)/g?. In the neighborhood of the

respective fixed point, we see that the numerical result agrees A —
with the analytical result given in Table | of the previous Lopirp=7 BB+ B, A" +iC-D'[A]9,C. (5.17)
subsection.

Among the RG flows, the five RG flow@, II, ll, IV, V') There is no four-ghost interaction. The choice Il or Il elimi-
connecting the fixed point, B, C, Dform the watershetbr  nates the four ghost interaction and the Yang-Mills theory
backbong in the flow diagram: reduces to the FP case. Onge0 or ¢=1 is chosen¢ is not

renormalized by quantum corrections, sige0 andé=1

) &= } o' =0 (5.143 are fixed point of the renormalization group. Then the FP
2’ ' ‘ Lagrangian is preserved under the renormalization.
In Il and lll, the role of ghost and antighost is inter-
() £=0, a=0, (5.14bh changed. The FP ghost conjugation invariance is broken in
the usual FP Lagrangian where the ghost and antighost are
1 not treated on equal footingexcept for the Landau gauge
(nry ¢é=1, a’=—§a, (5.149
SThis does not imply that a similar result is also obtained for the
(V) A= 1_3L o =— la—k E (5.149 MA gauge. For examplay=0 is not a fixed point in the MA gauge.
31-¢& 2 3’ See Ref[27] for details.

085034-11



K.-1. KONDO, T. MURAKAMI, T. SHINOHARA, AND T. IMAI PHYSICAL REVIEW D 65 085034

In other words, the FP ghost conjugation invariance is recov- -1
ered fora’=0 (i.e., £=1/2 or A= a) by including the quar- =T[(9"D#C—g§(ﬂ”AMXC)
tic ghost interaction even fag=0.
We must keep in mind that these results are obtained to FigANE(E—1)(CXC)XC] (6.30

one-loop order. Therefore, the details of the flow diagram
may change if we include higher-order corrections. The
higher-order result is not known to date and will be givenand
elsewhere. Nevertheless, the existence of the fixed point at

A=0 remains true to any finite order of perturbation. The =2 _

existence of the lines I, Il, and Ill are also guaranteed even (88)"AL(x)=0, (6.4
after the inclusion of higher order terms, since it is protected

by the symmetry dictated in the above. This is because the _ —16L%

symmetry cannot be broken as far as the perturbation series (88)%C(x)= ~ oC

to all orders are not summed up.

i — —
VI. RENORMALIZING THE COMPOSITE OPERATOR OF =X[(9“D#C— g(l—f)(r?“.A#X C)
MASS DIMENSION 2

In this section we discuss the renormalization of the com- —ig?NE(£-1)(CX0)XC,] (6.4b
posite operator of mass dimension 2 and its BRST and anti-

BRST invariance under the renormalization. —
(6g)°C(x)=0. (6.40

A. On-shell BRST transformation . S . o
I Moreover, the anticommutatibity is also broken in a similar

By eliminating the Nakanishi-Lautrup fielf, the on-shell  way:
BRST and anti-BRST transformations are obtained as

[ 1 _ (8505+ 9508) A, (x)=0, (6.59
ogC(X) =i —Xa“AM(x)+§igC(x)XC(x) , (6.1
) tot
(68335853)6(@7 LS (6.5D
_ 1 _
6gC(X) =1 X&”AM(X)—(g—1)igC(x)><C(x)}.
' (6.2 — — — 1ecyy
(6B5B+ 5BéB)C(X): - (65(‘)

N 6C

The nilpotency of the on-shell transformation is partially
broker? by the equation of motion of ghost and antighost:
B. Composite operator of mass dimension 2

) We define the composite operaiOras a linear combina-
(68)7AL(X)=0, (6.33  tion of two composite operators of mass dimension 2;

%AM(X)-A"(XHME(X)C(X) :

(9=(Q(D))’lf dPx

(85)%C(x)=0, (6.30)
(6.6

— -1 6% The on-shell BRST transformation of the operatdiis cal-
8)%C(x)= — —=
(68)°C(X) N culated as

Q(D))‘1J dPxé; %A#(X)'.AM(X)-F)JE(X)'C(X)

®An elegant proof of the unitarity of gauge theory is given based %0=(
on the nilpotency of the BRST transformation, see, e.g., 3.
The nilpotency is indeed broken in the on-shell BRST transforma-
tion which is obtained by eliminating the NL field. However, the
nilpotency is not the only way to show the unitarity. Even in this
case, it is possible to show the unitarity order by order of perturba- _
tion theory based on the Feynman diagrams without the NL fields. +NidgC(X)-C(X)]

=(Q<D>)—1f dPX[A,(X) - S5 A*(X) —NiC(X) - 35C(X)
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A:=AR C:=CR, C:=CR, B:=BR (6.13

:(Q(D))_lf dPx AL (X) - 9*C(x)

We consider the Green function of the fundamental fields
with the insertion of a composite operator of mass dimension
2. In the following, it is assumed that we have already fin-
ished the renormalization for the fundamental field in the
perturbative theory. Therefore, we only have to consider the
extra renormalization for the divergence coming from the
inserted composite operators in the renormalized Green func-
1 tion. In order to take into account operator mixing among
27 §) composite operators with the same mass dimension and the

same quantum number, we must introduce the matrix of

+NIC(x)- g[C(x)xC(x)]Jra“AM(x)-C(x)

—NEgLC(X) X C(X)]-C(X)

:(Q“D))’lf de{ﬁﬂ[A#(x)C(x)]Jr)\

— renormalization factorZ,...,Z,:
XiC(X)-g[C(X)XC(X)] - (6.7
1
In a similar way, the on-shell anti-BRST transformation of {EAA B Zy 7, [EAA}
the operatoiO is calculated as R “lzs z, - - (6.19
[iICClr [iCcC]
5BO:(Q(D))_1J d°x| [ AL(x)-C(X)] Then, to the lowest nontrivial order, we find
1\ — _
o\ 5-g]ic0-altoxer0l. 68 (aafiad) = e b L3 b
(6.159
Therefore, the composite operator is invariant under the L d/"‘\ A/"\M
BRST and anti-BRST transformations when (aaficcly= o +A_ P+ A M+,
(6.15h
1 iCCliaAly= o0 + 4o
£=5 or \=0, e (ol TS
(6.150
i.e., on the line | and A in thé¢, \) plane, or on the line Iin  (iCC[iCCl) = __o_. + _{'::‘1_ + ( :) o,
the (a,a') plane. Foré=1/2, the on-shell BRST and anti- i (6.150

