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We construct a supergravity dual to the cascadinghNsti1) X SU(N) supersymmetric gauge theofte-
lated to fractional D3-branes on a conifold according to Klebanov and co-workeithe case when the
three-space is compactified oA &nd in the phase with unbroken chiral symmetry. The size’afe®ves as an
infrared cutoff on the gauge-theory dynamics. For a sufficiently lafgth& dual supergravity background is
expected to be nonsingular. We demonstrate that this is indeed the case: we find a smooth type IIB supergravity
solution using a perturbation theory that is valid when the radius’ é§ #irge. We consider also the case with
the Euclidean world volume beind" $hstead of R S®, where the supergravity solution is again found to be
regular. This “curved space” resolution of the singularity of the fractional D3-branes on the conifold solution
is analogous to the one in the nonextrertfalite temperaturecase discussed in our previous work.
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I. INTRODUCTION nate transformation. However, on the gauge-theory side, this
“deformation” drastically modifies the dynamics. Defined on
The gauge-theory—gravity dualityelates a gauge theory a round three-sphere the gauge theory will have no zero
on the world volume of a large number of D-branes to su-modes? it will have a mass gap in the spectrum of order of
pergravity backgrounds where the branes are replaced by thee inverse radius of® The modification of the spectrum of
corresponding fluxes. In a particular realization of this dual-the theory substantially modifies its thermodynamics. As in a
ity, Klebanov and Witten(KW) [2] consideredN regular  similar system studied ifi3], we expect a thermal phase
D3-branes placed at a conical singularity in type IIB transition in the $compactified KW model, which, on the
string theory. At a small 't Hooft couplinggsN<1, the gravity side, should map into the Hawking-Page phase tran-
system is best described by open strings and realizesition. We would like to emphasize that such a phase transi-
SU(N) X SU(N) N=1 supersymmetric gauge theory with tion should occur only for the gauge theory defined on a
two pairs of chiral multipletsA; ,B; and a quartic super- curved space like s
potential at an infrared superconformal fixed point. In the It is not known how to translate a generic gauge theory
limit of strong 't Hooft coupling this gauge theory is best deformation into the dual supergravity description. For the
described by type 1IB supergravity compactified on AdS particular deformations for which the dictionary is known,
x THL THI=[SU(2)x SU(2)]/U(1), with N units of the one typically encounters a naked singularity in the corre-
Ramond-Ramond five-form flux through théT If thisis a  sponding deformed geometry. Consider, for example, wrap-
genuine equivalence, then phenomena observed on the gaugiag M D5-branes on the collapsed two-cycle of the coni-
theory side should have a dual description in string theory offiold, in addition toN D3-branes put at its apgX]. On the
AdS;XTYL In particular, any deformation of the gauge gauge-theory side this deformation corresponds to changing
theory visible in the largéN limit should have a counterpart the gauge group to SB(+ M) X SU(N) with the same set of
in the dual gravitational description, and vice versa. chiral multiplets and the superpotential as in Me=0 case.
Certain deformations, trivial on the gravity side, may haveThe dual supergravity background found & was shown to
highly nontrivial analogues in gauge-theory dynamics. Forhave a naked singularity. Another example with a naked sin-
example, the presence of the Adfaictor in the KW geom-  gularity in the bulk is provided by a large number on Neveu-
etry is a reflection of the conformal symmetry of the dual Schwarz 5-brane€NS5-braneswrapping a two-cycle of the
gauge theory. In the Poincareoordinates in AdS its  resolved conifold in type IIB string theorf6]. The field-
boundary, and thus the space-time where the gauge theorytiseory dual of this system can be interpreted as a compacti-
formulated, is R3 In the global parametrization of Ag$he  fication (in our language, a deformatipof the little string
boundary is RS, This gravitational background should theory on . Yet another, probably the simplest, example of
correspond to the superconformal KW gauge theory definedeneration of ir singularity is a mass deformation of the
on Rx S, From the supergravity perspective, going from theA’=4SU(N) super Yang-Mills (SYM) theory dual to
Poincareto the global coordinates is a simple local coordi- AdS;x S° compactification of type 1B string theory. Turning
on a mass deformation on the gauge-theory side translates

*Also at Imperial College, London, and Lebedev Physics Insti-
tute, Moscow. 2For the scalars, this follows from their coupling to the scalar

For reviews and references see, €.j, curvature, required by the conformal invariance.
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into turning on three-form fluxes on the gravity sidée-9|. Minkowski space. The space compactification should pro-
At the linearized level, the fluxes diverge in the bulk, leadingvide an ir cutoff, and so for sufficiently large radius of the
to a naked singularity. three-sphere we should expect the restoration of chiral sym-
A common feature of the discussed singularities is thametry in the dual field theory, and tHfua smooth dual su-
they are produced by a well-defined deformation in the duapergravity background.
gauge-theory system. On the gravity side they occur in the It should be emphasized that not all space compactifica-
bulk (as opposed to the boundaryf the geometry, which, tions(that provide an ir cutoffmay resolve the singularity of
according to the familiar uv-ir corresponderid®] expected the supergravity dual. For example, compactifying the
in gauge-gravity duals, should reflect the IR physics of theSU(N-+M)x SU(N) gauge theory on a three-torus Will
gauge theory. If we can resolve the ir singularity induced bynot resolve the singularify.We expect that a “good”
the deformation on the gauge-theory side, then the transldsingularity-resolving compactification is the one that lifts
tion of the resolution mechanism to the gravity side shouldhe zero modes of all of the gauge-theory fields, i.e., gauge
cure the naked singularity there as well. bosons, fermions, and scalars. Let the space on which the
This philosophy is rooted in the belief that there is a genuyauge theory is defined be compactified od-dimensional
ine equivalence between the two dual descriptions, and ¥nanifold My. There will not be massless gauge-boson
was recently successfully applied, in particular, in RE®.  modes, provided the first Betty number.bf, vanishes. The
11, €] and in[12-16. These two groups of papers differ in gcajars will not have zero modes provided they are coupled
the type of mechanism used for the singularity resolution. Ing 3 nonzero scalar curvature Bty. Thus the second con-
the former case, the singularity in the deformed gauge theonyiion is a nonvanishing Ricci scalar d#t,. One must also
is resolved by nonperturbative phenomena, intrinsic to gauggake sure that there are no fermionic zero modes. While the
theory, namely, the confinement and the chiral symmetryss compactification satisfies these conditions, the dhe
breaking. The resolution of the singularity proposed in thes,iis to do that.
second group of papers is extrinsic to gauge theory: one puts one may also consider a Euclidean version and define the
the system afsufficiently high finite temperature. gauge theory on a curved 4D space-time, e.§.06K3.
In this paper we propose a more unified perspective on th¢pen & will lead to a resolution of the singularitias we

issue of singularity.(esolution in gauge—grav_ity duals, a_”dshall see beloyy but K3 will not, since it haR,,,=0 and
present a new specific example of the resolution mechanismy, ;s qoes not lift the zero modes of the scalars.
Although we shall concentrate on the case of the fractional | ot s comment also on a peculiar relation between the

