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Fluctuations of quantum fields via zeta function regularization
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Explicit expressions for the expectation values and the variances of some observables, which are bilinear
guantities in the quantum fields ontadimensional manifold, are derived making use of zeta function regu-
larization. It is found that the variance, related to the second functional variation of the effective action,
requires a further regularization and that the relative regularized variance turns out g, veh2feN is the
number of the fields, thus being independent of the dimenBiosome illustrating examples are worked
through. The issue of the stress tensor is also briefly addressed.
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[. INTRODUCTION alization to elliptic pseudo-differential operators afidi—
16] for physical applicationswas introduced by a number of
Vacuum fluctuations play an important role in many authors as a convenient tool in order to deal with the evalu-
physical processes. The Casimir effect is one of its mosation of functional determinants. It permits one to give a
interesting physical manifestations and it has been experimeaning in the sense of analytic continuation—a mathemati-
mentally verified. It is also well known that the Casimir ef- cally very precise procedure—to quantities that are formally
fect is related to the presence of a nonvanishing vacuurdivergent.
energy(see for exampl€l,2]). This fact mainly occurs when In this paper, we would like to revisit the zeta function
one is dealing with nontrivial space-times, where the spatiategularization approach for the evaluation of expectation val-
sections are topologically nontrivial spaces or manifolds withues(O) and their quantum fluctuations. It is our opinion that
boundaries. zeta function regularization is a very powerful tool at our
Another interesting issue where quantum vacuum effectslisposal, as compared with other methods and that this issue
are present is the quantum field theory in curved space-timdeserves a careful investigation.
[1,3,4]. Recall that within the semiclassic approach to quan- We will mainly consider two quantitiesd= ¢ and the
tum gravity, the basic equation reads stress tensor trad®@ =T/, and their corresponding variances
AO=(0?)—(0)?. Within our formalism, it is convenient to
Gyt 09, A=87G(T,,), (1) introduce the relative variandé]

whereG ,, is the Einstein tenso\ is the cosmological con- AO
stant andT ,, is the vacuum expectation value of the matter A= 5
stress tensofwe usefi=c=1). As a consequence, fluctua- (0)

tions of the stress tensor can induce fluctuations of the clas- | ) ) )
sical gravitational field and, in order to justify the semiclas-A different relative variance, though directly related to the
sical approximation, it appears very important to havePrevious one, has been introduced by Kuo and féidIt

2

reliablea priori estimates of these fluctuations. reads
Fluctuations of the stress tensor were studied5r6]
making use of canonical methods. Fluctuations of Casimir A0 A
forces were investigated {i7,8]. Alternatively, other authors - (0?) T1+A, )

[9] have investigated the same problem by making use of
zeta function regularization.

With regard to this issue, it is well known that the notion
of effective action(or effective potentialplays an important
role as a powerful tool in relativistic quantum field theory.
This quantity, however, is ill defined, since, within the Eu-

clidean formulation and in the one-loop approximation, the _ _ )
one-loop effective action contains functional determinants off hus, fluctuations of the stress tensor trace induce classical

elliptic operators, which have to be regularized. Zeta-fluctuations of the scalar curvature. Furthermore, this trace

function regularizatiof10—-17 (see alsd13] for the gener- fluctuation may be used to have an estimate of the fluctua-
tions of the whole stress tensor, since for conformally invari-
ant quantum fields in homogeneous space-times one has

Considering now the operat®=T/,, we observe that
the trace of the Einstein equations reads

GE+DA=8mG(TH). @)
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The issue concerning the validity of semiclassical gravity has 1 (e
been discussed ii6,17). F(S)é(S|A)=mf tS 1 Tre "Adt, (7)
We also recall that the first variation of the effective ac- 0
tion is related to the vacuum expectation value of physicalNhich is valid for large values dies.
_quantitie_s, While_the secono_l variation O_f the effective act?on For smallt, and for second order elliptic differential op-
is associated with the variance. Within the zeta functiongaors it will be assumed that the heat trace has the follow-
regularization procedure, one has to deal with traces of corqhg asymptotics:
plex powers of elliptic operators. The first variation of the
effective action is well defined by the use of zeta function *
regularization, while the second variation is intrinsically ill Tre =) K, t(r=D)2 (8)
defined, unless one makes use of suitable variations with r=0
disjoint supports. In the coincidence limit, the physically in-

teresting case, one has to make use of a further regularizatiél}‘nhereKr are the integrated heat-kernel coefficients. In prin-

