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We offer a guide to dimensional reduction in theories with anomaly-mediated supersymmetry breaking.
Evanescent operators proportional toe arise in the bare Lagrangian when it is reduced fromd54 to d54
22e dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these
operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along
anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity.
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I. INTRODUCTION

Anomaly mediation is a remarkably predictive framewo
for supersymmetry breaking in which the breaking of sc
invariance mediates between hidden and visible sectors@1,2#.
Since the soft supersymmetry-breaking parameters are d
mined by the breaking of scale invariance, they can be w
ten in terms of beta functions and anomalous dimension
relations which hold at all energies. An immediate con
quence is that supersymmetry-breaking terms are comple
insensitive to physics in the ultraviolet. Anomalous dime
sions and beta functions, which depend only on degree
freedom excitable at a given energy, completely specify
soft parameters at that energy. This property makes anom
mediation an attractive solution to the supersymmetric fla
problem. The low-energy spectrum of soft masses and c
plings is independent of the physics that explains flavor
the ultraviolet.1

On the other hand, regularization by dimensional red
tion ~DRED! @6# is often the preferred regulator for supe
symmetric field theories. As with ordinary dimensional reg
larization ~DREG!, DRED is simpler computationally tha
Pauli-Villars or other cutoff methods. DRED is also super
to DREG in that it preserves supersymmetry: In DREG wh
we analytically continue the dimension of space-time aw
from d54, the spinor algebra changes, creating a misma
between fermionic and bosonic degrees of freedom. DR
avoids this problem by compactifying fromd54 to d54
22e dimensions and making the fields independent of
extra 2e dimensions. The spinor algebra does not change
the regulated theory is still supersymmetric.

In this paper we explore the subtleties of DRED in the
ries with anomaly-mediated supersymmetry breaking.
point out that it is not correct to just add anomaly-media

1This property has lead to the well known issue of tachyo
sleptons. People have taken various approaches towards solvin
problem@1,3,4# which jeopardize the ultraviolet insensitivity. How
ever, it was shown recently that the UV insensitivity can be p
served while solving the problem of tachyonic sleptons@5#.
0556-2821/2002/65~8!/085028~23!/$20.00 65 0850
e

er-
t-
in
-
ly

-
of
e
ly
r
u-
n

-

-

r
n
y
h
D

e
so

-
e
d

supersymmetry breaking to the Lagrangian if DRED is us
Since most calculations in the literature are done this w
our result raises a warning flag. In retrospect, it is not s
prising why it is so. In the case of the chiral anomaly, o
does not add the chiral anomaly as an additional term to
Lagrangian. When the theory is properly regularized, the c
ral anomaly is the outcome rather than a part of the in
Lagrangian. Similarly, the anomaly-mediated supersymme
breaking must be the outcome of the Lagrangian rather t
the additional terms in the bare Lagrangian. We show that
most important consequence of compactifying to 422e di-
mensions is the introduction of evanescent operators, pro
tional to e, into the bare Lagrangian. These operators pro
to be of first importance in diagrammatic anomaly-mediat
calculations. Proper inclusion of these operators yield
DRED-based formalism suitable for anomaly-mediation c
culations. In addition we discuss the implications of DRED
failure to regulate infrared divergences, which follows b
cause the dimension of space-time is necessarilyd,4 in
DRED.

As a showcase for our DRED-based anomaly mediat
formalism, we perform an explicit diagrammatic calculatio
that shows the ultraviolet insensitivity of anomaly mediatio
Although the appearance of supersymmetry-breaking par
eters and the decoupling of flavor physics have been w
understood through the spurion formalism~see @3# for the
most comprehensive review of anomaly mediation using
spurion formalism!, the phenomena have not been inves
gated in a diagrammatic framework. The spurion analy
fixes theA terms to be

Ai jk52m3/2l i jk~g i1g j1gk!, ~1.1!

while scalar masses are given by

m̃i
25

1

2
um3/2u2ġ i . ~1.2!

Here, m3/2 is the gravitino mass,l i jk is the superpotentia
Yukawa coupling,g i[2 1

2 m(d/dm)logZi is the anomalous

c
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dimension of thei th superfield, andġ i[m(d/dm)g i . To fix
signs, these terms appear in the Lagrangian as

L{2m̃i
2Q̃i* Q̃i2Ai jkQ̃iQ̃j Q̃k1H.c., ~1.3!

with scalar fieldsQ̃i . It is highly non-trivial that the forms in
Eqs. ~1.1! and ~1.2! indeed are invariant under th
renormalization-group evolution, which was checked exp
itly in @7#. We apply our DRED calculation to see in deta
how various diagrams conspire to set the soft parameter
their anomaly-mediated trajectories across the massive
ticle thresholds. In particular, loops containing evanescene
operators produce the soft terms above the threshold of
vor physics, and additional evanescent operators com
with the flavor fields to decouple the flavor sector belo
threshold. We find that when calculating with DRED, it
inconsistent to simply insert the soft terms of Eqs.~1.1! and
~1.2! into the Lagrangian while neglecting the evanesc
operators.

In Sec. II we review some established results of anoma
mediated supersymmetry breaking. In Sec. III we prese
puzzle that makes clear the need to develop a consis
framework for using DRED with anomaly mediation. In Se
IV we focus on developing this framework, deriving the d
mensionally reduced bare Lagrangian. In Sec. V, we uti
this Lagrangian to discuss the origin of Eqs.~1.1! and~1.2!.
Having established a framework for using DRED wi
anomaly mediation, we demonstrate its use through exp
diagrammatic calculations which confirm the UV insensit
ity of anomaly mediation. In Sec. VI we take a moment
recapitulate, and emphasize the basic message of our de
tion of the anomaly-mediated DRED-based formalism. S
tion VII defines the models used in our diagrammatic cal
lations. In Sec. VIII we compute theA terms, a short one
loop calculation. In Sec. IX we discuss the substantia
more complicated case of the scalar masses, which is a
loop calculation.

II. ANOMALY MEDIATION AND HOLOMORPHIC
REGULARIZATION

In this section we provide a brief review of establish
results in anomaly-mediated supersymmetry breaking.
discuss the origin of the anomaly-mediated contributions.
also review the spurion analysis for regularization schem
that use an explicit cutoff. This discussion will provide
useful foil for the DRED scheme which we later employ.

In anomaly-mediated models of supersymmetry break
@1,2#, the sole source of supersymmetry breaking reside
the chiral compensator field in the supergravity Lagrangi
^F&511m3/2u

2. We now review the origin of this field
Supergravity is not scale invariant because it has an exp
mass scale: the Planck scale. However, it is possible to
formulate the theory as conformal supergravity by comp
sating for the non-invariance of the Lagrangian under sup
Weyl transformations by a fictitious transformation of t
chiral compensator fieldF.

The supersymmetry~SUSY! breaking that arises when th
chiral compensator takes on its vacuum expectation va
08502
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will always be present. However, in general,M pl suppressed
operators coupling the ‘‘observable sector’’ to the ‘‘hidde
sector’’ often dominate over these contributions. Nevert
less, the chiral compensator can dominate
supersymmetry-breaking effects, for example, if the ‘‘o
servable’’ sector~including the supersymmetric standa
model! and the ‘‘hidden sector’’~responsible for supersym
metry breaking! reside on different branes in extra dime
sions @1# or if the dynamics of the hidden sector is near
super-conformal to suppress direct couplings between
hidden and observable fields in the Ka¨hler potential@8#. In
these cases, the only communication of supersymme
breaking effects from the hidden to the observable se
occurs through the supergravity multiplet, and hence the a
iliary component of the chiral compensator field. Since t
coupling of the chiral compensator is completely fixed by t
~fictitious! super-Weyl invariance, the conseque
supersymmetry-breaking terms in the observable sector
highly constrained. This case, where the couplings betw
the observable and hidden sector are suppressed and the
of the SUSY breaking is highly restricted, is known gene
cally as anomaly mediation, and it is the case which
discuss here.

If the observable sector does not have explicit m
scales, the Lagrangian is scale invariant at the classical le
Then the coupling of the chiral compensator can be co
pletely eliminated from the Lagrangian by appropriate
definition of the fields. However, the scale invariance is b
ken at the quantum level because of the need to regulate
theory. This leads to residual couplings of the chiral comp
sator to the observable fields. When the classical invaria
of the Lagrangian is broken at the quantum level leading
physical effects, this is generically called an ‘‘anomaly
This explains the name ‘‘anomaly-mediated supersymme
breaking.’’

The implementation previously discussed in the literat
uses an explicit cutoff scaleL. Because of the impose
super-Weyl invariance, the cutoff parameterL only appears
in the combinationLF. Such a cutoff is possible usin
Pauli-Villars regulators, finiteN52 theories@9#, or higher
derivative regularization@10#. Any of these methods preserv
manifest supersymmetry, and the cutoff is a holomorphic
rameter: The cutoff can be viewed as the lowest compon
of a chiral superfield. We refer to all these schemes gen
cally as ‘‘holomorphic regularization.’’ If a holomorphic
regularization scheme is used, independent of the detail
the regularization method, we can derive their consequen
on the supersymmetry-breaking effects in the observa
fields as follows.

The matter kinetic terms receive wave function renorm
ization

E d4uZiQi* Qi . ~2.1!

Here, Zi is the superfield extension of the wave-functio
renormalization,Zi , following the formalism developed in
@11,12#. Zi depends on the cutoff
8-2
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DIMENSIONAL REDUCTION IN ANOMALY MEDIATION PHYSICAL REVIEW D 65 085028
logZi~m!5 (
k51

`

Cklogk
~LF!~LF!†

m2
. ~2.2!

Here,Ck are functions of dimensionless coupling constan
Expanding the logarithms inu,

logZi~m!5 logZi~m!1~u2m3/21 ū2m3/2!(
k51

`

kCk

3 logk21
~LF!~LF!†

m2
1u2ū2m3/2

2

3 (
k51

`

k~k21!Ck logk22
~LF!~LF!†

m2

5 logZi~m!1~u2m3/21 ū2m3/2!g i

2
1

2
u2ū2m3/2

2 ġ i

5 logZi~m!2~u2Ai1 ū2Ai* !2u2ū2mi
2 .

~2.3!

Here,g52 1
2 m(d/dm)logZ and ġ5m(d/dm)g. The identi-

fication of the soft terms@the last line of Eq.~2.3!# follows
from rescaling the fields in Eq.~2.1! by Qi→Qi /(1
1gm3/2u

2). Once we note thatAi jk5Ai1Aj1Ak ; this leads
to the predictions in Eqs.~1.1!,~1.2!. As an aside, we note
that bothg(m) and ġ(m) must be finite once reexpressed
terms of the running coupling constants at the scalem.

The gauge coupling constant is given in terms of the b
coupling 1/g0

2 and the running effects in the Wilsonian effe
tive Lagrangian as

E d2uS 1

g0
2

1
b0

8p2
log

LF

m
2(

f

Tf

8p2
logZi u ū50D

3WaWa. ~2.4!

By expanding the logarithms toO(u2), we find the predic-
tion for the holomorphic gaugino mass

ml~m!52
g0

2

8p2 S b02(
f

Tfg f~m! Dm3/2. ~2.5!

Going to the canonical normalization of the gaugino chan
the above expression to@13#

ml52
g2~m!

