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The properties of the vacuum are addressed in two- and four-dimensional quark models for QCD. It is
demonstrated that two-dimensional QCD~the ’t Hooft model! possesses only one possible vacuum state—the
solution to the mass-gap equation, which provides spontaneous breaking of chiral symmetry~SBCS!. On the
contrary, the four-dimensional theory with confinement modeled by the linear potential with a Coulomb OGE
interaction not only has a chirally noninvariant ground vacuum state, but possesses an excited vacuum replica,
which also exhibits SBCS and can be realized as a metastable intermediate state of hadronic systems. We
discuss the influence of this vacuum replica on physical observables as well as on the possibility of probing the
vacuum background fields in QCD.
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I. INTRODUCTION

Potential models play an important role in studies
QCD. In spite of their obvious shortcomings, such as the l
of Lorentz invariance and causality, they offer a simple a
intuitive tool for investigation of the chiral properties of th
theory, hadronic spectra, decays, and so on. The Hamilto
approach, taken together with the Bogoliubov technique
diagonalization, provides a powerful method to analyze s
potential models. The two-dimensional ’t Hooft model f
QCD, in addition to being a genuine quantum field theo
constitutes an example of an exactly solvable theory w
an instantaneous linear potential yielded by the tw
dimensional gluon@1#.

In this paper we address the question of whether QCD
possess excited vacuum states, here called replicas, on t
the usual chirally nonsymmetric vacuum. The problem
different vacuum states, their coexistence and stability, is
new and has been addressed many times in many con
~as an example, see, e.g.,@2# or @3# where the ‘‘history’’ of
the vacuum is briefly outlined!. Here we address the theore
ical possibility of the existence of replicas in the framewo
of quark QCD models which have otherwise been succes
in describing hadronic phenomenology, and will argue tha
one uses these types of model—which indeed can be tr
back to the Gaussian approximation for the cumulant exp
sion of QCD4—for their phenomenological success then o
must also consider the quite possible existence of these
licas. They come in the same package. Then it should
come as a surprise that the number of spatial dimens
together with the strength and form of the interquark pot
tial should play a role of paramount importance in the ex
tence of such replicas. We start from two-dimensional Q
and demonstrate that, for two dimensions, only one chir
nonsymmetric state~the vacuum! may exist. Therefore in
two dimensions there are no replicas. This statement h
0556-2821/2002/65~8!/085026~13!/$20.00 65 0850
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true for both linear and harmonic oscillator potentials. On
contrary, an infinite set of solutions exists for the mass-g
equation in four dimensions, if the interquark interaction
chosen to be quadratic in the interquark distance, as
found in @4#. In the present paper we confirm this resu
However, for the more realistic linear potential@5# the situ-
ation in QCD4 changes dramatically. We study the corr
sponding mass-gap equation and find that thepure linearly
rising interactionjust fails to be sufficiently ‘‘binding’’ to
hold any replicas, so that only one chirally nonsymmet
solution to the mass-gap equation may exist in this case~the
trivial chirally symmetric solution is always present in
11 dimensions, as opposed to the two-dimensional ca!.
On the contrary, for a more physical interaction with realis
values for both the string tensions0 and the strong coupling
constantas of the Coulomb interaction, together with a co
stant termgmUgm to adjust for the right chiral condensat
we find one vacuum replica to exist in addition to the us
vacuum state. We give qualitative arguments that the exc
vacuum state should exist in real QCD and discuss its p
sible influence on physical observables.

This paper is organized as follows. In the second sec
we consider the two-dimensional ’t Hooft model and brie
review the formalism, going through the concepts of t
Hamiltonian approach, the Bogoliubov transformation fro
bare to dressed quarks, and the mass-gap equation fo
chiral angle. We argue that the mass-gap equation for
’t Hooft model has only one solution, found numerically
@6#, which defines the chirally noninvariant phase of t
theory, whereas the phase with unbroken chiral symme
possesses an infinite energy and, hence, is unphysical. T
results are found to remain for a similar, but technically si
pler, situation when using the harmonic oscillator instead
the linear potential. In the third section we deal with the ca
of four-dimensional QCD and study the mass-gap equa
numerically, for both harmonic and linear confining qua
©2002 The American Physical Society26-1
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BICUDO, RIBEIRO, AND NEFEDIEV PHYSICAL REVIEW D65 085026
kernels. We find that an enumerable infinite set of repli
always exists in the case of the quadratic potential, whe
the linear potential appears to be just not quite ‘‘bindin
enough, so that it has to be added to either a Coulomb
constant potential~or to a combination of both! to support
the existence of an excited vacuum state. It turns out tha
a realistic set of parameters$s0 ,as ,U% simultaneously de-
scribing hadronic spectraandyielding a quark condensate i
the ballpark of ^q̄q&52(250 MeV)3 it is impossible to
avoid the existence of one replica. The fourth section is
voted to a discussion of the hadronic processes in the p
ence of the excited vacuum. We give arguments on how
excited vacuum replica can affect the physical observa
and serve as a probe of the QCD vacuum structure.
conclusions and the outlook are the subject of the fifth s
tion. Throughout this paper we consider the chiral limit, i.
we always put the mass of the quarkm equal to zero from the
very beginning.

II. TWO-DIMENSIONAL QCD „’T HOOFT MODEL …

A. Introduction to the model

The two-dimensional ’t Hooft model, suggested in 19
@1# and widely discussed in the literature as a toy model
QCD, is described by the Lagrangian density

L~x!52
1

4
Fmn

a ~x!Fmn
a ~x!1q̄~x!iD̂ q~x!,

D̂5~]m2 igAm
a ta!gm , ~1!

and the large-NC limit implies that1

g5
g2NC

4p
→

NC→`

const. ~2!