BRST transformations read
where we have used the Feynman rule

8gC(x)=— i;a“AM(x) — %gC(x) XC(x), (6.10 o =64E, (6.163

— i 1 _ e =i6?, (6.160
C(x) =+ — M A, (X) = 59C(X)XC(x).  (6.11)

with the dot denoting the insertion of a composite operator.
The special casa=0 (and =0 to have a finitef) is We show that the divergences coming from the compos-
nothing but the Landau gauge in the conventional Lorentiteness are absorbed by taking the four renormalization con-
gauge and the BRST and anti-BRST invariant oper&or stantsZ,, Z,, Z3, Z, appropriately. The first example is
reduces to the simple form

(AA[344] ) =2z (AA[LAA]) + 2, (AA[iCC))

. (612 :Zl{m+ +§Z+...}

o -
Note thatO’ is invariant under the gauge transformation as 27, ~ + A /\M I
well as the BRST and anti-BRST transformations. N/ S

1
0’=(Q<D>)—lf dPx| 5 A (X) - A#(X)

~ -

C. Renormalization of the composite operator A
Hereafter, we use the following notation to simplify the (6.17
expressions: Hence the lowest value &; is 1:

085034-13



K.-l. KONDO, T. MURAKAMI, T. SHINOHARA, AND T. IMAI
Z,=1+2Z{ P +---. (6.18
The second example is

(iCC [JAA] ) = 2, (iCC [3AA]) + 2, (iCCliCCl)
:Zl{_gj‘}i_+...} )

=0 (no divergence).

(6.19

PHYSICAL REVIEW D 65 085034

z(
+ + =0,

HenceZ, does not have the tree part and begins with the

one-loop order
Z,=ZWM+- -, (6.20
The third example is
(icc [iCC], ) = 2, (iCC [LAA]) + 2, (iCC [iCC])
caf )
+Z4{ I ) +}

—nat

—_————

(6.21)

Hence,Z, has the form
Z,=1+Z{ P+ (6.22
The fourth example is

(AAfiCC] ) = 23 (AA[LAA]) + Zs (AA[iCCl)

=0 (no divergence).
(6.23

Hence,Z5 begins with the one-loop order

Z;=72{P+- - (6.24

Therefore, up to one-loop order, the renormalization con-

stants must satisfy the relationship

AAA
(6.25a
A
A Y —0,
(6.25
Zél) “~ N
+ A - /)‘A + \ M :O,
AL
(6.250
VAR an
SRR i Yt L) =0
(6.250

The explicit calculations lead to the following divergent
parts:

“{:}” ~Cy@)8*7 [3+ 201+ 3] g;w%3
(6.26
Q ~ —305(G)6"g,,° TQ (‘gf;)f 2
(6.27
IR iy (@6 B (1 — )0 (5(’:7;;32 %
(6.29
“(: )~ ~1CAG)5 g, (?jgf s
(6.29
e B e
(6.30
l:_’ ~ —iCy (@) PE(1 5»(%323
(6.31)

Thus the renormalization constants for the composite op-
erators are obtained as

3 (gu 9?1
(CONE— DA
2= = 7(1+NCG) “7 7 (6323
(gu=9%1
(M _ =
Z3'=—N2(1-§)Cy(G) am? <
(6.320
1 (gu 9%1
W= -
Zy =5Ca(G) an? e (6.329
ziP=o. (6.329
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We pay attention to the renormalization constants of com- " L e
posite operators in light of the inverted relation of E,14): ={1+2Z0 -z -z 5 AA

R

1 a 1 7 .
SAA :(Zl Zz) HZAA . + —%+1+Z§\1)+Z(Cl)—zﬂll>])\[iCC]R.
__ Zs Z, __
[iCC] [iCClgr (6.36
1-7h  —z FAA ;I'heI)rrllfultipéicatlive.f renormalizability holdén the one-loop
2 evel) if and only i
( z§) 1—z£&>> _
[iCClg (1),_7(1) _ (1) (1 zy (DL 7(1) _ (1)
6.33 26 =20 -2 N2 = - ——+ 7+ 28 -7
(6.37)
This relation shows that there is an operator mixing between ) N
the gluon and ghost composite operators which are of masEhis is equivalent to the condition
dimension 2 and color singlet, as pointed out in R&f. In )
the absence of four-ghost interactiof=0 or £=1), Egs. )\(g_ 1) —0. (6.39
(6.28, (6.30, and (6.3) vanish and hence we hau! 2

=0=Zfll). In this case, there is no contribution from ghost

for the renormalization of the gluon composite operator'f this condition is satisfied, the composite operator is multi-
[1/2AA] plicatively renormalized as

Lan
2

BAA}=(1—Z(11))EAA} , (6.39 QoZZo( R+)\[iCC]R)’ (6.39
R

35 1 (gu™9%1

(6.39

R

In the case o\ =0, this result reduces to that of Boucaud
On the other hand, the ghost composite operator cannot ket al. [22] without operator mixing.
finite without the mixing of the gluon composite operator. In It should be remarked that the composite operator is not
the conventional Lorentz gauge fixing, therefore, we do nomultiplicatively renormalizable, unless the renormalization
have to consider the contribution from ghost in treating theof the composite operato®A and CC are taken into ac-

renormalization of the gluon composite operdtbf2AA] (at  count. In fact, the multiplicative renormalizability of
least in the one-loop level

1 _

D. Multiplicative renormalizability of the composite operator Qo=5 Ao+ AiCoCo
Now we examine the multiplicative renormalizability of 1

the composite operatdP. Taking into account the renormal- _ (1) (1) (D y i~y 2

S . N =(1+ —AA+(1+Z+ +

ization of the fundamental field and the composite field (142, )ZAA (1+ 27+ 2¢IMCCHO(RY),

(6.33, we obtain (6.41)

without the renormalization of the composite operator leads
to the conditionz{)—z{(N—zM=0, which reads\[£(¢
—1)+1/4]=3/4. This curve does not have a definite mean-
1 . ing in the renormalization, since the curve is not along the
=(1+2{) EAA+(1+z§1>)(1+z<cl>)>\icc RG flow.

