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Kink variety in systems of two coupled scalar fields in two space-time dimensions
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In this paper we describe the moduli space of kinks in a class of systems of two coupled real scalar fields in
1+1 Minkowskian space-time. The main feature of the class is the spontaneous breaking of a discrete sym-
metry of (rea) Ginzburg-Landau type that guarantees the existence of kink topological defects.
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[. INTRODUCTION be given by certain real algebraic curves in the complex
plane.

Research into the mathematical properties and physical Another favorable situation occurs when the field-
meaning of topological defects in relativistic field theory hastheoretical model is the bosonic sector of a supersymmetric
increased sharply since the mid 1970s. There has also beersgstem. This is the case of the Wess-Zumino system and also
parallel development ir{nonrelativisti¢ condensed matter happens in aiN=2 model proposed if21], which has been
physics. Extended states and phase transitions—e.g., typediscussed and applied to describe several interesting physical
superconductivity—are related to the appearance of such egontexts in a series of papef46—25. Throughout their
otic phenomena. Domain wall defects in the real world carwork, Bazeia and co-workers identify only two kinds of
be thought of as solitary waves propagating in akink: a topological one, with only the first component non-
(1+1)-dimensional universe that self-repeats in the remainDull, usually termed the TK1 kink, and a second topological

ing two dimensions. Thus, investigations on the kink natureink that has both components non-null and is called the
and behavior in\(¢%), or sine-Gordon models inform us TK2 kink. In contrast with the MSTB model, where the TK1

about the properties of the simplest type of topological de-kinks are unstabl§l0,11], and decay to the TK2 kinksL.2],

fect. Realistic theories, however, involve more than one scal the system of Bazeia and co-workers there is an interesting

lar field and the study of (% 1)-dimensionaN-scalar fields phenomenon of kink degeneracy: the TK1 and TK2 kinks

dels in thi t is not only worthwhile but almosthave the same classical energy.
MOdEIS In this Tespect Is nly w The main result to be shown in this paper is that the kink
mandatory. Examples of theories witi>1, where one

. ; ) . ; : degeneracy is a continuous one rather than the discrete de-
might be interested in looking at topological defects, include

' ‘ ! tgeneracy implicit in[16—25. We shall find a continuous
the linear sigma model, the Ginzburg-Landau theory oftamily of kink solutions to the classical field equations, all of

phase transitions, the supersymmetric Wess-Zumino modelhem degenerate in energy with the TK1 and TK2 kinks. The
supersymmetri¢cSUSY) QCD, etc. existence of this variety of kinks is possible because of the
Kinks are time-independent finite-energy solutions of thespontaneous breaking of a discrete internal symmetry group.
field equations that have been thoroughly investigated in th&he quotient of the kink variety by the symmetry group is
N=1 casesee, e.g.[1]). Much less is known about the kink the kink moduli space, a structure parallel to the moduli
variety in systems with two or more scalar fieldise reason spaces of gauge theoretical topological defects such as vor-
for this is also clearly explained ifl]). To the best of our tices[26] or magnetic monopoleL7].
knowledge, however, there are these exceptions. Identification of the kink variety is achieved through the
A deformation of the lineaD(2)-sigma model, known in  solution of first-order, rather than second-order, field equa-
the literature as the Montonen-Sarker-Trullinger-Bishoptions. In (1+ 1)-dimensional scalar field theories, first-order
(MSTB) model, exhibits a rich variety of kinks. The charac- equations are available if, modulo a global sign, a superpo-
teristics of any of these kink defects as well as the structuréential is found. Note that the search for a superpotential is
of the variety as a whole have been elucidated in a londighly nontrivial if N=2. Bazeia and co-workers, however,
series of papergsee Refs[2-12)). The moduli space of proposed a continuously differentiable superpotential in their
kinks in an analogous deformation of the lin€2¢3)-sigma  model, which in turn guarantees the stability of any finite-
model has also been fully described[i8]. energy solution of the associated first-order system of equa-
The search for kinks is tantamount to the solving of ations through the classical BogomglrPrasad-Sommerfield
mechanical problem, which is seldom solvableNi&2. In argumen{28].
[14] we described the kinks of twdl=2 field-theoretical The existence of the superpotential tells us that we can
models associated with completely integrable mechanicalnderstand the system as the bosonic sector of/arl (1
systems; i.e., the same idea that works in the MSTB model-1)-dimensional supersymmetric field theory, in which the
and itsN=3 generalization. kinks play a significant role as BogomgirPrasad-
In [15], the kinks of the Wess-Zumino model are shown toSommerfield(BPS states. We shall analyze the supersym-
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metric extension of this model in a future work, but we ob- 1/dyx;\? 1(dx,
( ) ( tUxax2)| 9