8p2

b02(
f

Tfg f

12
g2~m!

8p2
CA

m3/252
b~g!

2g2
m3/2.

~2.6!

To complete our review of established anomaly media
results, we reemphasize that anomaly-mediation posse
08502
.
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the property of ultraviolet insensitivity, namely that the e
fects of heavy particles completely decouple from t
supersymmetry-breaking effects in the low-energy theo
With a holomorphic regularization, this is quite easy to s
Instead of logarithms dependent onm, as in Eq.~2.2!, loop
effects of a heavy particle cutoff at its massM and so appear
with the logarithms

log
~LF!~LF!†

~MF!~MF!†
5 log

L2

M2
. ~2.7!

The point here is that the super-Weyl invariance makes
massM appear only in the combinationMF which precisely
cancels the correspondingF dependence of the cutoff
Therefore there are no supersymmetry-breaking effects f
heavy particles in the low-energy theory. We will now a
tempt to understand this ultraviolet insensitivity explicitly
the DRED formalism as well.

III. DRED-FUL UV SENSITIVITY?

In this section we will outline a naive DRED calculation
We will find that simply adding the anomaly-mediated so
terms of Eqs.~1.1! and~1.2! to our Lagrangian by hand an
then calculating using DRED leads to inconsistencies. In p
ticular, we are unable to recover the well-established re
of UV insensitivity. In this section we demonstrate the pro
lem using the technique of Arkani-Hamed, Giudice, Luty a
Rattazzi@11# which ‘‘analytically continues’’ parameters in
the Lagrangian to the full superspace to incorporate the
fects of soft supersymmetry breaking. We will do explic
diagrammatic calculations in later sections to further illum
nate this problem.

Consider a simple Yukawa model

W5htX1X21MX1Y11MX2Y2 , ~3.1!

wheret is a light field andXi , Yi heavy. The massive field
have tree-level supersymmetry breaking because the c
compensator appears in the superpotential asMF:

Lso f t52Mm3/2~X̃1Ỹ11X̃2Ỹ2!1H.c. ~3.2!

In addition, there are anomaly-mediated effects accordin
the general formula of Eqs.~1.1!,~1.2!,

Lso f t523
~h* h!2

~4p!4
m3/2~ t̃* t1X̃1* X̃11X̃2* X̃2!

23
h* h

~4p!2
m3/2ht̃X̃1X̃21H.c. ~3.3!

The question of ultraviolet insensitivity is whether the sca
mass for thet̃ shown in Eq.~3.3! is precisely canceled by th
threshold effects fromX, Y loops.

As we will describe in detail in Sec. IX, the loops ofX
and Y precisely cancelmt̃

2 if all integrals are done in four
dimensions, paying careful attention to keep all integrals
nite. However, we can also understand this computa
8-3
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rather simply using the language of the spurions. First,
compute theZ factor for t at Q2@M2. It is given by

logZt~Q!5
h* h

~4p!2
log

uLu2

Q2
2

~h* h!2

~4p!4

3

2
log2

uLu2

Q2
.

~3.4!

Now, we incorporate supersymmetry-breaking effects
substitutingL→LF. Performing this replacement, and in
serting the vacuum expectation value for the chiral comp
sator, ^F&511m3/2u

2, we obtain the anomaly-mediate
pieces shown in Eq.~3.3!. Now we integrate between th
scaleQ andM and find the low-energy theory belowM. The
additional contribution toZt is

D logZt5
h* h

~4p!2
log

Q2

M2
2

~h* h!2

~4p!4

3

2
log2

Q2

M2
. ~3.5!

Using this expression, we can isolate the supersymme
breaking effects in the threshold correction.

One effect arises from takingM→MF in the last term,
which gives Dmt̃

2
513@(h* h)2/(4p)4#m3/2

2 . This corre-
sponds to the sum of all two-loop diagrams in Figs. 5 an
with 2Mm3/2X̃i Ỹi mass insertions. The other source
SUSY breaking is theA term. Its effects can be obtained b
the replacementh→h$123@h2/(4p)2#m3/2u

2% together
with M→MF in the first term~and a similar replacement fo
h* ). The contribution toDmt̃

2 is 26@(h* h)2/(4p)4#m3/2
2 .

This corresponds to the one-loop diagram, Graph 7-1,
contains oneA term and oneMm3/2 mass insertion. Adding
the threshold corrections to the anomaly-mediated pi
13@(h* h)2/(4p)4#m3/2

2 , we find a complete cancellation
This cancellation demonstrates the UV insensitivity.

Now we perform the same calculations, using regulari
tion by dimensional reduction~DRED!, and we do not find
the complete cancellation. The threshold correction can a
be read off from theZ factor

D logZt5
h* h

~4p!2
~M 22e2Q22e!

1

e

2
~h* h!2

~4p!4

3

2
~M 24e2Q24e!

1

e2
. ~3.6!

Suppose we do the calculation in the same spirit as in
case with the holomorphic regularization. Then, we sho
again include contributions from two sources: a cross te
between anA term and theMm3/2 term, shown in Graph 7-1
and the diagrams including only theMm3/2 term. The con-
tribution from theA term andMF in Graph 7-1 can be found
again by making the replacementh→h$123@h2/
(2p)2#m3/2u

2% together withM→MF in the first term of
Eq. ~3.6!. The result is the same as in the holomorphic re
larization: Dmt̃

2
526@(h* h)2/(4p)4#m3/2

2 . However, the
other contribution from the replacementM→MF in the last
term of Eq.~3.6! comes out differently. Because
08502
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~M2FF̄!22e5~M2!22e~122eu2m3/222eū2m3/2

14e2u2ū2m3/2
2 !,

we find Dmt
2516@(h* h)2/(4p)4#m3/2

2 . Summing this re-
sult with the contribution from theA terms, we findDmt

2

50. We will explore in detail how this result, which differ
from the holomorphic regularization result, arises in Sec.
For now, the important thing is to realize that we have fou
an unexpected result. We had hoped to find a threshold
rection, that when added to the anomaly mediated pie
13@(h* h)2/(4p)4#m3/2

2 , would yield a complete cancella
tion. Instead, we find that the ‘‘threshold correction’’ itse
vanishes. Somehow we seem to have lost the ultravi
insensitivity.2

What we have seen here is that the naive addition of
anomaly-mediated supersymmetry-breaking soft terms t
dimensionally-reduced theory leads to incorrect results. T
is to say, putting the terms from Eqs.~1.1! and ~1.2! in the
Lagrangian by hand isnot the correct prescription in DRED
Note that most calculations in the literature are done w
this naive implementation. We have to develop a consis
formalism to implement anomaly-mediated supersymme
breaking within the DRED. We proceed to do this in th
following section.

Finally, we comment on the reason that things did not ‘‘
wrong’’ in the holomorphic regularization scheme. In th
case, one has already integrated out the fictitious Pa
Villars fields at the cutoff scale, yielding the anomal
mediated soft terms of Eqs.~1.1! and~1.2! at the cutoff scale.
Therefore, in the Pauli-Villars case, it is perfectly reasona
to treat the usual anomaly-mediated soft terms as a boun
condition at the cutoff scale. We will expand upon this po
in Sec. VI.

IV. DERIVATION OF THE LAGRANGIAN
IN DIMENSIONAL REDUCTION

In this section we motivate the bare Lagrangians app
priate for use with DRED regularization. We look at both t
case of a Yukawa theory and a theory with gauge couplin
trusting that combining the two provides no new wrinkles.
each case, our procedure basically consists of starting w
supersymmetric Lagrangian, and determining how ch
compensators inject supersymmetry breaking into the
grangian.

By examining the Weyl scaling properties of the sup
gravity fields, we can determine where we must add ch
compensator fieldsF to the supergravity Lagrangian t
make it super-Weyl invariant. As noted above, we can th
rescale fields so that the chiral compensator appears on
front of dimensional couplings. This fixes how supersymm
try breaking enters the Lagrangian since the breaking h

2In fact, there is an additional piece that comes in ath2 propor-
tional to e. The presence of this term does not change the fact
we have gotten an unexpected result.
8-4
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pens whenF takes the vacuum expectation valueF51
1m3/2u

2.
Here is how this works for a dimensionally reduc

theory with Yukawa couplings: In 422e dimensions, the
Lagrangian, written in terms of bare chiral superfields loo
like

L5E d4u ~FF†!12eQi
†Qi2S E d2u F322e~l i jk ,0QiQjQk

1Mi j ,0QiQj !1H.c.D . ~4.1!

Here, the 0 subscript denotes a bare quantity. To reco
canonical normalization, we rescale

Qi→
Qi

F12e
, ~4.2!

and then as promised, the chiral compensators only appe
front of dimensionful couplings in the superpotential:

L5E d4u Qi
†Qi2S E d2u Fel i jk ,0QiQjQk

1FMi j ,0QiQj1H.c.D . ~4.3!

The extra power ofFe can be thought of as arising from th
e dimensionality ofl i jk ,0 which appears in 422e dimen-
sions. Expanding in components, we find two sources of
persymmetry breaking in the bare Lagrangian:

Lbreaking{2em3/2l i jk ,0Q̃iQ̃j Q̃k2m3/2Mi j ,0Q̃iQ̃j .
~4.4!

The first term is one of the important evanescent opera
which produces anomaly-mediated soft terms to the lo
energy effective Lagrangian.

For the gauge theory we begin with the Lagrangian

L{
1

4g0
2E d2u WW1

1

4g0
2E d2ūW̄W̄ ~4.5!

and dimensionally reduce it. TheF dependence can be fixe
by arguments of holomorphicity and dimensionality, in an
ogy with the resultingFel i jk ,0 dependence found above
Then we should promote 1/g0

2 to a superfield gauge couplin
@11,12#,

1

g0
2
→S5

F22e

g0
2

, ~4.6!

with which the Lagrangian becomes

L{
1

4E d2u SWW1
1

4E d2ū S†W̄W̄. ~4.7!
08502
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We then would like to associate a real superfield,R0, with
the gauge coupling constant@11#. With the above Lagrang-
ian, the superfieldR0, whose lowest component is 1/g0

2, is
given by

R0[
F22e1~F†!22e

2g0
2

. ~4.8!

However, this choice does not lead to the familiar predict
of the anomaly-mediated supersymmetry breaking:m2

5 1
2 ġm3/2

2 . It differs at O(e). We will work with a more
convenient form that leads to the familiar prediction witho
O(e) corrections. Instead of Eq.~4.8! we take

R0[
~FF†!2e

g0
2

. ~4.9!

The two expressions forR0 differ only in u2ū2 components,
which does not lead to any physical difference in the fo
dimensional limit. We prove this fact in the next section.

Using Eq.~4.9! as the real gauge coupling superfield, w
can write the bare Lagrangian using the Grisaru-Milews
Zanon~GMZ! evanescent operator@14#. Here the bare action
is given by

1

g0
2E d8z

1

e
~FF†!2ege

mn tr~GmGn!. ~4.10!

The metric tensorge
mn runs only for the compactified 2e

dimensions, andGm is the gauge connection defined by

Gm5
1

2
saȧ

m
D̄ ȧ~e2VDaeV!. ~4.11!

