
PHYSICAL REVIEW D, VOLUME 65, 085012
Kink variety in systems of two coupled scalar fields in two space-time dimensions
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In this paper we describe the moduli space of kinks in a class of systems of two coupled real scalar fields in
111 Minkowskian space-time. The main feature of the class is the spontaneous breaking of a discrete sym-
metry of ~real! Ginzburg-Landau type that guarantees the existence of kink topological defects.
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I. INTRODUCTION

Research into the mathematical properties and phys
meaning of topological defects in relativistic field theory h
increased sharply since the mid 1970s. There has also be
parallel development in~nonrelativistic! condensed matte
physics. Extended states and phase transitions—e.g., ty
superconductivity—are related to the appearance of such
otic phenomena. Domain wall defects in the real world c
be thought of as solitary waves propagating in
(111)-dimensional universe that self-repeats in the rema
ing two dimensions. Thus, investigations on the kink nat
and behavior inl(f4)2 or sine-Gordon models inform u
about the properties of the simplest type of topological
fect. Realistic theories, however, involve more than one s
lar field and the study of (111)-dimensionalN-scalar fields
models in this respect is not only worthwhile but almo
mandatory. Examples of theories withN.1, where one
might be interested in looking at topological defects, inclu
the linear sigma model, the Ginzburg-Landau theory
phase transitions, the supersymmetric Wess-Zumino mo
supersymmetric~SUSY! QCD, etc.

Kinks are time-independent finite-energy solutions of
field equations that have been thoroughly investigated in
N51 case~see, e.g.,@1#!. Much less is known about the kin
variety in systems with two or more scalar fields~the reason
for this is also clearly explained in@1#!. To the best of our
knowledge, however, there are these exceptions.

A deformation of the linearO(2)-sigma model, known in
the literature as the Montonen-Sarker-Trullinger-Bish
~MSTB! model, exhibits a rich variety of kinks. The chara
teristics of any of these kink defects as well as the struc
of the variety as a whole have been elucidated in a lo
series of papers~see Refs.@2–12#!. The moduli space of
kinks in an analogous deformation of the linearO(3)-sigma
model has also been fully described in@13#.

The search for kinks is tantamount to the solving o
mechanical problem, which is seldom solvable ifN>2. In
@14# we described the kinks of twoN52 field-theoretical
models associated with completely integrable mechan
systems; i.e., the same idea that works in the MSTB mo
and itsN53 generalization.

In @15#, the kinks of the Wess-Zumino model are shown
0556-2821/2002/65~8!/085012~8!/$20.00 65 0850
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be given by certain real algebraic curves in the comp
plane.

Another favorable situation occurs when the fiel
theoretical model is the bosonic sector of a supersymme
system. This is the case of the Wess-Zumino system and
happens in anN52 model proposed in@21#, which has been
discussed and applied to describe several interesting phy
contexts in a series of papers@16–25#. Throughout their
work, Bazeia and co-workers identify only two kinds o
kink: a topological one, with only the first component no
null, usually termed the TK1 kink, and a second topologi
kink that has both components non-null and is called
TK2 kink. In contrast with the MSTB model, where the TK
kinks are unstable@10,11#, and decay to the TK2 kinks@12#,
in the system of Bazeia and co-workers there is an interes
phenomenon of kink degeneracy: the TK1 and TK2 kin
have the same classical energy.

The main result to be shown in this paper is that the k
degeneracy is a continuous one rather than the discrete
generacy implicit in@16–25#. We shall find a continuous
family of kink solutions to the classical field equations, all
them degenerate in energy with the TK1 and TK2 kinks. T
existence of this variety of kinks is possible because of
spontaneous breaking of a discrete internal symmetry gro
The quotient of the kink variety by the symmetry group
the kink moduli space, a structure parallel to the mod
spaces of gauge theoretical topological defects such as
tices @26# or magnetic monopoles@27#.

Identification of the kink variety is achieved through th
solution of first-order, rather than second-order, field eq
tions. In (111)-dimensional scalar field theories, first-ord
equations are available if, modulo a global sign, a super
tential is found. Note that the search for a superpotentia
highly nontrivial if N>2. Bazeia and co-workers, howeve
proposed a continuously differentiable superpotential in th
model, which in turn guarantees the stability of any finit
energy solution of the associated first-order system of eq
tions through the classical Bogomoln´yi-Prasad-Sommerfield
argument@28#.

