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Curved space resolution of the singularity of fractional D3-branes on a conifold
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We construct a supergravity dual to the cascading SU(N1M )3SU(N) supersymmetric gauge theory~re-
lated to fractional D3-branes on a conifold according to Klebanov and co-workers! in the case when the
three-space is compactified on S3 and in the phase with unbroken chiral symmetry. The size of S3 serves as an
infrared cutoff on the gauge-theory dynamics. For a sufficiently large S3 the dual supergravity background is
expected to be nonsingular. We demonstrate that this is indeed the case: we find a smooth type IIB supergravity
solution using a perturbation theory that is valid when the radius of S3 is large. We consider also the case with
the Euclidean world volume being S4 instead of R3S3, where the supergravity solution is again found to be
regular. This ‘‘curved space’’ resolution of the singularity of the fractional D3-branes on the conifold solution
is analogous to the one in the nonextremal~finite temperature! case discussed in our previous work.
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I. INTRODUCTION

The gauge-theory–gravity duality1 relates a gauge theor
on the world volume of a large number of D-branes to
pergravity backgrounds where the branes are replaced b
corresponding fluxes. In a particular realization of this du
ity, Klebanov and Witten~KW! @2# consideredN regular
D3-branes placed at a conical singularity in type I
string theory. At a small ’t Hooft couplinggsN!1, the
system is best described by open strings and real
SU(N)3SU(N) N51 supersymmetric gauge theory wi
two pairs of chiral multipletsAi ,Bj and a quartic super
potential at an infrared superconformal fixed point. In t
limit of strong ’t Hooft coupling this gauge theory is be
described by type IIB supergravity compactified on Ad5
3T1,1, T1,15@SU(2)3SU(2)#/U(1), with N units of the
Ramond-Ramond five-form flux through the T1,1. If this is a
genuine equivalence, then phenomena observed on the g
theory side should have a dual description in string theory
AdS53T1,1. In particular, any deformation of the gauge
theory visible in the largeN limit should have a counterpar
in the dual gravitational description, and vice versa.

Certain deformations, trivial on the gravity side, may ha
highly nontrivial analogues in gauge-theory dynamics. F
example, the presence of the AdS5 factor in the KW geom-
etry is a reflection of the conformal symmetry of the du
gauge theory. In the Poincare´ coordinates in AdS5, its
boundary, and thus the space-time where the gauge theo
formulated, is R1,3. In the global parametrization of AdS5 the
boundary is R3S3. This gravitational background shoul
correspond to the superconformal KW gauge theory defi
on R3S3. From the supergravity perspective, going from t
Poincare´ to the global coordinates is a simple local coor

*Also at Imperial College, London, and Lebedev Physics In
tute, Moscow.

1For reviews and references see, e.g.,@1#.
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nate transformation. However, on the gauge-theory side,
‘‘deformation’’ drastically modifies the dynamics. Defined o
a round three-sphere the gauge theory will have no z
modes:2 it will have a mass gap in the spectrum of order
the inverse radius of S3. The modification of the spectrum o
the theory substantially modifies its thermodynamics. As i
similar system studied in@3#, we expect a thermal phas
transition in the S3-compactified KW model, which, on the
gravity side, should map into the Hawking-Page phase tr
sition. We would like to emphasize that such a phase tra
tion should occur only for the gauge theory defined on
curved space like S3.

It is not known how to translate a generic gauge the
deformation into the dual supergravity description. For t
particular deformations for which the dictionary is know
one typically encounters a naked singularity in the cor
sponding deformed geometry. Consider, for example, wr
ping M D5-branes on the collapsed two-cycle of the co
fold, in addition toN D3-branes put at its apex@4#. On the
gauge-theory side this deformation corresponds to chan
the gauge group to SU(N1M )3SU(N) with the same set of
chiral multiplets and the superpotential as in theM50 case.
The dual supergravity background found in@5# was shown to
have a naked singularity. Another example with a naked s
gularity in the bulk is provided by a large number on Neve
Schwarz 5-branes~NS5-branes! wrapping a two-cycle of the
resolved conifold in type IIB string theory@6#. The field-
theory dual of this system can be interpreted as a compa
fication ~in our language, a deformation! of the little string
theory on S2. Yet another, probably the simplest, example
generation of ir singularity is a mass deformation of t
N54SU(N) super Yang-Mills ~SYM! theory dual to
AdS53S5 compactification of type IIB string theory. Turnin
on a mass deformation on the gauge-theory side trans

-
2For the scalars, this follows from their coupling to the sca

curvature, required by the conformal invariance.
©2002 The American Physical Society19-1
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into turning on three-form fluxes on the gravity side@7–9#.
At the linearized level, the fluxes diverge in the bulk, leadi
to a naked singularity.

A common feature of the discussed singularities is t
they are produced by a well-defined deformation in the d
gauge-theory system. On the gravity side they occur in
bulk ~as opposed to the boundary! of the geometry, which,
according to the familiar uv-ir correspondence@10# expected
in gauge-gravity duals, should reflect the IR physics of
gauge theory. If we can resolve the ir singularity induced
the deformation on the gauge-theory side, then the tran
tion of the resolution mechanism to the gravity side sho
cure the naked singularity there as well.

This philosophy is rooted in the belief that there is a ge
ine equivalence between the two dual descriptions, an
was recently successfully applied, in particular, in Refs.@8,
11, 6# and in @12–16#. These two groups of papers differ i
the type of mechanism used for the singularity resolution
the former case, the singularity in the deformed gauge the
is resolved by nonperturbative phenomena, intrinsic to ga
theory, namely, the confinement and the chiral symme
breaking. The resolution of the singularity proposed in
second group of papers is extrinsic to gauge theory: one
the system at~sufficiently high! finite temperature.

In this paper we propose a more unified perspective on
issue of singularity resolution in gauge-gravity duals, a
present a new specific example of the resolution mechan
Although we shall concentrate on the case of the fractio
D3-branes on conifold geometry@5# @Klebanov-Tseytlin
~KT! background for short#, we believe that our approach
generic and should be applicable to other cases as well.

