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Renormalizing a Becchi-Rouet-Stora-Tyutin-invariant composite operator
of mass dimension 2 in Yang-Mills theory
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We discuss the renormalization of a Becchi-Rouet-Stora-Tyutin~BRST! and anti-BRST invariant composite
operator of mass dimension 2 in Yang-Mills theory with general BRST and anti-BRST invariant gauge-fixing
terms of Lorentz type. The interest of this study stems from a recent claim that the nonvanishing vacuum
condensate of the composite operator in question can be an origin of mass gap and quark confinement in any
manifestly covariant gauge, as proposed by one of the authors. First, we obtain the renormalization group flow
of the Yang-Mills theory. Next, we show the multiplicative renormalizability of the composite operator and that
the BRST and anti-BRST invariance of the bare composite operator is preserved under the renormalization.
Third, we perform the operator product expansion of the gluon and ghost propagators and obtain the Wilson
coefficient corresponding to the vacuum condensate of mass dimension 2. Finally, we discuss the connection of
this work with previous works and argue the physical implications of the obtained results.
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I. INTRODUCTION

It is still a challenging and unsolved problem to pro
quark confinement in the framework of quantum chromo
namics~QCD!. A very beginning question in deriving quar
confinement is in what sense is the quark confined? A sim
criterion of quark confinement which has been widely us
so far is the area law decay of the Wilson loop~defined by
the vacuum expectation value of the Wilson loop operat!.
The area law implies the presence of a linear piecesr pro-
portional to the interquark distancer in the static interquark
potentialV(r ). The dual superconductivity of QCD vacuu
@1# is one of the most promising mechanisms of quark c
finement compatible with this picture. However, it is we
known that this criterion is not so useful in the presence
dynamical matter, since the interquark force is screened
quark-antiquark pair created from the vacuum and the lin
piece no longer appears in the potential.

In a previous paper@2#, one of the authors~K.-I. K.! pro-
posed a nonvanishing vacuum condensate^O& of mass di-
mension 2 as the origin of mass gap and quark confinem
in Yang-Mills theory. The proposed composite operator
mass dimension 2 is given by

Oª

1

V~D ! E dDx trF1

2
Am~x!•Am~x!1a i C̄~x!•C~x!G ,

~1.1!

whereAm is the gauge field,C( C̄) is the ghost~antighost!
field, and V (D) denotes the volume of theD-dimensional
spacetime. It has been shown@2# that the composite operato
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O is invariant under the Becchi-Rouet-Stora-Tyutin~BRST!
@3# and anti-BRST@4# transformations in the manifestly Lor
entz covariant gauge, especially in the most general1 Lorentz
gauge@5–10# and the maximal Abelian~MA ! gauge@11–
18#. In Eq. ~1.1!, the trace is taken over the broken gene
tors of the Lie algebraG of the original groupG when the
original gauge groupG is broken toH by a local gauge-
fixing condition chosen, i.e.,G itself in the Lorentz gauge
and G/H in the MA gauge corresponding to the maxim
torus groupH of G. Especially, in the limita→0 ~which we
call the Landau gauge!, the composite operator reduces
O5(V (D))21*dDx tr@1/2Am(x)•Am(x)# and hence become
gauge invariant, since the contributions from the ghost a
antighost disappear. The vacuum condensate includes
ghost condensation proposed in the MA gauge@19,20# and
reduces to the gluon condensation recently proposed by
eral authors@21–24#, see also Refs.@25,26#.

The physical implication of the existence of such a co
densatêO& has been argued based on the operator prod
expansion~OPE! of the gluon and ghost propagators~two-
point functions! and the vertex function~three-point func-
tion! @2,21,24#. However, the actual calculation has been p
formed within the tree level.

In order for such a proposal to be meaningful, it is ve
indispensable to show that the whole strategy to derive qu
confinement based on the novel vacuum condensate surv
the renormalization. In view of this, we focus on the reno
malization of the composite operator~1.1!. The main purpose
of this paper is to examine whether or not the compos

1The precise definition of ‘‘the most general’’ is stated later in t
text. Roughly speaking, the most general Lorentz gauge is obta
by imposing both the BRST and anti-BRST invariance for t
gauge fixing term which corresponds to the Lorentz gau
]mAm(x)50. The resulting gauge-fixing term has two paramete
The conventional Lorentz gauge is obtained as a special choic
the parameters.
©2002 The American Physical Society34-1
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operator in the integrand ofO is renormalizable. In addition
we must clarify the meaning of the BRST and anti-BRS
symmetry in the renormalized theory. We examine whet
or not the renormalized composite operatorOR is invariant
under the renormalized BRST and anti-BRST transform
tions. If this is the case, the proposed composite operato
mass dimension 2 and the corresponding vacuum conden
can have a definite physical meaning. The analysis of
paper is restricted to the most general Lorentz gauge fix
since the analysis of the MA gauge is more involved a
hence the result is to be reported in a separate paper@27#.

In the most general Lorentz gauge, the multiplicati
renormalizability of Yang-Mills theory has been worked o
by Baulieu and Thierry-Mieg@8# by making use of Slavnov
Taylor identities characterizing the BRST and anti-BRST
variance of the theory~see, e.g., Refs.@28–34#!. In the
course of renormalizing the composite operator, howe
there is a subtle problem of the operator mixing. In order
discuss the renormalization of a composite operator, we m
take into account all the contributions coming from all t
other composite operators of the same mass dimension
the same symmetry property. In the OPE, the Wilson coe
cient corresponding to an arbitrary vacuum condensate
be calculated by perturbation theory. In the usual Lore
gauge, the Wilson coefficient associated with the ghost c
densatê C̄•C& in the OPE of the propagator vanishes iden
cally due to a special property of the three-point gluon-gho
antighost vertex as pointed out in Ref.@35#. In the most
general Lorentz gauge@8,9#, however, we show in this pape
that operator mixing between two composite operat
1/2Am•Am and i C̄•C of mass dimension 2 does exist in ge
eral due to the presence of four-ghost interaction~except for
the case which is reduced to the conventional Lore
gauge!. We explicitly calculate the matrix of renormalizatio
factors of the composite operator in the one-loop level.

For the Landau gauge, the vacuum condensate of m
dimension 2 in Yang-Mills theory is nothing but the gluo
pair condensation. A possibility of gluon pair condensat
was already suggested from the existence of the tachyon
in the two gluon channel by approximately solving t
Bethe-Salpeter equation; see, e.g., Refs.@37# and @38#. A
gluon pair can be identified as a Cooper pair which is
bound state caused by the attractive force. Hence the g
condensation is regarded as the Bose condensation o
gluon with spin 1. A remarkable point of our treatment tha
different than the previous one is the retention of the ma
fest Lorentz covariance and gauge~or BRST and anti-BRST!
invariance. Hence the introduction of the ghost field is ind
pensable in this approach. It is important to clarify how t
inclusion of the ghost influences the dynamics of a gluon
recover the gauge invariance. This paper is a prelimin
work toward the complete understanding of this problem

Another purpose of this paper is to point out that t
composite operator discussed above has an analogue i
Abelian gauge theory, especially, quantum electrodynam
~QED!. This suggests that a confinement phase can e
even in QED, probably in the strong coupling regio
@39–42#. In QED, the vacuum condensate in question is
08503
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duced in the Landau gauge to photon pairing. Photon pai
has also been suggested long ago from the solution of
Cooper equation, see Refs.@43,44#. From quite a different
viewpoint, one of the authors@36# discussed the existence o
a confinement phase in QED based on the total QED
grangian with the BRST and anti-BRST invariant gaug
fixing terms which is identical to the usual Lagrangian in t
Lorentz gauge up to a total derivative term. An advantage
rewriting the gauge-fixing part of the Lagrangian into t
BRST and anti-BRST exact form is that the hidden sup
symmetry becomes manifest and that the gauge-fixing pa
four spacetime dimensions is reduced to theO(2) nonlinear
sigma model in two spacetime dimensions owing to Par
Sourlas dimensional reduction.2 In view of this, the ghost is
indispensable in this approach even for Abelian gauge the
where the ghost decouples and is usually considered to
unnecessary. In the analysis of quark confinement, it is m
important to understand the origin of the scale or the mec
nism of mass generation which was not so clear in previ
treatments. The detailed analysis of this issue will be
ported in a later paper.

This paper is organized as follows. In Sec. II, we summ
rize the BRST and anti-BRST transformations and th
properties which are necessary in the following analyses
Sec. III, we examine how the renormalization in QED
performed so as to preserve BRST and anti-BRST symme
This section is a preliminary step for dealing with no
Abelian gauge theory in the subsequent sections.

In Sec. IV, we consider the most general Lagrangian
Yang-Mills theory which has manifest Lorentz covarianc
global gauge invariance, and BRST and anti-BRST symm
try. The gauge-fixing term contains two gauge-fixing para
eters. We give the Feynman rules of this theory and calcu
the renormalization constants in the one-loop level. Althou
some materials in this section are a reconfirmation of
results obtained by Baulieu and Thierry-Mieg@8#, it is nec-
essary to make this paper self-contained and to give b
ingredients in the subsequent sections.

In Sec. V, we obtain the renormalization group flow in t
parameter space of the theory. To one-loop order, we spe
the location of the fixed points and obtain the equation of
lines of connecting fixed points.

In Sec. VI, we discuss the main subject of this paper:
renormalization of the composite operatorO of mass dimen-
sion 2. First, we show when the composite operatorO is both
BRST and anti-BRST invariant. Next, we evaluate the ren
malization ofO by taking into account the mixing of opera
tors with the same mass dimensions and the same symm
To the best of our knowledge, the renormalization of t
composite operator of mass dimension 2 has not been f
discussed except for a special case, i.e., the Landau gau
conventional Lorentz gauge fixing@22#.

In Sec. VII, we perform the operator product expansion
the gluon and ghost propagators and obtain the Wilson c

2This formulation has been applied to QED at finite temperat
and a new confining phase is claimed to exist, see Ref.@45#, and
references therein.
4-2
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RENORMALIZING A BECCHI-ROUET-STORA-TYUTIN- . . . PHYSICAL REVIEW D 65 085034
ficient associated with the vacuum condensates in ques
In the final section, we give the conclusions of this paper a
discuss future directions of our research. In the Appendix,
give some of the calculations omitted in the text.

II. BRST AND ANTI-BRST TRANSFORMATIONS

We consider general non-Abelian gauge theory with
gauge groupG. In the following we use the notation

F•GªFAGA, F2
ªF•F, ~F3G!A

ª f ABCFBGC,
~2.1!

wheref ABC are the structure constants of the Lie algebraG of
the gauge groupG.

For non-Abelian gauge theory, we define the BRST tra
formation by

dBAm~x!5Dm@A#C~x!ª]mC~x!1g@Am~x!3C~x!#,

~2.2a!

dBC~x!52
1

2
g@C~x!3C~x!#, ~2.2b!

dBC̄~x!5 iB~x!, ~2.2c!

dBB~x!50, ~2.2d!

whereAm , B, C, andC̄ are the non-Abelian gauge field, th
Nakanishi-Lautrup~NL! auxiliary field, and the Faddeev
Popov~FP! ghost and antighost fields, respectively. Anoth
BRST transformation, i.e., anti-BRST transformation@4#, is
defined by

d̄BAm~x!5Dm@A#C̄~x!ª]mC̄~x!1g@Am~x!3 C̄~x!#,

~2.3a!

d̄BC̄~x!52
1

2
g@ C̄~x!3 C̄~x!#, ~2.3b!

d̄BC~x!5 i B̄~x!, ~2.3c!

d̄BB̄~x!50, ~2.3d!

whereB̄ is defined by3

B̄~x!52B~x!1 ig@C~x!3 C̄~x!#. ~2.5!

The BRST and anti-BRST transformations are nilpotent a
they anticommute:

dBdB[0, d̄Bd̄B50, dBd̄B1 d̄BdB[0. ~2.6!

