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Renormalization-group running of the cosmological constant and its implication
for the Higgs boson mass in the standard model

A. Babić,* B. Guberina,† R. Horvat,‡ and H. Štefančić§

Rudjer Bosˇković Institute, P.O.Box 180, HR-10002 Zagreb, Croatia
~Received 11 January 2002; published 8 March 2002!

The renormalization-group equation for the zero-point energies associated with vacuum fluctuations of
massive fields from the standard model is examined. Our main observation is that atany scale the running is
necessarily dominated by the heaviest degrees of freedom, in clear contradistinction with the Appelquist-
Carazzone decoupling theorem. Such an enhanced running would represent a disaster for cosmology, unless a
fine-tuned relation among the masses of heavy particles is imposed. In this way, we obtainmH.550 GeV for
the Higgs boson mass, a value safely within the unitarity bound, but far above the more stringent triviality
bound for the case when the validity of the standard model is pushed up to the grand unification~or Planck!
scale.
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There are now increasing indications, based on obse
tions on rich clusters of galaxies@1#, searches for type Ia
Supernovae@2# and measurements of the cosmic microwa
background anisotropy@3#, that today’s universe is undergo
ing a phase of accelerated expansion. This is usually at
uted to the presence of a cosmological constant. Altho
the simplest explanation is a time-independent~i.e. ‘‘true’’ !
cosmological constantL, many scenarios have also been d
cussed involving a dynamical cosmological constantL(t).
There have recently been a number of suggestions regar
the nature of the latter, the most popular candidate be
known under the name of ‘‘quintessence’’@4# ~a classically
unstable field that is rolling towards its true minimum whi
is presumed to vanish!.

The problem of the cosmological constant—how to re
oncile its value from cosmological observations,L
;10247GeV4 ~to be of the same order as the critical ener
density! with particle physics scales describing all know
and unknown phase transitions in the early universe or w
LPl;1072GeV4 in the case of vacuum fluctuations with th
Planck scale cutoff—arises when an ordinary field theory
discussed in relation to gravity. It is therefore adequate
formulate the theory on the classical curved backgrou
@5,6#. However, it is true that the net cosmological consta
being the sum of a certain number of essentially dispa
contributions, may classically always be set to zero by
plying some fine-tuning. It is to our current understandi
that the problem is intimately related to quantum grav
leaving thereby string theory as the only framework for pro
erly addressing it@7#.

In two recent papers@5,8# Shapiro and Sola found tha
even by taking the quantum effects of the standard mo
one could not fix the value of the cosmological constant
any definite constant~including zero!, because any such

*Electronic address: ababic@thphys.irb.hr
†Electronic address: guberina@thphys.irb.hr
‡Electronic address: horvat@lei3.irb.hr
§Electronic address: shrvoje@thphys.irb.hr
0556-2821/2002/65~8!/085002~6!/$20.00 65 0850
a-

e

b-
h

-

ing
g

-

h

s
o
d
t,
te
-

,
-

l,
o

constraint would necessarily be invalidated at a differ
scale ~the energy scale changes in the course of the u
verse’s evolution! owing to renormalization group~RG! run-
ning effects. If the nature of the RG behavior were such t
near the scalem50 one is allowed to setL(m50)50 ~a
relation suggesting some unknown symmetry principle!, then
the above scenario could mimic quintessence models,
without invoking a rolling scalar field. On the other hand,
one could not setL(m50)50, then the usage of the an
thropic principle would probably be the only alternative.
was argued in@5,8# that the scaling dependence of the co
mological constant should be consistent with the stand
cosmological model. That means that, given a value forL at
far infrared, the running should reproduce the value for
cosmological constant inferred from present observation
the present-day scale (VL

0 .0.620.7,m0.231023 eV), and,
also, should not spoil the success of nucleosynthesisL
&rR) at the much higher scalem;me . Although the aim of
Shapiro and Sola in@5,8# was not to explain fine-tuning to 55
decimals required to explain the present value ofL, careful
examination of the running ofL could prove useful as it
could reveal a close relation between the SM parame
~particle masses and couplings! and the parameters of obse
vational cosmology.

