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We offer a guide to dimensional reduction in theories with anomaly-mediated supersymmetry breaking.
Evanescent operators proportionaldarise in the bare Lagrangian when it is reduced frdm4 to d=4
—2e dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these
operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along
anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity.
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[. INTRODUCTION supersymmetry breaking to the Lagrangian if DRED is used.
Since most calculations in the literature are done this way,
Anomaly mediation is a remarkably predictive framework our result raises a warning flag. In retrospect, it is not sur-
for supersymmetry breaking in which the breaking of scalgdrising why it is so. In the case of the chiral anomaly, one
invariance mediates between hidden and visible sefto?s does not add the chiral anomaly as an additional term to the
Since the soft supersymmetry-breaking parameters are detdragrangian. When the theory is properly regularized, the chi-
mined by the breaking of scale invariance, they can be writfal anomaly is the outcome rather than a part of the input
ten in terms of beta functions and anomalous dimensions ik@drangian. Similarly, the anomaly-mediated supersymmetry
relations which hold at all energies. An immediate consePreaking must be the outcome of the Lagrangian rather than
guence is that supersymmetry-breaking terms are completewe ao!dmonal terms in the bare Lagranglan. We show that the
insensitive to physics in the ultraviolet. Anomalous dimen-MOSt Important consequence of compactifying te 2e di-
sions and beta functions, which depend only on degrees dRensions is the introduction of evanescent operators, propor-
freedom excitable at a given energy, completely specify thdional to €, into the bare_Lag_ranglan. T.hese operators prove
soft parameters at that energy. This property makes anomal§ be of firstimportance in diagrammatic anomaly-mediation
mediation an attractive solution to the supersymmetric flavof@lculations. Proper inclusion of these operators yields a
problem. The low-energy spectrum of soft masses and codl?RED-based formalism suitable for anomaly-mediation cal-
plings is independent of the physics that explains flavor incu_latlons. In add|t|0_n we dISCL_JSS the |mpllcat|_ons of DRED’s
the ultraviolett failure to regulate infrared divergences, which follows be-
On the other hand, regularization by dimensional reduccause the dimension of space-time is necessakify} in
tion (DRED) [6] is often the preferred regulator for super- DRED. o
symmetric field theories. As with ordinary dimensional regu- AS @ showcase for our DRED-based anomaly mediation
larization (DREG), DRED is simpler computationally than formalism, we perform an explicit diagrammatic calculation
Pauli-Villars or other cutoff methods. DRED is also superiorthat shows the ultraviolet insensitivity of anomaly mediation.
to DREG in that it preserves supersymmetry: In DREG wherfAlthough the appearance of supersymmetry-breaking param-
we analytically continue the dimension of space-time awayeters and the decoupling of flavor physics have been well
from d=4, the spinor algebra changes, creating a mismatcHnderstood through the spurion formalisisee (3] for the
between fermionic and bosonic degrees of freedom. DRENOSt comprehensive review of anomaly mediation using the
avoids this problem by compactifying fromi=4 to d=4  SPurion formgllsrm the phenomena have not bgen investi-
—2¢ dimensions and making the fields independent of thegated in a diagrammatic framework. The spurion analysis
extra 2 dimensions. The spinor algebra does not change, sfx€s theA terms to be
the regulated theory is still supersymmetric.
In this paper we explore the subtleties of DRED in theo- Aijk=— Mg (vi+ v+ i, (1.1
ries with anomaly-mediated supersymmetry breaking. We
point out that it is not correct to just add anomaly-mediatedvhile scalar masses are given by

~, 1 i
This property has lead to the well known issue of tachyonic mi2=§|m3,2|27i. 1.2

sleptons. People have taken various approaches towards solving this

problem([1,3,4] which jeopardize the ultraviolet insensitivity. How-

ever, it was shown recently that the UV insensitivity can be pre-Here, mg, is the gravitino mass) ;. is the superpotential
served while solving the problem of tachyonic sleptffis Yukawa coupling,y;=—3u(d/dw)logz; is the anomalous
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dimension of theéth superfield, and;=u(d/du)y;. To fix  Will always be present. However, in genersl, suppressed

signs, these terms appear in the Lagrangian as operators coupling the “observable sector” to the “hidden
sector” often dominate over these contributions. Neverthe-
L3> —m2QF Qi_Aiijiéj@k+ H.c., (1.3 less, the chiral compensator can dominate the

supersymmetry-breaking effects, for example, if the “ob-
servable” sector(including the supersymmetric standard
mode) and the “hidden sectorf{responsible for supersym-

_metry breaking reside on different branes in extra dimen-
sions[1] or if the dynamics of the hidden sector is nearly

how various diagrams conspire to set the soft parameters per-conformal to SUppress _direc_t_ couplings_between the
their anomaly-mediated trajectories across the massive pat r_:dden and obtsr(]ervablle fields in t_hetr_l(ar p?tentlaI[S]. In ¢
ticle thresholds. In particular, loops containing evaneseent ese cases, Ihe only communication of supersymmetry-

operators produce the soft terms above the threshold of ﬂep_reakln% effecr;t?hfrom the h'Fide” ;[to Ithte OZSErvablihsector
vor physics, and additional evanescent operators combini CcCurs througn the supergravity muttiplet, and hénce the aux-

with the flavor fields to decouple the flavor sector below!'&"y component .Of the chiral compensator field._ Since the
threshold. We find that when calculating with DRED, it is coupling of the chiral compensator is completely fixed by the

inconsistent to simply insert the soft terms of E(k1) and (fictitious) super-We_yI Invariance, the  consequent
(1.2) into the Lagrangian while neglecting the evanescen ypersymmetry—breaklng terms in the observaple sector are
operators ighly constrained. This case, where the couplings between

In Sec. Il we review some established results of anomaly!he observable and hidden sector are suppressed and the form

mediated supersymmetry breaking. In Sec. Il we present 8f the SUSY breaking i; highly res;ric_:ted, is known g_eneri—
puzzle that makes clear the need to develop a consisteﬁ?”y as anomaly mediation, and it is the case which we
framework for using DRED with anomaly mediation. In Sec. Iscuss here. -

IV we focus on developing this framework, deriving the di- It the observabl_e sector d(_)es not have eXpI'Cf't mass
mensionally reduced bare Lagrangian. In Sec. V, we utiliz cales, the Lagrangian is scale invariant at the classical level.

this Lagrangian to discuss the origin of E¢$.1) and(1.2). hen the_ cqupling of the chiral compensator can pe com-
Having established a framework for using DRED with pletely eliminated from the Lagrangian by appropriate re-

anomaly mediation, we demonstrate its use through eXplicigefinition of the fields. However, the scale invariance is bro-
diagrammatic calculations which confirm the UV insensitiv- en at the_quantum Ievgl because .Of the need tp regulate the
ity of anomaly mediation. In Sec. VI we take a moment totheory. This leads to residual couplings of the chiral compen-

recapitulate, and emphasize the basic message of our deri ator to the ob_serv_able fields. When the classical inva_riance
tion of the anomaly-mediated DRED-based formalism. sec? th? Lagrangian is bfo"e” at ;he quantum Ievel leading }o
tion VIl defines the models used in our diagrammatic calcuph)./s'c"’lI effects, this is "genencally C"’?”ed an “anomaly.
lations. In Sec. VIII we compute thA terms, a short one- This e.Xp':'f"”S the name “anomaly-mediated supersymmetry
loop calculation. In Sec. IX we discuss the substantiallybreakmg'

more complicated case of the scalar masses, which is a two- The implemgntation previously discussed in thg Iiterature
loop calculation ' uses an explicit cutoff scald. Because of the imposed

super-Weyl invariance, the cutoff parameteronly appears
in the combinationA®. Such a cutoff is possible using
Il. ANOMALY MEDIATION AND HOLOMORPHIC Pauli-Villars regulators, finitetN=2 theories[9], or higher
REGULARIZATION derivative regularizatiofil0]. Any of these methods preserve

In this section we provide a brief review of establishedmManifest supersymmetry, and the cutoff is a holomorphic pa-
results in anomaly-mediated supersymmetry breaking. W&ameter: The cutoff can be viewed as the lowest component
discuss the origin of the anomaly-mediated contributions. wéf @ chiral superfield. We refer to all these schemes generi-
also review the spurion analysis for regularization scheme§@lly as “holomorphic regularization.” If a holomorphic
that use an explicit cutoff. This discussion will provide a régularization scheme is used, independent of the details of
useful foil for the DRED scheme which we later employ. ~ the regularization method, we can derive their consequences

In anomaly-mediated models of supersymmetry breakin%?n the supersymmetry-breaking effects in the observable
[1,2], the sole source of supersymmetry breaking resides ifi€lds as follows. _ _
the chiral compensator field in the supergravity Lagrangian; The matter kinetic terms receive wave function renormal-
(®)=1+mg,0°. We now review the origin of this field. [zation
Supergravity is not scale invariant because it has an explicit
mass scale: the Planck scale. However, it is possible to re-
formulate the theory as conformal supergravity by compen- j d*0zZ,Qr Q;. (2.1
sating for the non-invariance of the Lagrangian under super-

Weyl transformations by a fictitious transformation of the
chiral compensator field. Here, Z; is the superfield extension of the wave-function

The supersymmetr{SUSY) breaking that arises when the renormalization,Z;, following the formalism developed in

chiral compensator takes on its vacuum expectation valugll,12. Z; depends on the cutoff

with scalar field<Q; . It is highly non-trivial that the forms in

Egs. (1.1) and (1.2 indeed are invariant under the
renormalization-group evolution, which was checked explic
itly in [7]. We apply our DRED calculation to see in detail
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(2.2  fects of heavy particles completely decouple from the
supersymmetry-breaking effects in the low-energy theory.

, ) ) ) With a holomorphic regularization, this is quite easy to see.

