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Dashen’s phenomenon in gauge theories with spontaneously broken chiral symmetries
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We examine Dashen’s phenomenon in the Leutwyler-Smilga regime of QCD with any number of colors and
quarks in either the fundamental or adjoint representations of the gauge group. In this limit, the theories only
depend on simple combinations of quark masses, the volume, chiral condensate and vacuum angle. Based upon
this observation, we derive simple expressions for the chiral condensate and the topological density and show
that they are in fact related. By examining the zeros of the various partition functions, we elucidate the
mechanism leading to Dashen’s phenomena in QCD.
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I. INTRODUCTION

The vacuum angleu in QCD is experimentally con-
strained to be zero with a deviation of less than 1029 @1#.
This amounts to a theoretical fine-tuning problem which
conceptually similar to the vanishing of the cosmologic
constant. Without an understanding of the physics at nonz
values ofu, one will probably not be able to explain whyu
is essentially zero. In this work, we approach the proper
of the u vacua from the vantage point of the hadronic pha
where the physics is determined by the spontaneous brea
of chiral symmetry (SBxS). We consider QCD in the
Leutwyler-Smilga regime@2# for which the volumeL4 of
Euclidean space-time is taken such that

1

LQCD
!L!

1

mp
. ~1.1!

The lower limit ensures that chiral perturbation theory
valid and that the Goldstone modes associated with SBxS
are the dominant degrees of freedom. The upper bound
sures that the Compton wavelength of the Goldstone mo
is much greater than the size of the box and thus these m
can be treated as constant@3#. This has the advantage o
allowing for exact, analytic calculations.

The various patterns of the SBxS depend on both the
number of colors,Nc , and the representation of theNf mat-
ter fields. They are simply codified by the Dyson indexb,
which is assigned according to the antiunitary symmetry
the Euclidean Dirac operator@4#. For Nc>3 and matter in
the fundamental representation (b52), the pattern of the
SBxS is given bySU(Nf)3SU(Nf)→SU(Nf). Matter in
the fundamental representation withNc52 (b51) has the
patternSU(2Nf)→Sp(2Nf). Finally, for anyNc with matter
in the adjoint representation (b54), the symmetry breaking
pattern is given bySU(Nf)→SO(Nf).

At the level of the chiral QCD Lagrangian, the theo
depends only on the combinationMeiu/Nf where M is the
quark mass matrix@5,6#. In the Leutwyler-Smilga regime@2#,
this dependence is constrained even further. The qu
massesmj occur only in the rescaled combinationm j
0556-2821/2002/65~8!/085015~5!/$20.00 65 0850
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5mjVS, whereV is the volume andS is the chiral conden-
sate in the chiral limit which is assumed to be nonvanishi
For one and two degenerate quark flavors Leutwyler a
Smilga and Verbaarschot@2,7# found by explicit calculation
that the exact partition function only depends on the com
nationm cos(u/2).

One striking aspect of QCD at nonzero values ofu is the
spontaneous breaking ofCP in a first-order phase transitio
at u5p known as Dashen’s phenomenon@8#. In @5,6#, this
was shown by examining theu-dependence of the energ
density of the large-Nc chiral Lagrangian and was reconsid
ered more recently in@9–11# for different numbers of flavors
and mass splittings. Going to the Leutwyler-Smilga regim
it was shown in Ref.@12# for b52 that Dashen’s phenom
enon is indeed realized by directly calculating the discon
nuity in the topological density atu5p. In this work, we
extend@12# to b51 and 4 by calculating the correspondin
partition function, chiral condensate and topological dens
We demonstrate that Dashen’s phenomenon is generi
QCD regardless of the pattern of SBxS. By studying the
zeros of the partition functions, we show that this is a dir
consequence of the very restricted dependence of the p
tion function on quark masses, the chiral condensate anu.
This restriction also establishes a direct relationship betw
the chiral condensate and the topological density as wel
between their susceptibilities. TheNf52 theories are suffi-
ciently rich to illustrate the above points and as such
focus mainly on these cases. For a discussion ofNf.2, see
the Appendix.

