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Parity violating bosonic loops at finite temperature
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The finite temperature parity-violating contributions to the polarization tensor are computed at one loop in a
system without fermions. The system studied is a Maxwell-Chern-Simons-Higgs system in the broken phase,
for which the parity-violating terms are well known at zero temperature. At nonzero temperature the static and
long-wavelength limits of the parity violating terms have very different structure, and involve nonanalytic log
terms depending on the various mass scales. At high temperature the boson loop contribution to the Chern-
Simons term goes likeT in the static limit and likeT log T in the long-wavelength limit, in contrast with the
fermion loop contribution which behaves like 1/T in the static limit and like logT/T in the long wavelength
limit.
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I. INTRODUCTION

The study of induced Chern-Simons terms in 211 dimen-
sional field theory at finite temperature has produced so
interesting new insights into large gauge invariance a
parity-violating effective actions at finite temperature@1–5#.
Almost all previous studies~with the exception of@6#! have
concentrated on the induced Chern-Simons term arising f
fermion loop contributions to the gauge field self-energy
211 dimensions. In this paper we study finite temperat
induced Chern-Simons terms in a bosonic theory. The
duced Chern-Simons terms are generated in radiative
corrections, due to the presence of a bare Chern-Sim
term. Specifically, we consider a Maxwell-Chern-Simon
Higgs ~MCSH! model in the spontaneously broken phase.
zero temperature, induced Chern-Simons terms in such m
els have been studied in great detail, revealing an intric
relation between spontaneous parity violation and sponta
ous symmetry breaking@7–10#. One motivation for this
present paper is to understand how this generalizes to fi
temperature.

The induced Chern-Simons coefficient is extracted fr
the zero-momentum limit of the parity violating part of th
self-energy@11#. At finite T, this procedure is not unique@12#
since Feynman diagrams are not analytic in external m
menta at finite temperature@13#, because the thermal he
bath breaks Lorentz invariance. In a static limit, withq0

50 and uqW u→0, an induced Chern-Simons term is foun
with a temperature dependent coefficient@14#. As first
pointed out in@6#, this result appears~when carried over to a
non-Abelian theory! to violate large gauge invariance sinc
the coefficient of the induced Chern-Simons term in a n
Abelian theory should take discrete values@15#. This puzzle
has been resolved for the fermion loop when the backgro
has the character of a static Abelian magnetic field with
teger fluxF, because in this case the problem factorizes i
F copies of an exactly solvable (011)-dimensional mode
@1–4#. Then one finds that the finite temperature effect
action has an infinite series of parity-violating terms~of
0556-2821/2002/65~8!/085011~9!/$20.00 65 0850
e
d

m

e
-

op
ns
-
t
d-
te
e-

ite

-

-

d
-
o

e

which the Chern-Simons term is only the first!, each of
which has aT dependent coefficient at finiteT. Nevertheless,
the series is such that the full effective action changes un
a large gauge transformation in a manner that is indepen
of T. These new parity-violating terms are non-extens
~i.e., they are not integrals of a density! and they explicitly
vanish at zero temperature~as they must since the zeroT
effective action should be extensive!. This issue of large
gauge invariance of the finite temperature effective action
considerably more difficult to resolve in genuinely tim
dependent and genuinely non-Abelian backgrounds,
though much recent progress has been made in unders
ing the parity-violating parts of multi-leg amplitudes at fini
temperature@5#.

Another motivation for our study is the question of th
analytic structure of the bosonic self-energy at finite te
perature. This issue has been analyzed previously@16# for
massive gauge bosons in four dimensional space-time, w
the Chern-Simons parity-violating issues are not relevant
the four dimensional case it was found that in the brok
phase the different bosonic masses appearing in the bos
loop meant that the zero energy-momentum limit was ac
ally analytic, despite the well-known physical difference b
tween the Debye and plasmon masses, which can be de
through the static and long wavelength limits, respectiv
@16#. In this current paper, we find that in three dimension
space-time, for a model with parity violation, the ze
energy-momentum limit is not unique, even though t
bosonic masses entering the one-loop calculation are di
ent.

In Sec. II we define the bosonic model to be studied, a
present the finite temperature propagators necessary f
perturbative analysis. In Sec. III we present the one lo
results for the parity violating part of the finite temperatu
self energy in both the static and long wavelength limi
Section IV contains our conclusions.