An overview of the singularity resolution approach
given above underscores the similarity in all resoluti
mechanisms. As we have emphasized, in all cases the s
larity is an ir phenomenon when viewed from the gaug
theory perspective. Then a natural way to resolve the sin
larity is to disallow the gauge theory to access low-ene
states. This can be achieved as a result of a dynamical ga
theory effect~generation of a mass gap in the spectrum d
to confinement as in@8,11,6#! or by introducing an ir cutoff
‘‘by hand’’ ~turning on a finite temperature3 as in@12–16#!. It
is clear from this perspective that there should be many o
ways to resolve the singularity: all one has to do is to int
duce an ir cutoff on the field-theory side and to understa
what that cutoff translates into on the gravity side of t
duality. The corresponding supergravity background sho
contain an extra scale~the deformed conifold scale in@11#, or
the nonextremality parameter in@12–14#, or the curvature of
the ‘‘longitudinal’’ space in the examples considered below!.

One possibility to introduce an ir cutoff is by ‘‘compact
fying’’ the space on which the gauge theory is defined. A
specific realization of this proposal we shall consider
resolution of the singularity of the KT background by defi
ing the dual gauge theory on R3S3 instead of 4D

3The proposal to use a finite temperature as an ir cutoff to cl
naked singularities in five-dimensional gravity coupled to sca
was put forward in@17#.
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Minkowski space. The space compactification should p
vide an ir cutoff, and so for sufficiently large radius of th
three-sphere we should expect the restoration of chiral s
metry in the dual field theory, and thus4 a smooth dual su-
pergravity background.

It should be emphasized that not all space compactifi
tions~that provide an ir cutoff! may resolve the singularity o
the supergravity dual. For example, compactifying t
SU(N1M )3SU(N) gauge theory on a three-torus T3 will
not resolve the singularity.5 We expect that a ‘‘good’’
~singularity-resolving! compactification is the one that lift
the zero modes of all of the gauge-theory fields, i.e., ga
bosons, fermions, and scalars. Let the space on which
gauge theory is defined be compactified on ad-dimensional
manifold Md . There will not be massless gauge-bos
modes, provided the first Betty number ofMd vanishes. The
scalars will not have zero modes provided they are coup
to a nonzero scalar curvature ofMd . Thus the second con
dition is a nonvanishing Ricci scalar ofMd . One must also
make sure that there are no fermionic zero modes. While
S3 compactification satisfies these conditions, the T3 one
fails to do that.

One may also consider a Euclidean version and define
gauge theory on a curved 4D space-time, e.g., S4 or K3.
Then S4 will lead to a resolution of the singularity~as we
shall see below!, but K3 will not, since it hasRmn50 and
thus does not lift the zero modes of the scalars.

Let us comment also on a peculiar relation between
space on which gauge theory is defined and its counterpa
the dual supergravity description. On the gauge-theory s
we think of space-time being a manifold of fixed size. In t
context of gauge-theory–gravity duality, the space-tim
where the gauge theory ‘‘lives’’ should be identified with
boundary submanifold of the dual 10D supergravity spa
time. The size of this submanifold may obviously depend
other ~transverse! directions. One example is AdS53S5 in
global parametrization of the AdS5, where the size of the
spatial part of the boundary S3 changes with the radial coor
dinate of AdS5 . Another example is provided by the dualit
discussed in@6#, where the gauge theory arises from com
pactification of the little string theory on S2 of fixed size. The
size of the corresponding two-sphere in the dual supergra
background changes logarithmically with the radial coor
nate@6#.6

The rest of the paper is organized as follows. In Sec. II

k
s

4The singularity of the KT background is related@11# to the chiral
symmetry breaking in the dual field theory. This symmetry@re-
flected in the U~1! fiber symmetry of T1,1# will be present in the
generalized KT background we will construct.

5The gravity dual will be the original KT solution@5# with the
spatial coordinates of the D3-brane world volume periodically id
tified.

6Related observations can be made in the case of other, m
familiar, deformations of gauge theory. In@8# the authors studied
the duality in the context of the mass-deformedN54 SU(N) SYM
theory. There, a constant mass deformation on the gauge-theory
is translated into a variable three-form flux in the gravity dual.
9-2
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CURVED SPACE RESOLUTION OF THE SINGULARITY . . . PHYSICAL REVIEW D65 085019
discuss the generalizations of the KT ansatz for the su
gravity background dual to the cascading gauge theory c
pactified on R3S3 and S4. Following the approach o
@5,13,14#, in Sec. III we derive the corresponding 1D effe
tive action that generates the equations for the radial ev
tion of the functions parametrizing the background me
and matter fields. We then discuss the simplest supersym
ric solutions of these equations realizing the extremal fr
tional D3-brane KT background@5# and the AdS53T1,1

gravity dual to the KW gauge theory@2# compactified on
R3S3 or S4.

We then consider the deformations of M45R3S3 and
M45S4 compactifications of the KW model caused b
switching onPÞ0 units of fractional three-brane flux. As i
the closely related work@14# on the nonextremal generaliza
tion of the KT background, being unable to solve the res
ing equations exactly, we resort to a perturbation theory v
in the regime when the effective D3-brane charge~or the
five-form flux! K! is much larger than the fractional thre
brane charge,K!@P2. Physically, this approximation
amounts to introducing an ir cutoff in the dual gauge the
at an energy scale high enough to mask the low-energy c
symmetry breaking that is responsible for the generation
the KT singularity@11#.7

In Sec. IV we construct a smooth supergravity soluti
interpolating between the S4 compactification of the KW
model in the ir and the KT model in the uv. In Sec. V w
address the same problem in the technically more challe
ing case of the R3S3 compactification of the KT model
Both examples of regular compactifications of the KT mo
provide support to the general idea of resolving naked
gularities in the bulk of gravitational duals to gauge theor
by an ir cutoff produced by a ‘‘boundary’’ space compacti
cation.

We conclude in Sec. VI with comments on constructing
gravitational dual to mass-deformed conformally compa
fied N54 supersymmetric Yang-Mills theories.

II. RÃS3 AND S4 GENERALIZATIONS OF THE KT
BACKGROUND

Our aim will be to explore the generalization of the K
solution @5# for a fractional D3-brane on a conifold to th
case when the constant radial distance slices of the ‘‘pa
lel’’ part of the metric have geometry R3S3 or S4 ~we shall
consider the case of Euclidean signature!. We shall argue tha
the corresponding solutions are regular~for large enough D3-
brane charge compared to the fractional three-brane cha!.

We shall start with the same ansatz as in@5,13# and sim-
ply replace 113 ‘‘longitudinal’’ directions by R3S3 or by
S4. The treatment of the two cases will be very similar, a
we will discuss them in parallel. There will be direct analo
with the nonextremal~finite temperature! case considered in
@12–14#.

