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We study the relationship between Atiyah-Drinfeld-Hitchin-MafDHM) and Nahm constructions and
the “solution generating technique” of Bogomol'nyi-Prasad-Sommerfi@BS solitons in noncommutative
gauge theories. ADHM and Nahm constructions and “solution generating technique” are the strongest ways to
construct exact BPS solitons. Localized solitons are the solitons which are generated by the “solution gener-
ating technique.” The shift operators which play crucial roles in the “solution generating technique” naturally
appear in ADHM and Nahm constructions and we can construct various exact localized solitons including new
solitons: localized periodic instantoiis-localized caloronsand localized doubly periodic instantons. Nahm
construction also gives rise to BPS fluxons straightforwardly from the appropriate input Nahm data which is
expected from the D-brane picture of BPS fluxons. We also show that the Fourier-transformed soliton of the
localized caloron in the zero-period limit exactly coincides with the BPS fluxon.

DOI: 10.1103/PhysRevD.65.085022 PACS nuni®erll.15-q, 02.40.Gh, 05.45.Yv

I. INTRODUCTION There are two powerful ways to construct exact noncom-
mutative BPS solitons, that is, Atiyah-Drinfeld-Hitchin-
Noncommutative gauge theories are fascinating generaliManin (ADHM) and Nahm constructions and the “solution
zations of ordinary gauge theories and often appear mystergenerating technique.” ADHM or Nahm constructions are a
ously in string theories. Recently, it was shown that gaugevonderful application of the one-to-one correspondence be-
theories on D-branes with a background constntield  tween the instanton or monopole moduli space and the space
are equivalent to noncommutative gauge theories irof ADHM or Nahm data and gives rise to arbitrary instantons
some limit [1-3] and it becomes possible to study some[17] or monopole$18], respectively. ADHM and Nahm con-
aspects of D-brane dynamics such as tachyon condensatiorstructions have a remarkable D-brane descripfib®—21.
in terms of noncommutative gauge theories which are comb-branes give intuitive explanations for various results of
paratively easier to deal with. Especially noncommutativeknown field theories and explain the reason why the instan-
Bogomol'nyi-Prasad-sommerfiel(BPS solitons are worth  ton or monopole moduli spaces and the space of ADHM or
studying because they describe the static configurations dfahm data correspond one-to-one. However, there still exist
D-branes and are important in studying nonperturbative asinknown parts of the D-brane descriptions and it is expected

pects of the gauge theories on it. that further study of the D-brane description of ADHM and
Noncommutative spaces are characterized by the nonconMahm constructions would reveal new aspects of D-brane
mutativity of the spatial coordinates: dynamics, such as Myers effef22] which in fact corre-
o - sponds to some boundary conditions in Nahm construction.
[X',x!]=ig". (1.))  On the other hand, the “solution generating technique” is a

transformation which leaves an equation as it is and gives
This relation looks like the canonical commutation relationrise to various new solutions from known solutions of it. The
in quantum mechanics and leads to the “space-space unceiew solutions have a clear matrix theoretical interpretation
tainty relation.” Hence the singularity which exists on com-[23-25 and concerns with the important fact that a D-brane
mutative spaces could resolve on noncommutative spacegsan be constructed by lower dimensional D-branes. Hence
This is one of the distinguished features of noncommutativehe study of the relation between the two constructions is
theories and gives rise to various new physical objects, fovery important to deepen our understanding of D-branes.
example, smooth U(1) instantoffs,6], “visible Dirac-like The U(1) instantons with the same self-duality as the
strings” [10] and the fluxong11,12. U(1) instantons exist noncommutative parametéf and BPS fluxons can be con-
due to the resolution of small instanton singularities of thestructed by applying the “solution generating technique”
complete instanton moduli spafE3]. However U(1) instan-  [26] to the corresponding BPS equatidiid] and[12,27,28,
tons still exist even when the singularities of the completerespectively The solitons which are generated from the
instanton moduli space do not resolve, that is, when the sellzacuum by the “solution generating technique” are called

duality of the gauge field is the same as that of the noncomiocalized solitonsn the matrix theoretical contexts. In gen-
mutative parametef"” [14-16.

3“The solution generating technique” can be also applied to the
*Electronic address: hamanaka@hep-th.phys.s.u-tokyo.ac.jp  self-dual BPS equation of the §21)-dimensional Abelian-Higgs
For a review se¢4]. model only when the Higgs vacuum expectation valusatisfies
20On commutative side, e.d.3,7,8,9. v?=1/0 [27-30.
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In the present paper we give the various exact BPS soli-

eral, the new solitons generated from known solitons by thg,ng v ADHM and Nahm construction: localized instantons,

“sqlunon generating techmque" are the composite OT known,cjized calorons, localized doubly periodic instantons, and
solitons and localized solitons. Hence localized solitons ar PS fluxons which are essential in the “solution generating

essential in the “solution generating technique” and, in fact,;o hnique.” The shift operators which play crucial roles in
special to noncommutative gauge theories. Localized instan, o «go|ytion generating technique” naturally appear in

tons have been constructed not only by the “solution generap construction and other important points are all de-

ating technique”[14] but also t,)y ADHM construction e straightforwardly in ADHM/Nahm construction. In this
[15,16. BPS fluxons are the special class of BPS solitons i, \e discuss the relationship between the two methods.
(3+1)-dimensional noncommutative gauge theory and musyhg gqytions of the localized calorons and the localized dou-
be found by Nahm construction. However, they have nol,y heriodic are new results. We also discuss a Fourier trans-
been found yet. Moreover in order to get BPS fluxons by thggymation of the localized calorons and show that the
‘solution generating technique,” we have to modify the rqrier-transformed configurations of the localized calorons
technique(27] or use some trick28]. in the 8—0 limit indeed coincides with BPS fluxons, which
There 1S another BPS _sollton to which ADHM and Nahm could be considered that BPS fluxons corresponding to D1-
construction can be applied: the caloron. Calorons are peryanes are the solitons of T-dualized solitons of localized

odic instantons in one direction, that is, instantonsRh calorons corresponding to DO-brane with the pefibe 0 up
X St. They were first constructed explicitly if81] as an to space rotatiofi39—41.