D3-branes on conifold geometr{5] [Klebanov-Tseytlin = gna06 on which gauge theory is defined and its counterpart in
(KT) background for shoft we believe that our approach is yhe qual supergravity description. On the gauge-theory side
generic and _ShOUId be apP"Cab"? to other cases as well. e think of space-time being a manifold of fixed size. In the
An overview of the singularity resolution approaches.qntext of gauge-theory—gravity duality, the space-time
given above underscores the similarity in all resolution,yhare the gauge theory “lives” should be identified with a
mechanisms. As we have emphasized, in all cases the SiNgYsundary submanifold of the dual 10D supergravity space-

larity is an ir phenomenon when viewed from the gaugeime The size of this submanifold may obviously depend on
theory perspective. Then a natural way to resolve the singUser (transvers directions. One example is AdS S’ in
larity is to disallow the gauge theory to access low-energy,

g : X lobal parametrization of the AdS where the size of the
states. This can be achieved as a result of a dynamical gauggp P g5

; ) Satial part of the boundary®$hanges with the radial coor-
theory effect(generation of a mass gap in the spectrum dueinate of AdS. Another example is provided by the duality
to confinement as ifi8,11,6) or by introducing an ir cutoff

i h h h i f -
“pby hand” (turning on a finite temperatutas in[12—16). It scussed irf6], where the gauge theory arises from com

i clear f th tive that th hould b th actification of the little string theory or?®f fixed size. The
IS clear from this perspective that there should be many othel;, o of e corresponding two-sphere in the dual supergravity
ways to resolve the singularity: all one has to do is to intro-

duce an ir cutoff on the field-theory side and to understan ng[%r]ognd changes logarithmically with the radial coord-

what that cutoff translates into on the gravity side of the
duality. The corresponding supergravity background should
contain an extra scal¢he deformed conifold scale [A1], or
the nonextremality parameter it2—14), or the curvature of
the “longitudinal” space in the examples considered below

The rest of the paper is organized as follows. In Sec. Il we

“The singularity of the KT background is relatgtl] to the chiral

B . . . . .. symmetry breaking in the dual field theory. This symmdrg-
One possibility o introduce an ir cutoff is by “compacti- flected in the W1) fiber symmetry of 1] will be present in the

fyingj’ _the space on Which the gauge theory is defin_ed- As %eneralized KT background we will construct.
specmg reallzat|or) of th!s proposal we shall consider .the 5The gravity dual will be the original KT solutiof6] with the
resolution of the singularity of the KT background by defin- gp4tial coordinates of the D3-brane world volume periodically iden-
ing the dual gauge theory on >R8® instead of 4D iified.
®Related observations can be made in the case of other, more
familiar, deformations of gauge theory. |8] the authors studied

3The proposal to use a finite temperature as an ir cutoff to cloakhe duality in the context of the mass-deformee 4 SUN) SYM
naked singularities in five-dimensional gravity coupled to scalargheory. There, a constant mass deformation on the gauge-theory side
was put forward inf17]. is translated into a variable three-form flux in the gravity dual.
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discuss the generalizations of the KT ansatz for the super- As in [5] we will impose the requirement that the back-
gravity background dual to the cascading gauge theory conground has Abelian symmetry associated with th&)Uiber
pactified on RKS® and $. Following the approach of of T' as we will consider a phase where chiral symmetry is
[5,13,14, in Sec. Il we derive the corresponding 1D effec- restored. In the case ofRS® our general ansatz for a 10D
tive action that generates the equations for the radial evoluEuclidean signatujeEinstein frame metrft will involve
tion of the functions parametrizing the background metricfour functionsx, y, z, andw of radial coordinatau

and matter fields. We then discuss the simplest supersymmet-

ric solutions of these equations realizing the extremal frac-  dsie=e*(dM,)%+e 4 e'¥du?+e?(dMs)?],

tional D3-brane KT background5] and the AdgxTY? (2.2

gravity dual to the KW gauge theomf2] compactified on

RxS® or §". (dM,)2=e" 5 dX3+e?(dS%)?, (2.2)
We then consider the deformations of,MRx S® and

M,=S* compactifications of the KW model caused by  (dS®)2=da?+sir? a(dg2+sir? B dy?). (2.3

switching onP# 0 units of fractional three-brane flux. As in

the closely related workl4] on the nonextremal generaliza- Here the three-sphere replaces the three “flat” longitudinal

tion of the KT background, being unable to solve the resultdirections of the three-brane and;Ns a deformation of the

ing equations exactly, we resort to a perturbation theory validrt-! metric:

in the regime when the effective D3-brane chafge the

five-form flux) K, is much larger than the fractional three- (dMs)2=e" e +e?(e] +6€} +e; +e7 ), (2.9

brane charge,K,>P?. Physically, this approximation ! ! 2 2

amounts to introducing an ir cutoff in the dual gauge theory

at an energy scale high enough to mask the low-energy chiral

symmetry breaking that is responsible for the generation of

the KT singularity[11].” id&- _ 1 ing. de>
In Sec. IV we construct a smooth supergravity solution V6 €4~ \/65 i déi.

interpolating between the“Scompactification of the KW

model in the ir and the KT model in the uv. In Sec. V we \we choose the radius of $o be 1 as it can be absorbed into

address the same problem in the technically more challeng; shift of x (and a rescaling oKo).

ing case of the RS® compactification of the KT model. In the case of Sreplaced by R (i.e., in thex—x+xo,

