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Exact results in 5D from instantons and deconstruction
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We consider nonperturbative effects in theories with extra dimensions and the deconstructed versions of
these theories. We establish the rules for instanton calculations in 5D theories on the circle, and use them for
an explicit one-instanton calculation in a supersymmetric gauge theory. The results are then compared to the
known exact Seiberg-Witten type solution for this theory, confirming the validity both of the exact results and
of the rules for instanton calculus for extra dimensions introduced here. Next we consider the nonperturbative
results from the perspective of deconstructed extra dimensions. We show that the nonperturbative results of the
deconstructed theory do indeed reproduce the known results for the continuum extra dimensional theory, thus
providing the first nonperturbative evidence in favor of deconstruction. This way deconstruction also allows us
to make exact predictions in higher dimensional theories which agree with earlier results, and helps to clarify
the interpretation of 5D instantons.
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I. INTRODUCTION

Theories with extra dimensions might play an importa
role in resolving a variety of outstanding issues in parti
physics: they might resolve the hierarchy problem@1#, give
new mechanisms for communicating supersymmetry bre
ing @2#, or yield new insights into the flavor problem an
proton stability@3#. In many of the interesting application
@2,3# the gauge sector of the SM propagates in the e
dimension~though not in the models of@1# which aim to
solve the hierarchy problem!. If the gauge fields do propa
gate along the extra dimension, then nonperturbative eff
in the low-energy effective theory may differ significant
from those in ordinary 4D theories. The reason is that o
the extra dimension is compactified, the instanton can w
the compact extra dimension. Therefore, the presence o
extra dimension itself will modify the rules for instanto
calculus and influence the resulting nonperturbative effec

In this paper, we initiate the study of nonperturbative
fects for extra dimensional model building, using expli
instanton calculations, existing exact results in higher dim
sional gauge theories@4–11#, and deconstruction@12#. We
will concentrate on a single extra dimension compactified
a circle. In 5D with all dimensions non-compact there are
known finite action instanton configurations that would co
tribute to the semiclassical expression for the path integ
Ordinary 4D instantons would give a diverging action on
integrated over the fifth coordinate~assuming that the 4D
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instanton is independent of the fifth coordinate!, and no fully
localized 5D instanton solutions are known to exist. Th
situation changes drastically once the fifth coordinate is co
pactified. In this case the ordinary 4D instanton does giv
finite contribution. In addition there is a tower of instanto
that contribute, due to the fact that the 4D instanton can w
the extra dimension. In order to gain control over the no
perturbative effects in a strongly interacting theory we w
be considering supersymmetric extra dimensional theor
The simplest such theory is anSU(2) gauge theory with 8
supercharges in 5D~which corresponds toN52 supersym-
metry in 4D!. The reason behind the doubling of the minim
number of supercharges is that in 5D the Dirac spinor
irreducible. The aim of considering this model is not to bu
a realistic theory with extra dimensions, but rather to est
lish the rules for instanton calculations in the presence
extra dimensions, which can later be applied to more reali
models. Since in this toy model the effective 4D theory is
N52 theory, it can be exactly solved in terms of a Seibe
Witten curve @13,14#. This solution was first proposed b
Nekrasov in@4#.

We begin the first part of this paper by reviewing Nekr
sov’s solution, and slightly modify it to account for an am
biguity in the Seiberg-Witten curve. This ambiguity is anal
gous to those appearing in the ordinary 4D Seiberg-Wit
results discussed in@15#. We then turn to an explicit instan
ton calculation to verify the exact results of the curve. D
ing the course of this calculation we show that there are
towers of instantons that contribute to the effective acti
One of these towers is comprised by the large gauge tr
formed versions of the ordinary 4D instanton wrapping t
extra dimensionn times. The second tower is obtained b
applying an ‘‘improper’’ gauge transformation on the insta
ton solution, and the corresponding large gauge transform
versions of the solution obtained this way. This improp
gauge transformation is not among the allowed gauge tra
©2002 The American Physical Society33-1
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formations of the theory, since it does not obey the neces
boundary condition. Nevertheless, the transformed instan
solution obtained this way does obey all the conditions fo
proper semiclassical solution. A sum over these two tow
of instantons does indeed reproduce the exact results. T
our calculation confirms and improves the exact results,
more importantly it establishes the rules for instanton cal
lus in 5D theories. The agreement of the two calculatio
confirms that there are no fully localized 5D instantons, a
that the full semiclassical results can be obtained by the
over the two instanton towers.

A recent major development in the field of extra dime
sions is the construction of 4D gauge theories which rep
duce the effects of extra dimensions. The ‘‘deconstruct
theory@12# is based on a product gauge group theory in 4
and in fact provides a latticized version of the extra dime
sional theory. This has several interesting applications
model building in four dimensions@16–22#. So far, the
equivalence between the deconstructed theory and the h
dimensional models has been purely based on perturba
arguments, like matching of the perturbative mass spectr
the two theories. In the second part of this paper, we prov
the first evidence that deconstruction captures the n
perturbative effects as well. Deconstruction of the simpl
5D supersymmetric theory was done in@19#.1 The decon-
structed version of the theory turns out to be theN51, 4D
product group theory considered in@24#, where some non-
perturbative results for this theory were obtained. Since
deconstructed theory only hasN51 supersymmetry, one
cannot provide a full solution to the low-energy effecti
theory, like the Seiberg-Witten solutions; exact results
restricted to the holomorphic quantities in the theory—in t
case, the gauge kinetic term which includes the gauge c
pling. We will show that the nonperturbative information th
can be easily extracted from the deconstructed theory ag
with results from the continuum theory. This then serv
partly as an independent derivation of the nonperturba
results for the 5D theory, which have previously been o
tained from symmetry and consistency requirements,
also shows that the deconstructed theory does indeed ca
the nonperturbative effects of the higher dimensional the

This paper is organized in two major parts: Sec. II, d
voted to an analysis of the 5D theory on the circle and
low-energy nonperturbative dynamics, and Sec. III, conta
ing the corresponding analysis of the deconstructed the
and a comparison with the compactified continuous theo

We begin, in Sec. II A, with a review of the 4D Seiber
Witten setup and of the curve describing the low-energy
namics of the 5D theory on the circle due to Nekrasov~Sec.
II B !. In Sec. II C we derive the rules for instanton calcu
tions in the compactified supersymmetric 5D theory. W
show that a summation over two infinite towers of instanto
is required to restore invariance under the proper and
proper large gauge transformations. We perform a o
instanton calculation of the contribution to the low-energyt

1Very recently deconstruction of 6D supersymmetric theories
been considered in@23#.
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parameter of the theory and show that the result is in ag
ment with the improved Nekrasov curve.

We begin the study of the dynamics of the deconstruc
theory in Sec. III. We review the deconstructed theory and
Seiberg-Witten curve in Sec. II A. The matching of the pe
turbative mass spectra between the deconstructed and
tinuous 5D theories is reviewed in Sec. III B. After that,
Sec. III C, we study the correspondence between continu
and deconstructed instantons. We show, using the brane
ture of the deconstructed theory, how the proper and
proper large gauge transformations arise in deconstruct
and argue that the contribution of the diagonal~1,1,1, . . . ,
1!-instantons of the deconstructed theory match those of
two infinite towers of instantons of the continuum theory.
Sec. III D we derive the continuum Seiberg-Witten cur
from the deconstructed theory and show that it matches
curve of the continuous theory. Section III E is devoted to
detailed discussion of the matching of moduli between
continuous and deconstructed theories. This is an impor
issue, somewhat complicated by the fact that relations
tween moduli receive corrections from the quantum mod
cation of the moduli space of the individual gauge groups
the deconstructed theory. In Sec. III E 1, we give a heuris
argument in favor of the correct matching. We strengthen
argument by an explicit instanton calculation~Sec. III E 2!
showing that the modulus, which is to be identified with t
continuum theory modulus, does not receive correctio
from instantons in the broken gauge groups. In Sec. III E
motivated by the brane picture, we point out the existence
a special flat direction where corrections to the holomorp
deconstructed theory moduli from instantons in the brok
gauge groups vanish. Finally, in Sec. III F, we show that
large radius limit of the low-energyt parameter has the be
havior required by 5D nonrenormalization theorems.

II. 5D SU„2… CURVE AND EXPLICIT INSTANTON
CALCULATIONS

In this section, we first review the solution of the 5D,N
52 pureSU(2) gauge theory, in terms of a Seiberg-Witte
type curve, and then show how to perform an explicit insta
ton calculation in the theory. We will explain how to obta
the relevant instanton contributions from the ordinary 4
instanton, and find that the result of the explicit calculati
agrees with the curve prediction.