infinite number of 't Hooft instantons periodic in one direc- g paper is organized as follows. In Sec. II, we briefly
tion and used for the discussion on nonperturbative aspecig,iew the “solution generating technique” and localized

of finite-temperature field theorig81,32. Calorons can in-  gjitons. In Sec. |1l we present ADHM construction of in-

termediate between instantons and monopoles and coincidganions and apply them to localized solitons. In Sec. IV we
with them in the limits of 3—« and 8—0, respectively,

_ . f take the Fourier transformation of the localized calorons and
whereg is the perimeter 0§~ [33]. Hence calorons also can

X _ show that in thed— 0 limit, the transformed solitons exactly
be reinterpreted clearly from D-brane pictyB%] and con-  ¢gincide with BPS fluxons. Finally Sec.V is devoted to the
structed by Nahm constructidi35—37).

: , i conclusion and discussion.

The D-brane pictures of them are the followitsge Fig.
1). Instantons and monopoles are represented as DO-branes
on D4-branes and D-strings ending to D3-branes, respec-
tively. Hence calorons are represented as DO-branes on D4-
branes lying orR3x St. In this section we make a brief review of the “solution

In the T-dualized picture, the B{) 1 caloron can be in- generating technique” and some application of it which gen-
terpreted asN—1 fundamental monopoles and théth  erates localized instantons and BPS fluxons.
monopole which appears from the Kaluza-Klein se¢8#|. Noncommutative gauge theories have two equivalent de-
The value of the fourth component of the gauge field atscriptions, that is, star-product formalism and operator for-
spatial infinity on D4-brane determines the positions of themalism. There is a commutative description equivalent to the
D3-branes which denote the Higgs expectation values of thaoncommutative gauge theories and the commutative and the
monopole. The positions of the D3-branes are called th@oncommutative description are connected by the Seiberg-
jumping points because at these points, the D1-brane is gefwvitten map[3]. In the present paper we mainly use the op-
erally separated. In thdl=2 case, the separation interval erator formalism and when we make a physical interpreta-
(see Fig. 1D satisfiesD ~ p?/ 8 [34,37, and if the sizep of  tion, we shift to the commutative description by the Seiberg-
periodic instanton is fixed and the perigdjoes to zero, then Witten map.
one monopole decouples and the situation exactly coincides Let us present noncommutative gauge theories in the op-
with that of the PS-monopolg38]. BPS fluxons are repre- erator formalism and establish notations. In this formalism,

II. AREVIEW OF THE “SOLUTION GENERATING
TECHNIQUE” AND LOCALIZED SOLITONS
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we start with the noncommutativity of the spatial coordinatesHere the constant termi(6™ %) «v appears so that it should
(1.1) and define noncommutative gauge theories consideringancel out the ternﬁzyﬂ ,gy][:i(gfl)w] in [f)ﬂ ,D,] and

the coordinates as operators. From now on, we denote the hgécomes an obstruct in applying the “solution generating
on the operators in order to emphasize that they are opergechnique” to BPS equations.

tors. Here, for simplicity, we treat a noncommutative plane  From now on, we mainly use complex representations

with the coordinatesx',x? which satisfy [x",X?]=i0, ¢ ch add =(1/2) (D1~ D ,) = — (1/26)7+ A
0>0. z v z

. . . ~ AT
Defining new variables,a’ as A. The “solution generating technique”

1 1 - The “solution generating technique” is a transformation
ai=——7, al=——7z, (2.  which leaves an equation as it is, that is, one of the auto-
V26 V26 Backlund transformations. The transformation is almost a

o o R gauge transformation and is defined as follows:
where z=x!+ix?, z=x'—ix? then we get the Heisen-

berg’s commutation relation: D,—0™D,0, (2.9
[a,af]=1. (2.2 whereU is an almost unitary operator and satisfies
Hence the spatial coordinates can be considered as the op- U0T=1. (2.10
erators acting on Fock spadé which is spanned by the o .
occupation number basjs):={(a")"\n1}|0), a|0)=0: \ng note that we df) not put "0 =A1. If U is finite-size,
UUT=1 impliesUTU=1 and thenU and the transforma-
H=®,_,C|n). (2.3 tion, (2.9 become a unitary operator and just a gauge trans-

) . . formation, respectively. Now, howevdy, is infinite size and
The fields on the space depend on the spatial coordinates

i 100 At N0 2
and are also the operators acting on the Fock spacEhey we only claim thatU'U s a projection becausel(U)

are represented by the occupation number basis as :UT(UL{T)';J:UTU- The operatoiU which satisfiesUU"
=1 andU'U= (projection is often called the partial isom-
oz etry.
f= ZO M m)(n|. 2.9 The transformatior(2.9) generally leaves an equation of
mn= motion as it is[26]:
The matrix elemenf(M" is infinite-size. If the fields have SC . SC.
rotational symmetry on the plane, that is, the fields commute %—)UT%U, (2.11
with the number operaton:=a‘a~ (x})2+ (x?)?, they be-
come diagonal: where £ and O are the Lagrangian and the field in the La-

