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Fluctuations of quantum fields via zeta function regularization

Guido Cognola,1,* Emilio Elizalde,2,† and Sergio Zerbini1,‡

1Dipartimento di Fisica, Universita` di Trento and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Trento, Italy
2Instituto de Ciencias del Espacio, IEEC/CSIC, IFAE, and University of Barcelona, Spain

~Received 28 January 2002; published 8 April 2002!

Explicit expressions for the expectation values and the variances of some observables, which are bilinear
quantities in the quantum fields on aD-dimensional manifold, are derived making use of zeta function regu-
larization. It is found that the variance, related to the second functional variation of the effective action,
requires a further regularization and that the relative regularized variance turns out to be 2/N, whereN is the
number of the fields, thus being independent of the dimensionD. Some illustrating examples are worked
through. The issue of the stress tensor is also briefly addressed.
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I. INTRODUCTION

Vacuum fluctuations play an important role in ma
physical processes. The Casimir effect is one of its m
interesting physical manifestations and it has been exp
mentally verified. It is also well known that the Casimir e
fect is related to the presence of a nonvanishing vacu
energy~see for example@1,2#!. This fact mainly occurs when
one is dealing with nontrivial space-times, where the spa
sections are topologically nontrivial spaces or manifolds w
boundaries.

Another interesting issue where quantum vacuum effe
are present is the quantum field theory in curved space-
@1,3,4#. Recall that within the semiclassic approach to qu
tum gravity, the basic equation reads

Gmn1gmnL58pG^Tmn&, ~1!

whereGmn is the Einstein tensor,L is the cosmological con
stant andTmn is the vacuum expectation value of the mat
stress tensor~we use\5c51). As a consequence, fluctua
tions of the stress tensor can induce fluctuations of the c
sical gravitational field and, in order to justify the semicla
sical approximation, it appears very important to ha
reliablea priori estimates of these fluctuations.

Fluctuations of the stress tensor were studied in@5,6#
making use of canonical methods. Fluctuations of Casi
forces were investigated in@7,8#. Alternatively, other authors
@9# have investigated the same problem by making use
zeta function regularization.

With regard to this issue, it is well known that the notio
of effective action~or effective potential! plays an important
role as a powerful tool in relativistic quantum field theo
This quantity, however, is ill defined, since, within the E
clidean formulation and in the one-loop approximation, t
one-loop effective action contains functional determinants
elliptic operators, which have to be regularized. Ze
function regularization@10–12# ~see also@13# for the gener-
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alization to elliptic pseudo-differential operators and@14–
16# for physical applications! was introduced by a number o
authors as a convenient tool in order to deal with the eva
ation of functional determinants. It permits one to give
meaning in the sense of analytic continuation—a mathem
cally very precise procedure—to quantities that are forma
divergent.

In this paper, we would like to revisit the zeta functio
regularization approach for the evaluation of expectation v
ues^O& and their quantum fluctuations. It is our opinion th
zeta function regularization is a very powerful tool at o
disposal, as compared with other methods and that this is
deserves a careful investigation.

We will mainly consider two quantities:O5f2 and the
stress tensor traceO5Tm

m and their corresponding variance
DO5^O2&2^O&2. Within our formalism, it is convenient to
introduce the relative variance@9#

D r5
DO

^O&2
. ~2!

A different relative variance, though directly related to t
previous one, has been introduced by Kuo and Ford@6#. It
reads

D5
DO

^O2&
5

D r

11D r
. ~3!

Considering now the operatorO5Tm
m , we observe that

the trace of the Einstein equations reads

Gm
m1DL58pG^Tm

m&. ~4!

Thus, fluctuations of the stress tensor trace induce class
fluctuations of the scalar curvature. Furthermore, this tr
fluctuation may be used to have an estimate of the fluc
tions of the whole stress tensor, since for conformally inva
ant quantum fields in homogeneous space-times one ha

^Tmn&5
gmn

D
^Ta

a&. ~5!
©2002 The American Physical Society31-1
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The issue concerning the validity of semiclassical gravity
been discussed in@6,17#.

We also recall that the first variation of the effective a
tion is related to the vacuum expectation value of phys
quantities, while the second variation of the effective act
is associated with the variance. Within the zeta funct
regularization procedure, one has to deal with traces of c
plex powers of elliptic operators. The first variation of th
effective action is well defined by the use of zeta functi
regularization, while the second variation is intrinsically
defined, unless one makes use of suitable variations
disjoint supports. In the coincidence limit, the physically i
teresting case, one has to make use of a further regulariza
@9#.

