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Parity violating bosonic loops at finite temperature
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The finite temperature parity-violating contributions to the polarization tensor are computed at one loop in a
system without fermions. The system studied is a Maxwell-Chern-Simons-Higgs system in the broken phase,
for which the parity-violating terms are well known at zero temperature. At nonzero temperature the static and
long-wavelength limits of the parity violating terms have very different structure, and involve nonanalytic log
terms depending on the various mass scales. At high temperature the boson loop contribution to the Chern-
Simons term goes lik& in the static limit and likeT log T in the long-wavelength limit, in contrast with the
fermion loop contribution which behaves likeTlin the static limit and like 1o@/T in the long wavelength
limit.
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I. INTRODUCTION which the Chern-Simons term is only the fjyseach of
which has a dependent coefficient at finile Nevertheless,
The study of induced Chern-Simons terms in 2 dimen-  the series is such that the full effective action changes under
sional field theory at finite temperature has produced som@ arge gauge transformation in a manner that is independent
interesting new insights into large gauge invariance andf T- These new parity-violating terms are non-extensive
parity-violating effective actions at finite temperatdile-5|. €., they are not integrals of a densignd _they explicitly
Almost all previous studieéwith the exception of6]) have vanish at zero temperatu(@s they must since the zefo

concentrated on the induced Chern-Simons term arising fro effective action should be extensjveThis issue of large
9 rBauge invariance of the finite temperature effective action is

fermion loop contributions to the gauge field self-energy Nconsiderably more difficult to resolve in genuinely time-

2+1 dimensions. In this paper we study finite temperaturgyenendent and genuinely non-Abelian backgrounds, al-
induced Chern-Simons terms in a bosonic theory. The ing,5ugh much recent progress has been made in understand-
duced Chern-Simons terms are generated in radiative 100Rq the parity-violating parts of multi-leg amplitudes at finite
corrections, due to the presence of a bare Chern-SimonRgmperaturd5].
term. Specifically, we consider a Maxwell-Chern-Simons-  Another motivation for our study is the question of the
Higgs (MCSH) model in the spontaneously broken phase. Atanalytic structure of the bosonic self-energy at finite tem-
zero temperature, induced Chern-Simons terms in such mogerature. This issue has been analyzed previolisy for
els have been studied in great detail, revealing an intricatenassive gauge bosons in four dimensional space-time, where
relation between spontaneous parity violation and spontanghe Chern-Simons parity-violating issues are not relevant. In
ous symmetry breaking7-10. One motivation for this the four dimensional case it was found that in the broken
present paper is to understand how this generalizes to finitghase the different bosonic masses appearing in the bosonic
temperature. loop meant that the zero energy-momentum limit was actu-
The induced Chern-Simons coefficient is extracted fromally analytic, despite the well-known physical difference be-
the zero-momentum limit of the parity violating part of this tween the Debye and plasmon masses, which can be defined
self-energy{11]. At finite T, this procedure is not uniqyé2]  through the static and long wavelength limits, respectively
since Feynman diagrams are not analytic in external motl16]. In this current paper, we find that in three dimensional
menta at finite temperaturd 3], because the thermal heat space-time, for a model with parity violation, the zero

bath breaks Lorentz invariance. In a static limit, wig ~ €nergy-momentum limit is not unique, even though the
-0 and @HO an induced Chern-Simons term is found PoSONic masses entering the one-loop calculation are differ-

with a temperature dependent coefficigritd]. As first ent. ' . .

pointed out in(6], this result appearsvhen carried over to a In Sec. Il V\_/eldeflne the bosonic model to be studied, and
non-Abelian theoryto violate large gauge invariance since present the finite temperature propagators necessary for a
the coefficient of the induced Chern-Simons term in a nonPerturbative analysis. In Sec. Il we present the one loop
Abelian theory should take discrete valyas]. This puzzle results for th_e parity wolatmg part of the finite temperature
has been resolved for the fermion loop when the backgroun elf energy in bpth the static "’?”d long wavelength limits.
has the character of a static Abelian magnetic field with in->€ction IV contains our conclusions.

teger fluxd, because in this case the problem factorizes into
& copies of an exactly solvable ¢01)-dimensional model
[1-4]. Then one finds that the finite temperature effective We consider an Abelian gauge fiefd, in 2+1 dimen-
action has an infinite series of parity-violating terrtef  sions with both a Maxwell and a Chern-Simons term in the

II. MAXWELL-CHERN-SIMONS-HIGGS MODEL
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Lagrangian, interacting with a charged scalar fi@dvhich D I
has a symmetry breaking quartic potential: VLS RN
/ \
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FIG. 1. One loop self-energy diagram for computing the induced
A 2 22 parity violating Chern-Simons coefficient. The wavy line represents
o Z(|CD| —v9)% D the gauge field and the dashed line represents the scalar particle.

