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The properties of the vacuum are addressed in two- and four-dimensional quark models for QCD. It is
demonstrated that two-dimensional QCtRe 't Hooft mode] possesses only one possible vacuum state—the
solution to the mass-gap equation, which provides spontaneous breaking of chiral syrt88&€S. On the
contrary, the four-dimensional theory with confinement modeled by the linear potential with a Coulomb OGE
interaction not only has a chirally noninvariant ground vacuum state, but possesses an excited vacuum replica,
which also exhibits SBCS and can be realized as a metastable intermediate state of hadronic systems. We
discuss the influence of this vacuum replica on physical observables as well as on the possibility of probing the
vacuum background fields in QCD.
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[. INTRODUCTION true for both linear and harmonic oscillator potentials. On the
contrary, an infinite set of solutions exists for the mass-gap
Potential models play an important role in studies ofequation in four dimensions, if the interquark interaction is
QCD. In spite of their obvious shortcomings, such as the losshosen to be quadratic in the interquark distance, as was
of Lorentz invariance and causality, they offer a simple andound in [4]. In the present paper we confirm this result.
intuitive tool for investigation of the chiral properties of the However, for the more realistic linear potentf&l] the situ-
theory, hadronic spectra, decays, and so on. The Hamiltoniaation in QCD, changes dramatically. We study the corre-
approach, taken together with the Bogoliubov technique fosponding mass-gap equation and find that ghee linearly
diagonalization, provides a powerful method to analyze suchising interactionjust fails to be sufficiently “binding” to
potential models. The two-dimensional 't Hooft model for hold any replicas, so that only one chirally nonsymmetric
QCD, in addition to being a genuine quantum field theory,solution to the mass-gap equation may exist in this ¢tee
constitutes an example of an exactly solvable theory withrivial chirally symmetric solution is always present in 3
an instantaneous linear potential yielded by the two-+1 dimensions, as opposed to the two-dimensional)case
dimensional gluori1]. On the contrary, for a more physical interaction with realistic
In this paper we address the question of whether QCD cawmalues for both the string tensiar, and the strong coupling
possess excited vacuum states, here called replicas, on topegnstantx of the Coulomb interaction, together with a con-
the usual chirally nonsymmetric vacuum. The problem ofstant termy, Uy, to adjust for the right chiral condensate,
different vacuum states, their coexistence and stability, is notve find one vacuum replica to exist in addition to the usual
new and has been addressed many times in many contextacuum state. We give qualitative arguments that the excited
(as an example, see, e.f2] or [3] where the “history” of  vacuum state should exist in real QCD and discuss its pos-
the vacuum is briefly outlingdHere we address the theoret- sible influence on physical observables.
ical possibility of the existence of replicas in the framework  This paper is organized as follows. In the second section
of quark QCD models which have otherwise been successfulie consider the two-dimensional 't Hooft model and briefly
in describing hadronic phenomenology, and will argue that ifreview the formalism, going through the concepts of the
one uses these types of model—which indeed can be tracédamiltonian approach, the Bogoliubov transformation from
back to the Gaussian approximation for the cumulant exparbare to dressed quarks, and the mass-gap equation for the
sion of QCDO—for their phenomenological success then onechiral angle. We argue that the mass-gap equation for the
must also consider the quite possible existence of these refi-Hooft model has only one solution, found numerically in
licas. They come in the same package. Then it should nd6], which defines the chirally noninvariant phase of the
come as a surprise that the number of spatial dimensionteory, whereas the phase with unbroken chiral symmetry
together with the strength and form of the interquark potenpossesses an infinite energy and, hence, is unphysical. These
tial should play a role of paramount importance in the exis+esults are found to remain for a similar, but technically sim-
tence of such replicas. We start from two-dimensional QCDpler, situation when using the harmonic oscillator instead of
and demonstrate that, for two dimensions, only one chirallythe linear potential. In the third section we deal with the case
nonsymmetric statéthe vacuum may exist. Therefore in of four-dimensional QCD and study the mass-gap equation
two dimensions there are no replicas. This statement holdsumerically, for both harmonic and linear confining quark
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kernels. We find that an enumerable infinite set of replicas Following the standard BCS technique, we introduce the
always exists in the case of the quadratic potential, whereadressed quark fiefd 7]

the linear potential appears to be just not quite “binding” g
enough, so that it has to be added to either a Coulomb or a _ P inx T, B
constant potentialor to a combination of bophto support UaltX)= f Zep [ba(p.t)u(p) +do(=p.tiv(=p)],
the existence of an excited vacuum state. It turns out that for (5)
a realistic set of paramete{sy,as,U} simultaneously de- _ _ _

scribing hadronic spectrandyielding a quark condensate in b.(p)[0)=d.(—p)[0)=0, bl(p)[0)=|q),

the ballpark of(qq)=—(250 MeV)’ it is impossibleto

avoid the existence of one replica. The fourth section is ded p)|(~)>= @, (6)
voted to a discussion of the hadronic processes in the pres-
ence of the excited vacuum. We give arguments on how the {b.(p,H)bj(a,t)}
excited vacuum replica can affect the physical observables ={d,(—p, t)d (—q,t)}
and serve as a probe of the QCD vacuum structure. Our
conclusions and the outlook are the subject of the fifth sec- =2m8(P—0)dyp, (7)
tion. Throughout this paper we consider the chiral limit, i.e., L 0
we always put the mass of the quanlequal to zero from the B B
very beginning. up)=T(P)| 5. o(=P=TP)| |, (8)
IIl. TWO-DIMENSIONAL QCD (‘T HOOFT MODEL ) T(py=e om2 T g T
1 2 2 1

