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General structure of the photon self-energy in noncommutative QED
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We study the behavior of the photon two point function, in noncommutative QED, in a general covariant
gauge and in arbitrary space-time dimensions. We show, to all orders, that the photon self-energy is transverse.
Using an appropriate extension of the dimensional regularization method, we evaluate the one-loop corrections,
which show that the theory is renormalizable. We also prove, to all orders, that the poles of the photon
propagator are gauge independent and briefly discuss some other related aspects.
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I. INTRODUCTION

Noncommutative theories have generated a lot of inte
in recent years@1–24#. These are theories defined on a ma
fold where the coordinates do not commute. As a result
such theories, there is a natural second rank antisymm
tensor with the canonical dimension of inverse mass squa
Several interesting features develop in such theories. Firs
all, because of the noncommutativity of the coordinates,
natural product of functions, on such a space, is the
product of Gro¨newold and Moyal@25,26#. One of the conse-
quences of such a product is that, in a physical theory,
interaction terms develop a momentum dependent phase
tor ~in momentum space!. However, the two point functions
and, therefore, the propagators do not modify. Furtherm
explicit loop calculations show that the conventional ult
violet terms in a commutative theory get distributed into tw
parts—one that is ultraviolet divergent while the other is
traviolet finite. However, these ultraviolet finite terms b
come singular in the infrared limit and the amplitudes b
come nonanalytic.

All these features are quite fascinating and puzzling, si
they are somewhat similar to what happens in thermal fi
theories@27–29#. For example, we know that, at finite tem
perature, we have a new scale, the temperature, and an
tional, natural Lorentz vectorum, which is the velocity of the
heat bath. In a thermal field theory, however, the interact
vertices do not modify; rather, the propagators do, becaus
~anti!periodic boundary conditions. In this sense, therm
field theories and non-commutative field theories se
complementary and a natural question of interest is whe
there is any redefinition of variables that may map one to
other. It is also known that no new ultraviolet divergenc
develop at finite temperature. However, the infrared div
gences do become more severe, once again similar to
happens in noncommutative theories, at least in one lo
Even more fascinating is the observation that, at finite te
perature, amplitudes become nonanalytic at the origin in
energy-momentum plane, which is reminiscent of t
nonanalyticity in noncommutative theories. In thermal fie
0556-2821/2002/65~8!/085017~13!/$20.00 65 0850
st
-
n
ric
d.
of
e
ar

e
c-

e,
-

-

-

e
ld

di-

n
of
l

er
e
s
r-
at

p.
-
e

e

theories, the physical origin of the nonanalyticity is well u
derstood. Namely, in a thermal medium, new channels
reaction develop leading to new branch cuts, which is
reason for the nonanalyticity. In the same spirit, it will b
interesting to understand if there is a physical origin of t
nonanalyticity in noncommutative theories.

A lot is already known about thermal field theories a
even though we do not yet know whether noncommutat
theories and thermal theories can be mapped into each o
we may make use of some of the techniques that have b
developed in connection with thermal field theories, to lea
more about noncommutative field theories. It is with th
goal that we take up a systematic study of the photon s
energy in noncommutative QED in a general covariant ga
in arbitrary dimensions. Since the contribution of the fermi
loop to the photon self-energy has been studied in deta
the past, we concentrate only on the contributions com
from internal gauge and ghost loops. Our study leads t
number of interesting features that bring out similarities a
differences between thermal field theories and noncomm
tive field theories. For example, we find that although no
commutative QED has a non-Abelian character becaus
the star product, the self-energy is transverse to all order
a general covariant gauge in any dimension. This has to
contrasted with the self-energy of thermal QCD, which is,
general, not transverse. We verify this all orders result
explicitly calculating the self-energy at one loop. The calc
lations in a gauge theory are, of course, best carried ou
dimensional regularization. However, most of the calcu
tions in noncommutative theories, so far, have used
method due to Schwinger~the difficulty is mainly due to the
exponential phase factor!. Therefore, as a first step, we hav
generalized the formulas of dimensional regularization
noncommutative theories and this indeed simplifies the
culations quite a bit. The explicit calculation, at one loo
shows that the self-energy is gauge dependent, but does
develop any new kind of ultraviolet divergence, so that t
theory is renormalizable. Furthermore, in the infrared lim
the imaginary part of the contributions to the self-ener
coming from these graphs, identically vanishes. This is,
©2002 The American Physical Society17-1
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fact, interesting in that the nonanalyticity in the noncomm
tative QED does not seem to be connected with new im
nary parts in the amplitude. Away from the infrared, ho
ever, the self-energy does have imaginary parts which
necessary for unitarity. The gauge dependence of the
energy raises the question of the behavior of the poles of
photon propagator in this theory and we prove to all orde
using the Nielsen identity@29,30#, that, in spite of the gauge
dependence of the self-energy, the poles of the propag
are gauge independent.

The paper is organized as follows. In Sec. II, we brie
review the structure of noncommutative QED. In Sec.
drawing from previous experience with thermal field the
ries, we show that the photon self-energy, in this theory
transverse to all orders in a general covariant gauge in
dimension. In Sec. IV, we generalize the formulas of dime
sional regularization to noncommutative theories. One lo
calculations, using dimensional regularization, are prese
in Sec. V, where we also talk about various aspects of
result. In Sec. VI, we analyze the imaginary part of the ph
ton self-energy and bring out some interesting features a
ciated with it. In Sec. VII, we prove, using the Nielsen ide
tity, that the poles of the photon propagator are gau
independent to all orders. We present a short conclusio
Sec. VIII and give details on the derivation of the Niels
identity in the Appendix.