For Abelian gauge theory, the BRST transformation re

dBam~x!5]mC~x!, ~2.7a!

3The last transformation is equivalent to

d̄BB~x!52gC̄~x!3B~x!. ~2.4!
08503
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dBC~x!50, ~2.7b!

dBC̄~x!5 iB~x!, ~2.7c!

dBB~x!50, ~2.7d!

whereAm , B, C, andC̄ are the Abelian gauge field, the N
auxiliary field, and the FP ghost and antighost fields, resp
tively. The anti-BRST transformation is reduced to

d̄Bam~x!5]mC~x!, ~2.8a!

d̄BC̄~x!50, ~2.8b!

d̄BC~x!5 iB̄~x!, ~2.8c!

d̄BB̄~x!50, ~2.8d!

whereB̄ is defined by

B̄~x!52B~x!. ~2.9!

III. QED IN THE LORENTZ GAUGE

As a warming-up problem, we consider quantum elect
dynamics. As is well known, the total Lagrangian of QED
given by

LQED
tot 52

1

4
f mn f mn1c̄~ igm]m2m!c2ec̄gmcam1LGF1FP,

~3.1!

with a gauge-fixing~GF! term plus a FP ghost termLGF1FP.
The explicit form of the GF1FP term depends on the gaug
chosen. In this paper we adopt the most familiar covari
gauge, i.e., the Lorentz gauge

]mam50. ~3.2!

Therefore, the GF1FP term is given by

LGF1FP5 idBS C̄]mam1
a

2
C̄BD

5B]mam1
a

2
B21 iC̄]m]mC. ~3.3!

Although the ghost and antighost fields are free and deco
from other fields, we have included them to study the re
tionship with the non-Abelian case which will be discuss
in the next section.

As pointed out in Ref.@36#, the GF1FP term ~3.3! is
rewritten into the BRST and anti-BRST exact form:

LGF1FP5 idBd̄BS 1

2
amam1

a

2
iC̄CD . ~3.4!

In fact, this is cast into the form
4-3
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LGF1FP5 idBS ~ d̄Bam!am2
a

2
iC̄ d̄BCD

5 idBS ]mC̄am2
a

2
C̄BD , ~3.5!

which agrees with Eq.~3.3! up to a total-derivative term.
If the NL field B is eliminated by performing the func

tional integration or by making use of the equation of m
tion, then we obtain

LGF1FP8 52
1

2a
~]mam!21 iC̄]m]mC. ~3.6!

The on-shell BRST transformation is given by

dBam~x!5]mC~x!, ~3.7a!

dBC~x!50, ~3.7b!

dBC̄~x!52
i

a
]mam~x!, ~3.7c!

while the on-shell anti-BRST transformation is

d̄Bam~x!5]mC̄~x!, ~3.8a!

d̄BC̄~x!50, ~3.8b!

d̄BC~x!51
i

a
]mam~x!. ~3.8c!

The GF1FP LagrangianLGF1FP8 and the total Lagrangian
LQED

tot with LGF1FP8 are separately invariant under the on-sh
BRST and on-shell anti-BRST transformations. The nilp
tency of the on-shell BRST and anti-BRST transformatio
is realized only when the equation of motion for the gh
and antighost fields is used, since

~dB!2am~x!50, ~3.9a!

~dB!2C~x!50, ~3.9b!

~dB!2C̄~x!52
i

a
]m]mC~x! ~3.9c!

and

~ d̄B!2am~x!50, ~3.10a!

~ d̄B!2C~x!51
i

a
]m]mC̄~x!, ~3.10b!

~ d̄B!2C̄~x!50. ~3.10c!

Moreover, we obtain a similar result for the anticommu
ability:

~dBd̄B1 d̄BdB!am~x!50, ~3.11a!
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~dBd̄B1 d̄BdB!C~x!52
i

a
]m]mC̄~x!,

~3.11b!

~dBd̄B1 d̄BdB!C̄~x!51
i

a
]m]mC̄~x!.

~3.11c!

Now we define the composite operatorO of mass dimen-
sion 2 as

Oª

1

V~D ! E dDxQ~x!,

Q~x!ª
1

2
am~x!am~x!1a iC̄~x!C~x!. ~3.12!

This composite operator is BRST and anti-BRST invaria
since

dBQ~x!5]m@am~x!C~x!#, d̄BQ~x!5]m@am~x!C̄~x!#.

~3.13!

We consider the renormalization of the composite ope
tor Q. The Abelian case is very simple due to the trivi
renormalization factorsZa2, ZCC for the composite fields
1/2amam and iC̄C. Therefore, we only have to take int
account the renormalization factor of the fundamental fie
am ,C,C̄, and the gauge-fixing parametera. QED is known
to be multiplicatively renormalizable in the sense that t
divergences are absorbed by introducing the renormaliza
factors in the following way:

c5Z2
1/2cR, ~3.14!

am5Z3
1/2am

R , ~3.15!

C5ZCCR, C̄5ZC̄C̄R, ~3.16!

~B5Z3
21/2BR!, ~3.17!

m5ZmZ2
21mR, ~3.18!

a5ZaaR, ~3.19!

e5Z1Z2
21Z3

21/2eR. ~3.20!

The renormalization factors are not independent to e
other. In fact, the coupling constant is renormalized as

e5Z3
21/2eR, ~3.21!

as a consequence of the Ward relation

Z15Z2 . ~3.22!

Moreover, the Ward-Takahashi identity yields

Za5Z3 . ~3.23!
4-4
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The result of perturbative renormalization in QED is w
known and can be seen in the textbooks. The result

ZC5ZC̄51 ~3.24!

means that both the ghost and antighost are free and rec
no renormalization in the perturbation theory~this is not so
in the non-Abelian case!. Consequently, we arrive at the re
sult that the composite operator is renormalized as

Q5Z3QR, QR
ª

1

2
am

R~x!amR
~x!1aRiC̄R~x!CR~x!.

~3.25!

Therefore, the BRST invariant combination of two compo
ite operators with mass dimension 2 is preserved under
renormalization.

In view of the above results, the renormalized BR
transformation is defined by

dB
R5Z3

1/2dB , d̄B
R5Z3

1/2d̄B . ~3.26!

This is shown as follows. The Noether current of the BR
symmetry is obtained as

JB
m5B]mC2]mBC2]n~ f mnC!. ~3.27!

The Noether charge, i.e., the BRST chargeQB as the genera
tor of the BRST transformation

@ ilQB ,F~x!#5ldBF~x!, ~3.28!

is given by

QB5E d3xJB
05E d3x@B]0C2]0BC#. ~3.29!

In a similar way, the anti-BRST chargeQ̄B can also be de-
fined as the Noether charge for the anti-BRST transform
tion. Therefore we can define the renormalized BRST cha
QB

R as

QB
R5Z3

1/2QB5E d3x@BR]0CR2]0BRCR#. ~3.30!

This ensures the renormalization of the BRST transforma
~3.26!. The renormalized BRST transformation for the ren
malized field has the same form as the bare BRST trans
mation for the bare field. Thus, the composite operatorQ is
a BRST invariant and multiplicatively renormalizable ope
tor for arbitrary gauge parametera. The renormalized GF
1FP term has the same form as the bare one:

LGF1FP5 idB
Rd̄B

RS 1

2
am

RamR1
aR

2
iC̄RCRD . ~3.31!
08503
ive

-
he

-
e

n
-
r-

-

IV. YANG-MILLS THEORY IN THE MOST GENERAL
LORENTZ GAUGE

A. Lagrangian

We consider the most general quantum Lagrangian d
sity that is a local function of the fieldsAm

A , BA, CA, C̄A and
satisfies the following conditions. The Lagrangian is~1! of
mass dimension 4,~2! Lorentz invariant,~3a! BRST invari-
ant, ~3b! anti-BRST invariant,~4! Hermitian, ~5! of zero
ghost number,~6! global gauge invariant, and the theory wi
this Lagrangian is~7! ~multiplicative! renormalizable. Here it
is implicitly assumed that the Lagrangian is written as t
polynomial of the fields, and that there are no higher deri
tive terms, since there is no intrinsic mass scale in Ya
Mills theory. It should be remarked that we have impos
BRST and anti-BRST invariance instead of gauge invaria
~we do not require gauge invariance for the Lagrangia!.
Such a Lagrangian was given by Baulieu and Thierry-M
@8,9# as

LY M
tot 52

1

4
a1Fmn•Fmn1a2emnrsFmn

•Frs

1 idBd̄B~a3Am•Am1a4C• C̄!1
a8

2
B•B, ~4.1!

wherea i ( i 51,2,3,4) is an arbitrary constant anddB andd̄B
are the BRST and anti-BRST transformations. The first te
is the Yang-Mills Lagrangian and the second term is the
pological term which is not discussed in this paper and om
ted hereafter. The first and second terms are gauge invar
On the other hand, the third and the fourth terms are ide
fied as the GF and FP terms, since they break the ga
invariance of the Lagrangian. After rescaling the parame
and the field redefinitions, we can cast the total Lagrang
of the Yang-Mills theory into the form

LYM
tot 52

1

4
Fmn•Fmn1LGF1FP, ~4.2!

with the GF1FP term@8–10#

LGF1FP5 idBd̄BS 1

2
Am•Am2

a

2
iC•C̄D1

a8

2
B•B ~4.3!

52 idBS 2]mC̄•Am1
a

2
C̄•B2

i

4
agC̄•~ C̄3C! D

1
a8

2
B•B. ~4.4!

The final term is allowed for the renormalizability of th
total Lagrangian and is written in either a BRST exact
anti-BRST exact form

B•B52 idB~ C̄•B!5 i d̄B~C•B!. ~4.5!
4-5
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However, the GF1FP term ~4.4! is simultaneously BRST
and anti-BRST exact, i.e.,dBd̄B(* ), only if a850. If we
impose one more condition, e.g., the FP ghost conjuga
invariance

CA→6 C̄A, C̄A→7CA, BA→2B̄A, B̄A→2BA

~Am
A→Am

A!, ~4.6!

the second term of Eq.~4.4! is excluded, namely, only the
choicea850 is allowed.

By performing the BRST and anti-BRST transformation
we obtain

LGF1FP5
a1a8

2
B•B2

a

2
ig~C3 C̄!•B1B•]mAm

1 i C̄•]mDm@A#C1
a

8
g2~ C̄3 C̄!•~C3C!, ~4.7!

5
a1a8

2
B•B2

a

2
ig~C3 C̄!•B1B•]mAm

1 i C̄•]mDm@A#C1
a

4
g2~ iC3 C̄!•~ iC3 C̄!. ~4.8!

The GF1FP term includes the ghost self-interaction whe
the strength is proportional to the parametera.

When a50, this theory reduces to usual Yang-Mil
theory in the Lorentz-type gauge fixing with the gauge-fixi
parametera8:

LGF1FP5
a8

2
B•B1B•]mAm1 i C̄•]mDm@A#C. ~4.9!

This is consistent with the FP prescription.
WhenaÞ0, there exists a quartic ghost interaction whi

cannot be implemented by the usual FP prescription. Th
fore we must go beyond the FP prescription. The GF1FP
term is further rewritten as

LGF1FP52
1

2l
~]mAm!21~12j!i C̄•]mDm@A#C

1j i C̄•Dm@A#]mC1
1

2
lj~12j!g2~ iC3 C̄!•~iC3 C̄!

1
l

2
@B1l21]mAm2j ig~C3 C̄!#2, ~4.10!

52
1

2l
~]mAm!21 i C̄•]m]mC2~12j!giAm

•~]mC̄C!

1jgiAm
•~C̄3]mC!1

1

2
lj~12j!g2~ iC3 C̄!•~ iC3 C̄!

