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Gauge-independent off-shell fermion self-energies at two loops: The cases of QED and QCD

Daniele Binosi* and Joannis Papavassiliou†

Departamento de Fı´sica Teo´rica and IFIC, Centro Mixto, Universidad de Valencia-CSIC, E-46100, Burjassot, Valencia, Spain
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We use the pinch technique formalism to construct the gauge-independent off-shell two-loop fermion self-
energy, both for Abelian~QED! and non-Abelian~QCD! gauge theories. The new key observation is that all
contributions originating from the longitudinal parts of gauge boson propagators, by virtue of the elementary
tree-level Ward identities they trigger, give rise to effective vertices, which do not exist in the original La-
grangian; all such vertices cancel diagrammatically inside physical quantities, such as current correlation
functions orS-matrix elements. We present two different, but complementary derivations: First, we explicitly
track down the aforementioned cancellations inside two-loop diagrams, resorting to nothing more than basic
algebraic manipulations. Second, we present an absorptive derivation, exploiting the unitarity of theS matrix,
and the Ward identities imposed at the tree level and one-loop physical amplitudes by gauge invariance, in the
case of QED, or by the underlying Becchi-Rouet-Stora symmetry, in the case of QCD. The propagatorlike
subamplitude defined by means of this latter construction corresponds precisely to the imaginary parts of the
effective self-energy obtained in the former case; the real part may be obtained from a~twice subtracted!
dispersion relation. As in the one-loop case, the final two-loop fermion self-energy constructed using either
method coincides with the conventional fermion self-energy computed in the Feynman gauge.

DOI: 10.1103/PhysRevD.65.085003 PACS number~s!: 11.15.Bt, 12.38.Bx, 14.60.2z, 14.65.2q
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INTRODUCTION

It is well known that off-shell Green’s functions depend
general on the gauge-fixing procedure used to quantize
theory, and in particular on the gauge-fixing parameter~GFP!
chosen within a given scheme. A celebrated exception to
general fact is the vacuum polarization of the photon
QED, which is both gauge invariant~i.e., transverse! and
GFP independent to all orders in perturbation theory. In c
trast, the fermion self-energyS(p) is GFP dependent alread
at the one-loop level. The dependence on the GFP is in g
eral nontrivial and affects the properties of a given Gree
function. In the framework of the covariant gauges, for e
ample, depending on the choice of the GFPj, one may elimi-
nate the ultraviolet divergence of the one-loop elect
propagatorS(p,j) by choosing the Landau gaugej50, or
the infrared divergence appearing after on-shell renormal
tion by choosing the Yennie-Fried gaugej53. The situation
becomes even more complicated in the case of non-Abe
gauge theories, where all Green’s functions depend on
GFP. Of course, when forming observables the gauge de
dences of the Green’s functions cancel among each o
order by order in perturbation theory, due to powerful fie
theoretical properties, a fact which reduces their seriousn
However, these dependences pose a major difficulty w
one attempts to extract physically meaningful informati
from individual Green’s functions. This is the case in at le
two important situations, which both lie beyond the confin
of fixed order perturbation theory: first, the Schwinge
Dyson~SD! equations, which constitute one of the few me
ods for obtaining nonperturbative information in the co
tinuum; second, resonant transition amplitudes, where
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taming of the physical kinematic singularity necessitate
resummation, which amounts to a nontrivial reorganizat
of the perturbative series.

In the context of the two nonperturbative situations me
tioned above the fermion propagator is of particular intere
In the former case, the SD equation involving fermion prop
gators~self-energies! has an extended range of application
most of which are linked to the mechanism of dynamic
mass generation, which is explored by looking for nontriv
solutions to gap equations. The study of such equations
been particularly popular in QED@1#, and even more so in
QCD @2#, where it has been intimately associated with t
mechanism that breaks the chiral symmetry. Similar eq
tions are relevant in QED3, where the infrared regime of th
theory is probed for a nontrivial fixed point@3#, for techni-
color models@4#, gauged Nambu–Jona-Lasinio models@5#,
and more recently color superconductivity@6#. A similar
quest takes place in top-color models, where the mass o
top quark is generated through a gap equation involvin
strongly interacting massive gauge field@7#. The usual prob-
lem with the SD approach in general@8,9# and the gap equa
tions in particular@10# is that sooner or later one is forced
choose a gauge, resorting to a variety of arguments,
gauge choices cast in general doubts on the robustness o
conclusions thusly reached. In the latter case, i.e., the r
nant production of fermions, and in particular top quar
one makes use of the resumed off-shell quark self-ene
Even though exactly at the resonance the gauge depende
cancel, infinitesimally away from it they persist, giving ris
to artifacts obscuring the notion of the running width and t
implementation of perturbative unitarity in the resultin
Born-improved amplitudes@11#.

It is known that gauge-invariant and GFP-independent
fective off-shell Green’s functions can be constructed by
sorting to the pinch technique~PT! @12#. The PT reorganizes
systematically a given physical amplitude into subamp
©2002 The American Physical Society03-1
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DANIELE BINOSI AND JOANNIS PAPAVASSILIOU PHYSICAL REVIEW D65 085003
tudes, which have the same kinematic properties as con
tional n-point functions~propagators, vertices, boxes! but, in
addition, are endowed with desirable physical propert
Most importantly, at one-loop order~i! they are independen
of the GFP,~ii ! they satisfy naive~ghost-free!, tree-level
Ward identities~WI!, instead of the usual Slavnov-Taylo
identities@13#, ~iii ! they contain only physical thresholds an
satisfy very special unitarity relations@14#, and~iv! they co-
incide with the conventionaln-point functions when the lat
ter are computed in the background field method Feynm
gauge@15#. These properties are realized diagrammatica
by exploiting the elementary WI’s of the theory in order
enforce crucial cancellations. The extension of the PT
two-loops has only recently been accomplished in the cas
massless Yang-Mills theories such as QCD@16#. The studies
presented so far in the literature have mainly focused on
general construction of the effective gauge-independ
gluon self-energy, but little has been said about the ferm
propagator@17–19#.

Throughout the two-loop analysis of@16# it has been as-
sumed that one can work without loss of generality in
covariant ~renormalizable! Feynman gauge, i.e., begin th
analysis by choosing the Feynman gauge when writing do
the Feynman diagrams contributing to theS matrix. Of
course, there is no doubt that the entireS matrix written in
the Feynman gauge is equal to the same entireSmatrix writ-
ten in any other gauge. What is less obvious is that all
evant cancellations proceed without need of carrying out
tegrations over the virtual loop momenta, thus maintain
the kinematic identity of the various Green’s functions inta
a point of crucial importance within the PT philosophy. A
has been shown by explicit calculations~see, for example
@17#!, this is indeed the case at one loop. Assuming that
important property persists at two loops, the highly nontriv
issue which was resolved in@16# was how the splitting of the
three-gluon vertices appearing in the two-loop diagra
should proceed. We shall not review this point further, giv
that it has been exhaustively treated in@16#; here it should
suffice to say that no such splitting should take place for
internal three-gluon vertices appearing inside the two-lo
fermion propagator, or any other diagram for that mat
Therefore, one of the conclusions presented in@16#, under
the aforementioned assumption, was that the gau
independent two-loop quark propagator in the presence
QCD interactionscoincideswith the conventional one com
puted in the Feynman gauge. In this paper we will verify t
assumption in the cases of QED and QCD for the two-lo
fermion self-energy.

In the first part of this paper we will track down the gau
cancellations systematically, and provide a simple diagra
matic algorithm which allows one to follow easily the
implementation.1 The key observation, which will be used a
the only guiding principle throughout the intermediate ste
is that all contributions originating from the longitudin

1Some aspects of the cancellation mechanism described in
paper are similar in spirit to that presented in@20#; however, we do
not resort to ‘‘color orientation’’ techniques.
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parts of gauge boson propagators, by virtue of the WI th
trigger, give rise tounphysicaleffective vertices, i.e., vertice
which do not exist in the original Lagrangian. All such ve
tices cancel diagrammatically inside ostensibly gauge
invariant quantities, such as current correlation functions
S-matrix elements.2 The final calculational recipe resultin
from this analysis is that one can use directly the covari
Feynman gauge, which of course happens to be the simp
operationally. It is important to emphasize that exactly t
same result is obtained even in the context of the nonco
riant axial gauges, for example@21#, where the Feynman
gauge cannot be reacheda priori by simply fixing appropri-
ately the value of the gauge fixing parameter. Thus, eve
one uses a bare gluon propagator of the general axial ga
form, after the aforementioned cancellations have ta
place one arrives effectively to the answer written in t
covariant Feynman gauge. Also notice that in calculating
final answer~something we shall not do here! one never has
to carry out any of the tricky integrals characteristic of t
axial gauges, i.e., integrals with unphysical poles of the fo
n•k @22#.