1 _
Q0’=§A0Ao+ Nl CoCo

E. BRST invariance of the renormalized composite operator

1 _
=(1+ZX1)){ (1—2(11))[§AA _Z(zl)[iCC]R] Finally, we show that the renormalized composite opera-
R tor OR is invariant under the renormalized BRST and anti-
1 BRST transformations. By requiring that the renormalized
+(1+ZW) 2+ 2P\ —Zgl){EAA BRST and anti-BRST transformations are nilpotent and an-
R ticommute:
+<1—zgl>>[i€c1R] S0305=0, Ogos=0, OfS5+o50=0, (6.42
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the renormalized BRST and anti-BRST transformations for

the renormalized fieldg,, C, C, B are determinedby an
appropriate rescaling df field) as[8,9]

8BA .(X)=XD,[A]RC(x)
=X{0,C(X)+ZNZgrl A, (X)C(X)T},

(6.433
S5C(X) = —Exz Z,9r[ C(x) X C(x)]

(6.43b
SRC(x)=iXB(x), (6.430
S5B(X)= (6.430

and

BBA,L(X)=XD,[AJRC(x)

=X{3,C(X)+ Zx?Z49r[ A(X) X C(X) 1},

(6.443
SRC(x)=— %XZMZggR[C(x) X C(x)] (6.44h
SRC(x)=iXB(x), (6.440
SRB(x) = (6.449

whereX andX are arbitrary real numbers aBxis defined by

B(x)=—B(X)+1Z{2Z,gr[C(X) XC(x)].  (6.45

PHYSICAL REVIEW D 65 085034

+Kg[iC(x)- C(X)]r,
" (6.4

whereKy, is a finite function of the renormalized parameters
Or, ér, \. Performing the renormalized BRST transforma-
tion (6.430d after the renormalization factor$.33 of the
composite operator are included, we obtain

1
Qr=| 5 A0 A“(x)

S5Qr= 8§ +(Z,+KgZy)(iC-C)

1
(Z,+ KRzg)( S AL A

:(Zl+ KRZ3)X(9MCAM+(22+ KRZ4)

X{iC-| Xz3?z, Jexel+x Z—Ea A
92 ZcZy N
—iz)?z.6z,9CxC -C]. (6.48

For the right-hand side to be a total derivative, we must
require two conditions:(1) the coefficient for the term

C- (6>< C) vanishes(2) the remaining terms containing the
derivative are combined into a total derivative term. The re-
spective condition reads

1/2

5 = 2K 22k, (6.49
20+ KnZam (2,4 Kazy) =22 1
1 R 3_( 2 R 4)2 Z )\
(6.50
The first condition reduces to
1

SinceZ,, Z3;~0O(%le) andZ,, Z,~1+O(#/€), the second

The Lagrangian is written by making use of the renormal-condition yields for theD(1) term
ized BRST and anti-BRST transformations and the renormal-

ized fields as
tot _ 1 1/2 2
£o% ZZA((?MAV—(?,,A#+ZQZA grA, X A,)
Z 1 ZcZ,
+ i 6RoR| SA, AL T2 Ric.C
XX 2 Z)
727 af
+ 57 “Rp.p, (6.46
Zp

This agrees with Eq4.21).

KR:)\RI (652

and for theO(1/e) term

Z(l)
—ArZP+ = - zP+z=o0.
(6.53

This condition is the same as HE§.37). In the Landau gauge
a=\=0, especially, the conditiori6.53 reduces toz"
=0. This is automatically satisfied in this case.

Z(l) Z Z(l)

VII. OPERATOR PRODUCT EXPANSION
AND VACUUM CONDENSATE

We derive the condition for the renormalized composite
operatorOg to be invariant under the renormalized BRST  We apply the operator product expansion or short distance
transformation defined above. We can write a finite composexpansion(SDE) to the gluon and ghost propagators. The
ite operator of mass dimension 2 in the fofup to an over- OPE was originally proposed as an operator relation by Wil-
all constank son [46]. For example, the product of two scalar field
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operators defined at different spacetime points is expanded S these diagrams, two external legs have hard momeptum

. and the =2) lines connected to a blob correspond to the
Oi(—y) ' (7.1  external legs with zero momentug=0.

2 The explicit calculation in the tree level yields the result
(see the Appendix for the details of the calculations

¢<x>¢(y>~2i FlO)(x—y)

where the composite operatdr®;} form a complete set of

renormalized local operators. The famous proof of OPE by C[AZ]AB( )=
Zimmermann[47] was given in the framework of perturba- my

tion theory. Quite recently, the OPE was rigorously proved as

an operator relation by Bostelmdn8].” According to the [CClAB N.g? L AB
method[49,50, the (Fourier transformedWilson coefficient Cun (p)=2 (NZ—1) §(1-6P,, 6™,

Flo1¢nl(p) in the OPE (7.9

N.g?

—m(l-i-)\)l:’;,}(sAB, (77)

where we have puC,(G) =N, for simplicity. Defining the

X+ N
Y vacuum polarization tensor of the gluon by

2

d(x) p(y)~ ; F["Sl'“%](x—y)[ b1 bn
(7.2) (D™H25(P):=(Dg Hu5(P) + I15(p), (7.9

14

can be calculated in perturbation theory by equating a (2ve obtain the vacuum polarization tensor of the gluon
+n)-point one-particle irreducibl€lPl) Green’s function—

where two of the external legs have hard momentuand AB( )= N.g’ SB— (14 0)PT (A -A?)

the remainingn external legs are assigned zero momentum ur(P 4(N§—1) uyvap
g=0—uwith the Wilson coefficient times am point Green’s _

function with an insertion of the relevant composite operator +2DE(1-§)P (iC-C)}. (7.10

at zero momentum. ) ) ) )
It turns out that even the inclusion of the quartic ghost inter-

. . _ 2 .
A The OPE in the tree level action does not affect the Wilson coefficiegif} !, at least in

. . . [CC]
First, we consider the OPE of the inverse gluon propaga'Ehe tree level. For the Wilson coefficie,;~, however,

there is an extra contribution coming from the quartic ghost

tor
interaction, as suggested already in R&]. The nonzero
1 Wilson coefficientCICC] due to the presence of the quartic
~1\AB/ \ — ~[1]AB [A%]AB AL p q
(D™ )(P)=C; (p)<l>+cw (p)<2Ap Ap> ghost interaction §+0,1) breaks the transversality of the
_ . gluon polarization tensor, i.ell ,,# P;VH. This result does
+CISA8(p)ic-Cy+---, (7.3 not contradict the Slavnov-Taylor identif,8,27. When ¢