[9] ciple they may be computgdee, for exampl€20]). We will
bur main result is the following: modulo regularization also allssume the validity of the local heat-kernel expansion,
namely

problems, the relative variance turns out toXe=2/N [thus
A=2/(N+2)], whereN is the number of scalar fields in %
some multiplet. This result seems to be general, that is inde- e A(x)= 2 K, (x)t(r=D)2, (9)
pendent on the quantity one is dealing with, for example the r=0

stress tensor trace. Our results are compatible and should be

compared with the ones recently obtained,Nor 1, regard- | the asymptotic expansion&B) and (9) hold, a standard
ing the vacuum energy density fluctuations via smeare@'gument leads to the following meromorphic extension of

fields and point separatiofi8], which give relative vari- e zeta function and its local counterpad(s) being an
ances of the order of unity albeit dimensionally dependent, @nalytic functior:
On the other hand, coming back to the caséNafeutral

scalar non-interacting fields, we recover a well known crite- T(s){(s|A)= E Ky +3(s) (10)
rion for neglecting the quantum gravity fluctuations in the r=0 r—D ’
large N limit [19]. s+ 2

The content of the paper is as follows. In Sec. Il, zeta

function regularization and heat-kernel techniques are briefly “ K (X)

summarized. In Sec. lll, the first variation of the effective F(s)g(s|A)(x)=2 r—D+J(s,x). (12
action computed is shown to be related to the vacuum expec- =0y v

tation values of observables. In Sec. IV, the second variation 2

is shown to be associated with the variance and the final
result is presented with the help of a further analytic add ) e ;
hoc regularization. In Sec. V, some examples are presented€9ular and their derivatives exist. We also hd(8|A)(x)

The paper ends with some concluding remarks and an Ap=, Kp(X). As is well known,Kp(x)=0 in any odd dimen-

pendix, where the first and second variations of the trace ofional manifold without boundary. Under the hypothesis
the complex power of an elliptic operator are explicitly com- above, zeta function regularization corresponds to doing the

puted. following:

As a result, as=0, the global and local zeta functions are

Indetiz—g’ —|=—1lim iTr (uwSA™9)
2 2 s—0 ds H .

Il. ZETA FUNCTION REGULARIZATION u 0 u
OF THE EFFECTIVE ACTION (12)

In this section, we will summarize some basic aspects of

the heat-kernel and zeta function regularization methods. Fqr However we would like just to recall that, in some situa-
R gulan ) Cﬁons, it might be necessary to generalize the above definition
the sake of simplicity we shall here restrict ourselves to sca-
. . e .Iin the form
lar fields, but the method is also valid in more general situ-

ations. In the case of a neutral scalar field, the one-loop Eu-

2
clidean partition function readd 2] In detﬁ = Iimi d_Tr(SMZSA*S)_ (13)
Mz S~>02 dsz
1 A When Tr(A™3) is regular ats=0, the two definitiong12)
r®=—inz= 5Indet—, ®)  and (13 coincide, but, in some case&(s|A) has a simple
H pole ats=0 and so Eq(12) is no longer valid. This fact may
well be present at the level of the effective acti@ee for
whereu? is a renormalization parameter. example[21-23).
To begin with, recall the definition of the zeta function  For the sake of simplicity, in the sequel we will assume
related to an elliptic operatok the validity of Eqs.(10) and(11). The latter gives
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£(0]A) () =Kp(X). (14

For future use, we also observe that whep_,(x)#0,
the local zeta function has a simple polesatl. In fact we
may write

Kp-2(x)
I'(1+s) S

L(1+s|A)(X)= +G(1+s,x), (15

whereG(1x) is a regular function. It is given by

G(1x) =PPR(1|A)(X) = YKp—5(X), (16)
v being the Euler’s constant and
PRZ(1|A)(x) = lim §(1+S|A)(x)—KD_TZ(X) Y

s—0

the finite part of{(s|A) ats=1. When we consider an odd
dimensional manifold without a boundary, this singularity is

absent.

