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Remarks on noncommutative phenomenology
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It is natural to ask whether noncommutative geometry plays a role in four dimensional physics. By perform-
ing explicit computations in various toy models, we show that quantum effects lead to violations of Lorentz
invariance at the level of operators of dimension three or four. The resulting constraints are very stringent.
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[. INTRODUCTION are generated at two-loop order. Because these operators are
(effectively) dimension four, whiled has dimensions of in-
Mathematicians proposed noncommutative geometry anderse mass squared, the coefficient must involve additional
the corresponding noncommutative field theories as a postimensionful factors. As we will see, if we suppose that the
sible alternative to conventional field theor[dg. Physicists, theory has some cutoff, then there are two interesting re-
for some time, were skeptical about the possible role of suclimes. In the first§A?>1, and the additional dimensions
theories, given their nonlocal character. However, interest inyre just made up by factors of B). In other wordsgthe
creased with the realization that such theories can appear a§cfficients are independent of the magnitudedofn this
the low energy limit of string theory in certain regions of the 55e 'gyych noncommutativity is ruled out, no matter what the
moduli spacg2]. This has Iea.d a r_1umber of auth_ors to "?‘Skscale at which it might be relevant. This is an example of the
whether such noncommutativity might play a role in phys'cs'infrared-ultraviolet connection
and particularly whether noncommutative field theory might On the other hand. such a.cutoff is probably not sensible
become manifest at accessible energy sd@e$,7—9. Un- ' X probably ;
or other reasons, connected with the infrared-ultraviolet

like the situation for supersymmetry or large dimensions, w _ . i
do not currently possess a compelling argument that norconnection. For example, scalar propagators have bizarre in-

commutativity should be relevant, or that it should be re|_frared singularitie$10]. In the I|m|t 0A2<1, th.e Co_efficie'nts
evant at some particular energy scale. Indeed, it is not cledtf these operators are proportional to this dimensionless
that we can write down a noncommutative generalization ofiuantity. The limits on such operators are quite stringent. For
the standard model in a simple way. Still, one can askexample,0; has the structure of a coupling of the electron
whether we can constrain any possible noncommutativity ifnagnetic moment to a background magnetic fightbugh
four dimensions from present experiments. The most strikinghere is no corresponding orbital couplingust given that
feature of such noncommutativity is likely to be the violation one can detect the Earth’s magnetic field with ordinary mag-
of Lorentz invariance. nets, one should be able to establish a limit of order’ton

The authors of(8], for example, have investigated the its dimensionless coefficient. Indeed, the actual limits are
violations of Lorentz invariance which would arise in a non-orders of magnitude more stringent, particularly from clock
commutative version of QED. To proceed, these authors takeomparison test§11] and from spin-polarized solidgl2].
the tree level Lagrangian of the theory, and perform thep, would lead to propagation of photons with different
Seiberg-Witten map to rewrite the theory in terms of convenspeeds depending on their polarizations. Again, stringent
tional quantum fields. This generates a number of Lorentzfimits exist, here from cosmic birefringen¢#3]. However,

invariance violating operators, all with two derivatives rela- pocause the coefficient is quadraticdnthe corresponding
tive to the renormalizable terms, i.e., dimension six. This islimits on 9A? are significantly weaker.

2as.|catlily be(_:rahuse the ln(#]cetstgpy must t;e g:or:rt_]racted Vn\gtT In any case, even in this limit, if we combine the limit on
envatives. 1hey ar?‘;e a _Zese constrain the parameter , , i, plausible restrictions o, we can set very strong

to be of order (+-10 %) TeV “. Far stronger bounds arise . . e .