We will perform a 5D calculation of the path-integral co
tributions of 4D instantons, summing over two infinite tow
ers of instanton solutions. Every solution we sum over
obtained as anx5-dependent large gauge transformation
the usual 4Dx5-independent instanton, giving it a nontrivia
dependence on the compactified coordinate. These instan
have precisely the same number of bosonic and fermio
zero modes as the conventional 4D instantons. In addit
due to supersymmetry and self-duality of the instanton ba
ground, all contributions of non-zero modes to the deter
nants and higher loops in the instanton background cance
in the 4D case. The dependence of the instanton amplit
on the instanton size is determined entirely by the numbe
bosonic and fermionic zero modes and is the same as in
s

3-2
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EXACT RESULTS IN 5D FROM INSTANTONS AND . . . PHYSICAL REVIEW D65 085033
4D instanton calculation~in particular, the dependence on th
instanton size in the compactified supersymmetric theor
controlled by the 4DN52 beta function!. Thus the instanton
effects in the supersymmetric 5D theory turn out to be ren
malizable in the 4D sense. Therefore, it is meaningful
compare instanton-induced nonperturbative effects in
continuum 5D and deconstructed large-N 4D theories.

A. 4D Seiberg-Witten setup

First, let us introduce standard notation for the ordina
Seiberg-Witten case@13#. Consider pureN52 SU~2! theory
in 4D. On the Coulomb branch the adjoint scalar field of t
N52 vector superfield develops a vacuum expectation va
~VEV!

^f&5a
s3

2
, ~2.1!

and the gauge-invariant modulusu is defined via

u5^Tr f2&. ~2.2!

In the weak coupling regimeu is given by

u5
a2

2
1 (

k51

`

Gk

L4k

a4k22 , ~2.3!

where the infinite sum represents instanton contributio
Herek is the instanton number andL is the dynamical scale
of the theory. The complexified couplingtSW is given by the
second derivative of the holomorphic prepotentialFSW:

tSW~a!5
]2FSW~a!

]a2 5
4p i

g2~a!
1

q~a!

2p
. ~2.4!

In the weak coupling regime it receives contributions in p
turbation theory at one loop and from all orders in instanto

tSW~a!5
i

p
log

a2

L2 1 (
k51

`

tk

L4k

a4k . ~2.5!

The low-energy dynamics of the theory can be determi
from a genus one auxiliary Riemann surface described b
elliptic Seiberg-Witten curve. The curve is given by

y25~x22L4!~x2u!, ~2.6!

wherex andy parametrize the surface. The first step towa
obtaining the exact low-energy effective action for t
Seiberg-Witten theory is to define the meromorphic differe
tial l:

l5
ydx

L42x2 . ~2.7!

Then the VEVs of the scalar,a, and of the dual scalar,aD ,
are determined as functions of the modulusu by integrating
the meromorphic forml over the appropriately chose
cyclesga andgaD

of the Riemann surface~2.6!:
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a~u!5
&

2p R
ga

l5
&

p E
2L2

L2

l, ~2.8!

aD~u![
]F~a!

]a
5
&

2p R
gaD

l5
&

p E
L2

u

l.

~2.9!

Combining these expressions one can obtainF(a), which in
turn determines the complete low-energy effective action
an N52 theory. A few comments are in order. First, th
dynamical scale of the theory is defined in the so-cal
Seiberg-Witten scheme. It is related@25# to the Pauli-Villars
~PV! or dimensional reduction (DR) scheme~which are used
for explicit perturbative and instanton calculations! via the
one-loop exact expression,2 L252LPV

2 52LDR
2 . The inte-

grals in the expressions fora(u) and aD(u) can be easily
evaluated. In particular, in the weak-coupling regime,a
@L, the expression fora(u) can be inverted giving the
modulus~2.3!, and then the expression foraD„u(a)… can be
differentiated with respect toa to determine the coupling
~2.5!. All the coefficients of these expansions can be obtain
from the exact solution above. In particular, in the Seibe
Witten scheme the one-instanton coefficients are

G15
1

4
, t152

i

p

3

4
. ~2.10!

In fact, for all instanton numbers the instanton contributio
to tSW andu are related via the Matone relation@26,27#

tk52
i

p

~4k22!~4k21!

2k
Gk . ~2.11!

Alternatively, these coefficients fork51,2 can be derived
@28# via direct multi-instanton calculation of the effectiv
action.

Now, following Nekrasov@4# ~and keeping all the numeri
cal factors in place! we make a change of variables:

y5 i
p

&
L2 sinh~q!, ~2.12!

x5L2 cosh~q!. ~2.13!

The Seiberg-Witten curve becomes

u5
p2

2
1L2 cosh~q!, ~2.14!

and the meromorphic differential is now

l52
i

&
pdq. ~2.15!

2In this section we will use the Seiberg-Witten scheme, while
Sec. III, we use theDR scales. This difference will only be impor
tant for our comparison oft parameters and is trivial to account fo
3-3
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The VEVsa(u) andaD(u) are given by

aW ~u!5„aD~u!,a~u!…52
i

2p R
gW
pdq. ~2.16!

The cyclesgW are chosen in such a way that the corre
asymptotic behavior ofa(u) and aD(u) as u→` is repro-
duced.

In particular we have

a~u!52
i

2p E
2 ip

ip

pdq→A2u, ~2.17!

in agreement with Eq.~2.3!. For future use we introduce tw
new parameters,

w[A2u, n4[
L2

u
, ~2.18!

and rewrite Eq.~2.16! in the convenient form:

]aW ~u!

]w
52

i

2p R
gW

dq

A12n4 cosh~q!
. ~2.19!

B. The improved 5D SU„2… Seiberg-Witten curve

The N51 5D SU~2! theory onR43S1 will be viewed
from the perspective of the low-energy effective 4D theo
i.e., all the 5D fields are represented as infinite sets of
modes which are functions of theR4 variables.

There is a complex scalarF5f1 iA5 , which develops
the VEV

^F&5A
s3

2
, ~2.20!

and the gauge-invariant modulusU is now defined as@4#

U5
1

2 K Tr
cosh~2pFR!

p2R2 L , ~2.21!

which has the weak-coupling expansion

U5
cosh~pAR!

p2R2 1 instantons. ~2.22!

We claim that the curve describing the low-energy d
namics of the theory is given by

U5
1

p2R2 cosh~pRp!A112~pRL!2f ~pRL!cosh~q!.

~2.23!

HereL is exactly the same dynamical scale as before in
~2.6!. Notice that the curve~2.23! is slightly different from
Nekrasov’s relativistic generalization of Toda’s chain@4#:
The expression on the right hand side of Eq.~2.23! contains
an a priori unknown function f (pRL), which cannot be
08503
t

,
K

-
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determined based on symmetry arguments only. This fu
tion is just 1 classically, but it can get instanton corrections
every levelk:

f ~pRL!511 (
k51

`

f k~pRL!4k, ~2.24!

where each coefficientf k has to be determined from an ex
plicit k-instanton calculation. We will see below that th
function f will be needed to remove certain constant~i.e.
VEV independent! contributions from the complexified cou
pling t(A). The ambiguity in the curve predictions intro
duced byf is similar in spirit to the ambiguities@15# of the
Seiberg-Witten curves in the presence of matter.

In terms of this curve, the vevsA(U) and AD(U) are
determined in exactly the same way as in Eq.~2.16!:

AW ~U !5„AD~U !,A~U !…52
i

2p R
gW
pdq. ~2.25!

The cyclesgW are the same as in Eq.~2.16! such that

A~U !52
i

2p E
2 ip

ip

pdq→ 1

pR
cosh21~p2R2U !,

~2.26!

in agreement with Eq.~2.22!. In terms of the new param
eters,

cosh~a![p2R2U, n5[
2 f ~pRL!~pRL!2

sinh2~a!
,

~2.27!

Eqs.~2.25! can be expressed@4# in the form of Eq.~2.19!

]AW ~U !

]ga
52

i

2p R
gW

1

pR

dq

A12n5 cosh~q!
. ~2.28!

Hence, whenn45n5 , i.e.,

u5Ũ[
L2

2 f ~pRL!~pRL!2 ~p4R4U221!, ~2.29!

the VEVs of the two theories are simply related to ea
other,

]AW

]a
5

1

pR

]aW

]wU
u5Ũ

. ~2.30!

From this we can instantly calculatet as a function of the
modulusU of the 5D theory,

t~U !5
]AD

]A
~U !5

]aD

]a
~u5Ũ !5tSW~u5Ũ !. ~2.31!

Here on the left hand side we have the couplingt of the 5D
theory and on the right hand side we have the couplingtSW
of the 4D Seiberg-Witten theory.
3-4
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EXACT RESULTS IN 5D FROM INSTANTONS AND . . . PHYSICAL REVIEW D65 085033
From Eqs.~2.31!, ~2.30! and ~2.5! it is easy to determine
the 5D coupling at one-loop order,

tpert~U !5
i

p
logS sinh2~pAR!

p2R2L2 D . ~2.32!

We will discuss the interpretation of the perturbative part
t in Sec. III F.