grangian. Hence if one prepares a known solution of the

- % £ ny(n| 2.5 equation of motions£/ 50=0, then we can get various new
T & ' ' solutions of it by applying the transformatidi2.9) to the
known solution.
The derivative of an operatqﬁ? can be defined by The typical example of the partial isometty is a shift
operator. In U(1) gauge theory, one of the shift operators
au(bz[bﬂ 0],  where 5#==—i(9*1)ﬂ,,§<”, acting on the Fock spad@.3) is
(2.6 "
which satisfies the Leibniz rule and the desirable relation: Uk=n§0 [n){n+K, (212
aM§<V= 8, . Moreover, defining the following anti-Hermitian
operator which satisfies
E)M:::9M+AM’ (27) OKOI:]., LAJELAJk:l—Isk, (2.13

whereA , is a gauge field and anti-Hermitian, then the cova-WherePy is a projection onto thé&-dimensional subspace of
riant derivative of an adjoint fieldb can be defined by the Fock spacé{ and is expressed as

[D, ®]. okl

We note that using this anti-Hermitian operafdy,, the Pk‘sz:O [m)(m|. (2.14
field strengthF ,, is rewritten as

R o Here we note that in star product formalism, the behavior of
F..=[D, ,DV]—i(G‘l)W. (2.8 the shift operator at larglx| is order 1 which is denoted by
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O(1). The newsoliton solutions from vacuum solutions are Where [d*x denotes Ty.

called localized solitons. The dimension of the projeciign _The anti-self-dual BPS equations are obtained as the con-
in fact represents the charge of the localized solitons. In gerfiition that the action density should take the minimum:

eral, the new solitons generated from known solitons by the .

— 2 F —— A AT A AT
“solution generating technique” are the composite of known (Fz2, ¥ F2,2,=) _[Dzl’Dzl]_[DZZ’Dzz]
solitons and localized solitons.
The “solution generating techniqud2.9) can be gener- 1/1 1
. : . ——|—+—|=0,
alized so as to include moduli parameters. In U(1) gauge 2\6, " 6,
theory, the generalized transformation becomes
-1 —m (F2,2,=)[D,,,0,,1=0. (2.19
D,—U0D,0,— > ——|m)(m|, (2.15 _ . .
m=0 20 The fields are denoted by the occupation number basis as
Whereagm) is an complex number and represents the position *
of the mth localized soliton. Au(x)= > c{™ MMM my my)(ng,ny
mq,my,Nnq,Ny=0 M
B. Localized instantons w
Localized instantons are obtained by applying the “solu- = > clMM2:M112)| @ [ mp)(ny|,

mq,My,Nq,Np=0 m

tion generating technique(2.15 to the BPS equations of (2.20
four-dimensional noncommutative gauge theory. :
First let us consider the four-dimensional noncommuta-wherec(ml,mz,nl,nz)

. ; . is a number. We note that only when the
tive space with the coordinates’, w=1,2,3,4 whose non- K . b : y
commutativity is introduced as the canonical form: noncommutative parametét is anti-self-dual, the constant

term (10,+1/60,) disappears and the “solution generating
0 6, O 0 technique” can leave the BPS equati¢hl9 as it is.
Localized instanton solutions are generated by the “solu-
0. 0 0 0 tion generating technique” from the vacuum solution which
"= o 0 0 6,]: (2.16 trivially satisfies the BPS equatid2.19 and is given by

0 0 -6, 0 -1 =

D, =0¢7, 0~ 2 —-lomyom|, (220
The fields on the four-dimensional noncommutative space m=0 <0
whose noncommutativity is Eq2.16) are operators acting
on Fock spacé{="H;®H, whereH,; andH, are defined by
the same steps as the previous discussion corresponding to o
the noncommutatives;-x; plane and the noncommutative (= > Ing,no)(ny,ny|+ > |0,n,)(0n,+K|,
X3-X4 plane, respectively. The element in the Fock spkce np=1n,=0 =0
=H,®H, is denoted byln;)®|n,) or [ny,n,). We intro- (2.22
duce the complex coordinates =X, +iX,, Z;=X3+iX4.
Here we make the noncommutative parametéf anti-

where the shift operators can be taken, for examplé¢42k

oo

which satisfies

self-dual:6,= — 6,=:6>0, so that the “solution generating k—1
technique” could work well on the BPS equation which is Okole fJTUk:l— 2 10Y(0]® |my(m|.
discussed later. In this case, we can define annihilation op- ke K m=0
erators ag,:=(1/126)z,, a,:=(1/\26)z, and creation op- (2.23
At At 5o _ A

ergtoral’=(1/\/ﬁ)21, aj:=(1126)z, in Fock spacé=  The field strength and the instanton numbgA] are calcu-
@ n,-0ClN1)@[ny) such as lated as

[a1,a]]=1, [a;,a;]=1, otherwise-0, (2.17) Fuv=—1(671,.,/0)(0[@Py, (224

where|n,) and|n,) are the occupation number basis gener-

ated from the vacuum stafé) by the action ofal anda;, V[Al:= —

respectively. 167
Four-dimensional noncommutative gauge theory is de- s A

fined by the pure Yang-Mills action: = —dim,|0)(0|® Py=—k. (2.29

[ot £ e

1 Therefore the existence of the nontrivial projectié@ is
Lyw=—"—— f d*x Tr F o F* (2.18 crucial in generating localized solitons and the dimension of
Agym the projection corresponds to the instanton number.
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The interpretation of the moduli parameta(rm) is clear in e e Xaa k-1
commutative description. The exact Seiberg-Witten i3 d—-U[dU,— 5Pt 2 A m)(m],
of the solution(2.21) is obtained in[44] and the DO-brane m=0
density is ) - 1 (m
, k1 D3H&3+UEA3Uk—imE:OAT|m><m|,
Joo0 =+ 2 80a-A") 60— AS")
N R o k—1 Z(m)
X (X5 = A§™) S(xa— A{™), (2.26 DzﬁulDzuk—mE:O ZLa|m><m|, (2.30

where the real parametexétm) are the real or the imaginary \here J, and P, are the same as Eq&.12 and (2.14),

part( <)3f o™, that is, af™=A{"+ir{", afP=A{"  respectively. The important modification is to add the linear
3 (m . ; N