II. MAXWELL-CHERN-SIMONS-HIGGS MODEL

We consider an Abelian gauge fieldAm in 211 dimen-
sions with both a Maxwell and a Chern-Simons term in t
©2002 The American Physical Society11-1
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Lagrangian, interacting with a charged scalar fieldF which
has a symmetry breaking quartic potential:

L52
1

4
FmnFmn1

k

2
emnlAm]n Al1uDmFu2

2
l

4
~ uFu22v2!2. ~1!

In the spontaneously broken phase, whereF has a nonzero
vacuum expectation valuêF&5v, we expand the scala
field about this vacuum expectation value~VEV! as F5v
1(1/A2)(s1 ix) and obtain the following Lagrangian in th
Rj gauge~ignoring the ghost Lagrangian which is not re
evant to our calculations!:

L52
1

4
FmnFmn1

k

2
emnlAm]n Al1

m2

2
AmAm2

1

2j
~]mAm!2

1
1

2
]ms]ms2

1

2
ms

2s21
1

2
]mx]mx2

1

2
mx

2x2

2es ]JmxAm1
e2

2
~s21x212A2vs!AmAm

2
l

2A2
vs~s21x2!2

l

16
~s21x2!2. ~2!

Here the various mass parameters are

m252e2v2

ms
25lv2 ~3!

mx
25jm2.

As mentioned above in the Introduction, for the correspo
ing systemwithout the Chern-Simons term~i.e. for k50),
the finite temperature behavior of the polarization tensor w
studied in@16#. There, one of the key features was the d
ference between the bosonic masses appearing in the
loop calculation. The modelwith a Chern-Simons term is
more interesting for two reasons. First, the presence of
Chern-Simons term leads to a different mass genera
mechanism for the gauge field, with it acquiring two~rather
than one! massive modes in the broken phase@17#. Second,
the Chern-Simons coupling leads to parity-violating con
butions to the polarization tensor, whose finite temperat
behavior is the subject of this paper. Both these differen
can be seen clearly in the propagator structure of the mo
08501
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A. Zero temperature propagators

At zero temperature, the gauge field propagator is

Dmn~p!5
21

~p22m1
2 1 i e!~p22m2

2 1 i e!
Fhmn~p22m2!

2pmpn

~12j!~p22m2!1jk2

p22jm2
1 ikemnlplG

~4!

where the two massive modes are identified by the poles

m6
2 5

k212m26uku~k214m2!1/2

2
~5!

from which we deduce the~positive! masses

m65
uku
2 SA11

4m2

k2
61D . ~6!

Note also the presence inDmn(p) of the term proportional to
emnlpl, which manifestly breaks parity. The scalar fields
has the standard bosonic propagatorDs(p)51/(p22ms

2).

B. Finite temperature propagators

At finite T, propagators can be presented either in
imaginary-time or real-time formalism@18–20#. Here we
record the propagators in both forms for the model in Eq.~2!.

1. Imaginary time

In the imaginary-time formalism, the gauge field propag
tor is (k→ ik in the Euclidean space!

Dmn
(b)~p!5

1

~wn
21pW 21m1

2 !~wn
21pW 21m2

2 !

3F dmn~wn
21pW 21m2!2pmpn

3
~12j!~wn

21pW 21m2!2jk2

wn
21pW 21jm2

2kemnlplG
~7!

FIG. 1. One loop self-energy diagram for computing the induc
parity violating Chern-Simons coefficient. The wavy line represe
the gauge field and the dashed line represents the scalar parti
1-2
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and the scalars field propagator is

Ds
(b)~p!5

1

wn
21pW 21ms

2
. ~8!