=0 (£=1), the ghost condensateC - C) cannot appear in
where the first Wilson coefficient is nothing but the barethe OPE, since the gluon-ghost-antighost ver(éx.6 is

inverse gluon propagator proportional to the outgoing gho&dntighost momentunmp,
(d,). The above result7.10 suggests the existence of the
ClA8(p)=(DoHa%(p):=—p2(P},+\"'PL ) 5B effective gluon mass given by
2
p“p” p“p” m2=—Nc—g(1+)\)(A -AP), (7.1
:_p2 gMV_ 5 +)\—1 5AB. A 4(N§_1) 14

(7.4 Therefore, the gluon condensation of mass dimension 2 can
] o . be an origin of the gluon mass. The effect of higher orders
The other Wilson coefficients are calculated in the perturyj| pe investigated in the next subsection.

bation theory from the diagrams Next, we perform the OPE for the inverse ghost propaga-

tor
. 2 = &
el = * rﬁ“« * é& ’ (7.9 (c-1)AB [1] [A?] !
—i(G™H"®(p)=ClA(P)(1)+CB(p) | 5 A, A7
RGN + C[EC]( iC. e
5 \ - ag (P)IC-C)+---, (7.12
clc? = L9y + F‘},ﬁ’ (7.6
s where the first Wilson coefficient agrees with the bare in-

verse ghost propagator

"The authors would like to thank Izumi Ojima for informing us of (1] o _1.AB > AB
this reference. Cae(P)=—1(Go )™™(p)=—p™. (7.13
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The other Wilson coefficients are calculated from the dia-calculus. Therefore, we can obtain higher-order corrections

grams for the momentum dependence of the coefficient without any
explicit higher-order computation@t least for the leading
logarithmic corrections
o= O KA (7.14
AT 1. RG equation for Wilson coefficients
EC] ( O We begin with an OPE relation in the momentum repre-
ZC = Ay /’ + —4—&/\/\)—4—- ? (715) 1 1 1 T
g e sentation obtained by extracting composite operators up to
which yield the result mass dimension 2we omit all indices, since they are not
) essential in the following arguments
2 Ncg
Cl(p)= =—5— 58 7.1
Ag (P) 2(N§—1) (7.19

L ~ 1
_ —IAR(P)AR(~P)=Dped P)[1]+F1(p)| 5A(0)A(0)
Cis (p)=0. (7.17 §
I . +F2(P)[IC(0)C(0)Jp+-, (7213
Here the coefficien€lSC! vanishes due to cancellation, see
the Appendix. Defining the vacuum polarization tensor of the

ghost by Cr(P)Cr(—P)=~iGped P)[1]
—-1\AB — —-1\AB 1TAB 1
(G ) (p)‘—(Go ) (p)+Ith(p), (7-1& _|_|:S(p) EA(O)A(O) )
the vacuum polarization for the ghost is obtained: -
+FZ(PLIC(0)C(0)]p++"",
N.g? 2
Tpe(p)= TNED) Ors(Ar A, (7.19 (7.21h

whereD . {p) and G,; denote the perturbative gluon and
We find that the ghost vacuum polarization has no contribughost propagators, respectively, with the perturbative loop
tion from the ghost-antighost condensation even&d#i0,1.  corrections included in addition to the OPE contribution.

Thus we obtain the effective ghost mass First, we try to rewrite all field operators in both sides of
Egs.(7.219 and(7.21b in terms of bare quantities. Hereaf-
N.g2 ter it is supposed that the Wilson coefficient and composite
2=—03 (A,-AP). (7.20  operators are defined based on the renormalization scheme
4(Ng—1) depending on a certain parameier(corresponding to the

mass scale which is different from the Bogolubov-Paresiok-
Hepp-Zimmermani{BPHZ) prescription at zero momentum
=0. In the actual calculations, we adopt the minimal sub-

This result shows that the gluon condensation of mass di
mension 2 can also be an origin of the ghost nfass.

The combination of gluon and ghost condensation appeag i ; :
N ) | o S ; action(MS) scheme, although the resulting expressions can
ing in the OPE is not BRST invariant in the sense explalne(i (MS) g g exp

. . . o . e translated into the momentum-space subtradfié®@M)
in the previous section. This is reasonable, since even th?cheme
OPE of gauge invariant operators does not give a gauge in- gy aking use of th factors calculated in the previous

variant combination in the OPE, see, e.g., RB]. section, two OPE relations above are combined into a matrix

form
B. RG improvement of the OPE
One of the advantages of the OPE is that the momentum iR (p)'A (—p)
dependence of the Wilson coefficient is determined by the Zf‘l( ol )
renormalization group equation. More accurately, the change Co(P)Co(—p)

of the Wilson coefficient under the RG transformation can be

1
specified by the renormalization factaZswhich are to be | 5A0(0)Ax(0)
calculated before the RG improvement of the OPE = Dper+ FZ| 2 +o
iICo(0)Co(0)
8n the Lorenz gauge, the effective gluon mass and ghost mass are (7.2

generated by the gluon condensation of mass dimension 2 alone in . .
the tree level. This is not the case if we include the high-orderWhere we have defined the two by two matrices
correction as will be shown in the next subsection. In the MA
gauge, on the contrary, two condensations from the off-diagonal Zn O F/f(p) F?(p)
gluon and off-diagonal ghost contribute to the effective off-diagonal Zi= ( ) , -:( c c ) ,

0 Zc Fi(p) F3(p)

gluon and ghost masses already in the tree level, see Re2€).
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Zy Z;

z:
Zs Z4

z: (7.23

and a column vector

D er
el
Introducing a matrix, by®
. ( Fou(P) Féé(p)) 725
o F&p) Faip))’ '

we obtain an OPE relation among the bare quantities:

—iAg(p)Ao(— p))
Co(p)Co(—p)
Ag(0)Aq(0)
=Zpoert+ Fo
iCo(0)Co(0)
(7.26

Second, we observe that the relatiogh26 should have
no dependence on the renormalization pqintHence, the
first term on the right-hand side of E(.26) is independent

of u, i.e.,

d
ﬂ@(szpert):O: (7.27)

and the coefficienkg in the second term is also independent

of u, i.e.,

d d -
—(2FZ)=0.