1
l

2
@B1l21]mAm2j ig~C3 C̄!#2, ~4.11!
08503
n

,

e-

where we have defined the two parameters4

lªa1a8, jª
a/2

a1a8
5

a

2l
. ~4.12!

In this form, it is easy to eliminate the Nakanishi-Lautru
field B. We call the gauge~4.11! the most general Lorentz
gauge hereafter.

B. Feynman rules

We obtain the following Feynman rules for the Yan
Mills theory of the Lagrangian~4.2! with Eq. ~4.11! where
the NL field is eliminated.

1. Propagators

~a! Gluon propagator:

~4.13!

~b! Ghost propagator:

~4.14!

2. Three-point vertices

~c! Three-gluon vertex:

~4.15!

~d! Gluon-ghost-antighost vertex:

~4.16!

3. Four-point vertices

~e! Four-gluon vertex:

~4.17!

4The parametersa, a8, l, j in this paper correspond, respectivel
to lc , lb , l, a in Ref. @9# anda, a8, l, a/2 in Ref. @8#.
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whereI mn,rsª(gmrgns2gmsgnr)/2.
~f! Four-ghost vertex:

~4.18!

C. Multiplicative renormalization

It has been proved by Baulieu and Thierry-Mieg@8# based
on mathematical induction that the Yang-Mills theory in t
most general Lorentz gauge~4.11! is multiplicatively renor-
malizable. We introduce the renormalization constant~or
renormalization factor! for the field

Am5ZA
1/2Am

R , C5ZC
1/2CR, C̄5ZC

1/2C̄R,

B5ZB
1/2BR5ZCZA

21/2BR ~4.19!

and for the parameters

l5ZllR , j5ZjjR , g5ZggR . ~4.20!

By substituting Eqs.~4.19! and ~4.20! into the bare La-
grangian, we obtain the total Lagrangian written in terms
the renormalized fields, renormalized parameters, and
renormalization factors:

LYM
tot 52

1

4
ZA~]mAn

R2]nAn
R1ZgZA

1/2gRAm
R3An

R!2

2
1

2lR
ZAZl

21~]mAm
R!21 iZCC̄R

•]m]mCR

2~12ZjjR!ZgZA
1/2ZCgRiA

•

mR~]mC̄R3CR!

1ZjZgZA
1/2ZCjRgRiA

•

mR~ C̄R3]mCR!

1
1

2
ZlZjZg

2ZC
2 lRjR~12ZjjR!gR

2~ iCR3 C̄R!•~ iCR

3 C̄R!1
lR

2
Zl~ZCZA

21/2BR1Zl
21ZA

1/2lR
21]mAm

R

2ZjZgZCjRigRCR3 C̄R!2. ~4.21!

The total Lagrangian ~4.21! is decomposed into a
renormalization-factor independent partLYM

tot R and the re-
maining partLYM

tot c as

LYM
tot 5LYM

tot R1LYM
tot c, ~4.22a!

LYM
tot R

ª2
1

4
~]mAn

R2]nAm
R1gRAm

R3An
R!22

1

2lR
~]mAm

R!2

1 i C̄R
•]m]mCR2~12jR!gRiAmR

•~]mC̄R3CR!

1jRgRiAmR
•~ C̄R3]mCR!
08503
f
he

1
1

2
lRjR~12jR!

3gR
2~ iCR3 C̄R!•~ iCR3 C̄R!

1
lR

2
~BR1lR

21]mAm
R2jRigRCR3 C̄R!2, ~4.22b!

LYM
tot c

ª~4.21!2~4.22b!. ~4.22c!

HereLYM
tot R is obtained by setting all renormalization facto

Z[1 in Eq. ~4.21! and hence it is written in terms of th
renormalized fields and renormalized parameters and ha
same form as the bare LagrangianLYM

tot , while LYM
tot c is the

counterterm defined by the differenceLYM
tot 2LYM

tot R.

1. Renormalization of two-point functions

First, we calculate the vacuum polarization function of t
gluon. To the orderg2, there are three Feynman diagram
see~a1!, ~a2!, and~a3! in Fig. 1.

As a gauge-invariant regularization, we adopt the dim
sional regularization. Then we obtain the following res
(eª22D/2):

~a1!5C2~G!dAB
~gm2e!2

~4p!2

i

e F 1

12
q2gmn

2H j~12j!2
1

6J qmqnG , ~4.23a!

~a2!5
1

2
C2~G!dAB

~gm2e!2

~4p!2

i

e H 19

6
q2gmn

2
11

3
qmqn1~12l!~q2gmn2qmqn!J ,

~4.23b!

~a3!50, ~4.23c!

whereC25C2(G) is the quadratic Casimir operator in th
adjoint representation of the gauge groupG defined by
dABC2(G)5*ACDf BCD. Hence the countertermsdT and dL
for the transverse and longitudinal part of the vacuum po
ization tensor are determined so as to satisfy the relation

~a1!1~a2!1~a3!2 idT~q2gmn2qmqn!dAB

2 i
dL

l
qmqndAB[0, ~4.24!

which yields the result

FIG. 1. Vacuum polarization of the gluon.
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dT5S 13

6
2

l

2D ~gm2e!2

~4p!2

C2~G!

e
,

dL52lj~12j!
~gm2e!2

~4p!2

C2~G!

e
. ~4.25!

On the other hand, the relationship

dT5ZA215ZA
~1!1¯ , dL5ZAZl

21215ZA
~1!2Zl

~1!1¯ ,

~4.26!

must hold for the multiplicative renormalizability where w
have defined the renormalization factorZ order by order of
the loop expansionZ511Z(1)1Z(2)1¯ . Thus we obtain
the renormalization factors

ZA
~1!5dT5S 13

6
2

l

2D ~gm2e!2

~4p!2

C2~G!

e
~4.27!

and

Zl
~1!5dT2dL5F S 13

6
2

l

2D1lj~12j!G ~gm2e!2

~4p!2

C2~G!

e
.

~4.28!

Note thatdT and henceZA is the same as in the FP ca
where the four ghost interaction does not exist. Whenj
Þ0,1, however, we find thatdLÞ0 or equivalently ZA
ÞZl . On the contrary to the FP case, the longitudinal par
the gluon propagator must be renormalized in this case.

Next, the vacuum polarization function of the ghost
calculated in a similar way. To orderg2, there are two Feyn-
man diagrams, see~b1! and ~b2! in Fig. 2. The explicit cal-
culation shows that

~b1!5S 1

2
1

12l

4 D ~gm2e!2

~4p!2

C2~G!

e
p2dAB, ~4.29a!

~b2!50. ~4.29b!

The countertermdC is determined from

~b1!1~b2!2p2dABdC50. ~4.30!

Hence the countertermdC5ZC215ZC
(1)1••• is equal to the

renormalization constantZC
(1) :

ZC
~1!5dC5

32l

4

~gm2e!2

~4p!2

C2~G!

e
. ~4.31!

This is again the same as in the FP case.

FIG. 2. Vacuum polarization of the ghost.
08503
f

2. Renormalization of the three-point function

We consider the renormalization of three-point vertex. F
example, the Feynman diagrams for the radiative correc
of the gluon-ghost-antighost vertex to one-loop order
given in Fig. 3.

If we write the counterterm for the gluon-ghost-antigho
vertex function as

~4.32!

we find the renormalization factors are related as

dACC̄
1

5ZCZA
1/2ZgZj215ZC

~1!1
1

2
ZA

~1!1Zg
~1!1Zj

~1!1¯ ,

~4.33!

dACC̄
2

5ZCZA
1/2Zg215ZC

~1!1
1

2
ZA

~1!1Zg
~1!1¯ .

~4.34!

At p5q, the respective diagram is calculated as

~c1!p5q52
1

2
C2~G! f ABCg3

i

~4p!2

1

e

l

4
pm, ~4.35a!

~c2!p5q52
1

2
C2~G! f ABCg3l

i

~4p!2

1

e

3

4
pm ,

~4.35b!

~c3!p5q50. ~4.35c!

By substituting Eqs.~4.35a!, ~4.35b!, and~4.35c! into

~c1!p5q1~c2!p5q1~c3!p5q2 ig f ABCdACC̄
2

pm[0,
~4.36!

it follows that

dACC̄
2

52
1

2
l

~gm2e!2

~4p!2

C2~G!

e
. ~4.37!

Hence the renormalization factor is obtained as

Zg
~1!5dACC̄

2
2ZC

~1!2
1

2
ZA

~1!52
11

6

~gm2e!2

~4p!2

C2~G!

e
.

~4.38!

At p50, the respective diagram is calculated as

FIG. 3. Radiative corrections for the gluon-ghost-antigh
vertex.
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~c1!p5052
1

2
C2~G! f ABCg3jl

i

~4p!2

3
1

e F ~12j!S j2
1

2D1
1

4Gqm, ~4.39a!

~c2!p5052
1

2
C2~G! f ABCg3lj

i

~4p!2

1

e

3

4
qm,

~4.39b!

~c3!p5052
1

2
C2~G! f ABCg3lj~12j!

3
i

~4p!2

1

e S j2
1

2Dqm. ~4.39c!

By substituting Eqs.~4.39a!, ~4.39b!, and~4.39c! into

~c1!p501~c2!p501~c3!p502 ig f ABCjRd
ACC̄

1
qm[0,

~4.40!

it follows that

dACC̄
1

5F2l~12j!S j2
1

2D2
1

2
lG ~gm2e!2

~4p!2

C2~G!

e
.

~4.41!

Then we obtain

Zj
~1!5d

ACC̄

1
2d

ACC̄

2

5l~j21!S j2
1

2D ~gm2e!2

~4p!2

C2~G!

e
.

~4.42!

Accordingly, the renormalization constants ofa and a8 are
obtained as

Za
~1!5S 13

6
2

a

4 D ~gm2e!2

~4p!2

C2~G!

e
~4.43!

and

Za8
~1!

5S 13

6
2

a1a8

2 D ~gm2e!2

~4p!2

C2~G!

e
. ~4.44!

V. RENORMALIZATION GROUP FLOW AND FIXED
POINTS

Using the above result, the renormalization group~RG!
functions are obtained as follows. Theb function is obtained
as

b~gR!ªm
]gR

]m
52gRm

]

]m
ln Zg>2gRm

]

]m
Zg

~1! .

~5.1!

It turns out that theb function does not depend on the gau
parametersl andj:
08503
b~gR!ªm
]gR

]m
52

1

16p2

11

3
C2~G!gR

3. ~5.2!

Similarly, we obtain the RG functions

gjªm
]

]m
jR52lRjR~jR21!S jR2

1

2D C2~G!

~4p!2 gR
2

~5.3!

and

glªm
]

]m
lR52lRF13

6
2

lR

2
1lRjR~12jR!G C2~G!

~4p!2 gR
2.

~5.4!

The RG flow in three-dimensional parameter spa
(j,l,g) is determined by solving simultaneous different
equations

m
]j

]m
52lj~j21!S j2

1

2D C2~G!g2

~4p!2 , ~5.5a!

m
]l

]m
52lF13

6
2

l

2
1lj~12j!G C2~G!g2

~4p!2 ,

~5.5b!

m
]g

]m
52

11

3

C2~G!g3

~4p!2 , ~5.5c!

where we have omitted the subscriptR for the renormalized
quantity.

As is well known, Eq.~5.5c! is solved exactly,

g2~m!5
g2~m0!

11
22

3

C2~G!

~4p!2 g2~m0!ln
m

m0

5
1

22

3

C2~G!

~4p!2 ln
m

LQCD

,

~5.6!

where we have used the boundary conditiong(m0)5` at
m05LQCD. The remaining two equations~5.5a! and ~5.5b!
cannot be solved exactly.

A. Fixed points

First, we obtain the fixed point of the RG. Note that t
derivative (1/g2)m(]/]m) in Eqs.~5.5a!, ~5.5b! is rewritten
as

1

g2 m
]

]m
5

22

3

C2~G!

