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Atiyah-Drinfeld-Hitchin-Manin and Nahm constructions of localized solitons
in noncommutative gauge theories
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We study the relationship between Atiyah-Drinfeld-Hitchin-Manin~ADHM ! and Nahm constructions and
the ‘‘solution generating technique’’ of Bogomol’nyi-Prasad-Sommerfield~BPS! solitons in noncommutative
gauge theories. ADHM and Nahm constructions and ‘‘solution generating technique’’ are the strongest ways to
construct exact BPS solitons. Localized solitons are the solitons which are generated by the ‘‘solution gener-
ating technique.’’ The shift operators which play crucial roles in the ‘‘solution generating technique’’ naturally
appear in ADHM and Nahm constructions and we can construct various exact localized solitons including new
solitons: localized periodic instantons~5localized calorons! and localized doubly periodic instantons. Nahm
construction also gives rise to BPS fluxons straightforwardly from the appropriate input Nahm data which is
expected from the D-brane picture of BPS fluxons. We also show that the Fourier-transformed soliton of the
localized caloron in the zero-period limit exactly coincides with the BPS fluxon.
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I. INTRODUCTION

Noncommutative gauge theories are fascinating gene
zations of ordinary gauge theories and often appear mys
ously in string theories. Recently, it was shown that gau
theories on D-branes with a background constantB field
are equivalent to noncommutative gauge theories
some limit @1–3# and it becomes possible to study som
aspects of D-brane dynamics such as tachyon condensat1

in terms of noncommutative gauge theories which are co
paratively easier to deal with. Especially noncommutat
Bogomol’nyi-Prasad-sommerfield~BPS! solitons are worth
studying because they describe the static configuration
D-branes and are important in studying nonperturbative
pects of the gauge theories on it.

Noncommutative spaces are characterized by the nonc
mutativity of the spatial coordinates:

@xi ,xj #5 iu i j . ~1.1!

This relation looks like the canonical commutation relati
in quantum mechanics and leads to the ‘‘space-space un
tainty relation.’’ Hence the singularity which exists on com
mutative spaces could resolve on noncommutative spa
This is one of the distinguished features of noncommuta
theories and gives rise to various new physical objects,
example, smooth U(1) instantons@5,6#,2 ‘‘visible Dirac-like
strings’’ @10# and the fluxons@11,12#. U(1) instantons exist
due to the resolution of small instanton singularities of
complete instanton moduli space@13#. However U(1) instan-
tons still exist even when the singularities of the compl
instanton moduli space do not resolve, that is, when the s
duality of the gauge field is the same as that of the nonc
mutative parameteru i j @14–16#.

*Electronic address: hamanaka@hep-th.phys.s.u-tokyo.ac.jp
1For a review see@4#.
2On commutative side, e.g.,@3,7,8,9#.
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There are two powerful ways to construct exact nonco
mutative BPS solitons, that is, Atiyah-Drinfeld-Hitchin
Manin ~ADHM ! and Nahm constructions and the ‘‘solutio
generating technique.’’ ADHM or Nahm constructions are
wonderful application of the one-to-one correspondence
tween the instanton or monopole moduli space and the sp
of ADHM or Nahm data and gives rise to arbitrary instanto
@17# or monopoles@18#, respectively. ADHM and Nahm con
structions have a remarkable D-brane description@19–21#.
D-branes give intuitive explanations for various results
known field theories and explain the reason why the inst
ton or monopole moduli spaces and the space of ADHM
Nahm data correspond one-to-one. However, there still e
unknown parts of the D-brane descriptions and it is expec
that further study of the D-brane description of ADHM an
Nahm constructions would reveal new aspects of D-br
dynamics, such as Myers effect@22# which in fact corre-
sponds to some boundary conditions in Nahm construct
On the other hand, the ‘‘solution generating technique’’ is
transformation which leaves an equation as it is and gi
rise to various new solutions from known solutions of it. T
new solutions have a clear matrix theoretical interpretat
@23–25# and concerns with the important fact that a D-bra
can be constructed by lower dimensional D-branes. He
the study of the relation between the two constructions
very important to deepen our understanding of D-branes

The U(1) instantons with the same self-duality as t
noncommutative parameteru i j and BPS fluxons can be con
structed by applying the ‘‘solution generating techniqu
@26# to the corresponding BPS equations@14# and@12,27,28#,
respectively.3 The solitons which are generated from th
vacuum by the ‘‘solution generating technique’’ are call
localized solitonsin the matrix theoretical contexts. In gen

3‘‘The solution generating technique’’ can be also applied to
self-dual BPS equation of the (211)-dimensional Abelian-Higgs
model only when the Higgs vacuum expectation valuev satisfies
v251/u @27–30#.
©2002 The American Physical Society22-1
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eral, the new solitons generated from known solitons by
‘‘solution generating technique’’ are the composite of know
solitons and localized solitons. Hence localized solitons
essential in the ‘‘solution generating technique’’ and, in fa
special to noncommutative gauge theories. Localized ins
tons have been constructed not only by the ‘‘solution gen
ating technique’’ @14# but also by ADHM construction
@15,16#. BPS fluxons are the special class of BPS solitons
(311)-dimensional noncommutative gauge theory and m
be found by Nahm construction. However, they have
been found yet. Moreover in order to get BPS fluxons by
‘‘solution generating technique,’’ we have to modify th
technique@27# or use some trick@28#.

There is another BPS soliton to which ADHM and Nah
construction can be applied: the caloron. Calorons are p
odic instantons in one direction, that is, instantons onR3

3S1. They were first constructed explicitly in@31# as an
infinite number of ’t Hooft instantons periodic in one dire
tion and used for the discussion on nonperturbative asp
of finite-temperature field theories@31,32#. Calorons can in-
termediate between instantons and monopoles and coin
with them in the limits ofb→` and b→0, respectively,
whereb is the perimeter ofS1 @33#. Hence calorons also ca
be reinterpreted clearly from D-brane picture@34# and con-
structed by Nahm construction@35–37#.

The D-brane pictures of them are the following~see Fig.
1!. Instantons and monopoles are represented as D0-br
on D4-branes and D-strings ending to D3-branes, resp
tively. Hence calorons are represented as D0-branes on
branes lying onR33S1.