II. NONCOMMUTATIVE QED

Noncommutative QED differs from the convention
commutative QED in the following manner. First of all, th
theory is defined on a manifold, where the coordinates do
commute. Rather, they satisfy

@xm,xn#5 iumn, ~1!

where umn52unm has the canonical dimension of inver
mass squared. To avoid problems with unitarity, we will a
sume that only the space-space components ofumn are non-
zero, namely, that the time coordinate commutes with all
coordinates. An immediate consequence of the noncom
tativity of coordinates is that products of functions on th
manifold are naturally defined by the Gro¨newold-Moyal star
product

f ~x!!g~x!5@e( i /2)umn]m
(z)]n

(h)
f ~x1z!g~x1h!#z505h . ~2!

The star product also naturally introduces a Moyal bracke
two bosonic functions as

@ f ,g#MB5 f !g2g! f . ~3!

With these, we can define the action for noncommutat
QED as

Sinv5E dnxLinv5E dnxS 2
1

4
Fmn!Fmn1c̄!~ iD” 2m!c D ,

~4!

wheren is the number of space-time dimensions and

Dmc5]mc2 ieAm!c,
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Fmn5]mAn2]nAm2 ie@Am ,An#MB . ~5!

This action can be easily verified to be invariant under
gauge transformations

c~x!→c8~x!5U~x!!c~x!,

Am~x!→Am8 ~x!5U~x!!Am~x!!U21~x!

1
i

e
U~x!!]mU21~x!. ~6!

Infinitesimally, the transformations take the form

dc~x!5 i e~x!!c~x!,

dAm5
1

e
Dme~x!

5
1

e
~]me2 ie@Am ,e#MB!, ~7!

wheree(x) is the parameter of infinitesimal transformation
We can, of course, add to this action a gauge fixing an
ghost action. For covariant gauge fixing, they will have t
form

Sgf1Sghost5E dnxS 2
1

2j
~]mAm!!~]nAn!

1]mc̄!~]mc2 ie@Am ,c#MB! D , ~8!

wherej is the gauge fixing parameter. We note, therefo
that we can write the complete action for noncommutat
QED in a general covariant gauge as

S5Sinv1Sgf1Sghost. ~9!

Thus, we see that because of the star product, the actio
Eq. ~9!, for noncommutative QED, has a non-Abelian stru
ture through the Moyal bracket. The star product has so
interesting consequences. In particular, under an integral
star product of two functions is the same as an ordin
product~namely, the difference between the two integran
is a total divergence that integrates to zero for functions w
appropriate asymptotic fall off!. Similarly, the star product of
any number of functions, under an integral, satisfies cyc
ity. As a result of these, it follows that the two point fun
tions and the propagators of a noncommutative field the
are the same as their commutative counterparts. Howe
the interaction vertices have an exponential dependenc
umn as well as the momenta carried by the fields. Thus,
example, for the action in Eq.~9!, the Feynman rules for the
theory are as follows. First, the propagators of the theory
7-2
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GENERAL STRUCTURE OF THE PHOTON SELF-ENERGY . . . PHYSICAL REVIEW D65 085017
~10!

These are the same as in the commutative theory. Introdu
the notation

p3q5umnpmqn ~11!

the vertices, on the other hand, have the following for
~with the momentum conserving delta functions omitted!:

~12!

In this paper, we will study, systematically, the phot
self-energy, at one loop, in a general covariant gauge in
arbitrary dimension. Since the fermion contribution to this
the same as in a commutative theory~namely, the diagram is
‘‘planar’’ !, and has been studied in the literature, we w
concentrate only on the other graphs, which do not occu
commutative QED. The star product, of course, introduce
non-Abelian structure in this theory. But more than that,
such theories, we have an independent Lorentz struc
which can, in principle, introduce a behavior parallel to th
at finite temperature. For example, in the self-energy, ther
one independent external momentum so that we can thin
ūm5umnpn as being analogous to the component of the
locity of the heat bath perpendicular to momentum at fin
temperature. A lot is known about the self-energy of comm
tative Yang-Mills theory at finite temperature and our goa
to exploit the known features of such studies to underst
the behavior of the self-energy in noncommutative QED i
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general covariant gauge in any dimension. Even though
actual calculations are at one loop, in the process, we
find some interesting all orders results for the self-energy
well as the propagator in noncommutative QED.

III. TRANSVERSALITY OF THE POLARIZATION TENSOR

It is well known in commutative QCD that, at finite tem
perature, the self-energy is not transverse in a general c
riant gauge@31,32#. ~It is transverse at one loop, only in th
Feynman gauge.! In spite of the apparent similarity of non
commutative theories with thermal field theories, we w
show in the following that the photon self-energy in nonco
mutative QED is transverse to all orders in any covari
gauge and in any dimension, which is the behavior of
gauge self-energy in commutative QCD at zero temperat

To show this, let us introduce some techniques from fin
temperature field theory@33#. Consider a theory with a natu
ral vectorum ~for example, the velocity of the heat bath
finite temperature!. Then, given a momentum vectorpm, let
us define the component ofum orthogonal topm as

ūm5S um2
~u•p!

p2
pmD , pmūm50. ~13!

In such a theory, the self-energy for the gauge field will ha
the most general, all orders decomposition given by

Pmn5AS hmn2
pmpn

p2 D 1B
ūmūn

ū2
1C

pmūn1pnūm

ū2

1D
pmpn

p2
. ~14!

It follows from this that

pmPmn5
Cp2

ū2
ūn1DpnÞ0 ~15!

unlessC505D.
Adding the tree level two point function, we can write th

complete two point function to all orders as

Gmn5Ĝmn1
pmpn

j

5F ~p21A!S hmn2
pmpn

p2 D 1B
ūmūn

ū2

1C
pmūn1pnūm

ū2
1D

pmpn

p2 G1
pmpn

j
. ~16!