~4p!2 ln
m

LQCD
m

]

]m

5
22

3

C2~G!

~4p!2

]

] ln ln
m

LQCD

. ~5.7!

Then the fixed point~to one-loop order! is obtained by solv-
ing the algebraic equation simultaneously:
4-9
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TABLE I. Eigenvalues and eigenvectors of the linearized RG equation where the lines II, III, IV
defined below. At the IR fixed point A and UV fixed point B, two eigenvalues are degenerate.

Eigenvalue Eigenvector

S13

3

g2C2~G!

~4p!2 3 D ~z, l! ~a, a8!

A 1 IR fixed point ~1, a! any lines

B 21 UV fixed point ~1, a! ~1, a! any lines

C 1 Saddle point ~13, 3! ~1, 22! line IV
21 ~0, 1! ~0, 1! line II

D 1 Saddle point ~213, 3! ~0, 1! line V
21 ~1, 22! ~0, 1! line III
ed
d

d
e

f

in

g
si

ns

G
he
d in
c-
lj~j21!S j2
1

2D50, lF13

6
2

l

2
1lj~12j!G50.

~5.8!

We find one line of fixed points and three isolated fix
points in the~j, l! plane or equivalently four isolated fixe
points in the (a,a8) plane.

~A! The line of fixed pointsl50, jPR corresponds to an
isolated fixed point (a,a8)5(0,0).

~B! (j,l)5(1/2,26/3) corresponds to (a,a8)5(26/3,0).
~C! (j,l)5(0,13/3) corresponds to (a,a8)5(0,13/3).
~D! (j,l)5(1,13/3) corresponds to (a,a8)5(26/3,

213/3).
If the two parametersj, l are set equal to one of the fixe
points, the theory remains forever on the fixed. If the syst
starts from other points and the scalem is decreased, it
evolves into the infrared~IR! region according to a couple o
differential equations~5.5a!–~5.5c!.

B. RG flow in the neighborhood of fixed points

In the neighborhood of the respective fixed po
(X1* ,X2* ) in the plane (X1 ,X2)5(j,l) or (a,a8), we can
study the behavior of the RG flow analytically. By takin
into account only the terms which are linear in the infinite
mal deviationdX1ªX12X1* ,dX2ªX22X2* from the fixed
point, a set of RG equations~5.5a! and ~5.5b! is reduced to

the form (
gX2

gX1);A(dX2

dX1), whereA is a two by two matrix.

In the ~j, l! plane, the set of linearized RG equatio
reads

BS 1

2
,
26

3 D :S gj

gl
D;2

13

3

g2C2~G!

~4p!2 S 1 0

0 1D S dj
dl D ,

~5.9a!

CS 0,
13

3 D :S gj

gl
D;

13

3

g2C2~G!

~4p!2 S 1 0

26

3
21D S dj

dl D ,

~5.9b!
08503
m

t

-

DS 1,
13

3 D :S gj

gl
D;

13

3

g2C2~G!

~4p!2 S 1 0

2
26

3
21D S dj

dl D .

~5.9c!

Similarly, in the (a,a8) plane, we obtain

A~0,0!:S ga

ga8
D;

13

3

g2C2~G!

~4p!2 S 1 0

0 1D S da
da8 D ,

~5.10a!

BS 26

3
,0D :S ja

ga8
D;2

13

3

g2C2~G!

~4p!2 S 1 0

0 1D S da
da8 D ,

~5.10b!

CS 0,
13

3 D :S ga

ga8
D;

13

3

g2C2~G!

~4p!2 S 1 0

21 21D S da
da8 D ,

~5.10c!

DS 2
13

3
,
26

3 D :S ga

ga8
D;

13

3

g2C2~G!

~4p!2 S 21 0

1 1D S da
da8 D .

~5.10d!

The respective matrix characterizing the behavior of the R
flow in the neighborhood of the respective fixed point has t
eigenvalue and the corresponding eigenvector enumerate
Table I. The direction of the flow is determined at the respe

FIG. 4. RG flows in the~j, l! plane ~a! and in the (a,a8)
plane~b!.
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tive fixed point. We will see that these results are consis
with the global flow diagram given in Fig. 4 below.

C. Global behavior of the RG flow

We find thatj[0, j[1/2, andj[1 are solutions of Eq.
~5.5a!. This implies that the RG flow starting from the poi
on one of the three planes (0,l,g), (1/2,l,g), (1,l,g), is
always kept on the respective plane. On the three pla
moreover, Eq.~5.5b! can be solved exactly. On the plan
(1/2,l,g), the RG flow in the region 0,l,26/3 obeys

l~m!5
26

3 H 11CS ln
m

LQCD
D 213/22J 21

, ~5.11!

whereC is a positive constant. We see thatl approaches to
the ultraviolet ~UV! fixed point l↑26/3 in the UV limit
m↑`, while l↓0 monotonically asm↓LQCD. On the other
hand, the RG flow in the regionl.26/3 is described by

l~m!5
26

3 H 12CS ln
m

LQCD
D 213/22J 21

, ~5.12!

wherel approaches to the UV fixed pointl↑26/3 in the UV
limit m↑`, while l↑` monotonically asm↓LQCD. By sub-
stituting ln(m/LQCD)5$22/3C2(G)/(4p)2g2%21 into the
above equation, the equation of the RG flow on the pla
(1/2,l,g) is obtained:

l5
26

3 H 16CS 22

3

C2~G!

~4p!2 g2D 13/22J 21

. ~5.13!

The RG flows on the plane (0,l,g) and (1,l,g) are gov-
erned by the same equations which are obtained by repla
26/3 with 13/3.

The global behavior of the RG flow is obtained by solvi
Eqs. ~5.5c!–~5.5b! numerically. In Fig. 4, the RG flow is
drawn on the plane~j, l! and the plane (a,a8). The direc-
tion of the arrow denotes the direction towards the IR reg
and the length of the arrow is proportional to the magnitu
of the vectorm(d/dm)(j,l)/g2. In the neighborhood of the
respective fixed point, we see that the numerical result ag
with the analytical result given in Table I of the previou
subsection.

Among the RG flows, the five RG flows~I, II, III, IV, V !
connecting the fixed pointsA, B, C, Dform the watershed~or
backbone! in the flow diagram:

~ I! j5
1

2
, a850, ~5.14a!

~ II ! j50, a50, ~5.14b!

~ III ! j51, a852
1

2
a, ~5.14c!

~ IV ! l5
13

3

1

12j
, a852

1

2
a1

13

3
, ~5.14d!
08503
nt
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~V! l5
13

3

1

j
, a5

26

3
. ~5.14e!

Since the flow is symmetric for the reflection with respe
to the straight line I,j51/2, we focus on the regionj
<1/2. The flow starting from the initial position below IV
runs towards the lineA of fixed points and eventually arrive
at A. If it arrives at a fixed point onA with a certain value of
j depending on the initial position, then it does not mo
anymore. On the other hand, the flow starting from the ini
position above IV runs away into the infinity,l51`. Here
the flow on the line I and II is not an exception. However,
should be remarked that the fixed pointB is IR repulsive in
both directions, while the fixed pointC is IR attractive on IV
and repulsive on II. In view of these, it turns out that a
fixed point onA is IR stable, while the fixed pointB on I is
a rather special fixed point which is IR unstable~UV stable!.5

We have shown that the three fixed pointsB, C, D for the
gauge parameterj, l are located on lines I, II, III (j
51/2,0,1), respectively. On lines I, II, III, the RG flow i
confined in the respective line; the Lagrangian takes the
lowing form.

~I! j51/2 ~i.e., aPR, a850!. The GF1FP term is in-
variant under the FP ghost conjugation and the orthos
plectic transformation OSp~4u2! @13#:

LGF1FP5 idBd̄BS 1

2
Am•Am2

a

2
iC• C̄D . ~5.15!

There is a four-ghost interaction.
~II ! j50 ~i.e., a50, a8PR!. The GF1FP term is invari-

ant under the global shift of antighostC̄:

LGF1FP5
a8

2
B•B1B•]mAm1 i C̄•]mDm@A#C. ~5.16!

There is no four-ghost interaction. This Lagrangian is t
same as that in the conventional Lorentz gauge.

~III ! j51 ~i.e., a8521/2a!. The GF1FP term is invari-
ant under the global shift of ghostC:

LGF1FP5
l

2
B•B1B•]mAm1 i C̄•Dm@A#]mC. ~5.17!

There is no four-ghost interaction. The choice II or III elim
nates the four ghost interaction and the Yang-Mills theo
reduces to the FP case. Oncej50 or j51 is chosen,j is not
renormalized by quantum corrections, sincej50 andj51
are fixed point of the renormalization group. Then the
Lagrangian is preserved under the renormalization.

In II and III, the role of ghost and antighost is inte
changed. The FP ghost conjugation invariance is broken
the usual FP Lagrangian where the ghost and antighost
not treated on equal footing~except for the Landau gauge!.

5This does not imply that a similar result is also obtained for
MA gauge. For example,a50 is not a fixed point in the MA gauge
See Ref.@27# for details.
4-11
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In other words, the FP ghost conjugation invariance is rec
ered fora850 ~i.e., j51/2 or l5a! by including the quar-
tic ghost interaction even fora50.

We must keep in mind that these results are obtaine
one-loop order. Therefore, the details of the flow diagr
may change if we include higher-order corrections. T
higher-order result is not known to date and will be giv
elsewhere. Nevertheless, the existence of the fixed poin
l50 remains true to any finite order of perturbation. T
existence of the lines I, II, and III are also guaranteed e
after the inclusion of higher order terms, since it is protec
by the symmetry dictated in the above. This is because
symmetry cannot be broken as far as the perturbation se
to all orders are not summed up.

VI. RENORMALIZING THE COMPOSITE OPERATOR OF
MASS DIMENSION 2

In this section we discuss the renormalization of the co
posite operator of mass dimension 2 and its BRST and a
BRST invariance under the renormalization.

A. On-shell BRST transformation

By eliminating the Nakanishi-Lautrup fieldB, the on-shell
BRST and anti-BRST transformations are obtained as

dBC̄~x!5 i F2
1

l
]mAm~x!1j igC~x!3 C̄~x!G , ~6.1!

d̄BC~x!5 i F1

l
]mAm~x!2~j21!igC~x!3 C̄~x!G .

~6.2!

The nilpotency of the on-shell transformation is partia
broken6 by the equation of motion of ghost and antighost

~dB!2Am~x!50, ~6.3a!

~dB!2C~x!50, ~6.3b!

~dB!2C̄~x!5
21

l

dLYM
tot

d C̄

6An elegant proof of the unitarity of gauge theory is given bas
on the nilpotency of the BRST transformation, see, e.g., Ref.@30#.
The nilpotency is indeed broken in the on-shell BRST transform
tion which is obtained by eliminating the NL field. However, th
nilpotency is not the only way to show the unitarity. Even in th
case, it is possible to show the unitarity order by order of pertur
tion theory based on the Feynman diagrams without the NL fie
08503
v-

to

e

at

n
d
e

ies

-
ti-

5
21

l
@]mDmC2gj~]mAm3C!

1 ig2lj~j21!~C3 C̄!3C# ~6.3c!

and

~ d̄B!2Am~x!50, ~6.4a!

~ d̄B!2C~x!5
21

l

dLYM
tot

dC

5
i

l
@]mDmC̄2g~12j!~]mAm3 C̄!

2 ig2lj~j21!~C3 C̄!3 C̄,# ~6.4b!

~ d̄B!2C̄~x!50. ~6.4c!

Moreover, the anticommutatibity is also broken in a simi
way:

~dBd̄B1 d̄BdB!Am~x!50, ~6.5a!

~dBd̄B1 d̄BdB!C~x!5
1

l

dLYM
tot

d C̄
, ~6.5b!

~dBd̄B1 d̄BdB!C̄~x!5
1

l

dLYM
tot

dC . ~6.5c!

