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General structure of the photon self-energy in noncommutative QED
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We study the behavior of the photon two point function, in noncommutative QED, in a general covariant
gauge and in arbitrary space-time dimensions. We show, to all orders, that the photon self-energy is transverse.
Using an appropriate extension of the dimensional regularization method, we evaluate the one-loop corrections,
which show that the theory is renormalizable. We also prove, to all orders, that the poles of the photon
propagator are gauge independent and briefly discuss some other related aspects.
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[. INTRODUCTION theories, the physical origin of the nonanalyticity is well un-
derstood. Namely, in a thermal medium, new channels of
Noncommutative theories have generated a lot of interestaction develop leading to new branch cuts, which is the
in recent year§l—24]. These are theories defined on a mani-reason for the nonanalyticity. In the same spirit, it will be
fold where the coordinates do not commute. As a result, innteresting to understand if there is a physical origin of the
such theories, there is a natural second rank antisymmetrivonanalyticity in noncommutative theories.
tensor with the canonical dimension of inverse mass squared. A lot is already known about thermal field theories and
Several interesting features develop in such theories. First afven though we do not yet know whether noncommutative
all, because of the noncommutativity of the coordinates, theheories and thermal theories can be mapped into each other,
natural product of functions, on such a space, is the stawe may make use of some of the techniques that have been
product of Grmewold and Moya[25,26. One of the conse- developed in connection with thermal field theories, to learn
guences of such a product is that, in a physical theory, thenore about noncommutative field theories. It is with this
interaction terms develop a momentum dependent phase fageal that we take up a systematic study of the photon self-
tor (in momentum spageHowever, the two point functions energy in noncommutative QED in a general covariant gauge
and, therefore, the propagators do not modify. Furthermoren arbitrary dimensions. Since the contribution of the fermion
explicit loop calculations show that the conventional ultra-loop to the photon self-energy has been studied in detail in
violet terms in a commutative theory get distributed into twothe past, we concentrate only on the contributions coming
parts—one that is ultraviolet divergent while the other is ul-from internal gauge and ghost loops. Our study leads to a
traviolet finite. However, these ultraviolet finite terms be- number of interesting features that bring out similarities and
come singular in the infrared limit and the amplitudes be-differences between thermal field theories and noncommuta-
come nonanalytic. tive field theories. For example, we find that although non-
All these features are quite fascinating and puzzling, sinceommutative QED has a non-Abelian character because of
they are somewhat similar to what happens in thermal fieldhe star product, the self-energy is transverse to all orders in
theories[27—-29. For example, we know that, at finite tem- a general covariant gauge in any dimension. This has to be
perature, we have a new scale, the temperature, and an addontrasted with the self-energy of thermal QCD, which is, in
tional, natural Lorentz vectar”, which is the velocity of the general, not transverse. We verify this all orders result by
heat bath. In a thermal field theory, however, the interactiorexplicitly calculating the self-energy at one loop. The calcu-
vertices do not modify; rather, the propagators do, because dditions in a gauge theory are, of course, best carried out in
(antjperiodic boundary conditions. In this sense, thermaldimensional regularization. However, most of the calcula-
field theories and non-commutative field theories seentions in noncommutative theories, so far, have used the
complementary and a natural question of interest is whethenethod due to Schwingéthe difficulty is mainly due to the
there is any redefinition of variables that may map one to thexponential phase factorTherefore, as a first step, we have
other. It is also known that no new ultraviolet divergencesgeneralized the formulas of dimensional regularization to
develop at finite temperature. However, the infrared divernoncommutative theories and this indeed simplifies the cal-
gences do become more severe, once again similar to whetilations quite a bit. The explicit calculation, at one loop,
happens in noncommutative theories, at least in one loogshows that the self-energy is gauge dependent, but does not
Even more fascinating is the observation that, at finite temedevelop any new kind of ultraviolet divergence, so that the
perature, amplitudes become nonanalytic at the origin in théneory is renormalizable. Furthermore, in the infrared limit,
energy-momentum plane, which is reminiscent of thethe imaginary part of the contributions to the self-energy,
nonanalyticity in noncommutative theories. In thermal fieldcoming from these graphs, identically vanishes. This is, in
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fact, interesting in that the nonanalyticity in the noncommu- Fo=0,A,—d,A,~ie[A, A ]ys. (5
tative QED does not seem to be connected with new imagi-
nary parts in the amplitude. Away from the infrared, how—T
ever, the self-energy does have imaginary parts which ar
necessary for unitarity. The gauge dependence of the sel
energy raises the question of the behavior of the poles of the

photon propagator in this theory and we prove to all orders, P(X)—= 4" () =U(X)* h(x),

using the Nielsen identit}29,30, that, in spite of the gauge

dependenqe of the self-energy, the poles of the propagator Aﬂ(x)—>Al’L(x)=U(x)*AM(x)*U‘l(x)
are gauge independent.