We fix the axial gauge imposing the conditionA1(x0 ,x)
50 @7,8#, so that the vector-field propagator takes the fo

Dmn
ab~x02y0 ,x2y!52

i

2
dabgm0gn0ux2yud~x02y0!,

~3!

and integrate out gluonic degrees of freedom to arrive at
Hamiltonian

H5E dx q†~x!S 2 ig5
]

]xDq~x!

2
g2

2 E dxE dy q†~x!
la

2
q~x!q†~y!

la

2
q~y!

ux2yu
2

.

~4!

1We consider the weak limit of the theorym@g;1/ANC, so that
the limit NC→` is to be taken prior tom→0 @9#.
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Following the standard BCS technique, we introduce
dressed quark field2 @7#

qa~ t,x!5E dp

2p
eipx@ba~p,t !u~p!1da

†~2p,t !v~2p!#,

~5!

ba~p!u0̃&5da~2p!u0̃&50, ba
†~p!u0̃&5uq&,

da
†~2p!u0̃&5uq̄&, ~6!

$ba~p,t !bb
†~q,t !%

5$da~2p,t !db
†~2q,t !%

52pd~p2q!dab , ~7!

u~p!5T~p!S 1

0D , v~2p!5T~p!S 0

1D , ~8!

T~p!5e2u(k)g1/2, 2
p

2
<u<

p

2
,

u~2p!52u~p!,

where the Bogoliubov-Valatin angleu is subject to the mass
gap equation. In the new basis the Hamiltonian~4! takes the
form

H5LNCEv1:H2 :1:H4 :, ~9!

where LNCEv stands for the vacuum energy (L being the
one-dimensional volume! and the second and third terms o
the right-hand side~RHS! are quadratic and quartic in th
quark~antiquark! creation~annihilation! operators. In the re-
mainder of this paper we shall concentrate on the ene
densityEv .

B. The vacuum energy and chiral symmetry breaking

The vacuum energyLNCEv can be calculated as an ave
age of the time ordered Hamiltonian~4! over the BCS
vacuum state,

Evac5^0̃uTH~b,b†,d,d†!u0̃&

[LNCEvac5LNC~Evac
free1DEvac!, ~10!

where we have introduced the excess of the vacuum en
density over the free-theory energy densityEvac

free. We have

DEvac5E dp

2p
TrH g5pL2~p!

1
g

4pE dk

~p2k!2
L1~k!L2~p!J 2E vac

free,

2We put tilde in the notation of the BCS vacuum,u0̃&, to distin-
guish it from the trivial one,u0&, annihilated by the bare operator
b0 andd0.
6-2
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VACUUM REPLICAS IN QCD PHYSICAL REVIEW D65 085026
L6~p!5T~p!
16g0

2
T1~p!, ~11!

or, in terms of the angleu,

DEvac@u#52E dp

2p
@p sinu~p!2upu#

2
g

4pE dp dk

~p2k!2
cos@u~p!2u~k!#, ~12!

where for the free massless theory we substitutedg50 and
u free(p)5(p/2)sgn(p). The excessDEvac@u# is the main ob-
ject of our study. The true angleu should minimize the
vacuum energy, that is, it is a solution to the mass-gap eq
tion

dDEvac@u#

du~p!
50. ~13!

First, we perform a simple qualitative analysis of Eq.~12!.
Let u(p) be the solution of Eq.~13! corresponding to the
minimum of DEvac@u#. Then for u(p/A), with an arbitrary
parameterAÞ1, DEvac@u/A#.DEvac@u#. Naive dimensional
analysis shows thatDEvac scales withA as

DEvac5
1

2
C1A22gC2 , ~14!

with C1,2 being positive constants. Then the stable solutio
provided by minimizing the energy~14! with respect toA,
that is, byA050, which corresponds either to the free ma
less theory

u free~p!5
p

2
sgn~p!, Efree~p!5upu, ~15!

with Efree(p) being the free-quark dispersive law, or to th
analytical solution of the mass-gap equation found in@7#,
which reads

u~p!5
p

2
sgn~p!, E~p!5upu2P

g

upu
, ~16!

where the symbolP stands for the principal-value prescrip
tion. Both solutions yield unbroken chiral symmetry. Th
one would arrive at the erroneous conclusion that no chir
nonsymmetric solution of the mass-gap equation may ex
were it not for the fact that the vacuum energy~12! is loga-
rithmically infrared divergent and the correct form of th
relation ~14! should be

DEvac5
1

2
C1A22gC2 ln A1gC3 ~17!
08502
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instead of Eq.~14!, with C3 proportional to the logarithm of
the cutoff.3 The function~17! always has a minimum at

A05Ag
C2

C1
Þ0, ~18!

which corresponds to a nontrivial solution of the mass-g
equation, found numerically in@6#. From the form of the
function ~17! one can see the logarithmic growth of the e
ergy when approaching the solution~16!, which corresponds
to A050.4 Therefore two conclusions can be deduced. Fi
there is no need to demandDEvac to be negative as the non
trivial vacuum energy defined by Eq.~18! is always com-
pared with the infinite energy of the chirally symmetr
phase. Second, no phase transition of chiral symmetry re
ration is possible in the ’t Hooft model, its phase diagra
being trivial. A similar conclusion is made in@10#.

The chiral condensatêq̄q& is given by

^q̄q&52
NC

p E
0

`

dp cosu~p!. ~19!

Thus the nontrivial solution, found in@6#, provides a nonva-
nishing chiral condensate, whereas the solution~16! gives

^q̄q&50, but with aninfinite energy. Thus we conclude tha
in the ’t Hooft model there can be only one phase with sp
taneously broken chiral symmetry. Note that there is no c
tradiction with the Coleman theorem@11#, which precludes
spontaneous breaking of symmetries in two-dimensio
theories, if one considers the infinite-NC limit @9,12#.