II. PARTITION FUNCTIONS

In order to study Dashen’s phenomenon for generic p
terns of the SBxS, we first calculate the partition function
for b51 and 4 including the contributions from all topolog
cal sectors. The full partition function as a function ofu may
be decomposed into a sum over partition functions each
which is restricted to a fixed topological chargen:

Z (b)~u,$m i%!5 (
n52`

`

einuZ n
(b)~$m i%!. ~2.1!
©2002 The American Physical Society15-1
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Expressions at fixedn were derived in Ref.@13# for b52
and for degenerate masses withb51 and 4 in Ref.@7#. Re-
cently, the authors of Refs.@14,15# were able to calculate
expressions for non-degenerate masses using chiral ran
matrix theory (xRMT). The equivalence betweenxRMT
and QCD in the Leutwyler-Smilga regime has been est
lished in a number of works~see Ref.@16# for a review of the
literature!. Using the results of@14,15#, we now calculate the
full partition functions including the contributions from a
topological sectors. Our normalization will be such that
vanishing massesZ (b)(u,$m50%)51, which is only pos-
sible after summing over topological charge@17#. The results
for Nf51 are known and are independent ofb @2,7#:

Z (b)~u,m!5em cosu. ~2.2!

For b54, one must replaceu→u/Nc .
We begin with the first non-trivial case of two non

degenerate flavors. The same technique applies toNf.2
where we refer to the Appendix. Theb51 partition function
with fixed topological charge is@14#

Z n
(1)~m1 ,m2!58E

0

1

dt t2$I n~ tm1!m2I n21~ tm2!

2I n~ tm2!m1I n21~ tm1!%. ~2.3!

In order to sum over all topological charges we use the id
tity

(
n52`

`

einuI n1n~m1!I n1m~m2!

5e2 inuS m12~u!

m1e2 iu1m2
D n2m

I n2m„m12~u!…, ~2.4!

where a reduced mass is defined as

m12~u![Am1
21m2

212m1m2cosu. ~2.5!

Performing the summation overn and calculating the inte
gral over t, the two flavor partition function forb51 be-
comes

Z (1)~u,m1 ,m2!58
I 2„m12~u!…

m12~u!2
. ~2.6!

Let us stress the striking similarity tob52 where@17,12#

Z (2)~u,m1 ,m2!52
I 1„m12~u!…

m12~u!
. ~2.7!

At u5p, note thatm12(u5p)5um12m2u. To take the limit
of degenerate quark masses,m15m25m, we simply replace
m12(u)52mucos(u/2)u in Eq. ~2.6!. This agrees with the re
sults from Ref.@7#. At u5p, we findZ (1)(u5p,m,m)51,
i.e. the partition function is independent of quark masses
volume just like the partition function forb52 @10,12#. In
Ref. @10#, this was shown to be due to a cancelation of ter
at lowest order in chiral perturbation theory and higher-or
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terms were considered. In the Leutwyler-Smilga scaling
gime, however, these terms are suppressed.

As discussed in Ref.@2#, the allowed topological charge
in adjoint QCD,b54, are rescaled by a factor ofNc , so n

5 n̄/Nc where n̄ is an integer. The partition function thu
only depends on the combinationMeiu/(N̄fNc). The number of
Majorana fermions is given byN̄f and we restrict the presen
discussion toN̄f52. The partition function with fixed topo-
logical charge can be calculated as follows@7#:

Z n
(4)~m1 ,m2!5E

0

2p db

4p (
n52`

1`
1

2n11

3$I n̄1n„m~b!…I n̄2n„h~b!…

1I n̄2n„m~b!…I n̄1n„h~b!…%, ~2.8!

with

m~b!5m1 cos~b!21m2 sin~b!2,

h~b!5m2 cos~b!21m1 sin~b!2. ~2.9!

Although the full partition function can be obtained from E
~2.8! @see Eq.~A3!#, we only treat the degenerate mass ca
for simplicity in what follows. The partition function~2.8!
then drastically simplifies to

Z n
(4)~m,m!5E

0

1

dtI2n̄~2tm!. ~2.10!