Both examples of regular compactifications of the KT modely,_,« |imit), this becomes the ansatz [£3], where the

provide support to the general idea of resolving naked sinponextremal D3-brane case was considered. The extremal

gularities in the bulk of gravitational duals to gauge theoriespz-prane on the standard conifold and the more general frac-

by an ir cutoff produced by a *boundary” space compactifi- tional D3-brane KT solution have=w=0. While in[13] a

cation. nonconstant functiox(u) (=au) reflected the nonextrem-

We conclude in Sec. VI with comments on constructing agjity of the background, in the present®? case it will be
gravitational dual to mass-deformed conformally compacti,gntrivial as a consequence of the curvature df S

fied N'=4 supersymmetric Yang-Mills theories. The ansatz in the’ase is the same as H§.1) but with
(dM,)? given by

e,=3(dy+cosh; de;+cosb, de,),

e(.)i =

Il. R XS® AND S* GENERALIZATIONS OF THE KT

BACKGROUND (dM,)?=(dS"?=da?
Our aim will be to explore the generalization of the KT +sin’ a[dB?+sir® B(dy*+sin? ydé)],
solution [5] for a fractional D3-brane on a conifold to the (2.5

case when the constant radial distance slices of the “paral-

lel” part of the metric have geometry RS’ or S' (we shall  where the radius ofSis again chosen to be 1. Here there is
consider the case of Euclidean signajuvie shall argue that no functionx, i.e., the number of functions in the metric is
the corresponding solutions are regufar large enough D3-  the same as in the extremal cadbewever, in contrast to the
brane charge compared to the fractional three-brane chargetandard KT case, heke will, in general, be nontrivial

We shall start with the same ansatz a$5¢.3 and sim- As for the matter fields, we shall assume that the dilaton

ply replace 3 “longitudinal” directions by R<S® or by & may depend om, and our ansatz for the-form fields (the
S*. The treatment of the two cases will be very similar, and

we will discuss them in parallel. There will be direct analogy
with the nonextremalffinite temperaturecase considered in  8This metric can be brought into a more familiar forts,
[12-14. =h~Y4r)(dM,)2+h¥%(r)[g~}(r)dr?+r2ds?],  where h
— ef4zf4x' r= ey+x+w' g= efsx’ elOy+2x du2= g’l(r)drz. When
w=0 ande®¥=r*=1/4u, the transverse 6D space is the standard
"This is also the region of validity of the nonextremal deforma- conifold with Ms=T*%. Smallu thus corresponds to large distances
tion, i.e., of the finite temperature resolution of the KT singularity in 5D and vice versa. In the AdSegion largeu is near the origin
due to the chiral symmetry restoration studied 14]. of AdS; space, whileu=0 is its boundary.
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same in the RS® and $ case} will be exactly as in the
extremal KT cas¢5] and in[13]:°

Fs= Pe¢D(eg1De¢l— eﬂzDe%)'

Bo=f(u)(ey, Uey —€p,ley,), (2.6

Fs=F+*F,

F= K(u)e¢De01De¢lDe02De¢2,
K(u)=Q+2Pf(u), 2.7

where, as in5], the expression foK follows from the Bi-
anchi identity for the five-form. The constarfsand P are
proportional to the numberd and M of standard and frac-
tional D3-branes; their precise normalizatiqese[18]) will
not be important here.

In what follows, we shall first derive the corresponding
system of type IIB supergravity equations of motion describ
ing the radial evolution of the six unknown functions of
u Xy, z w K, @ (five functionsy, z, w, K, ® in the &

casg. We shall then discuss its solutions aiming to show tha

there exists a smooth interpolati@n radial coordinate only

between(i) a nonsingular short-distance region where the

10D background is approximately AgS T written in the
coordinates where the=const slice is K S® or S, and(ii)

a long-distance region where the 10D background ap
proaches the KT solution. We shall start with the short-

distance(u=o¢ or p=0) region, i.e., Adgx T*! space(with
the radius determined by the effective chakgg) and show

PHYSICAL REVIEW D 65 085019

—o< p< o, (2.9
dsf,=coslf p dX3+ sint? p(ds®)?
+dp?+(dTHY2, 0<p<oe, (2.10
ds?,=sint? p(dS*)?+dp?+ (dTHY?,
0<p<c. (2.11)

While these three spacdwith the Euclidean AdS metric
written in Poincargglobal, and “hyperboloid” parametriza-
tions) are related locally by the coordinate transformations,
these involve changing all five of the coordinates, i.e., the
radial, but also the angular ones. It is the assumption that the
10D deformation2.1) of the factorized metric€.9), (2.10,
and (2.11) when the three-form flux2.6) is switched on
depends only on the corresponding radial coordinate
(which is different in the three cagdabat makes the resulting
solutions different. Since the 10D metric is no longer a direct
product, different choices of the radial coordinébe of the

etric on thep=const slice lead to inequivalent 10D equa-
ions and thus inequivalent D3-brane solutions no longer re-
lated by a local coordinate transformatibayondthe short-
distance AdSX T1! limit.

In particular, while the Poincargatch metric(2.9) leads

to the KT solution which is singular in the {for p— — ),
that singularity is resolved in RS® and $ where thep
—0 limit is described by Eq$2.10 and(2.11), respectively.

that by doing perturbation theory in the small parameter Ill. ACTION FOR EQUATIONS OF RADIAL EVOLUTION

P2/K, <1 one can match it onto the KT asymptotics at large

distances(u—0 or p—=). The crucial point will be that

O(P?/K,) perturbations will be regular at small distances.
This will be exactly parallel to the discussion of the nonex-

tremal case irf14] where the starting point in the ir was a
regular nonextremal D3-brariblack hole in Adg) solution
with large (above critical Hawking temperature.

We shall assume, for notational simplicity, that the value

of the radius_ of the short-distance limit space AgSTY1is

1. That corresponds to the choice of the normalizations

where the effective three-brane chargeds=1)

K,=4, ie,L=1 (2.9

In discussing theO(P?) deformation it will be useful to

compare the three possible regular starting points—the

AdS;x TH! space in the three different parametrizations
where the constant radial slice i$,RRx S, and $, respec-
tively:

dsiy=e*(dR*)2+dp?+ (dTHH?,

AND SPECIAL CASES

As in [5,13,14 we shall first derive the 1D effective ac-
tion that generates the equations for the radial evolution of
unknown functions. Computing the scalar curvature for the
metric (2.1) we find that in the KS® case (2.1),(2.2)

J d*%/GR is proportional tol or=J du Ly, where

Ly RXS®)=5y’'?—3x'?—2z'2~5w'?2
+ ge—2x+ 10y—4z+ e8y(6e—2w_ e~ 12\N).