7This is also the region of validity of the nonextremal deform
tion, i.e., of the finite temperature resolution of the KT singular
due to the chiral symmetry restoration studied in@14#.
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As in @5# we will impose the requirement that the bac
ground has Abelian symmetry associated with the U~1! fiber
of T1,1, as we will consider a phase where chiral symmetry
restored. In the case of R3S3 our general ansatz for a 10D
~Euclidean signature! Einstein frame metric8 will involve
four functionsx, y, z, andw of radial coordinateu

ds10E
2 5e2z~dM4!21e22z@e10ydu21e2y~dM5!2#,

~2.1!

~dM4!25e26x dX0
21e2x~dS3!2, ~2.2!

~dS3!25da21sin2 a~db21sin2 b dg2!. ~2.3!

Here the three-sphere replaces the three ‘‘flat’’ longitudi
directions of the three-brane and M5 is a deformation of the
T1,1 metric:

~dM5!25e28wec
21e2w~eu1

2 1ef1

2 1eu2

2 1ef2

2 !, ~2.4!

ec5 1
3 ~dc1cosu1 df11cosu2 df2!,

eu i
5

1

A6
du i , ef i

5
1

A6
sinu i df i .

We choose the radius of S3 to be 1 as it can be absorbed in
a shift of x ~and a rescaling ofX0!.

In the case of S3 replaced by R3 ~i.e., in thex→x1x0 ,
x0→` limit !, this becomes the ansatz of@13#, where the
nonextremal D3-brane case was considered. The extre
D3-brane on the standard conifold and the more general f
tional D3-brane KT solution havex5w50. While in @13# a
nonconstant functionx(u) (5au) reflected the nonextrem
ality of the background, in the present R3S3 case it will be
nontrivial as a consequence of the curvature of S3.

The ansatz in the S4 case is the same as Eq.~2.1! but with
(dM4)2 given by

~dM4!25~dS4!25da2

1sin2 a@db21sin2 b~dg21sin2 g dd2!#,

~2.5!

where the radius of S4 is again chosen to be 1. Here there
no functionx, i.e., the number of functions in the metric
the same as in the extremal case~however, in contrast to the
standard KT case, herew will, in general, be nontrivial!.

As for the matter fields, we shall assume that the dila
F may depend onu, and our ansatz for thep-form fields~the

-

8This metric can be brought into a more familiar formds10E
2

5h21/2(r )(dM4)21h1/2(r )@g21(r )dr21r 2 ds5
2#, where h

5e24z24x, r 5ey1x1w, g5e28x, e10y12x du25g21(r )dr2. When
w50 ande4y5r 451/4u, the transverse 6D space is the standa
conifold with M55T1,1. Smallu thus corresponds to large distanc
in 5D and vice versa. In the AdS5 region largeu is near the origin
of AdS5 space, whileu50 is its boundary.
9-3
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A. BUCHEL AND A. A. TSEYTLIN PHYSICAL REVIEW D 65 085019
same in the R3S3 and S4 cases! will be exactly as in the
extremal KT case@5# and in @13#:9

F35Pec∧~eu1
∧ef1

2eu2
∧ef2

!,

B25 f ~u!~eu1
∧ef1

2eu2
∧ef2

!, ~2.6!

F55F1* F,

F5K~u!ec∧eu1
∧ef1

∧eu2
∧ef2

,

K~u!5Q12P f~u!, ~2.7!

where, as in@5#, the expression forK follows from the Bi-
anchi identity for the five-form. The constantsQ and P are
proportional to the numbersN and M of standard and frac
tional D3-branes; their precise normalizations~see@18#! will
not be important here.

In what follows, we shall first derive the correspondin
system of type IIB supergravity equations of motion descr
ing the radial evolution of the six unknown functions
u: x, y, z, w, K, F ~five functionsy, z, w, K, F in the S4

case!. We shall then discuss its solutions aiming to show t
there exists a smooth interpolation~in radial coordinate only!
between~i! a nonsingular short-distance region where
10D background is approximately AdS53T1,1 written in the
coordinates where theu5const slice is R3S3 or S4, and~ii !
a long-distance region where the 10D background
proaches the KT solution. We shall start with the sho
distance~u5` or r50! region, i.e., AdS53T1,1 space~with
the radius determined by the effective chargeK* ! and show
that by doing perturbation theory in the small parame
P2/K* !1 one can match it onto the KT asymptotics at lar
distances~u→0 or r→`!. The crucial point will be that
O(P2/K* ) perturbations will be regular at small distance
This will be exactly parallel to the discussion of the none
tremal case in@14# where the starting point in the ir was
regular nonextremal D3-brane~black hole in AdS5! solution
with large ~above critical! Hawking temperature.

We shall assume, for notational simplicity, that the va
of the radiusL of the short-distance limit space AdS53T1,1 is
1. That corresponds to the choice of the normalizatio
where the effective three-brane charge is (gs51)

K* 54, i.e., L51. ~2.8!

In discussing theO(P2) deformation it will be useful to
compare the three possible regular starting points—
AdS53T1,1 space in the three different parametrization
where the constant radial slice is R4, R3S3, and S4, respec-
tively:

ds10
2 5e2r~dR4!21dr21~dT1,1!2,

9The reason that the form of the ansatz is the same is that
formulated in terms of the transverse space geometry only~the
‘‘parallel’’ or ‘‘electric’’ part of F 5 is then fixed by the self-duality
condition!.
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2`,r,`, ~2.9!

ds10
2 5cosh2 r dX0

21sinh2 r~dS3!2

1dr21~dT1,1!2, 0,r,`, ~2.10!

ds10
2 5sinh2 r~dS4!21dr21~dT1,1!2,

0,r,`. ~2.11!

While these three spaces~with the Euclidean AdS5 metric
written in Poincare´, global, and ‘‘hyperboloid’’ parametriza
tions! are related locally by the coordinate transformatio
these involve changing all five of the coordinates, i.e.,
radial, but also the angular ones. It is the assumption that
10D deformation~2.1! of the factorized metrics~2.9!, ~2.10!,
and ~2.11! when the three-form flux~2.6! is switched on
depends only on the corresponding radial coordinater
~which is different in the three cases! that makes the resulting
solutions different. Since the 10D metric is no longer a dir
product, different choices of the radial coordinate~or of the
metric on ther5const slice! lead to inequivalent 10D equa
tions and thus inequivalent D3-brane solutions no longer
lated by a local coordinate transformationbeyondthe short-
distance AdS53T1,1 limit.