Ill. THE FIRST VARIATION OF THE EFFECTIVE
ACTION: VACUUM EXPECTATION VALUES

In this section, we will evaluate vacuum expectation val-

PHYSICAL REVIEW D65 085031

sInZ(a)

<O(X)>:_2 Sa

(20)
a=0

Making use of Eq(19) and zeta function regularizatigsee
Eqg. (A6) in the Appendi}, we may give a meaning to the
above formal expression, namely

| _ Nl d 2s, —-s—1
o nz(a)__ilfl d—s[,u s Tr(L (a)dL(a))].
(21)
In the caseD= ¢?, SL(a)=da. Thus
d
($2(0)=NIm [sp¢(s+1L)(0]. (22
s—0

In the equations abové(s|L)(x) is the local zeta function.
As a result, making use of the meromorphic expansis),
one getysee[26—-29)

(¢%())=NPR{(1|L)(x)+NKp _o(x)Inpu? (23
When D is odd and the manifold is without boundary, we
simply have

(p*(x))=NZ(1[L)(x). (24)

ues(O) of some specific quantitie®, such as the stress
tensor trace or conformal anomaly and the square of the field
(fluctuation. These quantities involve the product of two
guantum fields at the same point, and are therefore ill
defined. They require a regularization. We shall consider
multiplet of N scalar fields denoted by in an external field,
described through a classical action given by

In the other case, namely when one is dealing with the
stress tensor tracedL(a)=da(ci+c,L). As a conse-
équence,

d
(TLO0) =NIim Fesu®(ead(s+ 1L (X)+ Cai(SIL) ()

1 (29
5= f dxeL ¢, (19
2
and, as a result,
where L is a suitable(matrix valued differential operator £ _ 2
defined on aD-dimensional smooth manifold. (TL()) =c1(P%(X))+ coaNKp(X). (26)

To begin with, let us recall the formal trick that allows
one to get the vacuum expectation value of the bilin@ar
= pK ¢ within a path integral approadi24]. We will con-
sider two caseK =1, the identity matrix, in the case of the

In the conformally coupled casg =0 and one has the usual
conformal anomaly, due only to quantum effects.

field fluctuation O=¢?, and K=c,;+c,L, in the case of
stress tensor trad®@=T* . Here,c, andc, are constants and

. M - .
moreover, in the conformally invariant case,=0. If we

IV. THE SECOND VARIATION OF THE EFFECTIVE
ACTION: THE VARIANCE

We have seen that the first variation of the effective action

denote bya(x) a suitable classical source, we may consideris associated with the vacuum expectation val@® of bi-

the Euclidean patrtition function

L(a) —~N/2
Z(a)ZJ D¢e(l/2)IdX¢L(a)¢:(det—2) . (19
)72

Here we are assuming that, in the massive case, the multiplet
has the same common mass. In this way, there is no multi-

plicative anomaly(see, for example[25]) and L(a)=L
+ aK may be regarded as a simple differential operator.
A formal functional derivation leads to

linear quantities in quantum fields. Let us show now that the
second variation of the effective action is related to the vari-
anceAO=(0%)—(0)2.

To begin with, the second variation of the partition func-

tion (19) gives

1 5Z(a)
<O(><)O(y)>:4Z

(@ saoaty)| 27

On the other hand, we have the identity
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82InZ(a) 1 52Z(a) 1 6Z(a) 6Z(a) _For(;(qéy, lg_(l_:rs|L)(2<(,31/?Li)s(rt§gular Tllt.(sjzfo ZUt ir tfhe cgc—j
= - : incidence limity— X, x) is well defined only for o
sa(x)daly)  Z(a) da(x)daly) 7%(a) da(x) da(y)  pang bounda):y free manifolds. ’
(28) In the conformally coupled case and for=T/, one has
SL(a)=c,8al. As a result

As a consequence, the variance is given by
2

A(x,y)={O(x)O(y))—(O(x)){O(y)) ) N N
5 InZ(e) (Ti)(e) == L(e|L)(0 = —~22(0|L) (%) +O(e)

~"sa(x)daly) o 29 (39

Now, it appears convenient to introduce the relative varianc@nd we can remove the regularization parameter because

£(s|L)(x) is regular at the origin.
A%(X,y) Some remarks are in order. If we limit ourselves to the

L (30) . . . . .