In the spontaneously broken phase, wh@rdas a nonzero
vacuum expectation valuéb)=v, we expand the scalar
field about this vacuum expectation valldEV) as P =v
+(1/y2)(c+iy) and obtain the following Lagrangian in the
R; gauge(ignoring the ghost Lagrangian which is not rel-
evant to our calculations
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Here the various mass parameters are

A. Zero temperature propagators
At zero temperature, the gauge field propagator is

D,..(P)= — [77 (p?—m?)
A (p2—mE +ie)(pP—mP +ie)| M

(1= &) (P>~ M) +£? .
- p,upv p2_ gmz + | KE/,LV}\p

4

where the two massive modes are identified by the poles at

5 K2+ 2m? + | k| (k%4 4m?) 12

from which we deduce théositive masses

_|K| / 4m2+
mi—T 1+ 7_1 . (6)

Note also the presence b, ,(p) of the term proportional to
5 ) 5 ewxp”, which manifestly breaks parity. The scalar fieid
m?=2e% has the standard bosonic propagddy(p) = 1/(p?>—m?).

m2=\v? (3)

B. Finite temperature propagators

At finite T, propagators can be presented either in the

imaginary-time or real-time formalisnhi18—20. Here we
record the propagators in both forms for the model in ).

1. Imaginary time

In the imaginary-time formalism, the gauge field propaga-

As mentioned above in the Introduction, for the correspondsiy, is (k—ix in the Euclidean spage

ing systemwithout the Chern-Simons terrfi.e. for k=0),
the finite temperature behavior of the polarization tensor was
studied in[16]. There, one of the key features was the dif-

ference between the bosonic masses appearing in the one- Dsf?(p)z

loop calculation. The modelith a Chern-Simons term is
more interesting for two reasons. First, the presence of the
Chern-Simons term leads to a different mass generation
mechanism for the gauge field, with it acquiring t@ather
than oné massive modes in the broken ph44&]. Second,

the Chern-Simons coupling leads to parity-violating contri-
butions to the polarization tensor, whose finite temperature
behavior is the subject of this paper. Both these differences
can be seen clearly in the propagator structure of the model.

085011-2

1

(W2+p?+m2)(W2+p2+m?)

X| 8,,(W2+p2+m?)—p,p,

(1= &) (W2+ p?+m?) — éx?
X = — K€y,
W2+ p2+ ém? H€umPx

)



PARITY VIOLATING BOSONIC LOOPS AT FINITE . . .

and the scalav field propagator is

D¥)(p)= ®

2, 2, 2"
Wi+ p2+m;
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2. Real time

In the real-time formalism, the degrees of freedom are
doubled in the standard wag0] in order to account for the
transfer of energy into and out of the thermal heat bath. The
propagators thus acquire a<x2 matrix structure, the com-
ponents of which are listed below, in the closed time path

Here, —ip®— w,=27nT are the usual bosonic Matsubara formalism, for the MCSH system in the broken phase. For

modes.

(1= &)(p?—m?) + éx?

the gauge field,

D" (p)=—| n,,(p>—m>) —p,p,

1

+ike,,\pt
p?— &m? ‘ ’”p]

—2i mng(|p°) 8((p?—m? ) (p?—m?))

|

DA~ (p)=2im| 9,,(p*~m>)—p,p,

(pP?—m’ +ie)(p?—m?

+ie)

(1= &)(p?—m?) + éx?

+ike, \pt
p?—ém? “p]

X[ 6(—p°)+ng(|p%)18((p?—m? ) (p?—m?))

DA~ *(p)=2im| 7,,(p?*~m>)—p,p,

X[ 6(p°) +ng(|p°)18((p?

(1= &)(p?—m?) + éx?

(1= &) (p?—m?) + £x?

i A
p2—§m2 +tIke, )P ]

—m?%)(p?—m?))