This leads to a component Lagrangian that contains the
lowing supersymmetry-breaking pieces:

L breaking{
1

g0
2 S 1

2
em3/2ll1

1

2
em3/2ll̄1

e

2
m3/2

2 ge
mnAmAnD .

~4.12!

Therefore, the supersymmetry-breaking effects are a t
level O(e) gaugino massml52em3/2, and a tree-level
e-scalar massme

25em3/2
2 .

For Abelian theories, we may also use

1

16g0
2E d4u ~FF†!2eWa

D 2

h
Wa1H.c. ~4.13!

to introduce the real superfield gauge coupling, Eq.~4.9!. In
this framework thee-scalar mass is replaced by a non-loc
modification of the gaugino propagator. We find
8-5
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L breaking{
1

g0
2 F1

2
em3/2ll1

1

2
em3/2ll̄

1
1

2
e2m3/2

2 S 2 i
ls•]l̄

h
D G . ~4.14!

However, it is not clear how to interpret a non-local term
a bare Lagrangian. Moreover, an extension to non-Abe
theories is somewhat opaque due to difficulties in making
expression containing 1/h gauge covariant. Nevertheless,
provides a useful cross-check to our calculations with
GMZ operator in an Abelian gauge theory.

V. DERIVATION OF THE SOFT
SUPERSYMMETRY-BREAKING TERMS

IN DRED

With bare Lagrangians in hand, we now go back and
rive the anomaly mediation formulas for the so
supersymmetry-breaking parameters@Eqs. ~1.1! and ~1.2!#
for DRED regularization. This discussion is to be compa
with the known discussion for holomorphic regulators,
viewed in Sec. II.

A. Yukawa theory

In the Yukawa theory the bare Lagrangian is given by E
~4.3!. For simplicity in this section we drop the mass term
so that

L5E d4uQi
†Qi2S E d2u Fel i jk ,0QiQjQk1H.c.D .

~5.1!

The important point is thatFel i jk ,0 acts as an effective
Yukawa coupling constant.

We start by considering the wave-functio
renormalization3 Z that appears in the effective Lagrangia
Again, following the discussion of@11,12#, we promoteZ to
a superfieldZ, and we expand in a power series of effecti
coupling constantsFel i jk ,0 :

logZ~m!5 (
k51

`
Dk

ek S l i jk ,0l i jk ,0* ~FF†!e

m2e D k

. ~5.2!

The coefficientsDk are regular in thee→0 limit. Since the
Yukawa coupling in 422e dimensions is dimensionful, i
appears always with an appropriate factor ofFe.

Now we expand the chiral compensatorF511m3/2u
2,

yielding the expression

3Note that in our notation,Z21 is the residue of the pole that on
would find by calculating the two-point function. That is to say,Z
would be the coefficient of the bare fieldsQQ† in the one particle
irreducible~1PI! effective action.
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logZ5 (
k51

`
Dk

ek S l i jk ,0l i jk ,0*

m2e D k

1 (
k51

`
~m3/2u

21H.c.!kDk

ek21 S l i jk ,0l i jk ,0*

m2e D k

1 (
k51

` m3/2
2 u2ū2k2Dk

ek22 S l i jk ,0l i jk ,0*

m2e D k

. ~5.3!

Finally, we can write the expressions forg and ġ by taking
the appropriate derivatives of the first term in Eq.~5.3!. We
find

g5 (
k51

`
kDk

ek21 S l i jk ,0l i jk ,0*

m2e D k

, ~5.4!

ġ522(
k51

`
k2Dk

ek22 S l i jk ,0l i jk ,0*

m2e D k

. ~5.5!

Now using Eqs.~5.3!, ~5.4!, and summing the contribution
from the i, j, andk particles, we find

L5E d4uS 12
g i̇

2
m3/2

2 u2ū2DQi
†Qi2E d2ul i jkFe

3@12~g i1g j1gk!m3/2u
2#QiQjQk1H.c., ~5.6!

where we distinguish the renormalized Yukawa coupling
l i jk[l i jk ,0Zi

21/2Zj
21/2Zk

21/2. The soft terms do indeed tak
the form of Eq.~1.1! and Eq.~1.2!. Notice, however, that an
additional O(e) supersymmetry-breaking Yukawa couplin
arises by expandingFe. This is just the tree-level evanesce
operator from the bare Lagrangian as in Eq.~4.4!. Our effec-
tive Lagrangian contains a totalA term

Ai jk52m3/2l i jk~g i1g j1gk!1em3/2l i jk . ~5.7!

B. Gauge theory

If we turn off the Yukawa theory but add gauge intera
tions, the discussion proceeds analagously. Instead of th
fective Yukawa couplingFel i jk ,0 , the relevant expansion
parameter forZ is g0

2(FF†)e. This is clear from Eqs.
~4.10!,~4.13!. Now we justify the form of Eq.~4.9!. To do
this, we need to show that there is no physical conseque
in switching from Eqs.~4.8! to ~4.9! in the four-dimesnional
limit.

Consider the following change in the real gauge-coupl
superfield:

R→R1u2ū2
D2

g2
. ~5.8!

Clearly this change will not affect one-loop quantities su
as A terms and the gaugino mass, as both of these dep
solely on theu2 pieces of the Lagrangian. We show now th
8-6
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the scalar masses are also unaffected in the four dimensio
limit as we pass from Eq.~4.8! to Eq. ~4.9!.

The argument is simple.~To keep our expressions unclu
tered we work with a single gauge coupling constant, but
have checked that the argument can be generalized to m
coupling theories.! Generally, under the transformation ofR
in Eq. ~5.8!, the change in the mass-squared of a matter fi
Qi is

mi
2→mi

21
g i

e
D2. ~5.9!

We can see this as follows. Starting from the expansion

logZi5 (
k51

`

Ckg0
2km22ke, ~5.10!

we find

g i5e(
k51

`

kCkg0
2km22ke. ~5.11!

Now, the change inR above is the same as the replaceme

R21→R21~12u2ū2D2!. ~5.12!

Recall that to recover the scalar masses, we need theu2ū2

piece of logZ, which is found by replacingg0
2 in Eq. ~5.10!

by R21. So the change inR21 induces a change inu2ū2

component of logZi as given by making the replacement

g0
2→R21~12u2ū2D2! ~5.13!

in Eq. ~5.10!. Therefore the change inmi
252 logZi uu2ū2 is

Dmi
252 (

k51

`

Ckg0
2k~2kD2!m22ke5

g i

e
D2. ~5.14!

This proves the assertion of Eq.~5.9!. Now notice that the
difference between

R15
g0

22~F22e1F†22e!

2
~5.15!

and

R25g0
22~FF†!2e, ~5.16!

is D2[R12R252e2m3/2
2 . Therefore, in this case, th

change in the scalar masses is onlyO(e) and does not affec
the 4-dimensional limit.

Now that the choiceR2
215g0

2(FF†)e is justified, the
derivation of the soft parameters follows the same path a
the Yukawa theory. Incidentally, our argument shows that
are performing a calculation in the dimensional reduct
with modified numerical subtraction (DR8) scheme@15#. We
have calculated the above-threshold case with a finite ex
nal momentum. In particular, we can always take the va
of this momentum to be on-shell. Then there is no additio
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change that depends on thee-scalar mass in going from th
m2(m) we have calculated to the pole mass. By definitio
this is theDR8 scheme. This is consistent with the commen
found in @11#.

We can also derive the gaugino mass following the sa
line, even though it was already discussed in@2#. The effec-
tive action is

E d8z R~m!
1

e
~FF†!2ege

mntr ~GmGn!, ~5.17!

where the lowest order inR(m) is the renormalized coupling
g2(m)m22e. We know define a dimensionless superfie
F(m), such thatg2(m)5F 21(m)uu5 ū50. The kinetic func-
tion is a function of the bare couplingg0 together with the
chiral compensator as

F„g0
2m22e~FF†!e

…. ~5.18!

Expanding the functionF, we find

F~m!5
1

g2~m!
1F8U

u5 ū50

g0
2m22ee~u21 ū2!m3/2

1~F8g0
2m22e1F 9g0

4m24e!u5 ū50e2ū2u2m3/2
2 .

~5.19!

Noting that

b~g!5m
d

dm
F 21U

u5 ū50

522eg0
2m22e

21

F 2
F8U

u5 ū50

,

~5.20!

we find

g0
2m22eeF8uu5 ū505

b~g!

2g4~m!
. ~5.21!

Furthermore, differentiating it on both sides,

22e2~F8g0
2m22e1F 9g0

4m24e!u5 ū50

5m
d

dm

b~g!

2g4~m!

5
ḃ~g!

2g4~m!
22

b2~g!

2g6~m!
. ~5.22!

Here,ḃ(g)5m(d/dm)b(g). Therefore,

F~m!5
1

g2~m!
1

b~g!

2g4~m!
~u21 ū2!m3/2

2
1

2
m

d

dm

b~g!

2g4~m!
u2ū2m3/2

2 . ~5.23!
8-7
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We therefore find the gaugino mass

ml52
b~g!

2g2~m!
m3/2, ~5.24!

consistent with the derivation in@2#. We also find an all-order
result for the epsilon scalar mass

me
252

1

2
g2~m!m

d

dm

b~g!

2g4~m!
m3/2

2 ~5.25!

which had not been obtained in the literature. It would
interesting to verify explicitly that this result is on th
renormalization-group trajectory in the manner of Ref.@7#.

VI. MORAL

The important moral to be taken away from the last th
sections is the following: in DRED anomaly-mediate
supersymmetry-breaking effects are to becalculated from
the bare Lagrangian, and cannot be added to the Lagran
by hand. The basic mistake in the naive calculation in S
III is that we added the ‘‘anomaly-mediated supersymme
breaking’’ to the Lagrangian by hand and tried to demo
strate the UV insensitivity with this cobbled together L
grangian. The reason why this is a mistake is clear from
analogy to the chiral anomaly mentioned in the Introducti
In a regularized theory, the chiral anomaly comes out au
matically from the loop calculations. One does not add
chiral anomaly as an additional term to the Lagrangian.
the same way, DRED is a regularization, which leads au
matically to the anomaly-mediated supersymmetry break
Therefore, instead of adding soft parameters to the Lagra
ian, we should perform a complete calculation starting fr
the bare Lagrangian that contains a Yukawa couplingl0Fe

or a gauge couplingg0
2(FF†)e. Then we should find tha

contributions of heavy multiplets to the soft couplings van
below the heavy mass threshold. We illustrate this UV ins
sitivity using DRED in our diagrammatic calculation of Se
IX.

Finally, let us enhance this discussion by describing
proof of ultraviolet insensitivity in anomaly mediation wit
the DRED framework. This is the analogue of Eq.~2.7!. In
general, the contributions from heavy multiplets to theZ fac-
tor have the dependence (l* l)k(M* M )2ke. The correct in-
clusion of the chiral compensator then giv
(lFel* F†e)k(MFM* F†)2ke5(l* l)k(M* M )2ke, and no
supersymmetry-breaking effects remain.