The main result of@5,8# contains two nice features:~i! the
running near the present-day scale involves only light n
trino masses, and by taking them to correspond to the la
mixing-angle MSW solution of the solar neutrino problem
we immediately arrive at the right valueuLu'10247GeV4;
~ii ! although the net value of the cosmological constant
quires fine-tuning to 55 decimals, the running of the sa
quantity requires no fine-tuning at all, thereby making
scaling dependence trivially consistent with the standard c
mological scenario. There is, however, a bad feature too
order to set the conditionL(m50)50 ~as to avoid the an-
thropic principle for explanation of the observed values
cosmological parameters!, one should inevitably accept th
existence of some light scalar with a mass a few times
neutrino mass, which apparently leads us beyond the s
dard model. All the above features stem from the fact that
©2002 The American Physical Society02-1
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authors of@5,8# explicitly assumed the validity of the Ap
pelquist and Carazzone decoupling theorem@9#. In particular,
this means that the quantum effects of some particle
taken into consideration only at scales higher than the m
of this particle (m.m). As a consequence of this decouplin
of heavy particles, only light neutrinos contribute to the ru
ning at present scales;1023 eV. In the present paper, w
scrutinize the decoupling theorem and its role in the runn
of L in the standard model, and find that although the c
tribution of a particle having a massm is suppressed atm
,m, it is still much larger than the contributions from lighte
particles withm.mi . Thus, the heaviest particles do dom
nate the running at any scale, and in order to have the
behavior in accordance with standard cosmology a fine-tu
relation connecting the heaviest masses should exist. In
way, we obtain an interesting prediction for the Higgs bos
mass in terms of other particle masses in the standard mo
Although the amount of fine-tuning in this relation is signi
cantly reduced in comparison with the original problem~55
decimals!, it is still considerable~28 decimals!.

Let us start with the discussion of the cosmological co
stantL which enters the Einstein equation in the followin
way:

Rmn2
1

2
gmnR18pGgmnL528pGTmn , ~1!

where L is a dimensionful parameter with the dimensi
(mass)4. The classical general relativity does not bring a
specific preference for the value ofL. Its value is therefore
arbitrary.

With the advent of particle physics and quantum fie
theory it became clear thatL can be interpreted as th
vacuum energy density. In fact, there are additional sou
of the cosmological constant coming from particle physi
Field condensates at the classical level, and zero-point e
gies at the quantum level, are two well-known generators
the vacuum energy. Therefore, we have at least three sou
of the cosmological constant:~1! the original Einstein con-
stant;~2! field condensate contributions at the classical lev
~3! particle zero-point energies at the quantum level.

The formulation of the theory@5,6,10# is rather simple—
one constructs a renormalizable gauge theory~the gauged
Higgs Lagrangian, for example! in an external gravitationa
field.1 In fact, one starts with the usual matter action in fl
space-time, and replaces the partial derivatives by the c
riant ones, the Minkowski metric by the general one, andd4x
by d4xA2g. The cosmological constantL that enters the
Einstein Lagrangian may be regarded as a bare param
and used to absorb eventual divergences coming from
quantum fluctuation in the particle Lagrangian. In such
way, the divergences of particle field theory are absor
into the bareL, and are therefore reduced to the geometry
turns out that, for example, the vacuum action necessar

1A rather successful attempt towards quantum gravity has rece
been traced using the effective average action and nonperturb
renormalization with infrared cutoff@11#.
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insure the renormalizability of the gauged scalar Lagrang
should contain the termsRmnrs

2 , Rmn
2 , R2, andhR, with the

corresponding coefficientsai which are the bare parameter
In this way, all divergences in the vacuum action can
removed by the appropriate renormalization of the ma
fields, their masses and couplings, bare parametersai ,
Gbare , Lbare , and the nonminimal parameterjbare which
enters the action via a term of the formjf†fR.

Generally, the scalar fieldf with the potential energy
V(f) has the following contribution to the action:

S5E d4xA2gF1

2
gmn~]mf]nf!2V~f!G . ~2!

If fvac is the value of the fieldf(x) which minimizes the
potentialV(f), then the lowest state hasTmn5gmnV(fvac),
which is the classical scalar field contribution to the vacu
energy. As an example let us take the Higgs scalar field w
the potentialV(f)52m2f†f1l(f†f)2. Then the Higgs
condensate contribution~at the classical level! to the cosmo-
logical constant is

Lcond52
m4

4l
. ~3!

We shall turn to the discussion of the above expression la
The second source of the contributions to the cosmolo

cal constant are quantum fluctuations~zero-point energy! of
the free fields. Each free quantum field~in the case of
bosonic fields being basically a collection of an infinite nu
ber of harmonic oscillators! contributes an infinite amount o
the vacuum energy to the cosmological constant.