(O(x))(O(y)) odd dimensional case, in a manifold without boundary, the
analytic continuation works in a simple manner for both the

The coincidence cas&=Yy, is particularly interesting from quantity O=T), and O=¢? and no scale dependence ap-

the physical point of view. It is formally given by pears in the final expressions. As a consequence, it turns out

that the relative variance,

Ar(xyy):

ALO=A(xy)| InZ(a) §|nZ(a))2 @1
X)=A (X, Y)|x=y= .
r r Y)lix y 52a(X) 5a'(X) <02>—<O>2
= (36)
Let us evaluate the second variation oZ{). In general, r (0)?
in the coincidence limit one gets an ill defined quantity and a
further regularization is required, as explained in the Appenis gways equal to
dix. Making use of Eqgs(21), (13) and(A10) in the Appen-
dix, one has 2
5,5, InZ(a)(2) ST (37)
N 2¢ d 2s © ®
- jim—|£ f duusf dov®(u+v)®  and
2I%(1+¢) s.0 ds|T(s)Jo 0
X Tr(e”UAs,Ae "A5,A) (32) A= 2 (38)
2 e N+2°

For £>0 and sufficiently large, the integrand is regular at |, the even dimensional case, or/and in the presence of
s=0, and we have boundary, the situation is more complicated and a further
renormalization seems unavoidable.

NMZS © ©
520, InZ(a)(s)Zz— duu® | dov®
2M%(1+e) Lo ° V. EXAMPLES
% Tr(euAaerva«lA)} A. D-dimensional torus
In this section we will consider, as a first example, the
w?e D-dimensional torus. This is a symmetric flat manifold with
=N THAT T BAATT5,A). finite volume and the local zeta function is simply the ratio

of the global zeta function and the torus volume. Thus, we
(33 may limit ourselves to the discussion involving the zeta func-
o o tion. This is a general conclusion valid for every symmetric
This is our general formula for the second variation of thegysce.
functional determinant. It is in agreement with a result ob- * The zeta function for the case of a masside<(1) scalar

tained in[13]. o field is given by
Let us consider the specific variation related to our ob-

servables. First, foB=¢?, 6SL(a)=da, and in the coin- 472\ "%
cidence limit we have {p(slL)= < Zp(s;(mR)?) (39
NMZE
2 _ 2
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) o - I'(s—D/2) On the other hand, for the sake of completeness, it is
Zp(s;(mR)%)=(2m)”"(mR)° ™= ———— interesting to have a perturbative expression for the case
I'(s) . . .
when the mass of the field is very small but different from
28/2TDIAT1l s (mR) ~S*TD2 zero. This is obtained by means of binomial expansion in the
+ equation defining the zeta function. The result is
I'(s)
% lz ’ (52)5/27D/4 - ]“(S+ k)
e Zo(s(MRY)= 3, (~1)* gy (MR Zo(s k).
= k=0 !
X Kpjo- o 222mmRYn2). (40) 42)

He_reR is the_ rad_ius of the to_rus amd the mass o_f the field. This expression, combined with the preceding one, (Etj,
This expansion is exponentially convergent. [t is to be seeg;o|gs the desired low mass expansion. Such expansions for
not just as a big mass expansi@the convergence is then ihe et function are not to be found in the literature. In fact,
extremely fast for it is valid in a very wide range of values explicit expressions of the typ&t1) have appeared in the
of MR 1=mR(e. . ) _seminal papef29] for the first time. They are convenient, on

In the case of a massless field, the convenient expressiqie gne hand, because they exhibit the pole structure of the
to be used is quite differerithis is explained in detail in ;63 function explicitly. On the other, they are useful from

[29)): the computational point of view, because they consist of a

145 D-1 term including the main contribution, together with a series

Zo(s)==—— > | @2l (s—jl2){n(25—]) that converges extremely fast: only a few first terms need to
I'(s) =0 be computed in order to obtain results as accurate as desired.