The contribution of the infrared logarithmic divergence
Eq. ~17! has yet another consequence for the ’t Ho
model—namely, that the nonvanishing chiral condensate
spontaneous chiral symmetry breaking already happen a
BCS level, whereas going beyond the BCS approximat
just provides corrections suppressed by powers ofNC . In-
deed, staying at the BCS level, one diagonalizes the theor
the one-particle sector, introducing a nontrivial vacuum, f
of correlatedqq̄ pairs. It was demonstrated in@8# that one
can go beyond the BCS level in the ’t Hooft model by pe
forming a second Bogoliubov-like transformation and diag
nalizing the theory in the mesonic sector, that is, in the se
of the quark-antiquark bound states. The true vacuum of
theoryuV& is connected to the BCS vacuumu0̃& via a unitary
operator. One should use the true vacuum state for calc
tions of all matrix elements of operators, like the chiral co

3Notice that there is no way to get rid of the logarithmic dive
gence inDEvac defined by Eq.~12!. If the infrared behavior of the
integrand is improved, for example, by changing cos@u(p)2u(k)# to
cos@u(p)2u(k)#21 ~principal-value prescription!, then an ultraviolet
logarithmic divergence appears. Thus one cannot remove both
vergences in Eq.~12! simultaneously.

4Since the logarithmically divergent term in Eq.~17! is propor-
tional to the coupling constantg, then the theory still possesses th
free limit ~15! ~which also corresponds toA050) wheng tends to
zero and the logarithmic term disappears.
6-3
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BICUDO, RIBEIRO, AND NEFEDIEV PHYSICAL REVIEW D65 085026
densate, but as shown in@8# the difference between the tw
averages is of next-to-leading order inNC :

^Vuq̄quV&5^0̃uq̄qu0̃&1O~ANC!;O~NC!1O~ANC!.

~20!

It is instructive to compare the ’t Hooft model with othe
two-dimensional models, e.g., the Gross-Neveu one@13#.
The latter is given by the interaction Lagrangian

L int5
1

2
g~ c̄ ic i !

2, g.0, ~21!

where the flavor indexi runs from 1 toN@1, whereasl
5g2N remains finite. The positive sign of the constantg
chosen in Eq.~21! is known to lead to condensation in th
singlet c̄c channel@13#, whereas the negative sign leads
chargedcc andc̄c̄ condensates@14#. It was shown that the
chiral symmetry is also broken in the Gross-Neveu mod
but in order to have a nontrivial chiral condensate one ha
go beyond the BCS level, summing fermionic bubbl
Bosonization of the model, in terms of the compound st
s5gc̄c, appears to be the most convenient formalism
doing this and the resulting renormalized ‘‘potential’’ read

V~s,s0!5
1

2
s21

l

4p
s2F lnS s

s0
D 2

23G ~22!

with s0 being the renormalization point, which brings th
mass scale into the theory. Only the first term in Eq.~22!
appears at the BCS level, leading to the trivial soluti
smin50. On the other hand, the full potential~22! also pro-
vides a nontrivial solution,

smin56s0 expS 12
p

l D . ~23!

From Eq. ~22! one can see that the logarithmic term
which scales as lnA under the above mentioned transform
tion, is multiplied bys2;A2 which cancels the logarithmic
growth of the potential at the origin. Thus the two phas
chirally symmetric and nonsymmetric, coexist in the mod
whereas the latter, with nonvanishingsmin , is energetically
preferable.

The chiral condensate of the Gross-Neveu model scale

^s&;^gc̄c&;gN;lAN;AN ~24!

for largeN. Relation~24! is the analogue of Eq.~20! with a
vanishing leading term of orderO(N), which is in agreemen
with the statement made above that the chiral condensa
the Gross-Neveu model vanishes at the BCS level. One
arrive at the same conclusion from simple dimensional c
siderations. Indeed, the Gross-Neveu model describe
scale-invariant renormalizable theory, so that there is no
rameter with the dimension of mass in the bare Lagrang
and one has to deal with the mechanism of the dimensio
transmutation to get a scale. In contrast, the ’t Hooft L
grangian~1! defines a super-renormalizable theory and
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dimensional parameter, the coupling constantg, is present in
the theory from the very beginning.

Formula~17! can be given a more physically transpare
form if one notices that the chiral condensateS[^q̄q& from
Eq. ~19! scales linearly withA, S→AS, so that it can be
used instead ofA,

DEvac5C18F1

2 S S

S0
D 2

2 lnU S

S0
UG1gC38 , ~25!

whereS0 stands for the actual value of the chiral condensa

C. Harmonic-oscillator-type interaction

In this subsection we complete the study of tw
dimensional Hamiltonians using a harmonic oscillator ker
in Eq. ~4!, instead of the linear kernel,

gux2yu→K0
3~x2y!2, ~26!

or, in momentum space,

g

~p2k!2
→pK0

3d9~p2k!, ~27!

with K0 being the new constant with the dimension of ma
Because of the presence of the delta function ink in the
interaction kernel, all integrals can be considerably simp
fied. For example, the excess of the vacuum ene
D Ẽvac@u#, similar to Eq.~12!, reads now

D Ẽvac@u#52E dp

2p H @p sinu~p!2upu#2
pK0

3

4
@u8~p!#2J .

~28!

The integral on the RHS in Eq.~28! is convergent and
scales as

D Ẽvac@u#5C̃1A21K0
3 C̃2

A
~29!

underu(p)→u(p/A), so that qualitatively the same conclu
sion holds true, that there exists only one phase of the the
with spontaneously broken chiral symmetry and there is
unbroken phase. As for Eq.~25!, we can rewrite Eq.~29!
using the chiral condensate instead ofA:

D Ẽvac5C̃18F1

2 S S

S̃0
D 2

1US̃0

S
UG ~30!

with the minimum given byS5S̃0.