In the following we calculate and discuss the running c
mological constantL(m) for the case of a scalar field. It wil
turn out that the decoupling theorem, although perfec
valid for Green functions in the field theory, fails in the ca
of the calculation of the cosmological constant.

Using the dimensional regularization ind5412e dimen-
sions and the minimal subtraction~MS! renormalization
scheme, one gets for the quantum fluctuations~zero-point
energy! of the scalar field

ZPE5
M4

64p2 S 1

e
1g2 ln 4p1 ln

M2

m2
2

3

2D . ~4!

Defining the relation between the bare (Lbare) and renormal-
ized (L) quantities as

Lbare5md24~L1zLM4!, ~5!

one gets for the countertermzL

zL52
1

64p2

1

e
. ~6!

It is straightforward to write down the renormalizatio
group equation~RGE! for L, which reads

tly
ive
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RENORMALIZATION-GROUP RUNNING OF THE . . . PHYSICAL REVIEW D 65 085002
~4p!2m
]

]m
L~m!5

1

2
M4. ~7!

Once derived, Eq.~7! should be valid for any value ofm.
However, the relation~7! has been derived using the M
renormalization scheme, which is a mass-independent re
malization scheme. It is well known that such a scheme d
not give the correct mass behavior of theb functions. There-
fore, the expression~7! gives the correct behavior ofbL

[m(]L/]m) only for m@M . For m!M , we would expect
the decoupling of the heavy particle with massM, i.e. bL is
expected to be approximately zero.

However, it would be premature to claim the validity
the decoupling theorem@9#, because on purely dimension
grounds, one expects the corrections of the typem2/M2

@12,13# to be insufficient to suppress the quartic power of
massM in Eq. ~7!. To be more precise, let us assume th
there are two scalar particles, one with a heavy massM, and
the other with a light massm. Then, the RGE becomes

~4p!2m
]

]m
L~m!5

1

2
M41

1

2
m4 ~8!

at the scalem, m@M ,m. However, for m!m!M , one
would expect the heavy scalar to decouple with the supp
sion factorm2/M2 and Eq.~8! would have the form

~4p!2m
]

]m
L~m!5

1

2
a

m2

M2
M41

1

2
m4, ~9!

wherea is the number of orderO(1). Obviously, the sup-
pression factorm2/M2 is not sufficient to suppress the co
tribution of the heavy scalar, since

m2M2@m4 ~10!

and the heavy scalar does not decouple. The reason for
a peculiar behavior of the cosmological constant is its h
dimensionality (mass)4.

The calculation of zero-mode contributions for a giv
massive field can be related to the evaluation of the vacu
bubble diagrams~diagrams without external legs!. The afore-
mentioned calculation results in a divergent quantity wh
must be properly regularized. We shall consider ‘‘cutof
regularization procedure for a bosonic degree of freed
~e.g. a real scalar field! which is more suitable for our pur
poses since it displays the structure of divergences m
clearly. Other regularization schemes~e.g. dimensional regu
larization! yield equivalent results. The treatment of ferm
onic degrees of freedom is completely analogous to the tr
ment of bosonic degrees of freedom up to the opposite s
The zero-point energy of a real scalar field is@14#

ZPE5
1

~4p!2
A0

41
1

2

1

~4p!2 FA2m22
m4

4
2

m4

2
ln

A21m2

m2 G ,

~11!

plus additional terms which vanish asA→`, A being the
four dimensional cutoff. The termA0

4 corresponds to the
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zero-point energy in the massless limit. Since we are dea
with the divergent quantity, a consistent procedure of ren
malization must be invoked. Various divergent contributio
have to be renormalized by adding appropriate counterter
Quartically and quadratically divergent terms have to be s
tracted completely~i.e. the choice of counterterms is uniqu!
while in the case of a logarithmically divergent term, th
most general counterterm includes some scale depende
In order to examine the effects of mass thresholds, it is n
essary to apply a renormalization scheme in which the co
terterms are scale and mass dependent@12,13#. This require-
ment clearly disqualifies the most widely applie
renormalization schemes, such as the MS orMS schemes.
There exists a version of the MS scheme@15# which incor-
porates the effects of mass thresholds~named by its authors
as decoupling subtraction!. This scheme keeps the contribu
tions of massive particles at scales above the mass, wh
excludes them completely at the scales below the mass
therefore implies a ‘‘sharp cutoff’’ approximation. Howeve
it is also based on the assumption of validity of decoupl
of the massive field at low scales. This last feature is ye
be tested in the case of the cosmological constant. The
traction scheme, on the other hand, meets the aforem
tioned demand. The counterterm in this scheme is obtai
by setting some exterior scale~like the momentum squared!
in the divergent Green function to a predetermined va
~usually referred to as a renormalization point!. From Eq.
~11! it is clear that in our case there is no exterior scale~we
treat the massm as a parameter!, so even the subtraction
scheme cannot be applied directly. One possible way ou
this predicament is to use a very general form of the co
terterm and then limit its form by imposing some reasona
conditions on the running of relevant quantities~contribution
to the zero-point energy part of the cosmological consta!.
This approach leads to the following relation between u
renormalized and renormalized zero-point energy parts of
cosmological constant:

