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Renormalization-group running of the cosmological constant and its implication
for the Higgs boson mass in the standard model
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The renormalization-group equation for the zero-point energies associated with vacuum fluctuations of
massive fields from the standard model is examined. Our main observation is #mtsmale the running is
necessarily dominated by the heaviest degrees of freedom, in clear contradistinction with the Appelquist-
Carazzone decoupling theorem. Such an enhanced running would represent a disaster for cosmology, unless a
fine-tuned relation among the masses of heavy particles is imposed. In this way, wenabtab50 GeV for
the Higgs boson mass, a value safely within the unitarity bound, but far above the more stringent triviality
bound for the case when the validity of the standard model is pushed up to the grand unificafbanck
scale.
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There are now increasing indications, based on observaonstraint would necessarily be invalidated at a different
tions on rich clusters of galaxidd], searches for type la scale(the energy scale changes in the course of the uni-
Supernovag?2] and measurements of the cosmic microwaveverse’s evolutionowing to renormalization groufRG) run-
background anisotroph8], that today’s universe is undergo- ning effects. If the nature of the RG behavior were such that
ing a phase of accelerated expansion. This is usually attrimear the scalet=0 one is allowed to seA (x=0)=0 (a
uted to the presence of a cosmological constant. Althoughelation suggesting some unknown symmetry pringigteen
the simplest explanation is a time-independeém. “true”)  the above scenario could mimic quintessence models, but
cosmological constant, many scenarios have also been dis-without invoking a rolling scalar field. On the other hand, if
cussed involving a dynamical cosmological constart). one could not set\(x=0)=0, then the usage of the an-
There have recently been a number of suggestions regardirigropic principle would probably be the only alternative. It
the nature of the latter, the most popular candidate beingvas argued irfj5,8] that the scaling dependence of the cos-
known under the name of “quintessenclg!] (a classically mological constant should be consistent with the standard
unstable field that is rolling towards its true minimum which cosmological model. That means that, given a valueXfat
is presumed to vanigh far infrared, the running should reproduce the value for the

The problem of the cosmological constant—how to rec-cosmological constant inferred from present observations at
oncile its value from cosmological observationsy  the present-day scal€f=0.6-0.7,u,=2X10 3eV), and,
~10 *"GeV* (to be of the same order as the critical energyalso, should not spoil the success of nucleosynthesis (
density with particle physics scales describing all known <p.) at the much higher scaje~m,. Although the aim of
and unknown phase transitions in the early universe or witlShapiro and Sola if6,8] was not to explain fine-tuning to 55
Api~10?GeV* in the case of vacuum fluctuations with the decimals required to explain the present value\ofcareful
Planck scale cutoff—arises when an ordinary field theory isexamination of the running o\ could prove useful as it
discussed in relation to gravity. It is therefore adequate t@ould reveal a close relation between the SM parameters
formulate the theory on the classical curved backgroundparticle masses and couplingsnd the parameters of obser-
[5,6]. However, it is true that the net cosmological constantyational cosmology.
being the sum of a certain number of essentially disparate The main result of5,8] contains two nice feature§) the
contributions, may classically always be set to zero by aprunning near the present-day scale involves only light neu-
plying some fine-tuning. It is to our current understandingtrino masses, and by taking them to correspond to the large-
that the problem is intimately related to quantum gravity,mixing-angle MSW solution of the solar neutrino problem,
leaving thereby string theory as the only framework for prop-we immediately arrive at the right valyd |~10" %' GeV*;
erly addressing if7]. (ii) although the net value of the cosmological constant re-

In two recent paper§5,8] Shapiro and Sola found that quires fine-tuning to 55 decimals, the running of the same
even by taking the quantum effects of the standard modekuantity requires no fine-tuning at all, thereby making its
one could not fix the value of the cosmological constant tascaling dependence trivially consistent with the standard cos-
any definite constantincluding zer9, because any such a mological scenario. There is, however, a bad feature too: in

order to set the conditioA (u=0)=0 (as to avoid the an-
thropic principle for explanation of the observed values of

*Electronic address: ababic@thphys.irb.hr cosmological parametgrsone should inevitably accept the

