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Dashen’s phenomenon in gauge theories with spontaneously broken chiral symmetries
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We examine Dashen’s phenomenon in the Leutwyler-Smilga regime of QCD with any number of colors and
quarks in either the fundamental or adjoint representations of the gauge group. In this limit, the theories only
depend on simple combinations of quark masses, the volume, chiral condensate and vacuum angle. Based upon
this observation, we derive simple expressions for the chiral condensate and the topological density and show
that they are in fact related. By examining the zeros of the various partition functions, we elucidate the
mechanism leading to Dashen’s phenomena in QCD.
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. INTRODUCTION =mVs, whereV is the volume and is the chiral conden-
sate in the chiral limit which is assumed to be nonvanishing.
The vacuum anglef in QCD is experimentally con- For one and two degenerate quark flavors Leutwyler and
strained to be zero with a deviation of less than 101].  sSmilga and Verbaarsché?,7] found by explicit calculation
This amounts to a theoretical fine-tuning problem which isthat the exact partition function only depends on the combi-
conceptually similar to the vanishing of the cosmologicalnation“Cos(g/z)_
constant. Without an understanding of the physics at nonzero gne striking aspect of QCD at nonzero valuesid$ the
values of6, one will probably not be able to explain Wity  spontaneous breaking GfP in a first-order phase transition
is essentially zero. In this work, we approach the propertiegt 9= known as Dashen’s phenomenis]. In [5,6], this
of the § vacua from the vantage point of the hadronic phas&yas shown by examining thé-dependence of the energy
where the physics is determined by the spontaneous breakiRgnsity of the largeN,, chiral Lagrangian and was reconsid-
of chiral symmetry (SES). We consider QCD in the ered more recently if9—11] for different numbers of flavors
Leutwyler-Smilga regimg2] for which the volumeL* of  and mass splittings. Going to the Leutwyler-Smilga regime,

Euclidean space-time is taken such that it was shown in Ref[12] for =2 that Dashen’s phenom-
1 enon is indeed realized by directly calculating the disconti-
<lL<—. (1.1  huity in the topological density a#=. In this work, we
Aqcp m; extend[12] to =1 and 4 by calculating the corresponding

- . . ._partition function, chiral condensate and topological density.

The lower limit ensures that chiral perturbation theory is\ne demonstrate that Dashen’s phenomenon is generic to
valid and that the Goldstone modes associated witly SB QCD regardless of the pattern of $8. By studying the
are the dominant degrees of freedom. The upper bound o5 of the partition functions, we show that this is a direct
sures that the Compton wavelength of the Goldstone modes,nsequence of the very restricted dependence of the parti-
is much greater than the size of the box and thus these modgg, fnction on quark masses, the chiral condensateand
can be treated as constdi@]. This has the advantage of s restriction also establishes a direct relationship between
allowing fo_r exact, analytic calculations. the chiral condensate and the topological density as well as

The various patterns of the 3 depend on both the peyeen their susceptibilities. Thé=2 theories are suffi-
number of colorsN., and the representation of thg mat-  ¢iently rich to illustrate the above points and as such we

ter fields. They are simply codified by the Dyson indéx  t5cus mainly on these cases. For a discussioNof2, see
which is assigned according to the antiunitary symmetry of,o Appendix.

the Euclidean Dirac operat¢d]. For N.=3 and matter in

the fundamental representatio@=£€2), the pattern of Fhe II. PARTITION EUNCTIONS
SBxS is given bySU(N¢) X SU(N¢)—SU(N¢). Matter in _
the fundamental representation with=2 (3=1) has the In order to study Dashen’s phenomenon for generic pat-

patternSU(2N;)— Sp(2N;). Finally, for anyN, with matter ~ terns of the SRS, we first calculate the partition functions
in the adjoint representatiorB&4), the symmetry breaking for =1 and 4 including the contributions from all topologi-
pattern is given by U(N)— SO(Ny). cal sectors. The full partition function as a functionfoiay

At the level of the chiral QCD Lagrangian, the theory be decomposed into a sum over partition functions each of
depends only on the combinatidvie'”Nt where M is the ~ which is restricted to a fixed topological charge
qguark mass matriks,6]. In the Leutwyler-Smilga regimg2], o
this dependence is constrained even further. The quark _ iv0 = (B)
massesrr)'n,- occur only in the rescaled combinatio,njq Z(ﬁ)(e’{m})_v;m ez (). 2.1
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Expressions at fixed were derived in Ref[13] for B=2  terms were considered. In the Leutwyler-Smilga scaling re-
and for degenerate masses witk-1 and 4 in Ref[7]. Re-  gime, however, these terms are suppressed.