Lbare5L2
1

~4p!2
A0

42
1

2

1

~4p!2
A2m2

1
1

2

1

~4p!2
m4ln

A21m2

m2gS m

m D , ~12!

where the functionm2g(m/m) represents the general sca
and mass dependence of the counterterm. The result
renormalization in the subtraction scheme@12,13# strongly
suggest the form of the counterterm determined by the fu
tion

m2gS m

m D5m21m2. ~13!

We consider this choice the most natural and con
quently use it in the concrete calculations in the rest of
paper. Nevertheless, one can perform a more general ana
starting from the rather general form of the counterterm.
2-3
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introducingx5m/m, the running of the vacuum part of th
cosmological constant becomes

m
]L

]m
5

1

~4p!2

m4

2 F12
1

2

xg8~x!

g~x! G , ~14!

where the prime denotes the derivative with respect tox. Let
us start from the general form of the counterterm determi
by the function

g~x!5 (
l 52n

m

clx
l . ~15!

Valuable information can be gained by considering
following interesting limits of the expression governing t
running of Eq.~14!:

lim
x→`

F12
1

2

xg8~x!

g~x! G512
m

2
1

1

2

cm21

cm

1

x
1OS 1

x2D ,

lim
x→0

F12
1

2

xg8~x!

g~x! G511
n

2
1

1

2

c2n11

c2n
x1O~x2!.

~16!

The first limit covers the behavior for largex, i.e. at scales
m much smaller than the massm. At low scales one expect
suppressed contributions of very massive fields. If we form
late this expectation as a requirement, serious constraint
the indexm can be obtained. Form>3, the running is un-
suppressed and negative. The negative running at low sc
together with the positive running at higher scales, implie
change of sign at some intermediate scale which is clearl
undesirable property. Form50,1, the running is positive, bu
unsuppressed. Only form52, we obtain the suppressed b
havior as required. In the opposite limit of smallx, i.e. large
scalesm compared with the massm, we demand to recove
the behavior displayed by the MS andMS schemes. Namely
in this limit, the effect of mass threshold can be complet
neglected, which is exactly the property of the MS andMS
schemes. Therefore, the conditionn50 follows directly.
Taking into account the considerations given above, the m
general form of the counterterm~15! is given by
m2g(m/m)5m21c1mm1c2m2 ~the coefficient in front of
m2 can be absorbed by the redefinition of them scale!. Since
terms linear in the massm are nonspecific for relativistic
calculations, it is evident that our choice~13! fits nicely into
the allowed form of the counterterm.

Now when the question of the renormalization scheme
settled, we can look at the running of the vacuum part of
cosmological constant in some particle physics model w
its own spectrum of massive bosonic and fermionic degr
of freedom~relevant in our case!. The common property o
the running in all models is the nonexistence of decoupl
at low scales. Namely, for the contribution of the real sca
field to the running of the zero-point energy part of the c
mological constant we obtain
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]L

]m
5

1

~4p!2

1

2
m4 ~17!

in the m@m limit. In the oppositem!m limit, the running
becomes

m
]L

]m
5

1

~4p!2

1

2
m2m2 ~18!

as anticipated in the relation~9!. One can clearly see that th
suppression of very massive fields is present, but insuffic
to insure their decoupling.

In the case of the standard model, the running acquires
form

~4p!2m
]L

]m
522(

i
Nimi

4 m2

m21mi
2

13mW
4 m2

m21mW
2

1
3

2
mZ

4 m2

m21mZ
2

1
1

2
mH

4 m2

m21mH
2

, ~19!

where the indexi denotes fermions,Ni being 3 for quarks
and 1 for leptons. Direct integration of Eq.~19! gives

~4p!2
„L~m!2L~0!…52(

i
Nimi

4 ln
m21mi

2

mi
2

1
3

2
mW

4 ln
m21mW

2

mW
2

1
3

4
mZ

4 ln
m21mZ

2

mZ
2

1
1

4
mH

4 ln
m21mH

2

mH
2

. ~20!