In the T-dualized picture, the U(N) 1 caloron can be in-
terpreted asN21 fundamental monopoles and theNth
monopole which appears from the Kaluza-Klein sector@34#.
The value of the fourth component of the gauge field
spatial infinity on D4-brane determines the positions of
D3-branes which denote the Higgs expectation values of
monopole. The positions of the D3-branes are called
jumping points because at these points, the D1-brane is
erally separated. In theN52 case, the separation interv
~see Fig. 1! D satisfiesD;r2/b @34,37#, and if the sizer of
periodic instanton is fixed and the periodb goes to zero, then
one monopole decouples and the situation exactly coinc
with that of the PS-monopole@38#. BPS fluxons are repre

FIG. 1. The D-brane description of U(2) 1 caloron.
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sented as infinite D-strings piercing D3-branes in the ba
ground constantB field and are considered to be th
T-dualized noncommutative calorons in the limit with th
period b→0 and the intervalD→0, which suggestsr50
~cf. Fig. 2!.

In the present paper we give the various exact BPS s
tons by ADHM and Nahm construction: localized instanton
localized calorons, localized doubly periodic instantons, a
BPS fluxons which are essential in the ‘‘solution generat
technique.’’ The shift operators which play crucial roles
the ‘‘solution generating technique’’ naturally appear
ADHM construction and other important points are all d
rived straightforwardly in ADHM/Nahm construction. In thi
way, we discuss the relationship between the two metho
The solutions of the localized calorons and the localized d
bly periodic are new results. We also discuss a Fourier tra
formation of the localized calorons and show that t
Fourier-transformed configurations of the localized caloro
in theb→0 limit indeed coincides with BPS fluxons, whic
could be considered that BPS fluxons corresponding to
branes are the solitons of T-dualized solitons of localiz
calorons corresponding to D0-brane with the periodb→0 up
to space rotation@39–41#.

This paper is organized as follows. In Sec. II, we brie
review the ‘‘solution generating technique’’ and localize
solitons. In Sec. III we present ADHM construction of in
stantons and apply them to localized solitons. In Sec. IV
take the Fourier transformation of the localized calorons a
show that in theb→0 limit, the transformed solitons exactl
coincide with BPS fluxons. Finally Sec.V is devoted to t
conclusion and discussion.

II. A REVIEW OF THE ‘‘SOLUTION GENERATING
TECHNIQUE’’ AND LOCALIZED SOLITONS

In this section we make a brief review of the ‘‘solutio
generating technique’’ and some application of it which ge
erates localized instantons and BPS fluxons.

Noncommutative gauge theories have two equivalent
scriptions, that is, star-product formalism and operator f
malism. There is a commutative description equivalent to
noncommutative gauge theories and the commutative and
noncommutative description are connected by the Seib
Witten map@3#. In the present paper we mainly use the o
erator formalism and when we make a physical interpre
tion, we shift to the commutative description by the Seibe
Witten map.

Let us present noncommutative gauge theories in the
erator formalism and establish notations. In this formalis

FIG. 2. The BPS fluxon.
2-2
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we start with the noncommutativity of the spatial coordina
~1.1! and define noncommutative gauge theories conside
the coordinates as operators. From now on, we denote th
on the operators in order to emphasize that they are op
tors. Here, for simplicity, we treat a noncommutative pla
with the coordinatesx̂1,x̂2 which satisfy @ x̂1,x̂2#5 iu,
u.0.

Defining new variablesâ,â† as

âª
1

A2u
ẑ, â†

ª

1

A2u
ẑ̄, ~2.1!

where ẑ5 x̂11 i x̂2, ẑ̄5 x̂12 i x̂2, then we get the Heisen
berg’s commutation relation:

@ â,â†#51. ~2.2!

Hence the spatial coordinates can be considered as the
erators acting on Fock spaceH which is spanned by the
occupation number basisun&ª$(â†)n/An! %u0&, âu0&50:

H5 % n50
` Cun&. ~2.3!

The fields on the space depend on the spatial coordin
and are also the operators acting on the Fock spaceH. They
are represented by the occupation number basis as

f̂ 5 (
m,n50

`

f (mn)um&^nu. ~2.4!

The matrix elementf (mn) is infinite-size. If the fields have
rotational symmetry on the plane, that is, the fields comm
with the number operatorn̂ªâ†â;( x̂1)21( x̂2)2, they be-
come diagonal:

f̂ 5 (
n50

`

f (n)un&^nu. ~2.5!

The derivative of an operatorÔ can be defined by

]mÔª@ ]̂m ,Ô#, where ]̂mª2 i ~u21!mnx̂n,
~2.6!

which satisfies the Leibniz rule and the desirable relati
]mx̂n5dm

n . Moreover, defining the following anti-Hermitia
operator

D̂mª ]̂m1Âm , ~2.7!

whereÂm is a gauge field and anti-Hermitian, then the cov
riant derivative of an adjoint fieldF̂ can be defined by

@D̂m ,F̂#.
We note that using this anti-Hermitian operatorD̂m , the

field strengthF̂mn is rewritten as

F̂mn5@D̂m ,D̂n#2 i ~u21!mn . ~2.8!
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Here the constant term2 i (u21)mn appears so that it shoul
cancel out the term@ ]̂m ,]̂n#@5 i (u21)mn# in @D̂m ,D̂n# and
becomes an obstruct in applying the ‘‘solution generat
technique’’ to BPS equations.

From now on, we mainly use complex representatio

such asD̂zª(1/2)(D̂12 iD̂ 2)52(1/2u) ẑ̄1Âz .

A. The ‘‘solution generating technique’’

The ‘‘solution generating technique’’ is a transformatio
which leaves an equation as it is, that is, one of the au
Bäcklund transformations. The transformation is almos
gauge transformation and is defined as follows:

D̂z→Û†D̂zÛ, ~2.9!

whereÛ is an almost unitary operator and satisfies

ÛÛ†51. ~2.10!

We note that we do not putÛ†Û51. If Û is finite-size,
ÛÛ†51 implies Û†Û51 and thenÛ and the transforma-
tion, ~2.9! become a unitary operator and just a gauge tra
formation, respectively. Now, however,Û is infinite size and
we only claim thatÛ†Û is a projection because (Û†Û)2

5Û†(ÛÛ†)Û5Û†Û. The operatorÛ which satisfiesÛÛ†

51 andÛ†Û5 ~projection! is often called the partial isom
etry.