Here, C, are functions of dimensionless coupling constants, «tead of logarithms dependent pn as in Eq.(2.2), loop

Expanding the logarithms if, effects of a heavy particle cutoff at its maésand so appear

* (AD)(AD)T the property of ultraviolet insensitivity, namely that the ef-
log ()= 2, Cilog" .

oc with the logarithms
1092;(12) =10GZi( 1) + (M 67ma) 2, KC A0 AD! A2 o
og————— =log—;. .
(AD)(AD)T (MD)(MD)T " M2
Xlogt™ t —————+ 676°m3, _ _ o
M The point here is that the super-Weyl invariance makes the
- . massM appear only in the combinatidd ® which precisely
x E K(k—1)C |ng72(A‘b)(A®) cancels the corresponding dependence of the cutoff.
K=1 K u? Therefore there are no supersymmetry-breaking effects from
heavy particles in the low-energy theory. We will now at-
_ () + (B2 Mamt 62 A tempt to understand this ultraviolet insensitivity explicitly in
1092,(p) +(6"Ma+ 07Ms) v, the DRED formalism as well.
2022
— 5 070" M3y lll. DRED-FUL UV SENSITIVITY?

y = w = 2 In this section we will outline a naive DRED calculation.
=l0gZi(pn) = (6°Ai+ 0°A7) — 6°0°m;. We will find that simply adding the anomaly-mediated soft
(2.3)  terms of Egs(1.1) and(1.2) to our Lagrangian by hand and
L : ] ) then calculating using DRED leads to inconsistencies. In par-
Here, y=—3zu(d/du)logZ and y= u(d/dw)y. The identi-  ticylar, we are unable to recover the well-established result
fication of the soft termgthe last line of Eq(2.3] follows  of yv insensitivity. In this section we demonstrate the prob-
from reszcallng the fields in Eq(2.1) by Q—Qi/(1  |em using the technique of Arkani-Hamed, Giudice, Luty and
+yMg20°). Once we note thakyj =A;+ A+ Ay; this leads  Rattazzi[11] which “analytically continues” parameters in
to the predictions in Eqg1.1),(1.2. As an aside, we note the Lagrangian to the full superspace to incorporate the ef-
that bothy(w) and y(u) must be finite once reexpressed in fects of soft supersymmetry breaking. We will do explicit
terms of the running coupling constants at the sgale diagrammatic calculations in later sections to further illumi-
The gauge coupling constant is given in terms of the bareate this problem.
coupling 1gg and the running effects in the Wilsonian effec-  Consider a simple Yukawa model
tive Lagrangian as

W:hTX]_Xz"F MX1Y1+ MX2Y2, (31)
1 by A® T; : . ' L
f d26| = + —log— — >, log Zi|7—0 wherer is a light field andX;, Y; heavy. The massive fields
gé 8m? T M f 2 have tree-level supersymmetry breaking because the chiral
compensator appears in the superpotentidVids:
X W, W®. (2.4)
By expanding the logarithms t&®(6?), we find the predic- Lson=~MMgp(X1Y1+X5Y2) +H.C. 32
tion for the holomorphic gaugino mass In addition, there are anomaly-mediated effects according to
) the general formula of Eq$l.1),(1.2),
Y
mx(,U«):_F(bo_Ef Tf7f(M))m3/2- (2.9 (h*hy? o
™ Lsott= _3Wm3/2(7'* T+ XTI X1+ X5 X2)
Going to the canonical normalization of the gaugino changes
the above expression {d 3] h*h ——
- 3—2 m3/2hTX1X2+ H.c. (33)
(4)
2 bo_E Tiye . . . P
_ 9w f S B(9) 0 The question of ultraviolet insensitivity is whether the scalar
» 82 9%(w) 32 292 32 mass for ther shown in Eq(3.3) is precisely canceled by the
1- 872 Ca threshold effects fronX, Y loops.

As we will describe in detail in Sec. IX, the loops #f
and Y precisely canceln% if all integrals are done in four

To complete our review of established anomaly mediatedlimensions, paying careful attention to keep all integrals fi-
results, we reemphasize that anomaly-mediation possesseite. However, we can also understand this computation

2.6
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rather simply using the language of the spurions. First, we (M2<I>CI_>)‘2€=(Mz)‘2€(1—2662m3,2—Ze?mw
compute theZ factor for r at Q%>M?2. It is given by N
+4€2626°m35,,),

h*h  |A|2 (h*h)23  _|A[?
| |02

(4m* 277 Q¥ we find Am2= +6[ (h*h)?/(47)*]m3,. Summing this re-
(34 sult with the contribution from the\ terms, we findAm?

Now. we incoroorate supersvmmetrv-breaking effects b =0. We will explore in detail how this result, which differs
' P persy Y 9 Yrom the holomorphic regularization result, arises in Sec. IX.

zgzisr?tuttrl]r:ag\j/\a?uﬁz.eze(rafgtggg]r?vtglljer?grle:ﬁgn;ﬁirlgl igd”]'n(;n_For now, the important thing is to realize that we have found
9 5 P . mpen;, unexpected result. We had hoped to find a threshold cor-
sator, (®)=1+my;»0°, we obtain the anomaly-mediated

pieces shown in Eq(3.3. Now we integrate between the rection, that when added to the anomaly mediated piece,

! i +3[(h*h)?/(4)*]m3,,, would yield a complete cancella-
scal'e.Q andM and f!nd the I(.)W energy theory below. The tion. Instead, we find that the “threshold correction” itself
additional contribution t&, is

vanishes. Somehow we seem to have lost the ultraviolet

I Z - |
09Z,(Q) (47)209 %

) 5 5 insensitivity?
AlogZ,= h*h IogQ—— (h*h) §092Q_ (3.5 What we have seen here is that the naive addition of the
T (4m)?% M2 (4m)* 2 M2’ ' anomaly-mediated supersymmetry-breaking soft terms to a

dimensionally-reduced theory leads to incorrect results. That
Using this expression, we can isolate the supersymmetnjis to say, putting the terms from Eqgd.1) and(1.2) in the
breaking effects in the threshold correction. Lagrangian by hand isot the correct prescription in DRED.
One effect arises from takinyl —M® in the last term, Note that most calculations in the literature are done with
which gives Amé=+3[(h* h)2/(4m)*mé,. This corre- this naive implementation. We have to develop a consistent
- ormalism to implement anomaly-mediated supersymmetry
reaking within the DRED. We proceed to do this in the
ollowing section.
Finally, we comment on the reason that things did not “go

sponds to the sum of all two-loop diagrams in Figs. 5 and

with —Mmg,X;Y; mass insertions. The other source of
SUSY breaking is thé\ term. Its effects can be obtained by

the replacementh—?h{l—3[h2/(477_)2]'m3,262} together wrong” in the holomorphic regularization scheme. In that
with M —M< in the first term(and a similar replacemeznt for case, one has already integrated out the fictitious Pauli-
h*). The contribution toAm- is —6[(h*h)?/(4m)*Im3,.  villars fields at the cutoff scale, yielding the anomaly-
This corresponds to the one-loop diagram, Graph 7-1, thahediated soft terms of Eqél.1) and(1.2) at the cutoff scale.
contains oneéA term and oneMmg;, mass insertion. Adding Therefore, in the Pauli-Villars case, it is perfectly reasonable
the threshold corrections to the anomaly-mediated piecéo treat the usual anomaly-mediated soft terms as a boundary
+3[(h*h)?/(4m)*]m3,, we find a complete cancellation. condition at the cutoff scale. We will expand upon this point
This cancellation demonstrates the UV insensitivity. in Sec. VI.

Now we perform the same calculations, using regulariza-
tion by dimensional reductiofDRED), and we do not find

the complete cancellation. The threshold correction can again IV. DERIVATION OF THE LAGRANGIAN

In this section we motivate the bare Lagrangians appro-
priate for use with DRED regularization. We look at both the

*

— —2e —2e
AlogZ,= (47T)2(M -Q )Z case of a Yukawa theory and a theory with gauge couplings,
trusting that combining the two provides no new wrinkles. In
(h*h)2 3 . el each case, our procedure basically consists of starting with a
- ) ~Q7")—. (3.6  supersymmetric Lagrangian, and determining how chiral
(4m) € compensators inject supersymmetry breaking into the La-

angian.

By examining the Weyl scaling properties of the super-
ravity fields, we can determine where we must add chiral
ompensator fieldsb to the supergravity Lagrangian to
make it super-Weyl invariant. As noted above, we can then
rescale fields so that the chiral compensator appears only in
front of dimensional couplings. This fixes how supersymme-
try breaking enters the Lagrangian since the breaking hap-

Suppose we do the calculation in the same spirit as in thgr
case with the holomorphic regularization. Then, we shoul
again include contributions from two sources: a cross terrﬂ&J
between am\ term and theV mg, term, shown in Graph 7-1,
and the diagrams including only thdmj;,, term. The con-
tribution from theA term andM ® in Graph 7-1 can be found
again by making the replacemenh—h{1—3[h%
(27)2Img,6°} together withM —M® in the first term of
Eq. (3.6). The result is the same as in the holomorphic regu-

g . 2_ 2 47 2
larization: Am;— —6[(h*h)/(4m)"Img,. However, the 2 fact, there is an additional piece that comes ithpropor-
other contribution from the replacemevit—M® in the last  tional to e. The presence of this term does not change the fact that
term of Eq.(3.6) comes out differently. Because we have gotten an unexpected result.
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pens whend takes the vacuum expectation valde=1  We then would like to associate a real superfiétg, with

+ mg,6°2. the gauge coupling constafitl]. With the above Lagrang-
Here is how this works for a dimensionally reducedian, the superfieldR,, whose lowest component isgﬁl, is

theory with Yukawa couplings: In 42e dimensions, the given by

Lagrangian, written in terms of bare chiral superfields looks

like ¢—ZE+((I)T)—25
295

(4.9
czf d4a(<1>cbf)lfQ?Qi—(f d?0 d32(Njx 0QiQ; Qk

However, this choice does not lead to the familiar prediction
4.1) of the anomaly-mediated supersymmetry breakimg?
=1ym?,. It differs at O(e). We will work with a more

) ) convenient form that leads to the familiar prediction without
Here, the 0 subscript denotes a bare quantity. To reCOVeH(¢) corrections. Instead of E¢4.8) we take
canonical normalization, we rescale

+ M”’leQJ)"‘HC)

o L 4.9
Qi (4.2 R '

. . . 2_2
and then as promised, the chiral compensators only appear /€ tWo expressions fdR, differ only in 6°6° components,

front of dimensionful couplings in the superpotential: which does not lead to any physical difference in the four-
dimensional limit. We prove this fact in the next section.

Using Eq.(4.9 as the real gauge coupling superfield, we
£=f d*e Q?Qi—(J' dZGCDG)\”k,oQinQk can write the bare Lagrangian using the Grisaru-Milewski-
Zanon(GMZ) evanescent operatpt4]. Here the bare action
is given by
+q)Mij'0Qin+H.C.). (43)
.. 1 8 1 T\ — v
The extra power ofb€ can be thought of as arising from the ;J’ d*z_(®07) gertr(l',I,). (4.10
0

€ dimensionality of\;j o which appears in 4 2e¢ dimen-
sions. Expanding in components, we find two sources of su-

persymmetry breaking in the bare Lagrangian: The metric tensorg’s“’ runs onIy for the compactified e
dimensions, and’, is the gauge connection defined by

Loreaking® — €Mai\ijk 0QiQ;Qx— MapMi; 0QiQ; - s

r“=>o" D%e D). (4.1

N| =

The first term is one of the important evanescent operators
which produces anomaly-mediated soft terms to the Iow—T
energy effective Lagrangian.