The complete propagator is defined to be

GmnDnl52dl
m ~17!
7-3
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and satisfies, in consequence of the Slavnov-Taylor iden
@34#,

pmpnDmn52j. ~18!

Let us now define

Gm5pnDmn , pmGm52j. ~19!

Then, it follows, in a simple manner, that

ĜmnGn5S Gmn2
pmpn

j D prDnr52pm1pm50. ~20!

This shows thatĜmn has a zero mode, which can be expli
itly constructed to be

Gm
0 52

j

p2 S pm2
D

C
ūmD ~21!

with

D5
p2C2

ū2~p21A1B!
. ~22!

Thus far, our analysis has been quite general. Let us
turn to non-commutative QED. In this case, we can iden

ūm5umnpn . ~23!

Furthermore, from the Feynman rules, let us note that
self-energy diagrams~involving internal photon and ghos
lines! are invariant under

umn→2umn.

Therefore, the self-energy must be an even function ofūm.
~We note here that this property holds even with ferm
interactions and is a consequence of charge conjugation
variance of the two point function@35#.! It follows, then, that
the coefficientC in Eq. ~14! must be odd inūm. Since it is a
scalar function, the most general form it can have is

C5~ ū•p!E50, ~24!

whereE denotes a scalar function, even inūm, and we have
used the fact thatūm is orthogonal topm. Since C50, it
follows from Eq.~22! that D50.

Therefore, to all orders, we determine that the most g
eral form for the self-energy in noncommutative QED, in
general covariant gauge in any dimension, can be writte

Pmn5AS hmn2
pmpn

p2 D 1B
ūmūn

ū2
~25!

which is manifestly transverse.@Note that, in this case, th
zero mode in Eq.~21! simply reduces to2jpm /p2.# The
coefficientsA and B, of course, will be dependent on th
gauge fixing parameter, unlike in commutative QED, and
would like to evaluate these functions at one loop.
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IV. DIMENSIONAL REGULARIZATION
IN NON-COMMUTATIVE FIELD THEORY

The calculations in non-commutative field theory have
far been mostly carried out using the methods of Schwing
However, from studies in commutative gauge field theori
we know that dimensional regularization@36# is extremely
simple and powerful which, while maintaining gauge inva
ance, allows the proof of many results in a natural mann
Therefore, it is quite useful to try to extend the method
dimensional regularization to noncommutative theor
@19,20#. In what follows, we will derive the dimensiona
regularization formulas, relevant to noncommutative theor
in two different ways, both leading to the same results.

In noncommutative theories@for example, in noncommu-
tative QED, see Eq.~12!#, the interactions involve a momen
tum dependent phase factor. Therefore, a generic loop i
gral, that arises in such theories, has the form

I 5E dnk

~2p!n

ei ū•k

~k22M2!a
, ~26!

where we have defined

ūm5umn f m~p1 , . . . ,pn! ~27!

with f m representing a function of the external momen
p1 , . . . ,pn andM2 represents the term that arises from co
bining denominators using the Feynman parameters
shifting. M2, in general, depends on the external momen
masses of the theory as well as the Feynman parameters
simplicity, we have ignored writing the integration over th
Feynman parameters that needs to be carried out. To eva
this integral, we first rotate to Euclidean space, so that
have ~note that with our choice ofumn having only space
indices, the exponent does not change sign upon rotatio
Euclidean space!

I 5 i ~21!aE dnk

~2p!n

ei ū•k

~k21M2!a
. ~28!

It is the momentum dependent exponential that seems
midable. However, it turns out that it is not hard to evalua
integrals of this kind and let us present two different, b
equivalent ways that lead to the same result. First of all,
us decompose the vectorkm to longitudinal and transvers
components with respect toūm . Let us introduce the decom
position

kim5
ū•k

ū2
ūm , k'm5km2kim ~29!

so that

ū•ki5 ū•k, ū•k'50. ~30!

In terms of these components, then, we can write
7-4
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I 5
i ~21!a

~2p!n E dkie
i ū•ki E dn21k'

1

~k'
2 1ki

21M2!a

5
i ~21!a

~2p!n E2`

`

dki

p~n21!/2GS a2
n21

2 D
G~a!

3
ei ū•ki

~ki
21M2!a2 ~n21!/2

5
2i ~21!a

~2p!n

p~n21!/2GS a2
n21

2 D
G~a!

3E
0

`

dki
cosū•ki

~ki
21M2!a2 ~n21!/2

. ~31!

Recalling thatkim is parallel to ūm , we note that cosū
ki5cosuūuki where uūu5(2 ūmūm)1/2 and ki5(kimkim)1/2.
Therefore, defining a new variablex5uūuki , we can write
the integral as

I 5
2i ~21!a

~2p!n

p (n21)/2GS a2
n21

2 D
G~a!

uūu2a2n

3E
0

`

dx
cosx

„x21~ uūuM !2
…

a2(n21)/2

52i ~21!a
p (n21)/2

~2p!n

GS a2
n21

2 D
G~a!

uūu2a2n

3
~2uūuM !n/22a

Ap
cospS n

2
2a DGS n11

2
2a D

3Ka2n/2~ uūuM !

5 i ~21!a
pn/2

~2p!n

1

G~a!

1

~M2!a2 n/2
2S uūuM

2
D a2n/2

3Ka2n/2~ uūuM !. ~32!

HereKa denotes the Bessel function and, in the intermed
steps, we have used some identities involving the gam
functions@37#. It is worth pointing out here that the identifi
cation of the last integral with the Bessel function is stric
valid whenn,2a11, where it is straightforward to show
with the help of standard tables that

lim
z→0

znKn~z!→2n21G~n! ~33!

so that we have
08501
te
a

lim
ū→0

I→ i ~21!a
pn/2

~2p!n

GS a2
n

2D
G~a!