serve that the dimension of the kink moduli space in this g[)(]:f d){i d_y +§ d_y
system is such that the index introduced[R28] is zero,

showing that the soliton supermultiplets are long or redchhere X(¥) = (x1(Y), x2(y)) € C={Maps® RZ)/EIX(y)]

Ibl‘?A.II the foregoing statements are valid for any value of the<oo}' Introducing nondimensional fields, variables, and pa-
single classically relevant coupling constant in the model. | ametersy,=2ady, y=(2y2/aN)x, ando=pu/\, we ob-

this paper we shall show another new result: for certain valt@in expressions that are simpler to hand&.xi,x-]
ues of the coupling constant there exists a second superpc_r—\/i?‘ N ¢1.¢,] and the nondimensional energy
tential. Accordingly, a second system of first-order equationdunctional—which depends on the single classically relevant
is available that also admits kink solutions, although the oldcoUPling constant—is
and new solitons belong to different topological sectors of 1
the configuration space. For the critical values where the 5[(;/,]:] dx| =
second superpotential is found, there are two nonequivalent 2
supersymmetric extensions of the same bosonic sector.

_For most of _the critical_values_ the secon_d_superpotential +(4¢,§+ 20¢§_1)2+ 1602¢§¢§}. (4)
fails to be continuously differentiable at a finite number of
points in theR? internal space. In these cases, the secon
Bogomolryi bound is not a topological quantity; it also de-
pends on the values of the superpotential at the points where )
it is not differentiable. Kink orbits that cross those points are !

dey |2 1<d¢2>2
W) 31 ax

Ci‘he Euler-Lagrange equations read

164, [4p3+20(1+ 0) 53— 1],

unstable and are solutions of the first-order equations only in dx?
one interval, not on the whole spatial line. Nevertheless,
these kinks are solutions of the second-order equations. d?¢, ’ )
A final comment: in concordance with the lifting of the a2 =8odol4(0+1)p1+20¢5—1]. ®)

kink translational degeneracy, we expect that the kink inter-

nal degeneracy will be removed in second order in the loopn addition to the spatial parity and translational symmetries,

expansion of the energy in the quantum theory. there is a global or internal symmetry in this model: the
The paper is organized as follows. In Secs. Il and Ill wereflection discrete group=7,xZ, generated by the trans-

introduce the Bazeia-Nascimento-Ribeiro-Toled®NRT)  formations ,:(¢b1,$,)—(— b1,b,) and my:(by,do)

model discussed if21] and identify a one-parametric family _, (4. — 4.) is also a symmetry subgroup of the system.

of kinks, which includes the TK1 and TK2 kinks, as BPS  \ne shall focus our attention on the>0 regime, where

solutions. In Secs. IV and V we investigate the existence of §he vacuum manifold is

second decomposition in the manner of Bogomol'nyi. We

find that this is possible for certain values of the coupling 1 1
constant, for which we discover a second kink family. M=1A1=|5.0[:A=| = 5.0];
1 1
Il. THE BNRT MODEL B,=|0, ) ‘B,=| 0, ) ] .
In the model introduced if21] by Bazeia, Nascimento, V2o V2o

Ribeiro, and Toledo, the scalar field is built from two com-
ponentsy(y*) = (x1(y*),x2(y*)) and the dynamics is gov-
erned by the action