M@Fo%udﬂ (7.28

We multiply Eq.(7.28 by Z;* from the left and byZ ~*
from the right to obtain

—+Z Bile) 5| F+Z¢ ( %zf)F

+F Z 1=0, (7.29

d5
Hdu

where «; denotes the parameters of the theogy ((r,AR),
and B; denotes the corresponding RG functigh(«)
=u(dldn)a;. Here we have used a fact that(d/dw)

+3,Bi[ a(w)](dlde;) is just the ordinary differential opera-

tor w(d/du).

SWere it not for the renormalization of the composite oper&pr

reduced taF.

PHYSICAL REVIEW D 65 085034

Defining the RG functiorimatrix) y;, % from Z;, Z by

d. -
M@Zf:zf%v MMZ:YZ (7.30

we obtain the RG equation for the matik of the Wilson
coefficients

F(p a,u)+ yiF(p,a,n)

Zﬂ(a

+F(p,a,u)y=0. (7.30

Similarly, we can show thaD,; obeys the RG equation

M(?M

2 ,8(“) } perl(paﬂ)+7f perl(paﬂ) 0.
(7.32

2. Solving the RG equation

Now we proceed to solve the RG equation just obtained.
A simple dimensional analysis leads to the relation
F(kp,a,ku)=«%F (p,a,u) which is equivalent to the re-
lation

F(Kp,a,,u)ZdeF< p,a,%), (7.33

whered; is the canonical dimension &f. Hence F satisfies

F(kp,a,u)=0. (7.3

J
—+pu——d
AP PR

We use this equation to eliminaje(d/du) in Eq. (7.31) to
obtain

K——E Bi( a)——dF

I 4 F(kp,a,p)— yF(kp,a,pn)

(7.395

This is the homogeneous RG equation of Weinberg—'t Hooft
type[52] which is adequate for the mass-independent renor-
malization method.

By the standard methoB0,32, the general solution of
the RG equatior{7.35 is given by

F(kp,a,u)=x" exp”d’ py )}

xF(p,E(K),M)exp[ f:dK' yi" )],

(7.36

where we have imposed the boundary conditefx=1)
= .

—F(xp,a,u)y=0.
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A similar consideration yields the general solution of the 61 1/26\2
RG equation(7.32: » 92N, 12 Z(?)
e A= PR B
Dpen(Kp,a,,u):K—Zexp[ L dx’ Py }Dpen(p,a,,u). 2 12
(7.37

Furthermore, we define the coefficient mat@y; andC;,

Once we know the factors of the fundamental field and in Eq. (7.39 by
the composite operator, it is easy to calculgte y accord-
ing to Eq.(7.30. If the integrations in the arguments of the -
exponential in Eqs(7.36) and (7.37 are performed, the Y1 (9):=9°C,,, 7*(9):=9°C;. (7.40
dependence of the solution will be exactly determined. How-
ever,Z factors are obtained in terms of renormalized paramBy taking into account the RG equatiop(d/du)g=
etersgr, £r, Ag and hence depend implicitly omthrough  —(b/872)g® (b=11/6N,) and the resulting relation
them. This fact makes the analysis more difficult in general(d/du)In g?=(2/g)/(d/du)g= — (2b/872) (g% w), the non-

) ) ) trivial integration of Eq.(7.36) can be performed as
3. Solution around the UV fixed point B

We can calculate;, ¥ up toO(%), since we know all the — — 12 2 =2
Z factors of the fundamental field and the composite operator "dK,M: deK’C [9(«7)] =C 8 ni(l) _
up to O(%). In the high-energy limitk— o, it is expected 1 K 1 7oK 72b T g%(k)
that the solution can be explicitly obtained in the neighbor- (7.41
hood of the nontrivial UV stable fixed point in the parameter
space, due to the asymptotic freedom of Yang-Mills theoryHence the solution becomes
i.e.,g(k)—0..=0 ask—x.

In three-dimensional parameter spage, ér, Ar, We
have found that all the points are flowing into the UV fixed
point B in the UV limit except for some lines that have
higher symmetry. On the other hand, within perturbation
theory using dimensional regularization, the dependent
loop correction of allZ factors always appears with a factor
of O(gé). Therefore, the RG functiofr as an element of the

matri>§ v defined by.differer;tiating th& factor yvit.h respect The « dependence d§? is obtained by solving its RG equa-
to u is accompanied bygg to the O(#), similar 10 y o0 a552(,)~[(2b/872)In «] * for large . Substituting

~g&f(£,\)h+O(#?). If the polynomial functionf (£,)) in Egs.(7.41) into (7.36), therefore, we determine the Ande-
the above expression has a nonvanishing value at the ﬁx%’endence of the solution for large

point (¢*,A*), the u dependence of=g?f is governed by

g? alone and hence we can replddé,\) with the constant

F(kp,a,u)=x"*

a2(1 Cyf(8w2/2b)
(g( )) {F(p, @), )}

9%(k)
52( 1) ) C5(82/2b)

(7.42

f(&*,\*) at the UV fixed point. By substituting the fixed- F(kp,a,u) =k~ 4(In k) SHBTDUE(p & k), 1)}
point values\i =26/3, £ =1/2 into & \, the Z factors be- 5
come ><(|I’l K)C;(BW /Zb) (743
- 13 g?N, %€ ‘y 17 9°Ng %€ In order to cast the matrix power of kinto a more
AT 6 1602 € ' T T 121672 € tractable form, we shall diagonalize the mat@ in such a
way thatS diagonalizesCs, by the similarity transformation
. 29 92N, pu2¢ . 1(26\2g?N, p 2 tCrZ_;ere‘l-_Ce;r; i Such a matrixS and the diagonalized ma-
—1_= == iX iv
1 41677 € 227 3\3) 162 € given by
1 2N —2€ 3
z5=c3 el gy (7.39 S .
216n" e S= 3 3 S*l.cmszi
L . o . ' Y 8m° 35
which yield the matrix of the renormalization group function 1 1 P
13 . (7.44
, ==
Y (g)= 9N 6 This diagonalization corresponds to redefining the combi-
f 812 0 17|’ nation between two comBosite operators of mass dimension
12 2, i.e., 1/2(0)A(0) andiC(0)C(0), by multiplying S™*:
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1 26 — 92(1) C,,(872/2b)
1 ~a2+ Zice _ 4(9 ( ) _
(Ql) o2 3] 28 Flepran i) =r " 5200 Fp.a.u)
9, — 13 1 13 2
i _ A2 T ~2 1 C>(8m“/2b)
iCC SA?-—iCC xs-sl<92( )) v sst
(7.49 9°(x)
(7.49
Inserting the identity matrid=S-S™* appropriately, the Now bothC, andS™*-C;-S are diagonal. Hence we can
solution(7.42) is rewritten as write down the power explicitly as
(62(1)>(13/®(Ncl2b) 0 <§2(1))(3/4)(Ncl2b) 0
N2 ~2
S (AT o [T -
K =K .
0 (52( 1) ) (17/12(Ng/2b) (gz( 1) ) (35/12(Ny/2b)
g°(x) g°(x)
(7.47)