1

~M2!a2n/2
. ~34!

However, as in dimensional regularization in commutat
theories, we analytically continue this result to other dime
sions.

Let us next give an alternate derivation of the dimensio
regularization formula for our basic integral. We note tha

I 5 i ~21!aE dnk

~2p!n

ei ūk

~k21M2!a

5
i ~21!a

G~a! S 2
]

]M2D a21E dnk

~2p!n

ei ūk

k21M2

5
i ~21!a

G~a! S 2
]

]M2D a21E dnk

~2p!nE0

`

dl

3e2l(k21M2)1 i ūk

5
i ~21!apn/2

~2p!n

1

G~a!
E

0

`

dlla212n/2

3e2lM22uūu2/4l

5 i ~21!a
pn/2

~2p!n

1

G~a!

1

~M2!a2n/2

32S uūuM
2

D a2n/2

Ka2n/2~ uūuM ! ~35!

which is exactly the same formula as derived earlier in E
~32!.

This, therefore, generalizes dimensional regularization
noncommutative theories and evaluates the basic inte
that arises in a noncommutative field theory. In the study
self-energy in gauge theories, however, we need integ
involving additional tensor structures, which can be eva
ated in the following simple manner. First, let us note that
we are interested in the self-energy, there is only one in
pendent external momentum and, therefore,

ūm5umnpn , ~36!

where pm is the external momentum. Second, in this ca
M25x(12x)p2, where x is the Feynman parameter th
arises in combining two denominators. Now, if we introdu
an auxiliary vectorzm , then, we obtain, following our earlie
derivation in Eq.~32!, that
7-5
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I ~z!5 i ~21!aE dnk

~2p!n

ei ( ū1z)k

~k21M2!a

5 i ~21!a
pn/2

~2p!n

1

G~a!~M2!a2n/2
2S uū1zuM

2
D a2n/2

3Ka2n/2~ uū1zuM !. ~37!

For small values ofzm, expanding in a Taylor series an
using identities involving the Bessel functions, this res
would generate the integrals involving all other tensor str
tures.

For completeness, we list below the Euclidean forms
the integrals that we will need in the subsequent section

E dnk

~2p!n

ei ūk

~k21M2!a

5
pn/2

~2p!n

1

G~a!

1

~M2!a2n/2
2S uūuM

2
D a2n/2

3Ka2n/2~ uūuM !,

E dnk

~2p!n

ei ūk~ ūk!2

~k21M2!a

5
pn/2

~2p!n

1

G~a!

uūu2

~M2!a212n/2F ~2a212n!

3S uūuM
2

D a212n/2

Ka212n/2~ uūuM !

22S uūuM
2

D a2n/2

Ka2n/2~ uūuM !G ,

E dnk

~2p!n

ei ūkkmkn

~k21M2!a
5Aadmn1Ba

ūmūn

ū2
, ~38!

where

Aa5
pn/2

~2p!n

1

G~a!

1

~M2!a212n/2 S uūuM
2

D a212n/2

3Ka212n/2~ uūuM !,

Ba5
pn/2

~2p!n

1

G~a!

1

~M2!a212n/2

3F ~2a222n!S uūuM
2

D a212n/2

Ka212n/2~ uūuM !

22S uūuM
2

D a2n/2

Ka2n/2~ uūuM !G . ~39!
08501
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V. EXPLICIT ONE LOOP CALCULATION

In this section, we will explicitly evaluate the self-energ
at one loop, using dimensional regularization. However, e
before doing the calculation, let us verify explicitly that th
self-energy is indeed transverse at one loop, as a chec
our general result of Sec. III.

There are three graphs for the self-energy, at one lo
that we are interested in, namely, the one with the inter
ghost loop, the tadpole involving the four photon vertex a
the one involving an internal gauge loop@see Figs. 1~a!–
1~c!#. Each of these three graphs has the form@see Eqs.
~10!,~12!#

Pmn
(I ) 5

e2C(I )

2 E dnk

~2p!n

~12cosp3k!

k2~k1p!2
Nmn

(I ) , I 5a,b,c,

~40!

where

C(ghost)51, C(tadpole)5
1

4
, C(gauge)5

1

2
,

Nmn
(ghost)52~k1p!mkn ,

Nmn
(tadpole)528~k1p!2F ~12n!hmn1~12j!

3S hmn2
kmkn

k2 D G ,

Nmn
(gauge)5Rmn1~12j!Smn1~12j!2Tmn , ~41!

where

Rmn52@~31n!pmpn1~624n!kmkn22hmn~k212p2!#,

Smn52F ~k212pk!2

k2
hmn2

k212pk2p2

k2
kmkn1pmpn

2
k213pk

k2
~kmpn1knpm!1~k→k1p, p→2p!G ,

Tmn522
~p2km2pkpm!~p2kn2pkpn!

k2~k1p!2
. ~42!

Thus, adding the three terms, we see that the self-energy
a natural expansion in powers of (12j) (j51 corresponds

FIG. 1. One-loop diagrams which contribute to the photon-s
energy. Wavy and dashed lines denote respectively photons
ghosts. The external momenta on the left side is inward.
7-6
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to the Feynman gauge!. The terms proportional to (12j)2

come only from the graph with the gauge loop and its str
ture, as can be seen from Eq.~42!, is manifestly transverse
There are two terms proportional to (12j), coming from the
tadpole as well as the gauge loop diagrams. If we add th
combine the denominators using Feynman parameters
shift the integration variable, we obtain

Pmn
(12j)5

4e2~12j!