For the gauge theory we begin with the Lagrangian

his leads to a component Lagrangian that contains the fol-
lowing supersymmetry-breaking pieces:

1/1 1 €
L5 if d20 WW-+ if dZeWW 4.5  Loreaking® 3| 5 €MaAN + 5 €Mgph A + zm%,zg’E”A#AV :
493 495 %
and dimensionally reduce it. Tk dependence can be fixed (4.12
by arguments of holomorphicity and dimensionality, in anal-
ogy with the resultingd®“\;, o dependence found above. Therefore, the supersymmetry-breaking effects are a tree-
Then we should promotegg to a superfield gauge coupling level O(€) gaugino massm,=—emg,, and a tree-level
[11,12, e-scalar massnZ=em3,.
For Abelian theories, we may also use
1 (I)—Ze
—2—>S: 2 (46) 1 Dz
% Y —f d4g (ddhH W —W_+H.c.  (4.13
1693 =

with which the Lagrangian becomes

1 1 to introduce the real superfield gauge coupling, &). In
il ) il BT GYYYY this framework thee-scalar mass is replaced by a non-local
£s 4f d°0 SWvk 4f d70 STWW. .0 modification of the gaugino propagator. We find
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3 k
1 1 Dol Niw N X
'Cbreakinga - 5 EMgpA N+ 5 €MgpA A log Z= 2 _: M})
go 2 2 k=1 € s €
1 RN (M320%+H.c)KDy [ Nijk ik o
+ Efzmg/z( —I1 H . (414) + kEl ek—l 26” :
- M
® 2 222 x \k
However, it is not clear how to interpret a non-local term in n 2 M0 0K Dy [ Nijic oM ijk 0 (5.3
a bare Lagrangian. Moreover, an extension to non-Abelian k=1 k2 we ' '

theories is somewhat opaque due to difficulties in making the

expression containing @I gauge covariant. Nevertheless, it Finally, we can write the expressions fgrand y by taking
provides a useful cross-check to our calculations with thene appropriate derivatives of the first term in E§.3). We

GMZ operator in an Abelian gauge theory. find
o k

V. DERIVATION OF THE SOFT _ 5 KD [ Nijk oMo (5.4

SUPERSYMMETRY-BREAKING TERMS e k-1 w?e ' ’

IN DRED
o k

With bare Lagrangians in hand, we now go back and de- - _22 k?Dy Mjk,d\i’]k,o 55

rive the anomaly mediation formulas for the soft YT T e k2 2 : '

supersymmetry-breaking parametg¢Eqs. (1.1) and (1.2)]

for DRED regularization. This discussion is to be comparedyo using Eqs(5.3), (5.4), and summing the contributions
with the known discussion for holomorphic regulators, re-fom thei i, andk particles, we find

viewed in Sec. Il L )

- 4 Y 2 22| At 2
A. Yukawa theory E_f d ‘9(1_5"13/2‘9 07)QiQi— | dONjj®*

In the Yukawa theory the bare Lagrangian is given by Eg. ST1= (v + v+ Y )Marnf210:0:0u + H.C 56
(4.3). For simplicity in this section we drop the mass terms, [1= (7 + ) MepfT]QIQQtHe., (5.6

so that where we distinguish the renormalized Yukawa coupling by

Nik=NijkoZi V2, Y22, 1%, The soft terms do indeed take
£=f d“aQi’rQi—( f d?0 D\j 0QiQ;Qx+H.c. . the form of Eq.(1.1) and Eq.(1.2). Notice, however, that an

(5.1) additional O(e) supersymmetry-breaking Yukawa coupling

arises by expanding €. This is just the tree-level evanescent

) o ) operator from the bare Lagrangian as in Eg4). Our effec-
The important point is thatbAjj o acts as an effective tjye Lagrangian contains a totalterm

Yukawa coupling constant.

We start by conS|der_|ng the _ wave-functilon A== Mao\iji(Vi+ ¥+ 7 + €Maph i . (5.7)
renormalizatiod Z that appears in the effective Lagrangian.
Again, following the discussion dfl1,12, we promoteZ to
a superfieldZ, and we expand in a power series of effective
coupling constant® \jjy o: If we turn off the Yukawa theory but add gauge interac-

tions, the discussion proceeds analagously. Instead of the ef-
k fective Yukawa coupling®Ajj o, the relevant expansion
(5.2) parameter forZ is gS(CD(I)T)f. This is clear from Egs.
(4.10,(4.13. Now we justify the form of Eq(4.9). To do
this, we need to show that there is no physical consequence
in switching from Eqgs(4.8) to (4.9) in the four-dimesnional

B. Gauge theory

)\ijk,OAﬁk,o(q)q)T)E
MZE

log 2(p) =2 —
k=1 €

The coefficientD, are regular in thee—0 limit. Since the

Yukawa coupling in 4 2¢ dimensions is dimensionful, it Iimg. ider the followi h in th | i
appears always with an appropriate factodof. oPs:d?r € foflowing change In the real gauge-coupling
Now we expand the chiral compensatdr= 1+ ms,6?, superhield:
yielding the expression A2
R—R+ 0202—2. (5.8
g

3Note that in our notationZ ~* is the residue of the pole that one ) _ N
would find by calculating the two-point function. That is to s@y, Clearly this change will n_ot affect one-loop quantities such
would be the coefficient of the bare fiel@Q' in the one particle as A terms and the gaugino mass, as both of these depend

irreducible(1PI) effective action. solely on the#? pieces of the Lagrangian. We show now that
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the scalar masses are also unaffected in the four dimensionalhange that depends on thescalar mass in going from the

limit as we pass from Eq4.8) to Eg. (4.9). m?(uw) we have calculated to the pole mass. By definition,
The argument is simpléTo keep our expressions unclut- this is theDR’ scheme. This is consistent with the comments

tered we work with a single gauge coupling constant, but wéound in[11].

have checked that the argument can be generalized to multi- We can also derive the gaugino mass following the same

coupling theorieg.Generally, under the transformation Bf  |ine, even though it was already discusseddh The effec-

in Eq. (5.8, the change in the mass-squared of a matter fieldive action is

Q;is

1
- A%z Rip) = (GO~ gi"tr(I,T,),  (5.17
m2— P+ %AZ. (5.9 f € "

) ) ) where the lowest order iR(u) is the renormalized coupling
We can see this as follows. Starting from the expansion  g2(,),,~2¢. We know define a dimensionless superfield,
F(w), such thatg?(u)=F Y(u)|s—7-0. The kinetic func-

loaZ = Crg2Xp ~2Ke. 51 tion is a function of the bare couplingy together with the
94 kzl ko # (510 chiral compensator as

we find F(Qau 25 (Dddh)e). (5.18
- Expanding the functio, we find
yi=€>, KC g u 2. (5.11) P g
k=1
_ 4 2 —2e€ 2, 2
Now, the change iR above is the same as the replacement Hp)= 92(p) +F _ Yom €(0°+ 6%)mMgp
0=06=0
,1_) —1/1_ p2p2A2 , —2¢ " _4e o D%
R R ™ (1—076°A"). (5.12 +(F gg,u 2, géM 4 )9=0=o€29292m§/z-
Recall that to recover the scalar masses, we needit@ (5.19

piece of logZ, which is found by replacingg in Eq. (5.10

— Noting that
by R™1. So the change ilR™! induces a change id?6? oting tha
component of log; as given by making the replacement d 1
- B =png FY  =-2eqiu*F !
05—R1(1- 6767A?) (513 da” g T P
in Eq. (5.10. Therefore the change im?= —log Z| ;252 is (5.20
2 Q 2k 2y, —2ke_ Yi 2 we find
Am; =—k21 Cugs(—kA%)p 2=—A%  (5.19
- B(9)
2 2e 4 —
This proves the assertion of E¢5.9). Now notice that the Gom™ “€F |- 9:0_294(,“)' (5.23)

difference between

_ _ _ Furthermore, differentiating it on both sides,
_go 2((1) 2e+q)'l' 25) g

R - 51 id —2€ " —4€ —
1 2 519 26X F g2 F ) 00
and d B(9)
“Hdu ogh
Ry=0g 2(ddT) ¢, (5.16 g (m)
is A?>=R,—R,=—¢€’m3,. Therefore, in this case, the B9 B(9)
change in the scalar masses is o@if) and does not affect _294(M) B 2g%(u) (5.22

the 4-dimensional limit.

Now that the choiceR, '=g5(@®")¢ is justified, the  \ere 53(g)= u(didu) B(g). Therefore
derivation of the soft parameters follows the same path asin ’

the Yukawa theory. Incidentally, our argument shows that we B(g) o

are performing a calculation in the dimensional reduction Fp)=— +4—(02+ 6?)mg,

with modified numerical subtractioDR’) schem¢g15]. We 9°(w)  29%(w)

have calculated the above-threshold case with a finite exter- 1 d B9

nal momentum. In particular, we can always take the value - 9 26°mZ,,. (5.23
of this momentum to be on-shell. Then there is no additional 27 du 2g%(w) 3
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We therefore find the gaugino mass The above discussion seems to say that it is impossible to
regard the anomaly-mediated supersymmetry breaking as a
B(9) boundary at the Planck scale. Indeed, this appears to be true

- mmm’ (524 for DRED. However, this is not impossible for other regular-

ization schemes. We can take this view, for instance, if we

consistent with the derivation {i2]. We also find an all-order use Pauli-Villars regulators where the supersymmetry-

result for the epsilon scalar mass breakingA m;, mass term for the regulators is the source of
all other supersymmetry-breaking effects. Then we can play

5 1, d B@ the _fo]lowing trick. We add.a pair of correct- and wrong-
me=—59(wu du 2g% ) M3/ (5.25  statistics regulator fields withoutms, mass term, which

does not change the physics at all. Then we integrate out the

which had not been obtained in the literature. It would befriginal Pauli-Villars regulators with thé mg, mass term
interesting to verify explicitly that this result is on the @nd a correct-statistics field without thems, mass term.