Here, 2 ip0→vn52pnT are the usual bosonic Matsuba
modes.
rt,
e
ng

08501
2. Real time

In the real-time formalism, the degrees of freedom a
doubled in the standard way@20# in order to account for the
transfer of energy into and out of the thermal heat bath. T
propagators thus acquire a 232 matrix structure, the com
ponents of which are listed below, in the closed time p
formalism, for the MCSH system in the broken phase. F
the gauge field,
Dmn
(b)11~p!52Fhmn~p22m2!2pmpn

~12j!~p22m2!1jk2

p22jm2
1 ikemnlplG

3F 1

~p22m1
2 1 i e!~p22m2

2 1 i e!
22ipnB~ up0u!d„~p22m1

2 !~p22m2
2 !…G

Dmn
(b)12~p!52ipFhmn~p22m2!2pmpn

~12j!~p22m2!1jk2

p22jm2
1 ikemnlplG

3@u~2p0!1nB~ up0u!#d„~p22m1
2 !~p22m2

2 !…

Dmn
(b)21~p!52ipFhmn~p22m2!2pmpn

~12j!~p22m2!1jk2

p22jm2
1 ikemnlplG

3@u~p0!1nB~ up0u!#d„~p22m1
2 !~p22m2

2 !…

Dmn
(b)22~p!52Fhmn~p22m2!2pmpn

~12j!~p22m2!1jk2

p22jm2
1 ikemnlplG

3F 21

~p22m1
2 2 i e!~p22m2

2 2 i e!
22ipnB~ up0u!d„~p22m1

2 !~p22m2
2 !…G .
-

this
For the scalars field,

Ds
(b)11~p!5

1

p22ms
21 i e

22ipnB~ up0u!d~p22ms
2 !

Ds
(b)12~p!522ip@u~2p0!1nB~ up0u!#d~p22ms

2 !

Ds
(b)21~p!522ip@u~p0!1nB~ up0u!#d~p22ms

2 !

Ds
(b)22~p!5

21

p22ms
22 i e

22ipnB~ up0u!d~p22ms
2 !.

III. ONE-LOOP RESULTS

In this section we compute the parity-violating pa
Pmn

(PV) , of the polarization tensorPmn , as represented by th
one-loop Feynman diagram in Fig. 1. The parity-violati
contribution arises from theemnlkl part of the gauge propa
gator. We first review briefly the zero temperature result.

A. Zero temperature parity-violating part

The parity-violating part of the diagram in Fig. 1 is

Pmn(PV)58ike4v2emnlE d3k

~2p!3

1

@~k1p!22ms
2 #

3
kl

~k22m1
2 !~k22m2

2 !
. ~9!

A straightforward use of Feynman parameters shows that
can be expressed as

Pmn(PV)52emnlplP~p2! ~10!

where
1-3



ALVES, DAS, DUNNE, AND PEREZ PHYSICAL REVIEW D65 085011
P~p2!516ike4v2E d3k

~2p!3E0

1

daE
0

12a

db
a

@k21a~12a!p22ams
22bm1

2 2~12a2b!m2
2 #3

. ~11!

The induced Chern-Simons coefficient is deduced from the value ofP(p250):

P~p250!516ike4v2E
0

1

daE
0

12a

db
1

32p

a

@a~ms
22m2

2 !1b~m1
2 2m2

2 !1m2
2 #3/2

5
22ike4v2

3p~ms
22m1

2 !2~ms
22m2

2 !2~m1
2 2m2

2 !
$2ms

5~m1
2 2m2

2 !12ms
4~m1

3 2m2
3 !

2ms
3~m1

4 2m2
4 !24ms

2~m1
3 m2

2 2m1
2 m2

3 !13ms~m1
4 m2

2 2m1
2 m2

4 !22~m1
4 m2

3 2m1
3 m2

4 !%. ~12!
s
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Notice that the dependence on the three different mas
ms , m1 andm2 , is quite involved.

At this stage we pause to compare with some previ
results corresponding to special cases of this result. In
pure Chern-Simons limit, in which the Maxwell term is r
moved from the Lagrangian, the corresponding result w
computed in@7#. This limit can be obtained from our resu
by sendinge2→` and k→`, in such a way that the ratio
e2/k is kept finite. In terms of the masses, in this limitm1

→`, m2→m2/uku52e2v2/uku ~finite!, and ms is unaf-
fected. In this limit, our result reduces to

P~p250!5
2ie2

3p

k

uku

S 11
1

2

ms

m2
D

S 11
ms

m2
D 2 ~13!

which is in agreement with@7#. Furthermore, when the re
maining masses,ms andm2 , are equal, this gives
or
-
ec
g
p

in
a
th

08501
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s
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P~p250!5
ie2

4p

k

uku
. ~14!

This is exactly the mass relationship (m1→` and ms

5m2) that arises in the bosonic sector of the N52 super-
symmetric Chern-Simons-Higgs system@21#, and this result
~14! agrees with the known result for this SUSY model@22#.