The transformation~2.9! generally leaves an equation o
motion as it is@26#:

dL
dO→Û†

dL
dOÛ, ~2.11!

whereL andO are the Lagrangian and the field in the L
grangian. Hence if one prepares a known solution of
equation of motiondL/dO50, then we can get various new
solutions of it by applying the transformation~2.9! to the
known solution.

The typical example of the partial isometryÛ is a shift
operator. In U(1) gauge theory, one of the shift operat
acting on the Fock space~2.3! is

Ûk5 (
n50

`

un&^n1ku, ~2.12!

which satisfies

ÛkÛk
†51, Ûk

†Ûk512 P̂k , ~2.13!

whereP̂k is a projection onto thek-dimensional subspace o
the Fock spaceH and is expressed as

P̂kª (
m50

k21

um&^mu. ~2.14!

Here we note that in star product formalism, the behavior
the shift operator at largeuxu is order 1 which is denoted by
2-3
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O(1). The newsoliton solutions from vacuum solutions a
called localized solitons. The dimension of the projectionP̂k
in fact represents the charge of the localized solitons. In g
eral, the new solitons generated from known solitons by
‘‘solution generating technique’’ are the composite of know
solitons and localized solitons.

The ‘‘solution generating technique’’~2.9! can be gener-
alized so as to include moduli parameters. In U(1) gau
theory, the generalized transformation becomes

D̂z→Ûk
†D̂zÛk2 (

m50

k21 āz
(m)

2u
um&^mu, ~2.15!

whereaz
(m) is an complex number and represents the posi

of the mth localized soliton.

B. Localized instantons

Localized instantons are obtained by applying the ‘‘so
tion generating technique’’~2.15! to the BPS equations o
four-dimensional noncommutative gauge theory.

First let us consider the four-dimensional noncommu
tive space with the coordinatesxm, m51,2,3,4 whose non-
commutativity is introduced as the canonical form:

umn5S 0 u1 0 0

2u1 0 0 0

0 0 0 u2

0 0 2u2 0
D . ~2.16!

The fields on the four-dimensional noncommutative sp
whose noncommutativity is Eq.~2.16! are operators acting
on Fock spaceH5H1^ H2 whereH1 andH2 are defined by
the same steps as the previous discussion correspondi
the noncommutativex1-x2 plane and the noncommutativ
x3-x4 plane, respectively. The element in the Fock spaceH
5H1^ H2 is denoted byun1& ^ un2& or un1 ,n2&. We intro-
duce the complex coordinates asz15x11 ix2 , z25x31 ix4.

Here we make the noncommutative parameterumn anti-
self-dual:u152u25:u.0, so that the ‘‘solution generatin
technique’’ could work well on the BPS equation which
discussed later. In this case, we can define annihilation

erators asâ1ª(1/A2u) ẑ1 , â2ª(1/A2u) ẑ̄2 and creation op-

erator â1
†
ª(1/A2u) ẑ̄1 , â2

†
ª(1/A2u) ẑ2 in Fock spaceH5

% n1 ,n250
` Cun1& ^ un2& such as

@ â1 ,â1
†#51, @ â2 ,â2

†#51, otherwise50, ~2.17!

whereun1& and un2& are the occupation number basis gen
ated from the vacuum stateu0& by the action ofâ1

† and â2
† ,

respectively.
Four-dimensional noncommutative gauge theory is

fined by the pure Yang-Mills action:

LYM52
1

4gYM
2 E d4x Tr FmnFmn, ~2.18!
08502
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where*d4x denotes TrH .
The anti-self-dual BPS equations are obtained as the c

dition that the action density should take the minimum:

~ F̂z1z̄1
1F̂z2z̄2

5 !2@D̂z1
,D̂z1

† #2@D̂z2
,D̂z2

† #

2
1

2 S 1

u1
1

1

u2
D50,

~ F̂z1z2
5 !@D̂z1

,D̂z2
#50. ~2.19!

The fields are denoted by the occupation number basis a

Âm~ x̂!5 (
m1 ,m2 ,n1 ,n250

`

cm
(m1 ,m2 ,n1 ,n2)um1 ,m2&^n1 ,n2u

5 (
m1 ,m2 ,n1 ,n250

`

cm
(m1 ,m2 ,n1 ,n2)um1&^n1u ^ um2&^n2u,

~2.20!

wherecm
(m1 ,m2 ,n1 ,n2) is a number. We note that only when th

noncommutative parameteru i j is anti-self-dual, the constan
term (1/u111/u2) disappears and the ‘‘solution generatin
technique’’ can leave the BPS equation~2.19! as it is.

Localized instanton solutions are generated by the ‘‘so
tion generating technique’’ from the vacuum solution whi
trivially satisfies the BPS equation~2.19! and is given by

D̂zi
5Ûk

†]̂zi
Ûk2 (

m50

k21 ā i
(m)

2u i
u0,m&^0,mu, ~2.21!

where the shift operators can be taken, for example, as@42#

Ûk5 (
n151,n250

`

un1 ,n2&^n1 ,n2u1 (
n250

`

u0,n2&^0,n21ku,

~2.22!

which satisfies

ÛkÛk
†51, Ûk

†Ûk512 (
m50

k21

u0&^0u ^ um&^mu.

~2.23!

The field strength and the instanton numbern@Â# are calcu-
lated as

F̂mn52 i ~u21!mnu0&^0u ^ P̂k , ~2.24!

n@Â#:5
1

16p2E d4x F̂mnF̂mn

52dimHu0&^0u ^ P̂k52k. ~2.25!

Therefore the existence of the nontrivial projectionP̂k is
crucial in generating localized solitons and the dimension
the projection corresponds to the instanton number.
2-4
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The interpretation of the moduli parametera i
(m) is clear in

commutative description. The exact Seiberg-Witten map@43#
of the solution~2.21! is obtained in@44# and the D0-brane
density is

JD0~x!5
2

u2
1 (

m50

k21

d~x12l1
(m)!d~x22l2

(m)!

3d~x32l3
(m)!d~x42l4

(m)!, ~2.26!

where the real parameterslm
(m) are the real or the imaginar

part of a i
(m) , that is, a1

(m)5l1
(m)1 il2

(m) , a2
(m)5l3

(m)

1 il4
(m) . The first term and the second term of the righ

hand side in Eq.~2.26! show the uniform distribution of the
D0-branes on D4-brane and localizedk-D0-brane charge, re
spectively, which represents just thek-localized instantons
The moduli parametera i

(m) or lm
(m) is clearly interpreted as

the position of the localized instantons.