renormalization-group trajectory in the manner of H&i. Integr_ating out this pair of fields will give us the soft SUSY-
breaking terms of Eqg1.1) and(1.2), where the anomalous
dimensions are to be evaluated at the cut-off scale. The left-
over wrong-statistics massive field acts as the new Pauli-
The important moral to be taken away from the last threeVillars regulator while the supersymmetry-breaking effects
sections is the following: in DRED anomaly-mediated are now in the Lagrangian. This way, we obtain an entirely
supersymmetry-breaking effects are to tmlculatedfrom  equivalent theory with anomaly-mediated supersymmetry
the bare Lagrangian, and cannot be added to the Lagrangideaking in the bare Lagrangian, regulated by the Pauli-
by hand. The basic mistake in the naive calculation in SecVillars regulators that do not have/ams;, mass term. On the
[l is that we added the “anomaly-mediated supersymmetryother hand, DRED does not allow us a similar trick because
breaking” to the Lagrangian by hand and tried to demon-there is no “regulator field.” We need to keep evanescent
strate the UV insensitivity with this cobbled together La- operators consistently in calculations.
grangian. The reason why this is a mistake is clear from the In later sections, we will study the UV insensitivity with
analogy to the chiral anomaly mentioned in the Introductionexplicit diagrammatic calculations. The situation can be
In a regularized theory, the chiral anomaly comes out autosomewhat more subtle in the presence of both light and
matically from the loop calculations. One does not add théheavy degrees of freedom, but nonetheless we have demon-
chiral anomaly as an additional term to the Lagrangian. Irstrated that the effects of heavy multiplets completely disap-
the same way, DRED is a regularization, which leads autopear from the soft supersymmetry-breaking parameters be-
matically to the anomaly-mediated supersymmetry breakingow the heavy threshold once coupling constants are
Therefore, instead of adding soft parameters to the Lagrangeexpressed in terms of renormalized ones.
ian, we should perform a complete calculation starting from
the bare Lagrangian that contains a Yukawa couphp® ¢ VIl. MODEL CONSIDERED
or a gauge coupling;é(d)(b*)f. Then we should find that
contributions of heavy multiplets to the soft couplings vanish We now define two simple toy models to satisfy the dia-
below the heavy mass threshold. We illustrate this UV insengrammatic computation promised in the previous sections.
Sitivity using DRED in our diagrammatic calculation of Sec. I(;(alculations using these models will follow in Secs. VIII and
IX. .
Finally, let us enhance this discussion by describing the The first model contains only chiral superfields with mini-
proof of ultraviolet insensitivity in anomaly mediation with mal kinetic terms and superpotential
the DRED framework. This is the analogue of Eg.7). In
general, the contributions from heavy multiplets to Fhfac- Wi= N, orLH +ho 7X1 X+ MX; Y1+ MX,Y,. (7.1)
tor have the dependenck\)“(M* M) k€. The correct in-
clusion of the chiral compensator then gives(Note L —W;.) Our notations, L, H indicates that we are
APA*DTHKMDM* DT "ke=(A*N\)K(M*M) k€, and no  thinking of these as the essentially massless tau, lepton dou-
supersymmetry-breaking effects remain. blet, and down-type Higgs doublet superfields of the minimal
Now we can analyze what went wrong in our example insupersymmetric standard mod&SSM), with \ , the usual
Sec. lll. Operationally, we made two errors in our calcula-MSSM Yukawa coupling. HereX;, X,, Y;, Y, are the
tion. First of all, we extended the Yukawa coupling incor- heavy fields which have flavor-dependent couplings, i.e. they
rectly. Instead of extending it to get theterm diagram only couple to ther superfield.h is a Yukawa coupling and
through the replacemeiit—h{1—3[h?/(4m)%Im;,0%}, we M is a supersymmetry-preserving heavy mass. As discussed
were meant to make the replacembnt hd €. Moreover, we in the previous sections, we should add a chiral compensator
neglected a one-loo(eh?) piece that was present in the @ in front of mass terms and a factd in front of Yukawa
high-energy theory. In fact, in our attempt to compute thecouplings. Note that all gauge interactions have been turned
threshold correction to lay we ended up computing the off in this model.
entirety of logZ. We were unable to separate the high-energy In the second model we turn off all Yukawa couplings but
piece from the threshold correction. add an Abelian gauge coupling which one can think of as a

VI. MORAL

085028-8



DIMENSIONAL REDUCTION IN ANOMALY MEDIATION PHYSICAL REVIEW D 65 085028

new L_J(l), flavor-dependent gauge interaction with gaugeexpressions with the 3-poin.H function computed in bare
couplingg’. The superpotential now only serves to make theperturbation theory. In the two-loop scalar mass-squared
flavor fields heavy: computation, however, we will need to distinguish between

_ bare and renormalized couplings.
Wo=M X1 Y1+ M X,Y5, (7.2 In the expressions foy, we see explicitly the ultraviolet

and again chiral compensators must be added in front ']nsensitivity: Above threshold the heavy particles contribute

o *h/(4m)? to y, or —mgp\ h*h/(4m)% to A, . Below
We k | h | T 3/2/\ 7 ) 7LH
Tﬁze: e keep theparticle in the second model but drop threshold they do not contribute at all: The soft

supersymmetry-breaking paramet®y,  is independent of

The aim of this exercise is twofold. First of all, we have ath h field Yuk terour task ot
chance to display how anomaly-mediated calculations pro. € heavy-field Yukawa paramelerur task now is to con-

ceed in dimensional reduction. Second, we will show howflrm this by d|agrz_ammat|c calculat!on._ .
integrating heavyX andY superfields gives rise to the thresh- The relevant diagrams appear in Fig(Ihe mass inser-
old effects that precisely maintain the anomaly-mediatiorfion proportional taMims, is indicated by a cross on thex
form for the scalar masses. As mentioned previously, thiscalar line) Above threshold at scale, Graph 1-1 vanishes
diagrammatic approach is completely complementary to théuadratically inM?/ w2, so we ignore it. This leaves Graph
already established approach of the spurion calculus. 1-2 which has value

To demonstrate the decoupling, we will calculate quanti-
ties “above threshold” and “below threshold.” Above - Mghohg N 7o
threshold we are calculating quantities with finite external Graph 1-2=i (47)2
momenta well above the madé. In these calculations, we
neglect this mass relative to momenta. Below threshold, wexactly the contribution toA, ; expected from Eqgs(8.1)
can neglect the external momentum relative to the massesnd(8.2).# As anticipated in Sec. II, the graph with the eva-
This is the energy regime where we expect to see the depefescent operator produces the anomaly-mediated contribu-

, (8.9

dence on theX and Y vanish. tion to theA term. A graph analogous to Graph 1-2 with
andH fields running in the loop contributes the \? piece
VIll. A TERMS to the A term coupling.

When u<M, we find an additional contribution from in-

In this section we explicitly demonstrate the ultraviolet tegrating out the&X and Y fields, which is Graph 1-1:

insensitivity of theA terms associated with the.H operator
of Eq. (7.2). This affords us our first opportunity to see how %

i i i M32hohg A 7o
operators proportional te are vital to our understanding of Graph 1-F—i——— . (8.5
supersymmetry breaking in anomaly mediation. We calculate (47)?
in bare perturbation theory and use the mass-insertion for- . o _ o
malism, which allows us easily to pinpoint the contributionsAs promised, this is equal and opposite to the contribution

that arise at lowest order in the gravitino mass. from the € operator. Together, Graph 1-4 Graph 1-2= 0,
Recalling Eq.(1.2), so that at scales <M below threshold, the flavor-dependent
interactions of the heavy particles do not contribute to the
AL u= Mg\ (v Y+ vh). (8.1)  A-term coupling. This bears out E¢.3).

It is instructive to see the dependence on the momentum

Now, y, changes as we integrate out theand Y flavor  scalep?= —k2. The sum of Graph 1-1 and Graph 1-2 is
superfields, and we expect to see this difference in comput-

ing the 3-point7LH function above and below threshold. “mzzhihok ;o Ve
e . | _
éﬁ;%grg?ntams the form of Eq(8.1) even though its value (472 N2t AN
In the literature anomalous dimensions are typically
guoted in terms of the renormalized or running couplings xarctanh'u— ; (8.6)
NpEwIvE

N A(w) andh(u) at momentum scalg. Here we have M

which interpolates the result above thresh@d) and that
¥ ) above threshoi 5[ 2N AT (1) +hh* (w)], below thresholdzerg as expected.
(4) Graph 1-1 is finite by itself, so it is tempting to compute

(8.2 the threshold correction without using any regulator at all.
And you do learn something when you do this: When you
1 compute at scaleg<M, you find thenegativeof the ex-
_ - * y
¥ ) below threshold™ (477)2[2)‘7)‘7('“)]’ 83 pectedabove thresholdx>M) anomaly-mediated contribu-

where factors of two in front ok , reflect the fact that and
H are doublet fields. To one-loop the running couplings and “To keep factors of {1) and i straight, note thati.
bare couplings are identical, so we can freely compare these —iA , ,7LH andi£> (Graph 1-2¥LH.
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PR N limit that the cutoff,A, is taken to infinity(or e—0). Nev-
J X N L ertheless, these additional terms are important during the
T b~ - regularized calculation, so we reexprasand y in terms of
T "‘: hM )‘Thf\ “~ bare couplings.
\ / ~ . Working above threshold with the renormalized cou-
N s H plings,
Y S - X
Graph 1-1
. yAp)= @ )2[2>\’§(M)>\T(M)+h*(M)h(M)], 9.2
- T~ s
N
7"- ! \ L~
- >o-phemg A4 P 1) = v, (1) = —— [h* (wh(w)], ©3
\ T N (4)
\ _ / ~
wx o
Graph 1-2 yu)= [AN ()N () +2h(p)h* (u)]

(4m)?

FIG. 1. Diagrams that contribute to ti#e, ,, coupling.

tion to the A term. How do we interpret this result? This [ANT (N () (vt v+ vm)

calculation computes the correct threshold correction, but to
see the ultraviolet insensitivity, we should not ignore the +2h* (wh(p) (v + vx, + x,) - (9.9
piece it is correcting. A theory is only defined after specify-

ing a regulator, be it Pauli-Villars, dimensional reduction, orgejow threshold the terms proportional k& h disappear,
what you will. Thus Graph 1-2 or its Pauli-Villars analogue gnd in addition,y, changes as from Eq8.2) to Eq. (8.3.
always exists, regardless of how you treat the finite Graplypanding to pinpoint the contributions to the scalar mass

1-1. We must regulate, and when we include contributionsyhich change across théandY threshold, we find
from the regulator-induced operators, we find Anterm

 (4m)?

which follows the trajectory defined by E¢B.1). The regu- m?2
lator diagram gives the contribution above threshold, and ~ m?= 3/24[2)\’;)\7(4)\*;)\74- h*h)
Graph 1-1 gives the threshold correction. (4m)
+h*h(2\X\,+3h*h)] (above threshold
IX. SCALAR MASSES ©5
As a final test of our formalism, we now compute the '

different above- and below-threshold anomaly-mediated con- m2
tributions to the scalar masses. We recover the result of ul- Fniz 3/24(8)\’;)\7) (below thresholal (9.6
traviolet insensitivity, providing a resolution to the puzzle of (4m)

Sec. lll. To compare diagrammatic results with expressions

for r~n§, note that in the diagrams “Graph —” we compute Agaln, these expressions are written in terms of running

couplingsh (), h(u), and in keeping with our previously

are corrections to£, while —imZr* reiL. stated protocol, we now rewrite them in terms of bare cou-
plings. By straightforward computation with DRED regular-
A. Yukawa theory ization, we can compute l@y from which it is straightfor-
1. Expectations ward to extracm,.> We find
To understand our diagrammatic computation, we should 2 * * * 2
) ’ ~ A hg h AToN
first work out what we expect. We know that the scalarm?=—22 {_ erohro  €NoMo ! ( (Aroh o)
masses follow the form of Eq1.2), (4m)? (wd (A (4m)? (u?)?
-, 1 . (hgho)®  NEoh.chgho
2 2 ! !
m2==m2,y.. 9.2) 6 T8 .
2 3/2 (MZ)Z (MZ)Z
For easy comparison with the literature, we displ'yayin (above threshold, bare couplings (9.7

terms of renormalized couplings. However, we generally
work in bare perturbation theory, and at two loops the renor-
malized and bare couplings differ significantly. In particular, 5as an alternative to direct computation, we can fipd, and

wheny andy are written in terms of the bare couplings, they hencem?, through renormalization group arguments. This method
contain additional scheme-dependent terms that vanish in the explicitly implemented for the gauge theory in Appendix C.
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Below threshold, terms i . proportional tohg ho!/(u?)€ Graph 2-3+Graph 2-4 Graph 2-5
are modified tch} ho/(M?)¢, becauseX fluctuations are cut
. 2
off at scalesu<<M. This means that most of the depen- — ieh*h M3z 9.19)

dence drops out ofy,, as in Eq.(9.6). Here, however, a 070 4m2(M2)e’

N7 o\ 7.0hg ho term remains:

' canceling thehh, dependence of Eq9.7) as required by
Eq. (9.8). Other one-loop graphs potentially contributing fi-

m nite terms to the scalar mass cancel among themselves.