This can be seen by applying]mm to Eq.~2.8! at equal mass
m and then integrating back. In order to compute the su
mation over topological chargesn̄, it is useful to split the
generating function forI n(x) into odd and even parts:

(
n52`

`

t2nI 2n~x!5coshF x

2
~ t1t21!G , ~2.11!

and similarly for the odd contribution. With the help of th
identity and after integrating overt, we obtain

Z (4)~u,m,m!5

sinhS 2m cos
u

2D
2m cos

u

2

, ~2.12!

which was first derived in Ref.@2#. At u5p, the partition
function is again equal to unity and thus is independent
quark masses and volume. This is again an indication
there are dominant terms at next-to-leading order in ch
perturbation theory. ForN̄f.2 we refer to the Appendix.

III. TOPOLOGICAL DENSITY AND
CHIRAL CONDENSATE

The chiral condensate and the topological density are
fined as
5-2
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S j
(b)~u,$m i%![S

]

]m j
logZ (b)~u,$m i%!, ~3.1!

s (b)~u,$m i%![2
1

V

]

]u
logZ (b)~u,$m i%!.

~3.2!

In the case whereZ is restricted to be a function of onl
some combination ofu and $mi%, e.g. X(u,m1 ,m2)
5m12(u), we readily find that

S j
(b)~u,$m i%!

s (b)~u,$m i%!
52VS

]m j
X

]uX
. ~3.3!

While this relation is a simple consequence of the obse
tion thatZ5Z(X), it establishes a deep relationship betwe
the chiral and the topological properties of the vacuum. T
chiral and the topological susceptibility are also related
though they are no longer proportional.

TheNf51 case is special since the entire chiral symme
group is explicitly broken by the axial anomaly and there
no spontaneous breaking of any symmetry. As a result, th
are no Goldstone modes. The topological density is

s (b)~u,m!5
m

V
sinu, ~3.4!

for b51, 2 and 4~with u→u/Nc) and there is no disconti
nuity at u5p. This is another indication of the interpla
between the SBxS and the topological properties of th
theory.

Turning to the more interesting case of two degener
flavors we only have to calculate partial derivatives of t
variableX52mucos(u/2)u and of the corresponding partitio
function. Forb51 we obtain

S (1)~u,m,m!5S
X

m

I 3~X!

I 2~X!
, ~3.5!

and thus

s (1)~u,m,m!5
1

V

m2sinu

X

I 3~X!

I 2~X!
. ~3.6!

The similarity withb52 in @12# is again striking. To recove
their result we merely have to replace the logarithmic deri
tive ]XlogZ(X) leading to I 2(X)/I 1(X) instead of
I 3(X)/I 2(X).

For b54 we obtain, from Eq.~2.12!,

S (4)~u,m,m!5S
X coshX2sinhX

m sinhX
, ~3.7!

s (4)~u,m,m!5
1

V

m sin
u

2

X

X coshX2sinhX

sinhX
.

~3.8!
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For all three values ofb the quantitiesS (b)(u,m,m) and
s (b)(u,m,m) vanish atu5p. Furthermore,s (b)(u,m,m) ex-
hibits a discontinuity; sgn„cos(u/2)… at u5p for large
scaling variable, m@1. This follows from
limX→`I n11(X)/I n(X)5 sgn(X) for b51,2 and similarly
from Eq.~3.8! for b54 ~for b52 this was shown already in
@12#!. Thus Dashen’s phenomenon is generic for all SBxB
patterns withNf52.

The result for non-degenerate flavors follows in a simi
fashion withX5m12(u). For b51 and 2, the chiral conden
sate obtained from Eqs.~2.6! and~2.7! respectively is easily
seen to vanish atu5p. The caseb54 is slightly more in-
volved and we refer to the Appendix@see Eqs.~A4! and
~A5!#. To see the phase transition ins (b)(u,m1 ,m2) for b
51,2 one must take the limitm1 ,m2→` such that

lim
m1 ,m2→`

~m12m2!2

m1m2
→0. ~3.9!

This leads tom12(u)→2Am1m2ucos(u/2)u and thus Dashen’s
phenomenon occurs in the same way as for degene
masses. Forb52 the bound~3.9! is consistent with the one
found in @5#. We obtain a discontinuity ins (b) at u5p and
the vanishing of the chiral condensate for both degene
and non-degenerate masses. Hence, these properties a
particular to the degenerate mass case. We expect that D
en’s phenomenon also happens forNf.2 for all three values
of b. It has been shown in@12# to occur forNf53 degener-
ate flavors and forb54 with four flavors it follows from Eq.
~A7!.