: . . . . limits on 6. For example, ifA=1 TeV, then callingé

if one considers potential noncommutative effects in strong 2 . b 13 .

interactions[4] =1/M?, we will seeM >10" GeV, or possibly stronger.
On the other hand, one can imagine that operators of "€ limit scales linearly witry.

lower dimension, such as

Olzmeawlﬂffﬂvlﬁ, 0,= 9’”‘//[)#%1//, Il. OPERATORS INVOLVING PHOTONS
OSZ(GZ)MFWF’;' O4= 6" 6"°F , F We consider first operators of the tygh. These are gen-

(1) erated already at one loop, in @ noncommutative version of
QED. Related computations have been dongSin The re-

might appear at some level. Indeed, we will demonstrate imuired Feynman rules can be found there, an@5i22]. A

this paper that these operators are generated by quantum straightforward computation gives, for the vacuum polariza-

fects in a variety of noncommutative theories. Typically theytion:
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i1l =—4 Zf d'k inP(k/\ 4 Ik _di [/NKKT !
I ;w(Q)— —4€e (27_[_)4S| ( CI) m (2,“.)4 (2,“.)4‘ k4(k+l)4(l)2’ (5)
_ 1 wherel Ak=1,6*"k, . Simplifying, this yields
X [4k,k,+ (K°g,,, pieces] g () .
4 f d' _di k“k”1°170 L
mi | ——z 5—ak*k"I?I7 o Y e
where, noting that we will be interested in the leading terms (2m)* (2m)* T KA K+ A(1)?

at small momentum, we have suppressedglaependence (6)
except that from the Moyal factors. If we suppose that th
cutoff in the theory is much larger thanélthen this expres-
sion, while ultraviolet finite, is singular at small momenta.
Instead, we can consider the linfin2<1. Now we have to
ask precisely how we cut off the theory in a gauge-invariant

e‘I'o perform the integral, it turns out to be simplest to first
combine the first two terms using a Feynman parameter. This
yields

fashion. We will not investigate this question carefully here. mmf d*kd Xx(l—x)k/\lkﬂl v’ )
Instead, we note that the operat@j receives a contribution (2m)° 77 [+ 12x(1—-x)]42
from the first term in the integrand, and this contains terms
that are at least formally gauge invariant. Introducing aOne can now do the integral ovkyrleaving
momentum-space cutoff yields:

) m 1 0“"a,, ®

e 5 27622 5
Lot~ 75240s. () 2m” (16m)° 12

) ) ) ) so, introducing a simple momentum space cutbff on 12,
So already at one loop, Lorentz-invariant dimension founye optain

terms are present. As we will see, the experimental limits on

such terms are impressive. But limits on the operélprare 1 g’ \?
potentially much stronger, given that it depends linearly on EeffZEmAZ(W> 0* o, . 9
0. In the next section we study this operator.
The main point here is that the result is nonzero, and, up to
Ill. TWO-LOOP CONTRIBUTIONS TO THE FERMION factors of order one, is of the size one might naively guess.
LAGRANGIAN In the limit #A?>1, one can also easily obtain the lead-

ing piece of the integral. One now must keep the full expo-
nential factore’*”\'. However, in some ways, this is simpler.
We now have to study

We consider a Yukawa theory, with the Lagrangian

— 1 _ —
L=igbyt S(0$) >+ g gry—myy. (&

ikl

dmk,| ,o*"e
f dkd———. (10)
It is important here thai/ is a Dirac fermion; otherwise the k*(k+1)%12

coefficient of the would-be operatof);, vanisheg. The ) ) o )

Feynman rules for this theory are given, for exampld1@].  Although by simple power counting this integral is both ul-
To study the operato®);, we study the fermion self energy traviolet and infrared divergent, the dependencedqp is
evaluated on shell. At one loop, the only diagram is planarf'”'te- To see thls_, first r_egulate the infrared divergence by
and there is n@ dependence. At two loops, however, there ist€mporarily inserting an infrared cutoff. For low momentum

a nonplanar diagram. This diagram has nontriéialepen- W€ May then gxpand th_e gxponenual to obtal_n a power series
dence. In the limit thaBA2<1, we can expand the integrand N 0. The leading term is independent éfand is divergent.