cently, the authors of Ref§14,15 were able to calculate As discussed in Ref2], the allowed topological charges
expressions for non-degenerate masses using chiral randdmadjoint QCD,B3=4, are rescaled by a factor df;, sov

mac';rix theory h(XRMT)- -ﬁhe equJivaIence b(;twegjaRMT b=7/NC where v is an integer. The partition function thus
and QCD in the Leutwyler-Smilga regime has been esta onlv depends on the combinatitvhe!” NNo The number of
lished in a number of worké&see Ref[16] for a review of the y P . o — -

literature. Using the results df14,15, we now calculate the Majorana ferT'O”S is given b and we restrict the present
full partition functions including the contributions from all discussion tdN¢=2. The partition function with fixed topo-

topological sectors. Our normalization will be such that atlogical charge can be calculated as follo\s:

vanishing masse€ (¥(6,{x=0})=1, which is only pos- .
sible after summing over topological chald&’]. The results @)y )= fz”@ 1
for Ny=1 are known and are independent®f2,7]: v B K2 0o 4mn==s 2n+1
ZP(0,pu)=er . (2.2 X{I s n(u (D)= n(7(b))
For B=4, one must replacé— 6/N.. +1, (b)) n(p(b))y, (2.8
We begin with the first non-trivial case of two non-
degenerate flavors. The same technique appliebl{to 2 with
where we refer to the Appendix. Thg=1 partition function B 2 L0
with fixed topological charge iE14] p(b) = pq cOgb)"+ pp sin(b)”,
1 7(b)=pp cogb)?+ py sin(b)?. (2.9
Z(Vl)(m,ﬂz)=8j dt {1, (tpg) ol -1 (tps)
0 Although the full partition function can be obtained from Eg.
1 () el g (tieg)} 2.3 (2.9 [see Eq(A3)], we only treat the degenerate mass case
" ! for simplicity in what follows. The partition functiori2.8)
In order to sum over all topological charges we use the identhen drastically simplifies to
tity
1
- 20, p) = f dtly(2tu). (2.10
0

> e () s m( i)

y=—m

This can be seen by applying,« to Eq.(2.8) at equal mass

w and then integrating back. In order to compute the sum-
I m(re12 ), (2.4 mation over topological charge_s it is useful to split the

generating function fot,(x) into odd and even parts:

n—m

H10)
pie” '+ u,

:efin(ﬂ

where a reduced mass is defined as

©

, (2.11

X
2v — - -1
praal )= i+ s+ 2 poC0SH. (2.9 V;wt IZV(X)_COS%z(t—H )
Performing the summation over and calculating the inte-

" , and similarly for the odd contribution. With the help of this
gral overt, the two flavor partition function foB=1 be-

identity and after integrating ovéy we obtain

comes
12(p12(60)) inh 2 ’
M1 Sin M COSt
ZO(G, pq, ) =82 2.6 2
(Ot =8 02 20 EO 0 pu)=———=, (212
. o 2/ COS3
Let us stress the striking similarity 6=2 where[17,17] 2
@) I1(12(0)) which was first derived in Ref.2]. At 6=, the partition
230, p1,12) =2 w0 27 function is again equal to unity and thus is independent of

quark masses and volume. This is again an indication that
At 0=, note thatu,,(6=m)=|u;— u,|. To take the limit  there are dominant terms at next-to-leading order in chiral

of degenerate quark masses,— u,= i, we simply replace  perturbation theory. FoN;>2 we refer to the Appendix.