2 * * 2
m 6)\T T 1 7\T - )
3 3/2 [ 2 oMo (16( oMo

(4m)? (w2 (4m)? (n?)?
3. A} o\, ohg hg contributions

* *
ZM There are two types o)ﬁfhz contributions to the scalar
(w?)(M?)¢ mass. The straightforward two-loop diagrams appear in Fig.
3. Only Graph 3-2 exists above threshold:
(below threshold, bare couplings (9.8

- * M3,
) ) Graph 3-2=—4iN; N ohghg————.
The residuah, dependence below threshold just reflects our o (4m)4(u?)%e
use of bare couplings. Of course the heavy particles decouple
from the physics at scalgs<M, and we see this when we _ This is half of thex7 o\ dhgho dependence needed for
use renormalized couplings as in E§.6). As an aside, we mf in Eq. (9.7). As expected, it is the diagram containing
mention that there is a factor of two difference betweenvertices proportional te@ which yields the contribution to the
terms that go like the fourth power of the coupling constantanomaly-mediated scalar mass.
when we compare Eq$9.8) and(9.6). The reason is that in The other above-threshold contribution comes from the
Eq. (9.8), part of the M’OAT,O)Z term combines with the cross term between the wave-function renormalization and
O(€) piece to give a piece that vanishes in the four-the O(€) one-loop scalar mass derived in Sec. IXA 2. Since
dimensional limit. the anomaly mediated soft scalar mgEg. (1.2) or (9.7)] is
the mass in a canonically normalized Lagrangian, we need to

2. One-loop contributions divide the mass-renormalization part of our two-point func-
tion by the wave-function-renormalization parZ,=1
+6Z,., when computing corrections to the mass squared.
Cross terms betweefZ . and two-loop mass diagrams are

(9.12

We now turn to the calculation of the diagrams. As men-
tioned previously, for simplicity we compute below-

- ~2
threshold contributions ten? at zero external mo_mentum. higher order, but cross terms betwedf. and the one-loop
Above threshold we neglect theandY massM relative to a 545 diagrams contribute @\ 2h?)

“h?).

finite external momentum. This procedure, together with the Since 52, will multiply the O(€) one-loop masses, we

mass _insertion for_malism, means that in any given diagrang)nIy need theD(L/e) poles(see Fig. 4 With external mo-
there is only one fixed mass/momentum scale, a tremendo

advantage computationally. Further, whih—0, there are entump,
fewer vertices and consequently many fewer diagrams. p2 1

As seen in Egs(9.7) and(9.8), when we write the scalar Graph 4-I=ihgh, > 5 —+0(e% (9.13
mass in terms of bare couplings there is a one-lo{g) (4m)*(—p9)° €

piece. These one-loaf(e€) terms occur diagrammatically as

shown in Fig. 2. Above th&-Y mass threshold we can take . p
M—0, so Graphs 2-3, 2-4, and 2-5 all vanish, as they con- Graph 4'2:2')‘:’0)”'0(477)2(_}:)2)5 Z+O(6O)’
tain verticeshM and/orMmg,. This leaves Graph 2-1 and (9.14
Graph 2-2. Poles from the logarithmically divergent loop in-

tegrals pair with the?(e?) contribution from the vertices to which means

give O(e) results:

2

_ hg h0+ 2)\’;,0)\7,0 1

82,=—————"—+0(). (9.15
. m3, e € )
Graph 2-I=iehgh, YR 9.9
(4m)" (1) To lowest order, dividing by .= 1+ §Z, means multiplying
by (1-6Z.), so our sought-after contribution is
2
m
Graph 2-2&2iex:,@7,0ﬁ, (9.10 —6Z,%(Graph 2-%+Graph 2-2
)
:[_Zi)\:,okr,ohz_zmt,okr,ohg ho—i(hg ho)?
matching our expectations from E(.7). Below threshold, m2
Graph 2-1 comes with 4?)¢ replaced by K?)¢, while AN, ) ——2 (9.16

Graph 2-3, Graph 2-4 and Graph 2-5 sum to give (4m)4(u?)?e
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Graph 2-3
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Graph 2-4

A
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/

|
A\
. X/l
\\ ~ .
_—— T - — — — —

Graph 2-5

FIG. 2. Diagrams contributing the one-lodp(€) terms to the

scalar mass squared.

These two 27\ chghy pieces combine with the
ANT oM, ohoho piece from Eq. (9.12 to exhaust the

8NN ,0hg ho of Eq. (9.7).

Below threshold the cancellation of much of the
N7 o\ -.0ho ho dependence proceeds as follows: we find Graph

3-1 supplies a threshold correction

mé/z
(4m)*(p?)E(M?)’
(9.1

Graph 3-I=4ihgho\ o\, o
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X L
- e+ 3

7o) N T
—=>--hM eh), ¢-+--

N g AN e

Y X H
Graph 3-1

X L
~ PN L* s
\ -

T / Y T
- = - —Qh€m3/2+hAT +——->-——
\ /N /)\T€m3/2

~
- 7 N -

X H
Graph 3-2

FIG. 3. Diagrams that contribute} A7 ohg h, terms to the sca-
lar mass.

which exactly cancels Graph 3-2 in E@.12 after the re-
placement f2)2¢—(u?)€(M?)¢. We already discussed in
Sec. IXA2 how Graphs 2-3, 2-4, and 2-5 cancel Graph 2-1
below threshold. This leaves the cross term betw&&nand
Graph 2-2, one of the terms from E®.16). Below thresh-
old the h%hy(u?) ¢ dependence in6Z, becomes
hgho(M?) ™€, so that the cross term becomes

—6Z,X(Graph 2-2

2
Mg,

> _Zi)\tOAT,Oh* ho y
SO (4w (ud)A(M?)E

(9.18

which is the residuak} o\, ohg hy dependence in Eq9.8).
This confirms the ultraviolet insensitivity: We have checked
Eqg. (9.8, and when we rewrite that equation in terms of
renormalized couplings, we find E¢.6). There the ultra-
violet insensitivity is manifest.

4. (h¥hg)? contributions

For now we continue to work exclusively with bare cou-
plings; the relevanm? for comparison is that of Eq$9.7)
and(9.9). The new b ho)? diagrams appear in Figs. 5 and
6. The graphs shown are merely skeletons, the true diagrams
being found by adding mass insertions and the various trilin-
ear couplings in all possible places.

We first proceed with the calculation of the anomaly me-
diated contribution to the scalar mass above threshold. We
expect our result to agree with thij(hy)2 term in Eq.(9.7).

Of the graphs in the figure, only some occur above
threshold—Graphs 5-3, 5-5, 5-7, and 6-2, each with two tri-
linear verticeshgems, 7X;X,. The others vanish in thi

—0 limit.
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¥
I

—-

Graph 4-1

¥

Graph 4-2

FIG. 4. Diagrams for the one-lodp(1/e) wave-function renor-
malization.

The calculations are straightforward except for Graph 5-5
This diagram is different from the others in that it has an
infrared divergence in the lower loop which is not regulated

by the external momentum. However, the top loop is effec-

tively a contribution to théX two-point function, and if we

integrate that loop first, it gives a radiatively-generated mass

to theX boson which regulates the infrared diverger(&e-
call that we are working in the limit where the tree mass

M—0. The vertices which appear in computing the one-loop

X two-point function arehgemg,7X;X, and its Hermitian
conjugate. We will have more to say about infrared diver-

gences in dimensional reduction when we discuss the gaug

theory.

The values of the above-threshold diagrams appear ir

Table I. Also included is thet(§ ho)? contribution derived in
Eqg. (9.16, which comes from the cross term between the
one-loopO(€) scalar mass and the wave-function renormal-
ization. Altogether, we find the expected above-threshold re
sult

mz?;/z
(4m)*(u?)%
We now turn to the calculation of théa ho)? piece of the
7-scalar mass below threshold. Based on(Bd), we expect

m2s 6(h&hg)? (9.19

to find zero. Below threshold, the cross-term between the

one-loopO(e€) mass and the wave-function renormalization

disappears because the sum of Graphs 2-3, 2-4, and 2-5 ca

cels Graph 2-1. Then we are left with two-loop diagrams
from Figs. 5 and 6, all of which contribute below threshold.
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TABLE 1. Values [to O(e%] of the diagrams suppling the
above-thresholdi hy)? term in the scalar mass squared. We have
pulled out a common factdrl/(4)*]i (h% hg)2m3,,(u?) ~ <.

Graph 5-3 -2
Graph 5-5 -1
Graph 5-7 -1
Graph 6-2 -1
Equation(9.16 -1

the form hgems,7X;X,. Using the integralsl(m,n,l),
F(m,n,l), andG(m,n,l) as defined in Appendix A, we write
down the values for the Feynman diagrams in a compact
form in Table II.

Expanding the integrals and summing all contributions,
we find exact cancellation, matching E§.8) and verifying
ultraviolet insensitivity. In particular, the cancellation among
the O(€°) terms looks like

- T
7 ~ PN
// \\ / \
: ; \ bowo b
- - — > —— - _ : X I
FouT ) 7 Y Y
\ , ! |
N - — >, —— —- — - — »—
-~ F o
Graph 5-1 Gra;))gl 5-2
< -~
SX N
’ ~ AY
o 0F v oF
——»——Q——»——f—v—-‘-—»-——
\\.’/
X
Graph 5-3
N //—\\ - ’/’}:/-\\\
X5t Y X7 J |
7
\;—0-\/ IQ—-—-»————&
’ N ~ ~ /
~ \ ~ ~ T /-
X r X X 7 X
/ v
»—+—\>.-/—->—— ——-»——\‘——-b——
T T T T
Graph 5-4 Graph 5-5
) - //_\\\ ~
X ¢t +X
/
A P
~ ’\‘.-‘\ ~
IS S U
Graph 5-6
cEL
PR RN A
—-eo g 4 o
X VA
& &7
Y X XY
Graph 5-7

We split our computation into three parts. First, there are FIG. 5. Diagrams that contribute to tihé threshold correction
diagrams in which all trilinear vertices are of the form that exclusively include scalars. These diagrams may be defined in
hoM7XY, and supersymmetry-breaking comes from a pairterms of the integral (m,n,|) as defined in the text. Wher¢ is

of mass insertion#1ms, on the scalar lines. Second, there shown, it corresponds to botk, andX,, as appropriate. Also, the
are diagrams with a single trilinear vertex and a single three point scalar couplings shown here are the vertiddsXY*.