D. Numerical solutions for the chiral angle

In the previous subsections we found that there must
nontrivial functions u(p) providing the minimum of the
vacuum energies~12! and ~28!. As was mentioned above
these functions are solutions to the mass-gap equations
6-4
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FIG. 1. The ground-state solutions of the two-dimensional mass-gap equations~32! that correspond to the linear~left plot! and the
oscillator~right plot! potentials, respectively. The momentump is given in units ofAg for the left plot and in units ofK0 for the right one.
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dDEvac@u#

du~p!
50,

dD Ẽvac@u#

du~p!
50, ~31!

which take the following forms:

p cosu~p!5
g

2E dk

~p2k!2
sin@u~p!2u~k!#,

p cosu~p!52
pK0

3

2
u9~p! ~32!

for the linear and harmonic oscillator potentials, respectiv
Now we turn to numerical studies of these two equatio

Note that the qualitative analysis performed in the previo
subsection cannot answer the question of how many s
08502
y.
.
s
u-

tions of a mass-gap equation exist. Indeed, a second solu
if it exists, would just lead to different constantsC (C̃) and a

different value of the chiral condensateS0 (S̃0), since this
solution is expected to have a different profile and it can
be obtained from the ground-state solution by dilatations

As the first step, we reproduce the solution of the fi
equation in~32! found in @6# and construct a similar solution
for the other~see Fig. 1!. Notice that we define the chira
angleu(p) from 2p/2 to p/2 with the boundary conditions
u(p50)50, u(p→`)→p/2 @as was mentioned before
u(2p)52u(p)#. It turns out that under such conditions n
excited solutions of the mass-gap equations~32! exist. Only
if both requirements are relaxed can one find the soluti
depicted in Fig. 2, which start at 0 forp50 and tend to
p/212pn, n>1, for p→`. From Fig. 1 one can easily se
that the solutions for the ground state in both types of c
FIG. 2. The unphysical excited solutions to the mass-gap equation~32! ~oscillator confinement!. The momentump is given in units ofK0.
6-5
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BICUDO, RIBEIRO, AND NEFEDIEV PHYSICAL REVIEW D65 085026
fining potential have a very similar shape, so it would
natural to expect similar excited solutions to exist for t
linear potential as well. However, such solutions lead
maximal condensation of theq̄q pairs not only atp50, but
for some finitep’s, where cosu51, which is unphysical, so
we disregard these solutions.

Thus we conclude that only the ground-state solution m
exist for the mass-gap equation in the ’t Hooft model, defi
ing the only possible phase of the theory with spontaneou
broken chiral symmetry and the chiral condensate

S0520.410NCAg, ~33!

which coincides with the value found in a sequence of pap
@6,8,9#. A similar result for the theory with the oscillator-typ
interaction reads

S̃0520.405NCK0 , ~34!

which is very close to Eq.~33! if the scalesAg andK0 are
chosen close to one another.

Notice that in two-dimensional QCD the energy of t
vacuum is an apparently meaningless quantity by itself,
though it leads to the meaningful mass-gap equation, as
cussed above. Indeed, the expression~12! contains a diver-
gent integral, so that the result depends on the cutoff. On
other hand, in view of the fact that the physical solution
the mass-gap equations is unique, one cannot define a d
ence of two energies, where the divergent term would can

Now, when the numerical methods are tuned and teste
the simple example of two-dimensional QCD, we turn to t
main subject of the present paper—namely, studies of
vacuum replicas in QCD4.

III. FOUR-DIMENSIONAL QCD

A. Instantaneous interaction and forms of the potential:
The mass-gap equation

In this subsection we consider the case of QCD4 and
study the problem of existence of the vacuum replicas
various types of gluonic correlator. In contrast to QCD2, we
put the number of colors equal to three from the very beg
ning.

Following the standard procedure, we start from the Q
partition function and perform its cluster expansion, so th
after integrating out the gluonic field, the theory conta
effective four-quark, six-quark, and so on, vertices with t
form factors given by the corresponding correlators of
gluonic fields,

^^Am1

a1 ~x1!Am2

a2 ~x2!&&, ^^Am1

a1 ~x1!Am2

a2 ~x2!Am3

a3 ~x3!&&, . . . ,

~35!

where the irreducible average^^•••&&, is defined in the stan
dard way,

^^1&&5^1&, ^^12&&5^12&2^1&^2&, . . . . ~36!
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We fix the Fock-Schwinger gauge (x2z0)mAm
a (x)50

with an arbitrary fixed pointz0 @17# that allows us to connec
the gluonic field with the field-strength tensorFmn

a (x),

Am
a ~x!5E

0

1

a da~x2z0!nFnm
a ~a~x2z0!1z0!, ~37!

and, finally, to deal with the set of gauge-invariant cumula
@18#,

^^Fm1n1

a1 ~x1 ,z0!Fm2n2

a2 ~x2 ,z0!&&,

^^Fm1n1

a1 ~x1 ,z0!Fm2n2

a2 ~x2 ,z0!Fm3n3

a3 ~x3 ,z0!&&, . . . ,

Fmn
a ~x,z0![F~z0 ,x!Fmn

a ~x!F~x,z0!,
~38!

with F(x,y) being the standard parallel transporter from t
point x to the pointy. Now we apply a set of approximations

On one hand, Gaussian dominance is used, which me
that we keep only the lowest-order correlator^^FF&&,
whereas all others are considered suppressed@18#. Such an
approximation can be justified, first, by Casimir scaling, su
gested long ago@19# and recently confirmed by lattice calcu
lations @20#. Casimir scaling is exact in the Gaussian a
proximation. On the other hand, the minimal-area la
asymptotic for an isolated Wilson loop can be saturated
the Gaussian correlator. Finally, numerical calculations
hadronic observables within this method show good agr
ment with experimental and lattice data. The details of
method can be found, e.g., in the review@21# and references
therein.