From these expressions, the first and second variations of
1 the effective action are immediate to compute. Essentially,

1 a4msS S ’ nj/z—S(ﬁz)s/z—jij/Z_s(zwn\/ﬁ—jZ)

== what we get are expressions of the following kiifid:in the
- nj €

massless case(is a natural number, a small one for any of
(41)  the operators here consideyed

D-1
2 [T (p=12)5(2p =) + 47785 ()]
D-1 >, (43)
[ ;O [T (p—1-j/2){r(2p—2—])+4m?Sp j(p— 1)]]

Zo(p) _T(p-1)°
[Zo(p—D)]*  2°7°T'(p)

where theSp ;(p) are fast convergent series providing only corrections to the main teiins,

. 2
Zo@imRY) ___ Zo(p) 2{1”( Zo(p) z_zD<p+12>)(mR)2+__.1,
[Zo(p—Li(mRAP  [Zp(p—1)] [Zo(p- DT [Zo(p)]

(44)

in the case of a field of very small mag&after doing a small-mass expansion as described abawe (iii )

Zo(:(mR? _(MRZPI(p-1)2  [T(p—DI2)+2P2 P4+1gP P mRP P23, (p)]
[Zo(p—1(MRAZ  (2mP2(p)  [[(p—1-DI2)+2P2 DA L2p-1-DmRP-L-D24 3 p(p—1)2'

(49)

in the massive case, where agaig(p) is a very fast con- B. The Casimir slab

vergent series. These expressions simplify very much when

poles of the gamma function appdéor even dimensiom). As a second example, we will revisit the computation of
They are quite easy to deal with. As advanced before, nthe local zeta function related to the Casimir slab, namely a
singularity appears fob odd, and the whole expression re- massless scalar quantum field confined inxfrection be-
mains, in that caséhe series being well approximated by a tween infinite parallel planar Dirichlet boundaries, located at
couple of termg x=0 andx=a. In this case, the local zeta function is not
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trivial, due to the presence of the planar boundafse®, for D
example[2,3,14,19). 2VTF(E_S R
To start with, recall the form of the local diagonal heat L(s|L)= (r(D—2s), (51
kernel, which depends only on the confining coordingte (4m)P"r(s)
e and this is exactly the zeta function associated with the Ca-
2 * narx simir slab configuration.
(x|le"tx)= T > siP— As far as the application to the evaluation of the vacuum
a(4mt) P D2 0= a expectation value is concerned, first, let us consier2.
n2m2t The zeta function is regular at=1 and the result is
xXexp — 46
;{ a’ ) 49 T ( E —1la2-D

HereL = — V2 is the Dirichlet Laplacian in the slab. Making ~ (#*(X))=————1-——[2{r(D—2)—¢{x(D—2x/a)
use of the trigonometric duplication formula for the sine and (4m)

Poisson-Jacobi re-summation formula, we may rewrite the —u(D—2,1-x/a)]. (52)
above expression in the form

The expression is finite everywhere and gives a vanishing

I - a’n’ result atx=0 andx=a. Due to the simple geometry of the
(xle""p)= (4mt)PPR2 n;w exp ~ Tt planar boundaries, the boundary divergences are not present.
Things are different irD=2. In this case, the zeta func-
- (na+x)? tion has a pole as=1 and the dependence on the scale
—n;_m exp -~ —— (47)  appears. For the sake of completeness, we give the result. It
reads

All the Seeley-DeWittK,(x) coefficients vanish, but the 1 a X
first one Ko(x)=1. As a consequence, we may anticipate (P?(X))==— y+|n—'u+ln Sin—| . (53)
that (T4 (x)) is vanishing. Making use of the Mellin trans- 2m ™ a
form and the above expression for the heat kernel, and an

iytically regularizing the integral33] fh this case, the boundary divergences are present.

A few other exact analytic results obtained via zeta func-
o tion regularization can be found [126].