The paper is organized as follows. In Sec. Il, we briefly
review the structure of nhoncommutative QED. In Sec. lll,
drawing from previous experience with thermal field theo-
ries, we show that the photon self-energy,.in this theqry, isinfinitesimally, the transformations take the form
transverse to all orders in a general covariant gauge in any
dimension. In Sec. IV, we generalize the formulas of dimen- ]
sional regularization to noncommutative theories. One loop OP(X) =T e(X)* h(X),
calculations, using dimensional regularization, are presented
in Sec. V, where we also talk about various aspects of the 1
result. In Sec. VI, we analyze the imaginary part of the pho- OA,= EDMG(X)
ton self-energy and bring out some interesting features asso-
ciated with it. In Sec. VII, we prove, using the Nielsen iden- 1
tity, that the poles of the photon propagator are gauge = E(ﬁﬂe—ie[AM,G]MB), (7)
independent to all orders. We present a short conclusion in
Sec. VIII and give details on the derivation of the Nielsen

his action can be easily verified to be invariant under the
ﬁauge transformations

+IEU(X)*(3#U*1(X). (6)

identity in the Appendix. wheree(Xx) is the parameter of infinitesimal transformations.
We can, of course, add to this action a gauge fixing and a
Il. NONCOMMUTATIVE QED ghost action. For covariant gauge fixing, they will have the
' form

Noncommutative QED differs from the conventional
commutative QED in the following manner. First of all, the 1
theory is defined on a manifold, where the coordinates do not Syt t Sghost= f d”x( - 2—5( a,A*)x(d,A")
commute. Rather, they satisfy

[X“ X"]=16"", 1) +otcx(a,c—ie[A, Clye) |, 8

where 6= — #"* has the canonical dimension of inverse
mass squared. To avoid problems with unitarity, we will aSwhere ¢ is the gauge fixing parameter. We note, therefore,
sume that only the space-space componen@‘dfare non-  a¢ \e can write the complete action for noncommutative
zero, namely, that the time coordinate commutes with all thGQED in a general covariant gauge as

coordinates. An immediate consequence of the noncommu-
tativity of coordinates is that products of functions on this
manifold are naturally defined by the Grawold-Moyal star
product

S= S, + ng+ Sghost- 9

Thus, we see that because of the star product, the action in

F(x)xg(x) =[P I ¢ (x+ ) g(x+ Mli=o=p- (2  Eq.(9), for noncommutative QED, has a non-Abelian struc-
ture through the Moyal bracket. The star product has some
The star product also naturally introduces a Moyal bracket ofnteresting consequences. In particular, under an integral, the

two bosonic functions as star product of two functions is the same as an ordinary
B product(namely, the difference between the two integrands
[f.glme=T*g—gxT. (3 is a total divergence that integrates to zero for functions with

With these, we can define the action for noncommutativeaplorolorialte asympto_tic fall dffSimiIar_Iy, the star p_ro_duct Of.
QED as ' any number of functions, under an integral, satisfies cyclic-

1 o ity. As a result of these, it follows that the two point func-
Sinvzf d“xﬁinv:f d™| — ZFMV* FA7 g (iD —m) |, tions and the propagators of a noncommutative field theory
@ e the same as their commutative counterparts. However,

the interaction vertices have an exponential dependence on

wheren is the number of Space-time dimensions and 0*" as well as the momenta carried by the fields. ThUS, for
example, for the action in Eq9), the Feynman rules for the
D =3, —ieA, i, theory are as follows. First, the propagators of the theory are
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_ _iS(p) general covariant gauge in any dimension. Even though our
ﬁ*m_ﬂe actual calculations are at one loop, in the process, we will
[N AP e (mw - 75)”“—’2”") =iD,u(p) find some interesting all orders results for the self-energy as
, (’Z +“). P well as the propagator in noncommutative QED.
------- =il (10

Ill. TRANSVERSALITY OF THE POLARIZATION TENSOR

These are the same as in the commutative theory. Introducing It is well known in commutative QCD that, at finite tem-
the notation perature, the self-energy is not transverse in a general cova-
riant gaugd 31,37. (It is transverse at one loop, only in the
Feynman gauggln spite of the apparent similarity of non-
commutative theories with thermal field theories, we will
the vertices, on the other hand, have the following formsshow in the following that the photon self-energy in noncom-
(with the momentum conserving delta functions omitted  mutative QED is transverse to all orders in any covariant

gauge and in any dimension, which is the behavior of the

pxXq=6“"p,q, (11

P gauge self-energy in commutative QCD at zero temperature.
M o, To show this, let us introduce some techniques from finite
ieyeh P temperature field theor§83]. Consider a theory with a natu-
P ral vectoru® (for example, the velocity of the heat bath at
P ! finite temperature Then, given a momentum vectpt, let
o’ us define the component af* orthogonal top* as
wp
’ © —2esin @ [(pr — p2)* ™ + (p2 — pa)n*> (u-p)
op u*‘:(u“— 5 p/‘), p,ut=0. (13
* 2
+ (ps — pr)*n™] P
P, ' .
w5 In such a theory, the self-energy for the gauge field will have
WP, 0.5 the most general, all orders decomposition given by
. v vAy o PLX P2 . P3Xp I utu? EYY 4+ pPut
die? | (e — ey /\)sm%sm% L (L p*“p B u_u ‘e p“u ip u
p2 02 02
v P 2B
+(7]“p77"* _ n;lunAp) sin P3 X p1 sin P2 X pyg p"p"
2 2 +D (14)
p2
+(7]uun)\p _ ,”,u)\nup) sin Pi >2< P4 sin P2 XP3
» It follows from this that
e
gt ¢ oy PUX DS Cp°—
N Hapm T (12) pI1#'=—=-u"+Dp’£0 (15)
N pj u