The action ofG on M is summarized as followstr;(A;)
=A,, m,(B;)=B,. Therefore,M can be seen as the union
of two disjoint vacuum orbitsM=AUB, A={A;,A,}, B
o ={B1,B,}. The vacuum moduli spac&1=M/G is a set of
g[X]:f dzy{z 9, X Xa—U(xX1:X2) |, (1) two elements M=ALIB, where A=A/(Z,x{e}) and B
amp e e LAz =B/({e} X7Z,). TheG=7,X7, symmetry of the actiofl) is
spontaneously broken to tHe} X7, subgroup on the ele-
- 1 1 ments in theA orbit and to theZ,x{e} subgroup on the
Ulx1.x2) = 50 (xi—a)?+ Shu(xi—a2)x3 vacua of theB orbit ,
Because of the degeneracy and the discreteness of the
1 1 vacuum manifoldM, the configuration space is the union of
+ §M2X3+ §M2X§X§- (2) 16 topologically disconnected sectors. Keeping in mind the
symmetries of the model, we identify the nontrivial topologi-
cal sectors as thAA topological sectofformed by configu-
Here,\ and u are coupling constants with dimensions of rations ofC that join theA; andA, vacug; the BB topologi-
inverse length and? is a non-dimensional parameter. We cal sector(configurations that connect tfey andB, vacua;
use a natural system of unit,=c=1. The energy func- and the AB sector (formed by configurations joining one
tional is vacuum in theA orbit with another vacuum in thB orbit).
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We use the trial orbit methofdL] to show the previously lll. THE MODULI SPACE OF KINKS IN THE ~ AA
known kink solutions to Eqg5). TOPOLOGICAL SECTOR
In [16—25 the authors propose a superpotential for the
A. The TK1A* kink modeE: 3 PIop Perp
First, we try the curve
L L U(be.do) 1((9W)2+1<07W)2
1! 2 =5 S " - 1
YTK1AA= ¢2:0,_§$¢1$§ . 2 (9¢1 2 (9(;52
. e . . . 1 1 o
This condition is compatible with Eq$5) and we find W(d>)=4\/§<§¢i— 201t §¢1¢§)- 8
1 . . . _
'{KlAA(X): + “tanh 2y2(x+ a), '2|'K1AA(X):O Tht_a classical BPS states satisfy the system of first-order
2 equations
as the one-component topological kinksAr\. dp, IW
Ux " ag, " \24dir20¢i-1),
B. The TK2A kink !
Second, we try the elliptic orbit do, W
——=——=4\20¢,¢,, 9
1 1 1 dx dg¢,
N o #i=g == (©
YTK2AA ¢1 2(1_0_) 2 4’ 2\ 1= 2

which are easier to solve than EdS). The superpotential
W(¢1,¢,) is a smooth function of the field$, and ¢, at

in Egs. (5) and find in theAA topological sector the two- each point inR2. Therefore, according to the Bogomol'nyi

component topological kinks

arrangement
1
IKZAA(X)= *—tanh 2\/50'(X+ a), 2 ded oW 2 W de?
a0=[ o3, |G - +f&¢aﬁ,
AA 1—0o
-2|—K2 xX)== ¥SeCh 2\/§U(X+ a), (7) we have that
henceforth referred to as TK2 kinks. ¢1=T[¢]
Note that the orbit6) gives kink curves only in ther
e(0,1) range because =1 it becomes a hyperbola that = |W(h1(), b2(0)) = W(h1(—2), o =)

does not connect the vacua. Moreover, &g.describes four ) )
different kinks according to the choices of the signs and ondor all solutions of Eqs(9) and the kink energy depends only

can obtain one from another by using the spatial parity an@" the topological sector of the solution.
internal reflection symmetries. The kink solutions of Eqq9) are the flow lines of graw/

The existence of one-component topological kinks—that start and end at elements.bf. It happens thah, and
unnoticed in the literature about the model—in BB topo- A2 are, respectively, maxima and minimawfand that there

logical sectors is obvious. are flow lines of gradlV starting atA; and ending a#\, (or
vice versa. B; andB,, however, are saddle points \of (see