in powers ofé. There is a term proportional i@, which is ~ But the integral for the subsequent terms depending are
quadratically divergent: g convergent due to the additional powers of the momenta. For

these terms we may remove the cutoff. In the ultraviolet the
phase factor damps the logarithmic divergence, and again the

'One approach to a cutoff starts with the observatiofépthat in o dependence Is finite. . . .
a supersymmetric theory; this contribution is canceled by the con- This integral also has the interesting feature that it is in-

tribution of gauginos. If we introduce a soft mass for the gauginosdeépendent of the overall scale @f,,. To see this, write
then this could act as a regulator. 6,,=6b,, whereb,, is a matrix of numbers describing the

%This is because the phase factor appearing at the vertex is @rientation ofé,, relative to a fixed coordinate system. By
cosine for a Majorana fermion, but an exponential for a Dirac fer-rescaling the momenta appearing in the integral the depen-
mion. dence ond can be eliminated. Remarkably, our result in the

3Here and below, we do not carefully distinguish the operétpr  limit of a large cutoff depends only on the direction @f,
from operators such a8“"ya,, D, which are equivalent if one and not its magnitude.
uses the equations of motion. We will confine our attention here to Now in the integral, we can proceed much as we did
on-shell computations. before, and obtain an analytic result in a few lines of algebra.
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First simplify the integral by setting the noncommutativity to 3 ., e \2

lie, say, in the 1,2 direction. Then introduce a Feynman pa- Letr=7MA"| 152] 0" b0, (14
rameter to combine the first two factors in the denominator.

One then shiftk in the usual way, and obtains where theU(1) generator is normalized to 1/2. In the limit

OA?>1 it is given by
glflkalo—liko) —(17)

dXd4kd4IX(1—x)0Wk”I”
f e \? morv _
) (19

[k2+12x(1—x)]42

‘Ceffzzm( 16 2 wo'p,vdf'
Despite the shift the numerator retains the same form as be- g [t
fore becauser,, and 6, are antisymmetric. The integral ETre
involving components ofr,, other thano;, now vanish.
This is because only for the 1,2 components is the integrand Finally, we can consider a theory with Yukawa interac-
notan odd function of the momenta. Then Efyl) simplifies  tions and aU(1) gauge interaction. In this case, there is
to again a nonzero contribution. Proceeding as above, we ob-

tain

gl f12kal2—11k)

ot 1d f dxd*kd*Ix(1—x)
0127 49 2.2 a2 2
i doJ [k*+1%x(1—x)1% €g v

[ (1-x)] 12 ,ceff=—mA2(—216W ) 0“ ho (16)
Now one can rescaleto eliminate thex(x—1) in the de- wheree andg denote the gauge and Yukawa couplings, re-

nominator, and combine the remaining two factors with aspectively. In aU(N) gauge theory this is generalized to
new Feynman parameter. One can then integrate over the

components ok andl in the 0 and 3 directions. Introducing N [ eg 2 v
a Schwinger parameter to exponentiate the remaining de- Ee”__EmA 1672 0o Y- (17

nominator, one can sequentially do the integrals over the 1
and 2 components dfandl. All of the integrals involved are  We will discuss the possible experimental implications of

elementary, and one obtains, finally: these results below.
These calculations have all been done in terms of the
4 g2 \2 morr _ noncommutative variables. Because we have calculated op-
Eeff=—m( 2) bo b (13 erators which are bilinear in the fields, the noncommutativity
3 16w 1 ) is not relevant. We have considered how these computations
=Tré might look if one first performs the Seiberg-Witten map. In-

deed, the calculations are distinctly more complicated. At

These results are readily extended UWg1) and U(N)  ©ne loop, it is obvious that there is rfodependence in the
gauge theories containing fundamental matter. For the casi!f energy, if one works with the noncommutative variables.
of aU(1) theory, there are two diagrams at two-loop oftler. If: in @ U(1) theory, say, one first performs the Seiberg-
The Feynman rules may be found [i6], after correcting a  Vitten map, there are many individual diagrams with non-