Our main result is the following: modulo regularizatio
problems, the relative variance turns out to beD r52/N @thus
D52/(N12)#, where N is the number of scalar fields i
some multiplet. This result seems to be general, that is in
pendent on the quantity one is dealing with, for example
stress tensor trace. Our results are compatible and shou
compared with the ones recently obtained, forN51, regard-
ing the vacuum energy density fluctuations via smea
fields and point separation@18#, which give relative vari-
ances of the order of unity albeit dimensionally depende

On the other hand, coming back to the case ofN neutral
scalar non-interacting fields, we recover a well known cri
rion for neglecting the quantum gravity fluctuations in t
largeN limit @19#.

The content of the paper is as follows. In Sec. II, ze
function regularization and heat-kernel techniques are bri
summarized. In Sec. III, the first variation of the effecti
action computed is shown to be related to the vacuum ex
tation values of observables. In Sec. IV, the second varia
is shown to be associated with the variance and the fi
result is presented with the help of a further analytic andad
hoc regularization. In Sec. V, some examples are presen
The paper ends with some concluding remarks and an
pendix, where the first and second variations of the trace
the complex power of an elliptic operator are explicitly com
puted.

II. ZETA FUNCTION REGULARIZATION
OF THE EFFECTIVE ACTION

In this section, we will summarize some basic aspects
the heat-kernel and zeta function regularization methods.
the sake of simplicity we shall here restrict ourselves to s
lar fields, but the method is also valid in more general s
ations. In the case of a neutral scalar field, the one-loop
clidean partition function reads@12#

G (1)52 ln Z5
1

2
ln det

A

m2
, ~6!

wherem2 is a renormalization parameter.
To begin with, recall the definition of the zeta functio

related to an elliptic operatorA
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G~s!z~suA!5
1

G~s!
E

0

`

ts21 Tr e2tAdt, ~7!

which is valid for large values ofRes.
For small t, and for second order elliptic differential op

erators, it will be assumed that the heat trace has the foll
ing asymptotics:

Tr e2tA5(
r 50

`

Krt
(r 2D)/2, ~8!

whereKr are the integrated heat-kernel coefficients. In pr
ciple they may be computed~see, for example@20#!. We will
also assume the validity of the local heat-kernel expans
namely

e2tA~x!5(
r 50

`

Kr~x!t (r 2D)/2. ~9!

If the asymptotic expansions~8! and ~9! hold, a standard
argument leads to the following meromorphic extension
the zeta function and its local counterpart@J(s) being an
analytic function#:

G~s!z~suA!5(
r 50

`
Kr

s1
r 2D

2

1J~s!, ~10!

G~s!z~suA!~x!5(
r 50

`
Kr~x!

s1
r 2D

2

1J~s,x!. ~11!

As a result, ats50, the global and local zeta functions a
regular and their derivatives exist. We also havez(0uA)(x)
5KD(x). As is well known,KD(x)50 in any odd dimen-
sional manifold without boundary. Under the hypothe
above, zeta function regularization corresponds to doing
following:

ln det
A

m2
52z8S 0U A

m2D 52 lim
s→0

d

ds
Tr ~m2sA2s!.

~12!

However we would like just to recall that, in some situ
tions, it might be necessary to generalize the above defini
in the form

ln det
A

m2
52 lim

s→0

1

2

d2

ds2
Tr~sm2sA2s!. ~13!

When Tr(A2s) is regular ats50, the two definitions~12!
and ~13! coincide, but, in some cases,z(suA) has a simple
pole ats50 and so Eq.~12! is no longer valid. This fact may
well be present at the level of the effective action~see for
example@21–23#!.

For the sake of simplicity, in the sequel we will assum
the validity of Eqs.~10! and ~11!. The latter gives
1-2



d
is

al
s
fie
o

r

s

e

e

ip
ul

e

e

the

l

ion

the
ri-

c-

FLUCTUATIONS OF QUANTUM FIELDS VIA ZETA . . . PHYSICAL REVIEW D65 085031
z~0uA!~x!5KD~x!. ~14!

For future use, we also observe that whenKD22(x)5” 0,
the local zeta function has a simple pole ats51. In fact we
may write

z~11suA!~x!5
1

G~11s!