~2p!n E
0

1

dx~12x!E dnk
~12cosp3k!

@k21x~12x!p2#3

3$@~112x!k2p224~12x!~pk!2

2x2~322x!~p2!2#hmn22p2kmkn

2@~112x!k22x2~322x!p2#pmpn

1~322x!pk~kmpn1knpm!%. ~43!

Contracting withpm , it can be seen that this vanishes up
symmetric integration. Therefore, the terms linear in
2j) are explicitly transverse as well. In a similar manner
can also be checked that the terms independent of (12j) are
transverse. Alternatively, let us note that the terms indep
dent of (12j) would correspond to the self-energy in th
Feynman gauge (j51), which have been explicitly checke
earlier to be transverse at one loop.

Thus, we see from the structure of the graphs that they
manifestly transverse at one loop, consistent with our all
ders result. Thus, let us parametrize the self-energy as in
~25! ~with the identificationūm[ūm5umnpn) and write

Pmn5AS hmn2
pmpn

p2 D 1B
ūmūn

ū2
. ~44!

It follows from this that

A5
1

~n22!S hmnPmn2
ūmūn

ū2
PmnD ,

B5
1

~n22!S 2hmnPmn1~n21!
ūmūn

ū2
PmnD . ~45!

In spite of the appearance of (n22) factors in the denomi-
nator, we will see that these quantities are well behave
n52 ~namely, two dimensions!.

Let us further expand each of these coefficients in pow
of (12j):

A5A01~12j!A11~12j!2A2 ,

B5B01~12j!B11~12j!2B2 , ~46!

where we have used the fact that the self-energy diagr
are at most quadratic in (12j). The subscripts here corre
spond to the power of (12j) and the lowest order term
simply correspond to the coefficients in the Feynman gau
08501
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m,
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t
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re
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q.

at
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s
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We can combine denominators and integrate over the inte
momenta using formulas~38! for the terms depending on
cosp3k and use the conventional formulas of dimension
regularization for the term independent ofumn. As we have
mentioned earlier, the usual results of dimensional regu
ization can be obtained through the simple substitution

znKn~z!→2n21G~n!. ~47!

Therefore, it is enough to use the formulas in Eq.~38! to do
the complete integrals and, with a little bit of algebra, we c
write the results as

Ai5
e2pn/2

~2p!n
~2p2!n/221E

0

1

dx@x~12x!#n/222ai ,

Bi5
e2pn/2

~2p!n
~2p2!n/221E

0

1

dx@x~12x!#n/222bi ,

~48!

wherei 50,1,2 and

a05@312~n21!x24~n22!x2#

3F ~ uūuM !22n/2K22n/2~ uūuM !2212n/2GS 22
n

2D G ,
a1522~6x225x!F ~ uūuM !22n/2K22n/2~ uūuM !

2212n/2GS 22
n

2D G1~114x24x2!

3F ~ uūuM !32n/2K32n/2~ uūuM !2222n/2GS 32
n

2D G ,
a25

1

4F ~ uūuM !32n/2K32n/2~ uūuM !2222n/2GS 32
n

2D G ,
~49!

b0524~n22!2x~12x!F ~ uūuM !12n/2K12n/2~ uūuM !

222n/2GS 12
n

2D G1@~624n!x~12x!1122x2#

3F ~ uūuM !22n/2K22n/2~ uūuM !2212n/2GS 22
n

2D G ,

b152xH ~n24!F ~ uūuM !22n/2K22n/2~ uūuM !

2212n/2GS 22
n

2D G

1F ~ uūuM !32n/2K32n/2~ uūuM !2222n/2GS 32
n

2D G ,

7-7
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b252
1

4 H ~n26!F ~ uūuM !32n/2K32n/2~ uūuM !2222n/2GS 32
n

2D G1F ~ uūuM !42n/2K42n/2~ uūuM !2232n/2GS 42
n

2D G J .

Combining all the factors, we obtain~after rotation to the Minkowski space!

A5
e2pn/2

~2p!n
~2p2!n/221E

0

1

dx@x~12x!#n/222H @312~n21!x24~n22!x222~12j!x~6x25!#

3F ~ uūuM !22n/2K22n/2~ uūuM !2212n/2GS 22
n

2D G2~12j!S ~114x24x2!2
~12j!

4 D
3F ~ uūuM !32n/2K32n/2~ uūuM !2222n/2GS 32

n

2D G J ,

B5
e2pn/2

~2p!n
~2p2!n/221E

0

1

dx@x~12x!#n/222H 24~n22!2x~12x!F ~ uūuM !12n/2K12n/2~ uūuM !222n/2GS 12
n

2D G
1@~624n!x~12x!1122x212~12j!~n24!x#F ~ uūuM !22n/2K22n/2~ uūuM !2212n/2GS 22

n

2D G
1~12j!S 2x2~n26!

~12j!

4 D F ~ uūuM !32n/2K32n/2~ uūuM !2222n/2GS 32
n

2D G
2

~12j!2

4 F ~ uūuM !42n/2K42
n
2
~ uūuM !2232n/2GS 42

n

2D G J , ~50!
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whereM252x(12x)p2. We note that the integration ove
the Feynman parameter,x, can be done in closed form, fo
both the coefficients, in terms of generalized hypergeome
functions. However, the result is not very illuminating an
therefore, we do not give the details here.