1 0)=2u|cos@?2)| in Eqg. (2.6). This agrees with the re-

sults from Ref[7]. At 6=, we find ZM(0= 7, u,u)=1, Il TOPOLOGICAL DENSITY AND

i.e. the partition function is independent of quark masses and ' CHIRAL CONDENSATE

volume just like the partition function fo8=2 [10,12. In

Ref.[10], this was shown to be due to a cancelation of terms The chiral condensate and the topological density are de-
at lowest order in chiral perturbation theory and higher-ordefined as
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“ 9 For all three values of3 the quantities> ®(6,u,u) and
3P (91{Mi})52a—ﬂ_|09 ZP0,{w}), 3.)  ¢A(6,u,p) vanish atd= 7. Furthermoreg#) (6, u, ) ex-
! hibits a discontinuity~ sgncos@/2)) at == for large

14 scaling variable, u>1. This  follows  from
U(ﬁ)(e,{m})z_v&_0|ogz(ﬁ)(0,{ﬂi})_ limy_ .1, 1(X)/1,(X)= sgnX) for B=1,2 and similarly

from Eq.(3.8) for =4 (for =2 this was shown already in
[12]). Thus Dashen’s phenomenon is generic for ally8B
patterns withN;=2.

The result for non-degenerate flavors follows in a similar
fashion withX= w45(6). For =1 and 2, the chiral conden-
sate obtained from Eq$2.6) and(2.7) respectively is easily

(3.2

In the case where is restricted to be a function of only
some combination ofd and {m;}, e.g. X(6,u1,12)
= u12(6), we readily find that

2(5)(0{ 1 9. X seen to vanish a#= 7. The caseB=4 is slightly more in-
S AR iy (3.3  volved and we refer to the Appendpsee Eqgs.(A4) and
P ui}) X (A5)]. To see the phase transition if?) (0, uq,u,) for B

=1,2 one must take the limjk,,ux,— such that
While this relation is a simple consequence of the observa-

tion thatZ= Z(X), it establishes a deep relationship between i (1= p2)? 0 3.9
the chiral and the topological properties of the vacuum. The |mﬂm 1o Y 3.9
chiral and the topological susceptibility are also related al- ke

though they are no longer proportional. . This leads tquq(6) — 21,/ cos@2)| and thus Dashen’s
TheN;=1 case is special since the entire chiral symmetryshenomenon occurs in the same way as for degenerate

group is explicitly broken by the axial anomaly and there isy35ses. Fog=2 the bound3.9) is consistent with the one

no spontaneous breaking of any symmetry. As a result, thergyyng in[5]. We obtain a discontinuity iw® at 9= and

are no Goldstone modes. The topological density is the vanishing of the chiral condensate for both degenerate
and non-degenerate masses. Hence, these properties are not
aB(o,u)= X gin 0, (3.4  Particular to the degenerate mass case. We expect that Dash-
\4 en’s phenomenon also happensifge>2 for all three values

of B. It has been shown ifiL2] to occur forN;=3 degener-

for =1, 2 and 4(with 6— 6/N) and there is no disconti- ate flavors and fog=4 with four flavors it follows from Eq.
nuity at 6=a. This is another indication of the interplay (a7).

between the SBS and the topological properties of the
theory. _ _ IV, ZEROS OF THE PARTITION FUNCTIONS
Turning to the more interesting case of two degenerate
flavors we only have to calculate partial derivatives of the We now consider the zeros of the various partition func-
variableX=2u|cos@2)| and of the corresponding partition tions in the Leutwyler-Smilga regimeUsing the theorems
function. For=1 we obtain of Yang and Led19] we expose the mechanism leading to
Dashen’s phenomenon in the Leutwyler-Smilga regime for
(1) ~ X 13(X) all 8. Yang and Lee proved that the analytic behavior of the
> (0”“"“)_2; 1,(X)’ (3.9 partition function, Z, is determined completely by its zeros
when the real parameters of the theory are continued into the
and thus complex plane. The non-analytic behavior®fs a function
of the real-parameters occurs where the zeros in the complex
o 1 u?sing 15(X) plane pinch the real axis. The non-analyticity of the partition
O =y X (3.6 function is tantamount to the existence of a phase transition.
z The SByS in QCD occurs when the zeros in complex quark
The similarity with 3= 2 in [12] is again striking. To recover Mass plane pinch the reataxis atw=0. Dashen’s phenom-

their result we merely have to replace the logarithmic deriva€non manifests itself as the zeros in the compfeplane
tive dylogZ(X) leading to 1,(X)/1,(X) instead of pinch the realp-axis. We note that since there is no sponta-