The existence of the superpotential tells us that we
understand the system as the bosonic sector of anN51 (1
11)-dimensional supersymmetric field theory, in which t
kinks play a significant role as Bogomoln´yi-Prasad-
Sommerfield~BPS! states. We shall analyze the supersy
©2002 The American Physical Society12-1
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metric extension of this model in a future work, but we o
serve that the dimension of the kink moduli space in t
system is such that the index introduced in@29# is zero,
showing that the soliton supermultiplets are long or red
ible.

All the foregoing statements are valid for any value of t
single classically relevant coupling constant in the model
this paper we shall show another new result: for certain v
ues of the coupling constant there exists a second supe
tential. Accordingly, a second system of first-order equati
is available that also admits kink solutions, although the
and new solitons belong to different topological sectors
the configuration space. For the critical values where
second superpotential is found, there are two nonequiva
supersymmetric extensions of the same bosonic sector.

For most of the critical values the second superpoten
fails to be continuously differentiable at a finite number
points in theR2 internal space. In these cases, the sec
Bogomolńyi bound is not a topological quantity; it also de
pends on the values of the superpotential at the points w
it is not differentiable. Kink orbits that cross those points a
unstable and are solutions of the first-order equations onl
one interval, not on the whole spatial line. Neverthele
these kinks are solutions of the second-order equations.

A final comment: in concordance with the lifting of th
kink translational degeneracy, we expect that the kink in
nal degeneracy will be removed in second order in the lo
expansion of the energy in the quantum theory.

The paper is organized as follows. In Secs. II and III
introduce the Bazeia-Nascimento-Ribeiro-Toledo~BNRT!
model discussed in@21# and identify a one-parametric famil
of kinks, which includes the TK1 and TK2 kinks, as BP
solutions. In Secs. IV and V we investigate the existence
second decomposition in the manner of Bogomol’nyi. W
find that this is possible for certain values of the coupli
constant, for which we discover a second kink family.

II. THE BNRT MODEL

In the model introduced in@21# by Bazeia, Nascimento
Ribeiro, and Toledo, the scalar field is built from two com
ponentsx(ym)5„x1(ym),x2(ym)… and the dynamics is gov
erned by the action

S̄@x#5E d2yF (
a51

2

]mxa]mxa2Ū~x1 ,x2!G , ~1!

Ū~x1 ,x2!5
1

2
l2~x1

22a2!21
1

2
lm~x1

22a2!x2
2

1
1

8
m2x2

41
1

2
m2x1

2x2
2 . ~2!

Here, l and m are coupling constants with dimensions
inverse length anda2 is a non-dimensional parameter. W
use a natural system of units,\5c51. The energy func-
tional is
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Ē@x#5E dyF1

2 S dx1

dy D 2

1
1

2 S dx2

dy D 2

1Ū~x1 ,x2!G ~3!

where x(y)5„x1(y),x2(y)…PC5$Maps(R,R2)/ Ē@x(y)#
,`%. Introducing nondimensional fields, variables, and p
rametersxb52afb , y5(2A2/al)x, and s5m/l, we ob-
tain expressions that are simpler to handle.Ē@x1 ,x2#
5A2a3lE@f1 ,f2# and the nondimensional energ
functional—which depends on the single classically relev
coupling constants—is

E@f#5E dxF1

2 S df1

dx D 2

1
1

2 S df2

dx D 2

1~4f1
212sf2

221!2116s2f1
2f2

2G . ~4!

The Euler-Lagrange equations read

d2f1

dx2
516f1@4f1

212s~11s!f2
221#,

d2f2

dx2
58sf2@4~s11!f1

212sf2
221#. ~5!

In addition to the spatial parity and translational symmetri
there is a global or internal symmetry in this model: t
reflection discrete groupG5Z23Z2 generated by the trans
formations p1 :(f1 ,f2)→(2f1 ,f2) and p2 :(f1 ,f2)
→(f1 ,2f2) is also a symmetry subgroup of the system

We shall focus our attention on thes.0 regime, where
the vacuum manifold is

M5H A15S 1

2
,0D ;A25S 2

1

2
,0D ;

B15S 0,
1

A2s
D ;B25S 0,2

1

A2s
D J .