Here we impose a condition th&(p):=F(p,a(«),u«) coincides with the Wilson coefficient in the tree level obtained in the
previous section in which the coupling constant is replaced with the running coupling coméigniNote that- is the Wilson
coefficient of the Green functiofnot of the one-particle irreducibldPl) function].° Hence we put

T ):(Tl(p) Tz(p))
7 1) Tap)
N.g%( k) (_(iDo)2(1+7\)PT (iD0)24§(1_§)PL). (7.48

T 2(N2-1) (1Gg)2 0

We notice that each elemeffiy, ..., T, of T(p) brings an extra I factor toF throughg?(«)~ 1/In k. Therefore, the OPE
correction up to dimension 2 operators reads

1 13 In p/A oo (35/12 (N¢/2b) 26 In p/A oo (61/12) (N¢/2b) 0
2 I P St - -~ 1
EA ( 3 ! 2) ( In w/Aqep ( 3 ! 2)('” M/AQCD)
F(p) = 13_ {Inp/A gp| (13 Ne/2) 26_ [ InplAgep)| 333 N2 ,
IcC _§T3<|n ,U«/AQCD) 3 3('” M/AQCD> <
(7.49
where we have used@l,=0. Here we have used the translation rule from the MS scheme to the MOM scheme
9%(1 Inp/A
g(1) P/ Agep (7.50

EQ(K)_) Inu/Aqep’

Among the terms with various powers ofdnthe largest-power teriftorresponding to the largest eigenvalue of the matrix
C,) is dominant in the UV limit ¢>1). Extracting this Inc contribution, we can simplify the Wilson coefficient of the 1PI
function in the UV limit as

2 o - -
CLPI= ( dg? ] C[g|CC]) _ ( (iD pen) ? 0

— . S |F (7.5
2 2
CEl/i\T ] CE;%C] 0 ('Gpen)

19 xcept for the Landau gauge in which no operator mixing occurs, a linear combination of different powetsapplears in the solution,
and its combination coefficients cannot be completely determined by perturbation theory alone. But it is important to note that a fitting of the
analytical result with the simulation datar experimental dajacan determine the asymptotic behaviorfofompletely as discussed in the
next subsection.
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. 8772 Nc (Dpert/DO)_2 0
S 2b (Ng_l) 0 (Gpert/G0)72
p —1+(61/12)(N/2b) p (—1+(61/12)(Ng/2b)
In—— In——
13— 1-\)Pr—64(1-§P, ( ”AQCD) 13— 1-)\)Pr—64(1-§P, ( ”AQCD)
13 “ (61712(N_/2b) 3 (61712(N/2b)
i) e
AQCD AQCD
x p | (-LHIANG2D) p |- Lt(33NG2D)
In In——
1( AQCD) __( AQCD)
(In “w )(26/6)(Ncl2b) 3 (In o )(26/6}(Nc/2b)
AQCD AQCD
(7.52
In the similar way, we obtain
52(1) (13/6)(N¢/2b) o
| V9%
Dperd kP, @, ) = K F2(1) | A7120N20) Di(p), (7.53
o 5wl
g°(x)
where the tree expression is given by
! (Pt+AP))
D(p)=( Polp) )= P (7.54
! —iGo(p) 1 ' '
p2

4. The solution at the conventional Landau gauge
Finally, we consider the OPE on lin& of the fixed points(corresponding to the conventional Landau gaugfee RG

matrices read

13 35
9°N, 5 0 9N, [ 12
* _ ~2 — Trk — 2~ —
Vi =07Cy = g2 3 YIS T 13 (759
4 2 4
The diagonalization can be performed as
3
13 - 0
|° T3] stes e ? 75
- P YT ga? 35" (7:59
1 1 0 —
12

The eigenvalues o€, are the same as those at fixed pditTherefore, we obtain the Wilson coefﬁmeﬁﬁf\ 1 petween
(AuPA(—p) ! and((A(O))2> andclee) between(C(p)C(—p)) " and((A(0))?):
—2(1) (3/4)(N/2b)
T
(P )( (K))

(1)

(13/6)(N/2b) ) (7.57

F(kp)=x"*
0

where no mixing between gluon and ghost occurs du&,te0 in addition toT,=0. The coefficients of the 1Pl OPEs read
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p | (EN2)—1
o

n_
Dpert AQCD 0
- D, (374)(N_/2b)
2 C In
cy! CEﬁC] _8_772 N¢ ( AQCD) s
cl clieel]  2b 2(Ng-1) (I p |(sENoI-L f (758
g 50 In
Gpert AQ(:D 0
Go ( “ (1376)(N/2b)
In
AQCD
where
Inp/A —(13/6)(N¢/2b)
(In p/AQCD) 0
M QeD
Dperl(p): In p/AQCD —(3/4)(NC/2b) Dt(p) (759
0 T ReP
('nM/AQCD>

This result for the ghost part is new, while the gluon part reproduces the recent result of Betiehu@2] in the MOM
scheme(Note that their definition ofy is different from ours by a factor 2 and the coefficiegtdiffers by the signaturgln
order to transfer from our renormalization scheme to the MOM scheme, we have used the translatibB0ule the Landau
gauge, therefore, we have confirmed that the ghost condensation does not affect the inverse gluon propagator as in the tree
level, even if the leading logarithmic corrections are taken into account in the OPE. In other words, the gluon condensation is
decoupled from the ghost condensation within this approximation.