B. Composite operator of mass dimension 2

We define the composite operatorO as a linear combina-
tion of two composite operators of mass dimension 2:

O5~V~D !!21E dDxF1

2
Am~x!•Am~x!1l i C̄~x!•C~x!G .

~6.6!

The on-shell BRST transformation of the operatorO is cal-
culated as

dBO5~V~D !!21E dDxdBF1

2
Am~x!•Am~x!1l i C̄~x!•C~x!G

5~V~D !!21E dDx@Am~x!•dBAm~x!2l i C̄~x!•dBC~x!

1l idBC̄~x!•C~x!#

d

-

-
s.
4-12
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5~V~D !!21E dDxFAm~x!•]mC~x!

1l i C̄~x!•
g

2
@C~x!3C~x!#1]mAm~x!•C~x!

2lj ig@C~x!3 C̄~x!#•C~x!G
5~V~D !!21E dDxH ]m@Am~x!•C~x!#1lS 1

2
2j D

3 i C̄~x!•g@C~x!3C~x!#J . ~6.7!

In a similar way, the on-shell anti-BRST transformation
the operatorO is calculated as

d̄BO5~V~D !!21E dDxH ]m@Am~x!• C̄~x!#

1lS 1

2
2j D i C̄~x!•g@ C̄~x!3C~x!#J . ~6.8!

Therefore, the composite operatorO is invariant under the
BRST and anti-BRST transformations when

j5
1

2
or l50, ~6.9!

i.e., on the line I and A in the~j, l! plane, or on the line I in
the (a,a8) plane. Forj51/2, the on-shell BRST and ant
BRST transformations read

dBC̄~x!52
i

a
]mAm~x!2

1

2
gC~x!3 C̄~x!, ~6.10!

d̄BC~x!51
i

a
]mAm~x!2

1

2
gC~x!3 C̄~x!. ~6.11!

The special casel50 ~and a50 to have a finitej! is
nothing but the Landau gauge in the conventional Lore
gauge and the BRST and anti-BRST invariant operatorO
reduces to the simple form

O85~V~D !!21E dDxF1

2
Am~x!•Am~x!G . ~6.12!

Note thatO8 is invariant under the gauge transformation
well as the BRST and anti-BRST transformations.

C. Renormalization of the composite operator

Hereafter, we use the following notation to simplify th
expressions:
08503
f

tz

s

AªAR, CªCR, C̄ª C̄R, BªBR. ~6.13!

We consider the Green function of the fundamental fie
with the insertion of a composite operator of mass dimens
2. In the following, it is assumed that we have already fi
ished the renormalization for the fundamental field in t
perturbative theory. Therefore, we only have to consider
extra renormalization for the divergence coming from t
inserted composite operators in the renormalized Green fu
tion. In order to take into account operator mixing amo
composite operators with the same mass dimension and
same quantum number, we must introduce the matrix
renormalization factorsZ1 ,...,Z4 :

S F1

2
AAG

R

@ iC̄C#R

D 5S Z1 Z2

Z3 Z4
D S F1

2
AAG

@ iC̄C#
D . ~6.14!

Then, to the lowest nontrivial order, we find

~6.15a!

~6.15b!

~6.15c!

~6.15d!

where we have used the Feynman rule

~6.16a!

~6.16b!

with the dot denoting the insertion of a composite operat
We show that the divergences coming from the comp

iteness are absorbed by taking the four renormalization c
stantsZ1 , Z2 , Z3 , Z4 appropriately. The first example is

~6.17!

Hence the lowest value ofZ1 is 1:
4-13
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Z1511Z1
~1!1¯ . ~6.18!

The second example is

~6.19!

HenceZ2 does not have the tree part and begins with
one-loop order

Z25Z2
~1!1¯ . ~6.20!

The third example is

~6.21!

Hence,Z4 has the form

Z4511Z4
~1!1¯ . ~6.22!

The fourth example is

~6.23!

Hence,Z3 begins with the one-loop order

Z35Z3
~1!1¯ . ~6.24!

Therefore, up to one-loop order, the renormalization c
stants must satisfy the relationship
08503
e

-

~6.25a!

~6.25b!

~6.25c!

~6.25d!

The explicit calculations lead to the following diverge
parts:

~6.26!

~6.27!

~6.28!

~6.29!

~6.30!

~6.31!

Thus the renormalization constants for the composite
erators are obtained as

Z1
~1!52

3

4
~11l!C2~G!

~gm2e!2

~4p!2

1

e
, ~6.32a!

Z2
~1!52l2j~12j!C2~G!

~gm2e!2

~4p!2

1

e
,

~6.32b!

Z3
~1!5

1

2
C2~G!

~gm2e!2

~4p!2

1

e
, ~6.32c!

Z4
~1!50. ~6.32d!
4-14
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We pay attention to the renormalization constants of co
posite operators in light of the inverted relation of Eq.~6.14!:

S F1

2
AAG

@ iC̄C#
D 5S Z1 Z2

Z3 Z4
D 21S F1

2
AAG

R

@ iC̄C#R

D
5S 12Z1

~1! 2Z2
~1!

2Z3
~1! 12Z4

~1!D S F1

2
AAG

R

@ iC̄C#R

D .

~6.33!

This relation shows that there is an operator mixing betw
the gluon and ghost composite operators which are of m
dimension 2 and color singlet, as pointed out in Ref.@2#. In
the absence of four-ghost interaction~j50 or j51!, Eqs.
~6.28!, ~6.30!, and ~6.31! vanish and hence we haveZ2

(1)

505Z4
(1) . In this case, there is no contribution from gho

for the renormalization of the gluon composite opera
@1/2AA#

F1

2
AAG5~12Z1

~1!!F1

2
AAG

R

, ~6.34!

@ iC̄C#5@ iC̄C#R2Z3
~1!F1

2
AAG

R

. ~6.35!

On the other hand, the ghost composite operator canno
finite without the mixing of the gluon composite operator.
the conventional Lorentz gauge fixing, therefore, we do
have to consider the contribution from ghost in treating
renormalization of the gluon composite operator@1/2AA# ~at
least in the one-loop level!.

D. Multiplicative renormalizability of the composite operator

Now we examine the multiplicative renormalizability o
the composite operatorO. Taking into account the renorma
ization of the fundamental field and the composite fie
~6.33!, we obtain

Q0ª
1

2
A0A01l0iC̄0C0

5~11ZA
~1!!

1

2
AA1~11Zl

~1!!~11ZC
~1!!l iC̄C

5~11ZA
~1!!H ~12Z1

~1!!F1

2
AAG

R

2Z2
~1!@ iC̄C#RJ

1~11Zl
~1!!~11ZC

~1!!lH 2Z3
~1!F1

2
AAG

R

1~12Z4
~1!!@ iC̄C#RJ
08503
-

n
ss

t
r

be

t
e

5$11ZA
~1!2Z1

~1!2lZ3
~1!%F1

2
AAG

R

1H 2
Z2

~1!

l
111Zl

~1!1ZC
~1!2Z4

~1!J l@ iC̄C#R .

~6.36!

The multiplicative renormalizability holds~in the one-loop
level! if and only if

ZQ
~1!
ªZA

~1!2Z1
~1!2lZ3

~1!52
Z2

~1!

l
1Zl

~1!1ZC
~1!2Z4

~1! .

~6.37!

This is equivalent to the condition

lS j2
1

2D 2

50. ~6.38!

If this condition is satisfied, the composite operator is mu
plicatively renormalized as

Q05ZQS F1

2
AAG

R

1l@ iC̄C#RD , ~6.39!

ZQ
~1!5S 35

12
2

1

4
l DC2~G!

~gm2e!2

~4p!2

1

e
. ~6.40!

In the case ofl50, this result reduces to that of Boucau
et al. @22# without operator mixing.

It should be remarked that the composite operator is
multiplicatively renormalizable, unless the renormalizati
of the composite operatorsAA and C̄C are taken into ac-
count. In fact, the multiplicative renormalizability of

Q0ª
1

2
A0A01l i C̄0C0

5~11ZA
~1!!

1

2
AA1~11Zl

~1!1ZC
~1!!l iC̄C1O~\2!,

~6.41!

without the renormalization of the composite operator lea
to the conditionZA

(1)2Zl
(1)2ZC

(1)50, which readsl@j(j
21)11/4#53/4. This curve does not have a definite mea
ing in the renormalization, since the curve is not along
RG flow.

E. BRST invariance of the renormalized composite operator

Finally, we show that the renormalized composite ope
tor OR is invariant under the renormalized BRST and an
BRST transformations. By requiring that the renormaliz
BRST and anti-BRST transformations are nilpotent and
ticommute:

dB
RdB

R[0, d̄B
Rd̄B

R[0, dB
Rd̄B

R1 d̄B
RdB

R[0, ~6.42!
4-15
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the renormalized BRST and anti-BRST transformations
the renormalized fieldsAm , C, C̄, B are determined~by an
appropriate rescaling ofB field! as @8,9#

dB
RAm~x!5XDm@A#RC~x!

ªX$]mC~x!1ZA
1/2ZggR@Am~x!C~x!#%,

~6.43a!

dB
RC~x!52

1

2
XZA

1/2ZggR@C~x!3C~x!#

~6.43b!

dB
RC̄~x!5 iXB~x!, ~6.43c!

dB
RB~x!50, ~6.43d!

and

d̄B
RAm~x!5X̄Dm@A#RC̄~x!

ªX̄$]mC̄~x!1ZA
1/2ZggR@Am~x!3C̄~x!#%,

~6.44a!

d̄B
RC̄~x!52

1

2
X̄ZA

1/2ZggR@C̄~x!3C̄~x!# ~6.44b!

d̄B
RC~x!5 iX̄B̄~x!, ~6.44c!

d̄B
RB̄~x!50, ~6.44d!

whereX andX̄ are arbitrary real numbers andB̄ is defined by

B̄~x!52B~x!1 iZA
1/2ZggR@C~x!3C̄~x!#. ~6.45!

The Lagrangian is written by making use of the renorm
ized BRST and anti-BRST transformations and the renorm
ized fields as

LYM
tot 52

1

4
ZA~]mAn2]nAm1ZgZA

1/2gRAm3An!2

1
ZC

XX̄
idB

Rd̄B
RS 1

2
Am•Am2

ZCZa

ZA

aR

2
iC•C̄D

1
ZC

2 Za8

ZA

aR8

2
B•B. ~6.46!

This agrees with Eq.~4.21!.
We derive the condition for the renormalized compos

operatorOR to be invariant under the renormalized BRS
transformation defined above. We can write a finite comp
ite operator of mass dimension 2 in the form~up to an over-
all constant!:
08503
r

-
l-

s-

QR5F1

2
Am~x!•Am~x!G

R

1KR@ iC̄~x!•C~x!#R ,

~6.47!

whereKR is a finite function of the renormalized paramete
gR , jR , l. Performing the renormalized BRST transform
tion ~6.43d! after the renormalization factors~6.33! of the
composite operator are included, we obtain

dB
RQR5dB

RH ~Z11KRZ3!S 1

2
Am•AmD1~Z21KRZ4!~ iC̄•C!J

5~Z11KRZ3!X]mC•Am1~Z21KRZ4!

3H iC̄•S XZA
1/2Zg

g

2
C3CD1XS ZA

ZCZl

1

l
]mAm

2 iZA
1/2ZjjZggC3C̄D •CJ . ~6.48!

For the right-hand side to be a total derivative, we m
require two conditions:~1! the coefficient for the term
C•(C̄3C) vanishes,~2! the remaining terms containing th
derivative are combined into a total derivative term. The
spective condition reads

ZA
1/2Zg

2
5ZA

1/2ZgZjj, ~6.49!

Z11KRZ35~Z21KRZ4!
ZA

ZCZl

1

l
.

~6.50!