C. BPS fluxons

BPS fluxons are obtained by applying the ‘‘solution ge
erating technique’’ to the BPS equation
(311)-dimensional noncommutative gauge theory with
coordinates (x0,xi), i 51,2,3 whose noncommutativity i
u125u.0.

(311)-dimensional noncommutative gauge theory is
fined by the Yang-Mills-Higgs action:

I YMH52
1

4gYM
2 E d4x Tr~ F̂mnF̂mn

12@D̂m ,F̂#@D̂m ,F̂#!, ~2.27!

whereF̂ is an adjoint Higgs field and*dx1dx2 denotes TrH .
The anti-self-dual BPS equations are obtained as in Sec.

~B̂35 !@D̂z ,D̂z
†#1

1

u
52@D̂3 ,F̂#,

~B̂z5 !@D̂3 ,D̂z#52@D̂z ,F̂#, ~2.28!

where B̂i are magnetic fields. This equation is often call
the Bogomol’nyi equation@45#. The fields with rotational
symmetry on thex1-x2 plane are denoted by the occupati
number basis as

F̂5 (
n50

`

F (n)~x3!un&^nu, Â5 (
n50

`

A(n)~x3!un&^nu.

~2.29!

Because of the constant term on the left-hand side of
first equation of Eq.~2.28!, the ‘‘solution generating tech
nique’’ ~2.15! cannot work. The modified ‘‘solution genera
ing technique’’ is found in@27,28# in order to leave the BPS
equation~2.28! as it is:
08502
-

-

e

-

B:

e

F̂→Ûk
†F̂Ûk2

x3

u
P̂k1 (

m50

k21

lF
(m)um&^mu,

D̂3→]31Ûk
†Â3Ûk2 i (

m50

k21
l4

(m)

u
um&^mu,

D̂z→Ûk
†D̂zÛk2 (

m50

k21 āz
(m)

2u
um&^mu, ~2.30!

where Ûk and P̂k are the same as Eqs.~2.12! and ~2.14!,
respectively. The important modification is to add the line
term of x3 to the transformation of the Higgs fieldF̂. The
localized soliton solutions in this theory are generated fr
the vacuum solution by the transformation~2.30!

F̂52 (
m50

k21 S x3

u
2lF

(m)D um&^mu,

D̂z5Ûk
†]̂zÛk2 (

m50

k21 az
(m)

2u
um&^mu,

Â352 i (
m50

k21
l4

(m)

u
um&^mu,

B̂35
1

u
P̂k , B̂15B̂250, ~2.31!

which is called the BPS fluxon@11,12# because this is simila
to a flux-tube rather than a monopole.

The D1-brane density in commutative side is obtained
the Seiberg-Witten map in@44#:

JD1~x!5
1

u
d~F!1 (

m50

k21

d~x12l1
(m)!d~x22l2

(m)!

3d@F1~x32l3
(m)!/u#. ~2.32!

Hence the parameterl i
(m) shows the positions of the BP

fluxon and here we use the relationlF5l3 /u ~cf. Fig. 2!.
We can takel4

(m)50 becausel4
(m) does not appear in Eq

~2.32! and has no physical meaning.

III. ADHM AND NAHM CONSTRUCTION OF LOCALIZED
SOLITONS

In this section we first review ADHM construction o
commutative instantons and then apply it to localized inst
tons, localized periodic instantons~5localized calorons!, lo-
calized doubly periodic instantons, and BPS fluxons. T
procedures of the constructions are the same as the com
tative case and gives rise to various exact BPS solit
straightforwardly. The shift operators and moduli terms na
rally appear in ADHM construction of localized instanton
and the linear term ofx3 in Eq. ~2.30! is necessarily obtained
in Nahm construction of BPS fluxons. The localized caloro
2-5
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and the localized doubly periodic instantons are new s
tons.

A. A review of ADHM construction of instantons and calorons

In this section we discuss ADHM construction of comm
tative instantons. First let us introduce the Euclidean fo
dimensional Pauli matrices:

emª~2 is i ,1!, em
† 5~ is i ,1!, ~3.1!

which correspond to the basis of the quarternion as alge
eiej52d i j 1e i jkek and also satisfy the following relations

emen
†5dmn1 ihmn

i (2)
^ s i ,

em
† en5dmn1 ihmn

i (1)
^ s i . ~3.2!

Here hmn
i (6) are called the ’t Hooft symbol and concrete

represented as

hmn
i (6)5e imn46d imdn47d indm4 . ~3.3!

These symbols are antisymmetric and~anti-!self-dual. Next
we define the ‘‘0-dimensional Dirac operator’’ which is
(N12k)32k matrix as

¹̂ªS S

~xm2Tm! ^ emD
5S J I†

2 i ~z22B2! 2 i ~ z̄12B1
†!

2 i ~z12B1! i ~ z̄22B2
†!
D , ~3.4!

whereS andTm areN32k andk3k matrices, respectively
and Tm are Hermitian:Tm

† 5Tm . I and J are k3N and
N3k matrices, respectively, andB1ªT11 iT2 , B2ªT3
1 iT4.

The matrices satisfy the following relations which a
equivalent to that¹†¹ commute with Pauli matricess i :

@B1 ,B1
†#1@B2 ,B2

†#1II †2J†J~[2@z1 ,z̄1#2@z2 ,z̄2# !50,

@B1 ,B2#1IJ50,
~3.5!

which are called ADHM equations. Moreover, we have
put another condition on the matrices that¹†¹ is invertible,
which is in fact necessary in ADHM construction.

ADHM construction consists of the following three step
The first step is to solve the ADHM equations. The next s
is to solve the following ‘‘0-dimensional Dirac equation’’ i
the background of the solution of ADHM Eq.~3.5!:

¹†V50, ~3.6!

whereV is (N12k)3N matrices and satisfies the norma
ization condition:

V†V51, ~3.7!
08502
i-

r-

a:

.
p

and completeness condition:4

VV†512¹~¹†¹!21¹†, ~3.8!

which comes from the assumption that¹†¹ is invertible. It
is convenient to introduce the following decomposed ma
ces ofV:

V5S u

v D 5S u

v1

v2

D , ~3.9!

whereu,v, andv1,2 areN3N, 2k3N, andk3N matrices,
respectively. We note thatu andv behaveO(1) andO(r 21)
at r 5uxu→`, respectively@48#. The final step is to construc
the ~anti-!self-dual gauge fields using the solutionV of the
‘‘0-dimensional Dirac equation’’~3.6! as follows:

Am5V†]mV5u†]mu1v†]mv. ~3.10!