C. Full propagators: Momentum dependence
The vacuum polarization tensor of the gluon is decomposed into transverse and longitudinal parts
IL5(p) =[11T(p?) Py, + I1H(p?) Py, 16%, (7.60

wherelIl™ andII" are functions ofp? alone. Once the vacuum polarization functidid$ andIT" of the gluon are obtained
from the OPE, the propagator is written as

A
AB _ B T L
(D)#V(p)—ﬁA [_p2+HT(p2) P,u,v+ _p2+)\HL(p2) Pp,v (761)
Zg(—p?)
_ oAB| 29! T L
- 5A [ _p2 P;LV+ _p2+ )\HL(pZ) P,uV , (762)
where we have defined a functimﬂ(—pz) by
_Rn2
Zg1(~ D)= Zperl — P2)+ Zopel — P2) =g (7.63
gl per OP -p —I—HT(p ) .

Note thatII"(p?)=0 in the conventional Landau gauge.
On the other hand, if the vacuum polarization function of the glﬁh}i(pz): 5ABth(p2) is calculated by the OPE, the
ghost propagator is obtained as

. Ggh(_ pz) AB
——— 0

GM(P)=[(Go) +Tlgn(P*)as =y O (D~ 5 : (7.64
where we have introduced a functi@y,(— p?) by
_ p2
Ggn(—P?)=Gped —P?) + Gopel —P?) == T (p)) (7.65

The OPE contributiodl °"Eto the vacuum polarization function in the inverse propagafo® and(7.12) is related to the
Wilson coefficientC'™ as
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N[

1
HOPE _A2 (ID 9*2 0 _A2
gOIPE) =cPl 2 = P F (7.66

0 (iGpen 2

on icC icC

Substituting the result7.49 into Eq.(7.66), we obtain a pair of vacuum polarization functions

( 13 ) ( In p/)\QCD) (35/12(Ng/2b) 1 ( 26 ) ( In p/AQCD) (61/12(Ng/20)
=Tl —_ =Tl rr——
23 mlAqep ('Dpert)2 23 lin mlAqep ('Dpert)z ( Ql)
13T ( In p/AQCD) (13/6)(N¢/2b) 1 261’ ( In p/AQCD) (13/3)(N¢/2b) 1 0,/
3 Slin #l Aqep (iGpert)2 3 2lin #l Aqep (iGpen)2

1°"(p) =

(7.67)

It turns out that the vacuum polarization functions just obtained reduce to the tree results, i.€7.Hysand (7.19, at

=1 (or p= ). Therefore, the ghost Condensati(dEC) contributes to the gluon and ghost vacuum polarization functions in
the leading logarithmic corrections of the OPE.
Thus the following OPE contribution to the gluon and ghost vacuum polarization functions are obtained:

p | (35/12(Ng20) -1
In——
272 Ng(1+\) ( AQCD) 1 26 _
HTOPE(PZ):—b (F\lz—l) ( | GTEN) EAZ +§<'CC>)
C
In )

Aqep

p (61/12)(Ng/2b)—1
In

AQCD /<1 > 13 — ) ( Do(p) )2
-2 —A?)+—(iCC _—, 7.6
(In w )(Gllla(NC/Zb) \ 2 3< > Dperl(p) ( 8)
Agco
( . D ) (13/6)(N¢/2b)— 1
27> N A 1 26 _
OPE 2y _ 7 c _ QCD A2 )+ — (i
thE(p ) b (Ng_l) (In “ )(13/6)(NC/2b) (<2A >+ 3 <|CC>>
Aqep
D (13/3)(Ng/2b) — 1
In
AQCD) <<1 > 13 — ) ( Go(p) )2
+2 =A%)+ —(iCC . 7.6
(|n o )(13/3)(NC/2b) 5 3< ) Goerl D) (7.69
Aqcp

The effective gluon mass is obtained from the pole of In the Landau gauge, especially, we have
Zy(—p?), ie., a solution of the equatiop?=II(p?),
while thgz effective ghost mass is obtained from the 2pole of
Gyn(—p?), i.e., a solution of the equationp“= Z (—p2)=—p2D
—?th(pz). In view of this, the solution$7.68 and(7.69 al(~P") P*Dred P)
would give an improvement of the tree-level resulfs1l)
and(7.20. However, a BRST non-invariant combinatiq}

)(3/4)(NC/2b)1

In
, \ : L 7N ( Aqco
of composite operators appears together with the BRST in- - 5

2 (314)(N/2b) <A2> ,
variant combinationQ; discussed in the previous section. (Ne—1) In
Therefore, these results indicate that we need more endeavor Agco
in order to reach the BRST invariant pole position in the IR
region. (7.70
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Ggn(— P =—i1p*Gper(P) This fact guarantees theRBRST invariance of the renormal-
ized composite operatad®.

( In p |HONSL We have also examined how the conventional calculations
_2 m N Agcop 5 are modified in the presence of the vacuum condensate of
+p o (N2—1) (1376)(N/2b) (A9 |- mass dimension 2. By performing the OPE of the gluon and
¢ (In ) ghost propagators, we have shown that the effective masses

Aqen of gluon and ghost are generated due to the nonvanishing

(7.70 vacuum condensate. Although this phenomenon was already
suggested based on the tree level calculation, we have taken
into account the leading logarithmic corrections consistent
with the RG flow by making use of the RG equation. We
have found that the effective masses are provided from the

ghost condensatiofiC-C) as well as the gluon condensation
5 . . ) (1/2A,,- A*) (except for the Landau gauge=0). This re-
Zg|(PE) has a Landau pole in the IR region and is monotoni~g +"sfi0 14 he compared with the tree level result where the

. . 2 . . .
cally decreasing ipg in the UV region. In the conventional ggective mass has a contribution from the gluon condensate
Landau gauge, these results can be compared with those gjf

\ . one.
the Schwinger-Dyson equatidsee, e.g., Re{53]) and the The next step is to show that the nonvanishing vacuum
numerical simulation on a lattice(see, e.g.,, Refs.