Mmg, insertion. Finally, there are the same diagrams whichas described in the text, this vertex can be replaced withetX
existed above threshold, where two trilinear vertices are ofertex, yielding additional diagrams.
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TABLE II. Below-threshold contributions toh hy)? terms in

-
X the scalar mass squared. The three sets of values represent diagrams
Q in which zero, one, or two trilinear vertices are of the form

hoems,7X1X,. The integralsl (m,n,l), F(m,n,l), and G(m,n,I)

o« *

~ T 7 o X are defined in Appendix A. We have pulled out a common factor
X /’ X XY ~ TX i(ht ho)’m3,.
-———»——\é——>—— ——->——‘———>~—-6-—->——
7 7 7 7 Graph 5-1 M?1(3,1,1)
Graph 6-1 - Graph 6-2 Graph 5-2 2M81(5,1,1)+12M°®1(4,2,1)+4M®1(3,3,1)
_ ﬁ - Graph 5-3 ARM41(3,2,1)+12M%1(4,1,1)
/ \ Graph 5-4 M?21(4,1,0+2M?1(3,2,0)
> Graph 5-5 &M41(3,2,1)+6M*1(4,1,1)
< | T X Graph 5-6 M*1(3,3,01+12M%1(5,1,0)
X Graph 5-7 A41(3,3,0)
- - - - Graph 6-1 —8M? F(4,1,1)
Graph 6-3 T Graph 6-2 —24M*F(5,1,1)
Graph 6-3 M®G(3,3,1)
FIG. 6. Diagrams that contribute to té threshold correction
that include fermions. Graph 5-2 24M* 1(4,1,1)+8eM* 1(3,2,1)
Graph 5-3 12M? 1(3,1,1+4eM? 1(2,2,1)
m2, Graph 5-5 &M? 1(2,2,1)+4eM? 1(3,1,1)
0=i(hghg)*——""—>—-(~-5+10-5) (9.20  Graph 56 &M?21(4,1,0)
(4m)"(M*) Graph 5-7 &M21(3,2,0)
where the contributions are, respectively, from graphs witH®"aPh 6-2 —16eM?F(4,1,1)

zero, one, or twdhgemsg,7X X, vertices.[Table VII gives 5
O(€% expansions for the integrals, but the spurion compu—Gr"’1ph 52 &1(311)

" 2
tation assures us that the cancellation is exact, and it doegap: 22 :2:(2’1'1)
indeed extend to all orders in] raph o 2 (2.1.1)
Now it is instructive to revisit our puzzle of Sec. Il ©raph 56 2°1(3,1,0)
Graph 5-7 €21(2,2,0)

When we found a vanishing threshold correction and a re
sulting lack of ultraviolet insensitivity, it was because we had®raph 6-2 —4€’F(3,1,1)
not calculated all contributions to the scalar mass. In the
language of this section, we calculated the first section of

Table 1I, along with a cross-term from Graph 4-1 and Graphsanomaly-mediated piece in mind, we may turn to a calcula-
2-4 and 2-5. We then added in a contribution fromAberm  tion of the threshold correction. We calculate the diagrams
by hand. This gave an erroneous result. We have seen th@ith X andY particles in the loops, taking care to keep our
the correct procedure is to calculate the entirety of Table Ilintegrals well defined at all times.

and see that the contributions sum to zero. First, theA terms in the effective Lagrangian give rise to
o . ) the diagram in Fig. 7. This is effectively a two-loop diagram
5. Finite computation for (h*h) because there is one-loop suppression througktteem. It

In contrast to the DRED calculation above, we present afs already finite. Recalling thafx x,= —mgh(y+ vx,
additional calculation that does not depend on this type oft yxz),
regularization. In the language of Sec. lll, this calculation
corresponds to one where we have implicitly used a holo-

morphic regularization scheme. So, we may compare this _ m3),
calculation to the spurion calculation done with holomorphic Graph 7-F2ih* h(4w)2(y,+ ¥x, T Yx,)

regularization. This provides an additional demonstration of
the ultraviolet insensitivity.

As described in Sec. Ill, we must keep all integrals in four 5
dimensions, paying attention to the finiteness of the integrals. —2ih*h M3z (20 N+ 3h*h)
By integrating out the cut-off dependent supersymmetry- - (4m)t T '
breaking operators, we recover the anomaly mediated piece (9.21)
of Eq. (1.2). If we choose Pauli-Villars as our holomorphic
regulator, this procedure would essentially correspond to
working with an effective Lagrangian at a scalébelow the The remaining relevant diagrams and their formal values
threshold of the Pauli-Villars particles. We have integratedappear in the first part of Table Il. Of these only a few are
out the Pauli-Villars fields, and the anomaly-mediated soffpotentially divergent. Expanding(l,m,n) andG(l,m,n) in
terms now appear in our effective Lagrangian. Keeping thigerms ofl (I,m,n), we find
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N all, we were able to check the usual form of the anomaly
// X N mediated contributions té terms and scalar masses. Sec-
E vooF ond, we were able to explicitly verify the ultraviolet insensi-
--»--¢hA xx th - - tivity of anomaly mediation through a diagrammatic calcula-
" / tion.
~ /.
X ™. 7Y
~Q9 - B. Abelian gauge theory
Graph 7-1

1. Expectations
FIG. 7. Additional diagram for the finité* calculation. It is
effectively a two-loop diagram, as there is a one-loop suppressio
through theA-term vertex.

Shifting to the W1) gauge model described in Sec. VII,
We have particle content, X1, Y1, X5, Y,, with superpo-
tential given in Eq.7.2). In this section we primarily focus
) . 6 on additional subtleties that arise for the gauge theory. We

Sum of diagrams finite+[24M"1(5,1,1) show a computation of the above-threshold anomaly-
+30M%1(4,1,1) + 6M2I (3,1,1)]. mediated contributions proportional mi and Yszf( We
further check that the contributions going Ilk’éYX vanish
(9.22 below threshold, confirming ultraviolet insensitivity. We be-
o . _lieve these calculations capture the subtleties associated with

The last three terms are individually divergent, but theirthe gauge theory. Incidentally, the calculation of the
sum is clearly not, since the left-hand side is finite. In Ap- anomaly-mediated contributions in this model is quite simi-
pendix B we outline a completely finite calculation of these|ar to a gauge mediation calculation performed previously
terms. All told, we find that the finite evaluation of these [1g].
diagrams yields precisely 3i(h* h)2[21/(47r)4]_m§,_2. When Before calculating any diagrams, it is important to know
added with the B(h*h)?[1/(4m)*Im5, contrlbzutlon from  what we expect for the scalar mass. For this, we need to
Eq. (9.2, we find a total 8(h*h)?[1/(4m)*Im3,. Thisis  know v. It is useful to write the results in terms of both

the proper threshold correction to cancel the known aboverenormalized and bare couplings. In terms of renormalized
threshold contribution from the Pauli-Villars fields as given couplings we have

in terms of renormalized couplings, E¢.5. This again
verifies ultraviolet insensitivity.
It is worth contrasting how the cancellation happens inv.(u)=

[—29'%(p) Y2,

dimensional reductiofEq. (9.20]. In that case the diagrams (4m)2

with no e-dependent vertices contribute5(h% hy)?, versus 923
—3(h*h)? in the completely finite calculation. This is a sig-

nal that we must include the-dependent vertices to get the ()= [—4g'(1)g' (r)Y?]

consistent results. The dimensional reduction cancellation (4m)°? 7

happens through omplicated interplay between these dia-

grams and those with the neswertices. 1 P ) 5 5
Finally, we mention that the couplings throughout our “fi- = (=49 (WYY 2+ Yy + Yy, + Y5, T YY)

nite calculation” are the renormalized couplindgg,w). This (4m)

is because we have generated the soft terms by integrating

out the Pauli-Villars fields at the cutoff scale to get Edsl) 1 g (w2 Y2+ S 2

and (1.2). However, these equations are renormalization (4)* g w)¥a Yy heavy ||

group invariant, so, we can run them down to our threshold (9.29

scaleM where the equations still hold, now evaluated at the

renormalization grougRG) scaleM. This threshold correc- (Here and below, the sum over heavy multiplets is performed

tion is then done with couplings at this scale, in other wordsfor each chiral superfield separat¢lyhen clearly,

with the renormalized couplings.

2
~ M3y,

6. A\ o\, 0)? contributions m?= 2
© 70070, (477)

—29"4(n) Y2

Y2+ > Y?”
heavy

The calculation of ;o\ 7,0)2 contributions tcfn'ﬁ is iden-
tical to the above-thresholdhfh,)? calculation, the only (above threshold (9.29

difference being factors of two from the doublétsand H. )

The table analogous to Table | is Table lll. Summing, we find ~, M3, 4 4

the 16Q.* )\ ,.0)? expected in Eq(9.7). (\*o\,.0)? contribu- m,= (477)4[_29 (n)Y7]  (below thresholal
tions are not affected by integrating out the heaand Y (9.26
fields.

In summary, we have utilized our new formalism in The last expression does not depend on the properties of
DRED to check two anomaly-mediated calculations. First ofheavy particles at all, manifesting the UV insensitivity. To
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TABLE l1I. Values [to O(€%)] of the diagrams suppling above- values of the diagrams appear in Table IV.
threshold §76\ ) term in the scalar mass quuared- We have The two-loop terms come from one or two diagrams. If
pulled out a common factd{\ % o\ ,0)?[ 1/(4m)*Im5(u®) "> Ev-  we choose to work with the non-local operator, only gaugi-

erywhere in Graphs 5-2 through 6t2andH replaceX and . nos have supersymmetry breaking, and so only the single
topology Graph 8-6 contributes. If instead we work with a
Graph 5-2 0 supersymmetry-breaking mass for the epsilon scalar, Graph
Graph 5-3 —-4 10-1(see Fig. 19adds to a reduced contribution from Graph
Graph 5-5 -2 8-6. Table V collects these contributions to the scalar mass,
Graph 5-7 -4 which total
Graph 6-2 -2
Equation(9.16 -4
2 M3,

~2 14v/2
. . . —49,°Y Yi——————.
get the analogous expressions in terms of the bare couplings m>= =490 Thsz ' (4m)H ()2

requires a bit more work. This calculation is done in Appen-
dix C. In terms of bare couplings we have

(9.29

This completes the calculation of the mass above the
threshold. We now demonstrate decoupling. All graphs in
Fig. 8 are relevant, because below threshold we keep a finite

2 V2q'2 g(’,“Yf Y§+ E Y,Z) X-Y massM, and supersymmetry breaking enters through an
m2= Mar2 o€ 9o —4 heavy XY mass insertion. First we consider only the diagrams with
4w\ (ude (4m)2(u?)2e this sort of supersymmetry breaking. There appear to be

seven such diagrams, but several of these in fact do not con-

(above threshold, bare couplings (9.27  tribute.

