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Gauge-independent off-shell fermion self-energies at two loops: The cases of QED and QCD
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We use the pinch technique formalism to construct the gauge-independent off-shell two-loop fermion self-
energy, both for AbeliatQED) and non-AbelianfQCD) gauge theories. The new key observation is that all
contributions originating from the longitudinal parts of gauge boson propagators, by virtue of the elementary
tree-level Ward identities they trigger, give rise to effective vertices, which do not exist in the original La-
grangian; all such vertices cancel diagrammatically inside physical quantities, such as current correlation
functions orSmatrix elements. We present two different, but complementary derivations: First, we explicitly
track down the aforementioned cancellations inside two-loop diagrams, resorting to nothing more than basic
algebraic manipulations. Second, we present an absorptive derivation, exploiting the unitaritysonalrex,
and the Ward identities imposed at the tree level and one-loop physical amplitudes by gauge invariance, in the
case of QED, or by the underlying Becchi-Rouet-Stora symmetry, in the case of QCD. The propagatorlike
subamplitude defined by means of this latter construction corresponds precisely to the imaginary parts of the
effective self-energy obtained in the former case; the real part may be obtained ftovice subtracted
dispersion relation. As in the one-loop case, the final two-loop fermion self-energy constructed using either
method coincides with the conventional fermion self-energy computed in the Feynman gauge.
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INTRODUCTION taming of the physical kinematic singularity necessitates a
resummation, which amounts to a nontrivial reorganization
It is well known that off-shell Green'’s functions depend in of the perturbative series.
general on the gauge-fixing procedure used to quantize the In the context of the two nonperturbative situations men-
theory, and in particular on the gauge-fixing paraméBP  tioned above the fermion propagator is of particular interest.
chosen within a given scheme. A celebrated exception to thig the former case, the SD equation involving fermion propa-
general fact is the vacuum polarization of the photon ingators(self-energieshas an extended range of applications,
QED, which is both gauge invariarit.e., transverseand  most of which are linked to the mechanism of dynamical
GFP independent to all orders in perturbation theory. In conmass generation, which is explored by looking for nontrivial
trast, the fermion self-energy(p) is GFP dependent already solutions to gap equations. The study of such equations has
at the one-loop level. The dependence on the GFP is in geribeen particularly popular in QEPL], and even more so in
eral nontrivial and affects the properties of a given Green’®QCD [2], where it has been intimately associated with the
function. In the framework of the covariant gauges, for ex-mechanism that breaks the chiral symmetry. Similar equa-
ample, depending on the choice of the GfBne may elimi-  tions are relevant in QED where the infrared regime of the
nate the ultraviolet divergence of the one-loop electrortheory is probed for a nontrivial fixed poih8], for techni-
propagators, (p,£) by choosing the Landau gauge=0, or  color models[4], gauged Nambu—Jona-Lasinio modgds,
the infrared divergence appearing after on-shell renormalizaand more recently color superconductivifg]. A similar
tion by choosing the Yennie-Fried gauge 3. The situation quest takes place in top-color models, where the mass of the
becomes even more complicated in the case of non-Abeliatop quark is generated through a gap equation involving a
gauge theories, where all Green’s functions depend on thstrongly interacting massive gauge fi¢ld. The usual prob-
GFP. Of course, when forming observables the gauge depetem with the SD approach in genef&,9] and the gap equa-
dences of the Green’s functions cancel among each othéions in particulaf10] is that sooner or later one is forced to
order by order in perturbation theory, due to powerful field-choose a gauge, resorting to a variety of arguments, but
theoretical properties, a fact which reduces their seriousnesgauge choices cast in general doubts on the robustness of the
However, these dependences pose a major difficulty wheaonclusions thusly reached. In the latter case, i.e., the reso-
one attempts to extract physically meaningful informationnant production of fermions, and in particular top quarks,
from individual Green’s functions. This is the case in at leastone makes use of the resumed off-shell quark self-energy.
two important situations, which both lie beyond the confinesEven though exactly at the resonance the gauge dependences
of fixed order perturbation theory: first, the Schwinger-cancel, infinitesimally away from it they persist, giving rise
Dyson(SD) equations, which constitute one of the few meth-to artifacts obscuring the notion of the running width and the
ods for obtaining nonperturbative information in the con-implementation of perturbative unitarity in the resulting
tinuum; second, resonant transition amplitudes, where thBorn-improved amplitudegl1].
It is known that gauge-invariant and GFP-independent ef-
fective off-shell Green’s functions can be constructed by re-
*Email address: Daniele.Binosi@uv.es sorting to the pinch techniqu@®T) [12]. The PT reorganizes
"Email address: Joannis.Papavassiliou@uv.es systematically a given physical amplitude into subampli-
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tudes, which have the same kinematic properties as conveparts of gauge boson propagators, by virtue of the WI they
tional n-point functions(propagators, vertices, boxdsut, in  trigger, give rise taunphysicakffective vertices, i.e., vertices
addition, are endowed with desirable physical propertieswhich do not exist in the original Lagrangian. All such ver-
Most importantly, at one-loop ordéi) they are independent tices cancel diagrammatically inside ostensibly gauge-
of the GFP,(ii) they satisfy naive(ghost-freg, tree-level invariant quantities, such as current _correlatpn functlons or
Ward identities(WI), instead of the usual Slavnov-Taylor Smatrix elementé. The final calculational recipe resulting

. " . . from this analysis is that one can use directly the covariant
identities[13], (iii ) they contain only physical thresholds and Feynman gauge, which of course happens to be the simplest