Now we can analyze what went wrong in our example
Sec. III. Operationally, we made two errors in our calcu
tion. First of all, we extended the Yukawa coupling inco
rectly. Instead of extending it to get theA-term diagram
through the replacementh→h$123@h2/(4p)2#m3/2u

2%, we
were meant to make the replacementh→hFe. Moreover, we
neglected a one-loopO(eh2) piece that was present in th
high-energy theory. In fact, in our attempt to compute
threshold correction to logZ, we ended up computing th
entirety of logZ. We were unable to separate the high-ene
piece from the threshold correction.
08502
e

e

ian
c.
y
-

e
.
-

e
n
-

g.
g-

-

e

-

e

y

The above discussion seems to say that it is impossibl
regard the anomaly-mediated supersymmetry breaking
boundary at the Planck scale. Indeed, this appears to be
for DRED. However, this is not impossible for other regula
ization schemes. We can take this view, for instance, if
use Pauli-Villars regulators where the supersymme
breakingLm3/2 mass term for the regulators is the source
all other supersymmetry-breaking effects. Then we can p
the following trick. We add a pair of correct- and wrong
statistics regulator fields withoutLm3/2 mass term, which
does not change the physics at all. Then we integrate ou
original Pauli-Villars regulators with theLm3/2 mass term
and a correct-statistics field without theLm3/2 mass term.
Integrating out this pair of fields will give us the soft SUSY
breaking terms of Eqs.~1.1! and~1.2!, where the anomalous
dimensions are to be evaluated at the cut-off scale. The
over wrong-statistics massive field acts as the new Pa
Villars regulator while the supersymmetry-breaking effe
are now in the Lagrangian. This way, we obtain an entir
equivalent theory with anomaly-mediated supersymme
breaking in the bare Lagrangian, regulated by the Pa
Villars regulators that do not have aLm3/2 mass term. On the
other hand, DRED does not allow us a similar trick becau
there is no ‘‘regulator field.’’ We need to keep evanesce
operators consistently in calculations.

In later sections, we will study the UV insensitivity wit
explicit diagrammatic calculations. The situation can
somewhat more subtle in the presence of both light a
heavy degrees of freedom, but nonetheless we have dem
strated that the effects of heavy multiplets completely dis
pear from the soft supersymmetry-breaking parameters
low the heavy threshold once coupling constants
reexpressed in terms of renormalized ones.

VII. MODEL CONSIDERED

We now define two simple toy models to satisfy the d
grammatic computation promised in the previous sectio
Calculations using these models will follow in Secs. VIII an
IX.

The first model contains only chiral superfields with min
mal kinetic terms and superpotential

W15lt,0tLH1h0 tX1X21MX1Y11MX2Y2 . ~7.1!

~NoteL{2W1.! Our notationt, L, H indicates that we are
thinking of these as the essentially massless tau, lepton
blet, and down-type Higgs doublet superfields of the minim
supersymmetric standard model~MSSM!, with lt the usual
MSSM Yukawa coupling. HereX1 , X2 , Y1 , Y2 are the
heavy fields which have flavor-dependent couplings, i.e. t
only couple to thet superfield.h is a Yukawa coupling and
M is a supersymmetry-preserving heavy mass. As discus
in the previous sections, we should add a chiral compens
F in front of mass terms and a factorFe in front of Yukawa
couplings. Note that all gauge interactions have been tur
off in this model.

In the second model we turn off all Yukawa couplings b
add an Abelian gauge coupling which one can think of a
8-8
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new U(1) flavor-dependent gauge interaction with gau
couplingg8. The superpotential now only serves to make
flavor fields heavy:

W25M X1Y11M X2Y2 , ~7.2!

and again chiral compensators must be added in fron
masses. We keep thet particle in the second model but dro
L andH.

The aim of this exercise is twofold. First of all, we have
chance to display how anomaly-mediated calculations p
ceed in dimensional reduction. Second, we will show h
integrating heavyX andY superfields gives rise to the thres
old effects that precisely maintain the anomaly-mediat
form for the scalar masses. As mentioned previously,
diagrammatic approach is completely complementary to
already established approach of the spurion calculus.

To demonstrate the decoupling, we will calculate quan
ties ‘‘above threshold’’ and ‘‘below threshold.’’ Above
threshold we are calculating quantities with finite exter
momenta well above the massM. In these calculations, we
neglect this mass relative to momenta. Below threshold,
can neglect the external momentum relative to the mas
This is the energy regime where we expect to see the de
dence on theX andY vanish.

VIII. A TERMS

In this section we explicitly demonstrate the ultravio
insensitivity of theA terms associated with thetLH operator
of Eq. ~7.1!. This affords us our first opportunity to see ho
operators proportional toe are vital to our understanding o
supersymmetry breaking in anomaly mediation. We calcu
in bare perturbation theory and use the mass-insertion
malism, which allows us easily to pinpoint the contributio
that arise at lowest order in the gravitino mass.

Recalling Eq.~1.1!,

AtLH52m3/2lt~gt1gL1gH!. ~8.1!

Now, gt changes as we integrate out theX and Y flavor
superfields, and we expect to see this difference in com
ing the 3-pointt̃L̃H function above and below threshold
AtLH maintains the form of Eq.~8.1! even though its value
changes.

In the literature anomalous dimensions are typica
quoted in terms of the renormalized or running couplin
lt(m) andh(m) at momentum scalem. Here we have

gt~m!above threshold5
1

~4p!2
@2ltlt* ~m!1hh* ~m!#,

~8.2!

gt~m!below threshold5
1

~4p!2
@2ltlt* ~m!#, ~8.3!

where factors of two in front oflt reflect the fact thatL and
H are doublet fields. To one-loop the running couplings a
bare couplings are identical, so we can freely compare th
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expressions with the 3-pointt̃L̃H function computed in bare
perturbation theory. In the two-loop scalar mass-squa
computation, however, we will need to distinguish betwe
bare and renormalized couplings.

In the expressions forgt we see explicitly the ultraviolet
insensitivity: Above threshold the heavy particles contribu
h* h/(4p)2 to gt or 2m3/2lth* h/(4p)2 to AtLH . Below
threshold they do not contribute at all: The so
supersymmetry-breaking parameterAtLH is independent of
the heavy-field Yukawa parameterh. Our task now is to con-
firm this by diagrammatic calculation.

The relevant diagrams appear in Fig. 1.~The mass inser-
tion proportional toMm3/2 is indicated by a cross on theỸX̃
scalar line.! Above threshold at scalem, Graph 1-1 vanishes
quadratically inM2/m2, so we ignore it. This leaves Grap
1-2 which has value

Graph 1-25 i
m3/2h0h0* lt,0

~4p!2
, ~8.4!

exactly the contribution toAtLH expected from Eqs.~8.1!
and ~8.2!.4 As anticipated in Sec. II, the graph with the ev
nescente operator produces the anomaly-mediated contri
tion to theA term. A graph analogous to Graph 1-2 withL
andH fields running in the loop contributes thelt* lt

2 piece
to theA term coupling.

Whenm!M , we find an additional contribution from in
tegrating out theX andY fields, which is Graph 1-1:

Graph 1-152 i
m3/2h0h0* lt,0

~4p!2
. ~8.5!

As promised, this is equal and opposite to the contribut
from thee operator. Together, Graph 1-11 Graph 1-25 0,
so that at scalesm!M below threshold, the flavor-depende
interactions of the heavy particles do not contribute to
A-term coupling. This bears out Eq.~8.3!.

It is instructive to see the dependence on the momen
scalem252kt

2 . The sum of Graph 1-1 and Graph 1-2 is

i
m3/2h0* h0lt,0

~4p!2 H 12
4M2

mAm214M2

3arctanh
m

Am214M2J , ~8.6!

which interpolates the result above threshold~8.4! and that
below threshold~zero! as expected.

Graph 1-1 is finite by itself, so it is tempting to compu
the threshold correction without using any regulator at
And you do learn something when you do this: When y
compute at scalesm!M , you find thenegativeof the ex-
pectedabove threshold(m@M ) anomaly-mediated contribu

4To keep factors of (21) and i straight, note that iL
{2 iAtLHt̃L̃H and iL{(Graph 1-2)t̃L̃H.
8-9
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tion to the A term. How do we interpret this result? Th
calculation computes the correct threshold correction, bu
see the ultraviolet insensitivity, we should not ignore t
piece it is correcting. A theory is only defined after speci
ing a regulator, be it Pauli-Villars, dimensional reduction,
what you will. Thus Graph 1-2 or its Pauli-Villars analogu
always exists, regardless of how you treat the finite Gra
1-1. We must regulate, and when we include contributio
from the regulator-induced operators, we find anA term
which follows the trajectory defined by Eq.~8.1!. The regu-
lator diagram gives the contribution above threshold, a
Graph 1-1 gives the threshold correction.

IX. SCALAR MASSES

As a final test of our formalism, we now compute th
different above- and below-threshold anomaly-mediated c
tributions to the scalar masses. We recover the result o
traviolet insensitivity, providing a resolution to the puzzle
Sec. III. To compare diagrammatic results with expressi
for m̃t

2 , note that in the diagrams ‘‘Graph —’’ we compu

are corrections toiL, while 2 im̃t
2t̃* t̃P iL.

A. Yukawa theory

1. Expectations

To understand our diagrammatic computation, we sho
first work out what we expect. We know that the sca
masses follow the form of Eq.~1.2!,

m̃t
25

1

2
m3/2

2 ġt . ~9.1!

For easy comparison with the literature, we displayġt in
terms of renormalized couplings. However, we genera
work in bare perturbation theory, and at two loops the ren
malized and bare couplings differ significantly. In particul
wheng andġ are written in terms of the bare couplings, th
contain additional scheme-dependent terms that vanish in

FIG. 1. Diagrams that contribute to theAtLH coupling.
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limit that the cutoff,L, is taken to infinity~or e→0). Nev-
ertheless, these additional terms are important during
regularized calculation, so we reexpressg and ġ in terms of
bare couplings.

Working above threshold with the renormalized co
plings,

gt~m!5
1

~4p!2
@2lt* ~m!lt~m!1h* ~m!h~m!#, ~9.2!

gX1
~m!5gX2

~m!5
1

~4p!2
@h* ~m!h~m!#, ~9.3!

ġt~m!5
1

~4p!2
@4lt~m!l̇t* ~m!12h~m!ḣ* ~m!#

5
1

~4p!2
@4lt* ~m!lt~m!~gt1gL1gH!

12h* ~m!h~m!~gt1gX1
1gX2

!#. ~9.4!

Below threshold the terms proportional toh* h disappear,
and in addition,gt changes as from Eq.~8.2! to Eq. ~8.3!.
Expanding to pinpoint the contributions to the scalar m
which change across theX andY threshold, we find

m̃t
25

m3/2
2

~4p!4
@2lt* lt~4lt* lt1h* h!

1h* h~2lt* lt13h* h!# ~above threshold!,

~9.5!

m̃t
25

m3/2
2

~4p!4
~8lt* lt! ~below threshold!. ~9.6!

Again, these expressions are written in terms of runn
couplingslt(m), h(m), and in keeping with our previously
stated protocol, we now rewrite them in terms of bare co
plings. By straightforward computation with DRED regula
ization, we can compute logZ, from which it is straightfor-
ward to extractm̃t.

5 We find

m̃t
25

m3/2
2

~4p!2 H 22
elt,0* lt,0

~m2!e
2

eh0* h0

~m2!e
1

1

~4p!2 S 16
~lt,0* lt,0!

2

~m2!2e

16
~h0* h0!2

~m2!2e
18

lt,0* lt,0h0* h0

~m2!2e D J
~above threshold, bare couplings!. ~9.7!