Graph 8-5 vanishes because it is proportional to the sum

of the flavor charges of the heavy fields. This sum vanishes

= m3, | eY?gy? goty? by the gauge invariance of the Lagrangian. The sum of
T > N >, 2.2¢ Graph 8-2 and Graph 8-4 also vanishes by gauge invariance:
(4m) () (4m)~(p") If we add Graph 8-4 and Graph 8-2, we get a graph that
contains the vacuum polarization operator for scalar QED,

964Y3h§Vin2 with a form fixed by gauge invariance to be
@mApt) (M)
(below threshold, bare couplings [#7=(p*p"~p°g"")I1(p?). (9:30
(9.28
2. Insensitivity Upon contraction with the momentum-dependent

In this section we will compute the above-threshold(79.7"A“+H.c.) vertex, the sum of Graphs 8-2 and 8-4
anomaly-mediated contributions proportional Vﬁ and yields zero. Thus only four graphs containing supersymmetry

22 . reaking due to thémy, mass insertion contribute to the
YTYxi ' .and we C_heCk that.t_h_e latter vanish below thresh_ol hreshold correction: Gsrlgphs 8-3, 8-6, and the combination
to confirm ultraviolet sensitivity. The relevant skeleton dia- ¢ Graph 8-1 and Graph 8-7 which again contains the
grams are shown in Fig. 8, we must add appropriateacyum polarization operator.
supersymmetry-breaking vertices to form the actual dia- There is a remaining worry concerning infrared diver-
grams.(There are many additional diagrams which &  gences. We can safely express Graph 8-3 in terms of the
contributions, but we do not eXpeCt further Conceptual difﬁ-standard integra|s in Appendix A, but we must be more care-
culties in their calculation. ful with the other graphs. If blithely written in terms of

Let us consider the contribution to the scalar masseg(mn,|), the diagrams contain infrared-divergent integrals
above threshold. In this energy regime the SUSY-breakingyhich are not automatically regulated by DRED. While in
Mmg, mass insertion is suppresseMl {~0), so there are  DREG one can analytically continue to-2e dimensions to
only two sources of supersymmetry breaking. First there is gegulate the IR, DRED by definitionompactifiest dimen-
tree-level gaugino massy, = —emg;,. Then depending on  sjons down to 4 2e dimensions. IR-divergent integrals are
the choice of the bare Lagrangian, ¢.13 or Eq.(4.10,  thus not well defined by DRED, and one can find mutually

the remaining supersymmetry breaking is given by the noninconsistent ways to evaluate such integrals. In particular, the
local gaugino operator in E¢4.14) or by thee-scalar mass, sometimes-seen prescription
m.= em3,,, that results from using the GMZ operator.

The diagrams in Fig. 9 yield the one-lodp(€) piece in gt
Egs.(9.27 and(9.28. Depending on our form for the bare f _pzo (inconsistent (9.3)
Lagrangian, either Graph 9-1 or Graph 9-2 contributes. The p*
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FIG. 8. Diagrams that contrib-
ute to the cancellation ing’*.
These diagrams all contain the

heavy fieldsX andY.

- /” oL —):{
X, Y, 7+ s+ XY, 7 PN
] ;
\/\-0-\/ -
’ ~ X
5o Voo - q q
XY, 7+ » XY T » >
N // > T
—_— - 2~ > — - —— - = - — = - — =
T T 7
Graph 8-5 Graph 8-6
leads to inconsistent results. Nonetheless, in supersymmetry —Y2g/2T (e)
we must use DRED, and not DREG, because an extension I1(p?) = (p*p’—p?g"") X 02_
above 4 dimensions changes the spinor algebra and causes a (4m)= ¢
mismatch in the fermionic and boson degrees of freedom. In 2
: . 1 (1-2x)
short, a safe and consistent procedure is to use DRED to xf dx . (9.32
regulate the UV and add finite masses to regulate the IR 0 [MZ—p%x(1—x)]¢

when necessary.

Fortunately in our case, we can largely avoid the infraredSumming over the two eigenmasses and expandimgsjg,
divergences. There are only two cases where we find IR diwe find the vacuum polarization in the mass insertion for-
vergences to be an issue. The first is Graph 8-1 where thealism:
e-scalar replaces the vector boson. The second is in Graph

8-6 when there is supersymmetry breaking from the non- Yi_g(’)zl“(2+ €)
local contribution to the gaugino propagator. In these cases, H(pz)z(p#p”—ng’”)(imi,zM 2)'—2_

we keep a finite mass. Among the other graphs, once Graph (4m)* ¢

8-1 and Graph 8-7 are combined, the sum is manifestly in- 1 (1—2x)2

frared finite. Graph 8-@without the non-local term in the xf dx : (9.33
gaugino propagatprand Graph 8-3 are each infrared finite o [M*=p*(1-x)x]**¢

on their own. We evaluate these two graphs directly, and

their result is shown in Table VI. We contract this result with the seagull vertex to obtain a
We evaluate Graph 8-1 and Graph 8-7 by summing theifinal value for Graphs 8-1 and 8-7. The result appears in

top loops into the vacuum polarization operator and thenfable VI.

contracting this subgraph with the seagull vertex. This avoids There are further contributions in which supersymmetry

all ambiguities due to infrared divergences. To compute théreaking does not come from the B-type mass. The tree-level

explicit form of the vacuum polarization operator, we found gaugino mass equal te emg;, enters a diagram identical to

it easier to work in the mass eigenbasis, where the scalagraph 8-6, but with one or both of théY mass insertions

have masseM?+Mmg,, and then to expand t@(m§,2). replaced by gaugino mass insertions. Finally, there are the

For a scalar particle of madd and chargery (in the mass diagrams involving either the non-local correction to the

eigenbasis gaugino propagatdrEg. (4.14] or a massivee scalar[Eq.
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e XY
~e-Scalar ™., 7
\\ g
Sl ,."l e —\\o'—' - > - —
—_—— — - e - - - ~ ~
~ - T
Graph 9-1 Graph 10-1

FIG. 10. e-scalar diagram that contributes to thg* contribu-
tion to the scalar mass. The supersymmetry breaking arises from the
T 7 € scalar mass.
gauge theory as well. Although at first glance it appears that
the theory is unregulated, we can play the same game that we
did in the Yukawa theory, and imagine that we are regulating
the theory through the use of the Pauli-Villars regulators.
After the X and Y Pauli-Villars regulator fields have been
integrated out, a contribution proportional Y3Y? arises, as
shown in EQ.(9.25. Integrating out the physicaX and Y
f particles should precisely cancel this anomaly-mediated con-
tribution. This is the ultraviolet insensitivity. This calculation
is outlined in Appendix B. The result of the finite calculation
of Graphs 8-1 through 8-8 yields the following contribution:
Graph 9-3 [1/(477)4]2m§,zg_’4(M)Y§2heavyi2, which precisely cancels
the corresponding term in E¢Q.25.

FIG. 9. Diagrams that contribute to tii% ¢) scalar mass. Graph
9-1 exists when we utilize the GMZ operator as our bare Lagrang-

X. NCLUSION
ian. Graph 9-2 exists when we utilize the non-local operator: the CONCLUSIO

vertex depictgd ip thjs graph is the non-!ocal vertex of Eql4). ~ We have discussed how DRED can be used for calcula-
Graph 9-3 exists in either case, and gets its supersymmetry breakinbns in anomaly mediation. Including operators proportional
from the gaugino mass. to € is absolutely essential, and failure to do so will yield

incorrect results. For example, as we have shown, inclusion
6t the O(¢€) operators is vital for recovering ultraviolet in-
sensitivity. We stress that inserting soft masses into the La-
grangian by hand and calculating with the resulting piece-
meal Lagrangian will not give correct results. The failsafe
procedure is to start with the bare Lagrangian given in Sec.
IV and compute from there. The anomaly-mediated soft

~5 L2 ) mg,2 terms seamlessly emerge from these computations.

m2s — 29, thévai G2 (M) (9.39 To demonstrate our DRED formalism, we have performed

K a diagrammatic calculation to shed light on the anomaly-

This establishes E49.28), which is in turn equivalent to Eq. Mediated supersymmetry breaking scenario. In particular, we

(4.10]. For these diagrams, as mentioned above, we ar
careful to keep a finite mass to deal with the infrared.

Summing the first six and either of the last two contribu-
tions from Table VI, we find below-threshold scalar mass
dependence

(9.26, making ultraviolet insensitivity explicit. have shown explicitly how threshold corrections keep the
supersymmetry-breaking parameters on anomaly-mediation
3. Finite computation for ¢4 trajectories. This result is not a surprise, considering the

proof that already exists in the spurion calculus. However, it

is interesting to see exactly how the great multiplicity of

diagrams conspire to provide the necessary contributions and
TABLE IV. The one-loopO(e) contributions to the scalar mass. cancellations. Our calculation provides an explicit diagram-

We have factored out the quantifgy?1/(4m)?]Y2ma(u?) ¢

Only one of Graph 9-1 or 9-2 contributes, depending on the form of TABLE V. Values toO(€°) of the graphs contributing to thg?*

the bare Lagrangian. The sum of Graph 9-1 and Graph 9-3 yields eorrection to the scalar mass above threshold. We have omitted a

Finally, a “completely finite” calculation, along the lines
of that performed for the*h)? case, is possible for the

total contribution which agrees with E¢9.27). common factor ofg*[ 1/(4m)*1m3,Y2S peanY 2(1?) ~2€.
Graph 9-1 2e Graph 8-6 6
Graph 9-2 3 Graph 8-6 Non-local -2
Graph 9-3 —4e€ Graph 10-1 -2
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TABLE VI. Values to O(e°) of the graphs contributing to the and it is convenient to regularize the integrals using dimen-
g(’,4 correction to the scalar mass below threshold. We have omittedional reductiof’.
a common factor ofgy*[1/(4m)*]Y2S eay Y M3,. The integrals After performing the integrald,(m,n,|) can be expressed
I(m,n,l) are defined in Appendix A. The first set of entries corre- entire|y in terms of beta functionﬂo' In particu|ar’
spond to diagrams wher&Y insertions have been made in the 1
graphs. The multiple listings of Graph 8-6 represent the additional B (—pmeneT B(2n+m-2)
contributions that arise when one or both of the supersymmetry- H(m.n,l)= (4r)4—€(M2)n+m+i=4+e ['(2—€)B(m,n)
breaking vertices of an,MXY mass insertion is replaced with

supersymmetry-breaking gaugino mass vertex. The(186-loca) XB(n+1—=2+e,m+1—-2+¢€)
and 10-1(GMZ) values enter alternately, depending on which La-
grangian is used. They are not to be added simultaneously toward XB(2-l-entm+l-4+e). (A2)

the total contribution. . .
This expression can then be Taylor expanded to oeders

3 shown in Table VII.
Graph 8-7+ 8-1 (__5_67)(M2)—26 We also also define the following integrals which are use-
€ ful in the evaluation of diagrams that include fermions:

Graph 8-1 € scalay 2Au?)"(M?)~¢
Graph 8-3 2(3,1,)-1(2,2,1) [ k(p—k) d*p
1 F(mn,h)= PN 2_p\g2yn
:(__1_2‘)/)(M2)*26 (p ) ((k_p) _M )
€
4 d*k
Graph 8-6 (—Z+2+8y)(M2)_25 X(I(Z—T)m' (A3)
Graph 8-6(Onem,) ~8(u?H) (M?) <+8Mm?y) 2  and
Graph 8-6(Two m,) 1205) M6 (MY G I —f k2(k-p) d*p
Graph 8-6(Non-Loca) —4(u?) (M) +2(M?) 2 (mn,1)= (p?)' ((k+p)2—M?)"
Graph 10-1(GMZ) —4(u?) " (M?) " +2(M?) 2 .
d*k
X—. A4
(k2_ M2)m ( )

matic check of the ultraviolet insensitivity. ) . . . .
Finally we mention that while the calculation in Sec. IX B USing partial fraction decomposition, one can rewrite

refers to an Abelian model, it would be relatively straightfor- F(m.n.1) andG(m,n,1) in terms ofl(m,n,1). In particular,

ward to extend this discussion to a non-Abelian gaugeve find that

theory.