The field strength is calculated from the gauge fields:

F5dA1A`A

5dV†`dV1V†dV`V†dV

5dV†`dV2dV†V`V†dV

5dV†~12VV†!`dV

5dV†¹~¹†¹!21¹†`dV

5V†~d¹!~¹†¹!21`~d¹†!V

5v†emdxm~¹†¹!21`en
†dxnv

5 iv†~¹†¹!21hmn
(2)vdxm`dxn.

~3.11!

Fmn52iv†~¹†¹!21hmn
(2)v. ~3.12!

Hence anti-self-dual gauge fields have been constructed
the last line of the equation~3.12!, we use the condition tha
¹†¹ should commute with Pauli matrices.

1. G5SU(2) ’t Hooft k instantons
Let us construct aG5SU(2) ’t Hooft k-instanton solution

following the steps in ADHM construction. The solution o
ADHM equation ~3.5! is simply given for this instanton a
follows:

S5S r1 0

0 r1

•••

rk 0

0 rk
D ,

Tm5diagm50
k21 ~lm

(m)!, ~3.13!

where the symbol ‘‘diag’’ denotes diagonal sum andlm
(m) and

rm are real numbers. The ‘‘0-dimensional Dirac equatio
~3.6! is also simply solved:

4This condition on noncommutative space is discussed in@46,47#.
2-6
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V5
1

AN S 1

2@~xm2Tm! ^ em
† #21S†D , ~3.14!

where the normalization factorN is determined by the nor
malization condition~3.7! as

N511 (
m50

k21 rm
2

ux2l (m)u2
, ~3.15!

and

@~xm2Tm! ^ em
† #215diagm50

k21 S ~xm2lm
(m)!

ux2l (m)u2
^ emD .

~3.16!

û and v̂ are actuallyO(1) and O(r 21), respectively. The
gauge fields are given by

Am5V†]mV52
i

N (
m50

k21 rm
2 hmn

(1)~xn2ln
(m)!

ux2l (m)u4

52
i

2
hmn

(1)]nlog N. ~3.17!

This solution is called the ’t Hooft-instanton solution and
singular atx5l (m), which results from that a singular gaug
is taken.

2. G5SU(2) 1 caloron
The solution ~3.17! can be generalized to periodic

instanton solution. We can take the instanton numberk5`
and all the size of the instantonsrm5r and put them peri-
odically along thex4 axis where the period isb. This soliton
is called the caloron@31# and thenN becomes

N511 (
m52`

`
r2

ux2mbx4u2

511
pr2

buxW u

sinhS 2p

b UxWU D
coshS 2p

b UxWU D2cosS 2p

b
x4D , ~3.18!

wherexW5(x1 ,x2 ,x3).
The caloron solution coincides with the PS-monopole

lution @38# up to gauge transformation withb→0. The PS-
monopole solution is given by

F52
xis i

uxW u2
S auxW u

tanhauxW u
21D ,

Ai5
e i jks j xk

uxW u2 S auxW u

sinhauxW u
21D , ~3.19!

where the real constanta represents the vacuum expectati
value of the Higgs field, which appears in the gauge tra
formation. This is reinterpreted clearly from the D-brane p
08502
-

s-
-

ture in @34# ~cf. Fig. 1!. We will discuss the similar discus
sion about localized caloron solution in Sec. IV.

B. ADHM construction of localized instantons and calorons

Now let us generalize the above discussion to the n
commutative case. The difference to the commutative cas
that the coordinates are operators which act on the F
space. The ADHM equation is deformed by the noncomm
tativity of the spatial coordinates as follows:

@B1 ,B1
†#1@B2 ,B2

†#1II †2J†J522~u11u2!,

@B1 ,B2#1IJ50. ~3.20!

We note that the constant term on the right-hand side of
first equation disappears only when the noncommutative
rameter is anti-self-dual, that is,u11u250, which is neces-
sary for the existence of the localized instantons.

The steps to give rise to instantons are the same as
commutative case.

1. Localized U(1)k instantons
Now let us find localized U(1) instanton solutions usin

ADHM construction, which is considered as the noncomm
tative version of the ’t Hooft instanton solution in ther (m)

→0 limit.
ADHM equations~3.20! are simply solved and the solu

tion of them for localized instantons is

I 5J50, B15diagm50
k21 ~a1

(m)!,

B25diagm50
k21 ~a2

(m)!, ~3.21!

where a i
(m) should show the position of themth instanton

becauseB1,2 is the scalar field on D0-branes.I andJ contain
the information of the size of instantons and hence the s
tions I 5J50 in Eq. ~3.21! characterize the correspondin
instantons as localized instantons because localized ins
tons have no moduli parameter of the size and are sing
on commutative side as Eq.~2.26!.

Next we solve the ‘‘0-dimensional Dirac equation’’ in th
background of the solutions~3.21! of the ADHM equation.
This is also simple. Observing the right-hand si
of the complete condition ~3.8!, we get v̂1

(m)

5ua1
(m) ,a2

(m)&^p1
(m) ,p2

(m)u and v̂250, where up1
(m) ,p2

(m)& is
the normalized orthogonal state inH1^ H2:

^p1
(m) ,p2

(m)up1
(n) ,p2

(n)&5dmn , ~3.22!

andua1
(m) ,a2

(m)& is the normalized coherent state and satisfi

ẑ1ua1
(m) ,a2

(m)&5a1
(m)ua1

(m) ,a2
(m)&,

ẑ̄2ua2
(m) ,a2

(m)&5ā2
(m)ua1

(m) ,a2
(m)&,

^a1
(m) ,a2

(m)ua1
(m) ,a2

(m)&51. ~3.23!

The eigenvaluesa1
(m) anda2

(m) of ẑ1 andẑ̄2 are decided to be
just the same as themth diagonal components of the solutio
2-7
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B1 ,B2 in Eq. ~3.21!. Thoughû is undetermined,V̂ already
satisfies¹†V̂50, which comes from that in the case that t
self-duality of gauge fields and the noncommutative para
eter are the same, the coordinates in each column of¹† play
the same role in the sense that they are annihilation opera
or creation operators.