The second part of the paper is devoted to the absorp
derivation of the same results. The absorptive construc
exploits the unitarity and analyticity properties of physic
amplitudes, together with the fundamental WI satisfied
entirephysical processes dictated by the Becchi-Rouet-S
~BRS! symmetry @23#. The salient points of this genera
method have been presented in detail in@24#. Here we will
apply it to the case of the two-loop quark self-energy co
taining QED or QCD corrections.

The paper is organized as follows. In Sec. I we review
one-loop construction in both the QED and QCD. This w
allow us to fix the notation and introduce in a simplifie
setting the diagrammatic algorithm used throughout the
per. In particular we will discuss how the gauge cancellatio
are achieved both in current correlation functions as wel
in physical on-shell processes, such asgQ→gQ or GQ
→GQ, whereQ is a quark andG a gluon. In Sec. II we
tackle the two-loop case. The procedure is carried out in
detail, beginning from the same current correlation funct
as in the one-loop case. By means of a systematic, a
lengthy analysis, we demonstrate explicitly all relevant ca
cellations, and finally define the GFP-independent two-lo
electron~quark! self-energy for QED and QCD. We then tur
to the description of how one may construct the PT effect
Green’s functions using unitarity and analyticity argumen
Thus, we first review the one-loop absorptive construction
both the Abelian and non-Abelian gauge theories~Sec. III!,
and introduce the notation which will be used in Sec.
where we will carry out in detail the full absorptive constru
tion both in the QED and QCD frameworks. Finally, in Se
V we present our concluding remarks.

is

2Given that the vertices involved are unphysical, one might
tempted to directly discard all such contributions by hand, inst
of cancelling them algebraically against each other, as we do in
paper. In the case we consider here this seeminglyad hocprocedure
would furnish the correct answer, but it is not known to us if
would work in general.
3-2
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GAUGE-INDEPENDENT OFF-SHELL FERMION SELF- . . . PHYSICAL REVIEW D 65 085003
I. THE ONE-LOOP CASE

Before venturing into the intricacies of the two-loop co
struction, which is the main topic of this paper, we will fir
present the one-loop case, in an attempt to fix the ideas
the notation. In this section we will explain in detail th
method which gives rise to effective, gauge-independent
mion self-energies. In particular, after setting up the diagra
matic notation which will be used throughout the paper,
will illustrate how the procedure works in the case of QE
and QCD. The results for the one-loop case have alre
been presented in@16#, albeit from a slightly different point
of view; here we will recast them in the diagrammatic la
guage introduced below, thus setting up the stage for
two-loop derivation. It turns out that in the one-loop case
difference between the Abelian~QED! and non-Abelian
~QCD! constructions is purely group theoretical, and the
fore a unified presentation will be followed; this will cea
being the case at two loops.

We will assume that the theory has been gauge fixed
introducing in the gauge-invariant Lagrangian a gauge-fix
term of the form (1/2j)(]mAm)2, i.e., a linear, covarian
gauge; the parameterj is the GFP. This gauge-fixing term
gives rise to a bare gauge-boson propagator of the form

Dmn~ l ,j!52
i

l 2 Fgmn2~12j!
l ml n

l 2 G ~1.1!

which explicitly depends onj. The trivial color factordab
appearing in the~gluon! propagator has been suppress
The form ofDmn(l ,j) for the special choicej51 ~Feynman
gauge! will be of central importance in what follows; we wil
denote it byDmn

F (l ); i.e.,

Dmn~ l ,1![Dmn
F ~ l !52

i

l 2 gmn . ~1.2!

Dmn(l ,j) and Dmn
F (l ) will be denoted graphically as

follows:3

For the diagrammatic proofs that will follow, in addition t
the propagatorsDmn(l ) and Dmn

F (l ) introduced above, we
will need six auxiliary propagatorlike structures, as sho
here:

3For convenience, in our diagrammatic notation we will remo
all factors of i appearing in the fermionic or bosonic propagato
they can be easily recovered as a global coefficient multiplying
Feynman diagram under consideration.
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All of these six structures will arise from algebraic manip
lations of the originalDmn(l ). For example, in terms of the
above notation we have the following simple relation~we
will set l[j21!:

We next turn to the study of the gauge dependence of
fermion self-energy~electron in QED, quarks in QCD!. The
inverse electron propagator of ordern in the perturbative
expansion has the form~again suppressing color!

Sn
21~p,j!5p”2m2S~n!~p,j!, ~1.3!

where S (n)(p,j) is the nth order self-energy. ClearlyS (0)

50, and S0
21(p)5p”2m. The quantityS (n)(p,j) depends

explicitly on j already forn51. In particular,

S~1!~p,j!5E @dl #gmS0~p1l !gnDmn~ l ,j!

5SF
~1!~p!1lSL

~1!~p! ~1.4!

with

SF
~1!~p![S~1!~p,1!5E @dl #gmS0~p1l !gnDmn

F ~ l !

~1.5!

and

SL
~1!~p!52S0

21~p!E @dl #

l 4 S0~p1l !gnl n

52E @dl #

l 4 l mgmS0~p1l !S0
21~p!

5S0
21~p!E @dl #

l 4 S0~p1l !S0
21~p!

2S0
21~p!E @dl #

l 4 . ~1.6!

In the above formulas@dl #[g2m2e@dDl /(2p)D# with

;
e

3-3
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D5422e the dimension of space-time,m the ’t Hooft
mass,4 and g the gauge coupling~g[e for QED, and g
[gs for QCD!. The subscripts ‘‘F’’ and ‘‘ L’’ stand for
‘‘Feynman’’ and ‘‘longitudinal,’’ respectively. Notice tha
SL

(1) is proportional toS0
21(p) and thus vanishes ‘‘on shell.

The most direct way to arrive at the results of Eq.~1.6! is to
employ the fundamental WI,5

l”5S0
21~p1l !2S0

21~p!, ~1.7!

which is triggered every time the longitudinal momenta
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Dmn(l ,j) gets contracted with the appropriateg matrix ap-
pearing in the vertices. Diagrammatically, this element
WI gets translated to

Then, the diagrammatic representation of Eqs.~1.4!, ~1.5!,
and ~1.6! will be given by
~1.8!
ay
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ne-
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When considering physical amplitudes, the characteri
structure of the longitudinal parts established above allo
for their cancellation against identical contributions origin
ing from diagrams which are kinematically different fro
fermion self-energies, such as vertex graphs or boxes,with-
out the need for integration over the internal virtual m
menta. This last property is important because in this way
original kinematical identity is guaranteed to be maintain
instead, loop integrations generally mix the various kinem
ics. Diagrammatically, the action of the WI is very distinct:
always gives rise to unphysical effective vertices, i.e., ve
ces which do not appear in the original Lagrangian; all su
vertices cancel in the full, gauge-invariant amplitude.

To actually pursue these special cancellations explic
one may choose among a variety of gauge-invariant qua
ties. For example, one may consider the current correla
function I mn defined as~in momentum space!

I mn~q!5 i E d4x eiq•x^0uT@Jm~x!Jn~0!#u0&

5~gmnq22qmqn!I ~q2!, ~1.9!

4Throughout the paper we use*@dl #/l 250 and
*@dl #l al b /l 45gabD21*@dl #/l 250, valid in dimensional
regularization. In addition, integrals odd in the integration varia
are considered to vanish. Notice, however, that nowhere will we
the slightly subtler*@dl #/l 450, which is often employed in the
literature.

5A formal derivation of the gauge dependence may be obtaine
resorting to the so-called Nielsen identities@25#.
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where the current Jm(x) is given by Jm(x)
5:Q̄(x)gmQ(x):. Of course,I mn(q) coincides with the pho-
ton vacuum polarization of QED. Equivalently, one m
study physical on-shell processes such asge→ge, gQ
→gQ, or GQ→GQ, whereG is a gluon. Of these three
processes the first two are the most economical, since in
latter the algebra is more complicated due to the appeara
of three gluon vertices.

To see explicitly the mechanism enforcing these cance
tions in the QED and QCD cases, we first consider the o
loop photonic or gluonic corrections, respectively, to t
quantity I mn . Clearly either set of corrections is GFP ind
pendent, since the currentJm(x) is invariant under both the
U(1) and theSU(3) gauge transformations

Q~x!→exp$2 iu~x!%Q~x!,

Q~x!→exp$2 iua~x!Ta%Q~x!,
~1.10!