A. Introduction to the model

The two-dimensional 't Hooft model, suggested in 1974  6(—p)=—06(p),
[1] and widely discussed in the literature as a toy model for

QCD, is described by the Lagrangian density where the Bogoliubov-Valatin angkis subject to the mass-

gap equation. In the new basis the Hamilton{dntakes the
form

L(x>=—ZFiV( X)FL,(x)+a(x)iDg(x), e LNAE 4 Hoe o H ©
- CCy . 2- . 4

1) where LN¢E, stands for the vacuum energy (being the
one-dimensional volumeand the second and third terms on
the right-hand sidéRHS) are quadratic and quartic in the
guark(antiquark creation(annihilatior) operators. In the re-

5 mainder of this paper we shall concentrate on the energy

9°Nc @) densityé&, .

D=(d,—igA%t?y,,

and the largeNc limit implies that

B. The vacuum energy and chiral symmetry breaking

We fix the axial gauge imposing the conditiaky(xo,x) The vacuum energiNcE, can be calculated as an aver-
=0 [7,8], so that the vector-field propagator takes the formage of the time ordered Hamiltoniaf) over the BCS
vacuum state,

i
D (X0~ Yo.X—Y) = = 5 5°°0,,08,0/X Y 8(X0~ Yo, Eyac= (0| TH(b,b',d,d")[0)
(3) =LNcEac= LNC(E™8H AL L0, (10)
and integrate out gluonic degrees of freedom to arrive at thevhere we have introduced the excess of the vacuum energy
Hamiltonian density over the free-theory energy densﬁ,’fce . We have
T _[9p 5
= | dxqf(x) —I'y —q(x) Avac= | 5 -T1 v’PA-(p)
- —f dXJ dy o (x) q(X)qT(y) 0|(y)ﬂ + L dk ——— A (KA _(p) | —Else
477_ (p k) + vac?
4

2We put tilde in the notation of the BCS vacuufB), to distin-
We consider the weak limit of the theorg=>g~ 1/\/N¢, so that  guish it from the trivial one|0), annihilated by the bare operators
the limit Nc—o° is to be taken prior tan—0 [9]. by, andd,.
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1+ 40 instead of Eq(14), with C5 proportional to the logarithm of
A(P)=T(P)— T(p), (11)  the cutoff® The function(17) always has a minimum at
. [ C,
or, in terms of the angl®, Ag= yc—ak 0, (19
1
AE.d 0]=— J' @[psinﬂ(p)—lpl] which corresponds to a nontrivial solution of the mass-gap
2m equation, found numerically ifi6]. From the form of the

function (17) one can see the logarithmic growth of the en-
_r dp dk cog 6(p)— 6(K) 12 ergy when approaching the soluti¢b6), which corresponds
4] (p—k) to Ag=0." Therefore two conclusions can be deduced. First,
there is no need to demar¥, .. to be negative as the non-

where for the free massless theory we substityted and ~ (1ivial vacuum energy defined by E¢L8) is always com-

0 = (7/2)sanb). The excesa £ . [ 61 is the main ob- pared with the infinite energy of the chirally symmetric
jérgte(g? Ol(,I:’T st)ucgy.(o'lzhe true anglé Vsaﬁodld minimize the phase. Second, no phase transition of chiral symmetry resto-

vacuum energy, that is, it is a solution to the mass-gap equ gt_ion i‘cf possibl_e i_n the 't HO.Oﬁ _model, its phase diagram
tion eing trivial. A similar conclusion is made i10].

The chiral condensa@q) is given by

SAEwd 01 _

56(p) a3

_ N 3
<qO|>=—7CfO dpcosd(p). (19

First, we perform a simple qualitative analysis of EtR).
Let 6(p) be the solution of Eq(13) corresponding to the
minimum of A&,,J #]. Then for 8(p/A), with an arbitrary

parameteA# 1, AE,.J 6/A]>AE,.] 6]. Naive dimensional _<Hq>:o, but with aninfinite energy. Thus we conclude that
analysis shows tha &, scales withA as in the 't Hooft model there can be only one phase with spon-

taneously broken chiral symmetry. Note that there is no con-
1 tradiction with the Coleman theorefi1], which precludes
A&, == C1A2— yC,, (14)  spontaneous breaking of symmetries in two-dimensional
2 theories, if one considers the infiniké: limit [9,12.

The contribution of the infrared logarithmic divergence in
with C, , being positive constants. Then the stable solution i€£g. (17) has yet another consequence for the 't Hooft
provided by minimizing the energ§l4) with respect toA, model—namely, that the nonvanishing chiral condensate and
that is, byA,=0, which corresponds either to the free mass-spontaneous chiral symmetry breaking already happen at the
less theory BCS level, whereas going beyond the BCS approximation

just provides corrections suppressed by powerdlgf In-
- deed, staying at the BCS level, one diagonalizes the theory in
Oired P) = Esgn( P), EiedP)=|pl, (150  the one-particle sector, introducing a nontrivial vacuum, full

of correlatedqq pairs. It was demonstrated [18] that one
: . . ) can go beyond the BCS level in the 't Hooft model by per-
with Ered(p) being the free-quark dispersive law, or to the f5ming a second Bogoliubov-like transformation and diago-
analytical solution of the mass-gap equation found . ;)izing the theory in the mesonic sector, that is, in the sector
which reads of the quark-antiquark bound states. The true vacuum of the
theory|Q) is connected to the BCS vacuy6) via a unitary