+ikg" . The first term and the second term of the right-iem of x, to the transformation of the Higgs fiel. The

hand side in Eq(2.26 show the uniform distribution of the = |5calized soliton solutions in this theory are generated from
DO-branes on D4-brane and localie®0-brane charge, re-  the vacuum solution by the transformatih30

spectively, which represents just tlkdocalized instantons.

The moduli parametex(™ or (™ is clearly interpreted as T xg
the position of the localized instantons. b= —mZ:0 (7—)\&”") |my(m|,
C. BPS fluxons k-1 (m)
2 O T z
BPS fluxons are obtained by applying the “solution gen- D,= UlﬁzU k™ |m)(m|,
. ; ! m=o0 26

erating technique” to the BPS equation of
(3+ 1)-dimensional noncommutative gauge theory with the k=1 (m)

: 0 yiy i— ivity i A . 4
ccluzo_rdlnates X°,x'"), i1=1,2,3 whose noncommutativity is Ag=—i 2 =2 | my(m|,
0= 6>0. m=0 0

(3+1)-dimensional noncommutative gauge theory is de-
fined by the Yang-Mills-Higgs action: . 1. A .
B3: Epk, BJ_:BZ:O, (231)
1 PN
— 4 nv
v 493MI PxTHELF which is called the BPS fluxofi1,12] because this is similar
L to a flux-tube rather than a monopole.
+2[D,,®][D,,P]), (2.27 The D1-brane density in commutative side is obtained by
the Seiberg-Witten map 4]

whered is an adjoint Higgs field anidx,dx, denotes Y. K1

. . . . . . 1
The anti-self-dual BPS equations are obtained as in Sec. |l B: Jpg(0)= 55@) I mzzo 5(X1—)\(1m))5(xz—)\(2m))

(B3:)[6z,6§]+%:—[63,&>], X S D+ (x3— AN/ 6] (2.32

i o o Hence the parameter{™ shows the positions of the BPS
(B,=)[D3,D,]=—[D,,®], (2.28  fluxon and here we use the relatiag,=\3/6 (cf. Fig. 2.
We can take\{"=0 because\{™ does not appear in Eq.

whereB; are magnetic fields. This equation is often called(2.32 and has no physical meaning.

the Bogomol'nyi equatiori45]. The fields with rotational

symmetry on the;-x, plane are denoted by the occupation |1l ADHM AND NAHM CONSTRUCTION OF LOCALIZED
number basis as SOLITONS

o o In this section we first review ADHM construction of
b= E d™(x3)[n)(n|, A= E A (x3)[n)(n|. commutati_ve instanto_ns_and then apply_ it to localized instan-
n=0 n=0 tons, localized periodic instantoiis-localized calorons lo-
(2.29 calized doubly periodic instantons, and BPS fluxons. The
procedures of the constructions are the same as the commu-
Because of the constant term on the left-hand side of théative case and gives rise to various exact BPS solitons
first equation of Eq.(2.28, the “solution generating tech- straightforwardly. The shift operators and moduli terms natu-
nique” (2.15 cannot work. The modified “solution generat- rally appear in ADHM construction of localized instantons,
ing technique” is found if27,2§ in order to leave the BPS and the linear term of; in Eq. (2.30 is necessarily obtained
equation(2.28 as it is: in Nahm construction of BPS fluxons. The localized calorons
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and the localized doubly periodic instantons are new soliand completeness conditién:
tons.
VVi=1-v(v'v)-1vT, (3.9

A. A review of ADHM construction of instantons and calorons which comes from the assumption tHalV is invertible. It

In this section we discuss ADHM construction of commu-is convenient to introduce the following decomposed matri-
tative instantons. First let us introduce the Euclidean fources ofV:
dimensional Pauli matrices:

=(—io,)), el=(ioy0), (3.9) V—(u)— v |, (3.9

which correspond to the basis of the quarternion as algebra: U2

€= — Jij + €& and also satisfy the following relations: .
whereu,v, andvy, areNXN, 2kXN, andkXN matrices,

eMeIT}: 8,y Fi ni,f;)®0i , respectively. We note thatandv behave®(1) andO(r ~1)
atr =|x|—oo, respectivel\{48]. The final step is to construct
e €,=0,,Ti 77|(+)®0'i- (3.2)  the (anti-self-dual gauge fields using the solutivhof the

. “0-dimensional Dirac equation(3.6) as follows:
Here 7!, are called the 't Hooft symbol and concretely

—vty v=yt T

represented as A,=V'9,V=u'g,utv'd,v. (3.10
77',EV )= € uvat 8,0,4% 8,8 (3.3  The field strength is calculated from the gauge fields:

These symbols are antisymmetric afahti-)self-dual. Next F=dA+ANA

we define the “O-dimensional Dirac operator” which is a — dVIAAVH VTAVAVTY

(N+2K) X 2k matrix as

S =dVIAdV—dVIVAVTdV

T\ (xt—TH)@eH =dVvi(1-VvVHAdV
J It =dV'V(VV) " IVIAdV

>

—| —i(zz=By) —i(z;-B)) |, (3.4 —VI(dV)(VIV) AV TV
~i(z1-B1)  i(z,~BY) =v'e,dx*(V'V) T Aeldx'y
whereSandT, areNXx2k andkxk matrices, respectively, i (VY 1)y dx A dx
and T, are Hermltlan TT—TM. | and J are kXN and o (VIV) ™ T, o dxtAdx (3.11)
N X<k matrlces respectively, an@,:=T,+iT,, B,:=T; '
+iTy. , , , _ _ F.=2i0"(VV) 5o (312
The matrices satisfy the following relations which are
equivalent to tha¥ 'V commute with Pauli matrices; : Hence anti-self-dual gauge fields have been constructed. In
o o the last line of the equatiof8.12), we use the condition that
[B1.BI1+[B,.BY+11"=3"0(=~[2,21]-[2,,2,])=0, V'V should commute with Pauli matrices.
1. G=SU(2) 't Hooft k instantons
[B;,B,]+1J=0, Let us construct & = SU(2) 't Hooft k-instanton solution

(3.5  following the steps in ADHM construction. The solution of

ADHM equation (3.5) is simply given for this instanton as
which are called ADHM equations. Moreover, we have t0¢|ows:

put another condition on the matrices th&ltV is invertible,
which is in fact necessary in ADHM construction. pp O pc O
ADHM construction consists of the following three steps. =

The first step is to solve the ADHM equations. The next step 0 p 0 px

is to solve the following “0O-dimensional Dirac equation” in k=1 (m)
the background of the solution of ADHM E¢B.5): T _d'ad;‘=°()‘# ), (313
viv=0 (3.6  Where the symbol “diag” denotes diagonal sum adff) and

pm are real numbers. The “O-dimensional Dirac equation”

whereV is (N+2k) x N matrices and satisfies the normal- (3.6 is also simply solved:
ization condition:

viv=1, (3.7 “This condition on noncommutative space is discussdd6m7.
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1 1 ture in[34] (cf. Fig. 1). We will discuss the similar discus-
—=| B f1-1at | (3.14  sion about localized caloron solution in Sec. IV.
JM\ = [(x*=T*)ee,] 'S

where the normalization facto¥ is determined by the nor-

malization condition(3.7) as Now let us generalize the above discussion to the non-

commutative case. The difference to the commutative case is

that the coordinates are operators which act on the Fock

N=1+ E m 3.15 space. The ADHM equation is deformed by the noncommu-
tativity of the spatial coordinates as follows:

V:

B. ADHM construction of localized instantons and calorons

k-1 2

and [By,B]]+[By,BY]+11T—313=—2(6,+ 6,),

. (%=
[(x”—T“)@eL]1=d|agﬁ1_{,(m®e“ . [B1,B2]+13=0. (3.20
(3.1  We note that the constant term on the right-hand side of the

first equation disappears only when the noncommutative pa-

u ando are actuallyO(1) and O(r ~%), respectively. The rameter is anti-self-dual, that i8; + 6,=0, which is neces-

gauge fields are given by sary for the existence of the localized instantons.
1 The steps to give rise to instantons are the same as the
) pan)(x,— A ™) commutative case.
A,=V'd V__/T/m A PENOT 1. Localized U1)k instantons

Now let us find localized U(1) instanton solutions using
" ADHM construction, which is considered as the noncommu-
=-— En,uv d9"log N. (3.17  tative version of the 't Hooft instanton solution in thé™
—0 limit.
This solution is called the 't Hooft-instanton solution and is ADHM equations(3.20 are simply solved and the solu-
singular atx=\ (™, which results from that a singular gauge tion of them for localized instantons is
is taken.

2.G=SU(2) 1 caloron 1=3=0, B;=diagy_o(a{"),
The solution (3.17 can be generalized to periodic- -
instanton solution. We can take the instanton numibere B,=diag;_5(ad"), (3.21

and all the size of the instantomps,=p and put them peri-

odically along thex, axis where the period ig. This soliton ~ Wherea; ™ should show the position of theith instanton

is called the calorofid1] and then\” becomes becausé , is the scalar field on DO-brandsandJ contain
the information of the size of instantons and hence the solu-
p? tions 1=J=0 in Eq. (3.21) characterize the corresponding
N=1+ E —2 instantons as localized instantons because localized instan-
m==c |X—mBX,| tons have no moduli parameter of the size and are singular
o on commutative side as E(.26).
) sinl—(— X Next we solve the “O-dimensional Dirac equation” in the
—q14 P B (3.18 background of the solution@.21) of the ADHM equation.
BIX| co o 2_77 ’ This is also simple. Observing the right-hand side
S ,8 X B Xa of the complete condition (3.9, we get A(m)
N =la{™, i) (pi™,pS™| and v,=0, where|p{™, (m)) is
wherex=(x1,X2,Xs). the normalized orthogonal state %t ® Ho:
The caloron solution coincides with the PS-monopole so-
lution [38] up to gauge transformation with—0. The PS- (™, pS™ | p{W oMy = 5.1, (3.22

monopole solution is given by
and|a{™,a{™) is the normalized coherent state and satisfies

X Xoi a|x| . )

X2\ tanrelx| ) 21| a{™,af")=a{"|af™ ,af"),
_eiox [ alx| 1 (3.19 Z|ad™ o™y =ai"a{™ ,a™),
i > 2 . > .