Now we will determinet(A) in the 5D theory at the
1-instanton level. In order to do this we will

~1! determineA5A(U) from Eq. ~2.30!,
~2! invert it asU5U(A) and express it asŨ5Ũ(A) us-

ing Eq. ~2.29!,
~3! calculatea2(A) via a25a2

„u5Ũ(A)…,
~4! finally obtaint(A)5tSW„a

2(A)….
Each of these steps is explained in detail below:

~1! At the 1-instanton level equation~2.3! can be inverted:

a252u2G1

L4

u
. ~2.33!

Substituting this to the right hand side of Eq.~2.30! we get

]A

]a
5

1

pR

]a

]vU
u5Ū

5
1

pR S 11
3G1~LpR!4

sinh4~a! D . ~2.34!

Integrating this with respect toa we obtain

pRA5a1G1~LpR!4
cosh~a!

sinh~a! S 22
1

sinh2~a! D .

~2.35!

~2! Evaluating cosh of both sides of Eq.~2.35! and using
the definition ofa ~2.27!,

U5
cosh~pRA!

p2R2 X12G1~LpR!4S 22
1

sinh2~pRA! D C.
~2.36!

By Eq. ~2.29! we then determineŨ(A):

Ũ5
sinh2~pRA!

2p2R2 X12~LpR!4S f 114G1

cosh2~pRA!

sinh2~pRA!

22G1

cosh2~pRA!

sinh4~pRA! D C. ~2.37!

In deriving the last expression we used the definition off, Eq.
~2.24!, in the 1-instanton approximation.

~3! From Eq.~2.23! we determinea2(A) as

a252Ũ~A!2G1

L4

Ũ~A!
. ~2.38!

~4! Finally, we can write down the expression fort(A)
5tSW„a

2(A)… via Eq. ~2.5!,
08503
f

t5
i

p
logS sinh2~pAR!

p2R2L2 D2~LpR!4S f 1

i

p
14G1

i

p

12G1

i

p

1

sinh2~pAR!
1t1

1

sinh4~pAR! D ~2.39!

This expression together with Eq.~2.10! constitutes the
curve-prediction for the coupling of the 5D theory. Now w
will verify this prediction with an explicit 1-instanton calcu
lation. As a by-product of this comparison we will also d
termine f 1524G1 .

C. Rules for instanton calculations and results

In order to carry out the explicit instanton calculation w
first need to identify the classical instanton solutions in t
theory. As mentioned before, there are no known instant
in a 5D theory with all dimensions infinitely large; that i
there are no fully localized 5D instanton solutions. Once o
of the dimensions is compactified, the action of an ordin
4D instanton~which is assumed to be independent of t
coordinate of the extra dimension! will become finite. How-
ever, it turns out that this is not the only finite action soluti
that exists in this theory. In fact, the finite action solutions
the 5D SU~2! theory onR43S1 are given by two infinite
towers obtained from the ordinary instantons onR4. The
analysis of these solutions is a generalization to 5 dimens
of the R33S1 analysis carried out in@29#. There the role of
the 3D instantons was played by the Bogomol’nyi-Pras
Sommerfield~BPS! monopoles.

The first infinite tower of instanton configurations, label
by nPZ, is obtained from the ordinaryR4 instanton by ap-
plying periodic gauge transformations

Un5expS in
x5

R
s3D . ~2.40!

As a result of these gauge transformations,F→U†FU
1U†]5U, the large-distance asymptotics of th
F-component of the instanton becomes

F→s3S A

2
1 i

n

RD . ~2.41!

The existence of this tower represents the fact that the o
nary instanton can wrap the extra dimension an arbitr
number of times. It is also related to the fact that once
extra compact dimension is added to the ordinary 4D the
there will be additional gauge transformations related to
existence of the extra dimension. A summation over
whole instanton tower generated as above will ensure
the final result is gauge invariant under the full 5D gau
transformations, and not only under the subgroup gener
by 4D transformations.

The second tower is obtained from the first tower by a
plying an antiperiodic gauge transformation,

Uspecial5expS i
x5

2R
s3D . ~2.42!
3-5
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This ‘‘improper’’ gauge transformation is not among th
usual gauge transformations of the theory, since it obeys
antiperiodic boundary condition instead of being period
However, since all the fields of the model are in the adjo
representation of SU~2!, this gauge transformation does n
change the periodicity of the field configurations. Therefo
the instanton solution generated this way still obeys perio
boundary conditions, and has to be considered as an ordi
instanton solution. The large-distance asymptotics of
F-component of the second instanton tower is

F→s3S A

2
1 i

n11/2

R D . ~2.43!

In order to derive the instanton contribution tot of the 5D
theory we simply need to sum over the contributions totSW
of all the instanton configurations in each tower. Since
contribution of a single instanton is given byt1L4/a4 as in
Eq. ~2.5!, the sum over the two instanton towers is

p12 inst~A!5
t1L4

24 (
n52`

` S 1

S A

2
1 i

n

RD 4 1
1

S A

2
1 i

n11/2

R D 4D
5

t1L4R4

24

1

6

]2

]x2

3 (
n52`

` S 1

~x1 in !2 1
1

„x1 i ~n11/2!…2D
5

t1L4R4

24

1

6

]2

]x2

4p2

sinh2~2px!
, ~2.44!

where we have introduced the notationx5AR/2. Combining
with the perturbative expression fort we obtain the final
result:

t5
i

p
logS sinh2~pAR!

p2R2L2 D1~LpR!4t1S 1

sinh4~pAR!

1
2

3

1

sinh2~pAR! D . ~2.45!

Comparing this to Eq.~2.39! and usingt152( i /p)3G1 we
confirm the prediction of the 5D curve and in addition fix t
1-instanton coefficient in the functionf

f 1524G1521. ~2.46!

The consistency of the exact result with the explicit instan
calculation is strong evidence for the absence of fully loc
ized 5D instantons with finite action. Such instantons wo
give additional contributions tot, which we do not see. Fur
thermore, the agreement between the curve prediction
our instanton calculation confirms the rules for explicit 5
instanton calculations detailed above.
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III. NONPERTURBATIVE RESULTS
FROM DECONSTRUCTION

In this section we will study the 5D theory using deco
struction. A deconstructed version of a 5D theory is a
gauge theory. For an appropriate choice of VEV of its fiel
this 4D theory gives a latticized version of the original 5
theory @12#. The deconstructed version of the theory d
cussed here was proposed in@19#, and we refer the reade
there for a demonstration of the perturbative agreemen
the deconstructed and continuum theories. In what follo
we demonstrate exact nonperturbative agreement of
gauge coupling functions in the deconstructed and c
tinuum theories. The comparison between the deconstru
and the continuum theories has to be done in the~infinitely!
strong coupling regime of the deconstructed theory. Ho
ever, the quantities that we are going to calculate are p
tected by holomorphy, and thus our results remain relia
In addition, the deconstructed theory provides a more pre
understanding of the meaning of instanton effects in five
mensions.

A. Review of the deconstructed theory and its Seiberg-Witten
curve

Consider the 4DN51 SU(2)N theory with bifundamen-
tal chiral multiplets as in@24#. This is the deconstructed ve
sion of the 5DN51 SU~2! theory, as described in@19#. To
be explicit, the deconstructed theory is given byN51 vector
multiplets for each of the SU~2! gauge groups, and chira
multiplets Qi transforming as summarized in the followin
table:

SU(2)1 SU(2)2 SU(2)3 ¯ SU(2)N

Q1 h 1 ¯ 1
Q2 1 h ¯ 1 ~3.1!

] ] ] � ]

QN 1 1 ¯ h

The gauge invariant operators~whose VEVs parametrize th
moduli space! are Bi5detQi , i 51, . . . ,N and T
5Tr(Q1¯QN). The Seiberg-Witten curve for the produ
group theory is most easily expressed@24# in terms of a
composite field which transforms as an adjoint under one
the SU~2!’s; namely,

F5Q1Q2¯QN2
1

2
Tr~Q1Q2¯QN!. ~3.2!

From this adjoint we form the usual SU~2! invariant VEV,
ũ5^Tr F2&, which is then re-expressed in terms of the gau
invariantsT and Bi , taking into consideration the quantum
modified constraints among gauge invariants. The Seib
Witten curve is then given by@24#

y25~x22ũ!224)
j 51

N

L i
4. ~3.3!