In particular, while the Poincare´ patch metric~2.9! leads
to the KT solution which is singular in the ir~for r→2`!,
that singularity is resolved in R3S3 and S4 where ther
→0 limit is described by Eqs.~2.10! and~2.11!, respectively.

III. ACTION FOR EQUATIONS OF RADIAL EVOLUTION
AND SPECIAL CASES

As in @5,13,14# we shall first derive the 1D effective ac
tion that generates the equations for the radial evolution
unknown functions. Computing the scalar curvature for
metric ~2.1! we find that in the R3S3 case ~2.1!,~2.2!
* d10xAGR is proportional toI gr5* du Lgr , where

Lgr~R3S3!55y8223x8222z8225w82

1 3
2 e22x110y24z1e8y~6e22w2e212w!.

~3.1!

The corresponding expression in the S4 case~2.1!,~2.5! is

Lgr~S4!55y8222z8225w8213e10y24z

1e8y~6e22w2e212w!. ~3.2!

Note that it can be formally obtained from Eq.~3.1! by
setting10

x5const, e22x52. ~3.3!
is

10The coefficient 2 accounts for the ratio of the values of the Ri
scalars of S3 and S4.
9-4
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The new term inLgr @Eq. ~3.1!# compared to the~non!extre-
mal R3R3 case in@5,13# is the first potential term that re
flects the curvature of R→S3 ~or S4!.11

The matter partLm of the effective type IIB Lagrangian
@contributions of the dilaton, three-form fields, and the fiv
form following from Eqs.~2.6!,~2.7!# is essentially the sam
as in the KT case@5# and@13# sinceLm does not depend on
the functionx and the structure of M4. As a result,L5Lgr
1Lm5T2V, where

T55y8223x8222z8225w822
1

8
F82

2
1

4
e2F14z24y24w

K82

4P2 , ~3.4!

V52
3

2
e22x110y24z2e8y~6e22w2e212w!

1
1

4
eF14z14y14wP21

1

8
e8zK2. ~3.5!

The equations of motion that follow fromL should be
supplemented by the ‘‘zero-energy’’ constraintT1V50. As
in @14#, we will use the five-form flux functionK(u)5Q
12P f(u) instead off (u) in Eq. ~2.6!.

The new potential terme22x110y24z in Eq. ~3.5! associ-
ated with the scalar curvature of the four-space, in gene
leads to breaking of supersymmetry and thus to a nontri
modification of the extremal KT solution. In the nonextrem
case discussed in@13# this term was absent and the equati
for x simply gavex5au, with a being the nonextremality
parameter. In the R3S3 case where the functionx is no
longer a ‘‘modulus’’ it cannot be easily decoupled. In the4

case the new potential term in Eq.~3.2! provides a nontrivial
mixing between they,z.

Let us first consider some special solutions of the eq
tions following from this action.

A. Flat four-space case: Extremal KT solution

Let us first recall the solution in the M45R3R3 case
@corresponding formally to the ‘‘infinite radius’’ limitx5`
of Eq. ~3.5!#. The crucial observation made in@5# is that in
the absence of thee22x110y24z term the Lagrangian~3.4!,
~3.5! admits a superpotential, i.e.,

L5gi j ~f8 i1gik]kW!~f8 j1gjl ] lW!22W8.

11Its scaling under shifts ofx,y,z follows directly from the struc-
ture of the metric~2.1!. Shifting x or z to restore explicitly the
inverse radius parameter of S3 or S4 as its coefficient, one may the
recover the R3R3 case in the limit when this parameter goes
zero. As in@13#, in the absence of matter termsw50 is a consistent
fixed point of the equations of motion, corresponding to M5 in Eq.
~2.4! replaced by the standard T1,1. Note also that a special solutio
of the equationsRmn50 that follow from this gravitational action is
R times a cone over S33T1,1 or a cone over S43T1,1.
08501
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As a result, there exists a special Bogomol’nyi-Pras
Sommerfield solution satisfyingf8 i1gik]kW50 and thus
also the zero-energy constraint. In the present case@5,19#

W5 1
4 e4y~3e4w12e26w!2 1

8 e4zK, ~3.6!

and the corresponding system of first order equations is

x850, y81 1
5 e4y~3e4w12e26w!50,

w82 3
5 e4y~e4w2e26w!50, ~3.7!

F850, K812P2eF14y14w50,

z81 1
4 e4zK50. ~3.8!

Choosing the special solutionw50 we then find12 @5#

x5w5F50, e24y54u, K5K02
P2

2
ln u, ~3.9!

e24z5h5h01S K01
P2

2 Du2
P2

2
u ln u, ~3.10!

whereh050 if we omit the standard asymptotically flat re
gion ~as we shall assume below!.

B. KÄconst „PÄ0… case: AdS5ÃT1,1 with M 4ÄRÃS3

or M 4ÄS4

Setting first the fractional three-brane flux to zeroP50
~i.e., K5K* 5const and alsoF5 f 50!, we get from Eqs.
~3.4!,~3.5!

L55y8223x8222z8225w821 3
2 e22x110y24z

1e8y~6e22w2e212w!2 1
8 K

*
2 e8z. ~3.11!

Here the first term in the potential is the contribution of t
curvature of S3, the second is the curvature of the~w-
deformed! T1,1 space, and the last one is the negative
cosmological constant originating from the five-form flu
contribution. Shiftingz and x we may set the D3-brane
charge parameterK* to some fixed value, e.g.,K* 54 as in
Eq. ~2.8!.

Sincew50 is an obvious special solution, in this case w
get

L55y8223x8222z821 3
2 e22x110y24z

15e8y22e8z. ~3.12!

In the standard ‘‘flat’’ D3-brane case, i.e., in the absence
the e22x110y24z term, this system is easily integrated givin

12u51/4r 4 where r is the standard radial coordinate in the D
brane solution.
9-5
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us the extremal (x50) or nonextremal (x5au) solution for
the D3-brane on a conifold. The case of

y5z ~3.13!

then corresponds to the AdS53T1,1 limit ~2.9! where the M5
part of the metric~2.1! factorizes.

In general, while it is not clear how to solve the syste
that follows from Eq.~3.12! analytically, it is easy to see tha
the 515 factorized case~3.13! is still a special solution.
Here we end up with

L53~y822x821 1
2 e22x16y1e8y!. ~3.14!