7T Y operator. One should use the true vacuum state for calcula-
0(p)= =S , E(p)=|p|-P—, 16 ’ i . .
(P) 2 grip) (P)=Ip| Ip| (16) tions of all matrix elements of operators, like the chiral con-

Thus the nontrivial solution, found if6], provides a nonva-
nishing chiral condensate, whereas the solutib® gives

where the symboP stands for the principal-value prescrip-
tion. Both solutions yield unbroken chiral symmetry. Thus 3Notice that there is no way to get rid of the logarithmic diver-
one would arrive at the erroneous conclusion that no chirallgence inA&,,. defined by Eq(12). If the infrared behavior of the
nonsymmetric solution of the mass-gap equation may exisihtegrand is improved, for example, by changing[é6s)— (k)] to
were it not for the fact that the vacuum eneidy) is loga- cos{&_(p)—_@(k)_]—l (principal-value prescriptionthen an ultraviolet _
rithmically infrared divergent and the correct form of the Iogarlthmlc.dlvergenc.e appears. Thus one cannot remove both di-
relation (14) should be vergences in Eq(.1_2) S|_multam_eously. _ _
“Since the logarithmically divergent term in E€L7) is propor-
1 tional to the coupling constant, then the theory still possesses the
__ 2_ free limit (15) (which also corresponds #,=0) wheny tends to
Abvac= 2 CIAT=¥Caln At yCs @7 zero and the logarithmic term disappears.
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densate, but as shown [iB] the difference between the two dimensional parameter, the coupling constris present in

averages is of next-to-leading orderhi : the theory from the very beginning.
o . Formula(17) can be given a more physically / transparent
(Q[qq|Q)=(0[qq[0) + O(yN¢)~O(N¢) +O(VNc). form if one notices that the chiral condensate(qq) from

(200  Eq. (19 scales linearly withA, > —AX, so that it can be

It is instructive to compare the 't Hooft model with other used instead ok,

two-dimensional models, e.g., the Gross-Neveu ph&l. 2
The latter is given by the interaction Lagrangian A& Ci[g 2—0) —In S, +9C3, (25
1
Lim=§g(¢i )%, g>0, (21)  whereX stands for the actual value of the chiral condensate.
where the flavor index runs from 1 toN>1, whereas\ C. Harmonic-oscillator-type interaction
=g°?N remains finite. The positive sign of the constant In this subsection we complete the study of two-

chosen in Eq(21) is known to lead to condensation in the dimensional Hamiltonians using a harmonic oscillator kernel
singlet ¢4 channel[13], whereas the negative sign leads toin Eq. (4), instead of the linear kernel,

chargedysy and sy condensategl4]. It was shown that the
chiral symmetry is also broken in the Gross-Neveu model,
but in order to have a nontrivial chiral condensate one has t
go beyond the BCS level, summing fermionic bubbles.
Bosonization of the model, in terms of the compound state
o=gy, appears to be the most convenient formalism for

doing this and the resulting renormalized “potential” reads (p—k)?
(220 Because of the presence of the delta functiorkiim the

o2
— -3

0 interaction kernel, all integrals can be considerably simpli-
with o, being the renormalization point, which brings the fied. For example, the excess of the vacuum energy

mass scale into the theory. Only the first term in E2R) AZ,.d 6], similar to Eq.(12), reads now
appears at the BCS level, leading to the trivial solution

yIx—y|—K§(x—y)?, (26)

8r, in momentum space,

— K38 (p—k), (27)

with K, being the new constant with the dimension of mass.
In

V(o,o ):—0'2+L0'2
T2 4

. 3
omin=0. On the other hand, the full potenti@?2) also pro- ~ B dp ) Ko 5
vides a nontrivial solution, A&ad 01=— | 51 [psind(p)—[p|I- —~L6"(P)]*.
(28)
Tmin™= = 00 exp{l— X)' (23 The integral on the RHS in Ed28) is convergent and
scales as

From Eg.(22) one can see that the logarithmic term,
which scales as IA under the above mentioned transforma- ~ ~ 5 3C2
tion, is multiplied byo?~ AZ which cancels the logarithmic Avad 0]=CoA™+ Ko (29
growth of the potential at the origin. Thus the two phases,
chirally symmetric and nonsymmetric, coexist in the model,ynderg(p)— 6(p/A), so that qualitatively the same conclu-
whereas the latter, with nonvanishiig,;,, is energetically  sjon holds true, that there exists only one phase of the theory

preferable. with spontaneously broken chiral symmetry and there is no
The chiral condensate of the Gross-Neveu model scales nbroken phase. As for Eq25), we can rewrite Eq(29)

_ using the chiral condensate insteadfof
(o)~ (guh)~gN~N\ YN~ N (24

2

for largeN. Relation(24) is the analogue of Eq20) with a AZ =C! E E +
. . . . . vac 1 2 =

vanishing leading term of ord@(N), which is in agreement pI
with the statement made above that the chiral condensate in
the Gross-Neveu model vanishes at the BCS level. One cagjth the minimum given bys =3 ..
arrive at the same conclusion from simple dimensional con-
siderations. Indeed, the Gross-Neveu model describes a
scale-invariant renormalizable theory, so that there is no pa-
rameter with the dimension of mass in the bare Lagrangian In the previous subsections we found that there must be
and one has to deal with the mechanism of the dimensionaiontrivial functions (p) providing the minimum of the
transmutation to get a scale. In contrast, the 't Hooft La-vacuum energie$l2) and (28). As was mentioned above,
grangian(1) defines a super-renormalizable theory and thehese functions are solutions to the mass-gap equations

%
s

l (30

D. Numerical solutions for the chiral angle
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FIG. 1. The ground-state solutions of the two-dimensional mass-gap equé@nthat correspond to the linedleft plot) and the
oscillator (right plot) potentials, respectively. The momentynis given in units ofy/y for the left plot and in units oK, for the right one.