5As an alternative to direct computation, we can findġt , and

hencem̃t
2 , through renormalization group arguments. This meth

is explicitly implemented for the gauge theory in Appendix C.
8-10
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Below threshold, terms inZt proportional toh0* h0 /(m2)e

are modified toh0* h0 /(M2)e, becauseX fluctuations are cut
off at scalesm!M . This means that most of theh depen-
dence drops out ofġt , as in Eq.~9.6!. Here, however, a
lt,0* lt,0h0* h0 term remains:

m̃t
25

m3/2
2

~4p!2 H 22
elt,0* lt,0

~m2!e
1

1

~4p!2 S 16
~lt,0* lt,0!

2

~m2!2e

12
lt,0* lt,0h0* h0

~m2!e~M2!e D J
~below threshold, bare couplings!. ~9.8!

The residualh0 dependence below threshold just reflects o
use of bare couplings. Of course the heavy particles deco
from the physics at scalesm!M , and we see this when w
use renormalized couplings as in Eq.~9.6!. As an aside, we
mention that there is a factor of two difference betwe
terms that go like the fourth power of the coupling const
when we compare Eqs.~9.8! and~9.6!. The reason is that in
Eq. ~9.8!, part of the (lt,0* lt,0)

2 term combines with the
O(e) piece to give a piece that vanishes in the fo
dimensional limit.

2. One-loop contributions

We now turn to the calculation of the diagrams. As me
tioned previously, for simplicity we compute below
threshold contributions tom̃t

2 at zero external momentum
Above threshold we neglect theX andY massM relative to a
finite external momentum. This procedure, together with
mass insertion formalism, means that in any given diagr
there is only one fixed mass/momentum scale, a tremend
advantage computationally. Further, whenM→0, there are
fewer vertices and consequently many fewer diagrams.

As seen in Eqs.~9.7! and~9.8!, when we write the scala
mass in terms of bare couplings there is a one-loopO(e)
piece. These one-loopO(e) terms occur diagrammatically a
shown in Fig. 2. Above theX-Y mass threshold we can tak
M→0, so Graphs 2-3, 2-4, and 2-5 all vanish, as they c
tain verticeshM and/orMm3/2. This leaves Graph 2-1 an
Graph 2-2. Poles from the logarithmically divergent loop
tegrals pair with theO(e2) contribution from the vertices to
give O(e) results:

Graph 2-15 i eh0* h0

m3/2
2

~4p!2~m2!e
~9.9!

Graph 2-252i elt,0* lt,0

m3/2
2

~4p!2~m2!e
, ~9.10!

matching our expectations from Eq.~9.7!. Below threshold,
Graph 2-1 comes with (m2)e replaced by (M2)e, while
Graph 2-3, Graph 2-4 and Graph 2-5 sum to give
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Graph 2-31Graph 2-41Graph 2-5

52 i eh0* h0

m3/2
2

~4p!2~M2!e
, ~9.11!

canceling theh0* h0 dependence of Eq.~9.7! as required by
Eq. ~9.8!. Other one-loop graphs potentially contributing
nite terms to the scalar mass cancel among themselves.

3. lt,0* lt,0h0* h0 contributions

There are two types oflt
2h2 contributions to the scala

mass. The straightforward two-loop diagrams appear in F
3. Only Graph 3-2 exists above threshold:

Graph 3-2524ilt,0* lt,0h0* h0

m3/2
2

~4p!4~m2!2e
. ~9.12!

This is half of thelt,0* lt,0h0* h0 dependence needed fo

m̃t
2 in Eq. ~9.7!. As expected, it is the diagram containin

vertices proportional toe which yields the contribution to the
anomaly-mediated scalar mass.

The other above-threshold contribution comes from
cross term between the wave-function renormalization
theO(e) one-loop scalar mass derived in Sec. IX A 2. Sin
the anomaly mediated soft scalar mass@Eq. ~1.2! or ~9.7!# is
the mass in a canonically normalized Lagrangian, we nee
divide the mass-renormalization part of our two-point fun
tion by the wave-function-renormalization part,Zt51
1dZt , when computing corrections to the mass squar
Cross terms betweendZt and two-loop mass diagrams a
higher order, but cross terms betweendZt and the one-loop
mass diagrams contribute atO(lt

2h2).
Since dZt will multiply the O(e) one-loop masses, we

only need theO(1/e) poles~see Fig. 4!. With external mo-
mentump,

Graph 4-15 ih0* h0

p2

~4p!2~2p2!e

1

e
1O~e0! ~9.13!

Graph 4-252ilt,0* lt,0

p2

~4p!2~2p2!e

1

e
1O~e0!,

~9.14!

which means

dZt5
h0* h012lt,0* lt,0

~4p!2~m2!e

1

e
1O~e0!. ~9.15!

To lowest order, dividing byZt511dZt means multiplying
by (12dZt), so our sought-after contribution is

2dZt3~Graph 2-11Graph 2-2!

5@22ilt,0* lt,0h
222ilt,0* lt,0h0* h02 i ~h0* h0!2

24i ~lt,0* lt,0!
2#

m3/2
2

~4p!4~m2!2e
. ~9.16!
8-11
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These two 2lt,0* lt,0h0* h0 pieces combine with the
4lt,0* lt,0h0* h0 piece from Eq. ~9.12! to exhaust the
8lt,0* lt,0h0* h0 of Eq. ~9.7!.

Below threshold the cancellation of much of th
lt,0* lt,0h0* h0 dependence proceeds as follows: we find Gra
3-1 supplies a threshold correction

Graph 3-154ih0* h0lt,0* lt,0

m3/2
2

~4p!4~m2!e~M2!e
,

~9.17!

FIG. 2. Diagrams contributing the one-loopO(e) terms to the
scalar mass squared.
08502
h

which exactly cancels Graph 3-2 in Eq.~9.12! after the re-
placement (m2)2e→(m2)e(M2)e. We already discussed in
Sec. IX A 2 how Graphs 2-3, 2-4, and 2-5 cancel Graph
below threshold. This leaves the cross term betweendZt and
Graph 2-2, one of the terms from Eq.~9.16!. Below thresh-
old the h0* h0(m2)2e dependence in dZt becomes
h0* h0(M2)2e, so that the cross term becomes

2dZt3~Graph 2-2!

{22ilt,0* lt,0h0* h0

m3/2
2

~4p!4~m2!e~M2!e
,

~9.18!

which is the residuallt,0* lt,0h0* h0 dependence in Eq.~9.8!.
This confirms the ultraviolet insensitivity: We have check
Eq. ~9.8!, and when we rewrite that equation in terms
renormalized couplings, we find Eq.~9.6!. There the ultra-
violet insensitivity is manifest.

4. (h0* h0…
2 contributions

For now we continue to work exclusively with bare co
plings; the relevantm̃t

2 for comparison is that of Eqs.~9.7!
and ~9.8!. The new (h0* h0)2 diagrams appear in Figs. 5 an
6. The graphs shown are merely skeletons, the true diagr
being found by adding mass insertions and the various tri
ear couplings in all possible places.

We first proceed with the calculation of the anomaly m
diated contribution to the scalar mass above threshold.
expect our result to agree with the (h0* h0)2 term in Eq.~9.7!.
Of the graphs in the figure, only some occur abo
threshold—Graphs 5-3, 5-5, 5-7, and 6-2, each with two
linear verticesh0em3/2 t̃X̃1X̃2. The others vanish in theM
→0 limit.

FIG. 3. Diagrams that contributelt,0* lt,0* h0* h0 terms to the sca-
lar mass.
8-12
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The calculations are straightforward except for Graph 5
This diagram is different from the others in that it has
infrared divergence in the lower loop which is not regulat
by the external momentum. However, the top loop is eff
tively a contribution to theX̃ two-point function, and if we
integrate that loop first, it gives a radiatively-generated m
to theX̃ boson which regulates the infrared divergence.~Re-
call that we are working in the limit where the tree ma
M→0. The vertices which appear in computing the one-lo
X̃ two-point function areh0em3/2t̃X̃1X̃2 and its Hermitian
conjugate.! We will have more to say about infrared dive
gences in dimensional reduction when we discuss the ga
theory.

The values of the above-threshold diagrams appea
Table I. Also included is the (h0* h0)2 contribution derived in
Eq. ~9.16!, which comes from the cross term between t
one-loopO(e) scalar mass and the wave-function renorm
ization. Altogether, we find the expected above-threshold
sult

m̃t
2{6~h0* h0!2

m3/2
2

~4p!4~m2!2e
. ~9.19!

We now turn to the calculation of the (h0* h0)2 piece of the
t-scalar mass below threshold. Based on Eq.~9.8!, we expect
to find zero. Below threshold, the cross-term between
one-loopO(e) mass and the wave-function renormalizati
disappears because the sum of Graphs 2-3, 2-4, and 2-5
cels Graph 2-1. Then we are left with two-loop diagram
from Figs. 5 and 6, all of which contribute below thresho
We split our computation into three parts. First, there
diagrams in which all trilinear vertices are of the for
h0M t̃X̃Ỹ, and supersymmetry-breaking comes from a p
of mass insertionsMm3/2 on the scalar lines. Second, the
are diagrams with a singlee trilinear vertex and a single
Mm3/2 insertion. Finally, there are the same diagrams wh
existed above threshold, where two trilinear vertices are

FIG. 4. Diagrams for the one-loopO(1/e) wave-function renor-
malization.
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the form h0em3/2t̃X̃1X̃2. Using the integralsI (m,n,l ),
F(m,n,l ), andG(m,n,l ) as defined in Appendix A, we write
down the values for the Feynman diagrams in a comp
form in Table II.

Expanding the integrals and summing all contribution
we find exact cancellation, matching Eq.~9.8! and verifying
ultraviolet insensitivity. In particular, the cancellation amo
the O(e0) terms looks like

FIG. 5. Diagrams that contribute to theh4 threshold correction
that exclusively include scalars. These diagrams may be define

terms of the integralI (m,n,l ) as defined in the text. WhereX̃ is

shown, it corresponds to bothX̃1 and X̃2, as appropriate. Also, the

three point scalar couplings shown here are the verticeshMt̃X̃Ỹ* .

As described in the text, this vertex can be replaced with theet̃X̃X̃
vertex, yielding additional diagrams.

TABLE I. Values @to O(e0)# of the diagrams suppling the
above-threshold (h0* h0)2 term in the scalar mass squared. We ha
pulled out a common factor@1/(4p)4# i (h0* h0)2m3/2

2 (m2)22e.

Graph 5-3 22
Graph 5-5 21
Graph 5-7 21
Graph 6-2 21
Equation~9.16! 21
8-13
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05 i ~h0* h0!2
m3/2

2

~4p!4~M2!2e
~2511025! ~9.20!

where the contributions are, respectively, from graphs w
zero, one, or twoh0em3/2t̃X̃1X̃2 vertices.@Table VII gives
O(e0) expansions for the integrals, but the spurion com
tation assures us that the cancellation is exact, and it d
indeed extend to all orders ine.#

Now it is instructive to revisit our puzzle of Sec. II
When we found a vanishing threshold correction and a
sulting lack of ultraviolet insensitivity, it was because we h
not calculated all contributions to the scalar mass. In
language of this section, we calculated the first section
Table II, along with a cross-term from Graph 4-1 and Grap
2-4 and 2-5. We then added in a contribution from theA-term
by hand. This gave an erroneous result. We have seen
the correct procedure is to calculate the entirety of Table
and see that the contributions sum to zero.