The corresponding equations have the following solution13

e4x5tanhr, e4y5sinh3 r coshr,

dr52e4y du, ~3.15!

where we have set the only integration constant~the origin of
r! to zero.14 The metric is thus given by Eq.~2.10!, i.e., is the
product of AdS5 in the global parametrization and T1,1 ~both
with scaleL51!. Larger corresponds to the boundary an
small r to the origin of AdS5 .

In the S4 case ~3.2! setting K5K* 5const gives@e.g.,
using Eq.~3.3! in Eq. ~3.11!#

L55y8222z8225w8213e10y24z

1e8y~6e22w2e212w!2 1
8 K

*
2 e8z, ~3.16!

or, for w50 andK* 54,

L55y8222z8213e10y24z15e8y22e8z. ~3.17!

The meaning of the three terms in the potential is again
curvature of S4, the curvature of T1,1, and the negative cos
mological term produced by the F5 flux. Equivalently,

L53n82230m8213e6n1e8n~5e216m22e240m!,

z5n25m, y5n22m. ~3.18!

In general, this system does not admit a superpoten
~wrapping the Euclidean three-brane world volume over4

breaks supersymmetry!. The special easily solvable case
the fixed pointm50, i.e., y5z @Eq. ~3.13!# or the case of
factorization M10→M53T1,1. Here we are left with just with
one functiony satisfying the zero-energy constraint@there is
thus an obvious superpotential; cf. Eq.~3.14!#

y825e6y1e8y, ~3.19!

so that

13Note that while for qÞ0 or yÞz Eq. ~3.12! does not ad-
mit a superpotential, it exists for Eq.~3.14! @cf. Eq. ~3.6!#: W
5(3/4)@(1/2)e22x12y1e4y#.

14Here u5 ln tanhr1sinh22 r, so that u(r→`)→2e22r and
u(→0)→1/2r2.
08501
e

al

z5y5 ln sinhr, dr52e4y du, ~3.20!

where we again setr050.15 Then the metric becomes equ
to Eq. ~2.11!, with the AdS5 part written in the parametriza
tion where the topology of the radial slices is S4.

It is useful to stress again that the three AdS53T1,1 met-
rics ~2.9!, ~2.10!, and~2.11!, although related locally by the
coordinate transformations, are obtained frominequivalent
1D actions. This reflects the inequivalence of the correspo
ing radial coordinates, and leads also to very different pr
erties of the corresponding fractional brane (PÞ0) deforma-
tions of these backgrounds discussed below.

IV. STRATEGY OF FINDING PÅ0 SOLUTION
AND S4 CASE

Being unable to solve the system of equations that follo
from ~3.4!, ~3.5! in general, we need to resort to perturbati
theory similar to the one used in@14#. Our aim will be to
show that starting from the asymptotic KT geometry at lar
r one may smoothly interpolate to aregular AdS53T1,1 ge-
ometry~with large enough effective chargeK* @P2! at small
r with the metric having a nontrivial scalar curvature ofr
5const slices, i.e., Eq.~2.10! or Eq. ~2.11!.

Following the same strategy as used in@14# in the finite
temperature case we shall start with the AdS53T* 1,1 back-
ground ~2.11! expected to be a good approximation in t
small r region if K* 5K(r→0) is sufficiently large, and
solve the supergravity equations perturbatively to leading
der in P2/K* !1. We shall see that the leading deformati
of the AdS53T1,1 background isregular at smallr.

If one starts instead with the ‘‘flat’’ AdS53T1,1 metric
~2.9!, this perturbative expansion reproduces the exact fo
of the KT solution already at the first order of perturbati
theory inP2/K* @note that the correction terms in Eqs.~3.9!,
~3.10! are linear inP2#. Here, however, the perturbation~and
the exact solution! is singular in the short-distance region
@which in the case of Eq.~2.9! corresponds tor→2`#. As
was explained in@14#, introducing nonextremality~i.e., re-
placing AdS5 by the black hole background with sufficientl
high temperature! resolves the singularity, making the pertu
bative solution regular. We shall see that a similar resolut
is provided by the curvature of the ‘‘parallel’’ three-bran
directions.

As was already mentioned above, to simplify the pres
tation we shall assume that the value of the five-form flux
r→0 is fixed as in Eq.~2.8!, so that the radius of AdS5 is 1
as in Eqs.~2.9!–~2.11!. The expansion parameter is then sim
ply P2.

The full system of second order equations following fro
Eqs. ~3.4!,~3.5! in the R3S3 case is similar to the one in
@14#:

x92 1
2 e22x24z110y50, ~4.1!

15Here u5coshr(122 sinh2 r)/3 sinh3 r12/3, so that u(r→0)
→1/3r3, u(r→`)→4e24r.
9-6
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10y928e8y~6e22w2e212w!230x91F950, ~4.2!

10w9212e8y~e22w2e212w!2F950, ~4.3!

F91e2F14z24y24wS K82

4P22e2F18y18wP2D50, ~4.4!

4z92K2e8z2

e2F14z24y24wS K82

4P2 1e2F18y18wP2D212x950,

~4.5!

~e~2F14z24y24wK8!822P2Ke8z50. ~4.6!

The integration constants are subject to the zero-energy
straint T1V50. It is easy to see that because of the ex
S3-curvature terme22x24z110y in the potential this system
does not~in contrast to the nonextremal case@12#! admit a
special solution with constant dilaton and self-du
three-forms.16 In @13# we needed to relax this first order sy
tem to get a nonsingular nonextremal solution. Here we
not have a choice—all functions~in particular,w! are to be
nontrivial in general.

In the S4 case we get instead17

10y928e8y~6e22w2e212w!230e10y24z1F950,
~4.7!

10w9212e8y~e22w2e212w!2F950,
~4.8!

F91e2F14z24y24wS K82

4P22e2F18y18wP2D50,

~4.9!

4z92K2e8z2e2F14z24y24wS K82

4P2 1e2F18y18wP2D
212e10y24z50, ~4.10!

~e2F14z24y24wK8!822P2Ke8z50,
~4.11!

with the zero-energy constraint

5y8222z8225w822
1

8
F822

1

4
e2F14z24y24w

K82

4P2

16If we set K8224P3e2F18y18w50, i.e., K8522P2eF14y14w,
then Eq.~4.6! implies thatz should be subject to the first orde
equation in~3.8!, but this is not consistent with Eq.~4.5! unless
x950.

17This system is related to the R3S3 one by settinge22x52 in
Eqs.~4.1!–~4.6! after using Eq.~4.1! in Eqs.~4.2!,~4.5!.
08501
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23e10y24z2e8y~6e22w2e212w!