J dtt*=0, (49

0 VI. CONCLUDING REMARKS

the analytic continuation for the local zeta function may be | this paper, we have revisited the use of the zeta func-

obtained. We present the result in a simple and symmetrigo, regularization approach to the evaluation of expectation
form (for another equivalent form corresponding =4,  yajyes of physical quantities and their related quantum vari-

see[26]) ances. The former are associated with the evaluation of the
D first variation of the effective action, while the latter are re-
F(——s a2s—b lated to the second variation. We have shown that the first
£(s|L)(x)= 2 [2£-(D—25) variation can be regularized by use of zeta function tech-
- R

niques, and explicit expressions for the vacuum expectation
values have been exhibited. For issues concerning the second
—{u(D—2s,x/a)—= (D —2s,1-x/a)]. variation, in general, zeta function regularization works well
(49) only when one is dealing with off diagonal terms, since the
coincident limit is highly singular. A further analytic regular-
In the above expressiodiz(z) and{y(z,q) are the Riemann ization has to be introduced to treat the coincidence limit.
and Hurwitz zeta functions respectively. This result can also \We may summarize our results as follows. For a multiplet
be obtained by making use of the re-summation techniquesf N scalar fields andD =T/, in the conformally coupled
explained in[34,14]. case, analytic regularization gives a relative variance exactly
Some comments are in order. The local expression wequal to 2N, independently on the dimension of the bound-
have obtained is already in the renormalized form. Furtherary free manifold. ForO=¢?, we have obtained again a

(4P (s)

more, the related trace involves(iafinite, but trivial) vol- relative variance exactly equal toN2/but now limited to the
umeVy in the transverse directions and an integration aver odd dimensional case without boundary. These restrictions
Since can be removed in some particular situations, like the case of

the Casimir slab, where one is dealing with a flat manifold

_ with flat boundaries. The even dimensional case seems to
fo dagu(z,a)=0, (50 require however further renormalization.
The formalism can be directly applied to the expectation
the resulting zeta function reads value of the stress tens@ee[9]), but only after much more
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effort and work. Again, the first variation of the effective STrA S=—sTr(A S 15A). (A6)

action with respect to the metric tensor gi¥es,,). With

regard to this issue, for an evaluation using local zeta funclf the operatorA is self-adjoint, then there exist eigenvalues

tion regularization sef27,35. and eigenvectors\,, and ¥, such thatA¥ ,=A,¥,, and
The second variation is related to the variance, and for th&e have

off diagonal case, there is again factorization. In the special 1

case of homogeneous space-times and for a conformally sTraA-s= f dzz STr((A—2z) 25A)

coupled scalar field, one recovers @e=T/, case. 2
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For the second variation, making use again of E4gl)

and(A5), one gets
5,6, TrA 5= —sTr(5,A 5 15,A)

APPENDIX

In order to compute the variation of the trace of an elliptic
invertible operatorA, one has to take into account the fact
that the variatior{deformation of A does not commute with = —s—f dzz S 1Tr((A—2) " 16,A
A. FromA~*A=1, we have

5A_1:_A_15AA_1. (Al) X(A_Z)ilélA). (A8)

This expression is valid only if Sup@; has void intersec-

tion with Supp 6,. Since we are interested in the coinci-

dence limity=x, we have to introduce an additional analytic
regularization. The simplest one is to replage(z) ~* with

A S=— —j dzz S(A—2)71, (A2)  (A—2)"1"® and employ the representation in terms of the
Mellin transform:

For the calculation of complex powers Afwe can use the
Cauchy-Dunford representation

in which C is a suitable contour on the complexyplane. As o
a consequence, we have I(1+e)(A-2) 1 7°= JO duue'e "4 (A9)
SA—S—= 1 f dzz S(A-z)"15A(A—2z)~L. (A3) in Eq.(A10) and then use again E¢A5). As a result, we
2 arrive at the formula
Making use of the two representatiotifor Rez>0 and 5,6, Tt A-5(e) 1 1
r g)=——F—— ==
Res>0) 271 I4(1+¢) I'(s)
5\ —S— * s—1.tzo—tA * *
I'(s)(A-2) _fo dtts~lete (A4) XJ duusj dov(utv)®
0 0
and XTr(e "As,Ae "A5,A).  (A10)
1 L dw( w)~Ze W (A5) This representation for the second variation of the trace of
I'(z) 2mi a complex power of an elliptic operaté is in agreement
with the one obtained irf9], making use of a different
one gets method based on Schwinger’s perturbative expansion.
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