As far as the form of the nonperturbative part of the bi
cal correlator is concerned, we choose it in the form

^^Am
a ~x!An

b~y!&&5E
0

1

a daE
0

1

b db~x2z0!l~x2z0!s

3^^Flm
a
„a~x2z0!1z0…

3Fsn
b
„b~y2z0!1z0…&&

5dabgm0gn0V0~ uxW2yW u!d~x02y0!, ~39!

which implies that the gluonic correlation lengthTg ~also
playing the role of the QCD string radius! is small enough
that the stringlike interaction can be approximated by
instantaneous one.5 For the confining potentialV0(uxW u), we
consider two cases, the quadratic and linear forms

V0~ uxW u!5K0
3uxW u2, ~40!

V0~ uxW u!5s0uxW u. ~41!

5Lattice calculations@22# give the valueTg'0.2–0.3 fm which is
small enough at the hadronic scale.
6-6
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The Lorentz structure of confinement is taken to beg03g0.
In the linear case we shall add toV0(uxW u) a Coulomb term
and a constant,

V1~ uxW u!52
as

uxW u
1U, ~42!

with the Lorentz structure beinggm3gm . Notice that be-
cause the color structure of the interaction isla/23la/2, the
constant term in the potential~42! yields a force between
singlets that is proportional to the resonating group met
normalization overlap of these singlets. This is a simple
ample of the Wigner-Eckart theorem. The Coulomb poten
is necessary for this class of model to possess a heavy-q
limit compatible with the known spectroscopy.

Thus our model is defined by the parameter
$s0 ,as ,U%. We shall choose the usual literature values
two of them, s050.135 GeV2, as50.3, and adjustU to
obtain a quark condensate^q̄q&.2(250 MeV)3. Next we
turn to the study of the vacuum structure following the sa
steps used in QCD2.

First, we introduce the dressed quark field@15,23#

qa~ t,xW !5 (
z5↑,↓

E d3p

~2p!3
eipW xW@baz~pW ,t !uz~pW !

1daz
† ~2pW ,t !vz~2pW !#, ~43!

with a andz being the quark color and the projection of th
spin, respectively, and the amplitudesu andv defined as

u~pW !5FA11sinw

2
1A12sinw

2
pŴ •aW Gu0~pW !,

v~2pW !5FA11sinw

2
2A12sinw

2
pŴ •aW Gv0~2pW !.

~44!

Here the chiral anglew is used instead of the QCD2 u. They
are simply related by

w~p!5
p

2
2u~p!. ~45!

It is convenient to define the new anglew from 2p/2 to p/2
with the boundary conditionsw(p50)5p/2 andw(p→`)
→0.

If the chiral anglew(p) is not identically zero, then the
true vacuum state is populated by quark-antiquark pairs w
3P0 coupling,

u0̃&5)
c f p

dpS 11cos 2f~p!

2
1

sin 2f~p!

2
Cc f p

†

1
12cos 2f~p!

4
Cc f p

†2 D u0&[S0u0&, ~46!
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where the indicesc and f indicate the color and flavor, re
spectively; the anglef(k) is connected to the chiral on
w(k) via the simple relation

w~p!5arctan
m

p
12f~p! 5

m50
2f~p!, ~47!

and defines the above mentioned unitary operatorS0:

Cc f p
† 5„b↑

†~pW !,b↓
†~pW !…c fMS d↑

†~pW !

d↓
†~pW !

D
c f

, ~48!

Ms1s2
5~2A6!(

s,m
S 1 1 0

m s 0D pŴ 1mS 1/2 1/2 1

s1 s2 s
D

5S 2pŴ x1 ipŴ y pŴ z

pŴ z pŴ x1 ipŴ y

D . ~49!

The operators annihilating the new vacuumu0̃& are

b̃~pW !5S0b~pW !S0
† , d̃~2pW !5S0d~2pW !S0

† . ~50!

The interested reader can find the details of the formalism
@16#.

The next step consists of arranging the normal ordering
the QCD4 Hamiltonian,

H5E d3x@H0~xW !1HI
(1)~xW !1HI

(2)~xW !#, ~51!

H0~xW !5q†~xW !~2 iaW •¹W !q~xW !, ~52!

HI
(1)~xW !5

1

2E d3y q†~xW !
la

2
q~xW !

3@V0~ uxW2yW u!1V1~ uxW2yW u!#q†~yW !
la

2
q~yW !,

~53!

HI
(2)~xW !52

1

2E d3y q†~xW !aW
la

2
q~xW !V1~ uxW2yW u!

3q†~yW !aW
la

2
q~yW !. ~54!

In the new basis, we obtain an expression similar to
~9! and we again concentrate on the minimization of t
vacuum energy density—namely, on the mass-gap equa
which takes the form

A~p!cosw~p!2B~p!sinw~p!50,

A~p!5
1

2
CFE d3k

~2p!3
@V0~pW 2kW !

14V1~pW 2kW !#sinw~k!,
~55!
6-7
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FIG. 3. The first two solutions of Eq.~57! for the chiral anglew(p) found with the Runge-Kutta method. The momentump is given in
units of K0.
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B~p!5p1
1

2
CFE d3k

~2p!3
~pŴ •kŴ !

3@V0~pW 2kW !12V1~pW 2kW !#cosw~k!,

whereCF5 4
3 is the Casimir operator in the fundamental re

resentation.
Thus, equipped with the general form of the mass-g

equation, we are in a position to perform the numeri
search for the excited vacua for the oscillator and linear
tentials.