B. Finite temperature parity-violating part

We now consider the calculation of the finite temperatu
one-loop parity-violating part of the polarization tensor. Su
a calculation can be performed either using the imagin
time or the real time formalism of finite temperature fie
theory. In this paper we record the imaginary time calcu
tion; we have also done the calculation using the real ti
formalism ~the appropriate amplitudes to compare are
retarded ones!, and obtain exactly the same results.

In the imaginary-time formalism, the parity-violating pa
of Pmn is
Pmn(PV)58ke4v2emnl

1

b (
n52`

` E d2k

~2p!2

kl

@~k01p0!21~kW1pW !21ms
2 #~k0

21kW21m1
2 !~k0

21kW21m2
2 !

~15!
era-

t,

ts
where the Matsubara energies arek052pn/b and p0

52p l /b, with n and l being integers.

1. Static limit

At finite temperature there are different physical limits f
the external energy-momentump, due to the preferred Lor
entz frame of the heat bath. These different limits refl
different physical processes. The static and long-wavelen
limits correspond to the Debye and plasmon masses, res
tively. The physical origin of the usual nonanalyticity
these two different limits is due to the fact that a virtu
particle can be absorbed by real particles in the medium,
t
th
ec-

l
us

opening new channels that are not present at zero temp
ture in the absence of the thermal heat bath@20#. We first
consider thestatic limit in which we first setp050, and then
take the limitupW u→0. First, observe that, in this static limi

P i j
static (PV)50, ~16!

since thek0 sum~i.e. the sum overn) clearly vanishes when
the indexl50. The remaining parity-violating componen
are
1-4
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P0i
static(PV)58ke4v2e i j

1

b (
n52`

` E d2k

~2p!2

kj

@~k0!21~kW1pW !21ms
2 #~k0

21kW21m1
2 !~k0

21kW21m2
2 !

. ~17!

The induced Chern-Simons coefficient is determined by the coefficient ofe i j pj in the limit upW u→0, so we look for the term
linear in the spatial momentumpW . Thus, we expand

1

@~k0!21~kW1pW !21ms
2 #

5
1

@~k0!21kW21ms
2 #

2
2pW •kW

@~k0!21kW21ms
2 #2

1O~pW 2!. ~18!

The first term in this expansion contributes 0 when the spatialkW momentum integral is done in Eq.~17!. However, the second
term produces a term linear inpW . Using symmetric integration, we replacekikj→ 1

2 kW2d i j , and obtain

P0i
static(PV)5e i j pjPstatic~pW 2! ~19!

where

Pstatic~pW 250!528ke4v2
1

b (
n52`

` E d2k

~2p!2

kW2

@~k0!21kW21ms
2 #2~k0

21kW21m1
2 !~k0

21kW21m2
2 !

58ke4v2
]

]ms
2

1

b (
n52`

` E d2k

~2p!2

kW2

@~k0!21kW21ms
2 #~k0

21kW21m1
2 !~k0

21kW21m2
2 !

. ~20!

It is convenient to perform the sum over Matsubara modes using the Sommerfeld-Watson transformation@23,20# of the sum
into a contour integral:

(
n52`

`

f ~n!52p (
residues

@ f ~z!cot~pz!# ~21!

where the sum is over the residues at the poles off (z). Thus, defining

vs5AkW21ms
2, v15AkW21m1

2 , v25AkW21m2
2 ~22!

we find that

1

b (
n52`

`
1

F S 2pn

b D 2

1vs
2 GF S 2pn

b D 2

1v1
2 GF S 2pn

b D 2

1v2
2 G

5
1

2
F 1

vs
cothS bvs

2 D
~ms

22m1
2 !~ms

22m2
2 !

2

1

v1
cothS bv1

2 D
~ms

22m1
2 !~m1

2 2m2
2 !

1

1

v2
cothS bv2

2 D
~ms

22m2
2 !~m1

2 2m2
2 !
G . ~23!

We can separate the zero temperature contribution from the finite temperature correction by using the simple identit

cothS x

2D511
2

ex21
~24!

in which we recognize the Bose-Einstein distribution functionn(x)51/(ex21). Then the zero temperature contribution can
expressed as

Pstatic
(T50)54ke4v2

]

]ms
2E d2k

~2p!2
kW2F 1/vs

~ms
22m1

2 !~ms
22m2

2 !
2

1/v1

~ms
22m1

2 !~m1
2 2m2

2 !
1

1/v2

~ms
22m2

2 !~m1
2 2m2

2 !
G . ~25!