In this paper, we will study, systematically, the photon niessc=0=D.
self-energy, at one loop, in a general covariant gauge in an aqding the tree level two point function, we can write the
arbitrary dimension. Since the fermion contribution to this iscomplete two point function to all orders as
the same as in a commutative thednamely, the diagram is
“planar”), and has been studied in the literature, we will
concentrate only on the other graphs, which do not occur in
commutative QED. The star product, of course, introduces a
non-Abelian structure in this theory. But more than that, in
such theories, we have an independent Lorentz structure
which can, in principle, introduce a behavior parallel to that =
at finite temperature. For example, in the self-energy, there is
one independent external momentum so that we can think of p,qur pVUM

u#=#*”p, as being analogous to the component of the ve- +C = +D
locity of the heat bath perpendicular to momentum at finite u

temperature. A lot is known about the self-energy of commu- i ,
tative Yang-Mills theory at finite temperature and our goal is ' '€ cOmplete propagator is defined to be
to exploit the known features of such studies to understand
the behavior of the self-energy in noncommutative QED in a

~ Y
r#%:rﬁh+9é1

p“p”
2 v
(P+A)| 7= —;

p“p”
p?

p“p”
T 19

TAD =~ 8¢ (17)
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and satisfies, in consequence of the Slavnov-Taylor identity

[34],
p“p'D,,=—¢. (18
Let us now define
G,=pP"Dyy, PFG=—¢& (19
Then, it follows, in a simple manner, that
f‘WGf r#r— pl;py> p’D,,=—p*+p*=0. (20

This shows thai ** has a zero mode, which can be explic-

itly constructed to be
(21

with

p2c2

== 22
0 u*(p*+A+B) 22

Thus far, our analysis has been quite general. Let us next
turn to non-commutative QED. In this case, we can identify

uk=e""p, . (23)

Furthermore, from the Feynman rules, let us note that
self-energy diagramsinvolving internal photon and ghos
lines) are invariant under

Onr— — .

Therefore, the self-energy must be an even function“of

PHYSICAL REVIEW D65 085017

IV. DIMENSIONAL REGULARIZATION
IN NON-COMMUTATIVE FIELD THEORY

The calculations in non-commutative field theory have so
far been mostly carried out using the methods of Schwinger.
However, from studies in commutative gauge field theories,
we know that dimensional regularizati¢B6] is extremely
simple and powerful which, while maintaining gauge invari-
ance, allows the proof of many results in a natural manner.
Therefore, it is quite useful to try to extend the method of
dimensional regularization to noncommutative theories
[19,20. In what follows, we will derive the dimensional
regularization formulas, relevant to noncommutative theories
in two different ways, both leading to the same results.

In noncommutative theoriggor example, in noncommu-
tative QED, see Eq12)], the interactions involve a momen-
tum dependent phase factor. Therefore, a generic loop inte-
gral, that arises in such theories, has the form

dnk elH k
sz , 26
(2m)" (K= M?)* 29
where we have defined
0= 01 ,(Pp1, . .. Pp) (27)

with f, representing a function of the external momenta
P1, ....pn andM? represents the term that arises from com-

thgining denominators using the Feynman parameters and
t shifting. M2, in general, depends on the external momenta,

masses of the theory as well as the Feynman parameters. For
simplicity, we have ignored writing the integration over the
Feynman parameters that needs to be carried out. To evaluate
this integral, we first rotate to Euclidean space, so that we
have (note that with our choice o#*" having only space

(We note here that this property holds even with fermionindic_es, the exponent does not change sign upon rotation to
interactions and is a consequence of charge conjugation if=uclidean spage

variance of the two point functiof85].) It follows, then, that

the coefficientC in Eq. (14) must be odd inu. Since it is a
scalar function, the most general form it can have is

C=(u-p)E=0, (24)

whereE denotes a scalar function, evenu_'ﬁ, and we have

used the fact that” is orthogonal top*. SinceC=0, it
follows from Eq.(22) thatD=0.

Therefore, to all orders, we determine that the most gen
eral form for the self-energy in noncommutative QED, in a

I_-(_l)af d"k ei;k
B (2m)" (K+M?)*’

(28)

It is the momentum dependent exponential that seems for-
midable. However, it turns out that it is not hard to evaluate
integrals of this kind and let us present two different, but
equivalent ways that lead to the same result. First of all, let
us decompose the vectéy, to longitudinal and transverse

components with respect@. Let us introduce the decom-
position

general covariant gauge in any dimension, can be written as

uhu”
B— (25)
u

o7 =A| p*—

"V
pf)+
p

which is manifestly transverséNote that, in this case, the SO that

zero mode in Eq(21) simply reduces to- gpM/pZ.] The

coefficientsA and B, of course, will be dependent on the

0-k—
kHM:76M v K=K K (29)
6-kj=0-k, 6-k =0 (30)

gauge fixing parameter, unlike in commutative QED, and we

would like to evaluate these functions at one loop.

In terms of these components, then, we can write

085017-4



GENERAL STRUCTURE OF THE PHOTON SELF-ENERGY ...

|:i(_1)af dk“e‘;kHJ’ d" 1k !

(2m)" LK+ M)
n—-1
(n—1)/2 _
(—pep= T AT )
= . fﬁ dk (o
2m" J-= (a)
ei;-kH

X(kf‘l‘ MZ)a— (n—1)/2

n—1
77_(n—1)/21~(0[_ 5 )

I'(a)

_2i(-1)°
2"

xfdk
0

Recalling thatk;, is parallel to@, we note that co§
kj=cog6lk where [6]=(—6,60,)"% and k= (Kj,k)"2
Therefore, defining a new variable=|6|k;, we can write
the integral as

n—1
@ T)

I'(a)

cosd-k
f (kﬁﬂL M 2)a* (n—1)/2"

(31

(n—1)/
2D LAY

(2m)"

|E|2a—n

% fwd COSX
X —
0 (X2+(|0|M)2)a7(n71)/2

r n—1
=12 «a o

(2m)" I'(a)

(2[6|M)"2=e |t

XTCOSW E—a T—a’

XK ynial [ 6]M)

. 7Tn/2 1 1 2(|§|M)a—n/2
(277)” F(CY) (MZ)a— n/2

=2i(—1)¢ |§|2a—n

=i(—1)

XK o iz |6]M). (32)

PHYSICAL REVIEWES 085017

n
2 F(a_ E)

lim =1 (=) o T

9—0

(MZ)a—n/2' (34)

However, as in dimensional regularization in commutative
theories, we analytically continue this result to other dimen-
sions.