DA~ (p)=—| 7,,(p>*~m*>)—p,p,

-1

i \
p2_§:m2 +|K€#V)\p ‘|

—2i mng(|p?)) 8((p?—m?%)(p?—m?))

|

For the scalaw field,

1 _
DA (p)= ——————2imng(|p°)) 8(p?— m2)

pi—mi+ie

D"~ (p)=—2im 6(—p°) +ng(|p°))]8(p?— m?)

DY)~ * (p)=—2iw[ 6(p°) +ng(|p°)]8(p>—m?)

1
DY ()=~ 2imns([p°) a(p* - m)).

pPT—m

o

I1l. ONE-LOOP RESULTS

In this section we compute the parity-violating part,
as represented by the

1"V, of the polarization tensdi,,,

(p?—mi —ie)(p*~m2

—ie€)

contribution arises from theﬁmkx part of the gauge propa-
gator. We first review briefly the zero temperature result.

A. Zero temperature parity-violating part
The parity-violating part of the diagram in Fig. 1 is

d3k 1
(2m)% [(k+p)2—m?]

[1#(PV) = gj KGAUZGMVAJ‘

Ky
X .
(k2—m?)(k*—m?)

9
A straightforward use of Feynman parameters shows that this
can be expressed as

[PV = — e, T1(p?) (10

one-loop Feynman diagram in Fig. 1. The parity-violatingwhere
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d3k

1 1-« o
H(pZ)ZlGi Ke4vzf f daf dg . (11
(2m)3Jo Jo [k®+ a(1— a)p?— am?—pBm2 —(1—a—B)m2]®
The induced Chern-Simons coefficient is deduced from the vali&(pf=0):
2 a2 (? Lo 1 @
I1 =O=16if<evfdaf dB ==
Y o Jo 33277[a(mi—m2_)+,8(mi—m2_)+m2_]3’2
—2ike*?
= —m2(m? —m?)+2m*(m3 —m?)
3 (M= (= Y2 ) | Am
—m3(m}—m*)—4mZ(m3im? —m?im3)+3m (mim? —mZm*)—2(mim3 —m3m?)}. (12)
|
Notice that the dependence on the three different masses, , ie?
m,, m, andm_, is quite involved. IM(p“=0)= Zn ] (14

At this stage we pause to compare with some previous

results corresponding to special cases of this result. In thehis s exactly the mass relationshipn(—c and m,
pure Chern-Simons limit, in which the Maxwell term is re- —m_) that arises in the bosonic sector of the=R super-
moved from the Lagrangian, the corresponding result wagymmetric Chern-Simons-Higgs syst¢ai], and this result

computed in7]. This limit can be obtained from our result (14) agrees with the known result for this SUSY mof22].
by sendinge?— and k—, in such a way that the ratio

e’/ k is kept finite. In terms of the masses, in this limit,
—oo, m_—m?|k|=2e%?/|«| (finite), and m, is unaf-
fected. In this limit, our result reduces to We now consider the calculation of the finite temperature
one-loop parity-violating part of the polarization tensor. Such
a calculation can be performed either using the imaginary

B. Finite temperature parity-violating part

5 ( + 1 &) time or the real time formalism of finite temperature field
M(p2=0)= 2ie K 2 (13) theory. In this paper we record the imaginary time calcgla—
37 || m, |2 tion; we have also done the calculation using the real time
(1 __) formalism (the appropriate amplitudes to compare are the
retarded ones and obtain exactly the same results.
which is in agreement witi7]. Furthermore, when the re- In the imaginary-time formalism, the parity-violating part
maining massesn, andm_, are equal, this gives of I1,, is

oo

. oatz, L J dk Ky
WPV)=OBKEV €, \ > ——— = =
S MEB e ) (2m)7 [(KO+ p2)2+ (Kt p) 2+ m2] (k-+ K2+ m? ) (K3+ K2+ m?)

(15

where the Matsubara energies ak8=2#n/B8 and p®  opening new channels that are not present at zero tempera-

=2ml/B, with n andl being integers. ture in the absence of the thermal heat b@@]. We first
consider thestatic limitin which we first sep®=0, and then
1. Static limit take the limit|p|— 0. First, observe that, in this static limit,

At finite temperature there are different physical limits for
the external energy-momentupm due to the preferred Lor-
entz frame of the heat bath. These different limits reflect Isete PV, (16)
different physical processes. The static and long-wavelength
limits correspond to the Debye and plasmon masses, respec-
tively. The physical origin of the usual nonanalyticity in since thek® sum(i.e. the sum oven) clearly vanishes when
these two different limits is due to the fact that a virtual the indexA =0. The remaining parity-violating components
particle can be absorbed by real particles in the medium, thuare
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o0

