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Remarks on noncommutative phenomenology
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It is natural to ask whether noncommutative geometry plays a role in four dimensional physics. By perform-
ing explicit computations in various toy models, we show that quantum effects lead to violations of Lorentz
invariance at the level of operators of dimension three or four. The resulting constraints are very stringent.
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I. INTRODUCTION

Mathematicians proposed noncommutative geometry
the corresponding noncommutative field theories as a p
sible alternative to conventional field theories@1#. Physicists,
for some time, were skeptical about the possible role of s
theories, given their nonlocal character. However, interes
creased with the realization that such theories can appe
the low energy limit of string theory in certain regions of th
moduli space@2#. This has lead a number of authors to a
whether such noncommutativity might play a role in physi
and particularly whether noncommutative field theory mig
become manifest at accessible energy scales@3–5,7–9#. Un-
like the situation for supersymmetry or large dimensions,
do not currently possess a compelling argument that n
commutativity should be relevant, or that it should be r
evant at some particular energy scale. Indeed, it is not c
that we can write down a noncommutative generalization
the standard model in a simple way. Still, one can a
whether we can constrain any possible noncommutativity
four dimensions from present experiments. The most strik
feature of such noncommutativity is likely to be the violatio
of Lorentz invariance.

The authors of@8#, for example, have investigated th
violations of Lorentz invariance which would arise in a no
commutative version of QED. To proceed, these authors
the tree level Lagrangian of the theory, and perform
Seiberg-Witten map to rewrite the theory in terms of conv
tional quantum fields. This generates a number of Loren
invariance violating operators, all with two derivatives re
tive to the renormalizable terms, i.e., dimension six. This
basically because the indices onumn must be contracted with
derivatives. They argue that these constrain the parameu
to be of order (121022) TeV22. Far stronger bounds aris
if one considers potential noncommutative effects in stro
interactions@4#.

On the other hand, one can imagine that operators
lower dimension, such as

O15meu
mnc̄smnc, O25umnc̄Dmgnc,

O35~u2!mnFmrFn
r , O45umnursFmnFrs

~1!

might appear at some level. Indeed, we will demonstrate
this paper that these operators are generated by quantu
fects in a variety of noncommutative theories. Typically th
0556-2821/2002/65~8!/085032~6!/$20.00 65 0850
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are generated at two-loop order. Because these operator
~effectively! dimension four, whileu has dimensions of in-
verse mass squared, the coefficient must involve additio
dimensionful factors. As we will see, if we suppose that t
theory has some cutoffL, then there are two interesting re
gimes. In the first,uL2@1, and the additional dimension
are just made up by factors of Tr(u2). In other words,the
coefficients are independent of the magnitude ofu. In this
case, such noncommutativity is ruled out, no matter what
scale at which it might be relevant. This is an example of
infrared-ultraviolet connection.

On the other hand, such a cutoff is probably not sens
for other reasons, connected with the infrared-ultravio
connection. For example, scalar propagators have bizarre
frared singularities@10#. In the limit uL2!1, the coefficients
of these operators are proportional to this dimensionl
quantity. The limits on such operators are quite stringent.
example,O1 has the structure of a coupling of the electr
magnetic moment to a background magnetic field~though
there is no corresponding orbital coupling!. Just given that
one can detect the Earth’s magnetic field with ordinary m
nets, one should be able to establish a limit of order 10215 on
its dimensionless coefficient. Indeed, the actual limits
orders of magnitude more stringent, particularly from clo
comparison tests@11# and from spin-polarized solids@12#.
O2 would lead to propagation of photons with differe
speeds depending on their polarizations. Again, string
limits exist, here from cosmic birefringence@13#. However,
because the coefficient is quadratic inu, the corresponding
limits on uL2 are significantly weaker.

In any case, even in this limit, if we combine the limit o
uL with plausible restrictions onL, we can set very strong
limits on u. For example, ifL51 TeV, then callingu
51/M2, we will seeM.1012213 GeV, or possibly stronger
The limit scales linearly withu.

II. OPERATORS INVOLVING PHOTONS

We consider first operators of the typeO3. These are gen-
erated already at one loop, in a noncommutative version
QED. Related computations have been done in@6#. The re-
quired Feynman rules can be found there, and in@5,22#. A
straightforward computation gives, for the vacuum polariz
tion:
©2002 The American Physical Society32-1
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iPmn~q!524e2E d4k

~2p!4sin2~k`q!