TElectronic address: guberina@thphys.irb.hr existence of some light scalar with a mass a few times the
*Electronic address: horvat@Iei3.irb.hr neutrino mass, which apparently leads us beyond the stan-
$Electronic address: shrvoje@thphys.irb.hr dard model. All the above features stem from the fact that the
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authors of{5,8] explicitly assumed the validity of the Ap- insure the renormalizability of the gauged scalar Lagrangian
pelquist and Carazzone decoupling theof8iinin particular,  should contain the ternﬁfww, wa, R?, andR, with the

this means that the quantum effects of some particle areorresponding coefficients which are the bare parameters.
taken into consideration only at scales higher than the mags this way, all divergences in the vacuum action can be
of this particle w>m). As a consequence of this decoupling removed by the appropriate renormalization of the matter
of heavy particles, only light neutrinos contribute to the run-fields, their masses and couplings, bare parameters
ning at present scales 10 3eV. In the present paper, we G, .o, Apare, and the nonminimal parameteép, . which
scrutinize the decoupling theorem and its role in the runningnters the action via a term of the forf ' $R.

of A in the standard model, and find that although the con- Generally, the scalar field> with the potential energy
tribution of a particle having a masa is suppressed gt V(¢) has the following contribution to the action:

<m, it is still much larger than the contributions from lighter

particles withu>m;. Thus, the heaviest particles do domi- 4

nate the running at any scale, and in order to have the RG S:f d x\/—_g
behavior in accordance with standard cosmology a fine-tuned

relation connecting the hegwest masses should exist. In this ¢ byac is the value of the fields(x) which minimizes the
way, we obtain an interesting predlctlon_ for the Higgs boso otentialV(¢), then the lowest state has,,=g,,,V(,a0),
mass in terms of other particle masses in the standard modelicy, js the classical scalar field contribution to the vacuum

Although the amount of firje—tunipg in this.rglation IS signifi- energy. As an example let us take the Higgs scalar field with
cantly reduced in comparison with the original problés® the potentialV(¢)=—m2sd+\(4'¢)2 Then the Higgs

decimal3, it is St'.” con&d_erable(?S decimals . condensate contributiof@t the classical leveto the cosmo-
Let us start with the discussion of the cosmological C°n1ogical constant is

stantA which enters the Einstein equation in the following
way:

1
294(0,90,0) V() |. 2

Acond: _ m_4 (3)
1 4N

Ry~ EgM,,RJr 87Gg,,A=—-87GT,,, (1) - . -
We shall turn to the discussion of the above expression later.

The second source of the contributions to the cosmologi-
cal constant are quantum fluctuatiofzero-point energyof
the free fields. Each free quantum fielth the case of
bosonic fields being basically a collection of an infinite num-
dber of harmonic oscillatojcontributes an infinite amount of

where A is a dimensionful parameter with the dimension
(mas9*. The classical general relativity does not bring any
specific preference for the value af. Its value is therefore
arbitrary.

With the advent of particle physics and quantum fiel .
theory it became clear that can be interpreted as the thel vahcu?rrl} energy to thle ?osmolggc;pal conshtant. .
vacuum energy density. In fact, there are additional sourcer% olr(;ticealigxtr;%xv(e (;afgrutﬂfca;nse olfsgussc?aﬁa? ffgﬂjmﬁ%vﬁfs_
of the cosmological constant coming from particle physics, 9 hat th d’“ i h ithouah : fecil
Field condensates at the classical level, and zero-point eneil’n out that the decoupling theorem, although perfectly
gies at the quantum level, are two well-known generators O]./ahd for Greer] functions in the flelld theory, fails in the case
the vacuum energy. Therefore, we have at least three sourcggthe. calculat!on of _the cosmolqgmgl cc_mstant. .
of the cosmological constantl) the original Einstein con- . Using the dlmel’.]S.IOI’]aJ regular|z_at|onuh:4+25 d.|me.n—
stant;(2) field condensate contributions at the classical IeveI,SIons and the minimal subtractiofMs) ren(')rmallzatl'on
(3) particle zero-point energies at the quantum level. scheme, one gets for the quantum fluctuatiérero-point