This, therefore, determines the photon self-energy, at
loop, in a general covariant gauge in any dimension. Th
are several things to note from this result. First of all, t
coefficients are, in general, dependent on the gauge fi
parameterj as is the case in commutative QCD at zero te
perature~in commutative QED, these coefficients are gau
independent!. Second, in spite of the complicated structure
B, all the G terms cancel out exactly, when the integrati
over the Feynman parameter is carried out. This is true
any dimension and for any value ofj and this is an importan
result. For, it says that there is no ultraviolet divergence
the coefficient ofB in any dimension in a general covaria
gauge. Therefore, all the ultraviolet divergences are c
tained inA and can be subtracted by the usual wave funct
renormalization counterterms. We do not need any coun
term with a new structure in the noncommutative QE
which would have rendered the theory unrenormalizable

Second, whenn52, umn50 ~since there is only one
space direction!. In two dimensions, the theory is ultraviole
finite by power counting and gauge invariance, therefore,
umn→0 limit can be taken smoothly in our results. In th
limit, of course, (12cosp3k)→0 so that we will expect
these structures to vanish whenn52. This can be explicitly
checked in the following way. Note that when the integra
convergent, as noted in Eq.~33!,
08501
ic
,

e
re

g
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e

in

n

-
n
r-
,

e

lim
z→0

znKn~z!52n21G~n!.

In such a case, every term inside the parenthesis will ca
pairwise to give a vanishing result.

When n5422e, the terms inA, related to theG func-
tions, have the explicit form

Aplanar52
2e2p2

~4p!2 F S 13

6
2

j

2D S 1

e
2 log

2p2

4pm2
2g D 1

31

9

2~12j!1
~12j!2

4 G , ~51!

whereas the leading order term, coming from the Bes
functions, asuūu→0, takes the simple form

Anonplanar52
2e2p2

~4p!2 F S 13

6
2

j

2D log~2p2uūu2!1O~ uūu2!G .
~52!

Let us note that the log(2p2) terms precisely cancel betwee
the planar and the non-planar terms. This is a general fea
that is completely parallel with the studies at finite tempe
ture ~see next section for more details!. As for the coefficient
B, we have already seen that all theG terms cancel out in any
dimension, so that

Bplanar50. ~53!
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The leading order term coming from the Bessel functions
uūu→0, in four dimensions has the form

Bnonplanar52
e2

16p2 F S 32

uūu2
2

4p2

3 D 1O~ uūu2!G ~54!

which agrees with the results in Refs.@14,20# for QED
in 4 dimensions. @We remark here that the leadin
order contribution, as uūu→0, comes from the
(uūuM )12n/2K12n/2(uūuM ) term in Eq. ~50!, whose coeffi-
cient is gauge independent.#

VI. IMAGINARY PART OF THE SELF-ENERGY

As is well known, noncommutative theories do not hav
uniqueumn→0 limit. This nonanalyticity is quite analogou
to the behavior in thermal field theories, where the am
tudes become nonanalytic at the origin in the ener
momentum plane. In the case of thermal field theories, th
is a physical reason for such a nonanalyticity, namely,
finite temperature, new channels of reaction develop lead
to new thermal branch cuts, and this leads to the nonana
icity. Correspondingly, it would be interesting to ask if th
non-commutative QED theory develops any newumn depen-
dent imaginary parts in the amplitude.

To this end, let us start by looking at the self-energy in
noncommutativef3 theory inn dimensions. We choose th
scalar field to be massless so as to keep the parallel
noncommutative QED. In this case, the basic integral for
nonplanar part of the self-energy has the form~in Euclidean
space!

I nonplanar;
1

~2p!nE0

1

dxE dnk
ei ū•k

~k21M2!2
, ~55!

where we are neglecting some overall multiplicative fact
for simplicity. This integral can be evaluated using Eq.~38!
and gives~after rotation to Minkowski space!

I nonplanar;
pn/2

~2p!nE0

1

dx
2n/221

~M2!22n/2
~ uūuM !22n/2

3K22n/2~ uūuM !, ~56!

where, in the Minkowski spaceM252x(12x)p2. The pla-
nar part of the self-energy, on the other hand, has no ex
nential factor in the integrand and the result is

I planar;
pn/2

~2p!nE0

1

dx

GS 22
n

2D
~M2!22n/2

. ~57!

We note that forn,4, the integral is ultraviolet conver
gent and, in the limituu ū→0, Eq.~56! yields the result in Eq.
~57!. In such a case, we do not expect any nonanalyticity
the theory. On the other hand, it is forn.4 that ultraviolet
divergences are present leading to IR/UV mixing, which
the main reason for the non-analytic behavior asumn→0. So,
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let us analyze the imaginary parts of these amplitudes fon
.4. First, let us note that if we setn5412l 22e with l an
integer ande infinitesimal, then, with some algebra, the pl
nar term in Eq.~57! becomes

I planar;
pn/2

~2p!nE0

1

dxM2l
~21! l

l ! S 1

e
1 log

m2

M2
1••• D .

~58!

Herem is the scale of dimensional regularization and we s
that, sinceM252x(12x)p2, for p2.0, the logarithm will
lead to an imaginary part.

In the evaluation of the nonplanar term, on the other ha
we can safely sete50 ~it has no poles! and the Bessel func
tion can be expanded for smalluūu to give

I nonplanaru ;
pn/2

~2p!nE0

1

dxF ~ uūu!22l (
k50

l 21

~ uūuM !2k

3
~21!k~ l 2k21!!22(l 2k)

k!
1~21! l 11M2l

3 (
k50

`
~ uūuM !2k

22kk! ~ l 1k!!
S log

uūu2M2

4
2c~k11!

2c~ l 1k11! D G , ~59!

wherec(x) is the Euler psi function@37#. Let us note that,
unlike the real part, the imaginary part of Eq.~59!, which
comes from the logM2 terms, is a well behaved function i
the limit uūu→0. The leading imaginary part which arise
from this whenuūu→0, comes from the term

I nonplanar
(leading log);

pn/2

~2p!nE0

1

dxM2l
~21! l

l !
log

4

uūu2M2
. ~60!