SAE,. ] 6] 5sza({ 0] j[i(?ns (?f a mass-g-ap equation gxist. Indeed, a sesond solution,
50p) O sep) =0, (31 if it exists, would just lead to different constar@g(C) and a
different value of the chiral condensatg (), since this
which take the following forms: solution is expected to have a different profile and it cannot
be obtained from the ground-state solution by dilatations.
y dk As the first step, we reproduce the solution of the first
p cosé(p)= Ef 2Sir[ 0(p)—6(k)], equation in(32) found in[6] and construct a similar solution
(p—k) for the other(see Fig. 1 Notice that we define the chiral

angle 6(p) from — /2 to /2 with the boundary conditions
0, 0(p=0)=0, 8(p—>)— /2 [as was mentioned before,

p cosé(p)= - 2 ' (p) (32 6(—p)=—8(p)]. It turns out that under such conditions no

excited solutions of the mass-gap equati@® exist. Only

for the linear and harmonic oscillator potentials, respectivelyif both requirements are relaxed can one find the solutions
Now we turn to numerical studies of these two equationsdepicted in Fig. 2, which start at 0 fgg=0 and tend to

Note that the qualitative analysis performed in the previousr/2+2mn, n=1, for p—oo. From Fig. 1 one can easily see

subsection cannot answer the question of how many soluhat the solutions for the ground state in both types of con-

3

i 16
. 0(p) Lo(p)
B 14 |
i 12 |-
6 |- B
10 |-
8 |-
4 - B
= 6_
2| 4
L 2 -
o L | L | 'l | 1 | 1 | 1 o " 1 | 1 | 1 | L | 1 | 1
1] 2 4 6 8 10 o 2 4 6 8 10
P P

FIG. 2. The unphysical excited solutions to the mass-gap equé®rioscillator confinement The momentunp is given in units ofK,.
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fining potential have a very similar shape, so it would be We fix the Fock-Schwinger gaugex+ z,),A%(x)=0
natural to expect similar excited solutions to exist for thewith an arbitrary fixed poing, [17] that allows us to connect
linear potential as well. However, such solutions lead tothe gluonic field with the field-strength tensﬁﬁy(x)’
maximal condensation of thegq pairs not only ap=0, but

for some finitep’s, where co®=1, which is unphysical, so
we disregard these solutions.

Thus we conclude that only the ground-state solution may
exist for the mass-gap equation in the 't Hooft model, defin-3nq finally, to deal with the set of gauge-invariant cumulants
ing the only possible phase of the theory with spontaneousl{/lg],
broken chiral symmetry and the chiral condensate

1
AZ(X)=Lada(x—zo),,F‘;‘M(a(x—zO)+zo), (37

Fo  (X1,20)F2 (X2,20))),
20:_0'410\IC\/;1 (33) << Mlyl(xl ZO) Msz(Xz ZO)>>

a a a
which coincides with the value found in a sequence of papers <<FM11V1(X1'ZO)FMZZVZ(XZ’ZO)FM:;%(X?"ZO)>>' T
[6,8,9. A similar result for the theory with the oscillator-type
interaction reads Fiy(x,Zo)E‘b(Zo:X)FZV(X)‘D(X,ZO)'
(38)
S 0= —0.40NcKo, 34 _ ,
0 co 34 with ®(x,y) being the standard parallel transporter from the
N . pointx to the pointy. Now we apply a set of approximations.
Wt:"Ch IS \I/ery close to Eq(r?3) if the scalesﬁ andK, are On one hand, Gaussian dominance is used, which means
chosen close to one another. that we keep only the lowest-order correlat¢fFF)),

Notice that in two-dimensional QCD the energy of the yhareas all others are considered suppre§s8H Such an

vacuum is an apparently meaningless quantity by itself, aly ) vimation can be justified, first, by Casimir scaling, sug-
though it leads to the meaningful mass-gap equation, as di

jested long agpl9] and recently confirmed by lattice calcu-
cussed above. Indeed, the expresdib?) contains a diver- % g agfL9] y Y

i lations [20]. Casimir scaling is exact in the Gaussian ap-
gent integral, so that the result depends on the cutoff. On thﬁroximation On the other hand. the minimal-area law
other hand, in view .Of th_e fac_t that the physical Spluuon_Ofasymptotic for an isolated Wilson loop can be saturated by
the mass-gap equations is unique, one cannot define a diff

¢ . h he di d he Gaussian correlator. Finally, numerical calculations of
ence of two energies, where the divergent term would cancey, yrgnjc observables within this method show good agree-
Now, when the numerical methods are tuned and tested

. . : %hent with experimental and lattice data. The details of the
the simple example of two-dimensional QCD, we turn to themethod can be found, e.g., in the revig2d] and references
main subject of the present paper—namely, studies of thﬂwerein

vacuum replicas in QCP As far as the form of the nonperturbative part of the bilo-
cal correlator is concerned, we choose it in the form