satisfy very special unitarity relationg4], and(iv) they co-  harationally. It is important to emphasize that exactly the
incide with the conventionat-point functions when the lat-  same result is obtained even in the context of the noncova-
ter are Computed in the background field method Feynmarant axial gauges, for e)(amp“:e:]_]7 where the Feynman
gauge[15]. These properties are realized diagrammaticallygauge cannot be reachadpriori by simply fixing appropri-
by exploiting the elementary WI's of the theory in order to ately the value of the gauge fixing parameter. Thus, even if
enforce crucial cancellations. The extension of the PT tmne uses a bare gluon propagator of the general axial gauge
two-loops has only recently been accomplished in the case gorm, after the aforementioned cancellations have taken
massless Yang-Mills theories such as QIB]. The studies place one arrives effectively to the answer written in the
presented so far in the literature have mainly focused on thgovariant Feynman gauge. Also notice that in calculating the
general construction of the effective gauge-independenfinal answersomething we shall not do hérene never has
gluon self-energy, but little has been said about the fermiorio carry out any of the tricky integrals characteristic of the
propagatof17-19. axial gauges, i.e., integrals with unphysical poles of the form
Throughout the two-loop analysis ¢16] it has been as- n.k [22].
sumed that one can work without loss of generality in the The second part of the paper is devoted to the absorptive
covariant (renormalizable Feynman gauge, i.e., begin the derivation of the same results. The absorptive construction
analysis by choosing the Feynman gauge when writing dowexploits the unitarity and analyticity properties of physical
the Feynman diagrams contributing to tigematrix. Of  amplitudes, together with the fundamental WI satisfied by
course, there is no doubt that the ent8enatrix written in  entire physical processes dictated by the Becchi-Rouet-Stora
the Feynman gauge is equal to the same eftiratrix writ-  (BRS) symmetry[23]. The salient points of this general
ten in any other gauge. What is less obvious is that all relmethod have been presented in detai[24]. Here we will
evant cancellations proceed without need of carrying out inapply it to the case of the two-loop quark self-energy con-
tegrations over the virtual loop momenta, thus maintainingaining QED or QCD corrections.
the kinematic identity of the various Green'’s functions intact, The paper is organized as follows. In Sec. | we review the
a point of crucial importance within the PT philosophy. As one-loop construction in both the QED and QCD. This will
has been shown by explicit calculatiofeee, for example, allow us to fix the notation and introduce in a simplified
[17]), this is indeed the case at one loop. Assuming that thigetting the diagrammatic algorithm used throughout the pa-
important property persists at two loops, the highly nontrivialper. In particular we will discuss how the gauge cancellations
issue which was resolved [i6] was how the splitting of the are achieved both in current correlation functions as well as
three-gluon vertices appearing in the two-loop diagramsn physical on-shell processes, such g®—yQ or GQ
should proceed. We shall not review this point further, given_,GQ, whereQ is a quark andG a gluon. In Sec. Il we
that it has been exhaustively treated[ir6]; here it should tackle the two-loop case. The procedure is carried out in full
suffice to say that no such splitting should take place for thejetail, beginning from the same current correlation function
internal three-gluon vertices appearing inside the two-loops in the one-loop case. By means of a systematic, albeit
fermion propagator, or any other diagram for that matterjengthy analysis, we demonstrate explicitly all relevant can-
Therefore, one of the conclusions presented1i6], under  cellations, and finally define the GFP-independent two-loop
the aforementioned assumption, was that the gaugeslectron(quark self-energy for QED and QCD. We then turn
independent two-loop quark propagator in the presence ab the description of how one may construct the PT effective
QCD interactionsoincideswith the conventional one com- Green’s functions using unitarity and analyticity arguments.
puted in the Feynman gauge. In this paper we will verify thisThus, we first review the one-loop absorptive construction in
assumption in the cases of QED and QCD for the two-loofhoth the Abelian and non-Abelian gauge theorigsc. Il),
fermion self-energy. and introduce the notation which will be used in Sec. IV,
In the first part of this paper we will track down the gauge where we will carry out in detail the full absorptive construc-
cancellations systematically, and provide a simple diagramtion both in the QED and QCD frameworks. Finally, in Sec.
matic algorithm which allows one to follow easily their v we present our concluding remarks.
implementatior. The key observation, which will be used as
the only guiding principle throughout the intermediate steps;

is that all contributions originating from the longitudinal  2gjyen that the vertices involved are unphysical, one might be
tempted to directly discard all such contributions by hand, instead
of cancelling them algebraically against each other, as we do in the
!Some aspects of the cancellation mechanism described in thisaper. In the case we consider here this seemiagliyocprocedure
paper are similar in spirit to that presented 20]; however, we do  would furnish the correct answer, but it is not known to us if it
not resort to “color orientation” techniques. would work in general.
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I. THE ONE-LOOP CASE
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Before venturing into the intricacies of the two-loop con- ’VV%’W = buly
struction, which is the main topic of this paper, we will first
present the one-loop case, in an attempt to fix the ideas and AP = ©
the notation. In this section we will explain in detail the
method which gives rise to effective, gauge-independent fer-
mion self-energies. In particular, after setting up the diagram-
matic notation which will be used throughout the paper, we
will illustrate how the procedure works in the case of QEDAIl of these six structures will arise from algebraic manipu-
and QCD. The results for the one-loop case have alreadptions of the originalA , (/). For example, in terms of the
been presented ifl6], albeit from a slightly different point above notation we have the following simple relatiome
of view; here we will recast them in the diagrammatic lan-will set A\=¢—1):
guage introduced below, thus setting up the stage for the
two-loop derivation. It turns out that in the one-loop case the
difference between the Abelia(QED) and non-Abelian BOOOOTT = M + A*V\/ﬂw\;

(QCD) constructions is purely group theoretical, and there-

fore a unified presentation will be followed; this will cease
being the case at two loops. We next turn to the study of the gauge dependence of the

We will assume that the theory has been gauge fixed bfermion self-energyelectron in QED, quarks in QODThe
introducing in the gauge-invariant Lagrangian a gauge-fixingnverse electron propagator of ordan_n the perturbative
term of the form (1/2)(d,A*)?, i.e., a linear, covariant €Xpansion has the foritagain suppressing color
gauge; the parametgris the GFP. This gauge-fixing term
gives rise to a bare gauge-boson propagator of the form S, (p,&)=p—m—-32"(p,¢), (1.3

MAAA N =

N»I,_. f\pl_:\ ~
Y

B

where 3 (M(p,¢) is the nth order self-energy. Clearl§(®

| i /s " e o s ()
A/ E)=——5|g,,—(1— v 1.1 =0, andS; *(p)=p—m. The quantity>'"(p,&) depends
w4 8=7 72| 0w~ (178 = 13 explicitly on ¢ already forn=1. In particular,

which explicitly depends or. The trivial color factordyy, 2(1)(p,§)=f [d/Ty*So(p+ ) YA (7€)
appearing in the(gluon) propagator has been suppressed.

The form ofA ,, (7, €) for the special choicé=1 (Feynman

gauge will be of central importance in what follows; we will =3 (p)+r2 M (p) (1.4
denote it byA}, (/); i.e.,

with
PN AF () — i ‘ :
Al £ V=A== 280 12 sPp=30p1= f [d/19So(p+/) 7" A%, (/)
1.9
AW(/,g) and Afw(/) will be denoted graphically as gnq
follows:
(1) 1 [d~] Ny g
BT = i (4, E), e = AL () 2(P=-S%"(p) /TSO(p+/)7 “y
— [, im0 ie)
For the diagrammatic proofs that will follow, in addition to &Y P P
the propagatora ,,(/) and Afw(/’) introduced above, we
will need six auxiliary propagatorlike structures, as shown [d/]
here: =351(D)f750(p+/)551(p)
. . . . . . 1 [d/]
3For convenience, in our diagrammatic notation we will remove -5, (p) iR (1.6
all factors ofi appearing in the fermionic or bosonic propagators; }
they can be easily recovered as a global coefficient multiplying the
Feynman diagram under consideration. In the above formulasd/]=g?u?d°//(27)P] with
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D=4-2¢ the dimension of space-timgy the 't Hooft A, (~,&) gets contracted with the appropriagematrix ap-
mass and g the gauge couplindg=e for QED, andg pearing in the vertices. Diagrammatically, this elementary
=g, for QCD). The subscripts F” and “L” stand for  WI gets translated to

“Feynman” and “longitudinal,” respectively. Notice that

31 is proportional taS, *(p) and thus vanishes “on shell.”