The formulation of the theor{5,6,10Q is rather simple— energy of the scalar field
one constructs a renormalizable gauge theng gauged 4 5
Higgs Lagrangian, for examplén an external gravitational 2 PE- M £+ _In4 +InM—— 3 @
field! In fact, one starts with the usual matter action in flat 642\ € 4 77 u? 2/
space-time, and replaces the partial derivatives by the cova-
riant ones, the Minkowski metric by the general one, dfwd Defining the relation between the bark,,.) and renormal-
by d*xy/—g. The cosmological constant that enters the jzeq (A) quantities as
Einstein Lagrangian may be regarded as a bare parameter,
and used to absorb eventual divergences coming from the Apare=p3 4 A+2,M?), (5)
guantum fluctuation in the particle Lagrangian. In such a
way, the divergences of particle field theory are absorbede gets for the counterterm
into the bare\, and are therefore reduced to the geometry. It
turns out that, for example, the vacuum action necessary to

11
;.

- 6472 ©

ZA:

A rather successful attempt towards quantum gravity has recently _ _ _ o
been traced using the effective average action and nonperturbative It is straightforward to write down the renormalization
renormalization with infrared cutoffL1]. group equatiorfRGE) for A, which reads
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, 0 . zero-point energy in the massless limit. Since we are dealing
(4m) M@A(MFEM : (7)  with the divergent quantity, a consistent procedure of renor-
malization must be invoked. Various divergent contributions

Once derived, Eq(7) should be valid for any value gf.  have to be renormalized by adding appropriate counterterms.
However, the relation7) has been derived using the MS Quartically and quadratically divergent terms have to be sub-
renormalization scheme, which is a mass-independent renctacted completelyi.e. the choice of counterterms is unigue
malization scheme. It is well known that such a scheme doe¥hile in the case of a logarithmically divergent term, the
not give the correct mass behavior of {Bdunctions. There- Most general counterterm includes some scale depe_ndence.
fore, the expressiol7) gives the correct behavior g8,  In order to examine the effects of mass thresholds, it is nec-
= (dA/dp) only for u>M. For u<M, we would expect €ssary to apply a renormalization scheme in which the coun-
the decoupling of the heavy particle with madsi.e. 8, is  (erterms are scale and mass depenfle2{13. This require-

However, it would be premature to claim the validity of renormalization schemes, such as the MSV8 schemes.
the decoupling theorerf®], because on purely dimensional There exists a version of the MS schefi&] which incor-
grounds, one expects the corrections of the typéM? porates the effects of mass thresholdamed by its authors
[12,13 to be insufficient to suppress the quartic power of theas decoupling subtractipnThis scheme keeps the contribu-
massM in Eq. (7). To be more precise, let us assume thattions of massive particles at scales above the mass, while it
there are two scalar particles, one with a heavy miasand  €xcludes them completely at the scales below the mass and

the other with a light mass1. Then, the RGE becomes therefore implies a “sharp cutoff” approximation. However,
it is also based on the assumption of validity of decoupling

, 0 1, 4 of the massive field at low scales. This last feature is yet to
(4) “@A(“):iM tom (8 be tested in the case of the cosmological constant. The sub-
traction scheme, on the other hand, meets the aforemen-
at the scalex, u>M,m. However, form<u<M, one tioned demand. The counterterm in this scheme is obtained
would expect the heavy scalar to decouple with the suppresdy setting some exterior scaftke the momentum squargd

sion factoru?/M? and Eq.(8) would have the form in the divergent Green function to a predetermined value
(usually referred to as a renormalization pgirffrom Eq.
, 0 ,u2 1 (112) it is clear that in our case there is no exterior sqale
(4) M@M#anwl\/‘u §m4: (9 treat the massn as a parametgrso even the subtraction

scheme cannot be applied directly. One possible way out of

this predicament is to use a very general form of the coun-

terterm and then limit its form by imposing some reasonable

conditions on the running of relevant quantit{esntribution

to the zero-point energy part of the cosmological congtant
w>M?>m?* (10) This approach leads to the following relation between un-

renormalized and renormalized zero-point energy parts of the
and the heavy scalar does not decouple. The reason for sucbsmological constant:
a peculiar behavior of the cosmological constant is its high

wherea is the number of orde©(1). Obviously, the sup-
pression facto?/M? is not sufficient to suppress the con-
tribution of the heavy scalar, since

dimensionality mas9*. 1 1 1
The calculation of zero-mode contributions for a given Apare=A— —zAé_i 2 m?
massive field can be related to the evaluation of the vacuum (4m) (4m)
bubble diagramgdiagrams without external legsThe afore- 1 1 A2+ m?
mentioned calculation results in a divergent quantity which + = m?In , (12
must be properly regularized. We shall consider “cutoff” 2 (47)? 2 T)
regularization procedure for a bosonic degree of freedom #g o