Let us next give an alternate derivation of the dimensional
regularization formula for our basic integral. We note that

I=i(—1)“f

d"k ei;k
(2m)" (K*+M?)“

LD “‘7 dk etk
- T(a) | om?2 (27)" K2+ M?2
i g “‘7 d"k fwd)\
~ T(a) | gm2 (2m)"Jo

> e—x(k2+M2)+i§k

_i(_l)aﬂ_r'IIZ 1
2o T

Xe—xMZ—\ﬂzm

J‘wd)\)\a—l—n/Z
0

: 7" 1 1
=i(—-1)*

(2’77)“ F(a) (MZ)a—n/2

|§|M a—n/2 o
X2\ —— K o—niz(|0|M) (39

which is exactly the same formula as derived earlier in Eq.
(32.

This, therefore, generalizes dimensional regularization to
noncommutative theories and evaluates the basic integral
that arises in a noncommutative field theory. In the study of
self-energy in gauge theories, however, we need integrals
involving additional tensor structures, which can be evalu-
ated in the following simple manner. First, let us note that, if
we are interested in the self-energy, there is only one inde-

HereK, denotes the Bessel function and, in the intermediat%endent external momentum and. therefore
steps, we have used some identities involving the gamma

functions[37]. It is worth pointing out here that the identifi-

cation of the last integral with the Bessel function is strictly

valid whenn<2a+ 1, where it is straightforward to show,
with the help of standard tables that

lim 2K (z)— 2"~ T'(»)

z—0

(33

so that we have

0,=0,,0,, (36)

wherep,, is the external momentum. Second, in this case,
M2=x(1—x)p?, wherex is the Feynman parameter that
arises in combining two denominators. Now, if we introduce
an auxiliary vectoe,,, then, we obtain, following our earlier
derivation in Eq.(32), that
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d"k ei(§+z)k
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. k
@)=it-17
(2m)" (K+M?) Pe Y L Ly
\\____," s >V
( 1) 7Tn/2 1 |§+Z|M)a—n/2 k+p k+p
—i(— o (s
(zw)n F(a)(MZ)a—n/Z 2 (a) (b) (c)

XK ool [ 8+ 2|M).

FIG. 1. One-loop diagrams which contribute to the photon-self

37 energy. Wavy and dashed lines denote respectively photons and

ghosts. The external momenta on the left side is inward.

For small values ofz*, expanding in a Taylor series and

using identities involving the Bessel functions, this result
would generate the integrals involving all other tensor struc-

tures.

V. EXPLICIT ONE LOOP CALCULATION

In this section, we will explicitly evaluate the self-energy

For completeness, we list below the Euclidean forms ofit ©ne loop, using dimensional regularization. However, even
the integrals that we will need in the subsequent sections: Pefore doing the calculation, let us verify explicitly that the

J dnk ei;k
(2m)" (k2+M?)«

self-energy is indeed transverse at one loop, as a check on
our general result of Sec. Ill.

There are three graphs for the self-energy, at one loop,
that we are interested in, namely, the one with the internal
ghost loop, the tadpole involving the four photon vertex and

21 1 (|§|M>“‘”’2 the one involving an internal gauge lodgpee Figs. (a)—
= — 1(c)]. Each of these three graphs has the fdisee Egs.
(2m)" T'(a) (u2)=—= 2 (10,(12)]
XK gl [6]M), , eC r d% (1—cospxk)
=S [ N, i-abe,
- 2m)"  ko(k+p)
dnk elﬁk(gk)Z (
(40)
f(Zﬂ-)“(k2+M2)“
where
_ 72 1 |§|2 {(Za—l—n) Clghost_ ¢ C(tadpole):} C(gaUQe):E
(27T)n I'(a) (MZ)aflfn/2 ! 4’ 2’
— a—1-n/2
oM | - N(Pos=2(k+p) .k, ,
X(T Ka-1-nz([6]M) " ’
oM _ N3P —8(k+p)?[ (1=n) 7, + (1= )
—2l =] KaonalIM) ],
k, k
_ A
d'k  eK,k, 0,0, X(”’”_ k2 ) ’
f(Zw)n(kZJer)a: Ow By 9
NEUEER,, +(1-§)S,, +(1-§T,,, (4D
where where
— a—1-n/2
™1 1 [o|M i R,,=2[(3+n)p,p,+(6—4n)k,k,—27,,(k*+2p?)],
a (27T)n F(a/) (MZ)a—l—n/Z 2
- < _v (k2+2pk)? _k2+2pk—p2k ‘i
XKa*lfn/2(|0|M)v wv k2 My k2 K p/‘p”
7Tn/2 1 1 k2+3pk
" 2m" I'(a) (M2)a—1-n2 R (kupy+k,py)+(k—=k+p, p—=p)|,
— a—1-n/2
oM | - (p?k,.—Pkp,)(p%k,~ Pkp,)
X (201—2—n)<T Koo 1-n2(|6]M) T=—2—r— : (42)
ke(k+p)
— a—n/2
) [6]M K (|§|M) (39) Thus, adding the three terms, we see that the self-energy has
2 a-niz ' a natural expansion in powers of {¥) (£=1 corresponds
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to the Feynman gaugieThe terms proportional to (1£)2  We can combine denominators and integrate over the internal
come only from the graph with the gauge loop and its strucimomenta using formulag38) for the terms depending on
ture, as can be seen from Eg2), is manifestly transverse. cospxk and use the conventional formulas of dimensional
There are two terms proportional to{X), coming from the  regularization for the term independent @f”. As we have
tadpole as well as the gauge loop diagrams. If we add thenmentioned earlier, the usual results of dimensional regular-
combine the denominators using Feynman parameters arizition can be obtained through the simple substitution