The most direct way to arrive at the results of EQ6) is to § _ § %

employ the fundamental W,

4=Sp+/)-S Y p), (1.7
(P (P Then, the diagrammatic representation of Eds4), (1.5),
which is triggered every time the longitudinal momenta ofand(1.6) will be given by

PN SN i ST S @9

When considering physical amplitudes, the characteristiovhere the current J,(x) is given by J,(X)

structure of the longitudinal parts established above allows:;a(x)), Q(x):. Of course/ ,,(q) coincides with the pho-

for their cancellation against identical contributions originat-tgn vacuﬁm polarization of QED. Equivalently, one may
ing from diagrams which are kinematically different from sydy physical on-shell processes such jas—ye, yQ
fermion self-energies, such as vertex graphs or boxétb; 0 or GQ—GQ, whereG is a gluon. Of these three
out the need for integration over the internal virtual mo- processes the first two are the most economical, since in the
menta. This last property is important because in this way thgytter the algebra is more complicated due to the appearance
original kinematical identity is guaranteed to be maintainedf three gluon vertices.

instead, loop integrations generally mix the various kinemat- 1o see explicitly the mechanism enforcing these cancella-
ics. Diagrammatically, the action of the Wl is very distinct: it tjons in the QED and QCD cases, we first consider the one-
always gives rise to unphysical effective vertices, i.e., vertiyoop photonic or gluonic corrections, respectively, to the
ces which do not appear in the original Lagrangian; all suChyuantity1,,,. Clearly either set of corrections is GFP inde-
vertices cancel in the full, gauge-invariant amplitude. pendent, since the curred,(x) is invariant under both the

To actually pursue these special cancellations explicitIyU(l) and theSU(3) gauge transformations
one may choose among a variety of gauge-invariant quanti-

ties. For example, one may consider the current correlation
functionl ,, defined agin momentum spage Q(x)—exp[—i6(x)}Q(x),

|(a)=i f dx €9°%(0[T[3,(%)3,(0)1|0) QU0 ERTIACOTIRR0. (1.10

6(x)—>exp[i e(x)}a(x),
=(0,,9°=9,9,)1(g?), (1.9

Q(X) —exgfi 6a(x) T*Q(x),
“Throughout the paper we usef[d/]//?=0 and
J[d/1/ o/ g1 7*=0,D 1f[d/]/7?=0, valid in dimensional A a2 )
regularization. In addition, integrals odd in the integration variableWhereT°=3z\%, with A® the Gell-Mann matrices.
are considered to vanish. Notice, however, that nowhere will we use  The relevant diagrams are those shown in Fig. 1. To see
the slightly subtlerf/[d/]//*=0, which is often employed in the the appearance of the unphysical vertices, we carry out the

literature. manipulations presented in Egd.4), (1.5, and (1.6), or,
°A formal derivation of the gauge dependence may be obtained bgquivalently, in Eq(1.8), this time embedded inside,,(q).
resorting to the so-called Nielsen identiti&s]. Thus, from diagramgb) and(c) we arrive at
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k k+7¢

FIG. 1. One-loop diagram con-
tributing to the QED/QCD fer-
mion self-energy.

b7, (©) T4

tonic or gluonic corrections. This type of vertex may be de-
picted by means of a Feynman rule of the form

—ET =i,
We thus see that since the action of the elementary WI of Eq.

(1.7 amounts to the cancellation of internal propagators, itg, being the index of the external current.

diagrammatic consequence is that of introducing an unphysi- To see how the above unphysical contributions cancel in-
cal effective vertex, describing an interaction of the formsidelw we turn to diagranta). The action of the WI may be
vyQQ or yGQQ, depending on whether we consider pho-translated to the following diagrammatic picture:

(b)+(c) — 2 = —2A

() (8)

It is then elementary to establish that the two diagrams on the kii—k
right-hand side of the above diagrammatic equation add up. pov 1
p . — ) v
Indeed, for(a) we have(suppressing the integral measure )\Tr[ Yeom K+ /—d—m
1 /
1 1 X P | — 2. (1.12
— N v _ /4
(@) )\Tr[y k—myk-i-/—q—m k—dg—m|/
1 7, Summing the two equations above then, it is clear how
X ?’p—k_q_m Wz (11D the gauge-dependent part of the one-loop amplitude cancels

altogether. Having proved that the GFP-dependent contribu-
tions coming from the original graphs containing
>M(p,é), i.e., Fig. 1b) and Fig. 1c) cancel exactly against
equal but oppositpropagatorlikecontributions coming from
Fig. 1(a), one is left with the “pure” GFP-independent one-

loop fermion self-energys.(!)(p). Clearly, it concides with

whereas from(B), taking the trace counter-clockwise and
using the fact thatl ,, is symmetric under the exchange

. e
me v, We obtaif}

il 1 L1 the =H(p) of Eq. (1.5), i.e.,[17]
B =AY e —m " k—g—m
.1 Z 2B(p)=3"(p). (113
YR —d-m *

Next, we will consider the physical procesQ— yQ in
order to analyze how the procedure outlined above works in
5Throughout the paper we will make extensive use of suitabldhe case of ais-matrix element. The one-loop diagrams for
shiftings of the integration variables together with various rear-the process under consideration are listed in Fig. 2. We will
rangements of seemingly distinct diagrams. isolate the parts of the above diagrams proportional,to
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process yQ—yQ (p1+pP2=g=p3+p,). Dia-
grams(e) and (f) correspond to th€one-loop
q renormalization of the external legs.

: g+¢
/
q+¢
£
(a) (b) (c) FIG. 2. One-loop QED/QCD correction to the
2 q+£ § ’? q i

£

(d) (e)

using again the WI of Eq(1.8), together with the fact that are precisely those stemming from the original propagator
the external particles are on their mass shell. We emphasiatiagram (a), and finally cancel algebraically against each
that the point of this exercise is not to prove the GFP inde-other.

pendence of theé matrix, but rather to recognize that the  To see this in detalil, we begin with diagrai@; applying
GFP cancellations proceed in a very special way: thehe identity of Eq.(1.8) in a symmetric way, i.e., allowing
\-dependent parts of verticed), (c)] and boxe$(d)] do not  the longitudinal parts to act once on the left and once on the
maintain the same kinematic identity as their parent graphgijght vertex of the diagram, one obtains the following GFP-
instead, they reduce to simpler kinematic structures, whicldependent part:

Similarly, we find
(b) + (c) = A ~§/\ Mﬁw }—i%i + A %ﬁ

(d) — —=A

Thus we see that the GFP-dependent part of the box diagram The remaining tadpolelike contributions will actually can-
(d) completely cancels against the last diagram appearing ioel against the GFP-dependent parts of the diagi@nasnd

the above equation, in such a way that, after adding every{), representing the renormalization of the external legs. The
thing up, we get renormalization constant reads

1/2 1
Z; :1+§5ZZ+-~-, (1.19
(®) + (b) + () + (&) = % + 3
whereéZ, represents the one-loop counterterm in the pertur-
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kt+¢t ' k+¢

k+f0+7
k k+T @4{_, L
(f) k+e+r—q (&) ktr—t-q (h) k+r—gq
k k+£€+7r k
) k42 k+7r
k+t-gq k+f—gq k+r—gq
W, 7, 0 = (m) () S
k k—1¢ kE+r
ke k+r k k k+e
k+2l—gqg k+r—gq
(o) ®) = @ > (x)

(23) (z5) k+l—gq

FIG. 3. Two-loop diagram contributing to the QCD fermion self-energy.

bative expansion; in the on-shell renormalization scheme it isVe next focus our attention on tR&") part of Eq.(1.15. As

defined as can be seen from E1.6), 3("(p) is of the form
d
5Zz=(m2(l)(p,§) S (p)=(p—m)g(p)(p—m)+(p—m)c, (1.16
p=m
Jd
I[E(F1>(p)+AE<L1)(p)] (1.15  wherec is a momentum-independent constésete footnote
p p=m 4); thus
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E(Ll)(p)|p:m:0- 5Z,.=\C. (1.17  been able to define the one-loop GFP-independent fermion
self-energys()(p). In this section we proceed to the main
Diagrammatically then, Eq1.8) implies that subject of this paper, namely the two-loop definition of the
GFP-independent fermion self-energy.
At the two-loop level the presence of up to three gauge
A=0 §;;§ boson propagators in the internal fermion loop will give rise
—-— = —e— | )

to O(A%), O(A?), and O(A) GFP-dependent pieces. Of
course, the gauge cancellations proceed independently at

where the right-hand side is evaluategbatm. Thus, recall- each order in\, a fact which facilitates the identification

ing the extra 1/2 factor appearing in E(..14), the GFP- of diagrams(or_ parts of diagranjswhic_h can mix \_/vith .
dependent part of the wave-function renormalization dia£ach other. Notice, however, that occasionally we will devi-
grams is given by ate from this elementary rule of thumb, in order to exploit

the fact that one can identify massive cancellations between
different diagramdeforeseparating out the different orders

in the GFPA\; this happens, for example, in the Abelian-

like part of the gauge cancellation, as we will see below. We
(&) + () = -3 ~ 3 will now proceed to the detailed analysis of the two-loop

construction, showing first how it works in the Abelian

(QED) case, and concentrating then on the non-Abelian case

(QCD).