The action ofG on M is summarized as follows:p1(A1)
5A2 , p2(B1)5B2. Therefore,M can be seen as the unio
of two disjoint vacuum orbits:M5AtB, A5$A1 ,A2%, B

5$B1 ,B2%. The vacuum moduli spaceM̄5M/G is a set of
two elementsM̄5AtB, where A5A/(Z23$e%) and B
5B/($e%3Z2). TheG5Z23Z2 symmetry of the action~1! is
spontaneously broken to the$e%3Z2 subgroup on the ele
ments in theA orbit and to theZ23$e% subgroup on the
vacua of theB orbit.

Because of the degeneracy and the discreteness o
vacuum manifoldM, the configuration space is the union
16 topologically disconnected sectors. Keeping in mind
symmetries of the model, we identify the nontrivial topolog
cal sectors as theAA topological sector~formed by configu-
rations ofC that join theA1 andA2 vacua!; theBB topologi-
cal sector~configurations that connect theB1 andB2 vacua!;
and theAB sector ~formed by configurations joining one
vacuum in theA orbit with another vacuum in theB orbit!.
2-2
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We use the trial orbit method@1# to show the previously
known kink solutions to Eqs.~5!.

A. The TK1 AA kink

First, we try the curve

gTK1AA5H f250,2
1

2
<f1<

1

2J .

This condition is compatible with Eqs.~5! and we find

f1
TK1AA

~x!56
1

2
tanh 2A2~x1a!, f2

TK1AA
~x!50

as the one-component topological kinks inAA.

B. The TK2AA kink

Second, we try the elliptic orbit

gTK2AA5H f1
21

s

2~12s!
f2

25
1

4
,2

1

2
<f1<

1

2J ~6!

in Eqs. ~5! and find in theAA topological sector the two
component topological kinks

f1
TK2AA

~x!56
1

2
tanh 2A2s~x1a!,

f2
TK2AA

~x!56A12s

2s
sech 2A2s~x1a!, ~7!

henceforth referred to as TK2AA kinks.
Note that the orbit~6! gives kink curves only in thes

P(0,1) range because ifs>1 it becomes a hyperbola tha
does not connect the vacua. Moreover, Eq.~7! describes four
different kinks according to the choices of the signs and
can obtain one from another by using the spatial parity
internal reflection symmetries.

The existence of one-component topological kinks
unnoticed in the literature about the model—in theBB topo-
logical sectors is obvious.

C. The TK1BB kink

Third, we try the orbit

gTK1BB5H f150,2
1

A2s
<f2<

1

A2s
J

in the second-order field equations~5!. We immediately find
that the finite-energy solutions

f1
TK1BB

~x!50,

f2
TK1BB

~x!56
1

A2s
tanh 2As~x1a!

are the kinks that connect theB1 andB2 vacua.
08501
e
d

III. THE MODULI SPACE OF KINKS IN THE AA
TOPOLOGICAL SECTOR

In @16–25# the authors propose a superpotential for t
model:

U~f1 ,f2!5
1

2 S ]W

]f1
D 2

1
1

2 S ]W

]f2
D 2

,

W~f!54A2S 1

3
f1

32
1

4
f11

s

2
f1f2

2D . ~8!

The classical BPS states satisfy the system of first-or
equations

df1

dx
5

]W

]f1
5A2~4f1

212sf2
221!,

df2

dx
5

]W

]f2
54A2sf1f2 , ~9!

which are easier to solve than Eqs.~5!. The superpotentia
W(f1 ,f2) is a smooth function of the fieldsf1 and f2 at
each point inR2. Therefore, according to the Bogomol’ny
arrangement

E@f#5E dx(
a51

2 S dfa

dx
2

]W

]faD 2

1E ]W

]fa

dfa

dx
,

we have that

E@f#5T@f#

5uW„f1~`!,f2~`!…2W„f1~2`!,f2~2`!…u

for all solutions of Eqs.~9! and the kink energy depends on
on the topological sector of the solution.