Q̄~x!→exp$ iu~x!%Q̄~x!,

Q̄~x!→exp$ iua~x!Ta%Q̄~x!,

whereTa5 1
2 la, with la the Gell-Mann matrices.

The relevant diagrams are those shown in Fig. 1. To
the appearance of the unphysical vertices, we carry out
manipulations presented in Eqs.~1.4!, ~1.5!, and ~1.6!, or,
equivalently, in Eq.~1.8!, this time embedded insideI mn(q).
Thus, from diagrams~b! and ~c! we arrive at

e
e

y

3-4
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FIG. 1. One-loop diagram con
tributing to the QED/QCD fer-
mion self-energy.
E
it

ys
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e-
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We thus see that since the action of the elementary WI of
~1.7! amounts to the cancellation of internal propagators,
diagrammatic consequence is that of introducing an unph
cal effective vertex, describing an interaction of the fo
ggQ̄Q or gGQ̄Q, depending on whether we consider ph
th
u

d
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bl
ar
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tonic or gluonic corrections. This type of vertex may be d
picted by means of a Feynman rule of the form

m being the index of the external current.
To see how the above unphysical contributions cancel

sideI mn we turn to diagram~a!. The action of the WI may be
translated to the following diagrammatic picture:
ow
cels
ibu-
g
t

-

s in
or
will
It is then elementary to establish that the two diagrams on
right-hand side of the above diagrammatic equation add
Indeed, for~a! we have~suppressing the integral measure!

~a!;lTrFgm
1

k”2m
gn

1

k”1l”2q”2m

3gr
1

k”2q”2mG l r

l 4 , ~1.11!

whereas from~b!, taking the trace counter-clockwise an
using the fact thatI mn is symmetric under the exchang
m↔n, we obtain6

~b!;2lTrFgn
1

k”1l”2m
gm

1

k”2q”2m

3gp
1

k”1l”2q”2mG l r

l 4

6Throughout the paper we will make extensive use of suita
shiftings of the integration variables together with various re
rangements of seemingly distinct diagrams.
e
p.

5

k1l →k
l →2l
m↔n

lTrFgm
1

k”2m
gn

1

k”1l”2q”2m

3gr
1

k”2q”2mG l r

l 4 . ~1.12!

Summing the two equations above then, it is clear h
the gauge-dependent part of the one-loop amplitude can
altogether. Having proved that the GFP-dependent contr
tions coming from the original graphs containin
S (1)(p,j), i.e., Fig. 1~b! and Fig. 1~c! cancel exactly agains
equal but oppositepropagatorlikecontributions coming from
Fig. 1~a!, one is left with the ‘‘pure’’ GFP-independent one
loop fermion self-energy,Ŝ (1)(p). Clearly, it concides with
the SF

(1)(p) of Eq. ~1.5!, i.e., @17#

Ŝ~1!~p!5SF
~1!~p!. ~1.13!

Next, we will consider the physical processgQ→gQ in
order to analyze how the procedure outlined above work
the case of anS-matrix element. The one-loop diagrams f
the process under consideration are listed in Fig. 2. We
isolate the parts of the above diagrams proportional tol,

e
-

3-5
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FIG. 2. One-loop QED/QCD correction to th
processgQ→gQ (p11p25q5p31p4). Dia-
grams ~e! and ~f! correspond to the~one-loop!
renormalization of the external legs.
t
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th
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tor
ch

the
P-
using again the WI of Eq.~1.8!, together with the fact tha
the external particles are on their mass shell. We empha
that the point of this exercise is not to prove the GFP in
pendence of theS matrix, but rather to recognize that th
GFP cancellations proceed in a very special way:
l-dependent parts of vertices@~b!, ~c!# and boxes@~d!# do not
maintain the same kinematic identity as their parent grap
instead, they reduce to simpler kinematic structures, wh
ra
g
er
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are precisely those stemming from the original propaga
diagram ~a!, and finally cancel algebraically against ea
other.

To see this in detail, we begin with diagram~a!; applying
the identity of Eq.~1.8! in a symmetric way, i.e., allowing
the longitudinal parts to act once on the left and once on
right vertex of the diagram, one obtains the following GF
dependent part:
Similarly, we find
n-

he

tur-
Thus we see that the GFP-dependent part of the box diag
~d! completely cancels against the last diagram appearin
the above equation, in such a way that, after adding ev
thing up, we get
m
in
y-

The remaining tadpolelike contributions will actually ca
cel against the GFP-dependent parts of the diagrams~e! and
~f!, representing the renormalization of the external legs. T
renormalization constant reads

Z2
1/2511

1

2
dZ21¯ , ~1.14!

wheredZ2 represents the one-loop counterterm in the per
3-6
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FIG. 3. Two-loop diagram contributing to the QCD fermion self-energy.
it
bative expansion; in the on-shell renormalization scheme
defined as

dZ25
]

]p”
S~1!~p,j!U

p”5m

5
]

]p” @SF
~1!~p!1lSL

~1!~p!#U
p”5m

~1.15!
08500
isWe next focus our attention on theSL
(1) part of Eq.~1.15!. As

can be seen from Eq.~1.6!, SL
(1)(p) is of the form

SL
~1!~p![~p”2m!g~p” !~p”2m!1~p”2m!c, ~1.16!

wherec is a momentum-independent constant~see footnote
4!; thus
3-7
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SL
~1!~p!up”5m50, dZ2L5lc. ~1.17!

Diagrammatically then, Eq.~1.8! implies that

where the right-hand side is evaluated atp”5m. Thus, recall-
ing the extra 1/2 factor appearing in Eq.~1.14!, the GFP-
dependent part of the wave-function renormalization d
grams is given by

which completes the proof that the GFP independence of
S-matrix element is implemented in the kinematically d
tinct way advocated above. Again, the remaining pure G
independent fermion self-energy which survives is sim
the one given in Eq.~1.13!.

II. THE TWO-LOOP CASE

In the previous section we set up the general method
treating the GFP-dependent contributions associated with
longitudinal momenta of the gauge bosons propagators
side Feynman graphs, studied at the one-loop level, the
cial cancellation mechanism that this implies. Thus we h
ov

es

nc

o
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been able to define the one-loop GFP-independent ferm

self-energyŜ (1)(p). In this section we proceed to the ma
subject of this paper, namely the two-loop definition of t
GFP-independent fermion self-energy.

At the two-loop level the presence of up to three gau
boson propagators in the internal fermion loop will give ri
to O(l3), O(l2), and O(l) GFP-dependent pieces. O
course, the gauge cancellations proceed independentl
each order inl, a fact which facilitates the identification
of diagrams ~or parts of diagrams! which can mix with
each other. Notice, however, that occasionally we will de
ate from this elementary rule of thumb, in order to expl
the fact that one can identify massive cancellations betw
different diagramsbeforeseparating out the different order
in the GFPl; this happens, for example, in the Abelia
like part of the gauge cancellation, as we will see below.
will now proceed to the detailed analysis of the two-lo
construction, showing first how it works in the Abelia
~QED! case, and concentrating then on the non-Abelian c
~QCD!.

A. Abelian case

The diagrams contributing to this part of the amplitu
are the ones denoted~a!,...,~q! in Fig. 3.7 In this part of the
cancellation one can carry out massive cancellations dea
with O(l2) andO(l) diagrams at the same time, by pinc
ing with only one propagator, while letting the other on
untouched. We will now consider in detail a couple of the
diagrams showing how the procedure works in the two-lo
case.

From the box diagram~a! we get, for example, the fol-
lowing equation:
e
tor
Let us concentrate on the three topologies shown ab
It is clear that topology~a! can be generatedonly from
diagram ~b!, and so it must cancel against it. Topologi
~b! and ~g! will be also generated from diagrams~d! and
~c!; however, these last two diagrams do not need to ca
in full against the one coming from~d! and ~c!, because, as
we will see, topologically analogous contributions will als
appear from other diagrams.
e.

el

As a second example, we consider the box diagram~b!,
which gives

7Diagrams (z4), (z5) and (z6) can be put in the Feynman gaug
right from the start, due to the transversality of the fermionic sec
of the photon/gluon propagator~see also Sec. II B!.
3-8
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As expected, topology~e! cancels against the diagram~a! of the previous equation~after exchanging the order of th
internal lines and relabeling the internal momenta!, but we have generated also two new topologies:~d! which will be
generated as well by diagram~e!, and~z! which will be generated by~g!. Letting untouched the vertical propagator in diagram
~c!,...,~h!, we then arrive at the following equation:

~a!1~b!1~c!1~d!1~e!1~ f !1~g!1~h!→

Actually the last two diagrams add up to zero. To see this, we can use theirm↔n symmetry, to observe that~the integral
measures are suppressed!