sign in the phase of the photon-electron-electron Feynmafivial ¢ dependence. Off shell, working, say, at zero momen-
rule so that the vertex factor is proportional éf'/\Pr, for ~ tum, it is easy to see that there are terms in the effective

incoming (outgoing electron momentunp,(pg) and using action with nontrivial® dependence. We have checked that
the /A notation defined below Eq5). One finds that these the 6 dependence vanishes on shell. This seems quite reason-
two diagrams contribute equally but add constructively, in@Ple. Thinking of the Seiberg-Witten transformation as a
both limits. In the case of &(N) gauge theory, there are field redefinition, we do not expect correlation functions of
again two diagrams. The Feynman rules are given, for exthe new fields to be the same as those of the original ones,
ample, in[14].5 Here one also does not find a cancellafion. Put we do expect on-shell quantities to be the same.

In fact the result is independent f so theU(N) andU(1) In general, then, we see that the operafgris generated.
theories generate the operator with the same coefficient. Orl8 the smallA ¢ limit, we expect the experimental bounds to

finds in the limit 9A2<1 the effective Lagrangian for the be very strong. We will discuss these bounds in the next
on-shell amplitude is section. One might object that the cutoff we have introduced

is artificial. A natural cutoff for noncommutative field theory
is to realize it as a larg8l limit of lower dimensional field
“Two-loop diagrams with one-loop self-energy subgraphs do Ir]the.ones ofN X N matrices(though the precise nature of the
contribute t00;. limit has not yet been understoodn this way one appears
5In this reference the momenta are pointing into the vertices. Thi$0 guarantee that counterterms will all involve *-products.

is confirmed by taking the commutative limit to obtain the usual However, precisely in the two-loop nonplanar graphs that we
rule for non-Abelian gauge theory. have studied, one encounters graphs that produce double

8In an earlier version a cancellation for both tHé1) andU(N)  trace operators. These are the diagrams that exhibit UV-IR
theories was obtained. This result was incorrect due to a sign errdghixing reminiscent of the exchange of closed string states in
in deriving a Feynman rule. open string field theory. It is important then that we have
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done the two-loop calculation in the infinite cutoff limit as putation in a satisfactory formulation &U(N) noncommu-

well, and found a relevant operator with a coefficient inde-tative theories. Given these remarks, we make the conserva-

pendent of the scale @f. One can easily imagine that UV-IR tive choice of obtaining bounds from only the pusél).,

mixing will produce all sorts of bizarre effects that might and mixed gauge-Yukawa contributions and ignore the much

lead to experimental signatures. This has not been studiedtronger bounds obtained from the pwé3). contribution.

Our results show that in addition to these peculiar effects, the For the electron, in particular, the contributions propor-

NC field theory produces a relevant Lorentz violating termtional to ae,\? translate to a limit on the dimensionless

with large coefficient. The term is precisely of the form we quantity A2, roughly

found with anad hoc cutoff much lower than the energy

scale of noncommutivity. Thus, the constraints on a noncom- AA2< 107 8. (18

mutative field theory with no cutoff are much more stringent

than those we will exhibit in the next section. There are also much larger contributions proportional to
a?,.,. For the electron, these translate to a limit on the dimen-

IV. EXPERIMENTAL LIMITS sionless quantity/A 2, roughly

One expects that there are extraordinary limits on the co- OA2< 10719, (19)
efficient of the operato©,. For example, from the fact that