shift the integration variable, we obtain

7K (2)—2"" T (v). (47)
a-p_ A= . (1—cospxk) Therefore, it is enough to use the formulas in E2f) to do
e, o= dx(1-x) | d : - tne formu
2m" Jo [K2+x(1—x)p?]® the complete integrals and, with a little bit of algebra, we can

2,2 5 write the results as
X{[(1+2x)k*p?—4(1—x)(pk)

627Tn/2 1
—x2(3=2X)(p?) %] = 2P, K, - )n( p2)n/2—1j0dx[x(l_x)]nlz—zai'
—[(1+2x)k*=x*(3=2x)p*]p,.p,
_ e2 n/2
+(3 zx)pk(k#py"_kypu)} (43) Bi (2p2)n/2 lf dX[X 1 X)]nlz 2b|v
(2m)"
Contracting withp,,, it can be seen that this vanishes upon (48)

symmetric integration. Therefore, the terms linear in (1
— &) are explicitly transverse as well. In a similar manner, itwherei=0,1,2 and
can also be checked that the terms independent ef§)lare
transverse. Alternatively, let us note thart) the termgoindepen— =[3+2(n—1)x~4(n-2)x’]
dent of (1-¢) would correspond to the self-energy in the
Feynman gaugeéE 1), which have been explicitly checked
earlier to be transverse at one loop.

Thus, we see from the structure of the graphs that they are
manifestly transverse at one loop, consistent with our all or- a,;=—2(6x?—5x)
ders result. Thus, let us parametrlze the self-energy as in Eq.

(25) (with the identificationu®= g+ = 0*"p,) and write

_ _ n
X M)t 22 2 31|

(JO]M)27"2K,o([0]M)

n
—21”’2r(2—§) +(1+4x—4x2)

m,,=A

o

PP, 0,0,
Duv™ - ) +B 2 (44) 0 3-n/2 Il 2—n/2 n
p 0 X[ (|6|M) Ka—n(|0|M)—2 r 3—5 ,

It follows from this that
1 = 3-n/2 " 2-n/2 n
a2:Zf(|9|'\/|) Ka—nal|0]M) —2 r 3_5 )

1 om0
A:(n—z)(”wnf”_ = Hw), (49
. — bo=—4(n=2)*X(1=x)| ([ 6]M)* Kyl [6]M)
B=(n_2)(—nwnw+(n—1) = HW). (45)

+[(6—4n)x(1—x)+1—2x?]

3

-2" ”’2r<1——)

In spite of the appearance ofi{ 2) factors in the denomi-
nator, we will see that these quantities are well behaved at
n=2 (namely, two dimensions

Let us further expand each of these coefficients in powers

of (1-§):

X[ ([6]M)27 2K, o || M) — 22721

A=Ay+(1— A+ (1—&)2A,, b1=2x[(n—4)[(|5|M)2“’ZKZn,2(|§|M)

B=Bo+(1—£)B;+(1— £)?B,, (46) _21—n/2r(2_g”

where we have used the fact that the self-energy diagrams
are at most quadratic in (1£). The subscripts here corre-
spond to the power of (2¢) and the lowest order terms

_ _ n
3-n/2 __92-n/2 N
simply correspond to the coefficients in the Feynman gauge. T (OIM)™ " K| 6]M) —2 F( 3 2”
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1
b,=—71{(n—6) +

_ — n
<|0|M>3—”’2K3n,2<|e|M>—22-“’2r(3—§

<|?|M>4‘“/2K4n,2<|?|M>—23-“’2r(4— g)”

Combining all the factors, we obtai@after rotation to the Minkowski spare

e27Tn/2 1

A= (2p2)"/2—1f dX[X(1—x)]"2"2[3+2(n—1)x—4(n—2)x?>—2(1— £)x(6x—5)]
(2m)" 0
X (IFIM)2‘”’2K2_n/2(|5|lv|)—21‘“’2F(2—g”—(l—f) <1+4x—4x2>—(1f))

X

(lﬂM)“’ZKs_n/z(l?lM)—zz“’Zr(s—gm,

_ e*n"? 2ma—1 [ n/2—2[ 2
B= (277)”(2p ) fo dx[x(1—x)] —4(n—2)x(1—x)

. _ n
<|a|M>1-“/2K1_n,2<|e|M)—z-“ﬂr(1—5)}

+[(6—4n)x(1—x)+1—2x>+2(1—&)(n—4)X]

_ — n
(M2 72K, M) 28 72 2- 5

1=\ — . — - n
+(1—§)(2X—(H—G)T [(Iﬂll\/l)3 "3l [60]M) — 2 ”’ZF(3—§”
(1-9° — 4-n/i2 nel gl 3-n/i2 n
= | (OIM)* K, B 6]M) = 27T A= S ] (50)
|
whereM?= —x(1—x)p?. We note that the integration over lim 2K (2)=2""T'(v).
the Feynman parametet, can be done in closed form, for 70

both the coefficients, in terms of generalized hypergeometric
functions. However, the result is not very illuminating and, In such a case, every term inside the parenthesis will cancel
therefore, we do not give the details here. pairwise to give a vanishing result.