5. Finite computation for (h* h)2

In contrast to the DRED calculation above, we present
additional calculation that does not depend on this type
regularization. In the language of Sec. III, this calculati
corresponds to one where we have implicitly used a ho
morphic regularization scheme. So, we may compare
calculation to the spurion calculation done with holomorp
regularization. This provides an additional demonstration
the ultraviolet insensitivity.

As described in Sec. III, we must keep all integrals in fo
dimensions, paying attention to the finiteness of the integr
By integrating out the cut-off dependent supersymme
breaking operators, we recover the anomaly mediated p
of Eq. ~1.2!. If we choose Pauli-Villars as our holomorph
regulator, this procedure would essentially correspond
working with an effective Lagrangian at a scalem below the
threshold of the Pauli-Villars particles. We have integra
out the Pauli-Villars fields, and the anomaly-mediated s
terms now appear in our effective Lagrangian. Keeping t

FIG. 6. Diagrams that contribute to theh4 threshold correction
that include fermions.
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anomaly-mediated piece in mind, we may turn to a calcu
tion of the threshold correction. We calculate the diagra
with X̃ and Ỹ particles in the loops, taking care to keep o
integrals well defined at all times.

First, theA terms in the effective Lagrangian give rise
the diagram in Fig. 7. This is effectively a two-loop diagra
because there is one-loop suppression through theA term. It
is already finite. Recalling thatAtX1X2

52m3/2h(gt1gX1

1gX2
),

Graph 7-152ih* h
m3/2

2

~4p!2
~gt1gX1

1gX2
!

52ih* h
m3/2

2

~4p!4
~2lt* lt13h* h!.

~9.21!

The remaining relevant diagrams and their formal valu
appear in the first part of Table II. Of these only a few a
potentially divergent. ExpandingF( l ,m,n) andG( l ,m,n) in
terms ofI ( l ,m,n), we find

TABLE II. Below-threshold contributions to (h0* h0)2 terms in
the scalar mass squared. The three sets of values represent dia
in which zero, one, or two trilinear vertices are of the for
h0em3/2tX1X2. The integralsI (m,n,l ), F(m,n,l ), and G(m,n,l )
are defined in Appendix A. We have pulled out a common fac
i (h0* h0)2m3/2

2 .

Graph 5-1 4M2 I (3,1,1)
Graph 5-2 24M6 I (5,1,1)112M6 I (4,2,1)14M6 I (3,3,1)
Graph 5-3 12M4 I (3,2,1)112M4 I (4,1,1)
Graph 5-4 4M2 I (4,1,0)12M2 I (3,2,0)
Graph 5-5 6M4 I (3,2,1)16M4 I (4,1,1)
Graph 5-6 2M4 I (3,3,0)112M4 I (5,1,0)
Graph 5-7 4M4 I (3,3,0)
Graph 6-1 28M2 F(4,1,1)
Graph 6-2 224M4 F(5,1,1)
Graph 6-3 4M6 G(3,3,1)

Graph 5-2 24eM4 I (4,1,1)18eM4 I (3,2,1)
Graph 5-3 12eM2 I (3,1,1)14eM2 I (2,2,1)
Graph 5-5 4eM2 I (2,2,1)14eM2 I (3,1,1)
Graph 5-6 8eM2 I (4,1,0)
Graph 5-7 4eM2 I (3,2,0)
Graph 6-2 216eM2 F(4,1,1)

Graph 5-2 8e2 I (3,1,1)
Graph 5-3 4e2 I (2,1,1)
Graph 5-5 2e2 I (2,1,1)
Graph 5-6 2e2 I (3,1,0)
Graph 5-7 e2 I (2,2,0)
Graph 6-2 24e2 F(3,1,1)
8-14
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Sum of diagrams5finite1@24M6I ~5,1,1!

130M4I ~4,1,1!16M2I ~3,1,1!#.

~9.22!

The last three terms are individually divergent, but th
sum is clearly not, since the left-hand side is finite. In A
pendix B we outline a completely finite calculation of the
terms. All told, we find that the finite evaluation of the
diagrams yields precisely23i (h* h)2@1/(4p)4#m3/2

2 . When
added with the 6i (h* h)2@1/(4p)4#m3/2

2 contribution from
Eq. ~9.21!, we find a total 3i (h* h)2@1/(4p)4#m3/2

2 . This is
the proper threshold correction to cancel the known abo
threshold contribution from the Pauli-Villars fields as giv
in terms of renormalized couplings, Eq.~9.5!. This again
verifies ultraviolet insensitivity.

It is worth contrasting how the cancellation happens
dimensional reduction@Eq. ~9.20!#. In that case the diagram
with no e-dependent vertices contribute25(h0* h0)2, versus
23(h* h)2 in the completely finite calculation. This is a sig
nal that we must include thee-dependent vertices to get th
consistent results. The dimensional reduction cancella
happens through omplicated interplay between these
grams and those with the newe vertices.

Finally, we mention that the couplings throughout our ‘‘
nite calculation’’ are the renormalized couplings,h(m). This
is because we have generated the soft terms by integra
out the Pauli-Villars fields at the cutoff scale to get Eqs.~1.1!
and ~1.2!. However, these equations are renormalizat
group invariant, so, we can run them down to our thresh
scaleM where the equations still hold, now evaluated at
renormalization group~RG! scaleM. This threshold correc-
tion is then done with couplings at this scale, in other wor
with the renormalized couplings.

6. (lt,0* lt,0)
2 contributions

The calculation of (lt,0* lt,0)
2 contributions tom̃t

2 is iden-
tical to the above-threshold (h0* h0)2 calculation, the only
difference being factors of two from the doubletsL and H.
The table analogous to Table I is Table III. Summing, we fi
the 16(lt,0* lt,0)

2 expected in Eq.~9.7!. (lt,0* lt,0)
2 contribu-

tions are not affected by integrating out the heavyX and Y
fields.

In summary, we have utilized our new formalism
DRED to check two anomaly-mediated calculations. First

FIG. 7. Additional diagram for the finiteh4 calculation. It is
effectively a two-loop diagram, as there is a one-loop suppres
through theA-term vertex.
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all, we were able to check the usual form of the anom
mediated contributions toA terms and scalar masses. Se
ond, we were able to explicitly verify the ultraviolet insens
tivity of anomaly mediation through a diagrammatic calcu
tion.

B. Abelian gauge theory

1. Expectations

Shifting to the U~1! gauge model described in Sec. VI
we have particle contentt, X1 , Y1 , X2 , Y2, with superpo-
tential given in Eq.~7.2!. In this section we primarily focus
on additional subtleties that arise for the gauge theory.
show a computation of the above-threshold anoma
mediated contributions proportional toYt

2 and Yt
2YX

2 . We
further check that the contributions going likeYt

2YX
2 vanish

below threshold, confirming ultraviolet insensitivity. We b
lieve these calculations capture the subtleties associated
the gauge theory. Incidentally, the calculation of t
anomaly-mediated contributions in this model is quite sim
lar to a gauge mediation calculation performed previou
@16#.

Before calculating any diagrams, it is important to kno
what we expect for the scalar mass. For this, we need
know ġ. It is useful to write the results in terms of bot
renormalized and bare couplings. In terms of renormaliz
couplings we have

gt~m!5
1

~4p!2
@22g82~m! Yt

2#,

~9.23!

ġt~m!5
1

~4p!2
@24g8~m!ġ8~m!Yt

2#

5
1

~4p!4
@24g84~m!Yt

2~Yt
21YX1

2 1YY1

2 1YX2

2 1YY2

2 !#

5
1

~4p!4 F24g84~m!Yt
2S Yt

21 (
heavy

Yi
2D G .

~9.24!

~Here and below, the sum over heavy multiplets is perform
for each chiral superfield separately.! Then clearly,

m̃t
25

m3/2
2

~4p!4 F22g84~m! Yt
2S Yt

21 (
heavy

Yi
2D G

~above threshold!, ~9.25!

m̃t
25

m3/2
2

~4p!4
@22g84~m! Yt

4# ~below threshold!.

~9.26!

The last expression does not depend on the propertie
heavy particles at all, manifesting the UV insensitivity. T

n

8-15
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get the analogous expressions in terms of the bare coup
requires a bit more work. This calculation is done in Appe
dix C. In terms of bare couplings we have

m̃t
25

m3/2
2

~4p!2
S 2

eYt
2g80

2

~m2!e
24

g08
4Yt

2S Yt
21 (

heavy
Yi

2D
~4p!2~m2!2e

D
~above threshold, bare couplings!, ~9.27!

m̃t
25

m3/2
2

~4p!2
S 2

eYt
2g08

2

~m2!e
24

g08
4Yt

4

~4p!2~m2!2e

22

g08
4Yt

2 (
heavy

Yi
2

~4p!2~m2!e~M2!e
D

~below threshold, bare couplings!.
~9.28!

2. Insensitivity

In this section we will compute the above-thresho
anomaly-mediated contributions proportional toYt

2 and
Yt

2YXi

2 , and we check that the latter vanish below thresh

to confirm ultraviolet sensitivity. The relevant skeleton d
grams are shown in Fig. 8; we must add appropri
supersymmetry-breaking vertices to form the actual d
grams.~There are many additional diagrams which giveYt

4

contributions, but we do not expect further conceptual di
culties in their calculation.!

Let us consider the contribution to the scalar mas
above threshold. In this energy regime the SUSY-break
Mm3/2 mass insertion is suppressed (M→0), so there are
only two sources of supersymmetry breaking. First there
tree-level gaugino mass,ml52em3/2. Then depending on
the choice of the bare Lagrangian, Eq.~4.13! or Eq. ~4.10!,
the remaining supersymmetry breaking is given by the n
local gaugino operator in Eq.~4.14! or by thee-scalar mass,
me5em3/2

2 , that results from using the GMZ operator.
The diagrams in Fig. 9 yield the one-loopO(e) piece in

Eqs. ~9.27! and ~9.28!. Depending on our form for the bar
Lagrangian, either Graph 9-1 or Graph 9-2 contributes. T

TABLE III. Values @to O(e0)# of the diagrams suppling above
threshold (lt,0* lt,0)

2 term in the scalar mass squared. We ha
pulled out a common factori (lt,0* lt,0)

2@1/(4p)4#m3/2
2 (m2)22e. Ev-

erywhere in Graphs 5-2 through 6-2L andH replaceX andY.

Graph 5-2 0
Graph 5-3 24
Graph 5-5 22
Graph 5-7 24
Graph 6-2 22
Equation~9.16! 24
08502
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values of the diagrams appear in Table IV.
The two-loop terms come from one or two diagrams.

we choose to work with the non-local operator, only gau
nos have supersymmetry breaking, and so only the sin
topology Graph 8-6 contributes. If instead we work with
supersymmetry-breaking mass for the epsilon scalar, Gr
10-1 ~see Fig. 10! adds to a reduced contribution from Grap
8-6. Table V collects these contributions to the scalar ma
which total

m̃t
2{24g08

4Yt
2 (

heavy
Yi

2
m3/2

2

~4p!4~m2!2e
. ~9.29!