which completes the proof that the GFP independence of the
S-matrix element is implemented in the kinematically dis- A. Abelian case
tinct way advocated above. Again, the remaining pure GFP-

independent fermion self-energy which survives is simply The diagrams contributing to this part of the amplitude
the one given in Eq(1.13. are the ones denotdd),...(q) in Fig. 3." In this part of the

cancellation one can carry out massive cancellations dealing
with O(A?) andO(\) diagrams at the same time, by pinch-
ing with only one propagator, while letting the other one
In the previous section we set up the general method fountouched. We will now consider in detail a couple of these
treating the GFP-dependent contributions associated with thdiagrams showing how the procedure works in the two-loop
longitudinal momenta of the gauge bosons propagators incase.
side Feynman graphs, studied at the one-loop level, the spe- From the box diagranfa) we get, for example, the fol-
cial cancellation mechanism that this implies. Thus we havdéowing equation:

II. THE TWO-LOOP CASE

Let us concentrate on the three topologies shown above. As a second example, we consider the box diagtem
It is clear that topology(a) can be generatednly from  which gives
diagram (b), and so it must cancel against it. Topologies
(B) and (y) will be also generated from diagranid) and
(c); however, these last two diagrams do not need to cancel———
in full against the one Coming fl’OT"d) and (C), because, as 7Diagrams £4), (z5) and (z5) can be put in the Feynman gauge
we will see, topologically analogous contributions will also right from the start, due to the transversality of the fermionic sector
appear from other diagrams. of the photon/gluon propagatésee also Sec. 1B
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As expected, topologye) cancels against the diagrafm) of the previous equatiofafter exchanging the order of the
internal lines and relabeling the internal momentaut we have generated also two new topologigs: which will be
generated as well by diagraf®), and({) which will be generated bfg). Letting untouched the vertical propagator in diagrams
(c),...(h), we then arrive at the following equation:

(@)+(b)+(c)+(d)+(e)+(f)+(g)+(h)—

(6)

Actually the last two diagrams add up to zero. To see this, we can useutheir symmetry, to observe théthe integral
measures are suppressed

1 1 1
—~ M P. v
(w) ”Tr[y k—m” k+i+/-m” k+i—g-m”

g

1 1
V(_q_m Apo’(r )7’ (21)

while

) ! ) 1 N
Vs —m Y em Y ki —g=m Y kr i —g=m|" ") 7

(v)~— )\TI’[

k+/+r—k 1 1 1 1 2 L
= - v P M o il
AT{‘Y k_my k—/—r‘—my k—f—Q—my k_q_m}Apu(r )/4
==
SIS PO VI .t S T PR .
= A Y e Yk —m Y K =g=m ? k=g=m| (") 7 2.2

Moreover, from the remaining diagrams we get

)+ (n)+(p)+(i)+(m)+(0) — 2X
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After having identified these cancellations of mixed order WHM*
[O(\) andO(A?)] we next find it convenient to pursue the

remaining cancellations treating separately héx) and It is then fairly easy to show that
O(N\?) GFP-dependent amplitudes.

2
1. The O(A?) cancellation (& — 22

For this case one has to replace the propagator
which implies
TOTOO0

(&)+(n)=0. 2.3
appearing in the diagramén),...(p) with the propagator Moreover, considering diagrai®) we find the result

The fact that the last two diagrams in the first line of thefermion propagators. Of course, the only available momen-
previous equality can be added up reflects the freedom dabimr in diagram(p) cannot pinch directly, due to the obvi-
moving at will the photon(gluon) tadpolelike loops in a ous kinematic mismatch. However, one has
given pinched diagram. This can be done because such loops
represent scalar quantities—defined in Ef§.6)—with no
interactions left at the vertex. Notice that this freedom does
not interfere with our notion of unphysical vertices, since
both diagrams, written in either way, are equally unphysical. (p) = N2
We will often use this property in what follows.

Adding to the above result the contribution coming from

diagram(q), we then get
= A2 @@ — A
;.:-‘AV‘VA.AV ‘7’1'4 - )\2 @

(0)+(a) — A

which implies finally

a combination that should then cancel completely with the (p)+(6)+(q)=0. (2.5
diagram(p), which atO(A?) reads

2. The O(\) cancellation

For this case one has to replace the propagator

(2.9

In order to make this cancellation manifest, we need tcappearing in the diagraméz),...(p) with the Feynman
change the given topology by means of pinching internapropagator
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However, these diagrams represent only half of those

contributing to this order; clearly, the other half is obtained
by inverting, with respect to the previous calculation,
the pinching and Feynman propagators. For example, for = —A + A
the diagrams(c),...(h) the new terms are obtained by

pinching with the vertical propagator, treating the other

one as the Feynman propagator. Now, notice that the topolo-

gies () and(6) can be canceled only by these new contri-which are exactly the topologies needed to cance( theand
butions coming from the diagran{g) and (b). In fact, one (6) terms. In addition, the following new contributions are

has obtained from diagram&),...,(n):

(©)+(E)+(g)+({)+(m)+(0)+(d)+(e)+ (h) +(p)+ (1) +(n)—
2A —4A + 2A
)

) (m) (v

Finally, the two contributions coming from diagrafq) @, (0, (d), (&), (f), (i), (1), (0), (p), ()
will add up giving the final result 5
~—C ,

(b), (g), (h), (M), (N)~—C#+3CCs,

(r), (S)! (t)! (U)M%CACfv

1
Adding all terms together, we finally find that (W), (X), (¥)~=2CaCr,

(&)+(p)+ () +(7)+(v)+(q) =0, (2.6) whereC; and C, represent, respectively, the quadratic Ca-
simir operators of the fundamental and the adjoint represen-
tations of theSU(N.) group, i.e.,
which completes the proof of the gauge cancellation in the
Abelian case. X
c2o Ni—1
2N

Ca=N¢. (2.8
B. Non-Abelian case

We next proceed to address the non-Abelian case. With
respect to the Abelian case we have two main differencedt is then clear that, while for the parts of the Abelian-like
first, there are seven more diagrafpkis ghoststo consider ~ diagrams(a),...(q) which are proportional t€? the cancel-
(see diagramsr),....{y) in Fig. 3), all of which contain at lations proven in the previous sections will still go through,
least one three-gluon vertex; second, due to the nontriviahe parts proportional t€ 5 will survive, and will eventually
color structure of the theory, the cancellations in the Abeliancancel against contributions from the purely non-Abelian
like subset of graphs will not go through as before. graphs. Thus our first task is to determine the non-Abelian
Let us first deal with this latter point. Taking into account remainders of the diagrams appearing in the second line of
the factors of coming from the Feynman rules, we have the Eq. (2.7), at each order in.
following color prefactors: At any order in\ one has
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(2.9
On the other hand,
(b) — 2A2
+2)%
(vii)
It is straightforward to verify, using the procedure presented following(Ed), that
(i) + (iii )+ (v) + (viii) =0,
(i) 4+ (vi)+(vii)=0. (2.10
Finally, (iv) and(ix) cancel directly. Thus, aD(\?) we are left with the non-Abelian remainder
(g)+(h)+(m)+(0)+(b) — —2A7
(2.11

which will be canceled later.
In the O(\) case, we have to substitute the propagator