IV. ZEROS OF THE PARTITION FUNCTIONS

We now consider the zeros of the various partition fun
tions in the Leutwyler-Smilga regime.1 Using the theorems
of Yang and Lee@19# we expose the mechanism leading
Dashen’s phenomenon in the Leutwyler-Smilga regime
all b. Yang and Lee proved that the analytic behavior of t
partition function,Z, is determined completely by its zero
when the real parameters of the theory are continued into
complex plane. The non-analytic behavior ofZ as a function
of the real-parameters occurs where the zeros in the com
plane pinch the real axis. The non-analyticity of the partiti
function is tantamount to the existence of a phase transit
The SBxS in QCD occurs when the zeros in complex qua
mass plane pinch the realm-axis atm50. Dashen’s phenom
enon manifests itself as the zeros in the complexu-plane
pinch the realu-axis. We note that since there is no spon
neous breaking of chiral symmetry forNf51, there is no
solution to the equationZ b,Nf51(u,m)50 as is easily veri-
fied using Eq.~2.2!.

For illustrative purposes, we next taketwo degenerate
flavors and any value of b and so Z (b)(u,m,m)
5Z (b)

„2m cos(u/2)…. Consider the analytic continuation o
X[2m cos(u/2) into the complex plane. For all threeb ’s the

1In Ref. @18#, an analysis of the zeros was performed for t
xRMT partition function ofb52 at fixed topology.
5-3
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equationZ (b)(Xj )50 is solved by purely imaginary value
of Xj . The solutions are the non-vanishing zeros ofI 2 , I 1,
and sinh forb51,2,4 respectively. Given the purely imag
nary zeros,Xj , in the complexX-plane, it is simple to find
the zeros,m j , in the complexm-plane given a realu,

m j5
Xj

2 cos
u

2

, ~4.1!

and the zeros,u j[aj1 ib j , in the complexu-plane given a
real m,

aj5p and bj52 arcsinhS iX j

2m D . ~4.2!

From this we observe thatm j→` for u→p, indicating the
independence of the partition function onm at u5p. Fur-
thermore we see thatu j5p1 ib j→p for m→`, indicating
Dashen’s phenomenon. We stress that this is independe
b. If we considertwo non-degenerate flavors, then for b
51 and 2 we haveZ (b)(u,m1 ,m2)5Z (b)

„m12(u)…. Repeat-
ing the above argument we see that we have exactly the s
zeros, but in this caseX[m12(u). Solving this foru j at fixed
real m1 ,m2.0 one finds that

aj5p and bj5arccoshS m1
21m2

22Xj
2

2m1m2
D . ~4.3!

We observe thatu j moves into the vicinity ofp as m1 ,m2
→` provided that the bound~3.9! holds, in complete accor
dance with what we found in the previous section.

In general, the partition function of QCD is not known
a closed analytic form and consequently the zeros are
well understood. If the partition function depends only
Meiu/Nf , then the zeros in the complexm-plane and the com
plex u-plane are related, e.g. the zeros in the comp
m-plane are simply rotated around the origin when vary
u. However, from this relation alone the accumulation
zeros in the complexu-plane in the vicinity ofu5p and
thus Dashen’s phenomenon do not follow.

V. SUMMARY

We have shown that Dashen’s phenomenon is generic
all three SxSB patterns,b51, 2 and 4. By summing the
finite volume gauge theory partition functions over all top
logical charges in the Leutwyler-Smilga regime, we ha
been able to directly calculate theu dependence of the cor
responding chiral condensate and topological density.
two flavors, these quantities were shown to be proportio
thus establishing a link between the chiral and topolog
properties of the underlying theory. Atu5p the chiral con-
densate vanishes for degenerate and nondegenerate
masses and for all threeb. The topological density has
discontinuity for all three values ofb signaling the first-order
phase transition predicted by Dashen. We have illumina
the mechanism by which the phase transition occurs thro
an inspection of the zeros of the different partition functio
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APPENDIX: GENERAL Nf