The last condition is the normalization condition~3.7! and
determines û5Ûk where ÛkÛk

†51, Ûk
†Ûk512 P̂k51

2(m50
k21 up1

(m) ,p2
(m)&^p1

(m) ,p2
(m)u. This is just the shift operato

and naturally appears in this way. The shift operator anû
have the same behavior atuxu→` and this is consistent.

Gathering the results, the solution of Eq.~3.6! is

V̂5S û

v̂1
(m)

v̂2
(m)
D 5S Ûk

ua1
(m) ,a2

(m)&^p1
(m) ,p2

(m)u

0
D , ~3.24!

wherev̂ i
(m) is themth low of v̂ i . This is the general form o

the solution of the ‘‘0-dimensional Dirac equation’’ and giv
rise to the localized instanton solution:

Âzi
5V̂†@ ]̂zi

,V̂#5û†]̂zi
û1 v̂†]̂zi

v̂2 ]̂zi

5Ûk
†]̂zi

Ûk2up1
(m) ,p2

(m)&

3^a1
(m) ,a2

(m)u
ẑ̄i

2u i
ua1

(m) ,a2
(m)&^p1

(m) ,p2
(m)u2 ]̂zi

5Ûk
†]̂zi

Ûk2 ]̂zi
2 (

m50

k21 āzi

(m)

2u i
up1

(m) ,p2
(m)&^p1

(m) ,p2
(m)u.

~3.25!

If up1
(m) ,p2

(m)&5u0,m& and Ûk is the same as Eq.~2.22!,
then the gauge fields are the same as Eq.~2.21!.

The solutionV̂ of the ‘‘0-dimensional Dirac equation’
also contains all information of the instantons. The instan
numberk is represented by the dimension of the projec
statesup1

(m) ,p2
(m)& which appears in the relations of the sh

operatorû5Ûk or the bra part ofv̂1
(m) . The information of

the position ofk localized solitons is shown in the cohere
stateua i

(m)& in the ket part ofv̂1
(m) .

2. Localized U(1) 1 caloron
Now let us construct a localized caloron solution as

commutative caloron solution in Sec. III A, that is, we ta
the instanton numberk→` and put an infinite number o
localized instantons in thex4 direction at regular intervals
We have to find an appropriate shift operator so that it gi
rise to an infinite-dimensional projection operator and put
moduli parameterl4 periodic.

The solution is found as

Âz1
5Ûk3`

† ]̂z1
Ûk3`2 ]̂z1
08502
-

rs

n
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2 (
m50

k21 ā1
(m)

2u
um&^mu ^ 1H2

,

Âz2
5Ûk3`

† ]̂z2
Ûk3`2 ]̂z2

1 (
m50

k21

(
n52`

` ā2
(m)2 inb

2u
um&^mu ^ un&^nu,

~3.26!

where the shift operator is defined as

Ûk3`5 (
n150

`

un1&^n11ku ^ 1H2
. ~3.27!

The field strength is calculated as

F̂1252F̂345 i
1

u
P̂k^ 1H2

, ~3.28!

which is trivially periodic in thex4 direction. It seems to be
strange that this contains no information of the periodb.
Hence one may wonder if this solution is the charge-o
caloron solution onR33S1 whose perimeter isb. Moreover
one may doubt if this suggests that this soliton represe
D2-brane not an infinite number of D0-branes.

The apparent paradox is solved by mapping this solut
to the commutative side by an exact Seiberg-Witten m
The commutative description of D0-brane density is as f
lows

JD0~x!5
2

u2
1 (

m50

k21

(
n52`

`

d~x12l1
(m)!d~x22l2

(m)!

3d~x32l3
(m)!d~x42l4

(m)2nb!. ~3.29!

The information of the period has appeared and the solu
~3.26! is shown to be an appropriate charge-one caloron
lution with the periodb. The above paradox is due to the fa
that in noncommutative gauge theories, there is no local
servable and the period becomes obscure,5 and as is pointed
out in @44#, the D2-brane density is exactly zero. Hence t
paradox has been solved clearly. This soliton can be in
preted as a localized instanton on noncommutativeR33S1.

3. Localized U(1) 1 doubly periodic instantons
In a similar way, we can construct a doubly periodic~in

the x3 andx4 directions! instanton solution:

Âz1
5Ûk3`

† ]̂z1
Ûk3`2 ]̂z1

2 (
m50

k21 ā1
(m)

2u
um&^mu ^ 1H2

,

5Without the Seiberg-Witten map, we can discuss the phys
meaning of the moduli parameterlm on the noncommutative side
see, for example,@14,30,49#.
2-8
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Âz2
5Ûk3`

† ]̂z2
Ûk3`2 ]̂z2

1 (
m50

k21

(
n1 ,n252`

` ā2
(m)1b1n12 ib2n2

2u
um&^mu

^ uãn1n2

( l 1 ,l 2)
&^ãn1n2

( l 1 ,l 2)u, ~3.30!

where the system$uãn1 ,n2

( l 1 ,l 2)
&%n1 ,n2PZ is a von Neumann lat-

tice @50# and an orthonormal and complete set@51,52#.6 Von
Neumann lattice is the complete subsystem of the set of
coherent states which is overcomplete, and generated
el 1]̂3 andel 2]̂4, where the periods of the latticel 1 ,l 2PR sat-
isfies l 1l 252pu ~see also@53,54#!. This complete system
has two kinds of labels and is suitable to doubly perio
instanton. Of course, another complete system can be a
able if one labels the system appropriately.

The field strength in the noncommutative side is the sa
as Eq.~3.28! and the commutative description of D0-bra
density becomes

JD0~x!5
2

u2
1 (

m50

k21

(
n1 ,n252`

`

d~x12l1
(m)!

3d~x22l2
(m)!d~x32l3

(m)2n1b1!

3d~x42l4
(m)2n2b2!, ~3.31!

which guarantees that this is an appropriate charge-one
bly periodic instanton solution with the periodb1 ,b2.

This soliton can be interpreted as a localized instanton
noncommutativeR23T2. The exact known solitons on non
commutative torus are very refined or abstract as is foun
@54–57#. It is therefore notable that our simple solutio
~3.30! is indeed doubly periodic. The point is that we tre
noncommutativeR4 not noncommutative torus and apply th
‘‘solution generating technique’’ to theH1 side only.