C. The TK1B® kink Fig. 1). Therefore, there are no flow lines of ghatbetween

) ) B, andB, (or vice versa Nevertheless, flow lines of gratl
Third, we try the orbit between one point in th& orbit and another point in thB

orbit (or vice versa are possible. The flow lines of gr&d
yrk88={ by =0,— i$¢2< L thus provide kinks in thé A and theAB sectors with ener-
" 20 2o giesEqxoan= 3a°\, Eqxons=3a’\.
To obtain the most general solution to the first-order sys-
in the second-order field equatiof. We immediately find tem (9), we first integrate the first-order ordinary differential
that the finite-energy solutions equation

" x)=0, dgy  4git2045-1 0
de, B dodip,

TK1%% ) = +Ltanh 2/a(x+a)
2 T 2o which admits the integrating factpp,| ~ 2" ¢, ! if o+ 1 and

o#0, thereby allowing us to find all the flow lines as the
are the kinks that connect tlig andB, vacua. family of curves
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FIG. 1. The U(¢) potential

_U0) (left) and the superpotentislV/( ¢)

(right).
5 ) C ” In the rangece (cS,»), Eq. (11) describes open curves
1t mfﬁf;ﬁ%hﬁﬂ 7 (1)  and no vacua are connected. These ivatlow lines are

infinite-energy solutions that do not belong to the configura-
tion spaceC (see Fig. 2
At the other point of the boundary g1, , c=c5, we find
the TK2*B kinks, which are the separatrices between
bounded and unbounded motion and the envelope of all kink
L(ZU)("“)’” orbits in FheAA_ topological sectofsee Fig. 2 _
1-o We briefly discuss ther=1 case. Ther=0 case is not
interesting because thg, dependence disappears in the po-
and the behavior of a particular curve in the Etl) family ~ tential: it is a “direct sum” of anN=1 ¢* model and an
is described in the following items. N=1 free model. Integration of E410) wheno=1 gives
Force (—,c5), formula(11) describes closed curves in
the internal spac&? that connect the vacu, andA, (see
Fig. 2. Thus, they provide a kink family in the topological Bi— ¢35
sectorAA. Henceforth, we refer to these kinks Bi§244(c).
A fixed value of ¢ determines four members in the kink
variety related among one another by spatial parity and inwhere the kink trajectories now appear in the (—,c]
ternal reflections. The kink moduli space is defined as theange, withcS= —1+1In 2. The description of the kink orbits
quotient of the kink variety by the action of the symmetry is analogous to the description for# 1 above.

parametrized by the real integration constaniThere is a
critical value

cS=

IS

C

5 +log] </>2|) = (12

I

group: A second step remains: the explicit dependence of the
kinks with respect to the space coordinate can be obtained if
Ve we insert Eq.(11) into the second equation in E(R),
K _ S
MK_JPXG ( ©,C )1
de
the real open half line parametrized byOne sees that h[¢.]= 1
é \/—+(0/20)|¢ 2 ~[ol2(1-0)] b5
TK2AA=TK2AA(0),TK1= lim TK2A(c), >Ny ? 2

C——®

= f 4\20dx. (13)
i.e., the TK2*A kink is the c=0 member of the family(if
o<1) and the TKEA kink is not strictly included although

it does appear at the boundary oy . The kink solutions are
q’, ‘Dz ¢2
4
FIG. 2. Flow lines given by
9, o) ) Eq. (11): for ce(—x,c5) (left),
c=c® (middle), and ce(cS )
(right).
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FIG. 3. Kink trajectorieqleft), a kink in theAA sector(middle), and a kink in theAB sector(right) in the caser=2.

1 ¢ o
ﬁwm:r\/+—+WH4ﬁwm%— [h 1 aV20%0 1%, g5(x,0)=h"1(4\20%).
4 20 2(1-0)
|
In general, we cannot obtain the explicit dependence fam ;KZAB: +1[1+tanh 2\/§(x+a)],

the kink solutions because either we cannot integrate Eq.