The expression given above indicates that the contribu
of very massive fields is nonnegligible at all scales. As
neutrinos, recent experiments indicate that neutrinos do h
nonzero masses. The question of these masses is stil
settled, but it is general agreement that they are in the reg
belowO(1 eV). As these masses are far below all the ot
masses in play, we shall put them all to zero as a star
approximation. The investigation of possible subtle effe
due to nonzero neutrino masses will be discussed elsewh

In this framework we can focus our attention to the effe
of running at scales rather below the mass of the electron
lightest particle in our approach. Since all the masses
large compared with the scalem, it is convenient to expand
the logarithms in the relation~20!. This procedure yields
2-4
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L~m!2L~0!5
1

~4p!2

1

4
m2FmH

2 13mZ
216mW

2 24(
i

Nimi
2G

1
1

~4p!2
m4F1

2 (
i

Ni2
5

4G1OS m6

mlarge
2 D .

~21!

The analysis of the relation given above tells us instan
that large masses in them2 term drive the numerical value o
L far out of the range consistent with observation, unless
expression in the brackets of the same term vanishes. Th
fore, to avoid inconsistency with observation, we obtain
stringent condition on the Higgs boson mass, i.e. an exp
expression formH in terms of masses of other particles in t
standard model:

mH
2 54(

i
Nimi

223mZ
226mW

2 . ~22!

Using the numerical values from@16# we obtain mH
.550 GeV. It is clear that the relation~22! implies the re-
lation between the squares of masses ranging f
;1 MeV to ;100 GeV and, accordingly, introduces a ce
tain fine-tuning of masses of the standard model.

If the Higgs boson mass is fixed by the requirement~22!,
the running of the zero-point energy part of the cosmolog
constant is given by them4 term of the expression~21!. The
running below the electron mass should not be too inten
in order to preserve the conditions for nucleosynthesis. Us
the expression for the energy density of radiation during
cleosynthesisrR5(p2/30)g* T4, as well as making a natura
choice for the scalem5T, one obtains the relation

L~m!2L~0!

rR
5

555

32p4g*
. ~23!

With the numerical valueg* 53.36, the expression give
above acquires the numerical value 0.053, a value within
range that does not disturb@17# nucleosynthesis~note that
even more stringent constraints obtained very recently
@18# are obeyed!. It is interesting to notice that in the radia
tion dominated universe the quantity on the left-hand side
Eq. ~23! is constant form!1 MeV. This phenomenon o
‘‘scaling’’ has already been met in the investigations of sca
field cosmologies with potentials having attractor solutio
and its appearance here represents a very interesting an
tentially important similarity.

Finally, the relation~21! together with the constraint~22!
enables us to calculate the value ofL at present scale of th
evolution of the universe. If we take the valuem0
50.002 eV suggested in@5,8#, we obtain L(m)2L(0)
'10248GeV4, a value reasonably close to the observ
value of dark energy density of order 10247GeV4. From Eq.
~21! the amount of fine-tuning at present is estimated to b
in (100 GeV)2/m0

2'1028.
At this point a remark is in order. All our preceding resu

have been obtained using a specific form of the funct
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determining the countertermm2g(m/m)5m21m2. How-
ever, if we use a more general formm2g(m/m)5m2

1c2m2, wherec2 is naturally expected to be of order 1, th
fine-tuning expression for the Higgs mass~22! remains com-
pletely the same, while them4 term stays of the same orde
of magnitude and the conclusions of comparisons of our
sults with observations remain unchanged.