(3.1
The corresponding expression in thé @&se(2.1),(2.5) is

Lg(S)=5y'?—22'?~5w’'?+3e'¥ 4

+e¥(6e2W—g 1), (3.2
Note that it can be formally obtained from E¢B.1) by
setting®

e ¥=2.

X=const, (3.3

°The reason that the form of the ansatz is the same is that it is

formulated in terms of the transverse space geometry (thly
“parallel” or “electric” part of F is then fixed by the self-duality
condition.

1%The coefficient 2 accounts for the ratio of the values of the Ricci
scalars of $and S.
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The new term irLy, [Eq. (3.1)] compared to thénonextre- As a result, there exists a special Bogomol'nyi-Prasad-
mal RxR® case in[5,13 is the first potential term that re- Sommerfield solution satisfying''+g'*9W=0 and thus

flects the curvature of R S® (or SH.1 also the zero-energy constraint. In the present £age)]
The matter part,, of the effective type 1IB Lagrangian
[contributions of the dilaton, three-form fields, and the five- W= 1e¥(3e*+2e~ W) — 1e%?K, (3.6

form following from Egs.(2.6),(2.7)] is essentially the same

as in the KT cas¢5] and[13] sinceL ,, does not depend on and the corresponding system of first order equations is
the functionx and the structure of M As a resultL=L

+Ly=T—-V, where x'=0, y'+ze¥(3e*+2e ") =0,

1 I _ 3 a4y (W _ o~ bW\ —
T:5y/2_3x/2_22/2_5w/2_g(D/Z w 5€ (e € ) 01 (37)

q)I:O, K/+2PZe<I’+4y+4W:0,

12
_ le—fl>-%—4z—4y—4wK_2 (3.4)
4P 7'+ 3e*K=0. (3.8
Ve — §e72x+10y74z_ eBY(pe2W— g~ 12v) Choosing the special solutiom=0 we then find? [5]
2
P2
+ Eetb+4z+4y+4WP2+ EESZKZ (3.5 x=w=0=0, e V=4u, K=Ko- ?In u, (39
4 8 ' '
. . 2 2
The equations of motion that follow fronh should be e “=h=hg+| Ko+ —|u——ulnu, (3.10
supplemented by the “zero-energy” constraift V=0. As 2 2

in [14], we will use the five-form flux functiorK(u)=Q

+2Pf(u) instead off (u) in Eq. (2.6). wherehy=0 if we omit the standard asymptotically flat re-
The new potential terne”2**1% =42 in Eq. (3.5 associ- gion (as we shall assume belpw

ated with the scalar curvature of the four-space, in general,

leads to breaking of supersymmetry and thus to a nontrivial g k=const(P=0) case: AdSXTY!with M ,=RXS®

modification of the extremal KT solution. In the nonextremal or M,=S*

case discussed [13] this term was absent and the equation ) ) )

for x simply gavex=au, with a being the nonextremality . Setting first the fractional three-brane flux to zdé?e-0

parameter. In the RS® case where the functior is no (-6, K=K, =const and alseb=f=0), we get from Egs.
longer a “modulus” it cannot be easily decoupled. In the S (3.4),(3.5
case the new potential term in E&.2) provides a nontrivial L=5y'2—3x/2—27/2—Gy'2+ g 2X+10/-42
mixing between they,z. 2
Let us first consider some special solutions of the equa- +e¥(6e W—e 12— 1KZe®?, (3.11

tions following from this action.

Here the first term in the potential is the contribution of the

A. Flat four-space case: Extremal KT solution curvature of 8, the second is the curvature of thw-
deformed T'! space, and the last one is the negative 5D
cosmological constant originating from the five-form flux
contribution. Shiftingz and x we may set the D3-brane
charge parametdf, to some fixed value, e.gk, =4 as in
Eq. (2.8).

Sincew=0 is an obvious special solution, in this case we
L=gij(¢" +g“aW)(4'"1+g! o W) —2W". get

Let us first recall the solution in the MeRXR® case
[corresponding formally to the “infinite radius” limik=co
of Eg. (3.5]. The crucial observation made B] is that in
the absence of the 2**1%~42 term the Lagrangiart3.4),
(3.5 admits a superpotential, i.e.,

L= 5y/2_ 3X/2_ 22/2+ ge—2X+lOy—4Z

Hjts scaling under shifts of,y,z follows directly from the struc-
ture of the metric(2.1). Shifting x or z to restore explicitly the
inverse radius parameter of 8r S* as its coefficient, one may then . )
recover the R R® case in the limit when this parameter goes to IN the standard “flat” D3-brane case, i.e., in the absence of
zero. As in[13], in the absence of matter terms=0 is a consistent the €™ >*1¥~42 term, this system is easily integrated giving
fixed point of the equations of motion, corresponding te iM Eq.
(2.4) replaced by the standard-¥ Note also that a special solution
of the equation®R,,,,=0 that follow from this gravitational actionis ~ '?u=1/4r* wherer is the standard radial coordinate in the D3-
R times a cone overx T*! or a cone over &< T, brane solution.

+5e% —2e%2. (3.12
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us the extremalX=0) or nonextremalX=au) solution for
the D3-brane on a conifold. The case of

y=2 (3.13

then corresponds to the Ag8 T limit (2.9) where the M
part of the metriq2.1) factorizes.

PHYSICAL REVIEW D 65 085019
z=y=Insinhp, dp=-—e*du, (3.20

where we again sgi,=0."®> Then the metric becomes equal
to Eq.(2.11), with the AdS; part written in the parametriza-
tion where the topology of the radial slices i$. S

It is useful to stress again that the three AdI ! met-

In general, while it is not clear how to solve the systemrics (2.9), (2.10, and(2.11), although related locally by the
that follows from Eq/(3.12 analytically, it is easy to see that coordinate transformations, are obtained framequivalent

the 5+5 factorized cas€3.13 is still a special solution.
Here we end up with

L=3(y'2—x'2+ e 2XT6y 4 g8Y), (3.19
The corresponding equations have the following solutibn:

e¥=tanhp, e¥=sink’ pcoshp,

dp=—e¥du, (3.15

where we have set the only integration constéme origin of
p) to zero* The metric is thus given by Eq2.10), i.e., is the
product of AdS in the global parametrization and-¥(both

1D actions. This reflects the inequivalence of the correspond-
ing radial coordinates, and leads also to very different prop-
erties of the corresponding fractional brae40) deforma-
tions of these backgrounds discussed below.