The kink solutions of Eqs.~9! are the flow lines of gradW
that start and end at elements ofM. It happens thatA1 and
A2 are, respectively, maxima and minima ofW and that there
are flow lines of gradW starting atA1 and ending atA2 ~or
vice versa!. B1 andB2, however, are saddle points ofW ~see
Fig. 1!. Therefore, there are no flow lines of gradW between
B1 andB2 ~or vice versa!. Nevertheless, flow lines of gradW
between one point in theA orbit and another point in theB
orbit ~or vice versa! are possible. The flow lines of gradW
thus provide kinks in theAA and theAB sectors with ener-
giesETK2AA5 4

3 a3l, ETK2AB5 2
3 a3l.

To obtain the most general solution to the first-order s
tem ~9!, we first integrate the first-order ordinary differenti
equation

df1

df2
5

4f1
212sf2

221

4sf1f2
~10!

which admits the integrating factoruf2u22/sf2
21 if sÞ1 and

sÞ0, thereby allowing us to find all the flow lines as th
family of curves
2-3
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FIG. 1. The U(f) potential
~left! and the superpotentialW(f)
~right!.
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s

2~12s!
f2

25
1

4
1

c

2s
uf2u2/s ~11!

parametrized by the real integration constantc. There is a
critical value

cS5
1

4

s

12s
~2s!(s11)/s

and the behavior of a particular curve in the Eq.~11! family
is described in the following items.

For cP(2`,cS), formula ~11! describes closed curves i
the internal spaceR2 that connect the vacuaA1 andA2 ~see
Fig. 2!. Thus, they provide a kink family in the topologica
sectorAA. Henceforth, we refer to these kinks asTK2AA(c).
A fixed value of c determines four members in the kin
variety related among one another by spatial parity and
ternal reflections. The kink moduli space is defined as
quotient of the kink variety by the action of the symmet
group:

MK5
VK

P3G
5~2`,cS!,

the real open half line parametrized byc. One sees that

TK2AA[TK2AA~0!,TK1[ lim
c→2`

TK2AA~c!,

i.e., the TK2AA kink is the c50 member of the family~if
s,1) and the TK1AA kink is not strictly included although
it does appear at the boundary ofMK .
08501
-
e

In the rangecP(cS,`), Eq. ~11! describes open curve
and no vacua are connected. These gradW flow lines are
infinite-energy solutions that do not belong to the configu
tion spaceC ~see Fig. 2!.

At the other point of the boundary ofMK , c5cS, we find
the TK2AB kinks, which are the separatrices betwe
bounded and unbounded motion and the envelope of all k
orbits in theAA topological sector~see Fig. 2!.

We briefly discuss thes51 case. Thes50 case is not
interesting because thef2 dependence disappears in the p
tential: it is a ‘‘direct sum’’ of anN51 f4 model and an
N51 free model. Integration of Eq.~10! whens51 gives

f1
22f2

2S c

2
1 loguf2u D5

1

4
~12!

where the kink trajectories now appear in thecP(2`,cS#
range, withcS5211 ln 2. The description of the kink orbits
is analogous to the description forsÞ1 above.

A second step remains: the explicit dependence of
kinks with respect to the space coordinate can be obtaine
we insert Eq.~11! into the second equation in Eq.~9!,

h@f2#5E df2

f2A1

4
1~c/2s!uf2u2/s2@s/2~12s!#f2

2

5E 4A2sdx. ~13!

The kink solutions are
FIG. 2. Flow lines given by
Eq. ~11!: for cP(2`,cS) ~left!,
c5cS ~middle!, and cP(cS,`)
~right!.
2-4
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f1
K~x,c!56A1

4
1

c

2s
uh21~4A2sx!u2/s2

s

2~12s!
@h21~4A2sx!#2, f2

K~x,c!5h21~4A2sx!.

FIG. 3. Kink trajectories~left!, a kink in theAA sector~middle!, and a kink in theAB sector~right! in the cases52.
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In general, we cannot obtain the explicit dependence onx for
the kink solutions because either we cannot integrate
~13! or we cannot identify the inverse ofh(f). For certain
values of the coupling constant, however, we can finish
task. We next show the family of TK2AA kinks for s52 and
s5 1

2 .
s52. The vacuum points are the vertices of a squa

Ms52 5$A15( 1
2 ,0),A25(2 1

2 ,0),B15(0,1
2 ),B25(0,2 1

2 )%.
The quadratures~13! can be solved explicitly andh21@f2# is
a known analytical function. Thus,

f1
TK2AA

~x!56
1

2

sinh 4A2~x1a!

cosh 4A2~x1a!1b
,

f2
TK2AA

~x!56
1

2

Ab221

cosh 4A2~x1a!1b

are the kink form factors. The integration constantb is re-
lated to c as b52c/Ac2216, and forbP(1,̀ ) we find
kinks in theAA topological sector.