~m!;lTrFgm
1

k”2m
gr

1

k”1r”1l”2m
gn

1

k”1r”2q”2m
gs

1

k”2q”2mGDrs~r 2!
1

l 4 , ~2.1!

while

~n!;2lTrFgn
1

k”1l”1r”2m
gr

1

k”2m
gm

1

k”1l”2q”2m
gs

1

k”1l”1r”2q”2mGDrs~r 2!
1

l 4

5
k1l 1r→k

2lTrFgn
1

k”2m
gr

1

k”2l”2r”2m
gm

1

k”2r”2q”2m
gs

1

k”2q”2mGDrs~r 2!
1

l 4

5

l →2l
r→2r
m↔n

2lTrFgm
1

k”2m
gr

1

k”1r”1l”2m
gn

1

k”1r”2q”2m
gs

1

k”2q”2mGDrs~r 2!
1

l 4 . ~2.2!

Moreover, from the remaining diagrams we get
085003-9
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After having identified these cancellations of mixed ord
@O(l) andO(l2)# we next find it convenient to pursue th
remaining cancellations treating separately theO(l) and
O(l2) GFP-dependent amplitudes.

1. The O„l2
… cancellation

For this case one has to replace the propagator

appearing in the diagrams~h!,...,~r! with the propagator
he

oo

e
ce
a

m

th

t
na

08500
r

It is then fairly easy to show that

which implies

~j!1~h!50. ~2.3!

Moreover, considering diagram~u! we find the result
en-
i-
The fact that the last two diagrams in the first line of t
previous equality can be added up reflects the freedom
moving at will the photon~gluon! tadpolelike loops in a
given pinched diagram. This can be done because such l
represent scalar quantities—defined in Eq.~1.6!—with no
interactions left at the vertex. Notice that this freedom do
not interfere with our notion of unphysical vertices, sin
both diagrams, written in either way, are equally unphysic
We will often use this property in what follows.

Adding to the above result the contribution coming fro
diagram~q!, we then get

a combination that should then cancel completely with
diagram~r!, which atO(l2) reads

~2.4!

In order to make this cancellation manifest, we need
change the given topology by means of pinching inter
of

ps

s

l.

e

o
l

fermion propagators. Of course, the only available mom
tum r in diagram~r! cannot pinch directly, due to the obv
ous kinematic mismatch. However, one has

which implies finally

~r!1~u!1~q!50. ~2.5!

2. The O„l… cancellation

For this case one has to replace the propagator

appearing in the diagrams~h!,...,~r! with the Feynman
propagator
3-10
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However, these diagrams represent only half of th
contributing to this order; clearly, the other half is obtain
by inverting, with respect to the previous calculatio
the pinching and Feynman propagators. For example,
the diagrams~c!,...,~h! the new terms are obtained b
pinching with the vertical propagator, treating the oth
one as the Feynman propagator. Now, notice that the top
gies ~h! and ~u! can be canceled only by these new con
butions coming from the diagrams~a! and ~b!. In fact, one
has
th

i
e

vi
an

nt
he

08500
e

,
or

r
o-
-which are exactly the topologies needed to cancel the~h! and
~u! terms. In addition, the following new contributions a
obtained from diagrams~c!,...,~n!:
a-
en-

e

h,

an
ian
e of
Finally, the two contributions coming from diagram~q!
will add up giving the final result

Adding all terms together, we finally find that

~j!1~r!1~s!1~t!1~v !1~q!50, ~2.6!

which completes the proof of the gauge cancellation in
Abelian case.

B. Non-Abelian case

We next proceed to address the non-Abelian case. W
respect to the Abelian case we have two main differenc
first, there are seven more diagrams~plus ghosts! to consider
~see diagrams~r!,....,~y! in Fig. 3!, all of which contain at
least one three-gluon vertex; second, due to the nontri
color structure of the theory, the cancellations in the Abeli
like subset of graphs will not go through as before.

Let us first deal with this latter point. Taking into accou
the factors ofi coming from the Feynman rules, we have t
following color prefactors:
e

th
s:

al
-

~a!, ~c!, ~d!, ~e!, ~ f!, ~ i!, ~ l!, ~o!, ~p!, ~q!

;2Cf
2,

~b!, ~g!, ~h!, ~m!, ~n!;2Cf
21 1

2 CACf ,
~2.7!

~r!, ~s!, ~ t!, ~u!; 1
2 CACf ,

~w!, ~x!, ~y!;2 1
2 CACf ,

whereCf and CA represent, respectively, the quadratic C
simir operators of the fundamental and the adjoint repres
tations of theSU(Nc) group, i.e.,

Cf
25

Nc
221

2Nc
, CA5Nc . ~2.8!

It is then clear that, while for the parts of the Abelian-lik
diagrams~a!,...,~q! which are proportional toCf

2 the cancel-
lations proven in the previous sections will still go throug
the parts proportional toCA will survive, and will eventually
cancel against contributions from the purely non-Abeli
graphs. Thus our first task is to determine the non-Abel
remainders of the diagrams appearing in the second lin
Eq. ~2.7!, at each order inl.

At any order inl one has
3-11
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~2.9!

Now, atO(l2) the above equation reads

On the other hand,

It is straightforward to verify, using the procedure presented following Eq.~2.4!, that

~ ii !1~ iii !1~v!1~viii !50,

~ i!1~vi!1~vii !50. ~2.10!

Finally, ~iv! and ~ix! cancel directly. Thus, atO(l2) we are left with the non-Abelian remainder

~2.11!

which will be canceled later.
In the O(l) case, we have to substitute the propagator

appearing in Eq.~2.9! with the Feynman propagator

Moreover, as already mentioned, we have still to compute the GFP-dependent contributions~linear in l! of diagrams
085003-12
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~g!, ~h!, ~m!, ~n!, where the Feynman and pinching propagators are reversed with respect to that presented in Eq.~2.9!. Thus,
we obtain:

Finally, from ~b! we obtain

Thus, putting all terms together, we arrive at theO(l) non-Abelian remainder

~2.12!

We next concentrate on the purely non-Abelian diagrams~q!,..., ~y!. In this case we will split the calculation from th
beginning into different orders inl. Notice that theO(l3) cancellation is automatically accomplished due to the elemen
WI

k1
mk2

nk3
rGmnr~k1 ,k2 ,k3!50, ~2.13!

satisfied by the three-gluon vertex. Therefore we only have to collectO(l2) andO(l) contributions.

1. The O„l2
… cancellation

In dealing with the non-Abelian diagrams, we have found it more economical to carry out all possible cancellations
letting the longitudinal momenta act on the three gluon vertex. Consider, for example the diagrams~r! and~s!: each one gives
rise to three possibleO(l2) diagrams, as shown below
085003-13
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Similarly, the basic topologies obtained from diagrams~t! and ~u! can be easily worked out. After some elementary mani
lations involving further pinching in order to allow the combination/cancellation of seemingly different topologies~but without
acting on the three-gluon vertex!, one finally arrives at
on
x

n

.
t

mo-
ond
ch-

ero
ox

Eq.
We next consider diagrams~w!, ~x!, and~y!, and the cor-
responding ghost and fermion diagrams (z1),...,(z6). Let us
introduce the one-loop gluon self-energy

which, due to its transversality, satisfies

qmPmn~q,l!50. ~2.14!

This fact will then imply that as far as the ghost and fermi
diagrams (z1),...,(z6) are concerned, one can effectively fi
the Feynman gaugel50 right from the start, while for the
diagrams~w!, ~x!, and~y! the above transversality conditio
has the consequence of putting the external propagators~i.e.,
those touching the fermion loop! in the Feynman gauge
Thus in these latter graphs the pinching momenta can ac
the three gluon vertexonly, triggering the elementary WI.
08500
on

k1
mk2

nGmnr~k1 ,k2 ,l !52 1
2 l 2~k12k2!r

1 1
2 l •~k12k2!l r . ~2.15!

The first term represents an inverse propagator times a
mentum which in general cannot pinch, whereas the sec
term represents an effective three gluon vertex times a pin
ing momentum. Thus, for example,

where we did not draw a tadpolelike diagram since it is z
upon integration in the internal momenta, and the black b
represents the unphysical effective vertex defined in
~2.15!, i.e.,
~2.16!