IX| sinha|x|

(a{™, o[ a{™ aiM)y=1. (3.23
where the real constaatrepresents the vacuum expectation

value of the Higgs field, which appears in the gauge transThe elgenvalue&(m) anda(m) of 2, and22 are decided to be
formation. This is reinterpreted clearly from the D-brane pic-just the same as thath dlagonal components of the solution
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B;,B, in Eq. (3.21). Thoughu is undeterminedy already ™

satisfiesV 'V=0, which comes from that in the case that the - m§=:o g Immlely,
self-duality of gauge fields and the noncommutative param-
eter are the same, the coordinates in each colum' gflay

Ao e
the same role in the sense that they are annihilation operators Az, = Uix02,Ukxo = 0z,
or creation operators. k=1 = —(m)_:
The last condition is the normalization conditit17) and n 2 2 * _mﬂ|m><m|®|n><n|
determines u=0, where U, 0/=1, 0/0,=1-P,=1 m=0n=-=» 20
=3k L p(™ pfmy(p{™ pi™|. This is just the shift operator (3.26
and naturally appears in this way. The shift operator and ) _ )
have the same behavior [a — and this is consistent. where the shift operator is defined as
Gathering the results, the solution of E§.6) is .
. . U= 2 Ing)(ng+k[ @1y, (3.27)
u Uk ni=0
V=1 o™ | =| [af™,af™)p{™,pS" |, (3249  The field strength is calculated as
oim 0 ) ) A
F12: - F34: | 5Pk® 1H21 (328)

whereo(™ is themth low of v;. This is the general form of
the solution of the “0-dimensional Dirac equation” and gives

. i ) ) which is trivially periodic in thex, direction. It seems to be
rise to the localized instanton solution:

strange that this contains no information of the perj@d
L Hence one may wonder if this solution is the charge-one
A, =V, Vl=uTd,u+v'9,v-0d, caloron solution orR3x St whose perimeter i. Moreover
one may doubt if this suggests that this soliton represents
D2-brane not an infinite number of DO-branes.

i 1 k2 The apparent paradox is solved by mapping this solution
- to the commutative side by an exact Seiberg-Witten map.
Zi " The commutative description of DO-brane density is as fol-
(™, | —af™, af)(p"™ p§"| - 3, o P Y
20
2 k-1 0
k=1 gm I (xX) = = NG —\m
e po(¥)=—+ 2 > 8x—A{™)8(x— A"
=00 00 = 2 A PR P2 ¢ 0

(3.25 X 8(x3— A 8(x4—A{™—npg). (3.29

116,67 10m) andy is the same as Exzz2, (1% Mot of he prad b sppesred and e souton
then the gau_ge flelds are“the _same_as(EdZ]_). ) lution with the periodB. The above paradox is due to the fact
The solutionV of the “0-dimensional Dirac equation” ha¢ in noncommutative gauge theories, there is no local ob-
also contains all information of the instantons. The instantonygapble and the period becomes obs@uad as is pointed
numberk is represented by the dimension of the projected,t in [44], the D2-brane density is exactly zero. Hence the
states|p™ ,pS™) which appears in the relations of the shift paradox has been solved clearly. This soliton can be inter-
operatoru= U, or the bra part of{™ . The information of preted as a localized instanton on noncommutafve S*.
the position ofk localized solitons is shown in the coherent 3. Localized Y1) 1 doubly periodic instantons

state| (™) in the ket part ofp{™ . In a similar way, we can construct a doubly periodic
2. Localized U1) 1 caloron the x; andx, directiong instanton solution:
Now let us construct a localized caloron solution as the . R .

commutative caloron solution in Sec. lll A, that is, we take Az, =Ukendz Ui = 0y,

the instanton numbek—c and put an infinite number of

localized instantons in thg, direction at regular intervals. k=1 lm)

We have to find an appropriate shift operator so that it gives - Z #|m)(m|®1H2,

rise to an infinite-dimensional projection operator and put the
moduli parameteh , periodic.

The solution is found as
SWithout the Seiberg-Witten map, we can discuss the physical

A =0t 5.0 _5 meaning of the moduli paramet&r, on the noncommutative side,
217 Y kxe¥z P kXe Yz see, for exampld,14,30,49.

085022-8



ATIYAH-DRINFELD-HITCHIN-MANIN AND NAHM . .. PHYSICAL REVIEW D 65 085022

Ay, =U0lyd; U=y, 00f=1, 0/0=1-P,, (3.33
LooZ M4 —iBon, where the projectiorP, is the following diagonal sum:
2
+mZOn nE* 20 Imim (M) (Ma)y /(M) (M)
= , =—® m. m m. m
v Py:=diag}_,(diagm |p;"™ Py * )Py .05 ).
®|a ~ (1, 2)>< Iy, 2)| (3.30 (3.39

n 1Ny nqin,

| (ma)> is the normalized coherent sta®23).

Next in the case ofp\™ ,pS™)=|0,m,), the shift opera-

tice [50] and an orthonormal and complete B81,52.°Von 1oy is, for example, chosen as the following diagonal sum:
Neumann lattice is the complete subsystem of the set of the

where the systenf|a,, v I2)>}n1 n,cz IS @ von Neumann lat-

coherent states which is overcomplete, and generated by R N *
e'1%s ande'2%4, where the periods of the lattide,|, < R sat- Ux=diaga-4| _121 Y [n1,N2)(Ny,Ny|
1= 2=

isfies I41,=2m60 (see alsq[53,54)). This complete system
has two kinds of labels and is suitable to doubly periodic
instanton. Of course, another complete system can be avail- + 2 [002)(0.n+ k). (3.39
able if one labels the system appropriately. n2=0

The field strength in the noncommutative side is the sam
as Eq.(3.28 and the commutative description of DO-brane
density becomes

fa{™ ™) is the normalized coherent state and defined
similarly as Eq.(3.23. We can construct another nontrivial
example of a shift operator in B{) gauge theories by using
o noncommutative ABS constructiofb8]. The localized in-
Jpoo(X + 2 > ax—Am) stanton solution if16] is one of these generalized solutions
m=0 ny,ny=—° for N=2.
We can construct W) localized calorons and W) lo-

—y (m) —\(m)_ . A :
X 8(Xz=A37) 8(X3=Ng7 —N1By) calized doubly periodic instantons in the same way.