This has the form of the 4DN52 Seiberg-Witten curve in
terms of the modulusũ. This curve was shown to agree wit
3-6
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a brane picture of the theory in@30#. To compare with the 5D
theory we first give identical VEVsv1 to the Qi , and we
assume all the couplings andL’s are equal. The VEVs brea
the SU(2)N theory to a diagonalSU(2). Thecorresponding
5D theory ~classically! has a lattice spacingl 51/gv and a
radiusR5N/(2pgv), whereg is the gauge coupling of the
individual SU~2! factors. This identification is most easil
determined by comparing the spectra of the deconstru
and continuum theories@12#. However, the exact Seiberg
Witten results are most easily written in terms of holom
phic quantities. In particular, it is the holomorphic Noviko
Shifman-Vainstein-Zakharov~NSVZ! gauge coupling@31#
that is relevant here. This requires that the normalization
the fields be changed from the one conventionally used
deconstructed models, and should instead coincide with
normalization used in the preceding sections. We can acc
plish this by redefining the gauge fields asAm8 5gAm , so that
the gauge kinetic terms in the new variables beco
2(1/4g2)FmnFmn. Since in the deconstructed theory in th
limit N→` one expects to recoverN52 supersymmetry in
4D @19#, one needs to rescale the scalar fields and the fe
ons as well, such that, for example, the bosonic kinetic te
becomes

Lkin52
1

4g2 Fmn
i Fmn,i1

1

g2 DmQi
†DmQi , ~3.4!

where the covariant derivative is now given byDmw5(]m

2 iAm
a Ta)w. In fact from the derivation in@24,32# of the

Seiberg-Witten curve~3.3! it is easy to see that even for finit
N the moduli in the curve are implicitly defined in terms
the rescaled fields with the kinetic term given by Eq.~3.4!.

In this normalization we then obtain the holomorph
gauge coupling. However, the usual formula for the radius
the deconstructed extra dimension has to be modified.
reason is that in this normalization the physical masses of
gauge bosons are changed to 4v2 sin2(np/N), wherev is the
vev of the rescaled scalar bifundamentals. Therefore the
tice spacing is given byl 51/v, and the radius of the extr
dimension isR5N/2pv. One can see that this radius is h
lomorphic in the fields, as required from a quantity that
expect to appear in the SW curve. We will refer to this rad
as the holomorphic radius. Notice that at this point the rad
is defined perturbatively. In particular, the spectra throu
which the radius is defined are expected to receive non
turbative corrections. By studying the Seiberg-Witten cu
and explicit instanton contributions to the moduli of the d
constructed theory we will be able to make a precise non
turbative definition of the radius of the 5D theory.

B. Matching of the perturbative mass spectra

Once we higgs the theory down to the diagonal subgr
with a VEV proportional to the identity for each of the b
fundamentalsQi , we can shift the VEVs ofQi by an amount
proportional tos3 in order to give a VEV to the adjoint o
the 5D theory. The shifted VEVs break the gauge group t
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singleU(1). Furthermore, notice that giving the same dia
onal VEV to all the Qi also satisfies theD-flatness con-
straints,

QiQi
†2Qi 11

† Qi 11}1. ~3.5!

Hence, we have

Qi5S v1

v2
D . ~3.6!

Let us first match the perturbative mass spectrum of
gauge bosons of the deconstructed theory to that of the
theory. This is obtained by analyzing the kinetic terms for t
bifundamental scalars. The covariant derivative on the bif
damental will be given by

DmQi5]mQi2
i

2 S Am
~ i ! &Wm

~ i !2

&Wm
~ i !1 2Am

~ i ! D Qi

1
i

2
QiS Am

~ i 11! &Wm
~ i 11!2

&Wm
~ i 11!1 2Am

~ i 11! D , ~3.7!

whereA( i ) denotes the third gauge boson of thei th gauge
group, while W( i )65(A( i ),16A( i ),2)/&. Substituting the
VEV of Qi into the kinetic terms we obtain a mass term f
the gauge bosons of the form

1

4 (
i

@„~A~ i 11!2A~ i !!214uW~ i !u2…~ uv1u21uv2u2!

24~W~ i 11!1W~ i !2v1v2* 1H.c.!#. ~3.8!

This will give rise to a mass matrix for theA bosons of the
form

~ uv1u21uv2u2!

2 S 2 21 21

21 2

� 21

21 21 2

D . ~3.9!

The mass eigenvalues are then given by

mn
252~ uv1u21uv2u2!sin2

pn

N
, ~3.10!

from which the radius of the extra dimension in the largeN
limit is read off to beR5N/pA2(v1

2 1v2
2 ), and the corre-

sponding lattice spacing is given bya215(v1
2 1v2

2 )/21/2.
The masses of the W bosons are given by the matrix

1

2 S C 2B 2B*

2B* C

� 2B

2B 2B* C

D , ~3.11!

with C52(uv1u21uv2u2) andB52v1* v2 . The mass eigen-
values of the W bosons are then given by
3-7
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m̃n
25uv1u21uv2u22v1* v2e2p in/N2v1v2* e22p in/N

5uv12v2e2p in/Nu2

5mn
21uv12v2u2 cos

2pn

N
1 i ~v1v2* 2v1* v2!sin

2pn

N
.

~3.12!

In the large N limit this reduces ton2/R21uv12v2u2,
which has to match the expression in the continuum limit
order to match the expectation value of the 5D adjoint fi
correctly. The corresponding expression for the mass of
KK modes in the continuum theory in terms of the adjo
VEV A is m̃n

25n2/R21A2. From this we obtain thatv1

2v25A.
We should comment on the fact that the large-N pertur

tive spectrum agrees with that of the 5D theory for fix
values of theN extra moduli„one linear combination of the
N11 moduli T, B1 ,...,BN is the SU(2)D modulus…. There
are several possible ways to deal with the extraN moduli.
For example, in the brane construction reviewed in the n
section ~III C !, the N21 anomalousU(1) symmetries are
gauged~anomalies are cancelled via Green-Schwarz mec
nism at the cutoff scale!. Their D-flat conditions now leave
only 2 moduli,T andB1 ...BN . One combination of the two
is then theSU(2)D modulus. The real part of the remainin
modulus can be interpreted as the radion of the compact
continuum 5D theory, while its imaginary part can be ide
tified with the Wilson line of the graviphotonB5 . It is pos-
sible to stabilize the remaining modulus by adding
Lagrange multiplier term forB1 ...BN to the superpotential
In the continuum theory, this term would have the interp
tation as arising due to some~unspecified! radion stabiliza-
tion mechanism. Alternatively, without employing anom
lous U(1)s, onecould stabilize all baryons via Lagrang
multipliers Li , e.g., by adding a superpotential of the for
W5Li(Bi2v2).

C. Correspondence between continuum and deconstructed
instantons

We showed that the perturbative spectra of the compa
fied continuous and large-N deconstructed theories agre
The next step towards demonstrating the equivalence of
two theories is to find a map between the~semiclassical!
nonperturbative effects. In this section, we will discuss
some detail the map between instanton contributions to
low-energyt parameters in the two theories.

On the compactified 5D theory side, the semiclassical
culation of the instanton corrections to the ‘‘photon’’t pa-
rameter involves a sum over two towers of instantons. Th
two towers of instanton solutions are obtained from the fo
dimensional BPST instanton by applying the ‘‘proper’’ pe
odic ~2.40! and ‘‘improper,’’ i.e., antiperiodic~2.42!, large
gauge transformations. These transformations only exis
the unbrokenU(1) subgroup of theSU(2) theory onS1

since p1„U(1)…5Z, while p1„SU(2)/U(1)…5p1„SU(2)…
50. The summation over these towers of instantons ens
that the instanton amplitude is gauge invariant. In ot
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words, the full gauge invariance of the 5D theory is reco
ered only after all the semiclassical configurations in ea
instanton tower are taken into account.

Now let us consider instanton configurations in the dec
structed theory. This is a four-dimensional product gro
theory and its instanton solutions are given by the comp
set of instantons in each of theSU(2) gauge factors. The
general instanton solution of this theory is a (k1 ,k2 ,...,kN)
instanton, whereki stands for an instanton charge in thei th
SU(2) gauge factor.

In order to establish the correspondence between ins
tons in the two theories, we have to identify the contributio
of the two instanton towers of chargek in the continuum 5D
theory, with the contributions of the diagona
(k,k,...,k)-instanton in the product group theory in the lar
N limit. At the same time, the off-diagonal or so-called fra
tional instantons, (k1 ,k2 ,...,kN), with kiÞkj have no semi-
classical analogues in the continuum 5D theory. The ar
ment in favor of such an identification is as follows:

~1! In the following section we will derive the matchin
of the dynamical scales of two theories, Eq.~3.26!, which
identifies an instanton chargek in 5D with N21S i 51

N ki in 4D.
~2! The instanton in the deconstructed theory should br

the diagonalSU(2)D subgroup in order to be compared
the instanton in the continuum 5D theory in the Coulom
phase. This requirement together with1 singles out the~1,
1, . . . ,1!-instanton as the counterpart of thek51 instanton
in 5D.

We now discuss the analogs of the large gauge trans
mations ~2.40! and ~2.42! in the deconstructed theory an
their relation to the instanton calculus. An instructive way
find the large gauge transformations is via the brane c
struction of the four dimensionalSU(2)N theory @30#. An
added bonus of the brane picture is the simple geome
interpretation of the deconstructed KK mass spectrum.

The brane-engineered deconstructed theory is aC2/ZN or-
bifold of the type-IIA construction of pureN52 SU(2N)
theory of Ref.@33#. It involves 2N D4-branes, with world
volumes inx0...x3 andx6, suspended between two parall
Neveu-Schwarz 5-branes~NS5-branes! with world volumes
in x0...x5 and separated alongx6. The orbifold acts on the
x41 ix5 ~as well as onx61 ix7! coordinates; the details ar
given in @30#.