BTV

appearing in Eq(2.9) with the Feynman propagator

Moreover, as already mentioned, we have still to compute the GFP-dependent contrilflitieas in \) of diagrams

085003-12



GAUGE-INDEPENDENT OFF-SHELL FERMION SELF . . PHYSICAL REVIEW D 65 085003

(9), (h), (m), (n), where the Feynman and pinching propagators are reversed with respect to that presentéd. 8. Egus,
we obtain:

(g)+M)+(m)+{n) —

(m)
2A@+2A@*@u@@®+u
—2A@2A@+2A®@@+m

Finally, from (b) we obtain

(b)— 2A@+2A@2A@@m

Thus, putting all terms together, we arrive at tBé\) non-Abelian remainder

(&)+(h)+(m)+(n)+(b) —

(2.12

We next concentrate on the purely non-Abelian diagrdgs.., (y). In this case we will split the calculation from the
beginning into different orders iN. Notice that theD(\®) cancellation is automatically accomplished due to the elementary
wi

kllj'kskgryvp(klvkbks):oy (2.13

satisfied by the three-gluon vertex. Therefore we only have to call¢sf) andO(\) contributions.

1. The O(A?) cancellation

In dealing with the non-Abelian diagrams, we have found it more economical to carry out all possible cancellations before
letting the longitudinal momenta act on the three gluon vertex. Consider, for example the diégrants): each one gives
rise to three possibl®(\?) diagrams, as shown below
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Similarly, the basic topologies obtained from diagraftisand (u) can be easily worked out. After some elementary manipu-
lations involving further pinching in order to allow the combination/cancellation of seemingly different topolbgtesithout

acting on the three-gluon vertgrone finally arrives at
. C( % ): e :( 55%?%6
&) g 0+ A2 ) P% ;D

(@) + (&) + (O+(u) — —22 — A2

We next consider diagramiw), (x), and(y), and the cor- KEKST (ke Ko /)= — 1/2(ky— ko),
responding ghost and fermion diagramg)(z.,(z). Let us ,
introduce the one-loop gluon self-energy +3/ - (k;=kp)/,. (219

(g, \) = ;W@MJF ..... WOWW The first term represents an inverse propagator times a mo-
T Ry L mentum which in general cannot pinch, whereas the second

term represents an effective three gluon vertex times a pinch-

which, due to its transversality, satisfies ing momentum. Thus, for example,
g“IL,,(g,\)=0. (2.19
This fact will then imply that as far as the ghost and fermion (y) . — 2 Y

diagrams (9),...,(%) are concerned, one can effectively fix

the Feynman gauge=0 right from the start, while for the

diagrams(w), (x), and(y) the above transversality condition

has the consequence of putting the external propagéters where we did not draw a tadpolelike diagram since it is zero
those touching the fermion lopdn the Feynman gauge. upon integration in the internal momenta, and the black box
Thus in these latter graphs the pinching momenta can act aepresents the unphysical effective vertex defined in Eg.
the three gluon vertemnly, triggering the elementary WI. (2.19, i.e.,

ki
éﬂﬂmé ‘:‘i%g'(kl—kg)
N (2.16

Proceeding in this way we finfdecall that there is a relative minus sign between diagrams., (u) and(w),..., (y)]

—>

2A2 @ — )\2 @ _ 2/\‘4
() ©)
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where the last step is achieved by allowing the second diagram in the first line to pinch further. The coefficient multiplying this
equation isC;C,/2. Notice that the effective vertex introduced in E8.16 does not appear at this point.
We can finally act on the three gluon vertex with the remaining pinching momenta, to obtain

It is then clear how the final steps proceed: the combination
(i) + (i) cancels theD(\?) non-Abelian remainder of Eq.
(2.11), while, as can be easily shown () () +(t)+(u) — 4 +8A

(i) + (vi)+ (v)=0. (2.17
We are now left with the topologies (jw..,(z). As in
) ) the O(\?) case, for the external propagatars 0. However,
This completes the proof of the cancellation of 8¢\  contrary to the previous case where each one gave a single
terms. contribution, atO(\) each of the topologiev), (x), and(y)
gives rise to two equal contributiofisence the factor of 2 in
2. The O(\) cancellation Eq. (2.19]. Moreover, for these diagrams the pinching mo-

) ] ) ) menta can only act on the three-gluon vertex, triggering the
As in the previous case, the strategy will be to achieve thelementary Wi

widest possible cancellation between diagrams, avoiding to
act on the three-gluon vertex. First of all, each one of the ~ . >
diagrams(s),..., (u) will again generate three contributions, KIT (K1 iKa, /)= (779, =707 p) = (KaGu, — KaKzp).-

which are obtained from th®(\?) ones by trading one of (2.18

the propagators The first and third term of the above expression represent
two inverse propagators in the Feynman gauge; the second
mpan and fourth terms contain instead two longitudinal momenta
each, one acting on the external fermion loop, and the other
for a Feynman propagator. Then, taking all these diagramene on the remaining three-gluon vertex. For example, con-

into account, we arrive at the equation sidering diagraniw), we find
(w) — 2A
= 2\ + 2 + 2\

(2.19
(1) ) 3
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The diagram(w) comes from the first term in Eq2.18,  has appeared. After acting on the remaining three-gluon ver-
while the third term in the WI produces in this case a tad-tex of diagram(¢) we get
polelike diagram which is odd in the integrated momentum
and vanishes. The terifv) and (¢) are generated from the
second and fourth term in Eq2.18, respectively. Notice
that a new unphysical effective three-gluon vertex )= 22 + 2A

k1
%@ji :
=1
ka Proceeding in this way we arrive at the result

(1) +(8)+(t) (W) +(w)+(x)+(y) —
—2
(

(7) (p) o) ()

where the group-theoretical coefficient of this equatioi&/2.
The final step of the proof is achieved by acting on the three-gluon vertéx) iand () with the remaining pinching
momenta. One has, keeping in mind £2.18),

(m) = 2A —4x +2) —2)

(i) (i) (i) (iv)
(p) = 4 @wu@@@u + 4
) (vi) (
|
Then the sum (i} (iv) +(v)+(vii) cancels against the 3@ (p)=33(p) 2.21)
O(\) non-Abelian remaindef2.12), (i) and (vi) cancel di- F ’
rectly, while finally which constitutes the central result of this paper.
(7)+(viii)= (o) + (iii ) = 0. (2.20 lIl. THE ABSORPTIVE CONSTRUCTION: THE ONE-

. . LOOP CASE
This completes the proof of the non-Abelian gauge cancella-

tion. In the next two sections we will show in detail how one
We see that, as happened in the one-loop case, the GFRay construct the two-loop PT effective fermion self-energy
dependent contributions coming from the original graphs ofusing unitarity and analyticity argumenf24]. The general
Fig. 3 defining= () (p, &), cancel exactly against equal but idea is the following: The imaginary parts of the two-loop PT
oppositepropagatorlike contributions coming from vertex- fermion Se|f_energie§(2) of QED and QCD are related by
like and boxlike graphs. Thus, one is left with the “pure” the optical theorem to precisely identifiable and very special
GFP-independent one-loop fermion self-enerdy?(p),  parts of four different cross sections. In particular, for the
which again coincides with the (#)(p)=3)(p,1), i.e., case of QED, the two-particle Cutkosky cuts Bf?) are
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related to the “genuine’-channel part of the one-loop cross rgP
section for the procesgQ— yQ while, at the same time, the

three-particle Cutkosky cuts of the same quantity are related

to the genuines-channel parts of the tree-level cross sections _ngm‘oi

for the processeyQ— yQ, yQ—QQQ, and yQ— yyQ. (a) (b) P

The corresponding processes for the QCD can be obtained

by replacing the photons by gluongy{>G) in the final FIG. 4. The tree level one-particle phase space appearing in the

states. The key word in the above description is the worghne-joop QED absorptive PT construction. Diagréandefines the