(13) or we cannot identify the inverse 6i(¢). For certain  ang yeplacings by —x, its antikinks. The separatrices are

values of the coupling constant, however, we can finish th%laced on the edges of the above mentioned sqdare

taskl. We next show the family of TKZ kinks for =2 and + 1+ ¢,. The kink trajectories in th&A topological sector

=2 _ ) form a dense family of curves enveloped by the kink orbits
o=2. The vacuum points are the vertices of a squarej, the AB sector. See Fig. 3.

M;=> ={A1=(%,0),A2=(—%,O),Bl=(9,%),82=(0,— %)}- A rotation of 45° inR?, ¢;=(1/\2)(¢1+ ¥,) and ¢,

The quadraturegl3) can be solved explicitly and™ [ ¢,]is = (1/y/2)(¢,— 1,), shows that for this value af the system

a known analytical function. Thus, is noncoupledl ,_ (1, ¢,) = 5 (32— £)%+ L (y5— 1)2.

o=3. The vacuum manifold is\t,_1,={A;=(3,0),A,

1 _sinh4\2(x+a) =(—3%,0),B,=(0,1),B,=(0,—1)}. By the same procedure

TKZAA(X): +=
! 2 cosh4/2(x+a)+b as above, we obtain
TkarA 1 b*-1 Tk2AA _+1 sinh 2y/2(x+a)
2= 1 0==3 ,
cosh4/2(x+a)+b cosh2/2(x+a)+b
are the kink form factors. The integration constanis re- 1
lated toc as b=—c/\/c?>—16, and forbe (1) we find Tk )=+ . (14
kinks in theAA topological sector. \/1+b‘1cosh 2\/§(x+a)
If c=cS=—4, b= we find the kinks in theAB sector
AB where we have introduced=1/\/1—4c. In the be (0,©)
17 (0 =+4[1-tanh 2/2(x+a)], range, the above solutions are kinks that connecthand

02

01 (x) N 92 (x)

Az

FIG. 4. Kink curves(left), a kink in theAA sector(middle), and a kink in theAB sector(right).
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A, vacua(see Fig. 4 If o=%, Eq. (11) becomesps+ 3¢5  that also solves the first equation in E@). The second
=3+cg3, which can be written as (£2¢,— ¢3)(1—2¢,  System of first-order equations

— ¢3)=0 for c=CS=1%. There are kinks on parabolic trajec-
tories joining points in thé\ and B vacuum orbits,

dey W 2¢(4¢5+3¢3—1)

dx Ty N

IKZAB )=*1[1-tanh/2(x+a)],

dg, W' \2¢,(2¢%+ 3-1)
EKZAB(X)=t\/%[1+tanh\/§(x+a)], W:iﬁqﬁz =% N (16)

and, replacingc+a by —x—a, we obtain their antikinks. rules the flows generated bygradW’ in the systemW’ is

not differentiable at the origin and the flows afgradw’
IV. THE SECOND SUPERPOTENTIAL: o=2

For 0=2, U($)=(4¢5+4p5—1)>+64¢5¢5 does not db, o242+ p2—1)
change if we exchange the field components. There is a sec- P > > 17
ond superpotential in the model far=2: W'(¢1,,) b1 ¢py(4¢7+3p5+1)

=W(¢2,¢1). A second arrangement in the manner of Bogo-
molnyi using W’ (¢, ,¢,) provides another system of first-
order differential equations:

are undefined aD=(0,0)e R2. Note thatB, andB, are both
minima of W', whereaA; andA, areW'’ saddle points. The
origin is the maximum ofW'’ and thus the flow lines of
gradW’ run from O to eitherB; or B,. To obtain a kink
dep, W' orbit, we must glue aD a y_ flow line of gradw'’ smoothly
ax EZB\/E%%, with a y, flow-line of —gradW’. Because the flows are
undefined atO, we expect that an infinite number of lines
will meet at the origin.