What is important for us is the description of the classi
moduli space of the orbifold theory. The 2N D4 branes are
only allowed to move in thex41 ix5 plane, in aZN symmet-
ric manner, as shown in Fig. 1. The most general configu
tion is that of two branes in eachZN wedge, away from each
other and from the origin. As indicated in the figure, one c
identify the positions of the two branes with the paramet
v6 of Eq. ~3.6!. The center of mass of the two branes in
given ZN wedge is identified with the VEVv, breaking
SU(2)N to the diagonal group, while the relative displac
ment is the expectation value of the diagonal-SU(2) adjoint
field, i.e., 2a5A. In particular, the mass spectrum given
Eqs.~3.10!,~3.12! can be easily derived from the picture. Th
KK masses in the deconstructed theory are given by
3-8
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FIG. 1. The classical moduli
space of the SU(2)N theory
~shown for N58! and thek51
large gauge transformation in th
brane construction.
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lengths of the strings stretched between the branes in a g
ZN wedge and their images. For example, in the simp
case of unbrokenSU(2)D , v15v25v, the length of a
string stretched between a brane a distancev from the origin
and itskth image ismk52v sin(kp/N), as in Eq.~3.10!; the
masses in the brokenSU(2)D vacuum~3.10!,~3.12! can also
be easily derived from the geometry of the brane constr
tion. In a picture where allZN wedges are identified, th
deconstructed KK modes correspond to open strings wind
around the cone.3

It is important to note that there is a discrete arbitrarin
in the assignment of pairs of branes toZN wedges in this
picture. As we will see, one can regroup the branes into p
in N different ZN invariant ways, one of which is shown o
Fig. 1. One can pair a brane in a given wedge with the im
of the other brane in the neighboring wedge and then red
the ZN wedges to pass between the original pair. The ‘‘ol
and ‘‘new’’ wedges are shown on the left and right in Fig.
respectively. The resulting world volume theory is, of cour
identical to the original one in all aspects, including mas
and interactions.

It is easy to work out the transformation corresponding
the regrouping shown on the figure in terms ofv6 : from the
picture one can immediately see that the relation betweenv6

~the VEVs in the ‘‘old’’ wedge! and v1,6 ~the VEVs in the
‘‘new’’ wedge! is

v1,15a21v2 , v1,25v1 , ~3.13!

wherea5ei2p/N. Clearly, one can generalize this regroupi
in N different ZN symmetric ways, by combining one of th

3It is interesting to note that the brane picture suggests that s
theory T duality may be underlying deconstruction, at least in t
supersymmetric cases. To see this, note that the large-N limit of Fig.
1 looks like a continuous distribution of branes on a circle of rad
v ~in string units; recall that 1/v is the size of the UV cutoff in the
deconstructed 5D theory!. The distance between two neighborin
branes is.2pv/N ~in string units and at largeN!. T duality relates
a straight infinite periodic chain ofDp branes, with period 2pv/N,
to a D(p11) brane with world volume wrapped on a circle
circumference 2pR5N/v. The worldvolume theory of the latter i
a compactified (p11)-dimensional Yang-Mills theory~the use ofT
duality to the construction on Fig. 1 can be strictly justified only
the v→` limit !.
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branes in the 1st wedge with the image of the other bran
the kth ~counting clockwise! wedge. The resulting transfor
mation is

v1→a2kv2 , v2→v1 , ~3.14!

with k51, . . . ,N; the transformation withk5N gives, of
course, the original pair.

It is clear from the mass formulas~3.10!,~3.12! that the
mass spectrum is invariant under the transformations~3.14!:
the masses of the KK tower of the vector supermultipl
neutral under the diagonalU(1), are invariant, while the
transformations withkÞN shift the KK number of theW6

vector supermultiplets byk units. It is easy to see that, in th
large-N limit, the action of the transformation~3.14! on the
spectrum is exactly that of the continuous large gauge tra
formations ~2.40!,~2.42!. At large N and fixedR, recalling
v5N/(2pR), Eq. ~3.14! reduces to

v→v, a→2a2
ik

2R
. ~3.15!

The minus sign can be undone by a transformation in
Weyl group,a→2a ~or equivalently, by accompanying Eq
~3.14! with an interchange ofv1 andv2!. Hence, recalling
the identificationa5A/2, we see that the action of both th
proper and improper~2.40!,~2.42! continuum large gauge
transformations is reproduced by the deconstructed the
for even and oddk, respectively.

It is possible to construct the discrete transformations g
ing rise to Eq.~3.14! directly in the field theory. The one
with evenk correspond then to gauge transformations, wh
those with oddk are ‘‘improper’’ gauge transformations, in
one to one correspondence with the continuum theory. I
easy to check that both types of large gauge transforma
are symmetries of the deconstructed theory action.

Instantons can now be easily added into the brane pic
of the deconstructed theory. In fact, an instanton of the t
~1,1, . . . ,1! corresponds to a D0-brane in the vicinity of ea
of the N pairs of D4-branes. In other words, there is a D
brane in each of theN wedges depicted in Fig. 1. Now, w
can redraw the wedges in exactly the same way as above
discover that there is still precisely one D0 brane inside e
new wedge. Of course its position inside the wedge
changed, but we need to integrate over the D0-brane p

g

s
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tions when we calculate instanton partition functions. In
grations over instanton collective coordinates~bosonic and
fermionic! in field theory correspond to integrations over t
D0-brane positions in each wedge. This means that the i
gral over the~1,1, . . . ,1!-instanton measure is automatical
invariant under Eq.~3.14!. This transformation is a symme
try not only of the microscopic action, but also of th
D-instanton theory. In the deconstructed theory there is
need to sum over the instanton images under Eq.~3.14!.

We can understand the difference between the continu
and the deconstructed case in more detail by conside
what the gauge transformations in these two theories are
the continuum calculation we have viewed the theory fr
the effective 4D theory’s point of view. This means that
information about the 5th coordinate in that theory was lo
all we kept was a tower of 4D KK modes. Then we ha
considered the 1-instanton in this effective theory. Since
omitted thex5 dependent gauge transformations from t
effective theory, the instanton measure and action will not
invariant under the large gauge transformations. In orde
reproduce the correct 5D answer, this additional symme
has to be imposed by hand, which is achieved by the s
mation over the two towers of the gauge-transformed ins
tons. The analog of this procedure in the deconstruc
theory would be to take the 1-instanton in the unbroken
agonalSU(2)D gauge group. This instanton~and its mea-
sure! would not be invariant under all the brokenSU(2)
gauge groups, and a way to restore the full gauge invaria
would be to sum over the discretized versions of the la
gauge transformations described above. However, a m
natural way to proceed in the deconstructed theory is to c
sider the effect of the~1,1, . . . ,1! instanton. In this case, th
situation is very different from before. The main difference
that, as explained above, the discretized version of thex5
dependent gauge transformations are themselves part o
gauge symmetries of the theory, they are simply given bi
dependent gauge transformations in theSU(2)i factors.
Also, as explained above, instead of considering a sin
instanton, one would have to look at the~1,1, . . . ,1! instan-
ton calculation, and thus in effect calculate anN instanton
amplitude. However, theN instanton measure must be co
structed in a way that it is completely gauge invariant. Th
there would be no need for additional summation over
images of the~1,1, . . . ,1! instanton, that sum is implicitly
performed by using the correctN-instanton measure for th
theory. Hence we conclude that the contribution of t
~1,1, . . . ,1!-instanton in the largeN-limit must match the
contribution of the two 1-instanton towers in the continuu
theory.

This argument applies directly to all diagonal~1,1, . . . ,1!-
instanton effects. We have thus constructed a dictionary
lating theSU(2)D instantons, contributing to thet parameter
in the deconstructed theory to those in the continuum the

D. Deriving the continuum Seiberg-Witten curve
from deconstruction

Given the identification of the instantons in the continuu
and deconstructed theories, we are now ready to compar
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Seiberg-Witten curves for the two theories. We should str
again that the deconstructed theory has only four sup
charges, while the continuum theory has eight. Therefor
priori, the curve obtained through deconstruction conta
less information than the original Seiberg-Witten curve~or
Nekrasov’s curve!. With eight supercharges one can exac
solve both for the Ka¨hler potential and the gauge kinet
function, while in this case only the gauge kinetic functio
can be obtained.4

As explained before, in order to obtain the Seiberg-Witt
curve for the deconstructed theory one needs to evaluaũ
5^Tr F2&, with F given in Eq. ~3.2!. Using Qi
5diag(v1 ,v2)5(v1A/2,v2A/2) we can now writeF clas-
sically as

F5@v1
N 2v2

N #
s3

2
5vNF S 11

A

2v D N

2S 12
A

2v D NG s3

2
~3.16!

5vNF S 11
pRA

N D N

2S 12
pRA

N D NG s3

2
~3.17!

→vN sinh~pRA!s3 . ~3.18!