B. Solutions of the mass-gap equation for the
oscillator-type interaction

In this subsection we solve numerically the mass-g
equation~55! for the oscillator-type confining potential~40!
with V1 put to zero. Similarly to the two-dimensional cas
the Fourier transform of the potential~40! is the second de
rivative of a delta function,

V0~pW !52~2p!3K0
3 ]2

]pW 2
d (3)~pW !, ~56!

which leads to the mass-gap equation in differential form

w952
2

p
w81

2p

CFK0
3

sinw2
1

p2
sin 2w, ~57!

and we solve it numerically using the Runge-Kutta meth
In Fig. 3 we show the ground-state and the first excited
lutions of Eq.~57!.

Thus we conclude that at least one replica exists for
case of a quadratic confining potential. Moreover, using
same numerical technique, one can build the third, fou
and so on, excited solutions, as was found in@4#. In fact, the
harmonic oscillator supports an infinite tower of such rep
cas.
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C. Vacuum replica for the linear potential

Finally, we turn to the main goal of the present paper
namely, whether the linear confining potential supports
existence of replicas.

In contrast to the case of the oscillator potential, the ma
gap equation for the linear confinement, given by Eq.~41!, is
integral:

p sinw~p!5
CFs0

2p2 E d3k

~pW 2kW !4
@sinw~k!cosw~p!

2pŴ •kŴ sinw~p!cosw~k!#, ~58!

or, equivalently,

p sinw~p!5
s

4pE0

`

dk k2F 4

~p22k2!2
sinw~k!cosw~p!

2S 2k~k21p2!

p~p22k2!2
2

1

p2
lnUp1k

p2kU D
3cosw~k!sinw~p!G , ~59!

wheres5CFs0 is the string tension in the fundamental re
resentation, and the angular variables are integrated out.
can check that the integral on the RHS of Eq.~59! is con-
vergent. Equation~59! possesses only one nontrivial eige
state: the ground-state vacuum. Everything happens as i
confining linearly rising potential just fails to be ‘‘binding’
enough to produce an excited vacuum replica. In additi
the chiral condensate appears strongly underestimated in
case of the pure linear confining potential@5#. Thus we sup-
ply it with the extra interaction given by Eq.~42!, which
reads, in momentum space,

V1~pW !52
4pas

pW 2
1~2p!3Ud (3)~pW !, ~60!

and modify the mass-gap equation accordingly:
6-8
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p sinw~p!5
s

4pE0

`

dk k2F 4

~p22k2!2
sinw~k!cosw~p!2S 2~k21p2!

pk~p22k2!2
2

1

p2k2
lnUp1k

p2kU D cosw~k!sinw~p!G
2

CFas

4p E
0

`

dk k2F 4

pk
lnUp1k

p2kUsinw~k!cosw~p!1S p21k2

p2k2
lnUp1k

p2kU2 2

pkD cosw~k!sinw~p!G
1

1

4
CFU sin 2w~p!. ~61!
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In contrast to Eq.~59!, the mass-gap equation~61! is not
divergence-free because of the Coulomb part, proportiona
as . If we considered the case of a nonzero quark massm,
then the given divergence would be only logarithmic; ho
ever, for Eq.~61! we havem50 and the divergence become
linear. We regularize it by using a modified potentialV1,

V1~pW !54pasF 1

pW 21L2
2

1

pW 2G1~2p!3Ud (3)~pW !, ~62!

with a cutoff L. Notice that the mass-gap equation for t
single Coulomb potential does not contain any scale~it
would be given by the quark massm beyond the chiral limit!,
which appears only after the regularization and is given
L. Then all quantities with the dimension of mass are
rectly proportional toL.

Now let us assume, for a moment, the general case o
arbitrary nonvanishing current quark mass. Then the qua
acquire an effective massmeff , which can be written as a
sum of two components,

meff5m1S~m,L!, ~63!

where m and S(m,L) are the current quark mass and t
quark self-energy due to the contribution of the chiral co
densate, respectively. The latter is obviouslyL dependent.
To evaluatemeff one can use the relations

sinw~p!5
m~p!

Ap21m2~p!
, cosw~p!5

p

Ap21m2~p!
,

~64!

similar to the free-case relations, but withw(p) being the
solution to the mass-gap equation. Now the effective m
meff can be associated withm(p;0). Let us consider the
heavy-quark limit,m→`, first. A large quark current mass
known to destroy the chiral condensate. As a result, the s
energy part of the relation~63! must vanish, so that the ef
fective mass is basically given by the current mass,

meff .
m→`

m. ~65!

In particular,S(m,L)/m →
m→`

0. That is, for largem, we have
to go up in L for the system to become more and mo
Coulombic, whereas the chiral condensate goes to zero
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other words the potential of Eq.~62! naturally possesses th
Coulomb limit for very heavy current quark masses.

In the opposite limit,m50, the effective mass appea
entirely due to the chiral symmetry breaking,

meff5S~0,L!5L3const, ~66!

where the last equality holds true provided we chooseL
;As0, the only scale of the problem. Thus ineither case
meff*L, and it is remarkable that such a potential shou
equally address both heavy- and light-quark sectors.

Therefore we adopt the following strategy. We choose
standard values of the string tension,s050.135 GeV2, and
the strong coupling constant,as50.3. As discussed above
we putL to be of the order ofAs0 and solve the resulting
mass-gap equation numerically for the ground state, fitt
the only free parameterU in such a way as to have the chir
condensate

^q̄q&52
3

p2E0

`

dp p2 sinw~p! ~67!

around its standard value, about2(250 MeV)3. With the
solution found for the chiral anglew(p), we evaluate the
effective quark massmeff and check if it has a value of orde
200–300 MeV, that is, a value of the same order of mag
tude as the regulatorL, and also close to the value usual
adopted for the constituent quark mass. For self-consiste
we also need to ensure that the fitting parameterU appears to
be of the order of the interaction scale and hence does
bring a new scale into the problem. In Table I, as well as
known values ofs0 andas , we give the best set of param
etersU andL consistent with the standard value of the chi
condensate.