1 d?k ki
HStat'CODV) 8ketv2e;; j —— - = . 17)
] n—Zm (2m)? [(K%)2+ (k+p)2+m2](k3+K2+m? ) (k3+K2+m?) (

The induced Chern-Simons coefficient is determined by the coefficiegtmfin the limit |p|—0, so we look for the term
linear in the spatial momentuﬁn. Thus, we expand

1 B 1 2p-K
[(K)2+(k+p)2+m2]  [(K)2+K2+m2]  [(K%)?+K2+m2]?

+0(p?d). (19

The first term in this expansion contributes 0 when the spﬁtiabmentum integral is done in E@QL7). However, the second

term produces a term linear ﬁl Using symmetric integration, we replakgt(j—»%RZaij , and obtain
M5 = € pj T staid P°) (19
where
K2
M gaid P?=0) = — 8ke*v?— f S
Statlt,(p ) B n (277) [(k0)2+k2+m ]2(k0+k2+m+)(k +k2+m2_)
s 01 < f d?k k? 20
=8ke*’— = = = = .
m2 B n=== J (2m)2 [ (k%) 2+ K2+ m2] (k3 +k2+m?) (K3 +Kk2+m?)

It is convenient to perform the sum over Matsubara modes using the Sommerfeld-Watson transf@sa2@of the sum
into a contour integral:

o0

> f(n=—= > [f(z)cotnz)] (21)

n=—o residues

where the sum is over the residues at the pole§pf. Thus, defining

=Vk2+m2, w,=Vk*+m2, o_=VKkK+m? (22)

we find that

1

[ 2 2 2
(Tt [5F) +o (5

Bl 5 ey
_E (z)_oCOt 2 —Ct ICOt T (23)
_2_(m§—m2+)(m12,—m2) (m2—m?)(m2 —m?) (mi—m%)(mi—mz,) '

|-
>

Il

|

8

We can separate the zero temperature contribution from the finite temperature correction by using the simple identity

X

cot E

in which we recognize the Bose-Einstein distribution functigr) = 1/(e*—1). Then the zero temperature contribution can be
expressed as

d d’k .
HgtTatug)_4Ke4 ? 2f (271_)2!\2

2
e*—1

=1+

(24)

lw, Yo, N lw_
(m2—m2)(m2—m?) (m2-m2)(m2-m?) (m2—m?)(m2-m?)|

(29

These integrals may be performed with a consistent UV regulator, yielding a finite result that agrees precisely with the zero
temperature result quoted in E42) (it is worth noting here that the Chern-Simons coefficient in the Euclidean spatmes
that of the Minkowski spage
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The finite temperature correction to this zero temperature result is given by

d d’k . 1 1 1 1 1 1
Hgtﬂatlc_s’(e4 z J k? - - -
m2) (27)? [(m2—-m2)(mi—m?) @y ef®r—1 (mZ—mi)(mi—m?) @4 efor—1
1 1 1 26
(m>—m?)(m? —m?) @ gfo-—1|
|
Thus, we need to evaluate an integral of the form
= {(mﬂ)zlog(l—e‘m5)+2§(3)
2 2 ’ 2mB3
I—Jdkk 1 1fd[x—(m,8)]
(27)? w efo—1 277/33 ma ef—1 n+2
27) 2 (n+2)n'(m’8)
wherew= Vk?+m?. We note that
1 1
. 27(3)+(mB)%| logmB)— = |+ ... |.
f dx—— = —log(1—eY) 29) w5 2
y  e-—1 (30
Jocd x2 jxd x? jyd x2 Thus, in the static limit, at high temperature, the leading
X = X X or i
y em1 Jooe—1 0 &1 behavior is
S _Bn e Axety?
—2§(3)—n§0 (n+2)nY 29 = W—IBF(mJﬂm— m) (31
where thel3, are the Bernoulli numbers. Therefore, the high
temperature expansion bfis where
- : m? log(m,, /m_) (m2m?2 —m?)log(m,/m_) 1
m,,m_,m,)=
! (m—m?)(m2—m3)2  (m2-mi)¥(m2-m?)2  2(mZ—m?)(m2—m?)
m? log(m,. /m_) (m2m? —m?*)log(m, /m.) 1
= +
(M2 —m?)(mz—m?)2  (mz—m?)AmZ-m?)?  2(mz—m?)(mi—m?)
2 2
m‘ log(m, /m,) m<log(m_/m,) 1
“log(m.,. a( (32)

C(mE—m)(mE-me )2 (mE—me)(mE-m? )2 2(mé—m?)(m—m?)’