4. Localized U(N)k instantons
There is an obvious generalization of the construction

the U(N) localized instanton as follows. In the solution
ADHM equations,I ,J can be still zero andB1,2 are the same
as that of theN51 case. The solution of the ‘‘0-dimension
Dirac equation’’~3.6! is given by

V̂5S û

v̂1
(m,a)

v̂2
(m,a)

D 5S Ûk

ua1
(ma) ,a2

(ma)
&^p1

(ma) ,p2
(ma)u

0
D ,

~3.32!

wherema runs over some elements in$0,1,•••,k21% whose
number iska and all ma are different.~Hence(a51

N ka5k.!

The N3N matrix Ûk is a partial isometry and satisfies

6To make this system complete, the sum over the labels (n1 ,n2)
of the von Neumann lattice is taken removing one pair. We ap
this summation rule to the doubly periodic instanton solution~3.30!.
08502
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ÛkÛk
†51, Ûk

†Ûk512 P̂k , ~3.33!

where the projectionP̂k is the following diagonal sum:

P̂kªdiaga51
N ~diagma

up1
(ma) ,p2

(ma)
&^p1

(ma) ,p2
(ma)u!.

~3.34!

ua i
(ma)

& is the normalized coherent state~3.23!.

Next in the case ofup1
(ma) ,p2

(ma)
&5u0,ma&, the shift opera-

tor is, for example, chosen as the following diagonal sum

Ûk5diaga51
N S (

n151,n250

`

un1 ,n2&^n1 ,n2u

1 (
n250

`

u0,n2&^0,n21kau!. ~3.35!

ua1
(ma) ,a2

(ma)
& is the normalized coherent state and defin

similarly as Eq.~3.23!. We can construct another nontrivia
example of a shift operator in U(N) gauge theories by using
noncommutative ABS construction@58#. The localized in-
stanton solution in@16# is one of these generalized solution
for N52.

We can construct U(N) localized calorons and U(N) lo-
calized doubly periodic instantons in the same way.

C. Nahm construction of BPS fluxons

In this section we discuss the Nahm construction
k-BPS fluxon solutions. The procedure is the same as lo
ized instantons.

In order to construct a fluxon solution, we have to intr
duce a ‘‘1-dimensional Dirac operator’’:

¹̂ªS J I†

i
d

dj
2 i ~x32T3! 2 i ~ ẑ̄12Tz

†!

2 i ~ ẑ12Tz! i
d

dj
1 i ~x32T3!

D , ~3.36!

where I ,J, and Tm(j) are k3N,N3k, and k3k matrices,
respectively, andTm

† 5Tm , TzªT11 iT2. We have taken the
gaugeT450.

Now we introduce a formal product and an inner produ
of N12k vectorsVW (j) andVW 8(j) as follows, respectively,

VW •VW 8:5 (
a51

N

ua
†ua8d~j2ja!1vW †vW 8, ~3.37!

^VW ,VW 8&:5E
a2

a1

dj VW •VW 85 (
a51

N

ua
†ua81E

a2

a1

dj vW †vW 8,

~3.38!

whereuW andvW are theN vector in the upper side ofVW and the
2k vector in the lower side ofVW , respectively, andua is the
ath low of uW . The components ofVW may contain differential

y
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operators. The interval of integration in the inner produ
depends on the kind of the monopoles and is determined
the region where the D1-brane spans in the transverse d
tion against the D3-branes~cf. Fig. 1!.

The elements in the ‘‘1-dimensional Dirac operato
~3.36! satisfy the following relation which is equivalent t
that ¹̂•¹̂ commutes with Pauli matricess i :

@Tz ,Tz
†#1F d

dj
1T3 ,2

d

dj
1T3G

1 (
a51

N

~ I aI a
†2Ja

†Ja!d~j2ja!522u,

FTz ,
d

dj
1T3G1 (

a51

N

I aJad~j2ja!50. ~3.39!

This is known as the Nahm equation@18#.7 As in the case of
instantons, the constant term appears in the right-hand
of the first equation because of the noncommutative par
eters of the spatial coordinates.

If we defineT̃iªTi1ud i3j, Eq. ~3.39! becomes

@ T̃z ,T̃z
†#1F d

dj
1T̃3 ,2

d

dj
1T̃3G

1 (
a51

N

~ I aI a
†2Ja

†Ja!d~j2ja!50,

F T̃z ,
d

dj
1T̃3G1 (

a51

N

I aJad~j2ja!50. ~3.40!

This is the same as that on commutative space.
Nahm construction also has three steps as ADHM c

struction, that is, the first step is to solve the Nahm equa
~3.39! and the next step is to solve the following ‘‘1
dimensional Dirac equation’’ in the background of the so
tion of the Nahm equation with the normalization conditio

¹̂•V̂5 (
a51

N S Ja
†

I a
D ûad~j2ja!

1S i
d

dj
1 i ~x32T3! i ~ ẑ̄12Tz

†!

i ~ ẑ12Tz! i
d

dj
2 i ~x32T3!

D
3S v̂1

v̂2
D 50, ~3.41!

^V̂,V̂&51. ~3.42!

7Usually the Nahm equation is written in the following real re
resentation:dTi /dj1 i e i jkTjTk1(a51

N Sa
†Sad(j2ja)52ud i3.
08502
t
by
c-

de
-

-
n

-
:

The third step is to construct the anti-self-dual configurat
of Higgs fieldF̂ and gauge fieldsÂi as follows:

F̂5^V̂,jV̂&, Âi5^V̂,] i V̂&. ~3.43!

In the solution of the Higgs field,j appears in place of a
derivative, which suggests that the Higgs field would be
Fourier-transformed field of the gauge fieldÂ4.

Now let us construct a BPSk-fluxon solution. We putG
5U(1) and the coordinate of the jumping pointj150 for
simplicity. The situation is shown in Fig. 2.

The Nahm equations~3.39! or ~3.40! are simply solved
similarly to the ADHM equation:

I 5J50, Ti~j!5diagm50
k21 ~l i

(m)2ud i3j!. ~3.44!

In fact I andJ contain the information of the interval at th
jumping pointsj5ja and I 5J50 shows that the interva
D50 ~see Fig. 2!, which corresponds to BPS fluxons.

Next we have to solve the ‘‘1-dimensional Dirac equ
tion’’ ~3.41!. We note that the interval of integration in th
inner product̂ , & is infinite: (2`,`) because the fluxon is
described as the infinite D1-brane piercing D3-branes.