Now, when all parameters of the model are totally fixe
we perform our search for the excited vacuum replica whi
indeed, appears to exist, and we give its profile, together w

TABLE I. Parameters of the model fixed from the fit for th
ground vacuum state.

s0 (GeV2) as U (MeV) L (MeV) meff ~MeV! ^q̄q& (MeV3)

0.135 0.3 220 250 230 2(250)3
6-9
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FIG. 4. The ground-state~left plot! and the first excited~right plot! solution of Eq.~61! for the set of parameters given in Table I. Th
momentump is given in units ofAs0.
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the ground-state one, in Fig. 4. We tried many other com
nations ofU andL and, whatever values we used, we alwa
found this replica to persist.

The chiral condensate for the excited vacuum state,

^q̄q̃&5~126 MeV!3, ~68!

is smaller in the absolute value and has a ‘‘wrong’’ si
compared to the ground-state one, given in Table I.
massless quarks this sign can be easily reversed by
changew→2w everywhere, which also satisfies the ma
gap equation and does not affect the vacuum energy. H
ever, a nonvanishing quark mass breaks this symmetry, s
an extra termm cosw(p) appears in the mass-gap equati
~58!. It follows immediately from the Gell-Mann-Oakes
Renner relation that the sign of the condensate given in
~68! leads to a pion with an imaginary mass, that is, to
tachyon. However, the latter does not lead to a disaster s
the excited vacuum state is, indeed, unstable and it tend
decay to the ground state.

Now we calculate the density of the vacuum energy
fined as

DEvac52
g

2E d3p

~2p!3
$A~p!sinw~p!1@B~p!1p#cosw~p!%

2E vac
trivial , ~69!

whereA(p) andB(p) are given in Eq.~55! and the degen-
eracy factorg counts the number of independent quark d
grees of freedom,

g5~2s11!NCNf , ~70!

with s5 1
2 being the quark spin; the number of colorsNC is

put to three, and the number of light flavorsNf is two. Thus
we find that g512. The trivial solution of the mass-ga
equation isw trivial(p)[0 ~in contrast to the two-dimensiona
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case, this solution does not lead to difficulties with t
vacuum energy!. Then for the two nontrivial solutions de
picted in Fig. 4 one has

DE vac
ground52~128 MeV!4 ~71!

and

DE vac
excited52~36 MeV!4. ~72!

The negative sign ensures that they are both energetic
preferable to the trivial vacuum.

It is instructive to rewrite Eqs.~71!,~72! in the form of the
vacuum energy per fermi cubed:

DE vac
ground5234.7 MeV/fm3, ~73!

DE vac
excited520.2 MeV/fm3. ~74!

Now, if the vacuum is locally excited, then the extra ener
stored in the volumeV051 fm3 is

DE05~DE vac
excited2DE vac

ground!V0'34.5 MeV. ~75!

We have checked the result~75! against slight variations o
the parameters of the model and found it to be very sta
changing only by several percent.

IV. PHYSICAL PROCESSES IN THE PRESENCE OF THE
EXCITED VACUUM REPLICA

In this section we show how the excited vacuum might
‘‘seen’’ in hadronic processes.

As follows from Eq.~75!, the energy stored in the bubbl
with the excited vacuum inside is proportional to its volum
At the moment we can give only hand-waving qualitati
arguments concerning the most probable value of this v
ume. Indeed, the energy scale of the interaction we hav
QCD is about 300 MeV, corresponding to distances about
fm, which can be expanded up to the Compton length of
pion, about 1.5 fm or so—the standard hadronic scale. W
6-10



ou

n
te

ir
f
o
f t
p
nd

th

ue
d
s
th

ec

n
rs

he

o
th

th
m

of

nd

s
tor
rm

ark
the

rac-
m

the

um
om

ve
um
to

ould
an-
t of

or
ave
e-
lity

the
hat
d it
ack
ing
nal
ing
o
eri-
e
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a bubble of such a radius one can achieve an energy ar
300 MeV, which is sufficient to produce anS-wave pair of
pions when the excited vacuum decays back to the grou
state one. This value looks quite natural since all parame
of the model, like the interaction scaleAs0 and the one for
spontaneous breaking of chiral symmetry, given by the ch
condensate or bymeff ~see Table I!, have the same order o
magnitude. As was discussed above, all three scales sh
always appear self-consistent, regardless of the details o
model used for numerical calculations. In the present pa
we give just an example of such a model, which we fi
rather realistic.

It is instructive to see how the excited vacuum enters
amplitudes of the hadronic processes. Usually one is
evaluate a matrix element of the form

^0̃,hadronsuOu0̃,hadrons8& ~76!

with O being a field operator. Note that this is the tr
vacuum of the theory,u0̃&, to enter the matrix element, an
we put it explicitly in Eq.~76!. If the excited vacuum come
into the game, then it can appear either in the bra or in
ket vector, or in both. We use the notationu1̃& for it. Let us
illustrate this statement by the correlator of two quark el
tromagnetic currents,

^0̃uTJm~x!Jn~y!u1̃&

5^0̃uTeiP̂xJm~0!e2 i P̂xeiP̂yJn~0!e2 i P̂yu1̃&, ~77!

whereP̂ is the operator of the total momentum. Now, dise
tangling theT product and making the external operato
e6 i P̂x ande6 i P̂y act on the vacuum states to the left or to t
right, one can arrive at the expression

^0̃uTJm~x!Jn~y!u1̃&

5H e2 iDPy^0̃uJm~x2y!Jn~0!u1̃&, x0.y0,

e2 iDPx^0̃uJm~y2x!Jn~0!u1̃&, y0.x0 ,
~78!

whereDP is the difference of the four-momenta of the tw
vacua, which, actually, has only the zeroth component—
difference of the vacuum energies,DE. If the Fourier trans-
form is now applied to Eq.~78!,

Pmn~p,q!5E d3x d3y eipxe2 iqy^0̃uTJm~x!Jn~y!u1̃&,

~79!

then

Pmn~p,q!;d~p02q02DE!d (3)~pW 2qW !, ~80!

that is, one has an effective source pumping energy into
system. This energy can be spent to produce photons on
shell, each with an energyv5DE/2.10 MeV for the ra-
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dius of the excited-vacuum bubble, which is of the order
the interaction radius, that is, of order about 0.5 fm.