one can measure the Earth’s magnetic field with a compasgjyen that the operator is suppressed by a power of the elec-
one can set a limit on the coefficient @; of order  {on mass, it might be advantageous to study Lorentz violat-
10" MeV. From precision measurements in atomic SyS-ing constraints in muons. A reanalysis of Zeeman hyperfine
tems, one expects to be able to set very strong limits. In fackp|itting data in muonium, looking for sideral time varia-
the best limit on this operator for the electron comes fromtion& could constrain the coefficient 6, to be less than
magnetic systemilZ], where a Ijmit of. approximately 1919 Mev [17]. Future data from the BNig—2 experi-
10°2% MeV is set[15]. This bound is obtained from study- ment could improve the latter limit by two to three orders of
ing the oscillation of a highly electron spin-polarized tors'onmagnitude[ﬂ]. Putting in the numbers, the latter limit
pendulum, where the presence of the operdierand the  \yould only constraindA? at the same level as the torsion
rotation of the Earth induces a time-dependent Macroscopi§endulum experiment, whereas the hyperfine data provide a
torque on the pendulurfil6,15. The limit from precision \eaker bound.
tests of hyperfine splitting is about one order of magnitude Erom the neutron and proton, we obtain a stronger limit.
weaker[11]. o _ ~_ The precise value requires translating the quark moments to

A number of authors have studied limits on dimension sixnclear moments, and we will content ourselves with very
operators proportional t@. In noncommutative QED, one cryde estimates. The strongest experimental limit comes
can set limits on/@ in the several TeV rang8]. The stron-  from the neutror{11], where the limit is 102" MeV. First
gest limit is that discussed i]. These authors assume that consider the contributions proportional to the Yukawa cou-
¢-dependent terms in a noncommutative version of QCDylings and the strong coupling. For the up and down quarks,
lead to a coupling?“’Na ,,N, whereN is the nucleon wave this translates, roughly, to a limit on the dimensionless com-
function. This leads to a striking limit ong, ¢  bination
<(10" GeVv) L.

If we attempt to take the cutoff to infinity, it is clear that OA%<107 Y7, (20)
we can rule out noncommutativity at any scale. In this limit
the coefficients of the Lorentz-violating operators are far tod/Ne can do better using the strange quark. Here, however, we
large to accommodate the experimental bounds, for they amgeed to know what fraction of the nucleon spin is due to the
suppressed only by loop and gauge or Yukawa factors anstrange quark, for which there is both considerable theoreti-
are independent of the size of the noncommutative scaleal and experimental uncertainty. The SAMPLE Collabora-
This is a reflection of the infrared-ultraviolet connection. Ontion has recently measured the strange contribution to the
the other hand, as if¥], it is more reasonable to include an nucleon magnetic moment, and they fipd=0.01*+0.29
explicit cutoff. Otherwise, one will obtain, for example, un- =0.31uy [18], whereuy is the Bohr magneton. Using the
acceptable infrared behavior for gauge boson and scalaentral value a rough limit is
propagators.

Lacking a complete noncommutative generalization of the OA?<107 . (21)
standard model, it is hard to set precise limits. Still, we have
seen that in theories with Yukawa and gauge couplings, there Let us now consider the pure electromagnetic contribu-
are contributions t@; which are proportional tary?, where  tions. It is reasonable to expect that the matrix element of
y is the Yukawa coupling, and contributions proportional tothis contribution does not vanish for either the proton or
a?. The latter contributions are identical in both the pureneutron. Here though the experimental limit is weaker for the
gaugeU (N) andU(1) theories. This suggests the possibility, proton, with a bound of roughly IG* MeV [11]. This
although unlikely, that in a noncommutative formulation of translates into a limit
SU(N) the two-loop pure gauge contribution could vanish.
To verify or disprove this speculation would require a com- A%< 10719, (22
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which is comparable to the bound obtained from the elecfadiation. If Lorentz violation is present, then the angle of
tron. The limit from the neutron is stronger, roughly the polarized light relative to the major axis will be rotated

away from 90° by an amount that grows with the distance to
the source. Examining this data, Carroll, Field and Jackiw do
not find any redshift dependen¢&3]. This constrains the

relative phase given above to kde= 55~>Zs O(1). Since the
galaxies observed if21] span a sizable fraction of the ob-
servable Universe, the constraint is

95| _ )
?~0(1)=>5p5 10

OA%2<10 2 (23

A three-loop pureSU(3), contribution provides a stron-
ger limit. For the neutron we would obtaiA?<10 %3,
Limits on O, involving the nucleon also exist, but are typi-
cally three orders of magnitude weaker th@n[11]. A non-
vanishing pure gauge contribution at two loops could be
competitive with the limits found here. Work is in progress in
evaluating the contribution to this operafdQ].