X 8(x4— N —n,B,), (3.30)
N 4 22 C. Nahm construction of BPS fluxons

which guarantees that this is an appropriate charge-one dou- |n this section we discuss the Nahm construction of

bly periodic instanton solution with the perigg , 8. k-BPS fluxon solutions. The procedure is the same as local-
This soliton can be interpreted as a localized instanton ofyed instantons.
noncommutativeR”X T2, The exact known solitons on non- |n order to construct a fluxon solution, we have to intro-

commutative torus are very refined or abstract as is found iguce a “1-dimensional Dirac operator”:
[54-57. It is therefore notable that our simple solution

(3.30 is indeed doubly periodic. The point is that we treat J |7
noncommutativeR* not noncommutative torus and apply the d
“solution generating technique” to th&(; side only. - id——|( —Ts3) —i(Z—TZ)
4. Localized UN)k instantons Vi= g , (3.3
There is an obvious generalization of the construction of A . .
the U(N) localized instanton as follows. In the solution of —i(z,=T,) |d—§+|(x3—T3)

ADHM equations,J can be still zero an®, , are the same
as that of theN=1 case. The solution of the “0O-dimensional wherel,J, and T (5) are kX N,NXxk, and kX k matrices,

Dirac equation”(3.6) is given by respectwely, and’ =T,, T;=T,;+iT,. We have taken the
gaugeT,=
u Oy Now we introduce a formal product and an inner product
g o 0™ oMy plme) ()| | of N+ 2k vectorsV(&) andV' (&) as follows, respectively,
l“)(zm,a) 0 o N )
(3.32 v.V’:=2 ululs(e—¢g)+o'to’, (3.37

wherem, runs over some elements{f,1, - - ,k—1} whose a N a
number isk, and allm, are different.(Hence=Y_ k,=k.) (\7,\7'>;=J +d§ VAVZEDYS u;u;+J +d§ v,
The Nx N matrix U, is a partial isometry and satisfies a=l a-

5To make this system complete, the sum over the lalrejsng) whereu andv are theN vector in the upper side &f and the

of the von Neumann lattice is taken removing one pair. We apply2K Vector in the lower side of, respectively, andi, is the
this summation rule to the doubly periodic instanton solut@Bg0). ath low of u. The components of may contain differential
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operators. The interval of integration in the inner productThe third step is to construct the anti-self-dual configuration
depends on the kind of the monopoles and is determined byf Higgs field® and gauge field#; as follows:

the region where the D1-brane spans in the transverse direc-
tion against the D3-brandsf. Fig. 1).

The elements in the “1-dimensional Dirac operator”
(3.36 satisfy the following relation which is equivalent to
that V-V commutes with Pauli matrices; : In the solution of the Higgs fieldé appears in place of a
derivative, which suggests that the Higgs field would be the
Fourier-transformed field of the gauge field.

Now let us construct a BPEfluxon solution. We putG
=U(1) and the coordinate of the jumping poi&t=0 for

- _ simplicity. The situation is shown in Fig. 2.
+a§=:1 (lala=Jada) 6(£— &a) = — 20, The Nahm equation$3.39 or (3.40 are simply solved
similarly to the ADHM equation:

b=(0,0),  A=(V,a0). (3.43

d d
_+T3,__+T3

t
[TZ!TZ]+ dg dg

N
+T, +leaJa¢$(§—§a)=O. (3.39 1=J=0, T(&)=diagh_o(\™—05,3¢). (3.49

Tz’d_§

instantons, the constant term appears in the right-hand sidéMpPing pointsé=¢, and1=J=0 shows that the interval

of the first equation because of the noncommutative param? =0 (see Fig. 2, which corresponds to BPS fluxons.
eters of the spatial coordinates. Next we have to solve the “1-dimensional Dirac equa-

L= tion” (3.41). We note that the interval of integration in the
=T+ 05 .(3.
It we defineT;=T;+ 053¢, Eq. (3.39 becomes inner product, ) is infinite: (—,%) because the fluxon is
described as the infinite D1-brane piercing D3-branes.

~ o~ d . d .
[T, TN+ = +Ts,— = +T3 In the similar way of the instantons, the solution of Dirac
d¢ d¢ equation(3.41) in the background o3.44) can be found as
N follows:
+ 2 (1133332 0(¢-£2) =0,
u Uk
N | m | —| fm) (m)

-~ ~ V_ Ul - f (§1X3)|a ><m| ’ (345)
Togz T s+ 2 1adad(é-E2)=0. (340 . ’

dé a=1 oim 0

This is the same as that on commutative space. (M (M )
Nahm construction also has three steps as ADHM con¥herelaz™) is the same ajwxi™) in Sec. Il B and the partial

struction, that is, the first step is to solve the Nahm equatiofsometryU, is the same as E¢2.12).