Here we have used the holomorphic radiusR5N/2pv. This
corresponds to the radius that appears in Nekrasov’s c
~2.23!, since this is the correct holomorphic variable. We a
have

ũ5^Tr F2&→^2v2N sinh2~pRA!&. ~3.19!

Thus we can see thatũ includes the correct variable of th
5D curve in the continuum limit. The appearance of t
gauge invariant sinh2(pRA) in the 5D curve is predicted from
the deconstructed theory.

In order to actually match the deconstructed curve to
5D curve obtained above, we have to first calculate the r
tion between the scaleL appearing in the deconstructe
curve ~3.3! and the low-energy scaleLD which appears in
the 5D curve. The matching is slightly non-trivial due to th
presence of the KK modes, whose effects on the running
the coupling have to be taken into account. The matching
the holomorphic gauge couplings at the scale of the high
KK mode mKK52v is given by

1

gD
2 5

N

g2 . ~3.20!

We now want to run the diagonal coupling down to a scalem
which is below the mass of the lowest KK mode. The ren
malization group evolution equation is given by

1

aD~m!
5

N

a~mKK!
2

2

p
log

mKK

m
2

2

p (
n51

N

log
mKK

mn
,

~3.21!

4See, however, the discussion at the end of Sec. III E 3.
3-10
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where the first logarithm is the effect of the zero mod
while the sum gives the contribution of the KK modes, a
a5g2/4p. The mass ratio in the logarithm is just given b
mKK /mn51/sin(np/N). Using the relation@21#

)
n51

N21

sin2
np

N
5

4N2

22N , ~3.22!

we obtain the expression for the low-energy gauge coup

1

aD~m!
5

N

a~mKK!
2

2

p
log

mKK

m
1

1

p
log

4N2

22N . ~3.23!

Using the definitions of the scales

LD
4 5m4e28p2/gD

2
~m!, L45mKK

4 e28p2/g2~mKK!,
~3.24!

we obtain the scale matching relation

LD
4 5

L4N

mKK
4N24

24N

16N4 . ~3.25!

Using mKK52v and 2pR5N/v this can be rewritten as

LD
4 5

L4N

v4N

1

~2pR!4 . ~3.26!

There maya priori be instanton corrections to these matc
ing relations, but we can make precise the corresponde
between the parameters of the deconstructed and contin
Seiberg-Witten curves as follows.

First, we define aZN symmetric gauge invariant radiu
~along the branch of moduli space where this identificat
makes sense! via

S N

2pRD 2N

5)
i 51

N

Bi . ~3.27!

In the continuum limit along the branch of moduli space
are considering5 Bi→v2. For simplicity we define B
5(PiBi)

1/N. Let us now rescale the curve in Eq.~3.3! by x2

→x2BN(2pR)2 and y2→y2B2N
„(2pR)2

…

2, and rescale the
modulus by

Ū[
ũ

BN~2pR!2 → ^2 sinh2~pRA!&
~2pR!2 . ~3.28!

The last relation in Eq.~3.28! deserves some comment. It
obtained by identifyinĝ v2N&;^v2&N. We will demonstrate
in the next section that there are no corrections to Eq.~3.28!
from instantons in the broken gauge groups. There may
diagonal instanton corrections to this relation~which we do
not calculate!, which may be related to the functionf (pRL)
in Eq. ~2.24!. In what follows the first relation in Eq.~3.28!
should serve as the definition ofŪ, which is then unambigu-

5Recall that in this limit,A/v→0, so thatv6→v.
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ous. In the largeN limit we can also rewrite Eq.~3.26! in
using the gauge invariant definition of the radius

LD
4 5

L4N

B2N~2pR!4 . ~3.29!

The curve we obtain then is given by

y25~x22Ū !224LD
4 . ~3.30!

Finally, we note that in the continuum limitŪ is related via
Eq. ~3.28! to the modulus that appears in the continuu
curve ~2.23!, andLD is the dynamical scale in that theory
hence, we exactly reproduce the expected gauge coup
t(Ū) in the continuum theory. In fact, to be more precise t
modulus that appears in the continuum theory in@4# involves
^cosh(pRA)&221 and in the deconstructed theory it
^v2N sinh(pAR)2&/^v2&N. Hence, deconstruction leads us
suspect that the origin of the functionf (pRL) in Eq. ~2.24!
are the diagonal instantons that relate these moduli. Note
this function cannot be fixed by symmetry arguments, but
explicit instanton calculation of the sort we have perform
is necessary to determine it at every instanton level. Ho
ever, this possibility implies that matching of additional o
erators between deconstructed and continuous theories
be rather nontrivial. In Sec. III E 3 we will argue that th
correspondence between deconstructed and continuum m
els may be more direct along certain special flat directions
the deconstructed theory.

E. The role of instantons in the broken groups and
of the quantum modified constraints

In the following we clarify one subtlety: the role of quan
tum modified constraints in the relation between moduli
the deconstructed and continuum theories.

The modulusŪcl defined in terms of the moduliT andBi

via classical constraints, and the modulusŪ that becomes the
modulus of the continuum theory in the appropriate lim
differ by instanton contributions even though they have
same classical limit. So the question is which modulus
equate with the continuum modulus in the continuum lim
We first answer this by a physical argument, and then de
onstrate that it is correct by a technical one.

1. Relations between moduli

The continuum variableU in Eq. ~2.21! was defined in the
low-energy effective 4D theory, where the only instanto
that exist are the usual 4DSU(2) instantons. However, in
the deconstructed theory there is more than just one kin
instanton. Before breaking the diagonalSU(2) group to
U(1) there are two types of instantons: the instantons in
diagonal unbrokenSU(2), which will be mapped to the in-
stantons that remain in the effective 4D theory, but there
also instantons in the brokenSU(2) factors. We can denote
these as~1,0, . . . ,0!,~0,1,0, . . . ,0! instantons, while the in-
stanton in the diagonalSU(2) factor is the~1,1, . . . ,1! in-
stanton@34#. Since the instantons in the broken gauge grou
3-11
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have no analogs in the effective 4D theory, the definitions
the two variablesŪ and Ūcl may differ by the effects of
these instantons. To highlight the issue, we write the dec
structed curve in terms of the moduliT and Bi as in @24#
„along the flat direction~3.6!…:

y25Fx22Ūcl~T,Bi !1(
j 51

N
L j

4

~2pR!2B2G2

24LD
4 .

~3.31!

So it is important that it isŪ and notŪcl that corresponds to
the modulus in the continuum curve~2.23!. We can under-
stand why this is the case as follows.

For the purpose of demonstration we study the sim
case ofN52, with the discussion easily extended to high
N. For N52, the theory is given by

SU(2) SU(2) SU(2)

QaA f h h h

~3.32!

where one has an additionalSU(2) global symmetry in the
special caseN52, which is the lastSU(2) factor in Eq.
~3.32!. This is the theory considered by Intriligator an
Seiberg in@32#, and the derivation of the relation betwee
moduli for this case is basically already contained in@32#.
Here we repeat it in order to make the argument compl
and also to give a more physical explanation for the origin
these extra terms in Eq.~3.31!. The argument~which in fact
is the essence of the whole derivation of the curves in@32#
and @24#! is as follows. Consider the case when the fi
gauge group is much stronger than the second one,L1
@L2 . Then the second gauge group can be neglected
the first gauge group is simply anSU(2) theory with two
flavors ~four fundamentals!. This theory was described i
@35# ~see also@36#!. At low energies it is described by th
confined mesons

MA f Bg5QaA fQbBge
ab. ~3.33!

This meson contains three singlets and an adjoint3 under the
weakly gauged second gauge group. This adjoint is form
by the field

FA
B5

1

2L1
MA f Cge

f geCB. ~3.34!

In terms of this adjoint field the theory is simply describ
by an ordinaryN52 SU(2) Seiberg-Witten curve

y25~x21ũ!224L2
4. ~3.35!

Here ũ is the invariant formed from the composite adjoi
field FA

B

ũ5
1

2
Tr F25

1

8L1
2 MA f CgMBhDie

f geCBehieDA.

~3.36!
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Notice that this agrees with our earlier definition ofũ for the
generalSU(2)N theory up to a dimensionful constant. How
ever, we would like to express the curve in terms of t
natural variableu8, which is defined as the invariant

u85detM̃ , ~3.37!

where M̃ f g5 f 1
2QaA fQbBge

abeAB. We can now express th
variableu8 in terms ofũ. An explicit calculation shows tha
the relation between the two invariants is given by

L1
2ũ1u85PfM , ~3.38!

where the Pfaffian PfM is most easily expressed in terms
the SU(4) symmetric meson matrix~obtained by ignoring
the gauge interactions of the second gauge group sinceL2
!L1!. One can translate between the two sets of indices
MA f Bg and the SU(4) notation Mab by the assignmen
(11)→1, (12)→2, (21)→3, (22)→4. With this translation
PfM5 1

8e
abgdMabMgd . However, the PfM is exactly the

quantity which classically vanishes~once expressed in term
of the underlying quark fields!, but receives a one-instanto
correction quantum mechanically and yields the quant
modified constraint

PfM5L1
4. ~3.39!