Let us now discuss our value (.550 GeV) in view of
experimental and theoretical constraints on the mass of
standard model Higgs boson. The experimental lower limi
114 GeV @19# at 95% confidence level, a value somewh
higher than the ‘‘best fit’’ value obtained from electrowea
precision data@20# ~106 GeV!. At the same time,mH
,220 GeV at 95% confidence level. Thus, these data s
gest that the Higgs boson mass should not be too much la
than the present limit from direct searches. On theoret
grounds, a well-known upper limit on the Higgs boson ma
comes from the unitarity of the scattering matrix. Even t
most restrictive bound (;800 GeV) obtained from the sca
tering process,ZLWL→ZLWL , is considerably higher than
our value. On the other hand, the triviality of the standa
model admits it only as an effective theory, valid below som
energy scaleL. If the validity of the standard model is
pushed up to extremely high scales~grand unification or
Planck!, the triviality bound is more stringent than the un
tarity bound, being&200 GeV for the quartic coupling
taken to reside in the perturbative domain, 1&l&10. Thus,
even on purely theoretical grounds, one can see~upon in-
cluding the stability lower bound! that mH in the 100–200
GeV range is preferred.

Since we take the heaviest masses from the stan
model, our model implicitly assumes the validity of the sta
dard model up to the highest scales, thereby violating
triviality bound. One can therefore claim, using argume
based solely on the running of the cosmological constant,
existence of some intermediate energy scale at which
should expect nonstandard phenomena to take place. Mo
in which nonstandard physics compensates the effect
heavy Higgs boson~at the same time fitting precision data
good as the standard model! can be found, for example, in
recent review@21#. The above conclusion may however n
be definite as, for the full treatment, one also needs to
clude scaling effects from the vacuum energy induced b
scalar Higgs potential of the standard model, which we c
sider next.

The Higgs field will contribute toL via the vacuum con-
densate. The contribution is given by Eq.~3! and the renor-
malization group equation reads

d

dt
Lcond~ t !52

m2

2l

dm2

dt
1

m4

4l2

dl

dt
, ~24!

wheret5 ln(m/m0) andmH
2 52m2.

Again, one would expect the Higgs contribution at t
scalem!mH to diminish owing to the decoupling. Unfortu
nately, it is not very difficult to convince oneself that th
suppression factors are of the formm2/mH

2 , and cannot com-
pete with the overallmH

4 factor. To see this, one inspects E
2-5
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~24!. It is clear that one has to calculatedm2/dt anddl/dt
in, for example, the momentum subtraction scheme. Le
check, for instance, the contribution of the self-energy d
gram ~the Higgs loop with two external Higgs legs! which
contributes to the running ofm2(t). The renormalized con
tribution is proportional to themH

2 multiplied by the follow-
ing integral:

j ~mH ,m!5E
0

1

dx
m2x~12x!

mH
2 1m2x~12x!

. ~25!

For m@mH , the integral gives

j ~mH ,m!511O~mH
2 /m2! ~26!

and in the limitm!mH , one gets

j ~mH ,m!5
1

6

m2

mH
2

1O~m4/mH
4 !. ~27!

Sincedm2/dt in Eq. ~24! multiplies m2, the overall mass
factor ismH

4 for m@mH , whereas the suppression in Eq.~27!
is not enough to suppress it form!mH . We have checked
that the same is true for the one-loop, four-point function~a
fermion box with four external Higgs legs!. which contrib-
utes to the running ofl(t), and, again, the decoupling theo
rem fails in the calculation of the running ofLcond(t). The
examples discussed above indicate that the same behav
in the running of the zero-point energy part ofL(m), is
expected forLcond as well.

In conclusion, we made a study to demonstrate a sca
dependence of the cosmological constant by showing tha
.S

et

d

; O
fth
o

ce

08500
s
-

r as

g
its

observational value is not preserved at different ene
scales. The running due to one-loop vacuum bubble gra
associated with massive fields from the standard mode
obtained in a closed analytic form. We have noted that
quantum theory of gravity plus matter truncated at the o
loop level is an adequate description because of the n
renormalizability of gravity. Contrary to the expectation fro
the Appelquist-Carazzone decoupling theorem, we h
found that more massive fields do play a dominate role in
running at any scale. We have also indicated that the s
behavior should persist in the running of the cosmologi
constant induced by spontaneous symmetry breaking thro
the Higgs mechanism. Owing to heavy masses involved
the running, the standard cosmological scenario may
found in jeopardy unless some fine-tuning is applied. A
result, we get the predictionmH.550 GeV for the Higgs
boson mass. Since this mass is not favored by the pre
constraints, one may consider our results obtained from
running of the cosmological constant as an independent
dication that the standard model cannot be the full theory
all scales. Finally, the effects described in this paper ar
feature of any quantum field theory comprising mass
fields. Consequently, one expects the same type of relat
between masses of that theory~stemming from the consis
tency with observation at low scales! in any extension~e.g.
SUSY, GUTs! of the standard model.
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