(e.g. a real scalar fieldvhich is more suitable for our pur-
poses since it displays the structure of divergences morehere the functionu?g(m/u) represents the general scale
clearly. Other regularization schem@sg. dimensional regu- and mass dependence of the counterterm. The results of
larization yield equivalent results. The treatment of fermi- renormalization in the subtraction scheif#?,13 strongly
onic degrees of freedom is completely analogous to the treasuggest the form of the counterterm determined by the func-
ment of bosonic degrees of freedom up to the opposite sigriion
The zero-point energy of a real scalar field 1<f]

2 m 2 2

‘m*— —— —-In

A+ =
(4m?2 ° 2 (4m)? 4 2

ZPE=

(11) We consider this choice the most natural and conse-
quently use it in the concrete calculations in the rest of the

plus additional terms which vanish #—o, A being the paper. Nevertheless, one can perform a more general analysis
four dimensional cutoff. The term\g corresponds to the starting from the rather general form of the counterterm. By
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introducingx=m/ u«, the running of the vacuum part of the IA 1 1
cosmological constant becomes Em“ (17)

Fouw™ (am?

; (14

’uﬁ: (47)? 27 2 g(x) in the u>m limit. In the oppositew<<m limit, the running

becomes

A 1 m4{ 1 xg'(x)

where the prime denotes the derivative with respeat tcet
us start from the general form of the counterterm determined IA 11

by the function —= —m?u? 18
P on (4m)? 2 M (18

m
g00= 2 ox. (15 A .
I==n as anticipated in the relatig®). One can clearly see that the

suppression of very massive fields is present, but insufficient
Valuable information can be gained by considering theto insure their decoupling.
following interesting limits of the expression governing the  In the case of the standard model, the running acquires the

running of Eq.(14): form

1 xg'(x) m lcp1 1 ) 5
im{l1--———[=1--+ 2 —+0| =], A
XHJ 27900 | 2 270, x 9 (4= =23 Nimf—E— +3mi—"—

M i pue+m ,u2+mW

1 xg'(x n lc_ 2 2
nm[l_zﬂ —14 042 S 000), N S
X0 g(x) C_n 22 me 200 2w

(16)

The first limit covers the behavior for largei.e. at scales where the index denotes fermionsl\; being 3 for quarks
w much smaller than the mass At low scales one expects and 1 for leptons. Direct integration of E(L9) gives
suppressed contributions of very massive fields. If we formu-
late this expectation as a requirement, serious constraints on
the indexm can be obtained. Fan=3, the running is un-
suppressed and negative. The negative running at low scales,
together with the positive running at higher scales, implies a

24+ m?

(Am)2A ()= A0)=— 2 NmiinE——
[ m

change of sign at some intermediate scale which is clearly an 2, m2
undesirable property. Fon=0,1, the running is positive, but + Emwln 5
unsuppressed. Only fan=2, we obtain the suppressed be- My

havior as required. In the opposite limit of smalli.e. large 5, 2
scalesu compared with the mass, we demand to recover ptmz
the behavior displayed by the MS aME schemes. Namely, 4 m%
in this limit, the effect of mass threshold can be completely
neglected, which is exactly the property of the MS ang
schemes. Therefore, the condition=0 follows directly.
Taking into account the considerations given above, the most
general form of the counterterm(15 is given by
w?g(m/ w)=u?+cmu+c,m? (the coefficient in front of The expression given above indicates that the contribution
w? can be absorbed by the redefinition of fhescale. Since  of very massive fields is nonnegligible at all scales. As for
terms linear in the masm are nonspecific for relativistic neutrinos, recent experiments indicate that neutrinos do have
calculations, it is evident that our choi¢g3) fits nicely into  nonzero masses. The question of these masses is still un-
the allowed form of the counterterm. settled, but it is general agreement that they are in the region
Now when the question of the renormalization scheme idelow O(1 eV). As these masses are far below all the other
settled, we can look at the running of the vacuum part of thenasses in play, we shall put them all to zero as a starting
cosmological constant in some particle physics model withapproximation. The investigation of possible subtle effects
its own spectrum of massive bosonic and fermionic degreedue to nonzero neutrino masses will be discussed elsewhere.
of freedom(relevant in our cage The common property of In this framework we can focus our attention to the effects
the running in all models is the nonexistence of decouplingf running at scales rather below the mass of the electron, the
at low scales. Namely, for the contribution of the real scaladightest particle in our approach. Since all the masses are
field to the running of the zero-point energy part of the cosdarge compared with the scale, it is convenient to expand
mological constant we obtain the logarithms in the relatio0). This procedure yields