1
1

4
eF14z14y14wP21

1

8
e8zK250. ~4.12!

This system is simpler than in the R3S3 case, and in the
remainder of this section we shall concentrate on its solu
for the first O(P2) deformation away from the AdS53T1,1

metric ~2.11!.

A. Asymptotics of regular S4 solution

Let us first discuss the expected behavior of the solut
in the two asymptotic regionsr→0 (u→`) and r→` (u
→0), i.e., in the short-distance and long-distance limits
10D space. We would like the solution to have a regu
short-distance limit which has the form~2.11! ~up to possible
constant rescalings!

r→0: y→ ln r1y* , z→ ln r1z* ,

w→w* , F→F* , K→K* . ~4.13!

At large distances (r→`) the solution is expected to ap
proach the extremal KT solution~3.9!,~3.10!, i.e. @note that
according to Eq.~3.20! u(r→`)→4e24r#,

r→`: w→0, F→0, ey→ 1
2 er,

K→2P2r, e24z→8P2re24r. ~4.14!

To demonstrate the existence of a regular solution that in
polates between these two asymptotics we shall start w
Eq. ~2.11! which is valid forP50, and find its deformation
order by order inP2. We shall see that~under a proper
choice of integration constants! the leadingO(P2) perturba-
tions areregular at r→0, so that we indeed match onto th
short-distance asymptotics~4.13!. It turns out that the lead-
ing O(P2) correction is already enough to match onto t
expected KT long-distance asymptotics~4.14!.

Our ansatz for the leading perturbative solution that d
fers from Eq.~2.11! by theO(P2) terms will be

K5412P2k~r!, F5P2f~r!, w5P2w~r!,
~4.15!

y5y0~r!1P2j~r!, z5y0~r!1P2h~r!,

y0~r![ ln sinhr. ~4.16!

We shall look for solutions for the perturbationsk,f,w,j,h
which are regular atr→0,

r→0: k,f,w,j,h→const, ~4.17!

in agreement with Eq.~4.13!. We will find then that at large
r the solution matches onto the KT asymptotics~4.14!:

r→`: w,f,j→0, k→r, h→2 1
8 r. ~4.18!
9-7
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B. Solution for O„P2
… perturbations

Substituting Eq.~4.15! into the system~4.7!–~4.12! we
get

10j92320e8y0j260e6y0~5j22h!1f91O~P2!50, ~4.19!

10w92120e8y0w2f91O~P2!50, ~4.20!

f91k822e8y01O~P2!50, ~4.21!

4h92128e8y0h224e6y0~5j22h!2~16k11!e8y02k82

1O~P2!50, ~4.22!

k924e8y01O~P2!50, ~4.23!

2y08~5j822h8!2 1
4 k821e8y0@ 1

4 12k28~5j22h!#

26e6y0~5j22h!1O~P2!50. ~4.24!

Here the prime stands for the derivative overu, with du5
2e24y0dr @see Eq.~3.20!#. Changing to the derivatives ove
r we finish with

k914y08k82450,

k8[
dk

dr
52e24y0

dk

du
, y085cothr, ~4.25!

f914y08f81k822150, ~4.26!

w914y08w8212w1 1
10 ~k8221!50, ~4.27!

j914y08j8232j26e22y0~5j22h!2 1
10 ~k8221!50,

~4.28!

h914y08h8232h26e22y0~5j22h!2 1
4 ~k8211116k!50,

~4.29!

y08~5j822h8!2~3e22y014!~5j22h!

2 1
8 ~k822128k!50. ~4.30!

The deformation of the background is thus driven by
perturbationk(r) of the effective three-brane chargeK; solv-
ing for k(r) first we then determine the source terms in t
linear equations for the remaining perturbations. Equat
~4.25! is readily solved:

k52
5

6
1r cothrS 12

1

2 sinh2 r D1
1

2 sinh2 r
,

~4.31!

where we have fixed the two integration constants so a
satisfy the condition~4.17! of regularity at smallr: k(0)
50. Indeed,k(r→0)→ 2

5r
21O(r4). We also get the ex-

pected matching onto the KT asymptotics~4.18!: k(r→`)
→r.

The solution for the dilaton perturbation~4.26! is then
08501
e

n

to

f5
13

72
2

1

2 sinh2 r
1

3r212r cothr21

8 sinh4 r

2
r2

8 sinh6 r
, ~4.32!

where again we have fixed the integration constants so a
have the regularity at smallr, f(r→0)5r2/101O(r4). At
large r the dilaton perturbation exponentially approach
zero, in agreement with Eq.~4.18!.

The three equations for the gravitational perturbatio
w, j, h have a similar structure~as was also the case in@14#!.
For w we get

w914 cothr w8212w1q~r!50, ~4.33!

q[
1

10
~k8221!

5
1

10F ~12r28 sinh 2r1sinh 4r!2

640 sinh8 r
21G .

Note that the source term is regular at smallr: q(r→0)→
2 1

101
8

125r
21¯ , andq(r→`)→ 12

5 e22r1O(re24r). As a
result, this equation has a regular solution nearr50: w

5w* 1( 6
5w* 1 1

100)r
21¯ .18 It is easy to see~following the

analysis in@14# or by numerical integration! that this regular
short-distance asymptotics is smoothly connected to
long-distance asymptoticsw→ 3

20e
22r→0.

The equations forj ~4.28! and h ~4.29! are coupled
through the 5j22h term, but the equation for this combina
tion can be easily integrated. In fact, its solution can
found from the constraint~4.30!:

n81p1~r!n1p2~r!50, n[5j22h, ~4.34!

p1[2S 3

sinh2 r
14D tanhr,

p2[2
1

8
tanhr~k822128k!.

This gives

n52S~r!E dr S21~r!p2~r!,

S[e2*dr p1~r!5sinh3 r coshr. ~4.35!

The resulting expression forn ~given in terms of the diloga-
rithm function! is regular at smallr, n(r→0)5 1

8 r21
1O(r3), while for larger we getn→ 1

4 r, in agreement with
Eq. ~4.18!.

18Note that Eq.~4.33! can be put also in the following form
~which is of the same type that appeared in@14#!: w̃922(6
1cosh 2r/sinh2 r)w̃1sinh2 r q(r)50, w5e22y0w̃5sinh22 r w̃.
9-8
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We are left with only one equation to solve2 for j ~or for
h! @Eq. ~4.33!#,

j914 cothr j8232j1v~r!50, ~4.36!

v[2tanhrF 6

sinh2 r
n1

1

10
~k8221!G .