These integrals may be performed with a consistent UV regulator, yielding a finite result that agrees precisely with
temperature result quoted in Eq.~12! ~it is worth noting here that the Chern-Simons coefficient in the Euclidean space isi times
that of the Minkowski space!.
085011-5
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The finite temperature correction to this zero temperature result is given by

Pstatic
(b) 58ke4v2

]

]ms
2E d2k

~2p!2
kW2F 1

~ms
22m1

2 !~ms
22m2

2 !

1

vs

1

ebvs21
2

1

~ms
22m1

2 !~m1
2 2m2

2 !

1

v1

1

ebv121

1
1

~ms
22m2

2 !~m1
2 2m2

2 !

1

v2

1

ebv221
G . ~26!
gh

ng
Thus, we need to evaluate an integral of the form

I 5E d2k

~2p!2

kW2

v

1

ebv21
5

1

2pb3Emb

`

dx
@x22~mb!2#

ex21
~27!

wherev5AkW21m2. We note that

E
y

`

dx
1

ex21
52 log~12e2y! ~28!

E
y

`

dx
x2

ex21
5E

0

`

dx
x2

ex21
2E

0

y

dx
x2

ex21

52z~3!2 (
n50

` Bn

~n12!n!
yn12 ~29!

where theBn are the Bernoulli numbers. Therefore, the hi
temperature expansion ofI is
en
g

an
a
o

(

08501
I 5
1

2pb3 F ~mb!2log~12e2mb!12z~3!

2 (
n50

` Bn

~n12!n!
~mb!n12G

5
1

2pb3 F2z~3!1~mb!2S log~mb!2
1

2D1 . . . G .
~30!

Thus, in the static limit, at high temperature, the leadi
behavior is

Pstatic
(b) 5

4ke4v2

pb
F~m1 ,m2 ,ms! ~31!

where
F~m1 ,m2 ,ms!5
m1

2 log~m1 /m2!

~m1
2 2m2

2 !~ms
22m1

2 !2
1

~m1
2 m2

2 2ms
4 !log~ms /m2!

~ms
22m1

2 !2~ms
22m2

2 !2
1

1

2~ms
22m1

2 !~ms
22m2

2 !

5
m2

2 log~m1 /m2!

~m1
2 2m2

2 !~ms
22m2

2 !2
1

~m1
2 m2

2 2ms
4 !log~ms /m1!

~ms
22m1

2 !2~ms
22m2

2 !2
1

1

2~ms
22m1

2 !~ms
22m2

2 !

5
m1

2 log~m1 /ms!

~m1
2 2m2

2 !~ms
22m1

2 !2
2

m2
2 log~m2 /ms!

~m1
2 2m2

2 !~ms
22m2

2 !2
1

1

2~ms
22m1

2 !~ms
22m2

2 !
. ~32!
-
s-
ing
med

red
in

is
It is very interesting to notice that the temperature dep
dence inside the logarithmic terms cancels out, leaving lo
rithms only involving ratios of the massesm1 , m2 andms .

Note that to lowest order in perturbation theory we c
neglect the possibleT dependent mass shift that arises from
calculation of the finite temperature effective potential. Als
it is possible to study the high temperature limit whereT is
sufficiently high compared to the relevant mass scalesT
@m;ev, andT@ms;Alv! but still below any symmetry
-
a-

,

restoration temperature scaleTc whose magnitude is deter
mined byTcln Tc;m2/l. For supersymmetric Chern-Simon
Higgs systems, a detailed analysis of symmetry break
considerations, at both one and two loop, has been pefor
in @24#.

We now consider this result in the mass limits conside
in Sec. III A. First, we take the pure Chern-Simons limit
which m1;uku→`, and m2→m2/uku5finite. From the
above, in this limit the leading high temperature behavior
1-6
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Pstatic
(b) →2

k

uku
e2m2

pb
F 2m2

2 logS m2

ms
D1ms

22m2
2

~ms
22m2

2 !2
G .

~33!