-1
F(m,n,l)= 7[I(m—1,n,|)+I(m,n—l,l)+|(m,n,| -1)]
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APPENDIX B: FINITE CALCULATIONS

APPENDIX A: EVALUATION OF THE INTEGRALS Here we undertake the “finite” calculation of the cor-

. L . .rection in the Yukawa model and a similar calculation in the
Several diagrams contain similar integrals. In particular, it

is useful to define

®Both integrals must be continued to—2e dimensions, even

d“p d%k 1 though in practice one integral is completely finite in the mass
I(m,n,l)= J , insertion formalism. The reason is that tf¥e) terms in the finite
(2m?BJ) (p>—=MH™ (k2—M?)"(k+p)? integral can combine with &/ poles from the second integral to

(A1) modify the finite pieces in the result.
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TABLE VII. A list of series expansion useful in evaluation of Here, we have only used the expressions in Table VII for

(h*h)? cancellations. We neglect the logftand logM?) which
cancel along with the Euley's. There is also a common factor of
1/(4m)%.

Integral Series expansion
1(3,1,1) Miz(zis—%wLO(e))
1(3,2,1) % f%+0(e))
1(3,3,1) 16(%2+O(6)>
1(4,1,1) %(—é—%ﬁrngO(f))
1(4,2,1) Mie %+O(e)
1(5,1,1) Miﬁ l—;+ﬁ—112+0(6))
1(3,2,0) Miz(zie—%JFO(e))
1(3,3,0) i4 —%-ﬁ-@(e))
1(4,1,0) %(—é—%+%’+0(e))
1(5,1,0) %(%ﬁ%—%ﬂ?(e))
G(3,3,1) Miz(_—;--i-g-i-y-i-(?(e))
F(4,1,1) Mi2(336+%—%7+0(e))
1/

5 vy
F(5.1.1) W(Z ‘zﬁz“’)(f))

those integrals that are finite. Since we are not working in
DRED here, there is no order contribution to these inte-
grals.

Our remaining task is to calculate the combination
24M*1(5,1,1)+30M?1(4,1,1)+61(3,1,1) without resorting
to the regularization of any integrals. After a Wick rotation,
we can write this combination as

GJ d*p d*k 1 1 1
(2m?® (K¥+M?)? (k—p)>+M? p?
1 SM? + Am* (B2)
K2+M2  (K2+M?2)2)
This, in turn, can be written as
fd“p d*k 1 11 9 (k¥°
(2m)8 (k=p)2+M? p? k? gk? (k2+M?)*
(B3)

Now this integral can be done by first doing tk&integral
by parts. The surface term vanishes, leaving

d*p d*k 2k*—2K3(p-k 1
_3f P (p-k) (B4)

(2m)8 [(k—p)2+M?]p? (K2+M?3)*

From this point, standard Feynman parameter techniques can
be employed, yielding the result

24M41(5,1,1) +30M?1(4,1,1) + 6l (3,1,1)=(4w)*46—.

M2
(BS)
Combining this with Eq(B1) yields
m%/z
Sum of diagrams —3i[h* (u)h(x)]?*——. (B6)
(4m)*

As discussed in the text, this combines with a contribution

+6i[h* (u)h(w)]?[1/(47)*1m3,, from the A-term diagram

to yield the correct threshold correction for the scalar mass.
Incidentally, the calculation of the same integrals in di-

. . . . . 2 —
gauge theory. First consider the Yukawa theory. Using Tabl&nensional regularization will yield< 19/6M %) (4) ~“. The

Il and Table VII, one can write the threshold correcti@x-
cluding theA-term contribution as

Sum of diagrams i[h* (x)h()2(Mmg,)?

x| (4 )*4_11+24M4|(5 1,)
n - 4 It
6M?2

+30M21(4,1,)+61(3,1,) |. (B

difference results from the fact that thifk becomes a
d*~2¢k and the integration by parts picks up an extra piece.

Now consider the gauge theory. Again, the game will be
to keep all integrals well defined without ever continuing to
4—2e¢ dimensions. Since we stay in 4 dimensions, the eva-
nescent operators do not arise, and we need only consider
Graphs 8-1, 8-3, 8-6, and Graph 8-7. The key is combine
these graphs first, avoiding any divergéititdefined) inte-
grals.

Graph 8-3 can be written as
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1 1
Graph 8-3=m2,M2g’"4(u)Y2 >, Y?(4 B — ~(Graph 8-1+8-3+8-6+8-7)
heavy lrs
d4p 2(22_1) dz — 1 2m2 M2 /4( )YZE Y2 (812)
f(zw)“pz [MZ—p2z(1-2)] (am? oS iy

(B7)  This precisely corrects Eq9.25 to be Eq.(9.26), demon-
strating the ultraviolet insensitivity.
By itself, this integral would be divergent at the end points of
the Feynman parameter integral. So we must combine this APPENDIX C: CALCULATION OF WAVE-FUNCTION

expression with expressions for the remaining graphs before RENORMALIZATION IN GAUGE THEORY

evaluation. Graph 8-6 can be written ) ) ] ]
To offer an alternative to direct computation, and to avoid

the niceties of a supersymmetfigans Wess-Zumino gauge
calculation ofZ_, we can use renormalization group prin-

Graph 8-6=4m2,M2g'4(u)Y2>, Y?

iy (4m)? ciples to determinen? in terms of bare couplings. Working
above threshold, the generic structure of two-loop diagrams
J d*p 22dz tells us thatZ, must be of the form
(2m)*p?) [M?—p?z(1-2)]*
Yigo? 1 Yige! 1
(BY) Z=1+A—————“4+B—— — (C)
(4m*(p?) € (4m)*(p?)* €
Finally, we write the sum of Graphs 8-1 and 8-7 using the
vacuum polarization operator: Then
I1(p?) d* t. logZ
Yi=T Mg T
Graph 8-+ Graph S-E—Sig’z(ﬂ)j%, 27 du
(2m)"p ©9
B9
Y790° Yig' 1
wherell(p?) is the vacuum polarization operator @{m3,) (47)%(u?)€ (A7) (u?)2< €
in four dimensions. In the mass insertion formalism, it is 44
given by the expression o Yi9 1 2

(4m)H(u?)2e €

Fa2 2/v2 2 12
im3,M (YX1+YX2)9 (u) The poles iny, are lower order than the poles &) because

2y—
H(p5)= (47)? w derivatives hitting terms likeg?)€ bring down factors of
€.
(1-22)%dz We know that in thee—0 limit, the expression fory,
f (M2~ pz(1-2)]°’ (B10)  must agree with the expression in terms of the renormalized

coupling to one-loop order. Comparing with E§.23 fixes
A=—2, so that
which can be seen by taking tle-0 limit in Eq. (9.33.

Utilizing Egs. (B7), (B8), (B9), and(B10), we can write > 1o 5 12
the sum of diagrams as Y79 Y9 1

= — 2 —
YT amA (D T (Am (D) €

Yigo' 1

Graph 8-1+8-3+8-6+8-7
(C3

1 , amA (e
=—4i (47T)4m§/2M29 4(M)Y3h§Vin2
Now we work to fixB. We can do this by utilizing two
1 z(1-z)2dzd'p pieces of information: the known expression for the running
Xf f P > (B11)  of the gauge coupling and the finitenessof To proceed
0pIM*—p“Z(1-2)] we first write the bare coupling in terms of the renormalized

coupling. They are equal at one loop, and at higher order we
This integral is completely finite so no regulator is neededinclude an arbitrary paramet€ to be completely general.
The integral yields a contribution to the scalar mass We define the renormalized coupling as
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9'%(n)+Cg' X )Eg’Z—Bg—é41
# 90 am2(u?y e
2 14

+2 TgO
(4m)?(u?)

This form is convenient because it allows us to rewritethe
of Eq. (C3) simply in terms of renormalized couplings,

Y2g' %) 29" ()
(dmHp?e  (AmAp?)E

Now we make the critical observation th@t is an observ-
able quantity, and so it must be finite in the>0 limit when

(C9

P

Y= (CS)

expressed in terms of the renormalized coupling. In other

words, C is finite. Now we can determinB by comparing
our definition in Eq.(C4) with the known running of the
gauge coupling constant:

90

heavy

4y Y?) L
12 12
=0y — - C6
e T (Co)
Inserting this known expression fgf2(u) into Eq.(C4) and
keeping up to0(g’%), we find the condition

ao?l Y2+ > Yz)
/2 heavy 1 )4
0~ 2\ e - gO
(4m)2(u?) €
12 g(l)4 1 5964 1
% ~ 2 2 € 2 2ee ©D
(4m)“(u) € (4m)“(p) €
Equivalently,
B=| Y2+ éWYZ +2Y2-Ce(4m)3 (). (CY

But sinceC is finite and comes multiplied by, it makes at
most a finiteO(gy?) contribution toy,, which is next-to-
leading order in Eq(C2). We have consistently been neglect-
ing such terms. In short,

B= Y§+h§vai2 +2Y2, (C9

PHYSICAL REVIEW D 65 085028

We have determined that

v2q/2 95" Y2 Y2+ E Yz)
_ rgo heavy 1
T a2 (ud)e dmA(ud)?e e

(C10

and differentiation yields the scalar mass in terms of bare
couplings:

oY2ly2+ YZ)
~ m%/z GYEQ’S 9 hévy
m,= 2 2ve 2, 2\2e¢
(4r) (u9) (4m)“(u°)

(above threshold, bare couplings (C1)
Below thresholdu <M, and the analysis is similar. n_we
make the replacemet®(u?) ~¢—Y2(M?)~ ¢ for the heavy

particles, because their contributions to loop integrals are cut
off at M. We then find

2/2

ys g Y790 9'Y: 1
T @mApd (dmi(ud) €
go4Y22 %
heavy E (C12)
A e
Clearly then
F'nz mg/Z €ng o g,éYi
To@m?\ o (whe (Am)PA(ud)
EPIRG
heavy
(477)2(M2)€(M2)
(below threshold, bare couplings  (C13
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