Its analysis is the same as for Eq.~4.33!. Since the sourcev
here is again regular atr→0, v5v01O(r2), v052 13

20, the

solution for j is also regular,j5j* 1( 16
5 j* 2v0/10)r2

1O(r4). As in the case of Eq.~4.33!, we are also able to
connect this to the required larger asymptotics~4.18!, i.e.,
j;e22r→0.

We conclude that both the matter and the gravitatio
perturbations areregular at smallr, and match onto the KT
solution at larger.

It is instructive to see explicitly why replacing S4 by R4,
i.e., going back to the original KT ansatz, gives a singu
solution, i.e., why repeating the above perturbative anal
in the R4 case leads to singularO(P2) corrections, even
though the starting point—AdS53T1,1 space in Poincare´ co-
ordinates~2.9!—is nonsingular~see also@14#!. Omitting the
potential term associated with the curvature of S4 in Eqs.
~4.7!,~4.29!,~4.12! and using the ansatz~4.15!,~4.16! with
y052 1

4 ln(4u)5r @cf. Eqs. ~3.9!,~2.9!# we finish with the
following system of equations that replaces Eqs.~4.25!–
~4.30! (y0851):19

k914k82450, f914f81k822150, ~4.37!

w914w8212w1 1
10 ~k8221!50,

j914j8232j2 1
10 ~k8221!50,

~4.38!

h914h8232h2 1
4 ~k8211116k!50,

~4.39!

5j822h824~5j22h!2 1
8 ~k822128k!50.

~4.40!

Fixing the integration constants so as to achieve the max
possible regularity of functions atr52` we get

k5r, f50, w50, h52
1

32
2

1

8
r, j50.

~4.41!

This reproduces Eqs.~3.9!,~3.10! @note thate24z5e24y0(1
1P2h1¯),# and thus leads to a short-distance singula
at r→2`. It is singular behavior of the ‘‘source function’’k
that translates into the singularity of the gravitational pert
bationh. At the same time, in the nonextremal case in@14#

19The derivative here is overr, which here takes values2`,r
,`, with r→2` being the short-distance limit.
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and in the present S4 case~4.31! ~and in the R3S3 case
discussed below! the functionk has aregular short-distance
limit.

V. PÅ0 SOLUTION IN R ÃS3 CASE

The case of compactification on S3, although technically
more complicated, can be analyzed analogously to the4

case. We will construct a smooth supergravity renormali
tion group ~RG! flow interpolating between a conforma
compactification of the KW geometry at the origin, and t
asymptotically KT geometry to the leading order inP2. The
full second order system is given by20 Eqs.~4.1!–~4.6!. The
starting point for the deformation by the three-form fluxes
the AdS53T1,1 space in the global parametrization~2.10!. In
what follows we will use the radial coordinatet related tor
in Eq. ~2.10! as

t5tanh2 r, ~5.1!

and tou in Eqs.~4.1!–~4.6! as

du

dt
5

ez25y

2At~12t !
. ~5.2!

Here t→01 and t→12 are the short-distance and the lon
distance limits of the 10D space, respectively.21 Let us also
introduce the functions

f 15e12x24z, f 25t2e24z24x,

f 35e4y216w24z, f 45e4y14w24z,
~5.3!

so that the deformed 10D metric~2.1! takes the form

ds10E
2 5 f 1

21/2dX0
21t f 2

21/2~dS3!21
dt2

4t~12t !2 1 f 3
1/2ec

2

1 f 4
1/2~eu1

2 1ef1

2 1eu2

2 1ef2

2 !. ~5.4!

The reason for the redefinitions~5.2!,~5.3! is that by using
f i(t) it is easier to construct a solution perturbative inP2 to
Eqs.~4.1!–~4.6!. For P50 we recover the AdS53T1,1 space
in the global parametrization~2.10!:

f 15 f 25~12t2!, f 35 f 451, ~5.5!

with unit radius corresponding to the choice ofK54.
Our anzatz for a perturbative solution that differs fro

Eq. ~5.5! by O(P2) terms will be similar to Eqs.~4.15!,
~4.16!:

f 1~ t !5~12t !21P2w1~ t !,

20The integration constants are subject to the zero-energy
straint as explained above.

21These are correspondingly the ir and the uv regimes of the
lographically dual gauge theory.
9-9
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f 2~ t !5~12t !21P2w2~ t !, ~5.6!

f 3~ t !511P2w3~ t !,

f 4~ t !511P2w4~ t !,

K~ t !5412P2k~ t !, F~ t !5P2f~ t !.

From Eq.~5.4! it is clear that to avoid a singularity in th
metric att→01 we should have

w2~ t !→0, w1,3,4~ t !→const. ~5.7!

Also, to reproduce theP50 values of the dilaton and of th
regular D3-brane chargeK at t50 we shall assume that

f~ t !→0, k~ t !→0. ~5.8!

At large distances (t→12) the solution is expected to ap
proach the extremal KT solution~3.9!,~3.10!:

w1~ t !→2k~ t !e24k~ t !, w2~ t !→2k~ t !e24k~ t !, ~5.9!

w3~ t !→ 1
2 k~ t !, w4~ t !→ 1

2 k~ t !,

f~ t !→0, k~ t !→1`.

Notice that becausek(t→12)→1`, the perturbative ex-
pansion~5.6! necessarily breaks down there, so that, stric
speaking, we should not expect to reproduce the precise f
of the KT asymptotics~5.9!. This is indeed what we will
find. We will recover asymptotically the warped product
the two factors R3S3 ~with a finite S3! and T1,1, with the
warp factors differing from the corresponding ones in the
geometry by subleading logarithmic corrections. The sa
phenomenon was also observed in@14#.

Now, changing the radial coordinate according to E
~5.2!, performing the redefinitions~5.3! in Eqs. ~4.1!–~4.6!,
and substituting the expansion~5.6! into the resulting system
of equations, we obtain a coupled system of second o
equations forw1,2,3,4(t),f(t),k(t). In particular, fork(t) we
find

t~12t !2k91~12t !~22t !k82150. ~5.10!

The solution of Eq.~5.10! with the correct boundary condi
tions is

k~ t !52 1
2 ln~12t !. ~5.11!

For the dilaton perturbation we find

t~ t21!2f91~12t !~22t !f81 1
4 ~ t21!50, ~5.12!

and its appropriate solution is

f~ t !52
1

4t
@ t Li2~ t !1 ln~12t !~12t1 ln t !#. ~5.13!