KD22~x!

s
1G~11s,x!, ~15!

whereG(1,x) is a regular function. It is given by

G~1,x!5PPz~1uA!~x!2gKD22~x!, ~16!

g being the Euler’s constant and

PPz~1uA!~x!5 lim
s→0

S z~11suA!~x!2
KD22~x!

s D , ~17!

the finite part ofz(suA) at s51. When we consider an od
dimensional manifold without a boundary, this singularity
absent.

III. THE FIRST VARIATION OF THE EFFECTIVE
ACTION: VACUUM EXPECTATION VALUES

In this section, we will evaluate vacuum expectation v
ues ^O& of some specific quantitiesO, such as the stres
tensor trace or conformal anomaly and the square of the
~fluctuation!. These quantities involve the product of tw
quantum fields at the same point,x, and are therefore ill
defined. They require a regularization. We shall conside
multiplet of N scalar fields denoted byf in an external field,
described through a classical action given by

S5
1

2E dxfLf, ~18!

where L is a suitable~matrix valued! differential operator
defined on aD-dimensional smooth manifold.

To begin with, let us recall the formal trick that allow
one to get the vacuum expectation value of the bilinearO
5fKf within a path integral approach@24#. We will con-
sider two cases:K5I , the identity matrix, in the case of th
field fluctuation O5f2, and K5c11c2L, in the case of
stress tensor traceO5Tm

m . Here,c1 andc2 are constants and
moreover, in the conformally invariant case,c150. If we
denote bya(x) a suitable classical source, we may consid
the Euclidean partition function

Z~a!5E Dfe2 ~1/2! *dxfL(a)f5S det
L~a!

m2 D 2N/2

. ~19!

Here we are assuming that, in the massive case, the mult
has the same common mass. In this way, there is no m
plicative anomaly~see, for example,@25#! and L(a)5L
1aK may be regarded as a simple differential operator.

A formal functional derivation leads to
08503
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^O~x!&522
d ln Z~a!

da U
a50

. ~20!

Making use of Eq.~19! and zeta function regularization@see
Eq. ~A6! in the Appendix#, we may give a meaning to th
above formal expression, namely

d ln Z~a!52
N

2
lim
s→0

d

ds
@m2ss Tr„L2s21~a!dL~a!…#.

~21!

In the caseO5f2, dL(a)5da. Thus

^f2~x!&5N lim
s→0

d

ds
@sm2sz~s11uL !~x!#. ~22!

In the equations above,z(suL)(x) is the local zeta function.
As a result, making use of the meromorphic expansion~15!,
one gets~see@26–28#!

^f2~x!&5NPPz~1uL !~x!1NKD22~x!ln m2. ~23!

When D is odd and the manifold is without boundary, w
simply have

^f2~x!&5Nz~1uL !~x!. ~24!

In the other case, namely when one is dealing with
stress tensor trace,dL(a)5da(c11c2L). As a conse-
quence,

^Tm
m~x!&5N lim

s→0

d

ds
@sm2s

„c1z~s11uL !~x!…1c2z~suL !~x!#,

~25!

and, as a result,

^Tm
m~x!&5c1^f

2~x!&1c2NKD~x!. ~26!

In the conformally coupled casec150 and one has the usua
conformal anomaly, due only to quantum effects.

IV. THE SECOND VARIATION OF THE EFFECTIVE
ACTION: THE VARIANCE

We have seen that the first variation of the effective act
is associated with the vacuum expectation value^O& of bi-
linear quantities in quantum fields. Let us show now that
second variation of the effective action is related to the va
anceDO5^O2&2^O&2.

To begin with, the second variation of the partition fun
tion ~19! gives

^O~x!O~y!&54
1

Z~a!

d2Z~a!

da~x!da~y!
U

a50

. ~27!

On the other hand, we have the identity
1-3
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d2 ln Z~a!

da~x!da~y!
5

1

Z~a!

d2Z~a!

da~x!da~y!
2

1

Z2~a!

dZ~a!

da~x!

dZ~a!

da~y!
.

~28!

As a consequence, the variance is given by

D~x,y!5^O~x!O~y!&2^O~x!&^O~y!&

54
d2 ln Z~a!

da~x!da~y!
U

a50

. ~29!

Now, it appears convenient to introduce the relative varia

D r~x,y!5
D2~x,y!

^O~x!&^O~y!&
. ~30!

The coincidence case,x5y, is particularly interesting from
the physical point of view. It is formally given by

D r~x!5D r~x,y!ux5y5
d2 ln Z~a!

d2a~x!
S d ln Z~a!

da~x! D 22

. ~31!