If c5cS524, b5` we find the kinks in theAB sector

f1
TK2AB

~x!56 1
4 @12tanh 2A2~x1a!#,
08501
q.

e

:

f2
TK2AB

56 1
4 @11tanh 2A2~x1a!#,

and, replacingx by 2x, its antikinks. The separatrices a
placed on the edges of the above mentioned squaref25
6 1

2 6f1. The kink trajectories in theAA topological sector
form a dense family of curves enveloped by the kink orb
in the AB sector. See Fig. 3.

A rotation of 45° in R2, f15(1/A2)(c11c2) and f2

5(1/A2)(c12c2), shows that for this value ofs the system
is noncoupled:Us52(c1 ,c2)5 1

32 (c1
22 1

8 )21 1
2 (c2

22 1
8 )2.

s5 1
2 . The vacuum manifold isMs51/25$A15( 1

2 ,0),A2

5(2 1
2 ,0),B15(0,1),B25(0,21)%. By the same procedure

as above, we obtain

f1
TK2AA

~x!56
1

2

sinh 2A2~x1a!

cosh 2A2~x1a!1b
,

f2
TK2AA

~x!56
1

A11b21cosh 2A2~x1a!
, ~14!

where we have introducedb51/A124c. In the bP(0,̀ )
range, the above solutions are kinks that connect theA1 and
FIG. 4. Kink curves~left!, a kink in theAA sector~middle!, and a kink in theAB sector~right!.
2-5
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A2 vacua~see Fig. 4!. If s5 1
2 , Eq. ~11! becomesf1

21 1
2 f2

2

51
41cf2

4, which can be written as (112f12f2
2)(122f1

2f2
2)50 for c5CS5 1

4 . There are kinks on parabolic trajec
tories joining points in theA andB vacuum orbits,

f1
TK2AB

~x!56 1
4 @12tanhA2~x1a!#,

f2
TK2AB

~x!56A1
2 @11tanhA2~x1a!#,

and, replacingx1a by 2x2a, we obtain their antikinks.

IV. THE SECOND SUPERPOTENTIAL: sÄ2

For s52, U(f)5(4f1
214f2

221)2164f1
2f2

2 does not
change if we exchange the field components. There is a
ond superpotential in the model fors52: W8(f1 ,f2)
5W(f2 ,f1). A second arrangement in the manner of Bog
molńyi using W8(f1 ,f2) provides another system of firs
order differential equations:

df1

dx
5

]W8

]f1
58A2f1f2 ,

df2

dx
5

]W8

]f2
5A2~4f1

214f2
221!.

The flow lines of gradW8 connectB1 and B2, which are,
respectively, the maximum and the minimum ofW8, whereas
A1 andA2 areW8 saddle points. We thus obtain a new fam
ily of topological kinks, now in theBB sector, with the roles
of f1 andf2 interchanged: ifbP(1,̀ ),

f1
TK2BB

~x!56
1

2

Ab221

cosh 4A2~x1a!1b
,

f2
TK2BB

~x!56
1

2

sinh 4A2~x1a!

cosh 4A2~x1a!1b

are the two-component topological kinks in theBB sector. If
c→2`(b→1) we find the TK1BB kink, and if c54(b
→`) the separatrix kinks in theAB sector are reached at th
boundary of the component of the moduli space of kinks t
belong to theBB sector. The kink energy sum rules a
ETK2AA5ETK2BB52ETK2AB5 4

3 a3l.

V. THE MODULI SPACE OF NON-BPS KINKS IN THE BB
TOPOLOGICAL SECTOR: sÄ1Õ2

If s5 1
2 , there is also a second superpotential

W8~f1 ,f2!5
A2

3
Af1

21f2
2~4f1

21f2
223! ~15!
08501
c-

-

t

that also solves the first equation in Eq.~8!. The second
system of first-order equations

df1

dx
56

]W8

]f1
56

A2f1~4f1
213f2

221!