IV. STRATEGY OF FINDING P#0 SOLUTION
AND S* CASE

Being unable to solve the system of equations that follows
from (3.4), (3.5) in general, we need to resort to perturbation
theory similar to the one used {i4]. Our aim will be to
show that starting from the asymptotic KT geometry at large
p one may smoothly interpolate toragular AdS; < TH! ge-

with scaleL=1). Large p corresponds to the boundary and ometry(with large enough effective charge, >P?) at small

small p to the origin of AdS.
In the S case (3.2 setting K=K, =const gives[e.g.,
using Eqg.(3.9) in Eq. (3.11)]

L=5y'?2—2z'2—5w'?+3e'¥ 4
+e¥(6e W—e 12— 1K2e®?, (3.16
or, forw=0 andK, =4,

L=5y'2—27'2+3el¥ 421+ 5e®—2e%2 (3,17

p with the metric having a nontrivial scalar curvature @f
=const slices, i.e., Eq2.10 or Eq.(2.11).

Following the same strategy as used i4] in the finite
temperature case we shall start with the AdS* ! back-
ground (2.11) expected to be a good approximation in the
small p region if K, =K(p—0) is sufficiently large, and
solve the supergravity equations perturbatively to leading or-
der in P?/K, <1. We shall see that the leading deformation
of the AdS;x T*! background igegular at smallp.

If one starts instead with the “flat” AdSx T! metric
(2.9), this perturbative expansion reproduces the exact form

The meaning of the three terms in the potential is again thef the KT solution already at the first order of perturbation
curvature of &, the curvature of ¥, and the negative cos- theory inP%/K, [note that the correction terms in Eq8.9),

mological term produced by the;Flux. Equivalently,
L=3n"2—30m’' 2+ 3e%"+ e8"(5e~16m_ 2= 40Mm)

z=n—-5m, y=n-2m. (3.18

(3.10 are linear inP?]. Here, however, the perturbati¢éand
the exact solutionis singular in the short-distance region
[which in the case of E2.9) corresponds tp— —>]. As
was explained irf14], introducing nonextremalityi.e., re-
placing AdS by the black hole background with sufficiently
high temperatureresolves the singularity, making the pertur-

In general, this system does not admit a superpotentigdative solution regular. We shall see that a similar resolution

(wrapping the Euclidean three-brane world volume ovér Sis provided by the curvature of the “parallel” three-brane
breaks supersymmefryThe special easily solvable case is djrections.

the fixed pointm=0, i.e.,y=2z [Eq. (3.13] or the case of
factorization Mg— MsX T1L Here we are left with just with
one functiony satisfying the zero-energy constrajttiere is
thus an obvious superpotential; cf. £E§.14)]

y'2=e%+e?, (3.19

so that

BNote that while forq#0 or y#z Eq. (3.12 does not ad-
mit a superpotential, it exists for Eq3.14 [cf. Eq. (3.6)]: W
=(3/4)[(1/2)e” ¥ +e¥].

¥Here u=Intanhp+sinh?p, so that u(p—»)—2e"?* and
u(—0)—1/2p2.

As was already mentioned above, to simplify the presen-
tation we shall assume that the value of the five-form flux at
p—0 is fixed as in Eq(2.8), so that the radius of AdSs 1
asin IZEqs(2.9)—(2.1D. The expansion parameter is then sim-
ply P<.

The full system of second order equations following from
Egs. (3.4,(3.5 in the RxS® case is similar to the one in
[14]:

n

X' —3e & 4rtiy=q, (4.)

BHere u=coshp(1-2 sinit p)/3 sink p+2/3, so thatu(p—0)
—1/3p%, u(p—»)—de .
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10y"—8e¥(6e 2—e 1) —30x"+d"=0, (4.2 —3el¥ 4728y (ge 2W—_g 12W)

1 1
100"~ 12e%(e™?"—e 1)~ d" =0, (4.3 g et apE L 2 efiK2=0.

(4.12
12

O+ e—(D+42—4y—4w(%_ e2<I>+8y+8WP2) — 0’ (4_4)

This system is simpler than in thextS® case, and in the
remainder of this section we shall concentrate on its solution
for the firstO(P?) deformation away from the Ag T1?

47" — K2e82— metric (2.11).
K/Z
e—<1’+42—4y—4W(_24P + @20 +8y+ BWPZ) —12x"=0, A. Asymptotics of regular S* solution
Let us first discuss the expected behavior of the solution
(4.9  in the two asymptotic regions—0 (u—) and p— (u
—0), i.e., in the short-distance and long-distance limits in
(el~Praz-dy—dwyryr_ op2K e82=, (4.6) 10D space. We would like the solution to have a regular

short-distance limit which has the for(@.11) (up to possible
The integration constants are subject to the zero-energy cogonstant rescalings
straint T+V=0. It is easy to see that because of the extra

SP-curvature terme”2~42*1% in the potential this system p—0: y—=Inpty,, z—Inp+z,,
does not(in contrast to the nonextremal cagE?]) admit a
special solution with constant dilaton and self-dual w—w,, P—d,, KoK, . (4.13

three-formst® In [13] we needed to relax this first order sys- _ o
tem to get a nonsingular nonextremal solution. Here we dd\t 1arge distances —) the solution is expected to ap-

not have a choice—all functiong particular,w) are to be

nontrivial in general.
In the $ case we get instedd

10}/" _ 8€8y( 6e*2W_ e~ lZ\N) _ 3%10yf4z+ (I)”: 0,

(4.7
J.O»N"— 1268y(e72w_ e 12vv) _ q)r/: 0,
(4.8
K72
(I)//+e—d>+4z—4y—4w<m_eZ<D+8y+8WP2 =0,
4.9

12

K
47" — K2e82_ etb+4z4y4w< 4p2 4 ez¢+8y+8WP2

—12el 42—, (4.10

(ef®+4274y74WKr)r _ ZPZKeBZ: 0,

(4.11)
with the zero-energy constraint
1 1 12
5 12 _ 22!2_5W72_ _(DrZ_ _ef¢+4274y74w
y 8~ 4 4p?
16”: we set K/2_4P3e2¢'+8y+8W:0, i.e., K'=— 2P2e‘D+4y+4W,

then Eq.(4.6) implies thatz should be subject to the first order

equation in(3.8), but this is not consistent with Ed4.5 unless
x"=0.