IIl. FOUR-DIMENSIONAL QCD

1 1
A. Instantaneous interaction and forms of the potential: <<AZ(X)AB(Y)>>= f a daf BdB(X—20)\(X—2Z9),
The mass-gap equation 0 0

In this subsection we consider the case of QCihd x((FiM(a(x—zo)Jrzo)
study the problem of existence of the vacuum replicas for b
various types of gluonic correlator. In contrast to QClre X F o, (B(Y—20)+20)))
put the number of colors equal to three from the very begin-

ning. = 6%°g,00,0Vo([X—Y|) 8(Xo—Yo), (39)

Following the standard procedure, we start fromthe QCD = . .
partition function and perform its cluster expansion, so thathich implies that the gluonic correlation length (also
after integrating out the gluonic field, the theory containsP!@ying the role of the QCD string radius small enough

effective four-quark, six-quark, and so on, vertices with thethat the stringlike interaction can be approximated by the

form factors given by the corresponding correlators of theinstantaneous orfeFor the confining potentiaV/o(|x|), we

gluonic fields, consider two cases, the quadratic and linear forms
(AR x)AZ (X)), (AL XDAR (XA (X3)), - - Vo(|X)) =K3|x|2, (40)
(35

. . _ o Vo([x[)=aolx]. (41)
where the irreducible averagé: - -)), is defined in the stan-
dard way,

SLattice calculation$22] give the valueT y=0.2-0.3 fm which is
(1))=(1), ((12))=(12)—(1)(2), ... . (36) small enough at the hadronic scale.
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where the indiceg andf indicate the color and flavor, re-
spectively; the anglep(k) is connected to the chiral one
¢(Kk) via the simple relation

The Lorentz structure of confinement is taken to)Re yq.

In the linear case we shall add ¥,(|x|) a Coulomb term
and a constant,

() =arctan +24(p) = (@)

m=

2 ,
42) . »(p)

and defines the above mentioned unitary operggor
with the Lorentz structure being, Xy, . Notice that be-

cause the color structure of the interaction #2x \?/2, the . . d}r(ﬁ)
constant term in the potentig2) yields a force between Clip=(b](p),b](p))cM - (48)
singlets that is proportional to the resonating group method di(p) cf
normalization overlap of these singlets. This is a simple ex-
ample of the Wigner-Eckart theorem. The Coulomb potential m . =(— \/6)2 1 1 0= (112 12 1
is necessary for this class of model to possess a heavy-quark 01057 S \m o 0 P1im o, 0, ©
limit compatible with the known spectroscopy.
Thus our model is defined by the parameter set R %
{o¢,as,U}. We shall choose the usual literature values for _ ~Pxtipy P2 (49)
two of them, 0p=0.135 GeV, a=0.3, and adjusyU to 2 EU
Pz Px 1Py

obtain a quark condensafgq)=— (250 MeV)>. Next we
turn to the study of the vacuum structure following the same The operators annihilating the new vacunlfhr) are
steps used in QCP

First, we introduce the dressed quark fild,23

J

b(p)=Sb(p)Sh,  d(—p)=Sd(—p)Sj. (50
The interested reader can find the details of the formalism in
[16].

The next step consists of arranging the normal ordering of
the QCD, Hamiltonian,

3

D P b(p,t)u,(p)

Qu(t.X)= 2 PEE

=1l

+dl(—p.Dv(~p)], (43
with « and¢ being the quark color and the projection of the H:J d3X[Ho(x) +HP(x) + H{P(x)], (51)
spin, respectively, and the amplitudesindv defined as
: : Ho(x)=a"(x)(—ia-V)a(x), (52
- 1+sing l-sing> . -
u(p): \/ 2 +\/ 2 pa UO(p)! N 1 —))\a N
HP(x) =5 f d’ q'(x)5a(x)
9)_[ \/1+sin<p \/1—sin<p: . ) \a
VRTINS 7 PPy XIVo(X =)+ V(X =y 1a"(5) - ay),
(44)
(53
Here the chiral angle is used instead of the QGD6. They L A
are simply related b - - SN - -
Py Y HI) == 5 [ Py a (R aV(R-T)
o
e(p)=+—0(p). (49 .
2 xq'(y)a5a(y). (54

Itis convenient to define the new angjefrom — /2 to 7r/2 In the new basis, we obtain an expression similar to Eq.

with the boundary conditiong(p=0)=7/2 ande(p—>)  (9) and we again concentrate on the minimization of the

—0. ) ) ) ) vacuum energy density—namely, on the mass-gap equation,
If the chiral anglee(p) is not identically zero, then the \yhich takes the form

true vacuum state is populated by quark-antiquark pairs with

3P, coupling, A(p)cose(p) —B(p)sing(p)=0,
- 1+cos2p(p) sin24(p) 1 d3k I
O)=11 dp| =~ +=—5—Cly A(p)—chJW[vom—k)
1-c0s26(p) 4, |, _ +4Vi(p—K)Jsing(k),
+ fccfp) 10)=540), (46) : 55
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FIG. 3. The first two solutions of Eq57) for the chiral anglep(p) found with the Runge-Kutta method. The momentpns given in
units of K.

3 C. Vacuum replica for the linear potential
B(p)=p-+ 1C f d°k (
p p 2 F (277)3

X[Vo(p—K)+2V,(p—k)]cose(k),

T
L

) Finally, we turn to the main goal of the present paper—
namely, whether the linear confining potential supports the
existence of replicas.