This, therefore, determines the photon self-energy, at one Whenn=4-2¢, the terms inA, related to the’ func-
loop, in a general covariant gauge in any dimension. Ther&ons, have the explicit form
are several things to note from this result. First of all, the

coefficients are, in general, dependent on the gauge fixing 2e%p?| (13 £\[1 —p? 31
parameteg as is the case in commutative QCD at zero tem- Aplana= ~ (47)2 6 2/le Iogm— v+t 9
perature(in commutative QED, these coefficients are gauge

independent Second, in spite of the complicated structure in (1—-§)2

B, all theI" terms cancel out exactly, when the integration —(1-&6)+ , (51
over the Feynman parameter is carried out. This is true in

any dimension and for any value éfand this is an important h the leadi der t g f the B |
result. For, it says that there is no ultraviolet divergence jpynereas the leading order term, coming from the besse

the coefficient ofB in any dimension in a general covariant functions, agé|—0, takes the simple form
gauge. Therefore, all the ultraviolet divergences are con-

tained inA and can be subtracted by the usual wave function _ 2e’p?[(13 ¢ log(— p?[812)+ O([ 8
renormalization counterterms. We do not need any counter- “ronplana™ 75| |5 3 og(—p 619 +O([6%) |-
term with a new structure in the noncommutative QED, (52)

which would have rendered the theory unrenormalizable.

Second, whem=2, ¢*"=0 (since there is only one Let us note that the log{p? terms precisely cancel between
space direction In two dimensions, the theory is ultraviolet the planar and the non-planar terms. This is a general feature
finite by power counting and gauge invariance, therefore, theénat is completely parallel with the studies at finite tempera-
0*"—0 limit can be taken smoothly in our results. In this ture (see next section for more detailés for the coefficient
limit, of course, (}-cospxk)—0 so that we will expect B, we have already seen that all theéerms cancel out in any
these structures to vanish wher-2. This can be explicity dimension, so that
checked in the following way. Note that when the integral is
convergent, as noted in E(BJ), Bpianar= 0- (53

085017-8
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The leading order term coming from the Bessel functions, atet us analyze the imaginary parts of these amplitudes for
|6|—0, in four dimensions has the form >4. First, let us note that if we set=4+ 2| —2¢ with | an
integer ande infinitesimal, then, with some algebra, the pla-

e? 32  4p? — nar term in Eq.(57) becomes
Bnonplanar:_ W_? O(|0| ) (54
| " fld v SR L gl
which agrees with the results in Refil4,20 for QED planar = 5 ) X e 902"
in 4 dimensions. [We remark here that the leading (58)

order contribution, as |6|—0, comes from the
(16|M)T="2K; _ o(|6|M) term in Eq. (50), whose coeffi-
cient is gauge independeht.

Here u is the scale of dimensional regularization and we see
that, sinceM?= —x(1—x)p?, for p?>0, the logarithm will
lead to an imaginary part.

In the evaluation of the nonplanar term, on the other hand,
we can safely se¢=0 (it has no polesand the Bessel func-

As is well known, noncommutative theories do not have ation can be expanded for smad| to give
unique #*”—0 limit. This nonanalyticity is quite analogous
to the behavior in thermal field theories, where the ampli- 72 1
tudes become nonanalytic at the origin in the energy- | nonplanay ™ (277)”f0
momentum plane. In the case of thermal field theories, there
is a physical reason for such a nonanalyticity, namely, at (— 1)K —k—1)1220-k | N
finite temperature, new channels of reaction develop leading X ki +(-1'"'™M
to new thermal branch cuts, and this leads to the nonanalyt- '
icity. Correspondingly, it would be interesting to ask if the - (|§|M)2k
non-commutative QED theory develops any neiw depen-
dent imaginary parts in the amplitude.

To this end, let us start by looking at the self-energy in a
noncommutativap® theory inn dimensions. We choose the — (1 +k+1)
scalar field to be massless so as to keep the parallel with
noncommutative QED. In this case, the basic integral for the

nonplanar part of the self-energy has the faimEuclidean Whereg(x) is the Euler psi functiori37]. Let us note that,
space unlike the real part, the imaginary part of E&9), which

comes from the lofy1? terms, is a well behaved function in

VI. IMAGINARY PART OF THE SELF-ENERGY

-1

(16))72' > (|o|m)*
k=0

|g|2M2
4

—ip(k+1)

k=0 22KKk! (1 + k)!

(59

| J J (55 the limit |§|—>O._The leading imaginary part which arises
nonplanaf™ 2)2’ from this when|§|]—0, comes from the term

where we are neglecting some overall multiplicative factors (leading log) 2 (1 1)

for simplicity. This integral can be evaluated using E2g) Inonplagargw(zﬂ_)nj T |09T (60)

and gives(after rotation to Minkowski spage
It is interesting to note that the ldg? term in the planar and

n/2 1 n/2—1
| ~ f (|6]Mm)2—"72 the nonplanar terms have the same coefficient. This is very
nonplanar n 232—n/2 . . . .
(2m)"Jo (M) much like the behavior of log terms in thermal field theo-
_ ries (here,T is the temperatuse Namely, while there is no
X Ko nia|6]M), (56)  direct relation between the ultraviolet divergence in a field

theory and powers of, the coefficient of lo§ coincides
with that of the pole X [38]. Here, too, the same behavior
Seems to arise.