15(X)/15(X). neous breaking of chiral symmetry fot;=1, there is no
For =4 we obtain, from Eq(2.12, solution to the equatio®?#N=1(9,u)=0 as is easily veri-
fied using Eq.(2.2.
X coshX — sinhX For illustrative purposes, we next takeo degenerate
2(4)(9.M,M)=2W. (3.7 flavors and any value of B8 and so Z¥(6,u,u)
K = ZB)(2u cos@l2)). Consider the analytic continuation of
0 X=2u cos@/2) into the complex plane. For all thrg#s the
1 ’“S'nf X coshX—sinhX
o0, u,p)=5 : .
VvV X sinhX lin Ref. [18], an analysis of the zeros was performed for the

(3.8 XRMT partition function of3=2 at fixed topology.
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X]
M= 7’ (4.1 APPENDIX: GENERAL Nj
2 COSE We will outline here how to derive the full partition func-

tion with N;>2 flavors forB=1. The casegg=4 works out
and the zerosfj=a;+ib;, in the complex¢-plane given a along the same lines and expressions Yomand o follow
real u, subsequently. For fixed topological charge, we high4

B 3 [TX N¢
aj=m and bj—Zarcsmiéﬂ . (4.2 wt (PR N; even,
1

f=
(1) O E— foor

From this we observe thatj—« for §— m, indicating the Z(mh) CNfA({lf}) Pf( T ) N; odd,
independence of the partition function @nat 6= 7. Fur- -r 0

thermore we see thatj=7+ibj— m for u—, indicating

Dashen’s phenomenon. We stress that this is independent of - 1 l_qa(tpy) 1 (tui)

: fil=| dtt? L (o))
B. If we considertwo non-degenerate flavgrshen for 8 0 v 1 v D,
=1 and 2 we have (0, 1, u,) = ZPB) (uy1,(6)). Repeat- Hi i
ing the above argument we see that we have exactly the same
zeros, but in this casé= u,(6). Solving this ford; at fixed i (i) (AL)
real u,,u,>0 one finds that wt ‘

pitu— X (U is a v-independ mdis the Vandermond
aj=m and bj=arccos 2 (43  Cn, is av-independent constant andis the Vandermonde

determinant. In Ref.12] sums over topological charge of the

We observe that; moves into the vicinity ofr as w1, u; following type have been evaluated explicitly:

—oo provided that the boun¢B.9) holds, in complete accor-
dance with what we found in the previous section.

In general, the partition function of QCD is not known in
a closed analytic form and consequently the zeros are less
Wellﬂltf\lnderstood. If the partition function depends only onwe start with everN;. When rewriting P£ \/det above we
Me'”"f, then the zeros in the complgxplane and the com- .5, NflM inside the square root and

lex 6-pl lated h in th | pull the prefactoil;
plex ¢-plane are related, e.g. the zeros in the complex o eachith row of detf! with ” and eactjth column

u-plane are simply rotated around the origin when varying . 4 . vl

0. However, from this relation alone the accumulation O%N'th pj - We obtain that the factors_qi in £ dlsappe_ar.

zeros in the complex-plane in the vicinity of =7 and We can thus apply EqA2) after.wr'mng out the Pfafﬂgn

thus Dashen’s phenomenon do not follow. since the o_nlyv—depe_ndence Ief_t is in the Bessel functl_ons.
The result is a Pfaffian over different integrals of a single

Bessel function. FoN; odd, we only multiply the firsiN;

rows and columns of the matrix of siZé;+ 1 inside the

We have shown that Dashen’s phenomenon is generic fd?fafflan In this way, the matrix elementSin the last col-
all three §SB patterns,3=1, 2 and 4. By summing the umn and row get multiplied only once witp;", which is
finite volume gauge theory partition functions over all topo-precisely what we need to cange/ ”. We then proceed as
logical charges in the Leutwyler-Smilga regime, we havefor evenN;.
been able to directly calculate tiedependence of the cor- For B=4 andﬁfzz we give the full partition function
responding chiral condensate and topological density. Fofollowing from Eq. (2.8) for the sake of completeness:
two flavors, these quantities were shown to be proportional,
thus establishing a link between the chiral and topological 2rdb (=da _
properties of the underlying theory. A= 7 the chiral con- 3(4)(9,M1aM2):j 4—J - sin(a){cosh ,,,(0) (T
densate vanishes for degenerate and nondegenerate quark o "mJo
masses and for all thre8. The topological density has a +e T H/2]1+ [ w(b)— n(b) ]},
discontinuity for all three values @ signaling the first-order
phase transition predicted by Dashen. We have illuminated
the mechanism by which the phase transition occurs through T=
an inspection of the zeros of the different partition functions.