Proceeding in this way we find@recall that there is a relative minus sign between diagrams~r!,..., ~u! and ~w!,..., ~y!#
3-14
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where the last step is achieved by allowing the second diagram in the first line to pinch further. The coefficient multiply
equation isCfCA/2. Notice that the effective vertex introduced in Eq.~2.16! does not appear at this point.

We can finally act on the three gluon vertex with the remaining pinching momenta, to obtain
tio
.

th

th
s,
f

m

ingle

o-
the

ent
ond

nta
ther
on-
It is then clear how the final steps proceed: the combina
~i! 1 ~iii ! cancels theO(l2) non-Abelian remainder of Eq
~2.11!, while, as can be easily shown

~ ii !1~vi!1~v!50. ~2.17!

This completes the proof of the cancellation of theO(l2)
terms.

2. The O„l… cancellation

As in the previous case, the strategy will be to achieve
widest possible cancellation between diagrams, avoiding
act on the three-gluon vertex. First of all, each one of
diagrams~s!,..., ~u! will again generate three contribution
which are obtained from theO(l2) ones by trading one o
the propagators

for a Feynman propagator. Then, taking all these diagra
into account, we arrive at the equation
08500
n

e
to
e

s

We are now left with the topologies (w),...,(z3). As in
theO(l2) case, for the external propagatorsl50. However,
contrary to the previous case where each one gave a s
contribution, atO(l) each of the topologies~w!, ~x!, and~y!
gives rise to two equal contributions@hence the factor of 2 in
Eq. ~2.19!#. Moreover, for these diagrams the pinching m
menta can only act on the three-gluon vertex, triggering
elementary WI

k1
mGmnr~k1 ,k2 ,l !5~ l 2gnr2l nl r!2~k2

2gnr2k2nk2r!.
~2.18!

The first and third term of the above expression repres
two inverse propagators in the Feynman gauge; the sec
and fourth terms contain instead two longitudinal mome
each, one acting on the external fermion loop, and the o
one on the remaining three-gluon vertex. For example, c
sidering diagram~w!, we find
~2.19!
3-15
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The diagram~m! comes from the first term in Eq.~2.18!,
while the third term in the WI produces in this case a ta
polelike diagram which is odd in the integrated moment
and vanishes. The term~n! and ~j! are generated from th
second and fourth term in Eq.~2.18!, respectively. Notice
that a new unphysical effective three-gluon vertex
ll

F
o

ut
-
’’

08500
-
has appeared. After acting on the remaining three-gluon
tex of diagram~j! we get

Proceeding in this way we arrive at the result
where the group-theoretical coefficient of this equation isCACf /2.
The final step of the proof is achieved by acting on the three-gluon vertex in~r! and ~p! with the remaining pinching

momenta. One has, keeping in mind Eq.~2.18!,
e
gy

T
y
cial
he
Then the sum (i)1(iv) 1(v)1(vii) cancels against the
O(l) non-Abelian remainder~2.12!, ~ii ! and ~vi! cancel di-
rectly, while finally

~t!1~viii !5~s!1~ iii !50. ~2.20!

This completes the proof of the non-Abelian gauge cance
tion.

We see that, as happened in the one-loop case, the G
dependent contributions coming from the original graphs
Fig. 3 definingS (2)(p,j), cancel exactly against equal b
oppositepropagatorlikecontributions coming from vertex
like and boxlike graphs. Thus, one is left with the ‘‘pure
GFP-independent one-loop fermion self-energy,Ŝ (2)(p),
which again coincides with theSF

(2)(p)[S (2)(p,1), i.e.,
a-

P-
f

Ŝ~2!~p!5SF
~2!~p!, ~2.21!

which constitutes the central result of this paper.

III. THE ABSORPTIVE CONSTRUCTION: THE ONE-
LOOP CASE

In the next two sections we will show in detail how on
may construct the two-loop PT effective fermion self-ener
using unitarity and analyticity arguments@24#. The general
idea is the following: The imaginary parts of the two-loop P
fermion self-energiesŜ (2) of QED and QCD are related b
the optical theorem to precisely identifiable and very spe
parts of four different cross sections. In particular, for t
case of QED, the two-particle Cutkosky cuts ofŜ (2) are
3-16
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related to the ‘‘genuine’’s-channel part of the one-loop cros
section for the processgQ→gQ while, at the same time, th
three-particle Cutkosky cuts of the same quantity are rela
to the genuines-channel parts of the tree-level cross sectio
for the processesgQ→gQ, gQ→QQ̄Q, and gQ→ggQ.
The corresponding processes for the QCD can be obta
by replacing the photons by gluons (g↔G) in the final
states. The key word in the above description is the w
‘‘genuine’’: By genuine s-channel part we mean th
s-channel part obtainedafter the longitudinal terms of the
polarization vectors involved have triggered the WIs of t
various amplitudes. These WIs implement themselves
ways that do not respect the originals-t channel separation
of the amplitude, as given by the Feynman graphs; inste
variouss- andt-channel contributions are nontrivially mixed
in such ways as to finally result in fundamental cancellatio
It turns out that all such contributions can again be picto
ally represented by means of unphysical elementary verti
a fact which facilitates significantly their identification.

In this section we will set up the formalism, adopted
the fermion self-energy, and discuss in detail the one-lo
case; the two-loop generalization will be presented in S
IV.

A. QED

The optical theorem for the case of forward scatter
assumes the form

Im^auTua&5 1
2 (

i
~2p!4d~4!~pa2pi !

3^ i uTua&* ^ i uTua&, ~3.1!

where the sumS i should be understood to be over the ent
phase space of all allowed on-shell intermediate statesi. Af-
ter expanding theT matrix in powers of g, i.e., T
5Sn52T@n#, we have that

Im^auT@n#ua&5 1
2 (

i
~2p!4d~4!~pa2pi !

3(
k

^ i uT@k#ua&* ^ i uT@n2k#ua&. ~3.2!

In the particular case of QED, if in the initial states w
have agQ i.e., ua&5ugQ&, we have for the first nontrivia
order,n54, in theT

Im^gQuT@4#ugQ&5 1
2 E ~dPS!^gQuT@2#ugQ&*

3^gQuT@2#ugQ&, ~3.3!

where~dPS! denotes the~two-body! phase-space integration
Next we introduce the short-hand notation

A@n#[Im^gQuT@n#ugQ&,

T @k#[^gQuT@k#ugQ&. ~3.4!
08500
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To avoid notational clutter we will suppress the Lorentz
dex corresponding to the external photon. Using the ab
notation, and suppressing the phase-space integrations
have

A@4#5 1
2 T m

@2#Pmm8~p1!T m8
@2#* , ~3.5!

wherePmn is the polarization tensor for photons or gluons

Pmn~p,n,h!52gmn1
nmpn1nnpm

n•p
2h

pmpn

~n•p!2 , ~3.6!

with nm being an arbitrary four-vector, andh a gauge param-
eter.

The amplitudeT m
@2# consists ofs- channel andt-channel

contributions, i.e.,

T m
@2#5T sm

@2#1T tm
@2# ~3.7!

~see Fig. 4!. From the gauge symmetry we know that

p1
mTm50, ~3.8!

to all orders. Clearly, by virtue of Eq.~3.8! all reference to
the unphysical quantitiesnm and h disappears. We empha
size, however, that the action of the momentump1

m does not
respect thes2t separation given by the initial set of Feyn
man diagrams. Instead, the action ofp1

m gives rise to cancel-
lations between the two sets. In particular we have that

Notice that the termR contains always an unphysical verte
Therefore,

A@4#5
1

2
T @2#

^ T @2#*

5
1

2
~T s

@2#1T t
@2#! ^ ~T s

@2#* 1T t
@2#* !

5Ass
@4#1Ast

@4#1Att
@4# , ~3.9!

with

FIG. 4. The tree level one-particle phase space appearing in
one-loop QED absorptive PT construction. Diagram~a! defines the
s-channel amplitudeT s

@2# , while diagram~b! defines thet-channel
amplitudeT t

@2# .
3-17
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Ass
@4#5 1

2 T s
@2#

^ T s
@2#* ,

Ast
@4#5 1

2 ~T s
@2#

^ T t
@2#* 1T t

@2#
^ T s

@2#* !, ~3.10!

Att
@4#5 1

2 T t
@2#

^ T t
@2#* .

Next we will focus onAss
@4# , which is the genuines-channel

part, i.e., thes-channel contribution after the longitudina
parts ofPmm8(p1) have been eliminated. We will castAss

@4# in
the form

Ass
@4#5~ega!S0~p!Ass

@2#~p!S0~p!~ega!, ~3.11!

and then identify

ImŜ~1!~p!5Ass
@2#~p!, ~3.12!

where Ŝ (1)(p) is the one-loop fermion self-energy und
construction.