In contrast to the case of the oscillator potential, the mass-

. - _ ap equation for the linear confinement, given b , IS
whereCg= 3 is the Casimir operator in the fundamental rep- %tggrglz g yeq

resentation.

Thus, equipped with the general form of the mass-gap Cray d3k
equation, we are in a position to perform the numerical psine(p)= zf — 4[s,in<,c>(k)005q>(p)
search for the excited vacua for the oscillator and linear po- 2 (P—k)
tentials. A a
—p-ksing(p)cose(k)], (58)
B. Solutions of the mass-gap equation for the or, equivalently,

oscillator-type interaction
4

. . . g >
In this subsection we solve numerically the mass-gap pSin‘P(p):EJ dk kZL 5 kz)QSi”‘P(k)COS‘P(p)
0 pPT—

equation(55) for the oscillator-type confining potenti&d0)

with V; put to zero. Similarly to the two-dimensional case,

the Fourier transform of the potenti&l0) is the second de- _
rivative of a delta function,

2k(k*+p%) 1 |p+k|
——In
p(p2—k2)2 p2 |P—k|

2

o J o
vo(p>=—<2w>3K8752 5C)(p), (56) X cosg(k)sine(p) |, (59)

whereo = Cgoy is the string tension in the fundamental rep-

resentation, and the angular variables are integrated out. One

can check that the integral on the RHS of Eg9) is con-

2, 2p 1 vergent. Equatior{59) possesses only one nontrivial eigen-

A ca e 2SN 2¢, (57 state: the ground-state vacuum. Everything happens as if the
Fo P confining linearly rising potential just fails to be “binding”

which leads to the mass-gap equation in differential form,

) i i enough to produce an excited vacuum replica. In addition,
and we solve it numerically using the Runge-Kutta methodne chiral condensate appears strongly underestimated in the
In Fig. 3 we show the ground-state and the first excited Sogase of the pure linear confining potenfigl]. Thus we sup-
lutions of Eq.(57). ply it with the extra interaction given by Edq42), which

Thus we conclude that at least one replica exists for thgeads, in momentum space,
case of a quadratic confining potential. Moreover, using the

same numerical technique, one can build the third, fourth, - Amas 301 S3) 2

and so on, excited solutions, as was founddih In fact, the Vi(p)= - 52 +(2m)*U (), (60)
harmonic oscillator supports an infinite tower of such repli-

cas. and modify the mass-gap equation accordingly:
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_ —ijdkkz 4 . 2(k*+p?) 1 | p+k| Os
psine(p)=7— . (pz_—kz)zsm‘p( )cose(p) — K — K22 k2 n p—K cose(k)sine(p)
Crag (* 4 |p+k| p?+k? |p+kl 2 _
_ yp= J;) dkk2|:p—k|nHSIn(P(k)COS<p(p)+ Wlnm—p—k cose(k)sine(p)
1 .
+ ZCFU sin2¢(p). (61

In contrast to Eq(59), the mass-gap equati@6l) is not  other words the potential of E§62) naturally possesses the
divergence-free because of the Coulomb part, proportional t€oulomb limit for very heavy current quark masses.
as. If we considered the case of a nonzero quark nmss In the opposite limit,m=0, the effective mass appears
then the given divergence would be only logarithmic; how-entirely due to the chiral symmetry breaking,
ever, for Eq(61) we havem=0 and the divergence becomes
linear. We regularize it by using a modified potendg|, Meg=3 (0,A) = A X const, (66)

— é +(2m)%U 5(3)(5), (620  where the last equality holds true provided we chodse
p>+A?  p? ~ \Joq, the only scale of the problem. Thus &ither case
me=A, and it is remarkable that such a potential should
with a cutoff A. Notice that the mass-gap equation for theequa”y address both hea\/y_ and |ight_quark sectors.
single Coulomb potential does not contain any scale Therefore we adopt the following strategy. We choose the
would be given by the quark massbeyond the chiral limit  standard values of the string tensien,=0.135 GeV, and
which appears only after the regularization and is given bythe strong coupling constant,;=0.3. As discussed above,
A. Then all quantities with the dimension of mass are diye putA to be of the order of/a, and solve the resulting

rectly proportional toA. mass-gap equation numerically for the ground state, fitting

Now let us assume, for a moment, the general case of ajhe only free parametey in such a way as to have the chiral
arbitrary nonvanishing current quark mass. Then the quarksgndensate

acquire an effective mass.;, which can be written as a
sum of two components,

_ 3 (> )
Meg=M+3(M,A), (63) <QQ>:_;L dp p*sine(p) (67)

Vi(p)=4mas

=

wherem and %(m,A) are the current quark mass and the ) 3 nr
quark self-energy due to the contribution of the chiral con-2round its standard value, abouf(250 MeV)”. With the

densate, respectively. The latter is obviouslydependent. Solution found for the chiral angle(p), we evaluate the
To evaluatem; one can use the relations effective quark mass.4 and check if it has a value of order