It is interesting to note that the logM2 term in the planar and
the nonplanar terms have the same coefficient. This is v
much like the behavior of logT terms in thermal field theo-
ries ~here,T is the temperature!. Namely, while there is no
direct relation between the ultraviolet divergence in a fie
theory and powers ofT, the coefficient of logT coincides
with that of the pole 1/e @38#. Here, too, the same behavio
seems to arise.

The same discussion carries over to noncommuta
QED, where the imaginary parts of the nonplanar terms
Eq. ~50! may be evaluated using the relation~for M2,0)

Im Kl~ uūuM !5~21! l 11
p

2
Jl~ uūuuM u!. ~61!

Let us note that, in the case of QED, the planar and
nonplanar terms come with opposite sign because of the
tor (12cosp3k). As a result, to leading order, the imagina
parts cancel in the self-energy. However, there are hig
order terms in the expansion of the Bessel function in E
7-9
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~61!, which can contribute an imaginary part to the se
energy. Whenuūu→0, however, these vanish quite rapidl
On the other hand, for finiteuūu, these imaginary parts ar
present and are, in fact, necessary for unitarity to hold@39–
42#. As we have seen in the last section, the coefficientA
andB in the self-energy are gauge dependent. Therefore
conclude that the imaginary parts coming from the hig
order terms in the Bessel function will also become gau
dependent. This is slightly surprising in that we would exp
the imaginary part of an amplitude to be related to a phys
cross section, which has to be gauge independent. The pu
is resolved by noting that the physical process to which
photon self-energy can contribute is the electron-elect
scattering amplitude~see Fig. 2!. Although the imaginary
part of the self-energy graph is gauge dependent in
theory, it turns out that the other diagrams are also ga
dependent so that the sum of all such contributions can
come gauge independent.

VII. GAUGE INDEPENDENCE OF THE POLES
OF THE PROPAGATOR

As we have already seen in Sec. V, the coefficient fu
tionsA andB in the photon self-energy are gauge depende
Therefore, it is natural to ask what happens to the pole
the photon propagator in such a theory. In what follows,
will show that, in spite of the gauge dependence of the s
energy, the poles in the photon propagator are gauge i
pendent to all orders.

Following our discussions in Sec. III, we note that t
general structure of the complete two point function for t
photon~to all orders! has the form~with ūm[ūm)

Gmn5~p21A!S hmn2
pmpn

p2 D 1B
ūmūn

ū2
1

pmpn

j
. ~62!

Drawing from previous experience at finite temperature@43#,
we note that, for the purpose of analyzing the gauge in
pendence of the poles of the propagator, it is better to rew
the two point function as

Gmn5~p21A!S hmn2
pmpn

p2
2

ūmūn

ū2 D 1~p21A1B!
ūmūn

ū2

1
pmpn

j
. ~63!

It is easy to determine from this that the exact propagator
the photon has the form

2Dmn5S hmn2
pmpn

p2
2

ūmūn

ū2 D 1

p21A
1

ūmūn

ū2

1

p21A1B

1j
pmpn

~p2!2
. ~64!
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This reduces to the tree level propagator whenA5B50 and
the exact propagator satisfies the ’t Hooft identi
pmpnDmn52j.

The main reason for rewriting the two point function
the form ~63! is that the two structures

Pmn5S hmn2
pmpn

p2
2

ūmūn

ū2 D ,

Qmn5
ūmūn

ū2
~65!

are orthogonal, transverse projection operators satisfying

PmnPl
n5Pml ,

QmnQl
n5Qml , ~66!

PmnQl
n505pmPmn5pmQmn

which will be quite useful in the following analysis. Furthe
more, in this way of writing, we see clearly that the prop
gator has two independent poles atp21A50, p21A1B
50. ~The pole in the longitudinal part has a gauge depend
residue and is clearly unphysical. Note that, at finite tempe
ture, the physical poles are related to the Debye and
plasmon masses.!

The gauge dependence of the two point function a
therefore, of the poles of the propagator can be analy
through Nielsen identities, which we will derive in the Ap
pendix. For the present, let us simply note that the chang
the two point function, under a change in the gauge fix
parameter, can be written as~in momentum space!

]Gmn

]j
5@GmlXl

n1GnlXl
m#, ~67!

where the quantityXl
m is described in the Appendix. Takin

the projection of Eq.~67! with Pnm , we obtain

]~p21A!

]j
5

2~p21A!

~n22!
PmnXnm. ~68!

Similarly, taking the projection of Eq.~67! with Qmn , we
obtain

]~p21A1B!

]j
52~p21A1B!QmnXnm. ~69!

These two equations are quite interesting as they say
since (p21A) as well as (p21A1B) change homoge-
neously as we change the gauge fixing parameter, the ze
of these functions are gauge independent. Correspondin
the poles of the propagator are gauge independent. Nam
even though the photon two point function is gauge dep
dent, to all orders, the poles of the photon propagator
gauge independent~in any dimension!. Let us note here tha
an important consequence of this property is that the m
infrared singular term in the above equations must be ga
7-10
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independent. Otherwise, the poles of the propagator wo
not have a gauge independent location. In fact, by exp
calculation, we find that this term appears inB in the gauge
independent form

Bsingular52
e2~n22!2

2pn/2 S 1

uūu
D n22

~70!

which clearly vanishes forn52 and which can be compare
with Eq. ~54! for n54.