3@4kmkn1~k2gmn pieces!#
1

k4 ~2!

where, noting that we will be interested in the leading ter
at small momentum, we have suppressed theq dependence
except that from the Moyal factors. If we suppose that
cutoff in the theory is much larger than 1/u, then this expres-
sion, while ultraviolet finite, is singular at small moment
Instead, we can consider the limituL2!1. Now we have to
ask precisely how we cut off the theory in a gauge-invari
fashion. We will not investigate this question carefully her1

Instead, we note that the operatorO4 receives a contribution
from the first term in the integrand, and this contains ter
that are at least formally gauge invariant. Introducing
momentum-space cutoff yields:

Le f f'2
e2

16p2 L4O4 . ~3!

So already at one loop, Lorentz-invariant dimension fo
terms are present. As we will see, the experimental limits
such terms are impressive. But limits on the operatorO1 are
potentially much stronger, given that it depends linearly
u. In the next section we study this operator.

III. TWO-LOOP CONTRIBUTIONS TO THE FERMION
LAGRANGIAN

We consider a Yukawa theory, with the Lagrangian

L5 i c̄]”c1
1

2
~]f!21gc̄!f!c2mc̄c. ~4!

It is important here thatc is a Dirac fermion; otherwise the
coefficient of the would-be operator,O1, vanishes.2 The
Feynman rules for this theory are given, for example, in@10#.
To study the operatorO1, we study the fermion self energ
evaluated on shell. At one loop, the only diagram is plan
and there is nou dependence. At two loops, however, there
a nonplanar diagram. This diagram has nontrivialu depen-
dence. In the limit thatuL2!1, we can expand the integran
in powers ofu. There is a term proportional tosmn which is
quadratically divergent:3

1One approach to a cutoff starts with the observation of@6# that in
a supersymmetric theory; this contribution is canceled by the c
tribution of gauginos. If we introduce a soft mass for the gaugin
then this could act as a regulator.

2This is because the phase factor appearing at the vertex
cosine for a Majorana fermion, but an exponential for a Dirac f
mion.

3Here and below, we do not carefully distinguish the operatorO1

from operators such asumnc̄smnD” c, which are equivalent if one
uses the equations of motion. We will confine our attention her
on-shell computations.
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wherel `k[ l mumnkn . Simplifying, this yields

4miE d4k

~2p!4

d4l

~2p!4 kmknl rl sumrsns

1

k4~k1 l !4~ l !2 .

~6!

To perform the integral, it turns out to be simplest to fir
combine the first two terms using a Feynman parameter. T
yields

24imE d4kd4l

~2p!8 dx
x~12x!k` lkml nsmn

@k21 l 2x~12x!#4l 2
. ~7!

One can now do the integral overk, leaving

m

2p2

1

~16p2!2

umnsmn

l 2
~8!

so, introducing a simple momentum space cutoffL2 on l 2,
we obtain

Le f f5
1

2
mL2S g2

16p2D 2

umnc̄smnc. ~9!

The main point here is that the result is nonzero, and, up
factors of order one, is of the size one might naively gue

In the limit uL2@1, one can also easily obtain the lea
ing piece of the integral. One now must keep the full exp
nential factor,eik` l . However, in some ways, this is simple
We now have to study

E d4kd4l
4mkml nsmneik` l

k4~k1 l !4l 2
. ~10!

Although by simple power counting this integral is both u
traviolet and infrared divergent, the dependence onumn is
finite. To see this, first regulate the infrared divergence
temporarily inserting an infrared cutoff. For low momentu
we may then expand the exponential to obtain a power se
in u. The leading term is independent ofu and is divergent.
But the integral for the subsequent terms depending onu are
convergent due to the additional powers of the momenta.
these terms we may remove the cutoff. In the ultraviolet
phase factor damps the logarithmic divergence, and again
u dependence is finite.

This integral also has the interesting feature that it is
dependent of the overall scale ofumn . To see this, write
umn5ubmn wherebmn is a matrix of numbers describing th
orientation ofumn relative to a fixed coordinate system. B
rescaling the momenta appearing in the integral the dep
dence onu can be eliminated. Remarkably, our result in t
limit of a large cutoff depends only on the direction ofumn

and not its magnitude.
Now in the integral, we can proceed much as we d

before, and obtain an analytic result in a few lines of algeb
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REMARKS ON NONCOMMUTATIVE PHENOMENOLOGY PHYSICAL REVIEW D65 085032
First simplify the integral by setting the noncommutativity
lie, say, in the 1,2 direction. Then introduce a Feynman
rameter to combine the first two factors in the denomina
One then shiftsk in the usual way, and obtains

24mE dxd4kd4lx~12x!smnkml n

@k21 l 2x~12x!#4l 2
eiu12(k1l 22 l 1k2). ~11!