200-300 MeV, that is, a value of the same order of magni-
m(p) D tude as the regulatork_, and also close to the value us_ually
sing(p)= —=——, co0sp(p)= ————, adopted for the constituent quark mass. For self-consistency
p*+m?(p) Vp*+m*(p) we also need to ensure that the fitting parametappears to
(64) be of the order of the interaction scale and hence does not
o ] ) ) bring a new scale into the problem. In Table I, as well as the
S|m|I§\r to the free-case relatlon_s, but wiii(p) belng the  known values ofr, and g, we give the best set of param-
solution to the mass-gap equation. Now the effective masgiersy andA consistent with the standard value of the chiral
Mg can be associated witm(p~0). Let us consider the qndensate.
heavy-quark limitm— <, first. A large quark current mass is  Now, when all parameters of the model are totally fixed,
known to destroy the ch_lral condensate_. As a result, the selfye perform our search for the excited vacuum replica which,
energy part of the relatiof63) must vanish, so that the ef- jyqeed, appears to exist, and we give its profile, together with
fective mass is basically given by the current mass,
TABLE |. Parameters of the model fixed from the fit for the

Met = M. (65 ground vacuum state.

m-— oo

Py 3
In particular,% (m,A)/m — 0. That s, for largem, we have 70 (GeV) a5 U (MeV) A (MeV) myys (MeV) (qq) (MeV?)

to go up inA for the system to become more and more (0135 0.3 220 250 230 — (2500
Coulombic, whereas the chiral condensate goes to zero. la
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FIG. 4. The ground-statéeft plot) and the first excitedright plot) solution of Eq.(61) for the set of parameters given in Table |. The
momentump is given in units ofy/oy.

the ground-state one, in Fig. 4. We tried many other combicase, this solution does not lead to difficulties with the
nations ofU andA and, whatever values we used, we alwaysvacuum energy Then for the two nontrivial solutions de-
found this replica to persist. picted in Fig. 4 one has

The chiral condensate for the excited vacuum state,

AgIoUN _ (128 MeV)* (71)
(9q)=(126 MeV)®, (68  and
is smaller in the absolute value and has a “wrong” sign AEECL _ (36 MeV)*. (72

compared to the ground-state one, given in Table I. For _ ) )
massless quarks this sign can be easily reversed by thE'€ negative sign ensures that they are both energetically
changeg— — ¢ everywhere, which also satisfies the mass-Preferable to the trivial vacuum. .

gap equation and does not affect the vacuum energy. How- It is instructive to rewn'te Eqg71),(72) in the form of the
ever, a nonvanishing quark mass breaks this symmetry, sinc€cuum energy per fermi cubed:

an extra termmcose(p) appears in the mass-gap equation ground_ __
(58). It follows immediately from the Gell-Mann-Oakes- Aac 34.7 Mevif?, 73
Renner relation that the sign of the condensate given in Eq. excited_
(68) leads to a pion with an imaginary mass, that is, to the AEGE"=-02 MeV/frr. 749

tachyon. However, the latter does not lead to a disaster sinGgoyy, if the vacuum is locally excited, then the extra energy
the excited vacuum state is, indeed, unstable and it tends {Qqred in the volumép=1 fm® is

decay to the ground state.
Now we calculate the density of the vacuum energy de- AEO:(Ag%gited_Agg;‘;unfwo%34.5 MeV. (75
fined as
We have checked the resyit5) against slight variations of
the parameters of the model and found it to be very stable,

d3
A= — gf 2 F;3{A(p)sin o(p)+[B(p)+p]lcose(p)} changing only by several percent.
T

_5tfiVia| ' (69) IV. PHYSICAL PROCESSES IN THE PRESENCE OF THE
vae EXCITED VACUUM REPLICA
whereA(p) andB(p) are given in Eq(55) and the degen- | this section we show how the excited vacuum might be
eracy factorg counts the number of independent quark de-«seen” in hadronic processes.
grees of freedom, As follows from Eq.(75), the energy stored in the bubble
with the excited vacuum inside is proportional to its volume.
g=(2s+1)NcNy, (700 At the moment we can give only hand-waving qualitative

arguments concerning the most probable value of this vol-
with s=3 being the quark spin; the number of col®s is  ume. Indeed, the energy scale of the interaction we have in
put to three, and the number of light flavads is two. Thus  QCD is about 300 MeV, corresponding to distances about 0.5
we find thatg=12. The trivial solution of the mass-gap fm, which can be expanded up to the Compton length of the
equation iseyivia(P) =0 (in contrast to the two-dimensional pion, about 1.5 fm or so—the standard hadronic scale. With
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a bubble of such a radius one can achieve an energy aroumlius of the excited-vacuum bubble, which is of the order of
300 MeV, which is sufficient to produce diwave pair of  the interaction radius, that is, of order about 0.5 fm.

pions when the excited vacuum decays back to the ground- Notice that, if the BCS vacuum structure is ignored and
state one. This value looks quite natural since all parametetge trivial vacuum|0) is used instead of0) and|1) in Eq.

of the model, like the interaption scalér, aqd the one for_ 77) (this corresponds to the chiral anglesand ¢ being
spontaneous breaking of chiral symmetry, given by the chirajjenically put to zerp then the latter expression coincides

condensate or byne; (see Table)l have the same order of \ith the standard perturbative vacuum polarization operator
magnitude. As was discussed above, all three scales sho pplied by an external energy source. In order to perform

always appear self-consistent, regardiess of the details of they|cjations taking into account the nontrivial functiops
model used for numerical calculations. In the present Paper =~ e should exor I ntities in terms of th "
we give just an example of such a model, which we fing2Nd®, One should express all quantities in terms of the qua

rather realistic creation and annihilation operators inherent to one and the

It is instructive to see how the excited vacuum enters th .inmse ;’gf:u?&] alzdrgl];tnn apepl()a/r t?ﬁnSt?g?ﬁ;dtrW';:f ;(():ntr;c-
amplitudes of the hadronic processes. Usually one is tgons: xampie, Ing everything ial-vacuu

evaluate a matrix element of the form operators, one can find

(0,hadron§?|0, hadrons) (76)