The first condition reduces to

j05Zjj5
1

2
. ~6.51!

SinceZ2 , Z3;O(\/e) andZ1 , Z4;11O(\/e), the second
condition yields for theO(1) term

KR5lR , ~6.52!

and for theO(1/e) term

ZA
~1!2Z1

~1!2lRZ3
~1!1

Z2
~1!

lR
2Zl

~1!2ZC
~1!1Z4

~1!50.

~6.53!

This condition is the same as Eq.~6.37!. In the Landau gauge
a5l50, especially, the condition~6.53! reduces toZ2

(1)

50. This is automatically satisfied in this case.

VII. OPERATOR PRODUCT EXPANSION
AND VACUUM CONDENSATE

We apply the operator product expansion or short dista
expansion~SDE! to the gluon and ghost propagators. T
OPE was originally proposed as an operator relation by W
son @46#. For example, the product of two scalar fie
4-16
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operators defined at different spacetime points is expande

f~x!f~y!;(
i

F @Oi #~x2y!FOi S x1y

2 D G , ~7.1!

where the composite operators$Oi% form a complete set o
renormalized local operators. The famous proof of OPE
Zimmermann@47# was given in the framework of perturba
tion theory. Quite recently, the OPE was rigorously proved
an operator relation by Bostelman@48#.7 According to the
method@49,50#, the~Fourier transformed! Wilson coefficient
F̃ @f1¯fn#(p) in the OPE

f~x!f~y!;(
n

F @f1¯fn#~x2y!Ff1¯fnS x1y

2 D G
~7.2!

can be calculated in perturbation theory by equating a
1n)-point one-particle irreducible~1PI! Green’s function—
where two of the external legs have hard momentump and
the remainingn external legs are assigned zero moment
q50—with the Wilson coefficient times ann point Green’s
function with an insertion of the relevant composite opera
at zero momentum.

A. The OPE in the tree level

First, we consider the OPE of the inverse gluon propa
tor

~D21!mn
AB~p!5Cmn

@1#AB~p!^1&1Cmn
@A2#AB~p!K 1

2
Ar•ArL

1Cmn
@C̄C#AB~p!^ iC̄•C&1¯ , ~7.3!

where the first Wilson coefficient is nothing but the ba
inverse gluon propagator

Cmn
@1#AB~p!5~D0

21!mn
AB~p!ª2p2~Pmn

T 1l21Pmn
L !dAB

52p2S gmn2
pmpn

p2 1l21
pmpn

p2 D dAB.

~7.4!

The other Wilson coefficients are calculated in the pert
bation theory from the diagrams

~7.5!

~7.6!

7The authors would like to thank Izumi Ojima for informing us
this reference.
08503
as

y

s

2

r

-

r-

In these diagrams, two external legs have hard momentup
and the (n52) lines connected to a blob correspond to t
external legs with zero momentumq50.

The explicit calculation in the tree level yields the res
~see the Appendix for the details of the calculations!:

Cmn
@A2#AB~p!52

Ncg
2

2~Nc
221!

~11l!Pmn
T dAB, ~7.7!

Cmn
@C̄C#AB~p!52

Ncg
2

~Nc
221!

j~12j!Pmn
L dAB,

~7.8!

where we have putC2(G)5Nc for simplicity. Defining the
vacuum polarization tensor of the gluon by

~D21!mn
AB~p!ª~D0

21!mn
AB~p!1Pmn

AB~p!, ~7.9!

we obtain the vacuum polarization tensor of the gluon

Pmn
AB~p!5

Ncg
2

4~Nc
221!

dAB$2~11l!Pmn
T ^Ar•Ar&

12Dj~12j!Pmn
L ^ iC̄•C&%. ~7.10!

It turns out that even the inclusion of the quartic ghost int

action does not affect the Wilson coefficientCmn
@A2# , at least in

the tree level. For the Wilson coefficientCmn
@C̄C# , however,

there is an extra contribution coming from the quartic gh
interaction, as suggested already in Ref.@2#. The nonzero

Wilson coefficientC@C̄C# due to the presence of the quart
ghost interaction (jÞ0,1) breaks the transversality of th
gluon polarization tensor, i.e.,PmnÞPmn

T P. This result does
not contradict the Slavnov-Taylor identity@5,8,27#. Whenj

50 (j51), the ghost condensate^ iC̄•C& cannot appear in
the OPE, since the gluon-ghost-antighost vertex~4.16! is
proportional to the outgoing ghost~antighost! momentumpm
(qm). The above result~7.10! suggests the existence of th
effective gluon mass given by

mA
252

Ncg
2

4~Nc
221!

~11l!^Ar•Ar&. ~7.11!

Therefore, the gluon condensation of mass dimension 2
be an origin of the gluon mass. The effect of higher ord
will be investigated in the next subsection.

Next, we perform the OPE for the inverse ghost propa
tor

2 i ~G21!AB~p!5CAB
@1#~p!^1&1CAB

@A2#~p!K 1

2
Ar•ArL

1CAB
@C̄C#~p!^ iC̄•C&1¯ , ~7.12!

where the first Wilson coefficient agrees with the bare
verse ghost propagator

CAB
@1#~p!52 i ~G0

21!AB~p!52p2dAB. ~7.13!
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The other Wilson coefficients are calculated from the d
grams

~7.14!

~7.15!

which yield the result

CAB
@A2#~p!5

Ncg
2

2~Nc
221!

dAB, ~7.16!

CAB
@C̄C#~p!50. ~7.17!

Here the coefficientCAB
@C̄C# vanishes due to cancellation, se

the Appendix. Defining the vacuum polarization tensor of
ghost by

~G21!AB~p!ª~G0
21!AB~p!1 iPgh

AB~p!, ~7.18!

the vacuum polarization for the ghost is obtained:

Pgh
AB~p!5

Ncg
2

4~Nc
221!

dAB^Ar•Ar&. ~7.19!

We find that the ghost vacuum polarization has no contri
tion from the ghost-antighost condensation even forjÞ0,1.
Thus we obtain the effective ghost mass

mC
2 5

Ncg
2

4~Nc
221!

^Ar•Ar&. ~7.20!

This result shows that the gluon condensation of mass
mension 2 can also be an origin of the ghost mass.8

The combination of gluon and ghost condensation app
ing in the OPE is not BRST invariant in the sense explain
in the previous section. This is reasonable, since even
OPE of gauge invariant operators does not give a gauge
variant combination in the OPE, see, e.g., Ref.@51#.

B. RG improvement of the OPE

One of the advantages of the OPE is that the momen
dependence of the Wilson coefficient is determined by
renormalization group equation. More accurately, the cha
of the Wilson coefficient under the RG transformation can
specified by the renormalization factorsZ which are to be
calculated before the RG improvement of the O

8In the Lorenz gauge, the effective gluon mass and ghost mas
generated by the gluon condensation of mass dimension 2 alo
the tree level. This is not the case if we include the high-or
correction as will be shown in the next subsection. In the M
gauge, on the contrary, two condensations from the off-diago
gluon and off-diagonal ghost contribute to the effective off-diago
gluon and ghost masses already in the tree level, see Refs.@2,20#.
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calculus. Therefore, we can obtain higher-order correcti
for the momentum dependence of the coefficient without a
explicit higher-order computations~at least for the leading
logarithmic corrections!.

1. RG equation for Wilson coefficients

We begin with an OPE relation in the momentum rep
sentation obtained by extracting composite operators up
mass dimension 2~we omit all indices, since they are no
essential in the following arguments!:

2 iÃR~p!ÃR~2p!5Dpert~p!@1#1F1
A~p!F1

2
A~0!A~0!G

R

1F2
A~p!@ iC̄~0!C~0!#R1¯ , ~7.21a!

C! R~p!C̃R~2p!52 iGpert~p!@1#

1F1
C~p!F1

2
A~0!A~0!G

R

1F2
C~p!@ iC̄~0!C~0!#R1¯ ,

~7.21b!

whereDpert(p) and Gpert denote the perturbative gluon an
ghost propagators, respectively, with the perturbative lo
corrections included in addition to the OPE contribution.

First, we try to rewrite all field operators in both sides
Eqs.~7.21a! and~7.21b! in terms of bare quantities. Herea
ter it is supposed that the Wilson coefficient and compo
operators are defined based on the renormalization sch
depending on a certain parameterm ~corresponding to the
mass scale!, which is different from the Bogolubov-Paresiok
Hepp-Zimmermann~BPHZ! prescription at zero momentum
q50. In the actual calculations, we adopt the minimal su
traction~MS! scheme, although the resulting expressions
be translated into the momentum-space subtraction~MOM!
scheme.

By making use of theZ factors calculated in the previou
section, two OPE relations above are combined into a ma
form

Z f
21S 2 iÃ0~p!Ã0~2p!

C! 0~p!C̃0~2p!
D

5Dpert1FZ̃S 1

2
A0~0!A0~0!

iC̄0~0!C0~0!
D 1¯ ,

~7.22!

where we have defined the two by two matrices

Z f5S ZA 0

0 ZC
D , FªS F1

A~p! F2
A~p!

F1
C~p! F2

C~p!
D ,

re
in
r

al
l
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Z̃5S Z1 Z2

Z3 Z4
DZ f

21, ~7.23!

and a column vector

DpertªS Dpert~p!

2 iGpert~p! D . ~7.24!

Introducing a matrixF0 by9

F05Z fFZ̃ªS F01
A ~p! F02

A ~p!

F01
C ~p! F02

C ~p!
D , ~7.25!

we obtain an OPE relation among the bare quantities:

S 2 iÃ0~p!Ã0~2p!

C! 0~p!C̃0~2p!
D

5Z fDpert1F0S 1

2
A0~0!A0~0!

iC̄0~0!C0~0!
D 1¯ .

~7.26!

Second, we observe that the relation~7.26! should have
no dependence on the renormalization pointm. Hence, the
first term on the right-hand side of Eq.~7.26! is independent
of m, i.e.,

m
d

dm
~Z fDpert!50, ~7.27!

and the coefficientF0 in the second term is also independe
of m, i.e.,

m
d

dm
F05m

d

dm
~Z fFZ̃!50. ~7.28!

We multiply Eq. ~7.28! by Z f
21 from the left and byZ̃21

from the right to obtain

Fm
]

]m
1(

i
b i~a!

]

]a i
GF1Z f

21S m
d

dm
Z f DF

1FS m
d

dm
Z̃D Z̃2150, ~7.29!

wherea i denotes the parameters of the theory (gR ,jR ,lR),
and b i denotes the corresponding RG functionb i(a)
ªm(]/]m)a i . Here we have used a fact thatm(]/]m)
1S ib i@a(m)#(]/]a i) is just the ordinary differential opera
tor m(d/dm).

9Were it not for the renormalization of the composite operatorF0

reduced toF.
08503
t

Defining the RG function~matrix! g f , g̃ from Z f , Z̃ by

m
d

dm
Z fªZ fg f , m

d

dm
Z̃ªg̃Z̃, ~7.30!

we obtain the RG equation for the matrixF of the Wilson
coefficients

Fm
]

]m
1(

i
b i~a!

]

]a i
GF~p,a,m!1g fF~p,a,m!

1F~p,a,m!g̃50. ~7.31!

Similarly, we can show thatDpert obeys the RG equation

Fm
]

]m
1(

i
b i~a!

]

]a i
GDpert~p,a,m!1g fDpert~p,a,m!50.

~7.32!

2. Solving the RG equation

Now we proceed to solve the RG equation just obtain
A simple dimensional analysis leads to the relati
F(kp,a,km)5kdfF (p,a,m) which is equivalent to the re
lation

F~kp,a,m!5kdfFS p,a,
m

k D , ~7.33!

wheredf is the canonical dimension ofF. Hence,F satisfies

Fk ]

]k
1m

]

]m
2dFGF~kp,a,m!50. ~7.34!