‘genuine™ By genuine s-channel part we mean the schannel amplitude™!, while diagram(b) defines the-channel
s-channel part obtainedfter the longitudinal terms of the  ampjitude7{?!.

polarization vectors involved have triggered the WIs of the

various amplitudes. These WIs implement themselves ing avoid notational clutter we will suppress the Lorentz in-
ways that do not respect the origirelt channel separation dex corresponding to the external photon. Using the above

of the amplitude, as given by the Feynman graphs; insteagotation, and suppressing the phase-space integrations, we
variouss- andt-channel contributions are nontrivially mixed, have

in such ways as to finally result in fundamental cancellations.
It turns out that all such contributions can again be pictori- A4 = 17i2lpus’ T2 3
ally represented by means of unphysical elementary vertices, S (P1) mo 39
a fact which facilitates significantly their identification.
In this section we will set up the formalism, adopted to
the fermion self-energy, and discuss in detail the one-loop n,p,+n,p PP
v v mEv

case; the two-loop generalization will be presented in Sec. Pu(P.n,7)=—0,,+ 7 5,
V. n-p (n-p)

whereP ,, is the polarization tensor for photons or gluons,

(3.6

with n, being an arbitrary four-vector, anga gauge param-
A. QED eter.
The optical theorem for the case of forward scattering The amplitudeﬁﬂz] consists ofs- channel and-channel
assumes the form contributions, i.e.,

Im(a|T|lay=3%2>, (2m)*6“(p,—py) TA=TG+ T} 3.7

(see Fig. 4. From the gauge symmetry we know that
x(i[T|a)*(i[T|a), (3.0
pi7,=0, (3.8
where the sunk; should be understood to be over the entire
phase space of all allowed on-shell intermediate siatdé  to all orders. Clearly, by virtue of Eq3.9) all reference to
ter expanding theT matrix in powers ofg, ie., T  the unphysical quantities, and 7 disappears. We empha-

=3 ,_,T", we have that size, however, that the action of the momentpfhdoes not
respect thes—t separation given by the initial set of Feyn-
Im<a|T[“]|a): %E (2m)*6Y (ps—pi) man diagrams. Instead, the actionpdf gives rise to cancel-
I

lations between the two sets. In particular we have that

1Lk a\* /i | TIn—K]
><§k: (T ay* (i|T"Ma). (3.2 T =R
R =
) o o pHT[Q] =-R
In the particular case of QED, if in the initial states we Lotp
have ayQ i.e., |a)=|yQ), we have for the first nontrivial
order,n=4, in theT Notice that the ternR contains always an unphysical vertex.
Therefore,
|m<7Q|T[4]|7Q>=%f (dPS(yQ|T?I[yQ)* 1
Al41= 57{2]@,7{21*
X (yQIT#|»Q), (3.3
Where(dES denotes thétwo-body) phase_-space integration. - 3(7{32]+7{t2])®(7{82]* + ﬂZJ*)
Next we introduce the short-hand notation 2
AM=1m(yQ[T1Q), = AL+ AL+ AT, 3.9

THM=(yQ|T[»Q). (3.4  with
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Af=31Pe T?", AM=Im(yQI T |7Q),
(3.17
[kKl= (K]
A= 1(T2g 7121 4 720 72) (310 TH=(GQIT|¥Q).
From this point on the analysis is exactly analogous to that
A =172lg 72" )
tt 274t t presented for QED. The fact that the QED and QCD con

structions coincide is special to the one-loop case and, as we
Next we will focus onAL, which is the genuine-channel  will see in the next section, is not true in higher orders.
part, i.e., thes-channel contribution after the longitudinal

parts ofP““'(pl) have been eliminated. We will ca.ggi] in IV. THE TWO-LOOP ABSORPTIVE CONSTRUCTION

the form
As mentioned at the beginning of the preceding section, in

the two-loop case we have two distinct types of contribu-
tions: (i) those that are the one-loop corrections to the two-
to-two particle processQ— yQ (yQ—GQ in the case of
QCD), whose tree-level analysis was considered in the pre-
A vious section;(ii) those that come from tree-level two-to-
Im3®(p)=AZl(p), (3.12  three particle processes.

There is one additional fact we will use in the analysis

where 3(M)(p) is the one-loop fermion self-energy under below: The one-loop contributions ®Q— yQ (yQ—GQ
construction. in the case of QCID considered in(i) can be effectively

At this point it is straightforward to verify that brought in the Feynman gauge, starting from any other
gauge, using a procedure exactly analogous to that used in

Al(py=c 13 —c 3w , 31 Sec. I. In particular, using nothing but elementary WIs, the

s (P)=GI2 (P =CoA2 e (P} 313 reader should be able to see how all longitudinal contribu-

where C{---} is the operator which carries out the the Eﬁnilgiségf\tgiiiggnm;ﬁ I?ag;ig:sa?fé:t:?éi?:jlre equivalentto
n-particle Cutkosky cuts to the quantity appearing inside the phy ' 9 Y-

. ) . Before we can proceed with the details of the two-loop
curly brackets. In this case the two-particle cut involves a . : o .
absorptive construction, some additional comments are in or-

K (1
(masslessy and aQ of massg]]. The real part o&. ®)(p) €an  der. In the previous section we have distinguished between
be obtained directly fromAS(p) by means of altwice-  the tree-levels-channel and-channel contributions, shown

A= (ey,)S(PAZ(P)S(p)(ey?), (3.1

and then identify

subtractegldispersion relation. In particular, in Fig. 4, using the obvious criterion of whether a diagram
depends on the Mandelstam variaBIfFig. 4(a)] or t [Fig.
ReM(p)= fwth[SZS](t) 31 4(b)]. Notice, however, that in adplition to the/ariable,_ t_he
(p)= 6 t—p?’ (3.14  t.channelfermion propagator in Fig.(#) depends explicitly

on the mass of the incomir(gesd fermion. A similar distinc-
tion betweens-channel and-channel contributions needs to
be established in this section; however, additional care is
needed when classifying the various diagrams. Clearly, dia-
grams that are one-loop corrections to the tree-level
B ALZ)(1) t-channel graph of Fig.#), such as those sh_own in Figs.
Rei(Rl)(p)=(p2—m2)zf dt 255 - 5(e), 5(f), 5(g), 5(h), 5(m), 5(n), 5(p), anq %q), will be char-
t, (t=p9)(t—m9) acterized as-channel graphs. In addition, those graphs that
(3.15 arise as one-loop vertex or wave-function corrections to the
incoming particles of Fig. 4a), such as Figs. (5 and 50),
B. QCD will also be classified aschannel graphs. Finally, graphs as
' those shown in Figs.(8)-5(c), which are one-loop correc-
The one-loop QCD case can be directly derived from thetions to either thes-dependent off-shell propagator or vertex
QED analysis presented above. In particular, when applyingnd wave-function corrections to ttmitgoing particles of
the optical theorem one must consider a qué@k and a the tree-levek-channel of Fig. 43), will be characterized as

wheret,=m? is the two-body threshold. After subtracting
twice “on-shell” one obtains the corresponding renormalized
guantity

gluon (G) as an intermediate state, i.e., s-channel graphs. At first sight the characterization of the
graphs in Figs. 6) and 50) ast-channel graphs may seem
Im T41 :;f dp unusual, since there is no expliditdependence in them;
(QITvQ)=2 | (dP9 indeed, both graphs depend snbut, in addition, on the