In the similar way of the instantons, the solution of Dira
equation~3.41! in the background of~3.44! can be found as
follows:

V̂5S û

v̂1
(m)

v̂2
(m)
D 5S Ûk

f (m)~j,x3!uaz
(m)&^mu

0
D , ~3.45!

whereuaz
(m)& is the same asua1

(m)& in Sec. II B and the partial

isometryÛk is the same as Eq.~2.12!.
The function f (m)(j,x3) is determined by the normaliza

tion condition ~3.42! of V̂ and the ‘‘1-dimensional Dirac
equation’’~3.41! as

f (m)~j,x3!5S p

u D 1/4

expF2
u

2 S j1
x32l3

(m)

u D 2G .
~3.46!

Substituting Eqs.~3.45! and Eq. ~3.46! into ~3.43!, we
have the anti-self-dual configuration:

F̂5j1Ûk
†Ûk1S u

p D 1/2

(
m50

k21 E
2`

`

dj

3S j2
x32l3

(m)

u De2uj2
um&^mu

52 (
m50

k21 S x32l3
(m)

u D um&^mu,
2-10
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Â35^V̂,]3V̂&

5E
2`

`

dj v̂†S 2
x32l3

(m)

u
2j D v̂

5 (
m50

k21 S 2
x32l3

(m)

u
2F (m)D um&^mu50,

Âz5^V̂,]zV̂&5Ûk
†]̂zÛk2 ]̂z2 (

m50

k21 āz
(m)

2u
um&^mu.

~3.47!

This is just the BPS fluxon solution~2.31!. The linear term of
x3 in the Higgs field ~2.31! is naturally derived and the
meaningless parameterl4

(m) of course never appears.

IV. FOURIER TRANSFORMATION OF LOCALIZED
CALORONS

In this section we discuss the Fourier transformation
the gauge fields of localized caloron and show that the tra
formed configuration exactly coincides with the BPS flux
in theb→0 limit. This discussion is similar to that the com
mutative caloron exactly coincides with the PS monopole
the b→0 limit up to gauge transformation as in the end
Sec. III A.

The Fourier transformation can be defined as

1̂H2
→1, x̂3,41̂H2

→x3,4,

Âm→Âm
[ l ]˜

5 lim
b→0

1

bE2(b/2)

b/2

dx4 e2p i l (x4 /b)Âm . ~4.1!

In the b→0 limit, only the l 50 mode survives and th
Fourier transformation~4.1! becomes trivial. Then we re

write these zero modesÂi
[0]˜ and iÂ4

[0]˜ as Âi and F̂ in the
(311)-dimensional noncommutative gauge theory, resp
tively. Noting that in the localized caloron solution~3.26!,

Ûk3`
† ]̂z2

Ûk3`2 ]̂z2
5 P̂k^ 1̂H2

( ẑ̄2/2u2), where theP̂k is the
same as the projection in Eq.~2.14!, the transformed fields
are easily calculated as follows:

Âz1
5Û†]̂z1

Ûk2 ]̂z1
2 (

m50

k21 āz1

(m)

2u1
um&^mu,

Â35 i (
m50

k21
l4

(m)

u2
um&^mu,

F̂5 (
m50

k21 S x32l3
(m)

u2
D um&^mu. ~4.2!

The Fourier transformation~4.1! also reproduces the ant
self-dual BPS fluxon rewritingu1 ,u2, andz1 asu, 2u, and
08502
f
s-

n
f

c-

z, respectively. We note that the anti-self-dual condition
the noncommutative parameteru11u250 in the localized
caloron would correspond to the anti-self-dual condition
the BPS fluxon. In the D-brane picture, the Fourier transf
mation~4.1! can be considered as the composite ofT duality
in the x4 direction and the space rotation inx3-F plane
@39–41# ~cf. Fig. 3!.

V. CONCLUSION AND DISCUSSION

In this paper we have discussed ADHM and Nahm co
structions of localized solitons in noncommutative gau
theories and Fourier transformation of localized calorons.
have found the various localized solitons including new so
tons: localized calorons and localized doubly periodic inst
tons. The shift operators and the moduli terms naturally
pear in ADHM construction. BPS fluxons are also obtain
straightforwardly by the steps of Nahm construction witho
modifications or tricks. The Fourier-transformed localiz
calorons exactly coincide with BPS fluxons which is cons
tent with theT dual picture of the corresponding D-bran
system up to space rotation.

One of further studies is the Nahm construction of ex
non-Abelian caloron solutions in noncommutative gau
theory and the study ofT duality of the gauge fields or mor
fundamentally the Dirac zero modeV̂. T duality is usually
studied not for the fields on the D-brane but for the metric
B field. HoweverT duality of the gauge fields described b
operator formalism is very important because the formali
is suitable to deal with algebraically and the study might
a key point of noncommutative ADHM or Nahm duality an
noncommutative Nahm transformation on non-commutat
4-torus @59#. If we find some concrete representation
Nahm transformation, we must be able to reveal many
pects of it.

Another direction is the completion of noncommutati
ADHM or Nahm duality. One-to-one correspondence b
tween instanton and monopole solutions and ADHM a
Nahm data up to gauge equivalence is rather trivial from
D-brane picture with background constantB field. Neverthe-
less the study is worthwhile because the detailed D-br
interpretation of noncommutative ADHM and Nahm duali

FIG. 3. Localized U(1)1 caloron and the relation to BPS fluxon
2-11
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might be useful for finding higher dimensional ADHM an
Nahm constructions which corresponds to the D0-D6 sys
or the D0-D8 system with appropriate background cons
B field @60,61#.8 In these systems, the existence of theB field
is important to make the systems BPS and hence the
commutative gauge theoretical description of them which
equivalent to the D-brane system might give rise to so
hints toward exact solution in higher dimensional gau
theories.

What plays a crucial role in generating noncommutat
solitons is shift operators and projection operators. In t
paper we find appropriate operators in each situation
discuss where they appear in ADHM and Nahm construct
On noncommutative 4-torus, however, it is difficult to fin
such operators in terms of concrete representation of s
basis in the Fock space and we seem to have to use M
equivalence as in@57#. The relation between the localize

8For some discussions including these systems with backgro
constantB field, see@62#.
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doubly periodic instanton solution~3.30! in our notation and
the solution in@54–57# is interesting.
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