1 w?+ma

4
—-my In———. (20)
4 H ma
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determining the countertermug(m/u)=u?+m?. How-

A(uw)—A(0)= 5 E,uz mZ +3m2+6m2,— 4, Nimiz} ever, if we use a more general form2g(m/u)=u?
(4m)% 4 ' +¢,m?, wherec, is naturally expected to be of order 1, the
6 fine-tuning expression for the Higgs ma&%) remains com-
+ 1 ul E E N: — § +0 K pletely the same, while the* term stays of the same order
(4am? |29 " 4 Farge of magnitude and the conclusions of comparisons of our re-

sults with observations remain unchanged.

Let us now discuss our value=550 GeV) in view of
)pxperimental and theoretical constraints on the mass of the
standard model Higgs boson. The experimental lower limit is
14 GeV[19] at 95% confidence level, a value somewhat

igher than the “best fit” value obtained from electroweak

(21)

The analysis of the relation given above tells us instantl
that large masses in the? term drive the numerical value of
A far out of the range consistent with observation, unless th
expression in the brackets of the same term vanishes. Ther

fore, to avoid inconsistency with observation, we obtain aPT€ciSion data[Zog (106 GeV. At the same time,mj
stringent condition on the Higgs boson mass, i.e. an explicit-220 G€V at 95% confidence level. Thus, these data sug-

expression fomy in terms of masses of other particles in the gest that the H|ggs. bqson mass sholild not be too much Iqrger
standard model: than the present limit from direct searches. On theoretical
grounds, a well-known upper limit on the Higgs boson mass
comes from the unitarity of the scattering matrix. Even the
mﬁ=4z N;m?—3m5—6mj,. (220 most restrictive bound800 GeV) obtained from the scat-

' tering processZ W, —Z, W, , is considerably higher than
our value. On the other hand, the triviality of the standard
model admits it only as an effective theory, valid below some
Snergy scaleA. If the validity of the standard model is
pushed up to extremely high scalégrand unification or
Planchk, the triviality bound is more stringent than the uni-
tarity bound, being=200 GeV for the quartic coupling
}aken to reside in the perturbative domaims 1=10. Thus,
even on purely theoretical grounds, one can &g®n in-
guding the stability lower boundthat m,; in the 100—-200

Using the numerical values froml6] we obtain my
=550 GeV. It is clear that the relatioi22) implies the re-
lation between the squares of masses ranging fro
~1 MeV to~100 GeV and, accordingly, introduces a cer-
tain fine-tuning of masses of the standard model.

If the Higgs boson mass is fixed by the requirem@a),
the running of the zero-point energy part of the cosmologica
constant is given by thg* term of the expressiof21). The
running below the electron mass should not be too intensiv Y ) forred
in order to preserve the conditions for nucleosynthesis. Usin eV range Is preterred.

the expression for the energy density of radiation during nu- o?jlglc?)uvrv%ctglé?i&h?iczfa;fssl}mrzgstﬁgsvglrﬁj? g:‘ihztz?;na-rd
cleosynthesigr= (7?/30)g, T, as well as making a natural ’ plicitly Y

choice for the scalge=T, one obtains the relation dar.d _model up to the highest scales, 'theret.)y violating the
triviality bound. One can therefore claim, using arguments