dé, AWM The Bogomolyi splitting must take this into account and
ax 9d, =\2(4¢+445-1). the energy of the kink solutions of Eq4.6),
The flow lines of grad’ connectB; and B,, which are, 12
) . & lldg oW
respectively, the maximum and the minimum\vigf, whereas gol= f dx
A, andA, areW’ saddle points. We thus obtain a new fam- dx g
2

of ¢, and ¢, interchanged: ib e (1,),

ily of topological kinks, now in theB B sector, with the roles do &W’
‘ - FT(y ) +T(y-),

TKZBB() +1 b*-1
2 cosh4/2(x+a)+b’

T=T(y)+T(y-)

: =|W'(B1)—W'(O)[+|W'(By) —W'(O)|.
1 sinh 4\/—(x+ a)

"2 cosh4/2(x+a)+b

Tk288B
2 ()=

& d1roee]=T(v,)+T(y-) is not topological; it depends
on the value of the superpotential at the origin, a sign of
instability [10,11). The kink energy sum rules ar€ry,es
=2 Eqgona=4 Eqpne= a3\ and the TKZE kinks decay to
two TK2”B plus one TKZ2*A kinks.
t Using parabolic variables, we have shown that the inte-
gration of Eq.(16) reduces to quadratures in Rgf4]. The
translation of our results to Cartesian coordinates is as fol-
lows.

The kink orbits that solve Eq17) satisfy the equation

are the two-component topological kinks in tB8 sector. If
c——x(b—1) we find the TKEB kink, and if c=4(b
—0) the separatrix kinks in th&B sector are reached at the
boundary of the component of the moduli space of kinks tha
belong to theBB sector. The kink energy sum rules are
Etkoaa= EqxpB8=2E1¢o88=3a°\.

V. THE MODULI SPACE OF NON-BPS KINKS IN THE BB
TOPOLOGICAL SECTOR: o=1/2

166" pT( 1+ ¢3) +(1-e"7)?¢5(2¢h1 — p3+1)
X(2¢1+ ¢5-1)=0 (18

and are plotted in Fig. 5. Herelis a real integration constant.
Analytically, the variety of TK2B(c) kinks is given by

If o=3, there is also a second superpotential

2
W' (g, b5) = g¢¢%+¢%<4¢i+¢5—3> (15

085012-6
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o wiwl FIG. 5. TK2%8(c) Kink family
As 2 (left) and the superpotentialV’
(right).
kBB sinh 2y2c sinh 2y2(x+a)
1 (X)= , (19
cosi2/2(x+a)+ 2 cosh 2/2c cosh 2/2(x+a) + 1
B —sinh2y2(x+a)
2 (%) (20

In addition to the soliton center= —a, the kink family is
parametrized by.

Because the spatial translatidn, :x—x+a leads from
one solution to another and

(127 (x;0), 327 (x;0)) = (61K "(x; — ),

TK2%%(x: — ),

the moduli space of TK2® kinks—the quotient of thé19),
(20) kink variety by the action off, and 7;—is the open
half line ce (0,). If, moreover, we take quotient blp:x
+a— —Xx—a, the antikinks are also included in the moduli
space.

The asymptotic behavior

lim d)IKZBB(x;c):O, lim ¢;KZBB(X;C)=11

X— *x» X— + oo

\/COSHZ\/E(H a)+2 cosh 2/2c cosh 2/2(x+a) + 1.

fits in with the boundary behavior, guaranteeing finite energy
to the TK2B(c) kinks. They are not stable because all of
them cross the origin:

2¥(—a;0)=0, ¢3**°(~a;c)=0.

Thus, only ifxe (—o,—a) are Egs.(19), (20) solutions of
the first-order equation&l 6) with the + sign, whereas they
solve Eq.(16) with the — sign in thexe (—a,%) range, or
vice versa. It can easily be proved, however, that these solu-
tions satisfy the second-order differential equati@)s

Things are different at the boundary of the moduli space,
the union of thec=0 andc=« points. Looking at the for-
mula (18) we find the TKEE kink as thec=0 limit of the
kink variety, whereas the TKY kink and two TK'E kinks—
that exist on different parabolic branches—meet at-.
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