The coefficient of the one-instanton contribution was fix
by Seiberg@35# by matching to the ADS superpotential@37#
after integrating out one flavor, and by Finnell and Poul
@25# by a direct instanton calculation. Using this relation w
obtain

L1
2ũ1u85L1

4. ~3.40!

The curve~3.35! is now rewritten~after rescalingx andy! as

y25„x22~u82L1
4!…224L1

4L2
4. ~3.41!

This explains the extra shift in the curve due to instantons
the first gauge group, and there is a similar shift due to
stantons in the second gauge group, and the final curve
comes

y25„x22~u82L1
42L2

4!…224L1
4L2

4. ~3.42!

This derivation of theSU(2)3SU(2) curve teaches us tha
the variableũ obtains a correction from its classical value
terms of the fundamental moduliMi j due to the instantons in
the individual gauge groups. These are the instantons w
after the breaking to the diagonal gauge group become
stantons in the broken gauge group. The extra instan
terms in Eq.~3.31! arise due to the fact that the curve h
been expressed in terms of a variable which obtains a
rection from these instantons. We have used this expres
for the curve since these are the variables that are natura
the deconstructed theory. However, in the continuum limi
is more convenient to work with the variableũ, in terms of
which instantons in the broken group never appear. T
modulus is directly related to the modulus of the continuu
3-12
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theory because the low energy continuum theory simply d
not have such instantons in it.

To stress the point, the deconstructed analog of the c
tinuum modulus proportional tôsinh(pRA)2& is related to
ũ}^vN@(11pRA/N)N2(12pRA/N)N#&. This gauge in-
variant VEV, not being directly related to the fundamen
gauge invariantsMi j ~or T and Bi in the general case!, is
subject to quantum modified constraints among the mod
When expressed in terms of the ‘‘fundamental’’ gauge inva
antsT and Bi there appears to be a superfluous term in
Seiberg-Witten curve, but this is only because of the cho
of gauge invariants in terms of which we expressed
curve, and is not relevant for comparison with the 5D theo
It remains to be proven thatũ(A) does not receive broke
instanton corrections, and we will demonstrate this~at least
for one-instanton corrections! in the next section.

2. Explicit instanton calculation of ũ„A…

In the following, we perform an explicit one-instanto
calculation to confirm that the modulusũ does not receive
any contribution from instantons in the broken groups.A
priori , a zero mode counting would allow such a term, but
exact cancellation demonstrates that such terms are abs
the ~1,0, . . . , 0!-instanton level. This verifies the identifica
tion of ũ(A) as the modulus of the continuum theory.

Let us consider a single instanton in the secondSU(2)
factor of the deconstructed theory~3.1!—the ~0,1,0, . . . ,
0!-instanton.6 The field components of this instanton are t
SU(2)2 gauge field and gaugions, and the~anti!-fundamental
flavorsQ1 andQ2 comprising fermions and scalars. Insta
ton components of all other fields are trivial. Thus, from t
perspective of the~0,1,0, . . . ,0!-instanton, the product grou
theory ~3.1! is equivalent to the ordinarySU(2) supersym-
metric QCD withNf52 real flavors:Q1 f with f 51,2, play
the role of the antifundamental chiral flavorsQ̃f , and Q2 f
are the fundamental chiral flavorsQf .

We can now apply the standard rules of instanton calcu
to the case at hand. For calculating instanton contribution
ũ we need three ingredients: the instanton action, the ins
ton components of the~anti!-fundamental scalars, and th
instanton measure.

Using conventions of@15,28#, the instanton action is
given by

S5
8p2

g2 12p2r2~ uv1u21uv2u2!2
i

&
S v̄1

v̄2
D

f

ḃ

3mḃ~Kf1K̃f !, ~3.43!

wherer is the instanton size,mḃ5$m1 ,m2% are the Grass-
mann collective coordinates of superconformal fermion z
modes andKf and K̃f are the Grassmann collective coord

6The contributions toũ of an instanton in thenth SU(2) factor
does not depend on the value ofn sinceũ involves a trace over al
bifundamentals.
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nates of fundamental and antifundamental fermion z
modes. The~anti!-fundamental scalar components of the i
stanton read@15#

qf
ḃ5A x2

x21r2 S v̄1

v̄2
D

f

ḃ

1
i

2&

uxu
~x21r2!3/2mḃKf

2
i

2&

r

uxu
1

~x21r2!3/2 x̄ḃbMbKf , ~3.44!

q̃f ḃ5A x2

x21r2 S v̄1

v̄2
D

f ḃ

2
i

2&

uxu
~x21r2!3/2K̄fmḃ

2
i

2&

r

uxu
1

~x21r2!3/2K̃fM
bxbḃ . ~3.45!

Here Mb5$M1,M2% denote supersymmetric fermion ze
modes, and the Weyl indicesḃ andb are raised and lowered
with the «-symbols. The fermion-bilinear terms in the scal
components above arise from the Yukawa sources in the
responding Euler-Lagrange equations.

Finally, the instanton measure of theSU(2) N51 super-
symmetric QCD withNf52 flavors is given by~cf. @15#!

E dm inst5
29

p2

mPV
4

g4 E d4x0r3drd2Md2mdK1dK̃1dK2dK̃2

3exp@2S#, ~3.46!

where x0 is the instanton position andmPV is the Pauli-
Villars renormalization scale,

mPV
4 expS 2

8p2

g2~mPV! D5LPV
4 . ~3.47!

The instanton contribution toũ is given by

ũ5^Tr F2&5E dm instTr F2, ~3.48!

where the instanton component ofF can be found from Eq.
~3.2! and Eqs.~3.44!, ~3.45!.

To simplify things a little we will now take the largeN
limit and hence setv15v2[v. Then the expression forF
takes form

F f h5vN22S q̃f ḃqh
ḃ2

1

2
d f h Tr~ q̃q! D , ~3.49!

and ũ is

ũ5v2N24K Tr~ q̃qq̃q!2
1

2
Tr~ q̃q!Tr~ q̃q!L . ~3.50!

The instanton solution forq̃q can be schematically writ-
ten as
3-13
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CSÁKI, ERLICH, KHOZE, POPPITZ, SHADMI, AND SHIRMAN PHYSICAL REVIEW D65 085033
q̃q5v21vmK1K̃mv1vMK1K̃Mv1K̃m2K1K̃M2K

1K̃mMK. ~3.51!

Here we made explicit only the Grassmann collective co
dinates and the VEVS. Notice that the first term on the ri
hand side of Eq.~3.51! is proportional to the unit matrix
v2}1, and can be dropped as it does not contribute to ei
F ~which is traceless! or ũ.

Accordingly, the contributions toũ take form @cf. Eq.
~3.50!#

ũ5E d2Md2mdK1dK̃1dK2dK̃2@~vmK!~K̃M2K!evmK̃

1~K̃mv !~K̃M2K!evmK1~vmK!~K̃mv !evmK1vmK̃

1~K̃m2K!~K̃M2K!1~K̃mMK!~K̃mMK!#. ~3.52!

Performing the integrations over Grassmanian collective
ordinates and keeping careful track of the raised and lowe
indices of the supersymmetric and superconformal z
modes7 in Eqs.~3.44!–~3.52! one discovers that the first term
on the right hand side of Eq.~3.52! cancels against the sec
ond term, the third term is vanishing and the fourth te
cancels against the fifth term. Thus we conclude that the t
contribution of single instantons of the~1,0, . . . ,0!-type to
the modulusũ vanishes. This fact is in agreement with o
identification ofũ with the modulus of the continuum theor
which can receive instanton corrections only of the ty
(k,k,...,k).

We conclude this discussion with an observation that s
cancellation of the instanton contributions is specific toũ. A
modulus defined in a different way would not enjoy the
cancellations. To illustrate this point one can conside
slightly different quantity

^Tr~ q̃qq̃q!2detq̃ detq&. ~3.53!

Classically this is equal tôTr(q̃qq̃q)21/2 Tr(q̃q)Tr(q̃q)&
}ũ, but there are quantum~1-instanton! corrections. In fact,
it is well known @32# that there is a quantum-modified co
straint in the N5Nf supersymmetric QCD, detM2B̃B
5L2N. For our case ofN525Nf , the meson determinant i
detM5detq̃detq, and the baryons areB̃5q̃1q̃2 and B
5q1q2 , where 1, 2 denote flavor indices and the color in
ces are summed over. The quantum-modified constraint

^detq̃ detq&5^q̃1q1q̃2q2&1L4, ~3.54!

and Eq.~3.53! can be written as

^Tr~ q̃qq̃q!2detq̃ detq&5^Tr~ q̃qq̃q!&2^q̃1q1q̃2q2&1L4.
~3.55!