based solely on the running of the cosmological constant, the
Alp) —A(O) — 555 _ (23) existence of some intermediate energy scale at which we
PR 327y, should expect nonstandard phenomena to take place. Models
in which nonstandard physics compensates the effect of a
With the numerical valug), =3.36, the expression given heavy Higgs bosofat the same time fitting precision data as
above acquires the numerical value 0.053, a value within thgood as the standard mogehn be found, for example, in a
range that does not distufli7] nucleosynthesignote that recent review21]. The above conclusion may however not
even more stringent constraints obtained very recently ibe definite as, for the full treatment, one also needs to in-
[18] are obeyed It is interesting to notice that in the radia- clude scaling effects from the vacuum energy induced by a
tion dominated universe the quantity on the left-hand side ogcalar Higgs potential of the standard model, which we con-
Eqg. (23 is constant foru<1 MeV. This phenomenon of sider next.
“scaling” has already been met in the investigations of scalar The Higgs field will contribute to\ via the vacuum con-
field cosmologies with potentials having attractor solutionsdensate. The contribution is given by E8) and the renor-
and its appearance here represents a very interesting and poalization group equation reads
tentially important similarity.

Finally, the relation(21) together with the constrair22) d m2dm?  m* dx
enables us to calculate the value/ofat present scale of the — At =— — ——+ — —, (24)
evolution of the universe. If we take the valugg dt 2k dt = g)2 dt
=0.002 eV suggested i(5,8], we obtain A(u)—A(0)
~10 %8GeV#, a value reasonably close to the observedwheret=In(u/uo) andmi=2m?.
value of dark energy density of order 19 GeV*. From Eq. Again, one would expect the Higgs contribution at the
(21) the amount of fine-tuning at present is estimated to be caleu<my to diminish owing to the decoupling. Unfortu-
in (100 GeVf/uj~107%. nately, it is not very difficult to convince oneself that the

At this point a remark is in order. All our preceding results suppression factors are of the fopst/mg , and cannot com-
have been obtained using a specific form of the functiorpete with the overalinﬂ| factor. To see this, one inspects Eg.
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(24). It is clear that one has to calculaden’/dt and d\/dt

PHYSICAL REVIEW D 65 085002

observational value is not preserved at different energy

in, for example, the momentum subtraction scheme. Let uscales. The running due to one-loop vacuum bubble graphs
check, for instance, the contribution of the self-energy dia-associated with massive fields from the standard model is

gram (the Higgs loop with two external Higgs legahich
contributes to the running ah?(t). The renormalized con-
tribution is proportional to thenﬁ multiplied by the follow-
ing integral:

2
()= foldxnﬁ’::(z—lx(_ﬁx). 25
For u>my, the integral gives
J(My 1) =1+0(mi/ u?) (26)
and in the limitu<my, one gets
2
J(mH,u>=%r‘n‘—a+ow4/mﬁ,>. 27

Sincedm?/dt in Eq. (24) multipliesm?, the overall mass
factor ism,‘f| for u>my , whereas the suppression in Eg7)
is not enough to suppress it fgge<my . We have checked
that the same is true for the one-loop, four-point functian
fermion box with four external Higgs legswhich contrib-

obtained in a closed analytic form. We have noted that the
quantum theory of gravity plus matter truncated at the one-
loop level is an adequate description because of the non-
renormalizability of gravity. Contrary to the expectation from
the Appelquist-Carazzone decoupling theorem, we have
found that more massive fields do play a dominate role in the
running at any scale. We have also indicated that the same
behavior should persist in the running of the cosmological
constant induced by spontaneous symmetry breaking through
the Higgs mechanism. Owing to heavy masses involved in
the running, the standard cosmological scenario may be
found in jeopardy unless some fine-tuning is applied. As a
result, we get the predictiomy=550 GeV for the Higgs
boson mass. Since this mass is not favored by the present
constraints, one may consider our results obtained from the
running of the cosmological constant as an independent in-
dication that the standard model cannot be the full theory at
all scales. Finally, the effects described in this paper are a
feature of any quantum field theory comprising massive
fields. Consequently, one expects the same type of relations
between masses of that thedistemming from the consis-
tency with observation at low sca)eis any extensior{e.qg.

utes to the running ok(t), and, again, the decoupling theo- SUSY, GUTS of the standard model.

rem fails in the calculation of the running &f°°"t). The

examples discussed above indicate that the same behavior as

in the running of the zero-point energy part Af(u), is
expected forA ©°"? as well.
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