Let us evaluate the second variation of lnZ(a). In general,
in the coincidence limit one gets an ill defined quantity an
further regularization is required, as explained in the App
dix. Making use of Eqs.~21!, ~13! and ~A10! in the Appen-
dix, one has

d2d1 ln Z~a!~«!

5
Nm2«

2G2~11«!
lim
s→0

d

dsF m2s

G~s!
E

0

`

duu«E
0

`

dvv«~u1v !s

3Tr~e2uAd2Ae2vAd1A!G . ~32!

For «.0 and sufficiently large, the integrand is regular
s50, and we have

d2d1 ln Z~a!~«!5
Nm2«

2G2~11«!
F E

0

`

duu«E
0

`

dvv«

3Tr~e2uAd2Ae2vAd1A!G
5N

m2«

2
Tr~A212«d2AA212«d1A!.

~33!

This is our general formula for the second variation of t
functional determinant. It is in agreement with a result o
tained in@13#.

Let us consider the specific variation related to our o
servables. First, forO5f2, dL(a)5da, and in the coin-
cidence limit we have

^f2&~«!5
Nm2e

2
z2~11«uL !~x!. ~34!
08503
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For x5” y, z(11«uL)(x,y) is regular at«50, but in the co-
incidence limity→x, z(1uL)(x) is well defined only for odd
D and boundary free manifolds.

In the conformally coupled case and forO5Tm
m , one has

dL(a)5c2daL. As a result

^Tm
m&~«!5

c2
2N

2
z2~«uL !~x!5

c2
2N

2
z2~0uL !~x!1O~«!

~35!

and we can remove the regularization parameter beca
z(suL)(x) is regular at the origin.

Some remarks are in order. If we limit ourselves to t
odd dimensional case, in a manifold without boundary,
analytic continuation works in a simple manner for both t
quantity O5Tm

m and O5f2 and no scale dependence a
pears in the final expressions. As a consequence, it turns
that the relative variance,

D r5
^O2&2^O&2

^O&2
, ~36!

is always equal to

D r5
2

N
, ~37!

and

D5
2

N12
. ~38!

In the even dimensional case, or/and in the presenc
boundary, the situation is more complicated and a furt
renormalization seems unavoidable.

V. EXAMPLES

A. D-dimensional torus

In this section we will consider, as a first example, t
D-dimensional torus. This is a symmetric flat manifold wi
finite volume and the local zeta function is simply the ra
of the global zeta function and the torus volume. Thus,
may limit ourselves to the discussion involving the zeta fun
tion. This is a general conclusion valid for every symmet
space.

The zeta function for the case of a massive (N51) scalar
field is given by

zD~suL !5S 4p2

R2 D 2s

ZD„s;~mR!2
… ~39!

with @29–32#
1-4
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ZD„s;~mR!2
…5~2p!D/2~mR!D22s

G~s2D/2!

G~s!

1
2s/21D/411ps~mR!2s1D/2

G~s!

3 (
nW PZD

8 ~nW 2!s/22D/4

3KD/22s~23/2pmRAnW 2!. ~40!

HereR is the radius of the torus andm the mass of the field
This expansion is exponentially convergent. It is to be s
not just as a big mass expansion~the convergence is the
extremely fast!, for it is valid in a very wide range of value
of mR: 1.mR̂ `.

In the case of a massless field, the convenient expres
to be used is quite different~this is explained in detail in
@29#!:

ZD~s!5
211s

G~s! (
j 50

D21 Fp j /2G~s2 j /2!zR~2s2 j !

14ps(
n51

`

(
nW j PZ j

8 nj /22s~nW 2!s/22 j /4K j /22s~2pnAnW j
2!G .

~41!
he

n
e-
a

08503
n

on

On the other hand, for the sake of completeness, i
interesting to have a perturbative expression for the c
when the mass of the field is very small but different fro
zero. This is obtained by means of binomial expansion in
equation defining the zeta function. The result is

ZD„s;~mR!2
…5 (

k50

`

~21!k
G~s1k!

k!G~s!
~mR!2kZD~s1k!.

~42!

This expression, combined with the preceding one, Eq.~41!,
yields the desired low mass expansion. Such expansions
the zeta function are not to be found in the literature. In fa
explicit expressions of the type~41! have appeared in the
seminal paper@29# for the first time. They are convenient, o
the one hand, because they exhibit the pole structure of
zeta function explicitly. On the other, they are useful fro
the computational point of view, because they consist o
term including the main contribution, together with a ser
that converges extremely fast: only a few first terms need
be computed in order to obtain results as accurate as des

From these expressions, the first and second variation
the effective action are immediate to compute. Essentia
what we get are expressions of the following kind:~i! in the
massless case (p is a natural number, a small one for any
the operators here considered!
ZD~p!