(3.39 and the next step is to solve the following “1-  The functionf(™(& x3) is determined by the normaliza-

dimensional Dirac equation” in the background of the solu-tion condition (3.42 of V and the “1-dimensional Dirac

tion of the Nahm equation with the normalization condition: equation”(3.41) as

N t
.. Jal - 14 (m)\ 2
vV gl(la)uab‘(f ¢a) f(m)(&Xs):(g) eXF{—E &+ T) -
d N (3.46
id—§+i(X3_T3) i(z,—T))
+ Substituting Eqs(3.45 and Eq.(3.46 into (3.43, we
A od have the anti-self-dual configuration:
i(z,—Ty) |d_§_|(X3_T3)
~ P 12k=1 .
v =00 -
x( Al) —0, (3.41) P=6UUit w) mE:O e
b2 (m)
X3—Ag" 2
~ o~ — =% |t
(V) =1. (3.42 x| ¢ g |e " Im(m|
k=1 /s m
"Usually the Nahm equation is written in the following real rep- - _ E ( 3 73 )|m><m|
resentationd T, /d¢+i € T T+ =5_ 1 SIS, 8(6— &) = — 05,5. m=0 0 '

085022-10



ATIYAH-DRINFELD-HITCHIN-MANIN AND NAHM . .. PHYSICAL REVIEW D 65 085022

A3 = <\A/, 9 3\A/> Localized Caloron

[ g UT(_3T3_§)U

(period = B - 0)

k-1 v (m) Fourier transformati
Xz3— A y ourier transformation
m=0 0
“ D1
k-1 space
A —(\) N\ —1115 [ g Eggm) ) = D3
A= <Va&zv>_UkazUk_az_m:0 20 |m><m| " rotation
(347 (period =2En =)
Thi; is just the BPS fluxon sqlutio(ri.S]). The Iinear term of T-dualized Caloron BPS Fluzon
X3z in the Higgs field(2.31) is naturally derived and the
meaningless parametﬁﬁm) of course never appears. FIG. 3. Localized 1)1 caloron and the relation to BPS fluxon.
IV. FOURIER TRANSFORMATION OFE LOCALIZED z, respectively. We note that the anti-self-dual condition of
CALORONS the noncommutative parameté;+ 6,=0 in the localized

caloron would correspond to the anti-self-dual condition of

In this section we discuss the Fourier transformation ofthe BPS fluxon. In the D-brane picture, the Fourier transfor-
the gauge fields of localized caloron and show that the transnation(4.1) can be considered as the compositd afuality
formed configuration exactly coincides with the BPS fluxonin the x, direction and the space rotation iy-® plane
in the 8—0 limit. This discussion is similar to that the com- [39-41] (cf. Fig. 3.
mutative caloron exactly coincides with the PS monopole in
the B—0 limit up to gauge transformation as in the end of
Sec. lIIA. V. CONCLUSION AND DISCUSSION

The Fourier transformation can be defined as In this paper we have discussed ADHM and Nahm con-

structions of localized solitons in noncommutative gauge
theories and Fourier transformation of localized calorons. We
have found the various localized solitons including new soli-

1H2*>1, X3‘41H2*>X3‘4;

A _:@'] tons: localized calorons and localized doubly periodic instan-

L tons. The shift operators and the moduli terms naturally ap-

1 (B2 , . pear in ADHM construction. BPS fluxons are also obtained

= lim Ef (,3/2)dx4 e?mlBA (4.1  straightforwardly by the steps of Nahm construction without
B—0 -

modifications or tricks. The Fourier-transformed localized
calorons exactly coincide with BPS fluxons which is consis-
tent with theT dual picture of the corresponding D-brane
P P system up to space rotation.

write these zero mode&!”! andiAl”! asA; and & in the One of further studies is the Nahm construction of exact
(3+1)-dimensional noncommutative gauge theory, respechon-Abelian caloron solutions in noncommutative gauge
tively. Noting that in the localized caloron solutid8.26),  theory and the study of duality of the gauge fields or more

Uﬁm;?zzokm—ng P.® 1H2(§‘2/292), where theP, is the ~ fundamentally the Dirac zero modé. T duality is usually
same as the projection in E(@.14), the transformed fields stu.dled not for the fleId§ on the D-brane _but for the metric or
are easily calculated as follows: B field. Howeve_rT d_uahty o_f the gauge fields described t_)y
operator formalism is very important because the formalism
k—1 (m) is suitable to deal with algebraically and the study might be

In the B—0 limit, only the |=0 mode survives and the
Fourier transformation(4.1) becomes trivial. Then we re-

A =0 0.—5 1 Im)(m| a key point of_noncommutative ADHM or Nahm duality an.d
! nok g 20 ' noncommutative Nahm transformation on non-commutative
4-torus [59]. If we find some concrete representation of
. k=1 A Nahm transformation, we must be able to reveal many as-
A3=imz_0 0—2|m)(m|, pects of it.

Another direction is the completion of noncommutative
1 (m ADHM or Nahm duality. One-to-one correspondence be-
(Xs_)\g )|m><m| 42 tween instanton and monopole solutions and ADHM and
0 ' ' Nahm data up to gauge equivalence is rather trivial from the
D-brane picture with background constdhfield. Neverthe-
The Fourier transformatior4.1) also reproduces the anti- less the study is worthwhile because the detailed D-brane
self-dual BPS fluxon rewriting, , 6,, andz, as#, — 6, and interpretation of noncommutative ADHM and Nahm duality
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might be useful for finding higher dimensional ADHM and doubly periodic instanton solutiof8.30 in our notation and
Nahm constructions which corresponds to the DO-D6 systerthe solution in[54—57] is interesting.
or the D0O-D8 system with appropriate background constant
B field [60,61].8 In these systems, the existence of Bhéeld
is important to make the systems BPS and hence the non- ACKNOWLEDGMENTS
commutative gauge theoretical description of them which is
equivalent to the D-brane system might give rise to some It is a great pleasure to thank Y. Matsuo for a careful
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