VIII. CONCLUSION

In this paper, we have studied the contributions of gau
and ghost loops to the photon self-energy in noncommuta
QED, in a general covariant gaugeand in any dimension~the
fermion contributions have been studied earlier!. We have
shown that, to all orders, the self-energy is transverse and
have explicitly evaluated the one-loop graphs, which ver
this. Our calculations have used dimensional regularizat
which we have generalized to noncommutative theories.
explicit calculation shows that there are no new kinds
ultraviolet divergences coming from these diagrams so
the theory is renormalizable@23#. Furthermore, the imagi
nary parts coming from these graphs cancel identically in
infrared limit, although away from the infrared limit, th
self-energy does haveu-dependent imaginary parts whic
are necessary for unitarity. Since the photon self-energ
gauge dependent, we use the Nielsen identity to show
the poles of the photon propagator are gauge independe
all orders. Generally, theu-dependent infrared divergen
terms that arise, to one-loop order, in noncommutative th
ries have inappropriate behavior. However, since we do
find any imaginary part associated with such a nonanaly
ity, it suggests that such behavior may not, in fact, be ph
cal. Drawing from studies of noncommutative scalar mod
@44–46#, which make use of techniques developed in co
nection with thermal field theories, we conjecture that a
summation to all orders may eliminate the unphysical inf
red singularities in noncommutative QED.

ACKNOWLEDGMENTS

We would like to thank Professor J. C. Taylor for ma
helpful discussions. This work was supported in part by U
DOE Grant No. DE-FG-02-91ER40685 and by CNPq a
FAPESP, Brazil.

APPENDIX: THE NIELSEN IDENTITY

In this appendix, we will derive the Nielsen identity use
in Sec. VII to prove the gauge independence of the pole
the propagator. Let us start with the action for noncommu
tive QED given in Eq.~9!, where we write the gauge fixing
term as

Sgf5E dnxS j

2
F!F2F!~]•A! D . ~A1!

HereF is an auxiliary field whose equation of motion give
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F5
1

j
~]•A! ~A2!

which we will use later in the analysis. However, it is mo
convenient to begin with the auxiliary field formulation o
the gauge fixing, since it allows the Becchi-Rouet-Sto
Tyutin ~BRST! transformations of the theory to close of
shell. The BRST transformations for noncommutative QE
in this formulation, become

dAm5vDmc5v~]mc2 ie@Am ,c#MB!,

dc52
v

2
c!c,

d c̄52vF,

dF50. ~A3!

Herev is an anticommuting space-time independent para
eter and the actionS, which includes gauge fixing and
ghosts, is invariant under these transformations.

Let us now add to our action source terms

Ssource5E dnxFJm!Am1J!F1 i ~ h̄!c2 c̄!h!1Km!Dmc

1L!S 2
1

2
c!cD1H!S 1

2
c̄!F D G . ~A4!

Here, we have the usual sources for the fields, sources fo
composite BRST variations and finally, we have added o
extra source~the last term! whose meaning will become clea
shortly. The action involving the sources is not invariant u
der the BRST transformations and gives

dSsource5vE dnxFJm!Dmc1 i h̄S 1

2
c!cD1 iF !h

1H!S 1

2
F!F D G . ~A5!

Let us next define the generating functional as

Z5eiW5E @Dw#ei (S1Ssource), ~A6!

where w represents all the fields being integrated and
generating functional depends only on the sources. It is c
now that, under a BRST field redefinition inside the pa

FIG. 2. Examples of one-loop diagrams which contribute to
electron-electron scattering in noncommutative QED.
7-11
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integral, the generating functional will not change, since
sources are unaffected by such a transformation. This le
to

dZ50,

E @Dw#~dS1dSsource!e
i (S1Ssource)50. ~A7!

SinceS is invariant, using the form ofdSsourcefrom Eq.~A5!,
we obtain

E @Dw#S E dnzH~z!!
]L
]j Dei (S1Ssource)

52E dnzS Jm!
dW

dKm~z!
2 i h̄~z!!

dW

dL~z!

1 i
dW

dJ~z!
!h~z!D . ~A8!

Taking the derivative of this with respect toH(x), setting it
to zero and integrating overx, we obtain

]W

]j
52E dnxdnzS Jm~z!!

d2W

dH~x!dKm~z!

1 i h̄~z!!
d2W

dH~x!dL~z!
1 i

d2W

dH~x!dJ~z!
!h~z! DU

H50

.

~A9!

FIG. 3. The diagrammatic expression of Eq.~A13!: The lowest
order term~a! and the one-loop contributions@~b! and ~c!#.
08501
e
ds

We can now define the effective action,G, through the
Legendre transformation

G5W2E dnx@Jm!Am1J!F1 i ~ h̄!c2 c̄!h!#.

~A10!

Then, the identity in Eq.~A9! can be written as

]G

]j
5E dnxdnzS dG

dAl~z!
!

d2G

dH~x!dKl~z!

2
dG

dc~z!
!

d2G

dH~x!dL~z!
1

dF~z!

dH~x!
!

dG

d c̄~z!
D U

H50

.

~A11!

Taking the second derivative with respect toAm(x) and
An(y), setting F5(1/j)(]•A) and setting all other fields
equal to zero, we obtain

]

]j

d2G

dAm~x!dAn~y!

5E dnvdnzS d2G

dAm~x!dAl~z!
!

d3G

dH~v!dAn~y!dKl~z!

1
d2G

dAn~y!dAl~z!
!

d3G

dH~v!dAm~x!dKl~z!
D U .

~A12!

Here, the restriction is understood as settingF5 (1/
j)(]•A) and, then, setting all the fields equal to zero, af
taking the functional derivatives. This is the identity used
Sec. VII @see Eq.~67!#, where we have identified

Xl
m5

d3G

dHdAmdKl U . ~A13!

A graphical representation forXl
m to lowest orders is shown

in Fig. 3.
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