This system is related to theX)S® one by settingg™2*=2 in
Egs.(4.1)—(4.6) after using Eq(4.1) in Egs.(4.2),(4.5).

proach the extremal KT solutio(8.9),(3.10, i.e. [note that
according to Eq(3.20 u(p—x)—4e 4],
p— 0! e/— e,

w—0, ®—0,

K—2P?%p, e “-8P%pe . (4.14
To demonstrate the existence of a regular solution that inter-
polates between these two asymptotics we shall start with
Eq. (2.11 which is valid forP=0, and find its deformation
order by order inP2. We shall see thatunder a proper
choice of integration constantthe leadingO(P?) perturba-
tions areregular at p— 0, so that we indeed match onto the
short-distance asymptotid¢d.13. It turns out that the lead-
ing O(P?) correction is already enough to match onto the
expected KT long-distance asymptotigs14).

Our ansatz for the leading perturbative solution that dif-
fers from Eq.(2.11) by the O(P?) terms will be

K=4+2P%(p), w=P2w(p),
(4.15

®=P?¢(p),

y=Yo(p)+P2&(p), z=Yyo(p)+P?n(p),

Yo(p)=Insinhp. (4.19
We shall look for solutions for the perturbatioksp,w,&,7
which are regular ap— 0,

K, ¢,w,&, n—const,

p—0: (4.17

in agreement with Eq4.13. We will find then that at large
p the solution matches onto the KT asymptotidsl4):
n——gp. (418

p— >

wW,9,£—0, k—p,
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B. Solution for O(P?) perturbations

Substituting Eq.(4.19 into the system(4.7)—(4.12 we
get

10¢" — 320e30&— 60e%Yo(5¢— 2) + "+ O(P2) =0, (4.19
10W" —120e%ow — ¢+ O(P?) =0, (4.20
" +k'2—e®o+0(P?)=0, (4.20)

47" —128¥0y—24e%0(5&—27) — (16k+1)ePo—k’'?
(4.22

K"—4e¥o+0(P?)=0, (4.23

+0(P?) =0,

2yo(5¢'—27")— ik'*+e¥o 7+ 2k—8(5¢—27)]
(4.249

Here the prime stands for the derivative owerwith du=

—6e%o(5¢6—27)+0O(P?)=0.

—e ¥0p [see Eq(3.20]. Changing to the derivatives over

p we finish with

K'+4ygk’ —4=0,

. dk _a Ak

K =5 Yoo Yo=cothp, (4.29
¢"+4Y6¢/+k’2_1:0’ (426)

W+ 4yow' — 12w+ 5(k'*~1)=0, (4.27)

&'+ 4yo¢' —326—6e Po(56—27) — 15(k'?>~1)=0,

(4.29
7' +4ysn' —32n—6e Po(5&—29)— 3(k'?+1+16k) =0,
(4.29

yo(5¢'—27")—(3e ?o+4)(5¢—27)
—3(k’2=1-8k)=0. (4.30

PHYSICAL REVIEW D 65 085019

13 1 3p%+2p cothp—1
b=+ :
72 2sintfp 8 sintf p
o : (4.32
8sinkPp’ '

where again we have fixed the integration constants so as to
have the regularity at smal, ¢(p—0)=p?/10+O(p*). At
large p the dilaton perturbation exponentially approaches
zero, in agreement with E¢4.18).

The three equations for the gravitational perturbations
w, & n have a similar structur@as was also the case[ib4]).
Forw we get

W’ +4 cothp w’ — 12w+ q(p)=0, (4.33

_1 k12 1
Q=E( -1

_ 1[(12p—8sinh 2p+sinh 4p)? L
T 10 640sinf p B

Note that the source term is regular at smalg(p—0)—

— 5+ op2+--, andq(p—»)—Fe 2+ 0(pe ). As a
result, this equation has a regular solution nparO: w
=w, + (2w, + 75 p>+--- .28t is easy to seéfollowing the
analysis in[14] or by numerical integratiorthat this regular
short-distance asymptotics is smoothly connected to the
long-distance asymptotics— e~ 2*—0.

The equations foré (4.28 and n (4.29 are coupled
through the 5— 27 term, but the equation for this combina-
tion can be easily integrated. In fact, its solution can be
found from the constraini4.30):

The deformation of the background is thus driven by theThis gives

perturbatiork(p) of the effective three-brane charlfesolv-

ing for k(p) first we then determine the source terms in the
linear equations for the remaining perturbations. Equation

(4.25 is readily solved:

1 ) 1
~ 2sinp * 2sinffp’
(4.3)

5
k=—g+pCOthp(l

v +pi(p)v+pa(p)=0, v=5{-27%, (439
= 3 4 h
Pi= sinth+ tanhp,
1
p,=— §tanhp(k'2—l—8k).
V=—S(p)f dp S~ (p)p2(p),
S=e /I P1P) =sinkP p coshp. (4.39

The resulting expression far (given in terms of the diloga-
rithm function is regular at smallp, v(p—0)=35p3+
+0(p?), while for largep we getv— p, in agreement with

where we have fixed the two integration constants so as tgq. (4.18).

satisfy the condition(4.17) of regularity at smallp: k(0)

=0. Indeed,k(p—0)—2p?+0O(p*). We also get the ex-

pected matching onto the KT asymptotigs18): k(p— )
—p.