At this point it is straightforward to verify that

Ass
@2#~p!5C2$Ŝ

~1!~p!%5C2$SF
~1!~p!%, ~3.13!

where Cn$¯% is the operator which carries out the th
n-particle Cutkosky cuts to the quantity appearing inside
curly brackets. In this case the two-particle cut involves
~massless! g and aQ of massm. The real part ofŜ (1)(p) can
be obtained directly fromAss

@2#(p) by means of a~twice-
subtracted! dispersion relation. In particular,

ReŜ~1!~p!5E
t2

`

dt
Ass

@2#~ t !

t2p2 , ~3.14!

where t25m2 is the two-body threshold. After subtractin
twice ‘‘on-shell’’ one obtains the corresponding renormaliz
quantity

ReŜR
~1!~p!5~p22m2!2E

t2

`

dt
Ass

@2#~ t !

~ t2p2!~ t2m2!2 .

~3.15!

B. QCD

The one-loop QCD case can be directly derived from
QED analysis presented above. In particular, when apply
the optical theorem one must consider a quark~Q! and a
gluon ~G! as an intermediate state, i.e.,

Im^gQuT@4#ugQ&5 1
2 E ~dPS!

3^GQuT@2#ugQ&* ^GQuT@2#ugQ&,

~3.16!

and define the corresponding quantities~we suppress color!
08500
e
a

e
g

A@n#[Im^gQuT@n#ugQ&,
~3.17!

T @k#[^GQuT@k#ugQ&.

From this point on the analysis is exactly analogous to t
presented for QED. The fact that the QED and QCD co
structions coincide is special to the one-loop case and, as
will see in the next section, is not true in higher orders.

IV. THE TWO-LOOP ABSORPTIVE CONSTRUCTION

As mentioned at the beginning of the preceding section
the two-loop case we have two distinct types of contrib
tions: ~i! those that are the one-loop corrections to the tw
to-two particle processgQ→gQ ~gQ→GQ in the case of
QCD!, whose tree-level analysis was considered in the p
vious section;~ii ! those that come from tree-level two-to
three particle processes.

There is one additional fact we will use in the analys
below: The one-loop contributions togQ→gQ ~gQ→GQ
in the case of QCD! considered in~i! can be effectively
brought in the Feynman gauge, starting from any ot
gauge, using a procedure exactly analogous to that use
Sec. I. In particular, using nothing but elementary WIs, t
reader should be able to see how all longitudinal contri
tions inside the Feynman diagrams of Fig. 5 are equivalen
unphysical vertices, which cancel algebraically.

Before we can proceed with the details of the two-lo
absorptive construction, some additional comments are in
der. In the previous section we have distinguished betw
the tree-levels-channel andt-channel contributions, shown
in Fig. 4, using the obvious criterion of whether a diagra
depends on the Mandelstam variables @Fig. 4~a!# or t @Fig.
4~b!#. Notice, however, that in addition to thet variable, the
t-channelfermion propagator in Fig. 4~b! depends explicitly
on the mass of the incoming~test! fermion. A similar distinc-
tion betweens-channel andt-channel contributions needs t
be established in this section; however, additional care
needed when classifying the various diagrams. Clearly,
grams that are one-loop corrections to the tree-le
t-channel graph of Fig. 4~b!, such as those shown in Fig
5~e!, 5~f!, 5~g!, 5~h!, 5~m!, 5~n!, 5~p!, and 5~q!, will be char-
acterized ast-channel graphs. In addition, those graphs t
arise as one-loop vertex or wave-function corrections to
incomingparticles of Fig. 4~a!, such as Figs. 5~i! and 5~o!,
will also be classified ast-channel graphs. Finally, graphs a
those shown in Figs. 5~a!–5~c!, which are one-loop correc
tions to either thes-dependent off-shell propagator or verte
and wave-function corrections to theoutgoing particles of
the tree-levels-channel of Fig. 4~a!, will be characterized as
s-channel graphs. At first sight the characterization of
graphs in Figs. 5~i! and 5~o! as t-channel graphs may seem
unusual, since there is no explicitt dependence in them
indeed, both graphs depend ons, but, in addition, on the
masses of the incoming particles. Thus, in general, if s
graphs were to be considered as parts of the two-loop s
energy which is being constructed absorptively, they wo
introduce in it an explicit process dependence. This wo
clearly be a drawback, since the off-shell gauge-invari
3-18
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FIG. 5. The one-loop two-particle phase space appearing in the two-loop QCD absorptive PT construction. Diagrams~a!,...,~d! define the
s-channel amplitudeT as

@2# , while all the others define thet-channel amplitudeT at
@2# .
ve
t
w

n-
th

a
uc
y
s
in

ich
o

y

, and
fermion self-energies one wants to define should be uni
sal, i.e., process independent. To appreciate this point, le
imagine that instead of the flavor-conserving processes
consider here~in which case the mass of the incoming o
shell fermion is the same as that of the off-shell one, and
external photons are massless!, we were instead studying
process containing a flavor-nonconserving interaction, s
asW1b→tg, or W1b→tZ attempting to define absorptivel
the part of the off-shell top-quark~t! self-energy that contain
a t and ag or a t and aZ. In that case graphs such as those
Figs. 5~i! and 5~o!, together with theW wave-function graphs
~not shown!, would introduce into thetg andtZ ‘‘widths’’ an
unphysical dependence onmb and MW . Thus, according to
this definition, thes-channel graphs are those graphs wh
do not contain information about the kinematical details
the incoming test particles.

A. QED

There are three different thresholds, to be denoted ba

[gQ, b[ggQ, andc[QQ̄Q. Thus,
08500
r-
us
e

e

h

f

Im^qq̄uT@6#uqq̄&

5 1
2 E ~dPS!a2 Re@^gQuT@4#ugQ&* ^gQuT@2#ugQ&#

1 1
2 E ~dPS!b^ggQuT@3#ugQ&* ^ggQuT@3#ugQ&

1 1
2 E ~dPS!c^QQ̄QuT@3#ugQ&* ^QQ̄QuT@3#ugQ&.

~4.1!

Then we have, suppressing the phase-space integrations
using the previously introduced notation

A@6#5Re~T am
@4#Pmm8~p1!T am8

@2#* !

1 1
2 T bmn

@3# Pmm8~p1!Pnn8~p2!T bm8n8
@3#*

1 1
2 T c

@3#T c
@3#*

[Aa
@6#1Ab

@6#1Ac
@6# . ~4.2!
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FIG. 6. The tree-level three
particle phase space appearing
the two-loop QCD absorptive PT
construction. Diagrams~a!,...,~c!
define the s-channel amplitude
T bs

@3# , while all the others define
the t-channel oneT bt

@3# .
ne
e

-

he

c-

cuts
From the gauge symmetry we know that

p1
mTbmn50,

~4.3!
p2

nTbmn50,

to all orders. Again, the same situation explained in the o
loop case is true now, namely the fact that the WI mix
contributions between thes andt channels, which all contain
unphysical vertices. In particular, at ordere6,

~4.4!

and an identical equation holds when contracting withp2n .
Notice that again the termR@3# n contains an unphysical ver
tex.

Finally,

Ai
@6#5Ai ss

@6#1Ai st
@6#1Ai tt

@6# , i5a, b, c ~4.5!

with

Aa ss
@6# 5Re@T a s

@4#
^ T a s

@2#* #,

Aa st
@6# 5Re@T a s

@4#
^ T a t

@2#* 1T a t
@4#

^ T a s
@2#* #,

~4.6!

Aa tt
@6#5Re@T a t

@4#
^ T a t

@2#* #,

and
08500
-
s

Am ss
@6# 5 1

2 T m s
@3#

^ T m s
@3#* ,

Am st
@6# 5 1

2 ~T m s
@3#

^ T m t
@3#* 1T m t

@3#
^ T m s

@3#* !,
~4.7!

Am tt
@6# 5 1

2 T m t
@3#

^ T m t
@3#* , m5b, c.

Let us next consider thess parts,Ai ss
@6# (p). Unlike the one-

loop case, where in Eq.~3.12! the entiresspartAss
@2#(p) was

identified with ImŜ(1)(p), now we must identifyAi ss
@6# (p)

with the imaginary parts of both the two-loopone-particle

irreducible fermion self-energyŜ (2)(p) and the one-particle
reducible string of twoŜ (1)(p); of course the latter contri-
butions are known from the one-loop construction of t
previous section. Thus,

Im Ŝ~2!~p!5Ai ss
@6# ~p!22 Im Ŝ~1!~p!ReŜ~1!~p!