@ZD~p21!#2
5

G~p21!2

2p22G~p!

(
j 50

D21

@p j /2G~p2 j /2!zR~2p2 j !14p2SD, j~p!#

H (
j 50

D21

@p j /2G~p212 j /2!zR~2p222 j !14p2SD, j~p21!#J 2 , ~43!

where theSD, j (p) are fast convergent series providing only corrections to the main terms,~ii !

ZD„p;~mR!2
…

@ZD„p21;~mR!2
…#2

5
ZD~p!

@ZD~p21!#2 F112pS ZD~p!

@ZD~p21!#2
2

ZD~p11!

@ZD~p!#2 D ~mR!21•••G , ~44!

in the case of a field of very small mass~after doing a small-mass expansion as described above!, and~iii !

ZD„p;~mR!2
…

@ZD„p21;~mR!2
…#2

5
~mR!2p24G~p21!2

~2p!D/2G~p!

@G~p2D/2!12p/22D/411pp2D/2~mR!p2D/21SD~p!#

@G~p212D/2!12p/22D/411/2pp212D/2~mR!p212D/21SD~p21!#2
, ~45!
of
y a

at
ot
in the massive case, where againSD(p) is a very fast con-
vergent series. These expressions simplify very much w
poles of the gamma function appear~for even dimensionD).
They are quite easy to deal with. As advanced before,
singularity appears forD odd, and the whole expression r
mains, in that case~the series being well approximated by
couple of terms!.
n

o

B. The Casimir slab

As a second example, we will revisit the computation
the local zeta function related to the Casimir slab, namel
massless scalar quantum field confined in thex direction be-
tween infinite parallel planar Dirichlet boundaries, located
x50 andx5a. In this case, the local zeta function is n
1-5
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trivial, due to the presence of the planar boundaries~see, for
example@2,3,14,15#!.

To start with, recall the form of the local diagonal he
kernel, which depends only on the confining coordinatex;
i.e.,

^xue2tLux&5
2

a~4pt !(D21)/2 (
n51

`

sin2
npx

a

3expS 2
n2p2t

a2 D . ~46!

HereL52¹2 is the Dirichlet Laplacian in the slab. Makin
use of the trigonometric duplication formula for the sine a
Poisson-Jacobi re-summation formula, we may rewrite
above expression in the form

^xue2tLux&5
1

~4pt !D/2 S (
n52`

`

expS 2
a2n2

t D
2 (

n52`

`

expS 2
~na1x!2

t D D . ~47!

All the Seeley-DeWittKr(x) coefficients vanish, but the
first one K0(x)51. As a consequence, we may anticipa
that ^Tm

m(x)& is vanishing. Making use of the Mellin trans
form and the above expression for the heat kernel, and
lytically regularizing the integral@33#

E
0

`

dttz50, ~48!

the analytic continuation for the local zeta function may
obtained. We present the result in a simple and symme
form ~for another equivalent form corresponding toD54,
see@26#!

z~suL !~x!5

GS D

2
2sDa2s2D

~4p!D/2G~s!
@2zR~D22s!

2zH~D22s,x/a!2zH~D22s,12x/a!#.

~49!

In the above expression,zR(z) andzH(z,q) are the Riemann
and Hurwitz zeta functions respectively. This result can a
be obtained by making use of the re-summation techniq
explained in@34,14#.

Some comments are in order. The local expression
have obtained is already in the renormalized form. Furth
more, the related trace involves a~infinite, but trivial! vol-
umeVT in the transverse directions and an integration ovex.
Since

E
0

1

dqzH~z,q!50, ~50!

the resulting zeta function reads
08503
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z~suL !5

2VTGS D

2
2sDa2s2D11

~4p!D/2G~s!
zR~D22s!, ~51!

and this is exactly the zeta function associated with the
simir slab configuration.

As far as the application to the evaluation of the vacu
expectation value is concerned, first, let us considerD.2.
The zeta function is regular ats51 and the result is

^f2~x!&5

GS D

2
21Da22D

~4p!D/2
@2zR~D22!2zH~D22,x/a!

2zH~D22,12x/a!#. ~52!