The solution for the dilaton perturbatidd.26) is then

8\ote that Eq.(4.33 can be put also in the following form
(which is of the same type that appeared [i4]): W"—2(6
+ cosh /sint? p)i+sint? p g(p)=0, w=e~ Yofy=sinh 2 p .
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We are left with only one equation to solvefor £ (or for  and in the present“Scase(4.31) (and in the S® case
7) [Eq. (4.33)], discussed belopthe functionk has aregular short-distance
limit.
¢'+4 cothp ¢' — 326+v(p) =0, (4.36
V. P#0 SOLUTION IN R XS? CASE

6 1
v=—tanhp| <o v+ —(k2=1)]. The case of compactification orf,Salthough technically
sinkf p 10 .

more complicated, can be analyzed analogously to the S
case. We will construct a smooth supergravity renormaliza-
tion group (RG) flow interpolating between a conformal
) i . e ) compactification of the KW geometry at the origin, and the
S°|Ut'°4n for & is also regular,£=¢, + (3¢, —vo/10)p asymptotically KT geometry to the leading orderRA. The
+0(p"). As in the case of Eq(4.33, we are also able to )| second order system is given ¥yEqgs. (4.1—(4.6). The
CO“”_GZCt this to the required largeasymptotics(4.18), i.e.,  starting point for the deformation by the three-form fluxes is
§~e “—0. the AdS;x T! space in the global parametrizati¢h10. In

We conclude that both the matter and the gravitationajyhat follows we will use the radial coordinateelated top
perturbations areegular at smallp, and match onto the KT jn Eq. (2.10 as

solution at largep.

It is instructive to see explicitly why replacing* ®y R?, t=tantt p, (5.2
i.e., going back to the original KT ansatz, gives a singular
solution, i.e., why repeating the above perturbative analysignd tou in Egs.(4.1)—(4.6) as
in the R* case leads to singula®(P?) corrections, even
though the starting point—Ad T space in Poincareo- du e? >y
ordinates(2.99—is nonsingularsee alsd14]). Omitting the dat m
potential term associated with the curvature éfi Egs.
(4.7,(4.29,(4.12 and using the ansat®.15,(4.16 with  Heret—0, andt—1_ are the short-distance and the long-
Yo=—3In(4u)=p [cf. Egs. (3.9),(2.9] we finish with the gistance limits of the 10D space, respectiély.et us also
following system of equations that replaces E¢.25—  introduce the functions

(4.30 (yo=1):"

K'+4k' —4=0, ¢"+4¢'+k'>—1=0, (4.37)

Its analysis is the same as for H4.33. Since the source
here is again regular at—0, v=vo+O(p?), vo=— 53, the

(5.2

fl:elzxf4z f2:t2674274x

f3=e4yflaN74z f4=e4y+4w74z
W+ 4w’ — 12w+ & (k'2—1) =0, (5.3
£+ 48 —326— A (K'2—1)=0 so that the deformed 10D metri2.1) takes the form
10 -

U2 y2 1102 24 o4 122

7' +4n —32n—3(k'?+1+16k)=0, o=l AT T JETEEEA
(4.39 + f}llz(egl—k eil-k e§2+ efﬁz). (5.4

r_ r_ _ 1 12_1__ —

5¢'—2n'—4(56—-2n)—5(k 1-8k)=0. (4.40 The reason for the redefinition(s.2),(5.3) is that by using

f,(t) it is easier to construct a solution perturbativePifito
£0s.(4.1)—(4.6). ForP=0 we recover the AdsX T space

Fixing the integration constants so as to achieve the maxim o
in the global parametrizatio(®.10):

possible regularity of functions at= —« we get

f1:f2:(1_t2)1 f3:f4:1! (55)
k=p, =0, w=0, p=—55—gp, &=0. . . . . .
P d 7" "32 8° ¢ with unit radius corresponding to the choicelof 4.
(4.47) Our anzatz for a perturbative solution that differs from

2 . o
This reproduces Eq€3.9,(3.10 [note thate—*= e~o(1 (E4q1é55) by O(P?) terms will be similar to Eqs(4.15,
+P29+---),] and thus leads to a short-distance singularity
atp— —oo. Itis singular behavior of the “source functiof’ f1()=(1—1t)2+ P%p4(t),
that translates into the singularity of the gravitational pertur-
bation 7. At the same time, in the nonextremal casd id]
2%The integration constants are subject to the zero-energy con-
straint as explained above.

%The derivative here is oves, which here takes values %< p 2These are correspondingly the ir and the uv regimes of the ho-

<o, with p— —c0 being the short-distance limit. lographically dual gauge theory.
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fo(t)=(1—1)2+ P2p,(1), (5.6)
fa(t)=1+P?e4(1),
fa(t)=1+P2p,(1),
K(t)=4+2P%k(t), ®(t)=P2¢(t).

From Eq.(5.4) it is clear that to avoid a singularity in the
metric att— 0, we should have

(5.7

Also, to reproduce th®=0 values of the dilaton and of the
regular D3-brane chardgé¢ att=0 we shall assume that

(1) —0, (,01'3]4(t)—>00n5t.

¢(t)—0, k(t)—0. (5.9

At large distancest(~1_) the solution is expected to ap-
proach the extremal KT solutiof8.9),(3.10:

p1(t)—=2k(t)e O o (1) —2k(t)e %V (5.9
e3a(t)—zk(t), @a(t)—3K(1),
H(1)—0, k(t)— +o.

Notice that becaus&(t—1_)— +«, the perturbative ex-

PHYSICAL REVIEW D 65 085019

P3()=ps— @3, (5.19

we obtain(using the already determined functipns

26(1-1)%p3t 2(1-1)(2— ) 3y

—5@at(t-1)=0. (5.1

The solution of Eq(5.15 with the correct asymptotics is

t+2
<Ps4(t):m[le(t)Hn(l—t)lnt]

+1
4t

In(1—t)—§. (5.19

Substituting the already determined functions into the equa-
tion for ¢5 we find

t2 ’
(1—0%E:T¢J —8t(1-t)¢gs

1
+ Zt(tz—28t+27)—2t(t+2)|n(1—t)|nt
+2(7t>—6t—1)In(1—t)—4(t>+2)Li,t=0. (5.19

Although Eq.(5.17) looks complicated, the general solution

pansion(5.6) necessarily breaks down there, so that, strictlycan still be found:
speaking, we should not expect to reproduce the precise form

of the KT asymptoticg5.9). This is indeed what we will

find. We will recover asymptotically the warped product of

the two factors RK'S® (with a finite $) and T with the

warp factors differing from the corresponding ones in the KT
geometry by subleading logarithmic corrections. The same

phenomenon was also observed 1d].