We will outline here how to derive the full partition func
tion with Nf.2 flavors forb51. The caseb54 works out
along the same lines and expressions forS and s follow
subsequently. For fixed topological charge, we have@14#

Z n
(1)~$m%!5cNf

(1)
)
f 51

Nf

m f
n

D~$m2%! H Pf~ f ! Nf even,

PfS f r

2r T 0D Nf odd,

f i j 5E
0

1

dtt2
I n21~ tm i !

m i
n21

I n~ tm j !

m j
n

2~ i↔ j !,

r i5
I n~m i !

m i
n

. ~A1!

cNf

(1) is a n-independent constant andD is the Vandermonde

determinant. In Ref.@12# sums over topological charge of th
following type have been evaluated explicitly:

B5 (
n52`

`

einuI n1 l 1
~m1!•••I n1 l Nf

~mNf
!. ~A2!

We start with evenNf . When rewriting Pf5Adet above we
can pull the prefactor) f 51

Nf m f
n inside the square root an

multiply eachi th row of detf i j with m i
n and eachj th column

with m j
n . We obtain that the factors ofmn in f i j disappear.

We can thus apply Eq.~A2! after writing out the Pfaffian
since the onlyn-dependence left is in the Bessel function
The result is a Pfaffian over different integrals of a sing
Bessel function. ForNf odd, we only multiply the firstNf
rows and columns of the matrix of sizeNf11 inside the
Pfaffian. In this way, the matrix elementsr i in the last col-
umn and row get multiplied only once withm i

n , which is
precisely what we need to cancelm i

2n . We then proceed as
for evenNf .

For b54 and N̄f52 we give the full partition function
following from Eq. ~2.8! for the sake of completeness:

Z (4)~u,m1 ,m2!5E
0

2p db

4pE0

pda

2
sin~a!$cosh@mmh~u!~eiaT

1e2 iaT21!/2#1@m~b!↔h~b!#%,

T5Feium~b!1h~b!

m~b!1eiuh~b!
G 1/2

, ~A3!
5-4
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wheremmh(u) is the reduced mass ofm(b) andh(b) as in
the definition~2.5! and we have first performed the sum ov
topology.

At u5p the partition function~A3! simplifies drastically
and we obtain

Z (4)~p,m1 ,m2!5E
0

2p db

4pE0

p

dasin~a!cosh@sin~a!

3~m12m2!cos~2b!#

5
sinh~m12m2!

m12m2
. ~A4!

We can now easily see that the full chiral condens
S (4)(u)5 1

2 @S1
(4)(u)1S2

(4)(u)# vanishes as it is obtaine
from (]m1

1]m2
)logZ (4)(p,m1 ,m2). This is obviously zero

for Z (4)(p,m1 ,m2) being a function of (m12m2) only at
u5p. The vanishing ofs (4)(u) can be seen from a simila
calculation leading to

05
]

]u
Z (4)~u,m1 ,m2!U

u5p

5E
0

2p db

4pE0

p

dasin~a!cos~a!~m11m2!

3sinh@sin~a!~m12m2!cos~2b!#, ~A5!

which vanishes because of the first integral. Foru50 we get
from Eq. ~A3!
08501
e

Z (4)~0,m1 ,m2!5
sinh~m11m2!

m11m2
. ~A6!

Along with Eq. ~A4! and by analogy withb51 andb52
this suggests thatZ (4)(u,m1 ,m2)5sinh„m12(u)…/m12(u) al-
though we cannot prove this. If this is so then the analysis
Secs. III and IV forb51 and b52 with non-degenerate
masses applies equally well tob54.

Finally, we display theb54 degenerate four-flavor cas
as an explicit example forN̄f.2:

Z (4)~u,$m%!5
3

m2 H 2

I 1S 4m cos
u

4D
4m cos

u

4

2

I 1S 4m sin
u

4D
4m sin

u

4

1E
0

1dt

2 F I 0S 2mA11t212t cos
u

2D

1S u

2
→ u

2
1p D GJ . ~A7!

It can be most easily obtained using thexRMT correspon-
dence@20#.
ett.
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