Despite the shift the numerator retains the same form as
fore becausesmn and umn are antisymmetric. The integra
involving components ofsmn other thans12 now vanish.
This is because only for the 1,2 components is the integr
not an odd function of the momenta. Then Eq.~11! simplifies
to

24ms12

1

i

d

duE dxd4kd4lx~12x!

@k21 l 2x~12x!#4l 2 eiu12(k1l 22 l 1k2).

~12!

Now one can rescalel to eliminate thex(x21) in the de-
nominator, and combine the remaining two factors with
new Feynman parameter. One can then integrate over
components ofk and l in the 0 and 3 directions. Introducin
a Schwinger parameter to exponentiate the remaining
nominator, one can sequentially do the integrals over th
and 2 components ofk andl. All of the integrals involved are
elementary, and one obtains, finally:

Le f f5
4

3
mS g2

16p2D 2 pumn

A1

2
Tr u2

c̄smnc. ~13!

These results are readily extended toU(1) and U(N)
gauge theories containing fundamental matter. For the c
of a U(1) theory, there are two diagrams at two-loop orde4

The Feynman rules may be found in@5#, after correcting a
sign in the phase of the photon-electron-electron Feynm
rule so that the vertex factor is proportional toeipI`pF, for
incoming ~outgoing! electron momentumpI(pF) and using
the ` notation defined below Eq.~5!. One finds that these
two diagrams contribute equally but add constructively,
both limits. In the case of aU(N) gauge theory, there ar
again two diagrams. The Feynman rules are given, for
ample, in@14#.5 Here one also does not find a cancellatio6

In fact the result is independent ofN, so theU(N) andU(1)
theories generate the operator with the same coefficient.
finds in the limit uL2!1 the effective Lagrangian for th
on-shell amplitude is

4Two-loop diagrams with one-loop self-energy subgraphs do
contribute toO1.

5In this reference the momenta are pointing into the vertices. T
is confirmed by taking the commutative limit to obtain the usu
rule for non-Abelian gauge theory.

6In an earlier version a cancellation for both theU(1) andU(N)
theories was obtained. This result was incorrect due to a sign e
in deriving a Feynman rule.
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Le f f5
3

4
mL2S e2

16p2D 2

umnc̄smnc, ~14!

where theU(1) generator is normalized to 1/2. In the lim
uL2@1 it is given by

Le f f52mS e2

16p2D 2 pumn

A1

2
Tr u2

c̄smnc. ~15!

Finally, we can consider a theory with Yukawa intera
tions and aU(1) gauge interaction. In this case, there
again a nonzero contribution. Proceeding as above, we
tain

Le f f52mL2S eg

16p2D 2

umnc̄smnc ~16!

wheree andg denote the gauge and Yukawa couplings,
spectively. In aU(N) gauge theory this is generalized to

Le f f52
N

2
mL2S eg

16p2D 2

umnc̄smnc. ~17!

We will discuss the possible experimental implications
these results below.

These calculations have all been done in terms of
noncommutative variables. Because we have calculated
erators which are bilinear in the fields, the noncommutativ
is not relevant. We have considered how these computat
might look if one first performs the Seiberg-Witten map. I
deed, the calculations are distinctly more complicated.
one loop, it is obvious that there is nou dependence in the
self energy, if one works with the noncommutative variabl
If, in a U(1) theory, say, one first performs the Seiber
Witten map, there are many individual diagrams with no
trivial u dependence. Off shell, working, say, at zero mom
tum, it is easy to see that there are terms in the effec
action with nontrivialu dependence. We have checked th
theu dependence vanishes on shell. This seems quite rea
able. Thinking of the Seiberg-Witten transformation as
field redefinition, we do not expect correlation functions
the new fields to be the same as those of the original o
but we do expect on-shell quantities to be the same.

In general, then, we see that the operatorO1 is generated.
In the smallLu limit, we expect the experimental bounds
be very strong. We will discuss these bounds in the n
section. One might object that the cutoff we have introduc
is artificial. A natural cutoff for noncommutative field theor
is to realize it as a largeN limit of lower dimensional field
theories ofN3N matrices~though the precise nature of th
limit has not yet been understood!. In this way one appears
to guarantee that counterterms will all involve *-produc
However, precisely in the two-loop nonplanar graphs that
have studied, one encounters graphs that produce do
trace operators. These are the diagrams that exhibit UV
mixing reminiscent of the exchange of closed string state
open string field theory. It is important then that we ha
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done the two-loop calculation in the infinite cutoff limit a
well, and found a relevant operator with a coefficient ind
pendent of the scale ofu. One can easily imagine that UV-IR
mixing will produce all sorts of bizarre effects that mig
lead to experimental signatures. This has not been stud
Our results show that in addition to these peculiar effects,
NC field theory produces a relevant Lorentz violating te
with large coefficient. The term is precisely of the form w
found with anad hoc cutoff much lower than the energ
scale of noncommutivity. Thus, the constraints on a nonco
mutative field theory with no cutoff are much more stringe
than those we will exhibit in the next section.