We can also consider Lorentz violating operators involv-
ing the photon. Starting at two loops, for example, the fol-
lowing dimension 4 operators may be generated:

42 GeV, (25)

with the limit quoted in[13] smaller byhy/4. Strictly speak-

ing, Ref.[13] studied the effect of a different set of opera-

tors, namely those of the tydgB; . These lead to a disper-

sion relation that is independent of wavelengtl3,2q, for

which they obtain the bound quoted above.[R6] argues,

we cannot directly translate this limit to a bound on the op-

(24) erators in Eq(24) since the dispersion relation is no longer

independent of wavelength, making it more difficult to dis-

The N\~ (a/4m)2A* and their detailed values are unimpor- €ntangle the Lorentz violating effect from Faraday rotation.

tant for this discussion. These Lorentz-violating operatordn Principle, however, these effects could be distinguished

introduceB;B; and E;E; terms into the action, and they af- Since the Faraday rotation depends on the square of the

fect the propagation of light in vacuum, causing the vacuunvavelength, whereas for the Lorentz violating effect the

to behave much like an anisotropic dielectric medif2a]. ~ Phase scales inversely with wavelength. Followjia@], it is

In particular, light travels at different speeds depending orfhen reasonable that the data should still imply a bound that

the directions of polarization and propagation. This leads tdS roughly given by Eq(25). As the wavelength of the radio

cosmic birefringence, for which stringent limits already existSources analyzed if21] are typically 10 cm, inserting this

[13,20. value in the previous dispersion relation leads to the limit of
To understand this, for simplicity considét, only. The N 92< 1028 (26)

S . i :

behavior discussed here will also apply to the other opera-

tors. Assume tha# is nonzero in the 1-2 direction. Solving This is an impressive limit, but becauseappears quadrati-

the field equations one finds that for light moving only in thecally, it is not competitive with the terrestrial constraints. For

3-directionp®=|ps|. Similarly, light moving in either the 1 inserting the loop factor suppression i~ (a/4m)2A*

or 2 directions but polarized along the 3 direction is unaf-leads to the bound

fected. But light moving along the 1-direction say, and po-

larized in the 2-direction has a modified dispersion relation,

0_ 2 g .
P = (14,0724 - ')|p1|'. The modification for more gen- course, without a detailed underlying theory, these lim-
eral polarizations and directions of propagation is easily.

worked out Its cannot be interpreted unambiguously. With plausible as-
- - . . . sumptions about the cutoff, we can boufiét an extraordi-
The experimental limit on this effect is obtained from P

) . i . ; nary level. Even if the cutoffis 1 TeV, we can set a limit on
studying polarized light from distant radio sources, and look- 2-13 —2
) R 6, #<(10' GeV) 2.
ing for a dependence of the angle of polarization on the
distance to the sourdd3]. More specifically, Ref{21] stud-
ied a large number of radio sources, and found a strong cor-
relation between the angle of polarized light and the major We thank A. Armoni, Jeff Harvey, Nemanja Kaloper and
axis of the sourcéafter correcting for Faraday rotatipriFor ~ Scott Thomas for conversations and comments. We also
the active radio sources this angle is roughly 90°, indicatinghank Mahiko Suzuki, who has similar observations, for
that the magnetic fields of these sources runs parallel to thetimulating discussions. This work was supported in part by
major axis, and that the light is produced by synchrotronthe U.S. Department of Energy.

A
O3=Ng(62),,(FA",  O4=g(0,,F"")?,

P70, F e,

05:}\50

Hp

ON2< 10712 (27
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