The same discussion carries over to noncommutative
n) QED, where the imaginary parts of the nonplanar terms in

where, in the Minkowski spack!?= —x(1—x)p?. The pla-
nar part of the self-energy, on the other hand, has no expq
nential factor in the integrand and the result is

2 Jl F( 2— > Eq. (50) may be evaluated using the relatior M2<0)

— | dX————.
(27T)n 0 X(M2)27n/2

planar (57 -
lmK|(|6’|M)=(—1)'”§J|(|0||MI)- (61)
We note that fom<<4, the integral is ultraviolet conver-

gent and, in the limitg| — 0, Eq.(56) yields the result in Eq. Let us note that, in the case of QED, the planar and the
(57). In such a case, we do not expect any nonanalyticity imonplanar terms come with opposite sign because of the fac-
the theory. On the other hand, it is foe>4 that ultraviolet  tor (1—cospXxKk). As a result, to leading order, the imaginary
divergences are present leading to IR/UV mixing, which isparts cancel in the self-energy. However, there are higher
the main reason for the non-analytic behaviop&s—0. So, order terms in the expansion of the Bessel function in Eqg.
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(61), which can contribute an imaginary part to the self- This reduces to the tree level propagator whenB=0 and
energy. Wher 6| —0, however, these vanish quite rapidly. the exact propagator satisfies the 't Hooft identity,
On the other hand, for finitéd], these imaginary parts are PP D= —¢. » _ o
present and are, in fact, necessary for unitarity to 8@l The main reason for rewriting the two point function in
42]. As we have seen in the last section, the coefficignts e form(63) is that the two structures

andB in the self-energy are gauge dependent. Therefore, we ——

conclude that the imaginary parts coming from the higher P :( P PuPy 010”>,

order terms in the Bessel function will also become gauge R D 6°

dependent. This is slightly surprising in that we would expect

the imaginary part of an amplitude to be related to a physical 9 @

cross section, which has to be gauge independent. The puzzle Quv= %2 (65)

is resolved by noting that the physical process to which the

photon self-energy can contribute is the electron-electron s orthogonal, transverse projection operators satisfying
scattering amplitudésee Fig. 2 Although the imaginary

part of the self-energy graph is gauge dependent in this PL.,PY=P.,
theory, it turns out that the other diagrams are also gauge
dependent so that the sum of all such contributions can be- Qu,Q=Qun, (66)

come gauge independent.
P,qu;: 0= pMP,uv: p’uQ,MV

which will be quite useful in the following analysis. Further-
more, in this way of writing, we see clearly that the propa-
As we have already seen in Sec. V, the coefficient funcgator has two independent poles gt+A=0, p?+A+B

tions A andB in the photon self-energy are gauge dependent=0. (The pole in the longitudinal part has a gauge dependent
Therefore, it is natural to ask what happens to the poles afesidue and is clearly unphysical. Note that, at finite tempera-
the photon propagator in such a theory. In what follows, weture, the physical poles are related to the Debye and the
will show that, in spite of the gauge dependence of the selfplasmon masses.

energy, the poles in the photon propagator are gauge inde- The gauge dependence of the two point function and,

VIl. GAUGE INDEPENDENCE OF THE POLES
OF THE PROPAGATOR

pendent to all orders. therefore, of the poles of the propagator can be analyzed
Following our discussions in Sec. Ill, we note that thethrough Nielsen identities, which we will derive in the Ap-
general structure of the complete two point function for thependix. For the present, let us simply note that the change in
photon(to all orders has the formwith UME@L) the two point function, under a change in the gauge fixing
parameter, can be written &8 momentum spage
p“p” 6“6" p“p” ar#r
I#v=(p+A)| 7"~ 7 B— - 62 LU G Sut (67)

where the quantit){' is described in the Appendix. Taking

Drawing from previous experience at finite temperafd@, o i X
cthe projection of Eq(67) with P,,,, we obtain

we note that, for the purpose of analyzing the gauge ind vpe
pendence of the poles of the propagator, it is better to rewrite a(p2+A) _2(p2+A)

the two point function as = vp
p T o2y PuX (68)
, L, pepY 0Me 0+ 6" Similarly, taking the projection of Eq(67) with Q,,, we
r#'=(p*+A)| p*'—————=-| +(p*+A+B) = obtain #
p 0 [
2
pﬂp" &(p + A+ B) _ 2 Y
. 63) g ~2APHA+BIQ, X, (69)

) _ ) These two equations are quite interesting as they say that,
Itis easy to determine from this that the exact propagator fogince 2+ A) as well as p2+A+B) change homoge-

the photon has the form neously as we change the gauge fixing parameter, the zeroes
of these functions are gauge independent. Correspondingly,
( PLP, EMZV 1 EMEV 1 the poles of the propagator are gauge i_ndependent. Namely,
D= 5 = > >~ even though the photon two point function is gauge depen-
P 0= | p*tA 07 p"+A+B dent, to all orders, the poles of the photon propagator are
gauge independeiiin any dimensioh Let us note here that
+¢ pMp,,. (64) an important consequence of this property is that the most
(p?)? infrared singular term in the above equations must be gauge
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independent. Otherwise, the poles of the propagator would 1
not have a gauge independent location. In fact, by explicit F= E(ﬁ'A) (A2)
calculation, we find that this term appearsBrin the gauge
independent form which we will use later in the analysis. However, it is more
) ) n—2 convenient to begin with the auxiliary field formulation of
gsinguiar_ _ & (n-2)7( 1 (70  the gauge fixing, since it allows the Becchi-Rouet-Stora-
2 h2 |§| Tyutin (BRST) transformations of the theory to close off-

shell. The BRST transformations for noncommutative QED,
which clearly vanishes fan=2 and which can be compared in this formulation, become
with Eq. (54) for n=4. .
6A,=wD  c=w(d,c—ie[A, ,Clvs),