) 59 condensaté©)+0 is actually realized in the QCD vacuum.
[22, 54-5@). According to these resultZ(Pg) iS en-  Ap attempt in this direction has already been performed in
hanced at intermediate momenta and has a peak at aboutgkf, [20] by calculating the effective potential for the ghost
GeV. It was argued56] that the enhancement of the gluonic condensatiodiEC) in the SU(2) and SU(3) Yang-Mills

ﬁ(r):/nve]:?ecrtozh?st Irs irgr?'?: llasé rgrlﬁeﬁléoré];ﬂkoﬁzgnerrzesr:h heories in the MA gauge. Quite recently, Verscheddel.
- 9 4 P 57] have obtained the multiplicatively renormalizable effec-
study. Incidentally, data in a gauge other than the Landal

; . ive potential for the gluon condensat&/24,.4*) in the
gauge is not yet available. Landau gauge up to two-loop order in t8B&J(N) Yang-Mills
theory. Both results support that the nonzero vacuum con-

VIIl. CONCLUSION AND DISCUSSION densate of mass dimension 2 is energetically favored in

] ) o Yang-Mills theory. In these approaches, an auxiliary field

Ir_l thl_s_ paper we have c_ilscussed th_e multiplicative renor,(x) corresponding to the composite operator has been in-
malizability of the composite operatd in QED and Yang-  toduced to obtain the effective potentié{a) of a constant
Mills thgory. This research is motivated by clarifying 'ghe o=p(x). However, this treatment has a number of subtle
mechanism of mass generation and a possible connection fyints which have not been discussed in these papers. This
quark confinement. , _issue will be discussed in a subsequent p4p&l in detail.

' I'n QED, we have shown that the compo§|te operator' IS |n massless QED, photon pairifi43,44 can occur in the
trivially renormalizable and that the renormalized CompOSItestrong coupling phas89—41 where the chiral symmetry is
operator is BRST and anti-BRST invariant for an arbitrarygnontaneously broken. Therefore, it will be possible to dis-
value of the gauge fixing parameter. There is no subtlety,,ss the interplay between quark confinement and chiral
related to the renormalization of the composite operator. symmetry breaking on equal footing in a unified treatment.

In Yang-Mills theory, we have adopted the most generalrhe extension of this viewpoint into the non-Abelian case,
Lorentz gauge with two gauge-fixing parametérs. which o "qiyon pairing42] is also an interesting subject for future
was derived by Baulieu and Thierry-Mi¢§]. We knew[2]  \york.

that the bare composite operatorof mass dimension 2is  ginally, we point out that the operatd? is essentially a
invariant under thebare BRST and anti-BRST transforma- 555 term for the gluon and ghost fields. Although a naive
tions for the choice of gauge parametars 0 or é=1/2and ihiroduction of a mass term for the gluon alone breaks the

that it is also invariant under the gauge transformation in thegrgT symmetry, our result indicates that there is a BRST
Landau gauge = 0. In this paper the composite operator has;yariant combination of mass terms

been renormalized by taking into account the operator mix-

ing carefully. Here the matrix of renormalization factors has 1, , =

been explicitly calculated. Consequently, we have found that L=t 5 M A, (X) - A, (X) +m7aiC(x) - C(x) | (8.2)

the BRST and anti-BRST invariance of the renormalized

composite operata®® holds if the renormalized parameters This mass term is very similar to that obtained after the spon-
take the same value\g=0 or £g=1/2, as the bare one. taneous breakdown caused by the nonvanishing vacuum ex-
Moreover, we have obtained the RG flow in i \) plane  pectation value of the Higgs scalar field. In our case, the
to one-loop order. In the RG flow diagram, the RG flow runsmass should be of dynamical origin. It is possible to give a
only on the lineég=1/2 if the initial position of¢ is located  proof of the multiplicative renormalizability of the Yang-
somewhere on the line. The lineg=0 is a line of fixed Mills theory with a mass term preserving the BRST symme-
points. Therefore, if the system is located on a point in thery to all orders of perturbation theory. However, it is known
line Ag=0 initially, it cannot move from the initial position. [58,59 that the introduction of the mass ter@.1) breaks

After the Wick rotation to the Euclidean regigpf— — pé,
we find that the functiorzg|(p§) is monotonically increasing
in p2 if (A2):==—(A?)>0, as in the case of constaht’
(—p2)=M?>0. On the other hand, ifAZ):=—(A?)<0,
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the nilpotency of the off-shell BRST transformation as well

PHYSICAL REVIEW D 65 085034

instability of the QCD vacuum caused by gluon pairing. This

as the on-shell one. Consequently, the unitarity of the theorywork was supported by Sumitomo Foundations and in part
turns out to be spoiled. In this sense, the mass generatidsy a Grant-in-Aid for Scientific Research from the Ministry

should occur in a dynamical way, i.€(Q)#0 in the limit

of Education, Science and Culture: Grant N@) No.

m— 0. This viewpoint will be discussed in a subsequent pa-13135203.

per.
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APPENDIX: OPE CALCULATIONS

In order to give the OPE correction for the gluon propa-
gator, we need to calculate the following diagrams:

|

1 ' CCr ,
«A&n = mgpp 6CC ngCD[guU(_Zp)p + gappu + gp,upa]

—i , -
X F(P;:y’ + )‘Pz}a’)(SDD ngD ¢ [gua’("2p)p’ + go' Dy + gp’upn’]

1

, 1
lgg(—Nc)?[M +N)p? P, + (D = 1)p* Py )64

(NS 1)D (A1)
ﬁ = miQZgw&CD {f FAB FECD (G, Gus — GusGury)
+ fEACfEBD(gwgv& = Gu6Gy) + fEADfEBC(gw.‘]'yé - guvgéu)]
2
="t oD - DI (A2)
O, 1 apc— L cor BC'D <DD’
AL = m(m +&(—p)u)gf Fé (0+¢p)gf 6
N.g® 1
O - 12t = Opap 575, (A3)
For the correction of the ghost propagator, we need the calculation of the following diagrams:
6 g, -1 ppr. sorp
__ = ﬁZQfCAD(W)p_Q‘SDD igfP" (p,)
_ N.g* AB
= _(Nc?—l)D5 (A4)
© cD
_‘(_\::z“ . h(_ig%/\g(l _ f)(fEABfEDC _ fEACfEDB)
N.g?
=iy e - 98 (AS)
5o’ -1 S
8L = (Nz—_l)igfmc(wp)(l — &)y (Pr AR 67 igfE(E(-pn)
. N.g*
=~y g A - 9ot (AB)
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