The expression is finite everywhere and gives a vanish
result atx50 andx5a. Due to the simple geometry of th
planar boundaries, the boundary divergences are not pre

Things are different inD52. In this case, the zeta func
tion has a pole ats51 and the dependence on the scalem
appears. For the sake of completeness, we give the resu
reads

^f2~x!&5
1

2p Fg1 ln
am

p
1 ln sin

px

a G . ~53!

In this case, the boundary divergences are present.
A few other exact analytic results obtained via zeta fun

tion regularization can be found in@26#.

VI. CONCLUDING REMARKS

In this paper, we have revisited the use of the zeta fu
tion regularization approach to the evaluation of expectat
values of physical quantities and their related quantum v
ances. The former are associated with the evaluation of
first variation of the effective action, while the latter are r
lated to the second variation. We have shown that the
variation can be regularized by use of zeta function te
niques, and explicit expressions for the vacuum expecta
values have been exhibited. For issues concerning the se
variation, in general, zeta function regularization works w
only when one is dealing with off diagonal terms, since t
coincident limit is highly singular. A further analytic regula
ization has to be introduced to treat the coincidence limit

We may summarize our results as follows. For a multip
of N scalar fields andO5Tm

m , in the conformally coupled
case, analytic regularization gives a relative variance exa
equal to 2/N, independently on the dimension of the boun
ary free manifold. ForO5f2, we have obtained again
relative variance exactly equal to 2/N, but now limited to the
odd dimensional case without boundary. These restricti
can be removed in some particular situations, like the cas
the Casimir slab, where one is dealing with a flat manifo
with flat boundaries. The even dimensional case seem
require however further renormalization.

The formalism can be directly applied to the expectat
value of the stress tensor~see@9#!, but only after much more
1-6
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effort and work. Again, the first variation of the effectiv
action with respect to the metric tensor gives^Tmn&. With
regard to this issue, for an evaluation using local zeta fu
tion regularization see@27,35#.

The second variation is related to the variance, and for
off diagonal case, there is again factorization. In the spe
case of homogeneous space-times and for a conform
coupled scalar field, one recovers theO5Tm

m case.
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APPENDIX

In order to compute the variation of the trace of an ellip
invertible operatorA, one has to take into account the fa
that the variation~deformation! of A does not commute with
A. From A21A5I , we have

dA2152A21dAA21. ~A1!

For the calculation of complex powers ofA we can use the
Cauchy-Dunford representation

A2s52
1

2p i EC
dzz2s~A2z!21, ~A2!

in which C is a suitable contour on the complexz plane. As
a consequence, we have

dA2s5
1

2p i EC
dzz2s~A2z!21dA~A2z!21. ~A3!

Making use of the two representations~for Rez.0 and
Res.0)

G~s!~A2z!2s5E
0

`

dtts21etze2tA ~A4!

and

1

G~z!
52

1

2p i EC
dw~2w!2ze2w, ~A5!

one gets
d

-

08503
c-

e
al
lly

.
n

d Tr A2s52s Tr~A2s21dA!. ~A6!

If the operatorA is self-adjoint, then there exist eigenvalu
and eigenvectors,ln and Cn , such thatACn5lnCn , and
we have

d Tr A2s5
1

2p i EC
dzz2s Tr„~A2z!22dA…

5
1

2p i EC
dzz2s(

n

1

~z2ln!2
^Cn ,dACn&

52s(
n

ln
2s21^Cn ,dACn&

52s Tr~A2s21dA!. ~A7!

For the second variation, making use again of Eqs.~A4!
and ~A5!, one gets

d2d1 Tr A2s52s Tr~d2A2s21d1A!

52s
1

2p i EC
dzz2s21 Tr„~A2z!21d2A

3~A2z!21d1A…. ~A8!

This expression is valid only if Suppd1 has void intersec-
tion with Supp d2. Since we are interested in the coinc
dence limity5x, we have to introduce an additional analyt
regularization. The simplest one is to replace (A2z)21 with
(A2z)212« and employ the representation in terms of t
Mellin transform:

G~11«!~A2z!212«5E
0

`

duu«euze2uA, ~A9!

in Eq. ~A10! and then use again Eq.~A5!. As a result, we
arrive at the formula

d2d1 Tr A2s~«!52
1

G2~11«!

1

G~s!

3E
0

`

duu«E
0

`

dvv«~u1v !s

3Tr~e2uAd2Ae2vAd1A!. ~A10!

This representation for the second variation of the trace
a complex power of an elliptic operatorA is in agreement
with the one obtained in@9#, making use of a different
method based on Schwinger’s perturbative expansion.
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