VIIl. CONCLUSION
w

In this paper, we have studied the contributions of gauge oc=— 2 ¢*C
and ghost loops to the photon self-energy in noncommutative
QED, in a general covariant gaugadin any dimensiorithe So= — oE

fermion contributions have been studied eajlid/e have
shown that, to all orders, the self-energy is transverse and we SE=0 (A3)
have explicitly evaluated the one-loop graphs, which verify '

this. Our calculations have used dimensional regularizationjere o is an anticommuting space-time independent param-
which we have generalized to noncommutative theories. Thgier and the actiorS which includes gauge fixing and
explicit calculation shows that there are no new kinds ofghosts, is invariant under these transformations.

ultraviolet divergences coming from these diagrams so that | et us now add to our action source terms

the theory is renormalizablg23]. Furthermore, the imagi-

nary parts coming from these graphs cancel identically in the

infrared limit, although away from the infrared limit, the Ssource:f d"x
self-energy does havé-dependent imaginary parts which
are necessary for unitarity. Since the photon self-energy is
gauge dependent, we use the Nielsen identity to show that
the poles of the photon propagator are gauge independent to
all orders. Generally, th&g-dependent infrared divergent Here, we have the usual sources for the fields, sources for the
terms that arise, to one-loop order, in noncommutative theoeomposite BRST variations and finally, we have added one
ries have inappropriate behavior. However, since we do nagxtra sourcéthe last termmwhose meaning will become clear
find any imaginary part associated with such a nonanalyticshortly. The action involving the sources is not invariant un-
ity, it suggests that such behavior may not, in fact, be physider the BRST transformations and gives

cal. Drawing from studies of noncommutative scalar models

J#x A, +IxF+i(gxc—cx )+ K «D ,C

1
— —CxC|+Hx . (A4)

+Lx 5

LF
EC*

[44-44, which make use of techniques developed in con- _ n . } :
nection with thermal field theories, we conjecture that a re-  Oosoureé™ @ | d"X| J*+D ,C+in| SCxC]+iFxy
summation to all orders may eliminate the unphysical infra- 1
red singularities in noncommutative QED. +H*(—F*F) _ (A5)
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where ¢ represents all the fields being integrated and the

APPENDIX: THE NIELSEN IDENTITY generating functional depends only on the sources. It is clear

now that, under a BRST field redefinition inside the path
In this appendix, we will derive the Nielsen identity used

in Sec. VIl to prove the gauge independence of the poles of

the propagator. Let us start with the action for noncommuta- ;
tive QED given in Eq(9), where we write the gauge fixing ”
term as i

sgf=f d”x(gF*F—F*(&A) . (A1) (@ ®) @

FIG. 2. Examples of one-loop diagrams which contribute to the
HereF is an auxiliary field whose equation of motion gives electron-electron scattering in noncommutative QED.
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1 )\ alie
T

AW

(a) () (c)

FIG. 3. The diagrammatic expression of E413): The lowest

order term(a) and the one-loop contributiorjgh) and (c)].

integral, the generating functional will not change, since the
sources are unaffected by such a transformation. This leads

to

6Z2=0,
f [De]( S+ 6Ssource e'(5*Ssaured = 0, (A7)

SinceSis invariant, using the form ofSg,,c.from Eq.(A5),
we obtain

N oL
—fd”z JHx i —in(z)* oW
5KH(z) oL(2)
W
+IT(Z)*77(Z) .

Taking the derivative of this with respect kxx), setting it
to zero and integrating ovet we obtain

eI (S+ Ssourca

(A8)

M=—f d“xd”Z(J“(Z)*(SZ—W
E SH(X) SK*(2)
_ 52w . Sw )
I e 6H(X)5J(Z)H7(Z) H=0
(A9)

PHYSICAL REVIEW D65 085017

We can now define the effective actioh, through the
Legendre transformation

r=w- fd”x[J"*A +IxF+i(pxc—cxp)].

(A10)
Then, the identity in Eq(A9) can be written as
ar J e 6T 8T
—= xd"z *
73 0AN(Z)  SH(x) KM 2)
ST 5T 5F(z) T
— * + *——
oc(z) S6H(x)oL(z)  SH(X)  sc(z)
(A11)

Taking the second derivative with respect Ag,(x) and
A,(y), setting F=(1/£)(9-A) and setting all other fields
equal to zero, we obtain

d 5T
9& A, (X) 5A(Y)
_ f Pod's 5T . 5T
OAL(X)0AN(Z)  SH(w)SA(y) KN (2)
5T 5T
SA,(y) 0AL(2) " SH(w) 6A#(x)5K"(z)) ‘

(A12)

Here, the restriction is understood as settifkg= (1/
£)(d-A) and, then, setting all the fields equal to zero, after
taking the functional derivatives. This is the identity used in
Sec. Vll[see Eq(67)], where we have identified

8°r
= .
SH A, oK™

X= (A13)

A graphical representation fof}* to lowest orders is shown
in Fig. 3.
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