Repeating the same~0,1,0, . . . ,0!-instanton calculation as
above one concludes that the first and the second term o

7Note that*d2mmȧmḃ5dȧ
ḃ/2, *d2mmȧmḃ52«ȧḃ/2, etc.
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right-hand side of Eq.~3.55! cancel each other. But the las
term, L4, remains, giving a nonvanishing single-instant
contribution to Eq.~3.55!.

3. A special flat direction

In this section, we show the existence of a flat directi
for which the partially broken instantons do not contribute
the curve, even when the curve is expressed in terms of
modulus Ūcl(T,Bi) of Eq. ~3.31! ~which, along a generic
direction, does receive corrections from the instantons in
partially broken gauge groups!.

This flat direction is easiest to infer from Fig. 1. Reca
that in the brane picture, the positions of the center of m
of the branes in thekth ZN wedge correspond to the expe
tation valueŝ Qk&5vks

0, where8

vk5akv. ~3.56!

The D-flat conditions and mass matrices are invariant un
the replacement of the expectation values~3.6! with ~3.56!.
There are a few points to make about the relevance of
phase choice, which might appear arbitrary in the dec
structedSU(2)N field theory, but is a consequence of theZN
symmetry of the brane configuration~it can, of course, also
be imposed on the field theory!. The most important point is
that, along the flat direction~3.56!, the baryon expectation
values obeyBk5a2kv2. Recall now that the term in the
curve due to the instantons in the partially brokenSU(2)
groups has the form~see Ref.@24#!:

(
k51

N

Lk
4B1 ...B̂k21B̂k ...BN , ~3.57!

where hats indicate that the corresponding fields are omi
and 0.N. Let us, for the moment, assume that all theLk are
equal complex numbers. Then Eq.~3.57! vanishes identi-
cally:

S (
k51

N

a24kDa2L4v2N2450. ~3.58!

Hence, in the vacuum~3.56!, the instantons in the partially
brokenSU(2) groups do not contribute to the curve andt
parameter of the low-energyU(1).

Now we need to justify our assumption of equal phases
theLk

4 factors~the assumption of equal couplings is inhere
to the idea of deconstruction!. To this end, note that the
SU(2)N field theory hasN anomalous globalU(1) symme-
tries with parametersvk , acting as follows:

Qk→eivkQk , ~3.59!

Lk
45→e2ivk12ivk21Lk

4,

8The relation~3.56! holds more generally, i.e., the VEVS of th
SU(2)D-breaking adjoint also obeyak5aka, as is evident from the
brane picture.
3-14
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where k51, . . . ,N and k50 is identified withk5N. The
transformations ofLk

4 reflect theU(1) anomalies. From the
last line in Eq.~3.59! it follows that theu parameters trans
form as follows:

uk→uk12vk12vk21 . ~3.60!

It is easy to see, by writing Eq.~3.60! as anN3N matrix
equation, that for oddN all u parameters can be put to ze
by field redefinitions. Thus, theLk can be assumed real from
the very beginning, justifying our assumption of equ
phases. In the case of evenN, the rank of the matrix in Eq
~3.60! is N21 and there is one physicalu parameter—the
combination:

uphys5
1

N (
k51

N

~21!k11uk . ~3.61!

It is easy to verify thatuphys is invariant under Eq.~3.60!
only for even N. By appropriate field redefinitions, an
choice ofuk can be brought to the formuk5(21)k11uphys

for some uphys. It follows that for N even, pluggingLk
4

5ei (21)k11uphysL4 and the VEVs~3.56! into ~3.57!, the con-
tribution of partially broken instantons is proportional
(k51

N/2 ei4pk/N/250 ~for N.4!. Thus, along the flat direction
~3.56!, the contributions of instantons in the partially brok
gauge groups cancel.

The brane picture suggests that the world volume the
becomesN52 in the infrared~i.e. largev, at least for fixed
N!; at largev the branes are far away from the orbifold fixe
point and thus do not ‘‘feel’’ the reduced supersymmet
This leads to the hope that more nonperturbative quant
could be matched between the deconstructed and contin
theory than just the agreement oft parameters considered i
this paper. We leave this for future study.

It is also worth commenting that it may be more natural
relate the continuum theory to the deconstructed the
along this special flat direction, despite the fact that
modulus that appears in the Seiberg-Witten curve does
receive broken instanton corrections in either case. Other
erators might still receive such corrections, and the non
turbative matching of those operators between the dec
structed and continuum theories may be nontrivial. F
example, along generic flat directions in the deconstruc
theory operators like cosh(pAR), which are related to the
operatorT in the largeN limit, are expected to receive non
perturbative correction due to the dynamics in partially b
ken gauge groups. On the other hand, it is natural to con
ture that along the special flat direction considered in t
section all such corrections vanish.

F. Large radius limit

The exact result for the curve should reproduce corre
the infrared behavior in the large-R limit. The 5D SU(2)
theory has been studied in@5#; for analysis of general 5D
theories see@6#. In the 5D uncompactified case, the no
renormalization theorem restricts the prepotential to con
at most cubic terms. The coefficient of the cubic term
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related to the coefficient of the Chern-Simons term. In
SU(2) theory that we are considering, a tree-level Che
Simons term is not allowed; the only contribution to the C
coefficient occurs at one loop along the Coulomb branch
is computed in@7#. We will check, in what follows, that the
curve ~2.23! reproduces these results in the large-R limit.

To begin, consider the perturbative part of thet-parameter
in the deconstructed theory. It is clear from the expression
Eq. ~2.45! that the instanton contributions vanish in theR
→` limit ~the instantons, which are Euclidean particles
5D, have infinite action in this limit and so can not contribu
to the path integral!, hence the perturbative part oft ~in the
DR scheme! is

tpert

4p i
5

1

4p2 log
4v2N sinh2 pAR

L2N . ~3.62!

Let us make some comments on the meaning oftpert(A).
Using the product formula sinhx5xPn.0„11x2/(n2p2)…,
we can rearrange equation~3.62! as follows:

tpert

4p i
5

1

4p2 log
A2

LD
2 1

1

4p2 (
nÞ0

logS A21
n2

R2D2 log
n2

R2 .

~3.63!

The formula~3.63! has a simple physical interpretation.
gives the perturbative running of the diagonalSU(2) gauge
coupling as a function of the scaleA; recall that Imtpert(A)
;1/gD

2 (A). The leading; logA term accounts for the run
ning of the 4D coupling at small scalesA, obeyingLD!A
!1/R. The sum overnÞ0 correctly~i.e., consistent with the
symmetries! takes into account the contributions of the K
modes to the running. To see this, note that for fixedA, the
main contribution to the sum in Eq.~3.63! comes from
modesn<AR, while the contribution of KK modes withn
@AR cancels between the two terms in the sum. Hen
modes of mass greater thanA decouple from the running o
the Wilsonian coupling, consistent with our interpretation
tpert(A).

Next, we can also consider the limit of largeR and fixed
A. In this limit, as discussed in the beginning of this sectio
only the linear term inA ~corresponding to a trilinear prepo
tential! survives int:

tpert

4p i U
large-R

→ 1

4p2 X2pRA2 logS L

v D 2NC. ~3.64!

Using the definition ofL from Eq. ~3.24!:

L4516v4 expS 2
8p2

g2~2v ! D5v4 expS 2
8p2

g2~v ! D ,

~3.65!

we then obtain, at largeN:

tpert

4p i
52pRS N

2pRg2~v !
1

A

4p2D52pRS 1

g5
2 1

A

4p2D .

~3.66!
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The interpretation of the two terms in Eq.~3.66! is as fol-
lows. The overall 2pR factor can be interpreted as an int
gration over the extra dimension and the~dimensionful!
combination (2pR/N)g2(v)5v21g2(v)5g5

2 as the 5D
gauge coupling. The real part of the term linear inA gives
the power-law running of the coupling@38# ~recall that in the
‘‘Weyl wedge’’ of the 5D theory ReA.0 @5#!. The imaginary
part of the second term originates in the one-loop 5D Che
Simons term mentioned above. The imaginary part ofR in
Eq. ~3.66! can be made to vanish by choosingv real or, as
already mentioned in Sec. III B, be interpreted as an exp
tation value of a field in the background supergravity m
tiplet.

IV. CONCLUSIONS

We have considered nonperturbative effects in theo
with extra dimensions from several different perspectiv
exact results, explicit instanton calculations and dec
structed extra dimensions. For definiteness we have focu
on the 5DSU(2) theory with eight super-charges. We ha
shown how to perform an explicit one-instanton calculat
in this theory by using two towers of instanton solutio
obtained from large gauge transformations acting on the
tt
v.

.

s.

,

d

08503
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-

s
:
-
ed

r-

dinary 4D instanton. Our results are in agreement with
improved version of the exact results obtained for this mo
in @4#. In the second part of the paper, we have conside
the deconstructed version of the same theory. We h
shown that the Seiberg-Witten curve for the deconstruc
model is in agreement with exact results and an explicit
stanton calculation for the continuum theory, thus providi
the first nonperturbative evidence in favor of deconstructi
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