B= 2 €, (ma) L (an). (A2)

V. SUMMARY

12

e'’u(b)+ n(b) | A3)

p(b)+¢€'5(b)
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whereu,,(6) is the reduced mass @f(b) and »(b) as in

the definition(2.5) and we have first performed the sum over

topology.

At 6= 7 the partition function/A3) simplifies drastically

and we obtain

2rndb (7
Z(4)(7T,/.L1,,U,2)=fo Efo dasin(a)cosHsin(a)

X (1= p2)COK2b)]

_ sinh(uy— )
Mi— My

(Ad)

We can now easily see that the full chiral condensate
SA9)=21[2(0)+35(6)] vanishes as it is obtained
from (4, + 4, )10g Z (1, 15). This is obviously zero

for Z*)(a, w1, 1,) being a function of fo;— u,) only at

6= . The vanishing ofr'(6) can be seen from a similar

calculation leading to

Jd
0= ﬁZ(A)(G:MLMz)

o=

—f”ﬁf”d i )yt
ol =1 asin(a)coga)( w1+ u)

Xsintsin(a)(u1— up)cog2b)], (A5)

which vanishes because of the first integral. Fer0 we get
from Eq. (A3)

PHYSICAL REVIEW B5 085015

sinh(py+ u)

A6
M1t o (A6)

Z&(0,q,p0)=

Along with Eq. (A4) and by analogy with3=1 and 8=2
this suggests thaE (6, w1, mo) =Ssinh(w1(6)) w1(6) al-
though we cannot prove this. If this is so then the analysis of
Secs. lll and IV forg=1 and =2 with non-degenerate
masses applies equally well g=4.

Finally, we display theB=4 degenerate four-flavor case

as an explicit example fox>2:

I, 4 o I, 4 in”
1 MCOSZ 1 /-LS""Z

20 {uh=—1 - 7

4 .
4du cosZ 4du st

fldt| 2u\/1+1t242 o
+0?0,u +t+tco%

(A7)

It can be most easily obtained using thMT correspon-
dence[20].

[1] K.F. Smithet al, Phys. Lett. B234, 191(1990; I.S. Altarev
et al, ibid. 276, 242(1992.

[2] H. Leutwyler and A. Smilga, Phys. Rev. 46, 5607 (1992.

[3] J. Gasser and H. Leutwyler, Phys. Lett1B8 477 (1987.

[4] J. Verbaarschot, Phys. Rev. LetR, 2531(1994).

[5] P. Di Vecchia and G. Veneziano, Nucl. PhyB171, 253
(1980.

[6] E. Witten, Ann. Phys(N.Y.) 128 363(1980.

[7] A. Smilga and J. Verbaarschot, Phys. RevsD) 829 (1995.

[8] R. Dashen, Phys. Rev. B, 1879(1971).

[9] M. Creutz, Phys. Rev. 32, 2951(1995.

[10] A.V. Smilga, Phys. Rev. 9, 114021(1999.

[11] M.H. Tytgat, Phys. Rev. 151, 114009(2000).

[12] J. Lenaghan and T. Wilke, Nucl. PhyB624, 253 (2002.

[13] R. Brower, P. Rossi and C. Tan, Nucl. Phd.90, 699(1981);

A.D. Jackson, M.K. Sener, and J.J.M. Verbaarschot, Phys. Lett.
B 387, 355(1996; A.B. Balantekin, Phys. Rev. B2, 085017
(2000.

[14] T. Nagao and S.M. Nishigaki, Phys. Rev6R, 065006(2000.

[15] G. Akemann and E. Kanzieper, Phys. Rev. L&§ 1174
(2000.

[16] J.J.M. Verbaarschot and T. Wettig, Annu. Rev. Nucl. Part. Sci.
50, 343(2000.

[17] P.H. Damgaard, Nucl. Phy8556, 327 (1999.

[18] A.D. Jackson, C.B. Lang, M. Oswald, and K. Spilittorff, Nucl.
Phys.B616, 233 (2001).

[19] C.N. Yang and T.D. Lee, Phys. Re&7, 404 (1952; 87, 410
(1952.

[20] G. Akemann and P.H. Damgaard, Nucl. Phg576 597
(2000.

085015-5