This completes the calculation of the mass above
threshold. We now demonstrate decoupling. All graphs
Fig. 8 are relevant, because below threshold we keep a fi
X-Y massM, and supersymmetry breaking enters through
X̃Ỹ mass insertion. First we consider only the diagrams w
this sort of supersymmetry breaking. There appear to
seven such diagrams, but several of these in fact do not
tribute.

Graph 8-5 vanishes because it is proportional to the s
of the flavor charges of the heavy fields. This sum vanis
by the gauge invariance of the Lagrangian. The sum
Graph 8-2 and Graph 8-4 also vanishes by gauge invaria
If we add Graph 8-4 and Graph 8-2, we get a graph t
contains the vacuum polarization operator for scalar QE
with a form fixed by gauge invariance to be

Pmn5~pmpn2p2gmn!P~p2!. ~9.30!

Upon contraction with the momentum-depende
( t̃]mt̃* Am1H.c.) vertex, the sum of Graphs 8-2 and 8
yields zero. Thus only four graphs containing supersymme
breaking due to theMm3/2 mass insertion contribute to th
threshold correction: Graphs 8-3, 8-6, and the combina
of Graph 8-1 and Graph 8-7 which again contains
vacuum polarization operator.

There is a remaining worry concerning infrared dive
gences. We can safely express Graph 8-3 in terms of
standard integrals in Appendix A, but we must be more ca
ful with the other graphs. If blithely written in terms o
I (m,n,l ), the diagrams contain infrared-divergent integra
which are not automatically regulated by DRED. While
DREG one can analytically continue to 412e dimensions to
regulate the IR, DRED by definitioncompactifies4 dimen-
sions down to 422e dimensions. IR-divergent integrals ar
thus not well defined by DRED, and one can find mutua
inconsistent ways to evaluate such integrals. In particular,
sometimes-seen prescription

E d4p

p4
50 ~ inconsistent! ~9.31!
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FIG. 8. Diagrams that contrib-
ute to the cancellation ing84.
These diagrams all contain th

heavy fieldsX̃ and Ỹ.
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leads to inconsistent results. Nonetheless, in supersymm
we must use DRED, and not DREG, because an exten
above 4 dimensions changes the spinor algebra and cau
mismatch in the fermionic and boson degrees of freedom
short, a safe and consistent procedure is to use DRED
regulate the UV and add finite masses to regulate the
when necessary.

Fortunately in our case, we can largely avoid the infra
divergences. There are only two cases where we find IR
vergences to be an issue. The first is Graph 8-1 where
e-scalar replaces the vector boson. The second is in G
8-6 when there is supersymmetry breaking from the n
local contribution to the gaugino propagator. In these ca
we keep a finite mass. Among the other graphs, once G
8-1 and Graph 8-7 are combined, the sum is manifestly
frared finite. Graph 8-6~without the non-local term in the
gaugino propagator! and Graph 8-3 are each infrared fini
on their own. We evaluate these two graphs directly, a
their result is shown in Table VI.

We evaluate Graph 8-1 and Graph 8-7 by summing th
top loops into the vacuum polarization operator and th
contracting this subgraph with the seagull vertex. This avo
all ambiguities due to infrared divergences. To compute
explicit form of the vacuum polarization operator, we fou
it easier to work in the mass eigenbasis, where the sca
have massesM26Mm3/2, and then to expand toO(m3/2

2 ).
For a scalar particle of massM and chargeYX ~in the mass
eigenbasis!,
08502
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P~p2!5~pmpn2p2gmn!
2YX

2g08
2iG~e!

~4p!22e

3E
0

1

dx
~122x!2

@M22p2x~12x!#e
. ~9.32!

Summing over the two eigenmasses and expanding inm3/2,
we find the vacuum polarization in the mass insertion f
malism:

P~p2!5~pmpn2p2gmn!~ im3/2
2 M2!

YXi

2 g08
2G~21e!

~4p!22e

3E
0

1

dx
~122x!2

@M22p2~12x!x#21e
. ~9.33!

We contract this result with the seagull vertex to obtain
final value for Graphs 8-1 and 8-7. The result appears
Table VI.

There are further contributions in which supersymme
breaking does not come from the B-type mass. The tree-le
gaugino mass equal to2em3/2 enters a diagram identical t
Graph 8-6, but with one or both of theX̃Ỹ mass insertions
replaced by gaugino mass insertions. Finally, there are
diagrams involving either the non-local correction to t
gaugino propagator@Eq. ~4.14!# or a massivee scalar@Eq.
8-17
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~4.10!#. For these diagrams, as mentioned above, we
careful to keep a finite mass to deal with the infrared.

Summing the first six and either of the last two contrib
tions from Table VI, we find below-threshold scalar ma
dependence

m̃t
2{22g08

4Yt
2 (

heavy
Yi

2
m3/2

2

~4p!4~m2!e~M2!e
. ~9.34!

This establishes Eq.~9.28!, which is in turn equivalent to Eq
~9.26!, making ultraviolet insensitivity explicit.

3. Finite computation for g84

Finally, a ‘‘completely finite’’ calculation, along the line
of that performed for the (h* h)2 case, is possible for the

FIG. 9. Diagrams that contribute to theO(e) scalar mass. Graph
9-1 exists when we utilize the GMZ operator as our bare Lagra
ian. Graph 9-2 exists when we utilize the non-local operator:
vertex depicted in this graph is the non-local vertex of Eq.~4.14!.
Graph 9-3 exists in either case, and gets its supersymmetry brea
from the gaugino mass.

TABLE IV. The one-loopO(e) contributions to the scalar mas
We have factored out the quantityig08

2@1/(4p)2#Yt
2m3/2

2 (m2)2e.
Only one of Graph 9-1 or 9-2 contributes, depending on the form
the bare Lagrangian. The sum of Graph 9-1 and Graph 9-3 yiel
total contribution which agrees with Eq.~9.27!.

Graph 9-1 2e
Graph 9-2 2e
Graph 9-3 24 e
08502
re

-
s

gauge theory as well. Although at first glance it appears t
the theory is unregulated, we can play the same game tha
did in the Yukawa theory, and imagine that we are regulat
the theory through the use of the Pauli-Villars regulato
After the X and Y Pauli-Villars regulator fields have bee
integrated out, a contribution proportional toYX

2Yt
2 arises, as

shown in Eq.~9.25!. Integrating out the physicalX and Y
particles should precisely cancel this anomaly-mediated c
tribution. This is the ultraviolet insensitivity. This calculatio
is outlined in Appendix B. The result of the finite calculatio
of Graphs 8-1 through 8-8 yields the following contributio
@1/(4p)4#2m3/2

2 g84(m)Yt
2(heavyYi

2 , which precisely cancels
the corresponding term in Eq.~9.25!.

X. CONCLUSION

We have discussed how DRED can be used for calc
tions in anomaly mediation. Including operators proportion
to e is absolutely essential, and failure to do so will yie
incorrect results. For example, as we have shown, inclus
of the O(e) operators is vital for recovering ultraviolet in
sensitivity. We stress that inserting soft masses into the
grangian by hand and calculating with the resulting pie
meal Lagrangian will not give correct results. The failsa
procedure is to start with the bare Lagrangian given in S
IV and compute from there. The anomaly-mediated s
terms seamlessly emerge from these computations.

To demonstrate our DRED formalism, we have perform
a diagrammatic calculation to shed light on the anoma
mediated supersymmetry breaking scenario. In particular,
have shown explicitly how threshold corrections keep
supersymmetry-breaking parameters on anomaly-media
trajectories. This result is not a surprise, considering
proof that already exists in the spurion calculus. Howeve
is interesting to see exactly how the great multiplicity
diagrams conspire to provide the necessary contributions
cancellations. Our calculation provides an explicit diagra

-
e

ing

f
a

TABLE V. Values toO(e0) of the graphs contributing to theg08
4

correction to the scalar mass above threshold. We have omitt
common factor ofig08

4@1/(4p)4#m3/2
2 Yt

2(heavyYi
2(m2)22e.

Graph 8-6 6
Graph 8-6 Non-local 22
Graph 10-1 22

FIG. 10. e-scalar diagram that contributes to theg08
4 contribu-

tion to the scalar mass. The supersymmetry breaking arises from
e scalar mass.
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matic check of the ultraviolet insensitivity.
Finally we mention that while the calculation in Sec. IX

refers to an Abelian model, it would be relatively straightfo
ward to extend this discussion to a non-Abelian gau
theory.
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APPENDIX A: EVALUATION OF THE INTEGRALS

Several diagrams contain similar integrals. In particula
is useful to define

I ~m,n,l !5
1

~2p!8E d4p

~p22M2!m

d4k

~k22M2!n

1

~k1p!2l
,

~A1!

TABLE VI. Values to O(e0) of the graphs contributing to the
g08

4 correction to the scalar mass below threshold. We have om
a common factor ofig08

4@1/(4p)4#Yt
2(heavyYi

2m3/2
2 . The integrals

I (m,n,l ) are defined in Appendix A. The first set of entries corr

spond to diagrams whereX̃Ỹ insertions have been made in th
graphs. The multiple listings of Graph 8-6 represent the additio
contributions that arise when one or both of the supersymme

breaking vertices of am3/2MX̃Ỹ mass insertion is replaced wit
supersymmetry-breaking gaugino mass vertex. The 8-6~non-local!
and 10-1~GMZ! values enter alternately, depending on which L
grangian is used. They are not to be added simultaneously tow
the total contribution.

Graph 8-71 8-1 S3e 2526gD~M2!22e

Graph 8-1 (e scalar! 2~m2!2e~M2!2e

Graph 8-3 2I~3,1,1!2I ~2,2,1!

5S 1

e
2122g D ~M2!22e

Graph 8-6 S 2
4

e
1218g D ~M2!22e

Graph 8-6~Oneml) 28(m2)2e(M2)2e18(M2)22e

Graph 8-6~Two ml) 12(m2)2e(M2)2e26(M2)22e

Graph 8-6~Non-Local! 24(m2)2e(M2)2e12(M2)22e

Graph 10-1~GMZ! 24(m2)2e(M2)2e12(M2)22e
08502
e

-

y
-
.
a-

n

it

and it is convenient to regularize the integrals using dim
sional reduction.6

After performing the integrals,I (m,n,l ) can be expressed
entirely in terms of beta functions (B). In particular,

I ~m,n,l !5
~21!m1n1 l 11

~4p!42e~M2!n1m1 l 241e

B~2,n1m22!

G~22e!B~m,n!

3B~n1 l 221e,m1 l 221e!

3B~22 l 2e,n1m1 l 241e!. ~A2!

This expression can then be Taylor expanded to ordere, as
shown in Table VII.

We also also define the following integrals which are u
ful in the evaluation of diagrams that include fermions:

F~m,n,l ![E k•~p2k!

~p2! l

d4p

~~k2p!22M2!n

3
d4k

~k22M2!m
, ~A3!

and

G~m,n,l ![E k2~k•p!

~p2! l

d4p

~~k1p!22M2!n

3
d4k

~k22M2!m
. ~A4!