[0)=S0/0), [1)=%,/0) (81)
with O being a field operator. Note that this is the true ] ) o )
vacuum of the theony0), to enter the matrix element, and with the operatoiS, defined in Eq.(46) agd a similar defi-
we put it explicitly in Eq.(76). If the excited vacuum comes hition of S; with the obvious change— ¢. Then the cor-
into the game, then it can appear either in the bra or in théelator (78) reads
ket vector, or in both. We use the notatifif for it. Let us
illustrate this statement by the correlator of two quark elec-

i ~ ~ (01S5TI(x)3,(y)S,|0)
tromagnetic currents, <0|TJM(X)JV(Y)|1>: “ . . (82
(055 S1/0)
(5|TJM(X)JV(y)|?L> where we used the correct normalization which removes the
B By P . disconnected diagrams. Note that in E8R) the currents are
=(0[Te™J,(0)e”"*e™J,(0)e”"[1), (77 also expected to be expressed in terms of the trivial-vacuum

. quark creation/annihilation operators, so that, starting from
whereP is the operator of the total momentum. Now, disen-the quark field(43), one must use transformatiof0) (and
tangling theT product and making the external operatorssimilar ones for the excited vacuum replida have every-
e“P*ande™'PY act on the vacuum states to the left or to thething self-consistent.
right, one can arrive at the expression An important comment is in order here. In the above

analysis we did not consider the mechanism of the vacuum

excitation from the ground state to the replica. Indeed, to

<6|TJM(X)J,,(y)|?L> excite the vacuum inside some region in space, one should

, _ _ have a trigger—a localized operator with the vacuum quan-

| e7AP013,(x=y)3,(0)[1),  X0>Yo 78 tum numbers. Such an operator could be constructed out of
e‘iAPX(f)UM(y—x)J,,(O)ﬁ), Yoo, the background gluonic fieldsee Eq(38) abovd—the only

bricks at our disposal. If this is done, the outgoing photons or

whereAP is the difference of the four-momenta of the two PIons, produced as a result of the excited vacuum decay have
vacua, which, actually, has only the zeroth component—théo carry information about the vacuum—gluonic-field corre-

difference of the vacuum energieSE. If the Fourier trans- lations and, if measured experimentally, offer the possibility
form is now applied to Eq(78) of direct probes of the QCD vacuum structure.

V. CONCLUSIONS AND OUTLOOK

P,W(D,Q)ZJ' d*x dy eP*e™'Y(0|TJ,(x)J,(y)[1), In the present paper we studied the properties of the
(799 ~ vacuum states in potential models for QCD. We found that
there is only one vacuum in the two-dimensional case, and it
then provides spontaneous breaking of the chiral symmetry. Lack
of extra dimensions prevents this simple model from having
P,(p,Q)~ 8(po—Go—AE) 8 (p—q), (80)  vacuum replicas. On the contrary, the four-dimensional
theory reveals a richer vacuum structure, not only containing
that is, one has an effective source pumping energy into thehe trivial solution with unbroken chiral symmetry, but also
system. This energy can be spent to produce photons on massssessing excited vacuum states, which we found numeri-
shell, each with an energy=AE/2=10 MeV for the ra- cally for the oscillator and linear confining forces. In the
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latter case the Coulomb and a constant potential were als8till, they may exist for a finite period of time comparable
added to have a better correspondence with real QCD. Thugith the characteristic time of hadronic processes. Then the
we draw the following picture. Starting from the theory with latter may go through the intermediate stage with formation
bare quarks and performing the Bogoliubov-Valatin transfor-of a local bubble of the excited vacuum, which decays then
mation to “dress” them, we find several different types of to the ground-state true vacuum by emitting pairs of photons
this “dressing,” which correspond to different vacuum statesand/or pions. The latter could be detected experimentally and
and differently broken chiral symmetry. The mostly brokenthus serve as a signal of the existence of the excited vacuum
phase, that is, the one with the maxin@ the absolute State. Moreover, such measurements can serve as a direct

value chiral condensate and the solution for the chiggp-  Probe of the QCD vacuum. .
goliubov) angle without knots, possesses the minimal Of course, the question may be raised as to what extent
vacuum energy and thus defines the true vacuum of th¥€ rely on potentla! models of QCD? and' i Fhe statement
theory. In addition, there are other solutions of the mass—gaf)oncem'ng the excited vacuum replicas is, indeed, model
equation with one, two, and more knots, defining othe ndepende_nt_. However, potentla_l models have been_ shown to
phases of the theory, which are less energetically favorablBE Very efficient in studies of chiral symmetry breaking, had-
than the ground state, but still possess lower vacuum energ{ nic properties e}nd.decays,.and SO on. Thus we do believe
than the trivial vacuum. All these excited solutions lead to, at, at least q.ualltatlvely, thelr'pred|ct'|ons, "?C"%d'”g the ex-
spontaneous breaking of the chiral symmetry, although thést_ence of excited vacuum repllcas_, will persist in more _re_al-
chiral condensate decreagésabsolute valugfor each next 'Stic models for QCD, as well as in the true theory, if it is
replica of the vacuum. The number of such replicas depeno‘%ver solved.
on the parameters of the inte_ract_ion, and We'found only one ACKNOWLEDGMENTS
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