[Ai ss
@6# 1PI~p! ~4.8!

where the superscript ‘‘1PI’’ stands for ‘‘one-particle irredu
ible.’’ One can verify at this point that

Ai ss
@6# 1PI~p!5Ci$Ŝ

~2!~p!%5Ci$ŜF
~2!~p!%, i5a, b, c.

~4.9!

Clearly, the two-particle cut involves ag and aQ, whereas
the three-particle cut involves twog’s and aQ, and threeQ’s,
respectively. Of course, for massless photons the two
3-20
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coincide. The real part ofŜ (2)(p) can be obtained directly
from the three quantitiesAi ss

@6# (p) by means of an appropriat
dispersion relation. In particular,

ReŜ~2!~p!5(
i
E

t i

`

dt
Ai ss

@6# 1PI~ t !

t2p2 , ~4.10!

with ta5tb5m2 and tc59m2. Again, after subtracting twice
‘‘on shell,’’ one obtains the corresponding renormaliz

quantity ReŜR
(2)(p).

B. QCD

There are three different thresholds, to be denoted ba

[GQ, b[GGQ, andc[QQ̄Q. So, at ordere2gs
4 we have
in
s.

08500
Im^qq̄uT@6#uqq̄&

5 1
2 E ~dPS!a2 Re@^GQuT@4#ugQ&* ^GQuT@2#ugQ&#

1 1
2 E ~dPS!b^GGQuT@3#ugQ&* ^GGQuT@3#ugQ&

1 1
2 E ~dPS!c^QQ̄QuT@3#ugQ&* ^QQ̄QuT@3#ugQ&.

~4.11!

We next turn to the tree-level WIs satisfied by the QC
amplitudes appearing above, when contacted by the
menta originating from the polarization tensor~s! of the final
state gluon~s!. To begin with, Eq.~4.2! holds exactly as in the
QED case. It is worthwhile studying how this tree-level W
is realized at the diagrammatic level; a nontrivial interplay
terms containing unphysical vertices takes place, allow
contributions originating from different kinematic channe
to cancel against each other. The diagrams contributing to
processgQ→GQ at one loop are shown in Fig. 5. For bre
ity, we will illustrate the point by focusing only on the non
Abelian diagrams~d!, ~h!, and ~q! of Fig. 5. Using the el-
ementary WI~2.18!, we find the following equality:
-

to

ted
where the ellipses stand for diagrams that will cancel aga
contributions left over from the Abelian-like diagram
Moreover, one has
stso that taking into account that diagrams~h! and ~q! carry a
~group-theoretical! relative minus sign with respect to dia
gram ~d!, we find the cancellations

~a!1~z!50, ~b!1~d!50, ~g!1~«!50. ~4.12!

Thus, the analysis regarding the sectora andc is exactly
analogous to that of QED. The only difference is related
the sectorb, and originates from the fact that Eq.~4.3! and
Eq. ~4.4! are altered, due to the appearance of ghost-rela
contributions. In particular,

p1
m~T b s

@3#!m
n 5Sb s

@3#p2
n1Rb

@3# n ,
~4.13!

p1
m~T b t

@3#!m
n 5Sb t

@3#p2
n2Rb

@3# n ,
3-21
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and by Bose symmetry the same equation is valid w
p1↔p2 , andm↔n. In addition, acting withp2

n on both sides
of Eq. ~4.13!, and using the on-shell conditionsp1

25p2
250

we have

p1
mp2

nT b mn
@3# 50. ~4.14!

To see how this WI is enforced diagrammatically, we ne
turn to the set of diagrams contributing to the tree-level tw
to-three process, listed in Fig. 6. Contracting with the ex
nal momentak1

m , taking into account the different colo
structure of the diagrams, and recalling the elementary
~1.7!, we obtain
i.e

in
CD

08500
n

t
-
r-

I

The cancellation between diagrams~b! and ~g! corre-
sponds to the standard BRS-enforceds-t-channel cancella-
tion @26# taking place in the tree-level amplitudeQQ
→GG, which now appears embedded as a subprocess in
amplitudegQ→GGQ that we consider here. As happens
the case of theQQ→GG example, the diagram~«! gives
rise to the correct ghost structure. Diagrams~a! and ~d!,
which contain external unphysical vertices, will canc
against similar contributions originating from thet-channel
graphs. Specifically,
the
l-
.
own
ts

to
all
cel
ut
b-

we
op
the
the

s-

be
We can then identify the cancellations

~a!1~p!50, ~d!1~h!50, ~z!1~j!50, ~4.15!

so that we are left only with the correct ghost structures,
diagrams~«! and ~u!.

Thus, whereas Eq.~4.6! and the part of Eq.~4.7! with i
5c remain unchanged, the part of Eq.~4.7! with i5b gets
modified as follows:

Ab ss
@6# 5 1

2 ~T b s
@3#

^ T b s
@3#* 22Sb s

@3#
^ Sb s

@3#* !,

Ab st
@6# 5 1

2 @~T b s
@3#

^ T m t
@3#* 22Sb s

@3#
^ Sb t

@3#* !1~T b t
@3#

^ T b s
@3#*

22Sb t
@3#

^ Sb s
@3#* !#, ~4.16!

Ab tt
@6#5 1

2 ~T b t
@3#

^ T b t
@3#* 22Sb t

@3#
^ Sb t

@3#* !.

Beyond this point it is easy to see that the analysis follow
Eq. ~4.7! of the QED case applies unchanged to the Q
case as well.
.,

g

V. DISCUSSION AND CONCLUSIONS

In this paper we have shownexplicitly that the off-shell
two-loop fermion self-energy constructed by means of
PT coincideswith the conventional fermion self-energy ca
culated in the covariant~renormalizable! Feynman gauge
This has been demonstrated by systematically tracking d
the action of all terms originating from the longitudinal par
of the tree-level gauge boson propagators~photons or glu-
ons! appearing inside the Feynman diagrams contributing
manifestly gauge-invariant amplitudes. It turns out that
such terms give rise to unphysical vertices, which can
diagrammatically in the entire physical amplitude, witho
affecting the kinematical structure of the various su
amplitudes~propagators, vertices, boxes!. We have followed
two different but physically equivalent approaches. First
have shown the cancellations at the level of the full two-lo
amplitude. Then we have shown the cancellations for
two- and three-body cross sections which appear on
right-hand side of the optical theorem.

It is worth commenting on the relation of the results e
tablished here and those appearing in@18#. That work was an
early attempt to define what the pinch technique should
3-22
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FIG. 7. The SD equation for the electro
propagatorS.
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beyond one loop. At the time it was written the central iss
had been how to deal with the internal three-gluon verti
appearing inside Feynman diagrams, i.e., three-gluon v
ces all three legs of which are associated with gauge fi
propagating inside the loop. In particular, one needed to
tablish a well-defined criterion which would allow one
unambiguously decide whether and how the internal vert
should be split into pinching and nonpinching parts. Wh
was proposed in@18# was to split the internal vertices fol
lowing as a guiding principle some type of skeleton exp
sion of the quark two-loop self-energy. In particular, t
starting point for the construction has been the general
grammatic representation of the two-loop quark self-ene
in terms of renormalized one-loop two-point and three-po
functions and tree-level Bethe-Salpeter-type quark-glu
scattering kernel insertions in the one-loop quark self-ene
According to this construction, even if one were to start o
in the Feynman gauge, pinching momenta stemming fr
the internal three-gluon vertex in the diagram of Fig. 3~t! @or
Fig. 3~u!# would give rise to pinch contributions whic
should be removed from the effective PT propagator un
construction. Thus, the final answer differs from that of t
Feynman gauge; in fact, it does not coincide with any of
known gauges. However, this procedure was in contradic
with the already existing absorptive PT constructio
@14,27#, according to which the imaginary parts of the P
Green’s functions are related by means of the optical th
rem to precisely identifiable parts of physical cross sectio
These latter parts are constructed by using again the PT
arrangement, but this time not at the level of amplitud
~S-matrix elements! but at the level of cross sections. Th
fundamental PT property relating real and imaginary part
a nontrivial realization of the optical theorem at the level
individual Green’s functions. As has been explained in de
in @16#, any attempt to rearrange the internal vertices lead
a violation of the aforementioned property; therefore inter
three-gluon vertices should remain unchanged, and only
ternal ones need be modified. Therefore, in the case of
fermion propagator the only pinching momenta origina
from the longitudinal parts of the internal gluon propagato

If one accepts that the cancellation mechanism prese
here persists to all orders, then so does the main result of
paper, namely that the PT fermion self-energy coincides w
that in the Feynman gauge. This is so because, as alr
mentioned earlier, in the case of the fermion self-energy
three-boson vertices are ‘‘internal,’’ i.e., there are no furth
pinching contributions stemming from the usual PT re
rangement of three-boson vertices. Should that be the ca
would be interesting to study the form of the SD this se
energy satisfies. For example, the SD equation for the e
tron propagatorS will be given by ~see Fig. 7!
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S21~p!5S0
21~p!2e2

3E ddk

~2p!d gmS~p1k!Gn~p,k!Dmn~k!,

~5.1!

where Gn(p,k) is the full photon-electron-electron vertex
and the full photon propagatorDmn now assumes the form

Dmn~q!5~gmn2qmqn /q2!@q22P~q!#211qmqn /q4

~5.2!

where the scalar quantityP(q) is related to the full vacuum
polarizationPmn by

Pmn5~gmn2qmqn /q2!P~q!. ~5.3!