When the two remaining masses are equal~i.e., m25ms),
we find

Pstatic
(b) →2

k

uku
e2

2pbm2
. ~34!

Indeed, in this case we can keep thefull temperature depen
dence. Returning to the expressions~20! and ~23! which
have the full temperature dependence, we can take the
m1→`, and ms→m2 , to obtain a remarkable simplifica
tion:
08501
it

Pstatic→2
k

uku
e2

4p
cothS bm2

2 D . ~35!

This should be compared with the the corresponding ferm
loop result for a fermion of massM:

Pstatic5
k

uku
e2

4p
tanhS bM

2 D . ~36!

2. Long wavelength limit

In this section we consider the long wavelength limit
finite temperature. In this limit we setpW 50, and consider
p0→0. This must be done with care in the imaginary tim
formalism, becausep0 is discrete and must be analytical
continued back to real time where it is a continuous variab
In the long wavelength limit, the parity violating part of th
polarization tensor is
Pmn
LW( PV)58ke4v2emnl

1

b (
n52`

` E d2k

~2p!2

kl

@~k01p0!21kW21ms
2 #@~k0!21kW21m1

2 #@~k0!21kW21m2
2 #

. ~37!

By symmetry it is clear that

P0i
LW( PV)50 ~38!

while P i j
LW( PV) is nonzero. This is the opposite of what was found above in the static limit, whereP i j

static(PV)50 and
P0i

static(PV)Þ0. In fact,

P i j
LW( PV)58ke4v2e i j

1

b (
n52`

` E d2k

~2p!2

k0

@~k01p0!21kW21ms
2 #@~k0!21kW21m1

2 #@~k0!21kW21m2
2 #

. ~39!

The sum over Matsubara modes can be done, as before, using a contour integral representation

1

b (
n52`

`
k0

@~k01p0!21kW21ms
2 #@~k0!21kW21m1

2 #@~k0!21kW21m2
2 #

52
p

b S b

2p D 5

(
residuesF z cot~pz!

F S z1
bp0

2p D 2

1S bvs

2p D 2GF S z1
bp0

2p D 2

1S bv1

2p D 2GF S z1
bp0

2p D 2

1S bv2

2p D 2G G
5

1

4
F cothS bvs

2 D
vs

~2p01 ivs!

@~2p01 ivs!21v1
2 #@~2p01 ivs!21v2

2 #
2

cothS bvs

2 D
vs

~p01 ivs!

@~p01 ivs!21v1
2 #@~p01 ivs!21v2

2 #

2

icothS bv1

2 D
@~p01 iv1!21vs

2 #@v1
2 2v2

2 #
1

icothS bv1

2 D
@~p02 iv1!21vs

2 #@v1
2 2v2

2 #
2

icothS bv2

2 D
@~p01 iv2!21vs

2 #@v1
2 2v2

2 #

1

icothS bv2

2 D
@~p02 iv2!21vs

2 #@v1
2 2v2

2 #
G . ~40!

This expression can now be analytically continued inp0, and then Taylor expanded to linear order inp0, in order to determine
the Chern-Simons coefficient. We write
1-7



cisely
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P i j
LW( PV)5e i j p

0PLW~p0! ~41!

where

PLW~p050!524ke4v2E d2k

~2p!2
F H 1

vs~ms
22m1

2 !~ms
22m2

2 !
2

2vs

~ms
22m1

2 !2~ms
22m2

2 !
2

2vs

~ms
22m1

2 !~ms
22m2

2 !2J
3cothS bvs

2 D1

2v1cothS bv1

2 D
~ms

22m1
2 !2~m1

2 2m2
2 !

2

2v2cothS bv2

2 D
~ms

22m2
2 !2~m1

2 2m2
2 !
G . ~42!

Once again, we separate the zero temperature piece from the finite temperature correction using the simple identity~24!. Then
the zero temperature part of Eq.~42! is finite, with consistent UV regulators for the momentum integrals, and agrees pre
with the direct zero temperature result in Eq.~12!.