IV. EXPERIMENTAL LIMITS

One expects that there are extraordinary limits on the
efficient of the operatorO1. For example, from the fact tha
one can measure the Earth’s magnetic field with a comp
one can set a limit on the coefficient ofO1 of order
10215 MeV. From precision measurements in atomic s
tems, one expects to be able to set very strong limits. In f
the best limit on this operator for the electron comes fr
magnetic systems@12#, where a limit of approximately
10225 MeV is set@15#. This bound is obtained from study
ing the oscillation of a highly electron spin-polarized torsi
pendulum, where the presence of the operatorO1 and the
rotation of the Earth induces a time-dependent macrosc
torque on the pendulum@16,15#. The limit from precision
tests of hyperfine splitting is about one order of magnitu
weaker@11#.

A number of authors have studied limits on dimension
operators proportional tou. In noncommutative QED, one
can set limits onAu in the several TeV range@8#. The stron-
gest limit is that discussed in@4#. These authors assume th
u-dependent terms in a noncommutative version of Q
lead to a couplingumnN̄smnN, whereN is the nucleon wave
function. This leads to a striking limit onu, Au
,(1015 GeV)21.

If we attempt to take the cutoff to infinity, it is clear tha
we can rule out noncommutativity at any scale. In this lim
the coefficients of the Lorentz-violating operators are far
large to accommodate the experimental bounds, for they
suppressed only by loop and gauge or Yukawa factors
are independent of the size of the noncommutative sc
This is a reflection of the infrared-ultraviolet connection. O
the other hand, as in@7#, it is more reasonable to include a
explicit cutoff. Otherwise, one will obtain, for example, u
acceptable infrared behavior for gauge boson and sc
propagators.

Lacking a complete noncommutative generalization of
standard model, it is hard to set precise limits. Still, we ha
seen that in theories with Yukawa and gauge couplings, th
are contributions toO1 which are proportional toay2, where
y is the Yukawa coupling, and contributions proportional
a2. The latter contributions are identical in both the pu
gaugeU(N) andU(1) theories. This suggests the possibili
although unlikely, that in a noncommutative formulation
SU(N) the two-loop pure gauge contribution could vanis
To verify or disprove this speculation would require a co
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putation in a satisfactory formulation ofSU(N) noncommu-
tative theories. Given these remarks, we make the conse
tive choice of obtaining bounds from only the pureU(1)em
and mixed gauge-Yukawa contributions and ignore the m
stronger bounds obtained from the pureU(3)c contribution.

For the electron, in particular, the contributions propo
tional to aeml2 translate to a limit on the dimensionles
quantityuL2, roughly

uL2,1028. ~18!

There are also much larger contributions proportional
aem

2 . For the electron, these translate to a limit on the dim
sionless quantityuL2, roughly

uL2,10219. ~19!

Given that the operator is suppressed by a power of the e
tron mass, it might be advantageous to study Lorentz vio
ing constraints in muons. A reanalysis of Zeeman hyperfi
splitting data in muonium, looking for sideral time varia
tions, could constrain the coefficient ofO1 to be less than
10219 MeV @17#. Future data from the BNLg22 experi-
ment could improve the latter limit by two to three orders
magnitude @17#. Putting in the numbers, the latter lim
would only constrainuL2 at the same level as the torsio
pendulum experiment, whereas the hyperfine data provid
weaker bound.

From the neutron and proton, we obtain a stronger lim
The precise value requires translating the quark moment
nuclear moments, and we will content ourselves with ve
crude estimates. The strongest experimental limit com
from the neutron@11#, where the limit is 10227 MeV. First
consider the contributions proportional to the Yukawa co
plings and the strong coupling. For the up and down qua
this translates, roughly, to a limit on the dimensionless co
bination

uL2,10217. ~20!

We can do better using the strange quark. Here, however
need to know what fraction of the nucleon spin is due to
strange quark, for which there is both considerable theor
cal and experimental uncertainty. The SAMPLE Collabo
tion has recently measured the strange contribution to
nucleon magnetic moment, and they findms50.0160.29
60.31mN @18#, wheremN is the Bohr magneton. Using th
central value a rough limit is

uL2,10219. ~21!