Now, changing the radial coordinate according to Eg.

(5.2), performing the redefinitionés.3) in Egs.(4.1)—(4.6),
and substituting the expansi@®.6) into the resulting system

1
<P3(t):m[|1(t)+|z(t)]
t>+6t+3
HEEnL

. 51t%+ 48+ 1
Y-z

(al—l— 30{2 Int)

(5.18

of equations, we obtain a coupled system of second ordeghere

equations forp; 5 3 {t), ¢(t),k(t). In particular, fork(t) we
find
t(1—t)%k"+(1—1)(2—t)k’ —1=0. (5.10

The solution of Eq(5.10 with the correct boundary condi-
tions is

k(it)=—2In(1—1). (5.11
For the dilaton perturbation we find
t(t—1)%2¢"+(1—t)(2—t) '+ 2(t—1)=0, (5.12

and its appropriate solution is
1
Pd(t)=— E[t Lio(t)+In(1-t)(1—t+Int)]. (5.13

Next, let us consider the equations tp§ and ¢, . Introduc-
ing

tdx
— _$(+2
I (t)=—t(t +6t+3)fom6
X[51x2+ 48X+ 1+ 3x(x?+ 6x+ 3)In x]
X [x3—3x?+ 27x+ 4(7x?>—6x—1)In(1—Xx)

—8x(x+2)In(x)In(1—x) —24x? Li»(x)],
(5.19

and

I,(t)=[51t?+ 48t + 1+ 3t(t?>+ 6t+3)Int]
ft X e 6x+3
X 0(1_—)()6(X + 06X+ )

X[x3—28x?+ 27x+ 4(7x?+ 6x—1)In(1—x)
—8x(x+2)In(x)IN(1—x)—24x2 Li»(x)]. (5.20
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Both integration constants; and «, are uniquely fixed by
the boundary conditions. Fér—0 we find

o
ea(t)= TZ + ay(504+9 Int)+ 3y

+a,0(tInt)+O(t). (5.21)

From Eq.(5.21) we see that the analyticity af; at the origin
requiresa,=0. In the limitt—1_ we get

_ 10s 8s 1
esV=3 2 1= °'s

—%In(l—t)+0((1—t)|n(1—t)), (5.22

where

s=ag+ 155 [11(t—1)+1,(t—1.)]. (5.23
It is straightforward to verify that the suiq(t—1_)+1,(t
—1_) is actually finite?? From Eq.(5.22 we conclude that
to get the KT asymptotic fop; as given by Eq(5.9 we
have to tunes=0. Then Eq.(5.23 uniquely fixes the coef-
ficient a; .

We did not find the exact analytical solutions fey, ¢,,
but it is possible to show that the regularitytat 0 fixes all
the integration constants but one. In general, one finds

0

qol(t>:y(1—t)2+i§1 dyt!,

¢2<t):i§1 dyt', (5.24

whered;; and ds; are some(uniquely determined coeffi-

PHYSICAL REVIEW B5 085019

The (subleading difference between Eq$5.25 and (5.26)
should not be surprising. Much like what happens in the
nonextremal deformation of the KT solutiph4], our pertur-
bative expansion breaks downtat:1 .

VI. CONCLUDING REMARKS

In this paper we have argued that naked bulk singularities
of gravitational backgrounds dual to gauge theories can be
resolved by introducing an analogue of an ir cutoff in gauge
theories into the supergravity background. As a new explicit
realization of this proposal we demonstrated the resolution of
the singularity of fractional D3-branes on a conifold back-
ground by the compactification of the gauge-theory space-
time on R< S? or S* with sufficiently large radius.

Unlike the original KT solution5], the resulting super-
gravity backgrounds discussed here are nonsupersymmetric.
This should not be too surprising, as our solutions are certain
deformations of the KT background which had ouy= 1
supersymmetry in four dimensions. An interesting question
is whether one can preserve supersymmetry in the process
compactification of gauge theories with reduced supersym-
metry, and what would be their gravity duals.

A promising starting point to address this question is the
so calledV=2* RG flow describing a mass-deformed
=4 gauge theory. The corresponding supergravity solution
was found by Pilch and WarnéPW) [20], and the realiza-
tion of the gauge-gravity duality in this case was explained
in detail [21,22. It is straightforward to construct a linear-
ized solution for the gravitational background dual to the
mass-deformed RS® compactifiedV=4 SYM theory. In
fact, the solutionand its supersymmetrigare precisely the
same as in the original PW construction. The physical expla-
nation for this is that the linearized solution effectively
probes the uv dynamics of the gauge theory, where the com-
pactification is actually irrelevant.

A highly nontrivial question is whether one can find the

cients andy is an arbitrary integration constant. The presencg| nonlinear (supersymmetrig?solution in this case. An

of y reflects the freedom of rescaling of the time coordinat€py,itive reason for why this solution may exist is the follow-
Xo in Eq. (5.4). This arbitrary constant has no effect on theing_ As explained if21], the PW flow is dual in the ir to a

uv (t—1_) asymptotic, where we find
e1(H)— 1 (1-In(1-1)]?,
(5.29

Unlike the solution for thep; perturbatior?® which precisely

Pa(t)— @y (1).

reproduces the corresponding KT asymptotic, the precis

form of the KT asymptotics fokp,¢, would be[see Egs.

(5.9,(5.11)]
@1(H)——(1-1)2In(1-1),

P2(t)—@1(t). (5.26

2Numerically, we find that

—7.753297.

Il(t—> l,)+ | 2(t—> l,)%

ZRecall that this function determines the asymptotic warp factor

special vacuum point in th&/=2* moduli space. Neither
the gauge theory nor gravity is able to explain what picks out
this particular vacuum. The problem can be resolved if we
assume the existence of an analogous RG flow for the com-
pactified V=4 SYM theory. Indeed, the adjoint scalar cou-
pling to the curvature of Swould lift all of the moduli

pace, apart from an isolated point; the conjecture is that the

=2* vacuum of the PW flow is precisely the one surviving
under the & compactification. Finally, there is an interesting
enhancon phenomenon in the PW geometry. The size of the
S® in the “compactified” flow produces a new mass scale in
the geometry. One could imagine a phase transition originat-
ing from an interplay between the mass scale in e 4
deformation and the scale introduced by the S
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