It will be interesting to study this form of the SD equatio
and its implication for fermion mass generation, particula
in the cases QED3 and QED4. Notice that the presence o
Gn(p,k) forces one to solve a system of coupled SD eq
tions, or, alternatively, resort to a gauge-technique inspi
Ansatz forGn(p,k) @28#.

It is well known that one can construct a gauge-invaria
operator out of a gauge-variant one by means of a path-o
exponential containing the gauge fieldA @29#. In the case of
the fermion propagatorS(x,y)5^0uc(x)c̄(y)u0& the corre-
sponding gauge-invariant propagatorSPO reads~‘‘PO’’ stands
for ‘‘path-ordered’’!

SPO~x,y!5^0uc~x!P expS i E
x

y

dz•A~z! D
3c̄~y!u0&. ~5.4!

It would be interesting to explore possible connections
tween the path-ordered propagator and the PT propag
constructed in this paper, together with various other rela
formalisms, which have appeared in the literature@30,31#.

Finally, it would be important to extend the methodolog
and results of this paper to the case of the electroweak se
of the standard model, especially given the phenomenol
cal relevance of~resonant! top-quark production.

ACKNOWLEDGMENTS

The work of D.B. is supported by the Ministerio of Edu
cación, Cultura y Deporte, Spain, under Grant No. DGICY
PB97-1227, and the research of J.P. is supported by CIC
Spain, under Grant No. AEN-99/0692.
3-23



.

u,

a

s

. D

,

ki,

.

-

hys.

.

s.

DANIELE BINOSI AND JOANNIS PAPAVASSILIOU PHYSICAL REVIEW D65 085003
@1# K. Johnson, M. Baker, and R. Willey, Phys. Rev.136, B1111
~1964!; S. L. Adler and W. A. Bardeen, Phys. Rev. D4, 3045
~1971!; 6, 734~E! ~1971!; T. Maskawa and H. Nakajima, Prog
Theor. Phys.52, 1326~1974!; 54, 860~1975!; V. A. Miransky,
Phys. Lett.91B, 421 ~1980!; P. I. Fomin, V. P. Gusynin, V. A.
Miransky, and Y. A. Sitenko, Riv. Nuovo Cimento6N5, 1
~1983!.

@2# K. D. Lane, Phys. Rev. D10, 2605 ~1974!; K. Higashijima,
ibid. 29, 1228 ~1984!; H. Pagels,ibid. 19, 3080 ~1979!; D.
Atkinson and P. W. Johnson,ibid. 37, 2290~1988!; C. D. Rob-
erts and B. H. McKellar,ibid. 41, 672 ~1990!.

@3# N. Dorey and N. E. Mavromatos, Phys. Lett. B250, 107
~1990!; N. Dorey and N. E. Mavromatos, Nucl. Phys.B386,
614 ~1992!; N. E. Mavromatos, Nucl. Phys. B~Proc. Suppl.!
33C, 145 ~1993!; N. E. Mavromatos and J. Papavassilio
Phys. Rev. D60, 125008~1999!.

@4# For example, T. Appelquist, D. Carrier, L. C. Wijewardhan
and W. Zheng, Phys. Rev. Lett.60, 1114~1988!; T. Appelquist,
K. D. Lane, and U. Mahanta,ibid. 61, 1553~1988!.

@5# C. N. Leung, S. T. Love, and W. A. Bardeen, Nucl. Phy
B323, 493 ~1989!.

@6# D. K. Hong, V. A. Miransky, I. A. Shovkovy, and L. C. Wijew-
ardhana, Phys. Rev. D61, 056001 ~2000!; 62, 059903~E!
~2000!.

@7# W. A. Bardeen, C. T. Hill, and M. Lindner, Phys. Rev. D41,
1647 ~1990!.

@8# J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D10,
2428 ~1974!.

@9# W. J. Marciano and H. Pagels, Phys. Rep.36, 137 ~1978!.
@10# D. Atkinson and P. W. Johnson, J. Math. Phys.28, 2488

~1987!; D. Atkinson, P. W. Johnson and K. Stam, Phys. Rev
37, 2996~1988!.

@11# A. Pilaftsis, Z. Phys. C47, 95 ~1990!.
@12# J. M. Cornwall, Phys. Rev. D26, 1453~1982!; J. M. Cornwall

and J. Papavassiliou,ibid. 40, 3474 ~1989!; J. Papavassiliou
Phys. Rev. D41, 3179~1990!.

@13# A. A. Slavnov, Teor. Mat. Fiz.10 153 ~1972! @Theor. Math.
08500
,

.

Phys. 10, 99 ~1972!#; J. C. Taylor, Nucl. Phys.B33, 436
~1971!.

@14# J. Papavassiliou and A. Pilaftsis, Phys. Rev. Lett.75, 3060
~1995!; Phys. Rev. D53, 2128~1996!.

@15# A. Denner, G. Weiglein, and S. Dittmaier, Phys. Lett. B333,
420 ~1994!; S. Hashimoto, J. Kodaira, Y. Yasui, and K. Sasa
Phys. Rev. D50, 7066~1994!.

@16# J. Papavassiliou, Phys. Rev. Lett.84, 2782~2000!; Phys. Rev.
D 62, 045006~2000!.

@17# J. Papavassiliou, Phys. Rev. D51, 856 ~1995!.
@18# N. J. Watson, Nucl. Phys.B552, 461 ~1999!.
@19# Y. Yamada, Phys. Rev. D64, 036008~2001!.
@20# Y. J. Feng and C. S. Lam, Phys. Rev. D53, 2115~1996!.
@21# Y. L. Dokshitzer, D. Diakonov, and S. I. Troian, Phys. Rep.58,

269~1980!; A. Andrasi and J. C. Taylor, Nucl. Phys.B192, 283
~1981!; D. M. Capper and G. Leibbrandt, Phys. Rev. D25,
1002 ~1982!.

@22# G. Leibbrandt, Phys. Rev. D29, 1699~1984!; Rev. Mod. Phys.
59, 1067 ~1987!; G. Leibbrandt and J. Williams, Nucl. Phys
B440, 573 ~1995!; B566, 373 ~2000!.

@23# C. Becchi, A. Rouet, and R. Stora, Ann. Phys.~N.Y.! 98, 287
~1976!.

@24# J. Papavassiliou and A. Pilaftsis, Phys. Rev. D54, 5315
~1996!.

@25# N. K. Nielsen, Nucl. Phys.B97, 527 ~1975!.
@26# See, e.g., T.-P. Cheng and L.-F. Li,Gauge Theory of Elemen

tary Particle Physics~Clarendon Press, Oxford, 1985!, p. 277.
@27# J. Papavassiliou, E. de Rafael, and N. J. Watson, Nucl. P

B503, 79 ~1997!.
@28# A. Salam, Phys. Rev.130, 1287~1963!; R. Delbourgo and A.

Salam,ibid. 135, B1398~1964!; R. Delbourgo and P. West, J
Phys. A10, 1049~1977!; R. Delbourgo, Nuovo Cimento A49,
484 ~1979!; D. Atkinson, P. W. Johnson, and P. Maris, Phy
Rev. D42, 602 ~1990!.

@29# K. G. Wilson and J. B. Kogut, Phys. Rep.12, 75 ~1974!.
@30# S. Catani and E. D’Emilio, Fortschr. Phys.41, 261 ~1993!.
@31# E. Bagan, M. Lavelle, and D. McMullan, Phys. Rev. D56,

3732 ~1997!.
3-24