We use this equation to eliminatem~]/]m! in Eq. ~7.31! to
obtain

Fk
]

]k
2(

i
b i~a!

]

]a i
2dFGF~kp,a,m!2g fF~kp,a,m!

2F~kp,a,m!g̃50. ~7.35!

This is the homogeneous RG equation of Weinberg–’t Ho
type @52# which is adequate for the mass-independent ren
malization method.

By the standard method@30,32#, the general solution of
the RG equation~7.35! is given by

F~kp,a,m!5k24 expH E
1

k

dk8
g f~k8!

k8 J
3F~p,ā~k!,m!expH E

1

k

dk8
g̃~k8!

k8 J ,

~7.36!

where we have imposed the boundary conditionā(k51)
5a.
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A similar consideration yields the general solution of t
RG equation~7.32!:

Dpert~kp,a,m!5k22 expH E
1

k

dk8
g f~k8!

k8 J Dpert~p,a,m!.

~7.37!

Once we know theZ factors of the fundamental field an
the composite operator, it is easy to calculateg f , g̃ accord-
ing to Eq.~7.30!. If the integrations in the arguments of th
exponential in Eqs.~7.36! and ~7.37! are performed, thek
dependence of the solution will be exactly determined. Ho
ever,Z factors are obtained in terms of renormalized para
etersgR , jR , lR and hence depend implicitly onk through
them. This fact makes the analysis more difficult in gene

3. Solution around the UV fixed point B

We can calculateg f , g̃ up toO(\), since we know all the
Z factors of the fundamental field and the composite oper
up to O(\). In the high-energy limitk→`, it is expected
that the solution can be explicitly obtained in the neighb
hood of the nontrivial UV stable fixed point in the parame
space, due to the asymptotic freedom of Yang-Mills theo
i.e., ḡ(k)→ḡ`50 ask→`.

In three-dimensional parameter spacegR , jR , lR , we
have found that all the points are flowing into the UV fixe
point B in the UV limit except for some lines that hav
higher symmetry. On the other hand, within perturbat
theory using dimensional regularization, them dependent
loop correction of allZ factors always appears with a fact
of O(gR

2). Therefore, the RG functiong as an element of the
matrix g defined by differentiating theZ factor with respect
to m is accompanied bygR

2 to the O(\), similar to g
;gR

2 f (j,l)\1O(\2). If the polynomial functionf (j,l) in
the above expression has a nonvanishing value at the fi
point (j* ,l* ), them dependence ofg5g2f is governed by
g2 alone and hence we can replacef (j,l) with the constant
f (j* ,l* ) at the UV fixed point. By substituting the fixed
point valueslR* 526/3, jR* 51/2 into j, l, the Z factors be-
come

ZA* 512
13

6

g2Nc

16p2

m22e

e
, ZC* 512

17

12

g2Nc

16p2

m22e

e
,

Z1* 512
29

4

g2Nc

16p2

m22e

e
, Z2* 52

1

4 S 26

3 D 2 g2Nc

16p2

m22e

e
,

Z3* 5
1

2

g2Nc

16p2

m22e

e
, Z4* 51, ~7.38!

which yield the matrix of the renormalization group functio

g f* ~g!5
g2Nc

8p2 S 13

6
0

0
17

12

D ,
08503
-
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g̃* ~g!5
g2Nc

8p2 S 61

12

1

4 S 26

3 D 2

2
1

2
2

17

12

D . ~7.39!

Furthermore, we define the coefficient matrixCg f andCg̃
in Eq. ~7.39! by

g f* ~g!ªg2Cg f
, g̃* ~g!ªg2Cg̃ . ~7.40!

By taking into account the RG equationm(d/dm)g5
2(b/8p2)g3 (b511/6Nc) and the resulting relation
(d/dm)ln g25(2/g)/(d/dm)g52(2b/8p2)(g2/m), the non-
trivial integration of Eq.~7.36! can be performed as

E
1

k

dk8
g~ ḡ~k8!!

k8
5E

1

k

dk8Cg

@ ḡ~k8!#2

k8
5Cg

8p2

2b
ln

ḡ2~1!

ḡ2~k!
.

~7.41!

Hence the solution becomes

F~kp,a,m!5k24S ḡ2~1!

ḡ2~k! D
Cg f

~8p2/2b!

$F~p,ā~k!,m!%

3S ḡ2~1!

ḡ2~k! D
Cg̃~8p2/2b!

. ~7.42!

Thek dependence ofḡ2 is obtained by solving its RG equa
tion as ḡ2(k);@(2b/8p2)ln k#21 for large k. Substituting
Eqs. ~7.41! into ~7.36!, therefore, we determine the lnk de-
pendence of the solution for largek

F~kp,a,m!5k24~ ln k!Cg f
~8p2/2b!$F~p,ā~k!,m!%

3~ ln k!Cg̃~8p2/2b!. ~7.43!

In order to cast the matrix power of lnk into a more
tractable form, we shall diagonalize the matrixCg̃ in such a
way thatS diagonalizesCg̃ by the similarity transformation
Cg̃→S21

•Cg̃•S. Such a matrixS and the diagonalized ma
trix are given by

S5S 2
13

3
2

26

3

1 1
D , S21

•Cg̃•S5
Nc

8p2 S 3

4
0

0
35

12

D .

~7.44!

This diagonalization corresponds to redefining the com
nation between two composite operators of mass dimen
2, i.e., 1/2A(0)A(0) andiC̄(0)C(0), by multiplying S21:
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S Q1

Q2
D5S21S 1

2
A2

iC̄C
D 5

3

13S 1

2
A21

26

3
iC̄C

2
1

2
A22

13

3
iC̄C

D .

~7.45!

Inserting the identity matrix15S•S21 appropriately, the
solution ~7.42! is rewritten as
08503
F~kp,a,m!5k24S ḡ2~1!

ḡ2~k! D
Cg f

~8p2/2b!

F~p,ā,m!

3S•S21S ḡ2~1!

ḡ2~k! D
Cg̃~8p2/2b!

S•S21.

~7.46!

Now both Cg f
and S21

•Cg̃•S are diagonal. Hence we ca
write down the power explicitly as
the

trix
I

,
ng of the
e

F~kp!5k24S S ḡ2~1!

ḡ2~k! D
~13/6!~Nc/2b!

0

0 S ḡ2~1!

ḡ2~k! D
~17/12!~Nc/2b!D T~p!SS S ḡ2~1!

ḡ2~k! D
~3/4!~Nc/2b!

0

0 S ḡ2~1!

ḡ2~k! D
~35/12!~Nc/2b!D S21.

~7.47!

Here we impose a condition thatT(p)ªF(p,ā(k),m) coincides with the Wilson coefficient in the tree level obtained in
previous section in which the coupling constant is replaced with the running coupling constantā(k). Note thatF is the Wilson
coefficient of the Green function@not of the one-particle irreducible~1PI! function#.10 Hence we put

T~p!5S T1~p! T2~p!

T3~p! T4~p!
D

5
Ncḡ

2~k!

2~Nc
221!

S 2~ iD 0!2~11l!PT ~ iD 0!24j~12j!PL

~ iG0!2 0 D . ~7.48!

We notice that each elementT1 ,...,T4 of T(p) brings an extra lnk factor to F through ḡ2(k);1/lnk. Therefore, the OPE
correction up to dimension 2 operators reads

F~p!S 1

2
A2

iC̄C
D 5S S 2

13

3
T11T2D S ln p/LQCD

ln m/LQCD
D ~35/12! ~Nc/2b! S 2

26

3
T11T2D S ln p/LQCD

ln m/LQCD
D ~61/12! ~Nc/2b!

2
13

3
T3S ln p/LQCD

ln m/LQCD
D ~13/6! ~Nc/2b!

2
26

3
T3S ln p/LQCD

ln m/LQCD
D ~13/3! ~Nc/2b! D S Q1

Q2

D ,

~7.49!

where we have usedT450. Here we have used the translation rule from the MS scheme to the MOM scheme

ḡ2~1!

ḡ2~k!
→ ln p/LQCD

ln m/LQCD
. ~7.50!

Among the terms with various powers of lnk, the largest-power term~corresponding to the largest eigenvalue of the ma
Cg! is dominant in the UV limit (k@1). Extracting this lnk contribution, we can simplify the Wilson coefficient of the 1P
function in the UV limit as

C1PI5S Cgl
@A2# Cgl

@C̄C#

Cgh
@A2# Cgh

@C̄C#D 5S ~ iD pert!
22 0

0 ~ iGpert!
22DF ~7.51!

10Except for the Landau gauge in which no operator mixing occurs, a linear combination of different powers of lnk appears in the solution
and its combination coefficients cannot be completely determined by perturbation theory alone. But it is important to note that a fitti
analytical result with the simulation data~or experimental data! can determine the asymptotic behavior ofF completely as discussed in th
next subsection.
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5
8p2

2b

Nc

~Nc
221!

S (Dpert/D0)22 0

0 (Gpert/G0)22D

3S 13~212l!PT26j~12j!PL

13

S ln
p

LQCD
D 211~61/12!~Nc/2b!

S ln
m

LQCD
D ~61/12!~Nc/2b!

13~212l!PT26j~12j!PL

3

S ln
p

LQCD
D ~211~61/12!~Nc/2b!

S ln
m

LQCD
D ~61/12!~Nc/2b!

21
S ln

p

LQCD
D ~211~13/3!~Nc/2b!

S ln
m

LQCD
D ~26/6!~Nc/2b! 2

13

3

S ln
p

LQCD
D 211~13/3!~Nc/2b!

S ln
m

LQCD
D ~26/6!~Nc/2b!

D .

~7.52!

In the similar way, we obtain

Dpert~kp,a,m!5k22S S ḡ2~1!

ḡ2~k!
D ~13/6!~Nc/2b!

0

0 S ḡ2~1!

ḡ2~k! D
~17/12!~Nc/2b!D Dt~p!, ~7.53!

where the tree expression is given by

Dt~p!5S D0~p!

2 iG0~p! D5S 2
1

p2 ~PT1lPL!

1

p2

D . ~7.54!

4. The solution at the conventional Landau gauge

Finally, we consider the OPE on lineA of the fixed points~corresponding to the conventional Landau gauge!, the RG
matrices read

g f* 5g2Cg f
5

g2Nc

8p2 S 2
13

6
0

0 2
3

4

D , g̃* 5g2Cg̃5
g2Nc

8p2 S 2
35

12
0

2
1

2

3

4

D . ~7.55!

The diagonalization can be performed as

S5S 0 2
13

3

1 1
D , S21

•Cg̃•S5
Nc

8p2 S 3

4
0

0
35

12

D . ~7.56!

The eigenvalues ofCg̃ are the same as those at fixed pointB. Therefore, we obtain the Wilson coefficientCmn
@A2# between

^Am(p)An(2p)&21 and ^(A(0))2& andC@C̄C# between̂ C(p)C̄(2p)&21 and ^(A(0))2&:

F~kp!5k24S T1~p!S ḡ2~1!

ḡ2~k! D
~3/4!~Nc/2b!

0

T3~p!S ḡ2~1!

ḡ2~k! D
~13/6!~Nc/2b!

0
D , ~7.57!

where no mixing between gluon and ghost occurs due toT250 in addition toT450. The coefficients of the 1PI OPEs rea
085034-22
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S Cgl
@A2# Cgl

@C̄C#

Cgh
@A2# Cgh

@C̄C#D 5
8p2

2b

Nc

2~Nc
221! S 2S Dpert

D0
D 22 S ln

p

LQCD
D ~3/4!~Nc/2b!21

S ln
m

LQCD
D ~3/4!~Nc/2b!

0

S Gpert

G0
D 22 S ln

p

LQCD
D ~13/6!~Nc/2b!21

S ln
m

LQCD
D ~13/6!~Nc/2b!

0
D , ~7.58!

where

Dpert~p!5S S ln p/LQCD

ln m/LQCD
D 2~13/6!~Nc/2b!