P * 2 masses of the incoming particles. Thus, in general, if such
X(GQT¥Q)*(GQIT»Q), graphs were to be considered as parts of the two-loop self-

(3.16 energy which is being constructed absorptively, they would

introduce in it an explicit process dependence. This would

and define the corresponding quantitigge suppress color clearly be a drawback, since the off-shell gauge-invariant
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24 P
1 g p1 p g p1 1 gp1 i ?
(a) (b) (c) (d)
v R y
;,?wz (s T g 2
Pl
(e) (f) (g) (h)
H B P1 H e

B g Pl Q%?
. e
n
NI n

P

(0) (p) (q)

FIG. 5. The one-loop two-particle phase space appearing in the two-loop QCD absorptive PT construction. Dagrgasdefine the
s-channel amplitudgt2!, while all the others define thechannel amplitudgt?! .

fermion self-energies one wants to define should be univer- Im(qa T'®|qa)

sal, i.e., process independent. To appreciate this point, let us

imagine that instead of the flavor-conserving processes we :;J' [4] * [2]
consider herdin which case the mass of the incoming on- 7 | (dP9:2 REHQITH»Q)* (vQIT]vQ)]
shell fermion is the same as that of the off-shell one, and the

external photons are masslgsse were instead studying a +%f (AP yyQ| T3 yQ)* (yyQ| T yQ)
process containing a flavor-nonconserving interaction, such

asW'b—ty, orW*"b—tZ attempting to define absorptively o _

the part of the off-shell top-quailt) self-energy that contains + %f (dP9(QQQITyQ)*(QQQ| T 1Q).
atand ayor at and aZ. In that case graphs such as those in

Figs. §i) and 50), together with th&\V wave-function graphs (4.1)

(not shown, would introduce into théy andtZ *widths”an e e have, suppressing the phase-space integrations, and
quhya_cgl_ dependence on, andM,,. Thus, according tq using the previously introduced notation
this definition, thes-channel graphs are those graphs which

do not contain information about the kinematical details of A[G]:Re(ﬁu‘l‘jpwf(pl)ﬁui]f)
the incoming test particles.

! ' *
+ 373 PEE () P (p) T,
A. QED +1gielgier
c C
There are three different thresholds, to be denoted by (6], 4(6]1 406
=A+H A+ A (4.2

=+Q, b=yyQ, andc=QQQ. Thus,
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P11 M

FIG. 6. The tree-level three-
particle phase space appearing in

p1 P1 Pl g M the two-loop QCD absorptive PT
# 55 # construction. Diagramga),...{(c)
[0UDB0B0T ¥ pa Y define the s-channel amplitude
P2 P2 v 7{3] A .
be » While all the others define
- 3]
(d) (€) (f) the t-channel oneZt?.
I
Y %
P2 P1
CLERLELLLINS T
p2,,
(8) (h)
6] _ 3 3
From the gauge symmetry we know that AEn]SS_ %ﬁm ]S® 7{m ]S* ,
pé.MT[JMV: 01
6] _ 3 3 3 3
(43) A%Jst_%(ﬁm]s(@?{m%*+7{m%®7{m}s*)’
p;%uvz 01 (47)
to all orders. Again, the same situation explained in the one- A8l =178l 78l - m=p,

loop case is true now, namely the fact that the WI mixes

contributions between theandt channels, which all contain
unphysical vertices. In particular, at orde,

Bl _ il
plli(]-hs)//.”'Rb R[B]V _

b

T = -RE
(4.4

and an identical equation holds when contracting vpish .
Notice that again the terR[3! ¥ contains an unphysical ver-
tex.
Finally,
6] __ 6 6 6
A= A A+ AT,

i=a, b, ¢ (4.5

with
A= RATHOTE",
Afl=raTe 10N + Tie 7).
(4.6
AS=Re T 7],
and

Let us next consider thes parts, Al%)(p). Unlike the one-
loop case, where in E¢3.12) the entiresspart Al2l(p) was
identified with ImS®)(p), now we must identifyAl%!(p)
with the imaginary parts of both the two-loame-particle
irreducible fermion self-energ)ﬁ(z)(p) and the one-particle
reducible string of twa>(Y(p); of course the latter contri-
butions are known from the one-loop construction of the
previous section. Thus,

Im2®(p)=Al5p)~2 M (p)Re2 M (p)

= Al6] 1Pl )

1SS

4.9

where the superscript “1PI” stands for “one-particle irreduc-
ible.” One can verify at this point that

i=a, b, c.
(4.9

AL P(p)=c{3@(p)}=Cc{S@(p)},

Clearly, the two-particle cut involves @ and aQ, whereas
the three-particle cut involves twgs and aQ, and threeQ’s,
respectively. Of course, for massless photons the two cuts
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coincide. The real part of.(?)(p) can be obtained directly Im{qq Tt qa)
from the three quantitieAi[g]S( p) by means of an appropriate
dispersion relation. In particular, =%f (dP9,2 R4 (GQ|T*|yQ)*(GQ|T?| yQ)]

+1 [ (4P9(EEATHQ)*(GEATENQ)

c2) - AT — —
Re2®(p)=2 ft dt——p— 410 +%f(dPS)c<QQQIT[3]I7Q>*<QQQ|T[3]IvQ)-

(4.1

We next turn to the tree-level Wis satisfied by the QCD
. . . . amplitudes appearing above, when contacted by the mo-
with t=t,=m? andtc=.9m2. Again, after SPbtraC“”g WIC€  enta originating from the polarization ten@rof the final
“on shell,” one obtains the corresponding renormalizedgiate gluors). To begin with, Eq(4.2) holds exactly as in the
quantity ReS&)(p). QED case. It is worthwhile studying how this tree-level WI
is realized at the diagrammatic level; a nontrivial interplay of
terms containing unphysical vertices takes place, allowing
contributions originating from different kinematic channels
B. QCD to cancel against each other. The diagrams contributing to the
processyQ— GQ at one loop are shown in Fig. 5. For brev-
There are three different thresholds, to be denoted: by %eﬁgnwg!;gﬁggﬁ):{h(ﬁ)?(ggé ?é/) fgf Lllzsléng5orlljy;gg tt?]?a rgl)_n

=GQ, b=GGQ, andc=QQQ. So, at ordelezg;1 we have ementary WI(2.18), we find the following equality:

pT(d)nAM_A}ﬁ_A + ..
}b&i_k %gi“__ﬁﬂL
(8)

where the ellipses stand for diagrams that will cancel againsto that taking into account that diagrafig and(q) carry a
contributions left over from the Abelian-like diagrams. (group-theoreticalrelative minus sign with respect to dia-
Moreover, one has gram(d), we find the cancellations

() +(H=0, (B+(8)=0, (y)+(e)=0. (412

T

Thus, the analysis regarding the seatand ¢ is exactly
analogous to that of QED. The only difference is related to
) the sectorb, and originates from the fact that E@.3) and
Eq. (4.4) are altered, due to the appearance of ghost-related

pi(b)=
contributions. In particular,
pi(a)