Af1
21f2

2
,

df2

dx
56

]W8

]f2
56

A2f2~2f1
21f2

221!

Af1
21f2

2
~16!

rules the flows generated by6gradW8 in the system.W8 is
not differentiable at the origin and the flows of6gradW8

df2

df1
5

f2~2f1
21f2

221!

f1~4f1
213f2

211!
~17!

are undefined atO[(0,0)PR2. Note thatB1 andB2 are both
minima ofW8, whereasA1 andA2 areW8 saddle points. The
origin is the maximum ofW8 and thus the flow lines of
gradW8 run from O to either B1 or B2. To obtain a kink
orbit, we must glue atO a g2 flow line of gradW8 smoothly
with a g1 flow-line of 2gradW8. Because the flows are
undefined atO, we expect that an infinite number of line
will meet at the origin.

The Bogomoln´yi splitting must take this into account an
the energy of the kink solutions of Eqs.~16!,

E@f#5E
2a

`

dx
1

2 Idf

dx
2

]W8

]f I 2

1E
2`

2a

dx
1

2 Idf

dx
2

]W8

]f I 2

1T~g1!1T~g2!,

T5T~g1!1T~g2!

5uW8~B1!2W8~O!u1uW8~B2!2W8~O!u.

E@fTK2BB#5T(g1)1T(g2) is not topological; it depends
on the value of the superpotential at the origin, a sign
instability @10,11#. The kink energy sum rules areETK2BB

52 ETK2AA54 ETK2AB5 8
3 a3l and the TK2BB kinks decay to

two TK2AB plus one TK2AA kinks.
Using parabolic variables, we have shown that the in

gration of Eq.~16! reduces to quadratures in Ref.@14#. The
translation of our results to Cartesian coordinates is as
lows.

The kink orbits that solve Eq.~17! satisfy the equation

16e4A2cf1
2~f1

21f2
2!1~12e4A2c!2f2

4~2f12f2
211!

3~2f11f2
221!50 ~18!

and are plotted in Fig. 5. Herec is a real integration constan
Analytically, the variety of TK2BB(c) kinks is given by
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f1
TK2BB

~x!5
sinh 2A2c sinh 2A2~x1a!

cosh22A2~x1a!12 cosh 2A2c cosh 2A2~x1a!11
, ~19!

f2
TK2BB

~x!5
2sinh 2A2~x1a!

Acosh22A2~x1a!12 cosh 2A2c cosh 2A2~x1a!11
. ~20!

FIG. 5. TK2BB(c) Kink family
~left! and the superpotentialW8
~right!.
li

rgy
of

olu-

ce,
In addition to the soliton centerx52a, the kink family is
parametrized byc.

Because the spatial translationTa :x→x1a leads from
one solution to another and

p1„f1
TK2BB

~x;c!,f2
TK2BB

~x;c!…5„f1
TK2BB

~x;2c!,

f2
TK2BB

~x;2c!…,

the moduli space of TK2BB kinks—the quotient of the~19!,
~20! kink variety by the action ofTa and p1—is the open
half line cP(0,̀ ). If, moreover, we take quotient byP:x
1a→2x2a, the antikinks are also included in the modu
space.

The asymptotic behavior

lim
x→6`

f1
TK2BB

~x;c!50, lim
x→6`

f2
TK2BB

~x;c!571
08501
fits in with the boundary behavior, guaranteeing finite ene
to the TK2BB(c) kinks. They are not stable because all
them cross the origin:

f1
TK2BB

~2a;c!50, f2
TK2BB

~2a;c!50.

Thus, only if xP(2`,2a) are Eqs.~19!, ~20! solutions of
the first-order equations~16! with the 1 sign, whereas they
solve Eq.~16! with the 2 sign in thexP(2a,`) range, or
vice versa. It can easily be proved, however, that these s
tions satisfy the second-order differential equations~5!.

Things are different at the boundary of the moduli spa
the union of thec50 andc5` points. Looking at the for-
mula ~18! we find the TK1BB kink as thec50 limit of the
kink variety, whereas the TK1AA kink and two TKAB kinks—
that exist on different parabolic branches—meet atc5`.
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