Next, let us consider the equations forw3 andw4 . Introduc-
ing
08501
y
rm

e

.

er

w34~ t ![w42w3 , ~5.14!

we obtain~using the already determined functions!

2t~12t !2w349 12~12t !~22t !w348

2 2
3 w341~ t21!50. ~5.15!

The solution of Eq.~5.15! with the correct asymptotics is

w34~ t !5
t12

2~12t !
@Li2~ t !1 ln~12t !ln t#

2
5t11

4t
ln~12t !2

3

2
. ~5.16!

Substituting the already determined functions into the eq
tion for w3 we find

~12t !4S t2

12t
w38D 8

28t~12t !w3

1
1

4
t~ t2228t127!22t~ t12!ln~12t !ln t

12~7t226t21!ln~12t !24~ t212!Li2t50. ~5.17!

Although Eq.~5.17! looks complicated, the general solutio
can still be found:

w3~ t !5
1

12t~12t !2 @ I 1~ t !1I 2~ t !#

1
t216t13

~12t !2 ~a113a2 ln t !

1a2

51t2148t11

t~12t !2 , ~5.18!

where

I 1~ t !52t~ t216t13!E
0

t dx

x~12x!6

3@51x2148x1113x~x216x13!ln x#

3@x323x2127x14~7x226x21!ln~12x!

28x~x12!ln~x!ln~12x!224x2 Li 2~x!#,

~5.19!

and

I 2~ t !5@51t2148t1113t~ t216t13!ln t#

3E
0

t dx

~12x!6 ~x216x13!

3@x3228x2127x14~7x216x21!ln~12x!

28x~x12!ln~x!ln~12x!224x2 Li 2~x!#. ~5.20!
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Both integration constantsa1 anda2 are uniquely fixed by
the boundary conditions. Fort→0 we find

w3~ t !5
a2

t
1a2~5019 ln t !13a1

1a2O~ t ln t !1O~ t !. ~5.21!

From Eq.~5.21! we see that the analyticity ofw3 at the origin
requiresa250. In the limit t→12 we get

w3~ t !5
10s

~12t !22
8s

~12t !
1s1

1

8

2
1

4
ln~12t !1O„~12t !ln~12t !…, ~5.22!

where

s[a11 1
120 @ I 1~ t→12!1I 2~ t→12!#. ~5.23!

It is straightforward to verify that the sumI 1(t→12)1I 2(t
→12) is actually finite.22 From Eq.~5.22! we conclude that
to get the KT asymptotic forw3 as given by Eq.~5.9! we
have to tunes50. Then Eq.~5.23! uniquely fixes the coef-
ficient a1 .

We did not find the exact analytical solutions forw1 ,w2 ,
but it is possible to show that the regularity att→0 fixes all
the integration constants but one. In general, one finds

w1~ t !5g~12t !21(
i 51

`

d1i t
i ,

w2~ t !5(
i 51

`

d2i t
i , ~5.24!

where d1i and d3i are some~uniquely! determined coeffi-
cients andg is an arbitrary integration constant. The presen
of g reflects the freedom of rescaling of the time coordin
X0 in Eq. ~5.4!. This arbitrary constant has no effect on t
uv (t→12) asymptotic, where we find

w1~ t !→ 1
16 ~12t !2@ ln~12t !#2,

w2~ t !→w1~ t !. ~5.25!

Unlike the solution for thew3 perturbation,23 which precisely
reproduces the corresponding KT asymptotic, the pre
form of the KT asymptotics forw1 ,w2 would be @see Eqs.
~5.9!,~5.11!#

w1~ t !→2~12t !2 ln~12t !,

w2~ t !→w1~ t !. ~5.26!

22Numerically, we find that I 1(t→12)1I 2(t→12)'
27.753297.

23Recall that this function determines the asymptotic warp fac
of the T1,1 space in the R3S3 compactification of the KT geometry
08501
e
e

e

The ~subleading! difference between Eqs.~5.25! and ~5.26!
should not be surprising. Much like what happens in t
nonextremal deformation of the KT solution@14#, our pertur-
bative expansion breaks down att→12 .

VI. CONCLUDING REMARKS

In this paper we have argued that naked bulk singulari
of gravitational backgrounds dual to gauge theories can
resolved by introducing an analogue of an ir cutoff in gau
theories into the supergravity background. As a new expl
realization of this proposal we demonstrated the resolution
the singularity of fractional D3-branes on a conifold bac
ground by the compactification of the gauge-theory spa
time on R3S3 or S4 with sufficiently large radius.

Unlike the original KT solution@5#, the resulting super-
gravity backgrounds discussed here are nonsupersymme
This should not be too surprising, as our solutions are cer
deformations of the KT background which had onlyN51
supersymmetry in four dimensions. An interesting quest
is whether one can preserve supersymmetry in the pro
compactification of gauge theories with reduced supers
metry, and what would be their gravity duals.

A promising starting point to address this question is
so calledN52* RG flow describing a mass-deformedN
54 gauge theory. The corresponding supergravity solut
was found by Pilch and Warner~PW! @20#, and the realiza-
tion of the gauge-gravity duality in this case was explain
in detail @21,22#. It is straightforward to construct a linea
ized solution for the gravitational background dual to t
mass-deformed R3S3 compactifiedN54 SYM theory. In
fact, the solution~and its supersymmetries! are precisely the
same as in the original PW construction. The physical exp
nation for this is that the linearized solution effective
probes the uv dynamics of the gauge theory, where the c
pactification is actually irrelevant.

A highly nontrivial question is whether one can find th
full nonlinear ~supersymmetric?! solution in this case. An
intuitive reason for why this solution may exist is the follow
ing. As explained in@21#, the PW flow is dual in the ir to a
special vacuum point in theN52* moduli space. Neither
the gauge theory nor gravity is able to explain what picks
this particular vacuum. The problem can be resolved if
assume the existence of an analogous RG flow for the c
pactifiedN54 SYM theory. Indeed, the adjoint scalar co
pling to the curvature of S3 would lift all of the moduli
space, apart from an isolated point; the conjecture is that
N52* vacuum of the PW flow is precisely the one survivin
under the S3 compactification. Finally, there is an interestin
enhancon phenomenon in the PW geometry. The size of
S3 in the ‘‘compactified’’ flow produces a new mass scale
the geometry. One could imagine a phase transition origin
ing from an interplay between the mass scale in theN54
deformation and the scale introduced by the S3.
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