Using partial fraction decomposition, one can rewr
F(m,n,l ) andG(m,n,l ) in terms ofI (m,n,l ). In particular,
we find that

F~m,n,l !5
21

2
@ I ~m21,n,l !1I ~m,n21,l !1I ~m,n,l 21!#

2M2I ~m,n,l !, ~A5!

and

G~m,n,l !5
21

2
$I ~m21,n21,l !2I ~m22,n,l !

2I ~m21,n,l 21!1M2@ I ~m,n21,l !

2I ~m21,n,l !2I ~m,n,l 21!#%. ~A6!

APPENDIX B: FINITE CALCULATIONS

Here we undertake the ‘‘finite’’ calculation of theh4 cor-
rection in the Yukawa model and a similar calculation in t

6Both integrals must be continued to 422e dimensions, even
though in practice one integral is completely finite in the ma
insertion formalism. The reason is that theO(e) terms in the finite
integral can combine with 1/e poles from the second integral t
modify the finite pieces in the result.

d

al
y-

-
rd
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gauge theory. First consider the Yukawa theory. Using Ta
II and Table VII, one can write the threshold correction~ex-
cluding theA-term contribution! as

Sum of diagrams5 i @h* ~m!h~m!#2~Mm3/2!
2

3S ~4p!24
211

6M2
124M4I ~5,1,1!

130M2I ~4,1,1!16I ~3,1,1!D . ~B1!

TABLE VII. A list of series expansion useful in evaluation o
(h* h)2 cancellations. We neglect the log(4p) and log(M2) which
cancel along with the Eulerg ’s. There is also a common factor o
1/(4p)4.

Integral Series expansion

I (3,1,1)
1

M2 S 1

2e
2

g

2
1O~e! D

I (3,2,1)
1

M4 S21

4
1O~e! D

I (3,3,1)
1

M6 S 1

12
1O~e! D

I (4,1,1)
1

M4 S2 1

6e
2

1
121

g

6
1O~e! D

I (4,2,1)
1

M6 S191O~e! D
I (5,1,1)

1

M6 S 1

12e
1

1
182

g

12
1O~e! D

I (3,2,0)
1

M2 S 1

2e
2

g

2
1O~e! D

I (3,3,0)
1

M4 S21

4
1O~e! D

I (4,1,0)
1

M2 S2 1

6e
2

1

6
1

g

6
1O~e! D

I (5,1,0)
1

M4 S 1

12e
1

1

12
2

g

12
1O~e! D

G(3,3,1)
1

M2 S21

e
1

5

4
1g1O~e! D

F(4,1,1)
1

M2 S 2

3e
1

1

3
2

2g

3
1O~e! D

F(5,1,1)
1

M4 S21

4e
2

5

24
1

g

4
1O~e! D
08502
le

Here, we have only used the expressions in Table VII
those integrals that are finite. Since we are not working
DRED here, there is no ordere contribution to these inte-
grals.

Our remaining task is to calculate the combinati
24M4I (5,1,1)130M2I (4,1,1)16I (3,1,1) without resorting
to the regularization of any integrals. After a Wick rotatio
we can write this combination as

6E d4p d4k

~2p!8

1

~k21M2!3

1

~k2p!21M2

1

p2

3S 12
5M2

k21M2
1

4M4

~k21M2!2D . ~B2!

This, in turn, can be written as

26E d4p d4k

~2p!8

1

~k2p!21M2

1

p2

1

k2

]

]k2

~k2!3

~k21M2!4
.

~B3!

Now this integral can be done by first doing thek2 integral
by parts. The surface term vanishes, leaving

23E d4p d4k

~2p!8

2k422k2~p•k!

@~k2p!21M2#p2

1

~k21M2!4
. ~B4!

From this point, standard Feynman parameter techniques
be employed, yielding the result

24M4I ~5,1,1!130M2I ~4,1,1!16I ~3,1,1!5~4p!24
27

6M2
.

~B5!

Combining this with Eq.~B1! yields

Sum of diagrams523i @h* ~m!h~m!#2
m3/2

2

~4p!4
. ~B6!

As discussed in the text, this combines with a contribut
16i @h* (m)h(m)#2@1/(4p)4#m3/2

2 from the A-term diagram
to yield the correct threshold correction for the scalar ma

Incidentally, the calculation of the same integrals in d
mensional regularization will yield (219/6M2)(4p)24. The
difference results from the fact that thed4k becomes a
d422ek and the integration by parts picks up an extra pie

Now consider the gauge theory. Again, the game will
to keep all integrals well defined without ever continuing
422e dimensions. Since we stay in 4 dimensions, the e
nescent operators do not arise, and we need only cons
Graphs 8-1, 8-3, 8-6, and Graph 8-7. The key is comb
these graphs first, avoiding any divergent~ill-defined! inte-
grals.

Graph 8-3 can be written as
8-20
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Graph 8-35m3/2
2 M2g84~m!Yt

2 (
heavy

Yi
2 1

~4p!2

3E d4p

~2p!4p2E z~2z21! dz

@M22p2z~12z!#2
.

~B7!

By itself, this integral would be divergent at the end points
the Feynman parameter integral. So we must combine
expression with expressions for the remaining graphs be
evaluation. Graph 8-6 can be written

Graph 8-654m3/2
2 M2g84~m!Yt

2 (
heavy

Yi
2 1

~4p!2

3E d4p

~2p!4p2E z3 dz

@M22p2z~12z!#2
.

~B8!

Finally, we write the sum of Graphs 8-1 and 8-7 using t
vacuum polarization operator:

Graph 8-11Graph 8-7523ig82~m!E P~p2! d4p

~2p!4 p2
,

~B9!

whereP(p2) is the vacuum polarization operator toO(m3/2
2 )

in four dimensions. In the mass insertion formalism, it
given by the expression

P~p2![
im3/2

2 M2~YX1

2 1YX2

2 !g82~m!

~4p!2

3E ~122z!2dz

@M22p2z~12z!#2
, ~B10!

which can be seen by taking thee→0 limit in Eq. ~9.33!.
Utilizing Eqs. ~B7!, ~B8!, ~B9!, and ~B10!, we can write

the sum of diagrams as

Graph 8-118-318-618-7

524i
1

~4p!4
m3/2

2 M2g84~m!Yt
2 (

heavy
Yi

2

3E E
0

1 z~12z!2dzd4p

p2@M22p2z~12z!#2
. ~B11!

This integral is completely finite so no regulator is need
The integral yields a contribution to the scalar mass
08502
f
is
re

e

.

2
1

i
~Graph 8-118-318-618-7!

5
1

~4p!4
2m3/2

2 M2g84~m!Yt
2 (

heavy
Yi

2 . ~B12!

This precisely corrects Eq.~9.25! to be Eq.~9.26!, demon-
strating the ultraviolet insensitivity.

APPENDIX C: CALCULATION OF WAVE-FUNCTION
RENORMALIZATION IN GAUGE THEORY

To offer an alternative to direct computation, and to avo
the niceties of a supersymmetric~sans Wess-Zumino gauge!
calculation ofZt , we can use renormalization group prin
ciples to determinem̃t

2 in terms of bare couplings. Working
above threshold, the generic structure of two-loop diagra
tells us thatZt must be of the form

Zt511A
Yt

2g08
2

~4p!2~m2!e

1

e
1B

Yt
2g08

4

~4p!4~m2!2e

1

e2
. ~C1!

Then

gt[2
1

2
m

d

dm
logZt

5A
Yt

2g08
2

~4p!2~m2!e
12B

Yt
2g08

4

~4p!4~m2!2e

1

e

2A2
Yt

4g08
4

~4p!4~m2!2e

1

e
. ~C2!

The poles ingt are lower order than the poles inZt because
m derivatives hitting terms like (m2)e bring down factors of
e.

We know that in thee→0 limit, the expression forgt
must agree with the expression in terms of the renormali
coupling to one-loop order. Comparing with Eq.~9.23! fixes
A522, so that

gt522
Yt

2g08
2

~4p!2~m2!e
12B

Yt
2g08

4

~4p!4~m2!2e

1

e

24
Yt

4g08
4

~4p!4~m2!2e

1

e
. ~C3!

Now we work to fix B. We can do this by utilizing two
pieces of information: the known expression for the runn
of the gauge coupling and the finiteness ofgt . To proceed
we first write the bare coupling in terms of the renormaliz
coupling. They are equal at one loop, and at higher order
include an arbitrary parameterC to be completely general
We define the renormalized coupling as
8-21
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g82~m!1Cg84~m![g08
22B

g08
4

~4p!2~m2!e

1

e

12
Yt

2g08
4

~4p!2~m2!e

1

e
. ~C4!

This form is convenient because it allows us to rewrite thegt
of Eq. ~C3! simply in terms of renormalized couplings,

gt522
Yt

2g82~m!

~4p!2~m2!e
1C

Yt
2g84~m!

~4p!4~m2!e
. ~C5!

Now we make the critical observation thatgt is an observ-
able quantity, and so it must be finite in thee→0 limit when
expressed in terms of the renormalized coupling. In ot
words,C is finite. Now we can determineB by comparing
our definition in Eq.~C4! with the known running of the
gauge coupling constant:

g82~m!5g08
22

g08
4S Yt

21 (
heavy

Yi
2D

~4p!2~m2!e

1

e
. ~C6!

Inserting this known expression forg82(m) into Eq.~C4! and
keeping up toO(g84), we find the condition

g08
22

g08
4S Yt

21 (
heavy

Yi
2D

~4p!2~m2!e

1

e
1Cg08

4

5g08
22B

g08
4

~4p!2~m2!e

1

e
12

Yt
2g08

4

~4p!2~m2!e

1

e
. ~C7!

Equivalently,

B5S Yt
21 (

heavy
Yi

2D 12Yt
22Ce~4p!2~m2!e. ~C8!

But sinceC is finite and comes multiplied bye, it makes at
most a finiteO(g08

4) contribution togt , which is next-to-
leading order in Eq.~C2!. We have consistently been neglec
ing such terms. In short,

B5S Yt
21 (

heavy
Yi

2D 12Yt
2 . ~C9!
gh

o-

08502
r

We have determined that

gt522
Yt

2g08
2

~4p!2~m2!e
12

g08
4Yt

2S Yt
21 (

heavy
Yi

2D
~4p!4~m2!2e

1

e
,

~C10!

and differentiation yields the scalar mass in terms of b
couplings:

m̃t
25

m3/2
2

~4p!2
S 2

eYt
2g80

2

~m2!e
24

g80
4Yt

2S Yt
21 (

heavy
Yi

2D
~4p!2~m2!2e

D
~above threshold, bare couplings!. ~C11!

Below threshold,m!M , and the analysis is similar. Ingt we
make the replacementYi

2(m2)2e→Yi
2(M2)2e for the heavy

particles, because their contributions to loop integrals are
off at M. We then find

gt→22
Yt

2g08
2

~4p!2~m2!e
12

g08
4Yt

4

~4p!4~m2!2e

1

e

12

g08
4Yt

2 (
heavy

Yi
2

~4p!4~m2!e~M2!e

1

e
. ~C12!

Clearly then

m̃t
25

m3/2
2

~4p!2
S 2

eYt
2g80

2

~m2!e
24

g80
4Yt

4

~4p!2~m2!2e

22

g80
4Yt

2 (
heavy

Yi
2

~4p!2~m2!e~M2!e
D

~below threshold, bare couplings!. ~C13!
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