Notice that, if the BCS vacuum structure is ignored a
the trivial vacuumu0& is used instead ofu0̃& and u1̃& in Eq.
~77! ~this corresponds to the chiral anglesw and w̃ being
identically put to zero!, then the latter expression coincide
with the standard perturbative vacuum polarization opera
supplied by an external energy source. In order to perfo
calculations taking into account the nontrivial functionsw

andw̃, one should express all quantities in terms of the qu
creation and annihilation operators inherent to one and
same vacuum, and then apply the standard Wick cont
tions. For example, relating everything to the trivial-vacuu
operators, one can find

u0̃&5S0u0&, u1̃&5S1u0& ~81!

with the operatorS0 defined in Eq.~46! and a similar defi-
nition of S1 with the obvious changew→w̃. Then the cor-
relator ~78! reads

^0̃uTJm~x!Jn~y!u1̃&5
^0uS0

1TJm~x!Jn~y!S1u0&

^0uS0
1S1u0&

, ~82!

where we used the correct normalization which removes
disconnected diagrams. Note that in Eq.~82! the currents are
also expected to be expressed in terms of the trivial-vacu
quark creation/annihilation operators, so that, starting fr
the quark field~43!, one must use transformations~50! ~and
similar ones for the excited vacuum replica! to have every-
thing self-consistent.

An important comment is in order here. In the abo
analysis we did not consider the mechanism of the vacu
excitation from the ground state to the replica. Indeed,
excite the vacuum inside some region in space, one sh
have a trigger—a localized operator with the vacuum qu
tum numbers. Such an operator could be constructed ou
the background gluonic fields@see Eq.~38! above#—the only
bricks at our disposal. If this is done, the outgoing photons
pions, produced as a result of the excited vacuum decay h
to carry information about the vacuum–gluonic-field corr
lations and, if measured experimentally, offer the possibi
of direct probes of the QCD vacuum structure.

V. CONCLUSIONS AND OUTLOOK

In the present paper we studied the properties of
vacuum states in potential models for QCD. We found t
there is only one vacuum in the two-dimensional case, an
provides spontaneous breaking of the chiral symmetry. L
of extra dimensions prevents this simple model from hav
vacuum replicas. On the contrary, the four-dimensio
theory reveals a richer vacuum structure, not only contain
the trivial solution with unbroken chiral symmetry, but als
possessing excited vacuum states, which we found num
cally for the oscillator and linear confining forces. In th
6-11
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latter case the Coulomb and a constant potential were
added to have a better correspondence with real QCD. T
we draw the following picture. Starting from the theory wi
bare quarks and performing the Bogoliubov-Valatin transf
mation to ‘‘dress’’ them, we find several different types
this ‘‘dressing,’’ which correspond to different vacuum stat
and differently broken chiral symmetry. The mostly brok
phase, that is, the one with the maximal~in the absolute
value! chiral condensate and the solution for the chiral~Bo-
goliubov! angle without knots, possesses the minim
vacuum energy and thus defines the true vacuum of
theory. In addition, there are other solutions of the mass-
equation with one, two, and more knots, defining oth
phases of the theory, which are less energetically favora
than the ground state, but still possess lower vacuum en
than the trivial vacuum. All these excited solutions lead
spontaneous breaking of the chiral symmetry, although
chiral condensate decreases~in absolute value! for each next
replica of the vacuum. The number of such replicas depe
on the parameters of the interaction, and we found only
of them to exist for a combination of the linearly risin
Coulomb, and constant potential with a realistic set of
rameters, listed in Table I. We tried several contributions
the parameterss0 , as , andU consistent with the phenom
enology and numerically found it to be impossible to get
of this replica.

Thus, starting from the system in its true vacuum st
and exciting it, e.g., by means of heating or adding a str
field, one will finally arrive at the totally disordered chirall
symmetric phase, although at an intermediate stage the
tem will quasistabilize~one or several times!, which corre-
sponds to its reordering over a new, excited, vacuum stat
is no surprise that all excited vacuum replicas are metast
since the hadronic spectra built over them contains tachy
ys
,

tt.
s,
,

B
ys
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Still, they may exist for a finite period of time comparab
with the characteristic time of hadronic processes. Then
latter may go through the intermediate stage with format
of a local bubble of the excited vacuum, which decays th
to the ground-state true vacuum by emitting pairs of phot
and/or pions. The latter could be detected experimentally
thus serve as a signal of the existence of the excited vac
state. Moreover, such measurements can serve as a d
probe of the QCD vacuum.

Of course, the question may be raised as to what ex
we rely on potential models of QCD, and if the stateme
concerning the excited vacuum replicas is, indeed, mo
independent. However, potential models have been show
be very efficient in studies of chiral symmetry breaking, ha
ronic properties and decays, and so on. Thus we do bel
that, at least qualitatively, their predictions, including the e
istence of excited vacuum replicas, will persist in more re
istic models for QCD, as well as in the true theory, if it
ever solved.
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