}

PH(TL), =S+ R,
(4.13

A %}E — A
69} (&

= A £
(e)
© pHT) =S - R 7,
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and by Bose symmetry the same equation is valid when 7 Y
p1<p,, andu< v. In addition, acting withp, on both sides  p#[(a)+(b)] = %@2@6@5 + 2%%@99&

of Eq. (4.13, and using the on-shell conditiomg=p5=0

we have (a) (8)
pips7LY,,=0 (4.14 () @) ©

IR

The cancellation between diagrang8) and (y) corre-
sponds to the standard BRS-enforcetichannel cancella-
tion [26] taking place in the tree-level amplitud®Q

To see how this WI is enforced diagrammatically, we nextHGG' which now appears embedded as a subprocess in the

turn to the set of diagrams contributing to the tree-level two_amplltudeyQ—>GGQ that we consider here. As happens in

. I ) ) the case of th GG example, the diagra ives
to-three process, listed in Fig. 6. Contracting with the exteryica 1o the co;r‘g:cQtT;host struc?ure. Diagre?(msr(z)ng(a)

nal momentak’’, taking into account the different color which contain external unphysical vertices, will cancel
structure of the diagrams, and recalling the elementary Whgainst similar contributions originating from thehannel

(1.7), we obtain graphs. Specifically,
|
P+ +HD] = ~ ﬁ—— - - -
TTTTTTT v A
L
© (m) Y ®)
P () + ()] = VAN
mmb")\
€3 {m)
|
We can then identify the cancellations V. DISCUSSION AND CONCLUSIONS

In this paper we have showexplicitly that the off-shell
two-loop fermion self-energy constructed by means of the
. _ PT coincideswith the conventional fermion self-energy cal-
SO that we are left only with the correct ghost structures, i.€.q1ated in the covariantrenormalizablg Feynman gauge.
diagrams(e) and (6). __ This has been demonstrated by systematically tracking down

Thus, whereas Eq4.6) and the part of Eq(4.7) with i {he action of all terms originating from the longitudinal parts
=c remain unchanged, the part of E@.7) with i=b gets  f the tree-level gauge boson propagatéplotons or glu-
modified as follows: ons appearing inside the Feynman diagrams contributing to
manifestly gauge-invariant amplitudes. It turns out that all

(a)+(m)=0, (8+(n)=0, (H)+(§)=0, (419

AE =3 (TRl 713 — 28310 S30*), such terms give rise to unphysical vertices, which cancel

diagrammatically in the entire physical amplitude, without
L8] — 11 (i3l 7181 _ 0 o3l &i31% ) 1 (7131 7131% affecyng the kinematical structure of the various sub-
bst= 2L(Tos® Tt bs®Spt ) T (Tor® T amplitudes(propagators, vertices, boyesVe have followed

_25{[]39@5%33)], (4.16  two different but physically equivalent approaches. First we
have shown the cancellations at the level of the full two-loop
amplitude. Then we have shown the cancellations for the

(6] — 1, 13] 3% _ 3] 3] . .
A= 3(T e T* —28 Y0 87%). two- and three-body cross sections which appear on the

right-hand side of the optical theorem.
Beyond this point it is easy to see that the analysis following It is worth commenting on the relation of the results es-
Eq. (4.7) of the QED case applies unchanged to the QCDtablished here and those appearin@lifl]. That work was an
case as well. early attempt to define what the pinch technique should be
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-1 -1 FIG. 7. The SD equation for the electron
( N — ) — (— ) _ propagatolS

beyond one loop. At the time it was written the central issue S Yp)=S, (p)—e?
had been how to deal with the internal three-gluon vertices "
appearing inside Feynman diagrams, i.e., three-gluon verti- v

ces all three legs of which are associated with gauge field XJ (2m)d 7uSPHOT.(p, k) A% (K),
propagating inside the loop. In particular, one needed to es- (5.1)
tablish a well-defined criterion which would allow one to '
unambiguously decide whether and how the internal Verticeﬁ/herel“v(p,k) is the full photon-electron-electron vertex,

should be split into pinching and nonpinching parts. Whaty 4 the full photon propagatd,,, now assumes the form
was proposed ifl18] was to split the internal vertices fol-

lowing as a guiding principle some type of skeleton expan- A ., 4

sion of the quark two-loop self-energy. In particular, the — 2x(@)=(9,,—d,0,/9%)[q°—TI(q)] "+Qq,q,/q

starting point for the construction has been the general dia- (5.2
grammatic representation of the two-loop quark self-energ)ov
in terms of renormalized one-loop two-point and three-point
functions and tree-level Bethe-Salpeter-type quark-gluor?
scattering kernel insertions in the one-loop quark self-energy.

here the scalar quantityf (q) is related to the full vacuum
olarizationll ,, by

According to this construction, even if one were to start out I1,,=(9,,~9,9,/9%)I(q). (5.3
in the Feynman gauge, pinching momenta stemming from
the internal three-gluon vertex in the diagram of Fi¢) Bor It will be interesting to study this form of the SD equation

Fig. 3u)] would give rise to pinch contributions which and its implication for fermion mass generation, particularly
should be removed from the effective PT propagator undein the cases QEPand QED. Notice that the presence of
construction. Thus, the final answer differs from that of thel .(P.k) forces one to solve a system of coupled SD equa-
Feynman gauge; in fact, it does not coincide with any of thdions, or, alternatively, resort to a gauge-technique inspired
known gauges. However, this procedure was in contradictioA\nsatz forl’,(p,k) [28]. S
with the already existing absorptive PT constructions It is well known that one can construct a gauge-invariant

[14,27), according to which the imaginary parts of the PT operator out of a gauge-variant one by means of a path-order

Green’s functions are related by means of the optical theoXPOnential containing the gauge fiedd 29]. In the case of

rem to precisely identifiable parts of physical cross sectionsthe fermion propagato®(x,y) =(0|#(x) ¢(y)|0) the corre-
These latter parts are constructed by using again the PT réPonding gauge-invariant propagaizo reads(*PO” stands
arrangement, but this time not at the level of amplitudedor “Path-ordered’)

(Smatrix elementsbut at the level of cross sections. This y

fundamental PT property relating real and imaginary parts is _ f )

a nontrivial realization of the optical theorem at the level of Spdx,¥)=(0[¢(x)P eﬂ(' X az A(Z)>

individual Green’s functions. As has been explained in detail _

in [16], any attempt to rearrange the internal vertices leads to X (y)|0). (5.4

a violation of the aforementioned property; therefore internal

three-gluon vertices should remain unchanged, and only ext would be interesting to explore possible connections be-
ternal ones need be modified. Therefore, in the case of thisveen the path-ordered propagator and the PT propagator
fermion propagator the only pinching momenta originateconstructed in this paper, together with various other related
from the longitudinal parts of the internal gluon propagatorsformalisms, which have appeared in the literati88,31].

If one accepts that the cancellation mechanism presented Finally, it would be important to extend the methodology
here persists to all orders, then so does the main result of thand results of this paper to the case of the electroweak sector
paper, namely that the PT fermion self-energy coincides wittof the standard model, especially given the phenomenologi-
that in the Feynman gauge. This is so because, as alreadsgl relevance ofresonanttop-quark production.
mentioned earlier, in the case of the fermion self-energy all
three—'boson vgrticgs are “inter.nal," i.e., there are no further ACKNOWLEDGMENTS
pinching contributions stemming from the usual PT rear-
rangement of three-boson vertices. Should that be the case, it The work of D.B. is supported by the Ministerio of Edu-
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