0

0 S ln p/LQCD

ln m/LQCD
D 2~3/4!~Nc/2b!D Dt~p!. ~7.59!

This result for the ghost part is new, while the gluon part reproduces the recent result of Boucaudet al. @22# in the MOM
scheme.~Note that their definition ofg is different from ours by a factor 2 and the coefficientg0 differs by the signature.! In
order to transfer from our renormalization scheme to the MOM scheme, we have used the translation rule~7.50!. In the Landau
gauge, therefore, we have confirmed that the ghost condensation does not affect the inverse gluon propagator as
level, even if the leading logarithmic corrections are taken into account in the OPE. In other words, the gluon conden
decoupled from the ghost condensation within this approximation.

C. Full propagators: Momentum dependence

The vacuum polarization tensor of the gluon is decomposed into transverse and longitudinal parts

Pmn
AB~p!5@PT~p2!Pmn

T 1PL~p2!Pmn
L #dAB, ~7.60!

wherePT andPL are functions ofp2 alone. Once the vacuum polarization functionsPT andPL of the gluon are obtained
from the OPE, the propagator is written as

~D !mn
AB~p!5dABF 1

2p21PT~p2!
Pmn

T 1
l

2p21lPL~p2!
Pmn

L G ~7.61!

5dABFZgl~2p2!

2p2 Pmn
T 1

l

2p21lPL~p2!
Pmn

L G , ~7.62!

where we have defined a functionZgl(2p2) by

Zgl~2p2!5Zpert~2p2!1ZOPE~2p2!ª
2p2

2p21PT~p2!
. ~7.63!

Note thatPL(p2)[0 in the conventional Landau gauge.
On the other hand, if the vacuum polarization function of the ghostPgh

AB(p2)5dABPgh(p2) is calculated by the OPE, th
ghost propagator is obtained as

GAB~p!5@~G0!211 iPgh~p2!#AB
215

1

2 ip21 iPgh~p2!
dAB5~2 i !

Ggh~2p2!

2p2 dAB, ~7.64!

where we have introduced a functionGgh(2p2) by

Ggh~2p2!5Gpert~2p2!1GOPE~2p2!ª
2p2

2p21Pgh~p2!
. ~7.65!

The OPE contributionPOPE to the vacuum polarization function in the inverse propagators~7.3! and~7.12! is related to the
Wilson coefficientC1PI as
085034-23
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POPE
ªS Pgl

OPE

Pgh
OPED 5CPIS 1

2
A2

iC̄C
D 5S ~ iD pert!

22 0

0 ~ iGpert!
22DFS 1

2
A2

iC̄C
D . ~7.66!

Substituting the result~7.49! into Eq. ~7.66!, we obtain a pair of vacuum polarization functions

POPE~p!5S S T22
13

3
T1D S ln p/lQCD

ln m/LQCD
D ~35/12!~Nc/2b! 1

~ iD pert!
2 S T22

26

3
T1D S ln p/LQCD

ln m/LQCD
D ~61/12!~Nc/2b! 1

~ iD pert!
2

2
13

3
T3S ln p/LQCD

ln m/LQCD
D ~13/6!~Nc/2b! 1

~ iGpert!
2 2

26

3
T3S ln p/LQCD

ln m/LQCD
D ~13/3!~Nc/2b! 1

~ iGpert!
2

D S Q1

Q2
D .

~7.67!

It turns out that the vacuum polarization functions just obtained reduce to the tree results, i.e., Eqs.~7.10! and ~7.19!, at k

51 ~or p5m!. Therefore, the ghost condensation^ iC̄C& contributes to the gluon and ghost vacuum polarization function
the leading logarithmic corrections of the OPE.

Thus the following OPE contribution to the gluon and ghost vacuum polarization functions are obtained:

PT
OPE~p2!5

2p2

b

Nc~11l!

~Nc
221! H S ln

p

LQCD
D ~35/12!~Nc/2b!21

S ln
m

LQCD
D ~35/12!~Nc/2b! S K 1

2
A2L 1

26

3
^ iC̄C& D

22
S ln

p

LQCD
D ~61/12!~Nc/2b!21

S ln
m

LQCD
D ~61/12!~Nc/2b! S K 1

2
A2L 1

13

3
^ iC̄C& D J S D0~p!

Dpert~p! D
2

, ~7.68!

Pgh
OPE~p2!5

2p2

b

Nc

~Nc
221! H 2

S ln
p

LQCD
D ~13/6!~Nc/2b!21

S ln
m

LQCD
D ~13/6!~Nc/2b! S K 1

2
A2L 1

26

3
^ iC̄C& D

12
S ln

p

LQCD
D ~13/3!~Nc/2b!21

S ln
m

LQCD
D ~13/3!~Nc/2b! S K 1

2
A2L 1

13

3
^ iC̄C& D J S G0~p!

Gpert~p! D
2

. ~7.69!
o

o

i
n.
a
IR
The effective gluon mass is obtained from the pole
Zgl(2p2), i.e., a solution of the equationp25PT(p2),
while the effective ghost mass is obtained from the pole
Ggh(2p2), i.e., a solution of the equationp25
2 iPgh(p2). In view of this, the solutions~7.68! and ~7.69!
would give an improvement of the tree-level results~7.11!
and~7.20!. However, a BRST non-invariant combinationQ2
of composite operators appears together with the BRST
variant combinationQ1 discussed in the previous sectio
Therefore, these results indicate that we need more ende
in order to reach the BRST invariant pole position in the
region.
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In the Landau gauge, especially, we have

Zgl~2p2!52p2Dpert~p!

2p22S p2

b

Nc

~Nc
221!

S ln
p

LQCD
D ~3/4!~Nc/2b!21

S ln
m

LQCD
D ~3/4!~Nc/2b! ^A2&D ,

~7.70!
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Ggh~2p2!52 ip2Gpert~p!

1p22S p2

b

Nc

~Nc
221!

S ln
p

LQCD
D ~13/6!~Nc/2b!21

S ln
m

LQCD
D ~13/6!~Nc/2b! ^A2&D .

~7.71!

After the Wick rotation to the Euclidean regionp2→2pE
2,

we find that the functionZgl(pE
2) is monotonically increasing

in pE
2 if ^AE

2&ª2^A2&.0, as in the case of constantPT

(2pE
2)5M2.0. On the other hand, if̂AE

2&ª2^A2&,0,
Zgl(pE

2) has a Landau pole in the IR region and is monoto
cally decreasing inpE

2 in the UV region. In the conventiona
Landau gauge, these results can be compared with thos
the Schwinger-Dyson equation~see, e.g., Ref.@53#! and the
numerical simulation on a lattice~see, e.g., Refs
@22, 54–56#!. According to these results,Zgl(pE

2) is en-
hanced at intermediate momenta and has a peak at ab
GeV. It was argued@56# that the enhancement of the gluon
form factor at IR region is related to quark confineme
However, this region is beyond the reach of the pres
study. Incidentally, data in a gauge other than the Lan
gauge is not yet available.

VIII. CONCLUSION AND DISCUSSION

In this paper we have discussed the multiplicative ren
malizability of the composite operatorO in QED and Yang-
Mills theory. This research is motivated by clarifying th
mechanism of mass generation and a possible connectio
quark confinement.

In QED, we have shown that the composite operato
trivially renormalizable and that the renormalized compos
operator is BRST and anti-BRST invariant for an arbitra
value of the gauge fixing parameter. There is no subt
related to the renormalization of the composite operator.

In Yang-Mills theory, we have adopted the most gene
Lorentz gauge with two gauge-fixing parametersj, l which
was derived by Baulieu and Thierry-Mieg@8#. We knew@2#
that the bare composite operatorO of mass dimension 2 is
invariant under thebare BRST and anti-BRST transforma
tions for the choice of gauge parametersl50 or j51/2 and
that it is also invariant under the gauge transformation in
Landau gaugel50. In this paper the composite operator h
been renormalized by taking into account the operator m
ing carefully. Here the matrix of renormalization factors h
been explicitly calculated. Consequently, we have found
the BRST and anti-BRST invariance of the renormaliz
composite operatorOR holds if the renormalized paramete
take the same value,lR50 or jR51/2, as the bare one
Moreover, we have obtained the RG flow in the~j, l! plane
to one-loop order. In the RG flow diagram, the RG flow ru
only on the linejR51/2 if the initial position ofj is located
somewhere on the line. The linelR50 is a line of fixed
points. Therefore, if the system is located on a point in
line lR50 initially, it cannot move from the initial position
08503
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This fact guarantees the BRST invariance of the renorm
ized composite operatorOR.

We have also examined how the conventional calculati
are modified in the presence of the vacuum condensat
mass dimension 2. By performing the OPE of the gluon a
ghost propagators, we have shown that the effective ma
of gluon and ghost are generated due to the nonvanis
vacuum condensate. Although this phenomenon was alre
suggested based on the tree level calculation, we have t
into account the leading logarithmic corrections consist
with the RG flow by making use of the RG equation. W
have found that the effective masses are provided from
ghost condensation̂i C̄•C& as well as the gluon condensatio
^1/2Am•Am& ~except for the Landau gaugel50!. This re-
sult should be compared with the tree level result where
effective mass has a contribution from the gluon condens
alone.

The next step is to show that the nonvanishing vacu
condensatêO&Þ0 is actually realized in the QCD vacuum
An attempt in this direction has already been performed
Ref. @20# by calculating the effective potential for the gho
condensation̂ iC̄C& in the SU(2) and SU(3) Yang-Mills
theories in the MA gauge. Quite recently, Verscheldeet al.
@57# have obtained the multiplicatively renormalizable effe
tive potential for the gluon condensate^1/2AmAm& in the
Landau gauge up to two-loop order in theSU(N) Yang-Mills
theory. Both results support that the nonzero vacuum c
densate of mass dimension 2 is energetically favored
Yang-Mills theory. In these approaches, an auxiliary fie
r(x) corresponding to the composite operator has been
troduced to obtain the effective potentialV(s) of a constant
s5r(x). However, this treatment has a number of sub
points which have not been discussed in these papers.
issue will be discussed in a subsequent paper@27# in detail.

In massless QED, photon pairing@43,44# can occur in the
strong coupling phase@39–41# where the chiral symmetry is
spontaneously broken. Therefore, it will be possible to d
cuss the interplay between quark confinement and ch
symmetry breaking on equal footing in a unified treatme
The extension of this viewpoint into the non-Abelian cas
i.e., gluon pairing@42# is also an interesting subject for futur
work.

Finally, we point out that the operatorO is essentially a
mass term for the gluon and ghost fields. Although a na
introduction of a mass term for the gluon alone breaks
BRST symmetry, our result indicates that there is a BR
invariant combination of mass terms

LmªtrF1

2
m2Am~x!•Am~x!1m2a i C̄~x!•C~x!G . ~8.1!

This mass term is very similar to that obtained after the sp
taneous breakdown caused by the nonvanishing vacuum
pectation value of the Higgs scalar field. In our case,
mass should be of dynamical origin. It is possible to give
proof of the multiplicative renormalizability of the Yang
Mills theory with a mass term preserving the BRST symm
try to all orders of perturbation theory. However, it is know
@58,59# that the introduction of the mass term~8.1! breaks
4-25
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the nilpotency of the off-shell BRST transformation as w
as the on-shell one. Consequently, the unitarity of the the
turns out to be spoiled. In this sense, the mass genera
should occur in a dynamical way, i.e.,^O&Þ0 in the limit
m→0. This viewpoint will be discussed in a subsequent
per.
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APPENDIX: OPE CALCULATIONS

In order to give the OPE correction for the gluon prop
gator, we need to calculate the following diagrams:
~A1!

~A2!

~A3!

For the correction of the ghost propagator, we need the calculation of the following diagrams:

~A4!

~A5!

~A6!
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