It is very interesting to notice that the temperature depenrestoration temperature scale whose magnitude is deter-
dence inside the logarithmic terms cancels out, leaving logamined byT.In T,~n?/\. For supersymmetric Chern-Simons-
rithms only involving ratios of the masses, , m_ andm,, . Higgs systems, a detailed analysis of symmetry breaking
Note that to lowest order in perturbation theory we canconsiderations, at both one and two loop, has been peformed
neglect the possibl€ dependent mass shift that arises from ain [24].
calculation of the finite temperature effective potential. Also, We now consider this result in the mass limits considered
it is possible to study the high temperature limit wha@res  in Sec. Il A. First, we take the pure Chern-Simons limit in
sufficiently high compared to the relevant mass scales ( which m, ~|«|—, and m_—m?/|«|=finite. From the
>m~ev, andT>m,~ \Av) but still below any symmetry above, in this limit the leading high temperature behavior is
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(33

When the two remaining masses are edqual, m_=m,),
we find

2
K e
i — Tel 27 pm_

(34)

PHYSICAL REVIEW D 65 085011

Bm
1_[static | |4ﬂ_COtI_< ) (35)

This should be compared with the the corresponding fermion
loop result for a fermion of maddl:

Kk € ,BM
Mstaic= | [ 47 s —tan > | (36)

2. Long wavelength limit

In this section we consider the long wavelength limit at
finite temperature. In this limit we sgi=0, and consider

Indeed, in this case we can keep fa# temperature depen- p°—0. This must be done with care in the imaginary time
dence. Returning to the expressiof®) and (23) which  formalism, becaus@® is discrete and must be analytically
have the full temperature dependence, we can take the limigontinued back to real time where it is a continuous variable.
m,—o, andm,—m_, to obtain a remarkable simplifica- In the long wavelength limit, the parity violating part of the

tion:

d?k

polarization tensor is

Ky

ITEWPY) = g ketp2e » f
r a }\/3 n=- (2m)? [

By symmetry it is clear that

(K04 p%) 2+ K2+ m2][ (K% 2+ K2+ m% [ (k) 2+ K2+ m? ]

(37

Mg *=0 (38)

while TT5""Y) is nonzero. This is the opposite of what was found above in the static limit, wHERE®Y)=0 and

15120V 0. In fact,

1 d?k k
HLW(PV) 8rety2éi = f _ 0 _ _ . 39
B (2m)? [(KO+p°) 2+ K2+ m2][(K%)2+ K2+ m? ][ (k)2 + Kk +m? ] %9
The sum over Matsubara modes can be done, as before, using a contour integral representation
1S 2
B n==e [(KO4+p®)2+k2+m2][ (k%) 2+ K2+ m?% ][ (k%) 2+ K2+ m? ]
__Z(ﬁ)s D z cot( 7z)
- B\ 27/ residues (Z ,Bpo) (,Bw ) (Z_*_@)z_’_(ﬂﬁ)z (Z-i-@) (ﬁw )
27 2 2 27 2 2
F(ﬁwg) F(ﬂ%)
1| N2 (—p°+iw,) Nz (P°+iw,)
®s  [(—ptiw,)? 0l ][(—pPHiw,) +w?] Wo  [(pPHiwy)?+ 02 ][(PO+iw,)+ w2 ]
. Bow . Bw., . Bw_
|cotr( 5 ) |cotr< 5 |cotr<T
Lo 2+ edllt—0?] [(pP—iw )Pt elllel—0?] [(p%+ieo )+ el —o?]
icot?‘(%)
(40)

[(PP—iw )2+ w2][w)—w?]

This expression can now be analytically continuegiinand then Taylor expanded to linear ordepf in order to determine

the Chern-Simons coefficient. We write
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YY) = € pPIT L (p°) (4D
where
M (p°=0)= —4xe* 2f d*k | 1 2w, 20,
wip =V)=—aKkev - -
(2m?| { o (mg—mi)(mi—m?) (mi—mi)X(mg—m?) (mj—m?)(mj—m2)2
B 2w+cotl‘<'82&) 2w_cot)'('82&)
xcotr( ")+ - . (42)
2 (M2—m?2)2(m%—-m2) (m2—m?)2(m2—m?)