The nonzero temperature contribution can be expressed as

PLW
(b)52

4ke4v2

pb3 F E
bms

` dx

ex21
H b2

~ms
22m1

2 !~ms
22m2

2 !
2

2x2

~ms
22m1

2 !2~ms
22m2

2 !
2

2x2

~ms
22m1

2 !~ms
22m2

2 !2J
1E

bm1

` dx

ex21

2x2

~ms
22m1

2 !2~m1
2 2m2

2 !
2E

bm2

` dx

ex21

2x2

~ms
22m2

2 !2~m1
2 2m2

2 !
G . ~43!
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The dominant contribution at high temperature is easily co
puted using the integrals listed earlier in Eqs.~28!,~29!. This
dominant contribution in the long wave limit, at high tem
perature, gives

P i j
LW( PV)(b)5

4ke4v2e i j p0

bp

log~bms!

~ms
22m1

2 !~ms
22m2

2 !
.

~44!

We note several things about this result. First, there is
a logarithmic dependence on the temperature. Second
long wavelength limit gives a completely different result f
the parity violating part of the self energy, as compared
the static limit. This is true even though the two masses
the bosonic loop are quite different. So, there is still a n
analyticity in the self-energy, contrary to what had be
found earlier in a simpler model@16# without parity viola-
tion. For completeness, we note here that, at high temp
ture, the contribution due to a fermion loop to the Che
Simons term goes as;b in the static limit and as;b ln b in
the long wave limit@25#.

IV. CONCLUSIONS

To conclude, we emphasize that the induced Che
Simons terms that appear from bosonic loops have a c
pletely different temperature dependence from those indu
by a fermion loop. In fact, the contribution from the boson
loop grows at high temperature both in the static as wel
the long wavelength limits, as opposed to the contribut
from the fermionic loop which decreases at high tempera
in both these limits@25#. This behavior is most clearly see
08501
-

ill
he

o
n
-

n

a-
-

-
-

ed

s
n
re

by comparing the static limit results~35! and~36! in the pure
Chern-Simons limit. The bosonic loop contribution goes li
2coth(bm/2), while the familiar fermion loop static limit
contribution goes like tanh(bm/2). In the bosonic theory, in
the static limit, there will be a sequence of newT-dependent
parity violating terms, beyond the Chern-Simons term, j
like in the fermionic theory in the static limit@1–4#. This is
one step towards answering the question of large gauge
variance at finite temperature in non-fermionic theori
However, this is still an Abelian theory. To resolve this que
tion in a non-AbelianChern-Simons Higgs system~such as
those studied at zero temperature in@7–10#! one needs also
to analyze the gluon and ghost loop terms at finite tempe
ture. This is a much more difficult problem, and is beyo
the scope of this paper.

In the model studied in this paper, the induced Che
Simons terms arise in loop corrections because of the p
ence of a parity violating bare Chern-Simons term in the b
Lagrangian. This bare Chern-Simons term has a numbe
consequences. First, it gives the gauge field two mas
modes in the spontaneously broken phase. Second, it in
duces parity violating interactions. We have shown that
induced parity violating contributions to the self energy b
have, at finite temperature, in a very different way from t
parity preserving contributions studied previously in@16#.
Specifically, the parity preserving terms have a unique z
momentum limit, even at finite temperature, while the par
violating terms have a non-unique limit at finite temperatu
We have demonstrated this by computing the parity violat
terms in both the static and long wavelength limit. The lea
ing high temperature parts for these parity violating terms
given in Eqs.~31!, ~32! and~44!, and they are clearly differ-
1-8
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ent. In the long wavelength limit there is a logarithmic d
pendence on the temperature, while in the static limit t
cancels out leaving logarithmic dependence on mass rat

In addition, we have analyzed the limits in which th
Maxwell term is removed, leaving a pure Chern-Simo
theory, and also in which the remaining scalar masses
taken to be equal. In these cases the temperature depen
simplifies considerably. We understand@26# that Gomes and
collaborators are analyzing a related model involving a p
Chern-Simons gauge Lagrangian coupled to a Higgs fi
with a sextic potential. It would be interesting to compa
their results to ours in the appropriate limit.

Finally, the temperature dependent parity violating con
butions to the self-energy mix with the temperature dep
ns
-
A.

s.

pe

.

08501
-
s
s.

s
re
nce

e
ld

-
-

dent parity conserving contributions in order to determ
the physical masses in thermal equilibrium. This issue
been analyzed in@6# for the Chern-Simons-Yang-Mills sys
tem at finite temperature. A similar analysis for the Maxwe
Chern-Simons-Higgs system with symmetry breaking wo
be an interesting application of the results in this curr
paper.
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