Let us now consider the pure electromagnetic contri
tions. It is reasonable to expect that the matrix elemen
this contribution does not vanish for either the proton
neutron. Here though the experimental limit is weaker for
proton, with a bound of roughly 10224 MeV @11#. This
translates into a limit

uL2, 10219, ~22!
2-4
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REMARKS ON NONCOMMUTATIVE PHENOMENOLOGY PHYSICAL REVIEW D65 085032
which is comparable to the bound obtained from the el
tron. The limit from the neutron is stronger, roughly

uL2,10222. ~23!

A three-loop pureSU(3)c contribution provides a stron
ger limit. For the neutron we would obtainuL2,10223.
Limits on O2 involving the nucleon also exist, but are typ
cally three orders of magnitude weaker thanO1 @11#. A non-
vanishing pure gauge contribution at two loops could
competitive with the limits found here. Work is in progress
evaluating the contribution to this operator@19#.

We can also consider Lorentz violating operators invo
ing the photon. Starting at two loops, for example, the f
lowing dimension 4 operators may be generated:

O35l3~u2!mn~F2!mn, O45
l4

8
~umnFmn!2,

O55l5umrFrsustF
tm. ~24!

The l i;(a/4p)2L4 and their detailed values are unimpo
tant for this discussion. These Lorentz-violating operat
introduceBiBj andEiEj terms into the action, and they a
fect the propagation of light in vacuum, causing the vacu
to behave much like an anisotropic dielectric medium@20#.
In particular, light travels at different speeds depending
the directions of polarization and propagation. This leads
cosmic birefringence, for which stringent limits already ex
@13,20#.

To understand this, for simplicity considerO4 only. The
behavior discussed here will also apply to the other ope
tors. Assume thatu is nonzero in the 1-2 direction. Solvin
the field equations one finds that for light moving only in t
3-directionp05up3u. Similarly, light moving in either the 1
or 2 directions but polarized along the 3 direction is un
fected. But light moving along the 1-direction say, and p
larized in the 2-direction has a modified dispersion relati
p05(11l2u2/21•••)up1u. The modification for more gen
eral polarizations and directions of propagation is ea
worked out.

The experimental limit on this effect is obtained fro
studying polarized light from distant radio sources, and lo
ing for a dependence of the angle of polarization on
distance to the source@13#. More specifically, Ref.@21# stud-
ied a large number of radio sources, and found a strong
relation between the angle of polarized light and the ma
axis of the source~after correcting for Faraday rotation!. For
the active radio sources this angle is roughly 90°, indicat
that the magnetic fields of these sources runs parallel to
major axis, and that the light is produced by synchrotr
an
’’
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radiation. If Lorentz violation is present, then the angle
the polarized light relative to the major axis will be rotate
away from 90° by an amount that grows with the distance
the source. Examining this data, Carroll, Field and Jackiw
not find any redshift dependence@13#. This constrains the
relative phase given above to bef5dpW •xW&O(1). Since the
galaxies observed in@21# span a sizable fraction of the ob
servable Universe, the constraint is

udpW u
H

&O~1!⇒dp&10242 GeV, ~25!

with the limit quoted in@13# smaller byh0/4. Strictly speak-
ing, Ref. @13# studied the effect of a different set of oper
tors, namely those of the typeEiBj . These lead to a disper
sion relation that is independent of wavelength@13,20#, for
which they obtain the bound quoted above. As@20# argues,
we cannot directly translate this limit to a bound on the o
erators in Eq.~24! since the dispersion relation is no long
independent of wavelength, making it more difficult to di
entangle the Lorentz violating effect from Faraday rotatio
In principle, however, these effects could be distinguish
since the Faraday rotation depends on the square of
wavelength, whereas for the Lorentz violating effect t
phase scales inversely with wavelength. Following@20#, it is
then reasonable that the data should still imply a bound
is roughly given by Eq.~25!. As the wavelength of the radio
sources analyzed in@21# are typically 10 cm, inserting this
value in the previous dispersion relation leads to the limit

l iu
2,10228. ~26!

This is an impressive limit, but becauseu appears quadrati
cally, it is not competitive with the terrestrial constraints. F
inserting the loop factor suppression inl i;(a/4p)2L4

leads to the bound

uL2,10212. ~27!

Of course, without a detailed underlying theory, these li
its cannot be interpreted unambiguously. With plausible
sumptions about the cutoff, we can boundu at an extraordi-
nary level. Even if the cutoff is 1 TeV, we can set a limit o
u, u,(1012213 GeV)22 .
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