Once again, we separate the zero temperature piece from the finite temperature correction using the simpl{@4ileFtign
the zero temperature part of E¢2) is finite, with consistent UV regulators for the momentum integrals, and agrees precisely
with the direct zero temperature result in Ef2).

The nonzero temperature contribution can be expressed as

4xe’y?

77[33

e f dx [ B? 2x2 2x? ]
LwW— - -
pme*—1 | (m2—m2)(m2-m?2) (mi-m?)2(mi-m?) (m2—m?2)(m2—m?)2

(43

+f°° dx 2x? fw dx 2x?
pm e =1 (M2—m?)2(mf —m?) Jpm =1 (m2—m?)2(m? —m?) ]’

The dominant contribution at high temperature is easily comby comparing the static limit result85) and(36) in the pure
puted using the integrals listed earlier in E(®8),(29). This  Chern-Simons limit. The bosonic loop contribution goes like
dominant contribution in the long wave limit, at high tem- —coth(8nv2), while the familiar fermion loop static limit

perature, gives contribution goes like tan|gfr/2). In the bosonic theory, in
- the static limit, there will be a sequence of n@&vdependent
H_Lw(p\,)(ﬁ):4Ke4U2€"po log(Am,) parity violating terms, beyond the Chern-Simons term, just
g B (Mm2—m2)(m2—m?)’ like in the fermionic theory in the static limftLl—4]. This is

(44)  one step towards answering the question of large gauge in-
variance at finite temperature in non-fermionic theories.
We note several things about this result. First, there is stiiHowever, this is still an Abelian theory. To resolve this ques-
a logarithmic dependence on the temperature. Second, tfi@n in anon-AbelianChern-Simons Higgs systefsuch as
long wavelength limit gives a completely different result for those studied at zero temperature7r-10]) one needs also
the parity violating part of the self energy, as compared tdo analyze the gluon and ghost loop terms at finite tempera-
the static limit. This is true even though the two masses irfure. This is a much more difficult problem, and is beyond
the bosonic loop are quite different. So, there is still a nonthe scope of this paper.
analyticity in the self-energy, contrary to what had been In the model studied in this paper, the induced Chern-
found earlier in a simpler mod¢lL6] without parity viola- ~ Simons terms arise in loop corrections because of the pres-
tion. For completeness, we note here that, at high temper#nce of a parity violating bare Chern-Simons term in the bare
ture, the contribution due to a fermion loop to the Chern-Lagrangian. This bare Chern-Simons term has a number of
Simons term goes as 8 in the static limit and as- 8 In 8in consequences. First, it gives the gauge field two massive
the long wave limit 25]. modes in the spontaneously broken phase. Second, it intro-
duces parity violating interactions. We have shown that the
induced parity violating contributions to the self energy be-
have, at finite temperature, in a very different way from the
To conclude, we emphasize that the induced Chernparity preserving contributions studied previously [{6].

Simons terms that appear from bosonic loops have a conBpecifically, the parity preserving terms have a unique zero
pletely different temperature dependence from those induceshomentum limit, even at finite temperature, while the parity
by a fermion loop. In fact, the contribution from the bosonic violating terms have a non-unique limit at finite temperature.
loop grows at high temperature both in the static as well a¥Ve have demonstrated this by computing the parity violating
the long wavelength limits, as opposed to the contributiorterms in both the static and long wavelength limit. The lead-
from the fermionic loop which decreases at high temperaturéng high temperature parts for these parity violating terms are
in both these limit§25]. This behavior is most clearly seen given in Eqgs.(31), (32) and(44), and they are clearly differ-

IV. CONCLUSIONS
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ent. In the long wavelength limit there is a logarithmic de-dent parity conserving contributions in order to determine

pendence on the temperature, while in the static limit thigshe physical masses in thermal equilibrium. This issue has

cancels out leaving logarithmic dependence on mass ratiosbeen analyzed ifi6] for the Chern-Simons-Yang-Mills sys-
In addition, we have analyzed the limits in which the tem at finite temperature. A similar analysis for the Maxwell-

Maxwell term is removed, leaving a pure Chern-SimonsChern-Simons-Higgs system with symmetry breaking would

theory, and also in which the remaining scalar masses atfge an interesting application of the results in this current

taken to be equal. In these cases the temperature dependempeper.

simplifies considerably. We understafb] that Gomes and

coIIabore_ltors are analyzing a related model mvolvmg a pure ACKNOWLEDGMENTS
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