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Width and partial widths of unstable particles in the light of the Nielsen identities
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Fundamental properties of unstable particles, including mass, width, and partial widths, are examined on the
basis of the Nielsen identities~NI! that describe the gauge dependence of Green functions. In particular, we
prove that the pole residues and associated definitions of branching ratios and partial widths are gauge inde-
pendent to all orders. A simpler, previously discussed definition of branching ratios and partial widths is found
to be gauge independent through next-to-next-to-leading order. It is then explained how it may be modified in
order to extend the gauge independence to all orders. We also show that the physical scattering amplitude is the
most general combination of self-energy, vertex, and box contributions that is gauge independent for arbitrary
s, discuss the analytical properties of the NI functions, and exhibit explicitly their one-loop expressions in the
Z-g sector of the standard model.
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I. INTRODUCTION

The conventional definitions of the mass and width
unstable particles are

M25M0
21ReA~M2!, ~1.1!

MG52
Im A~M2!

12ReA8~M2!
, ~1.2!

whereM0 is the bare mass andA(s) is the self-energy in the
case of scalar bosons and the transverse self-energy in
case of vector bosons. The partial widths are defined by
pressing the numerator of Eq.~1.2! as a sum of cut contri-
butions involving distinct sets of final-state physical pa
ticles. We will refer toM as the on-shell mass and to Eq
~1.1! and ~1.2! as the conventional on-shell formulation.

However, it was shown in Ref.@1# that, in a gauge theory
Eqs. ~1.1! and ~1.2! become gauge dependent in next-
next-to-leading order~NNLO!, i.e., inO(g4) andO(g6), re-
spectively, whereg is a generic gauge coupling. In the sam
papers, it was proposed that a way of solving this problem
to base the definitions of mass and width on the comp
valued position of the propagator’s pole:

s̄5M0
21A~ s̄!. ~1.3!

Employing the parametrizations̄5m2
22 im2G2 of Ref. @1#,

we have
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m2
25M0

21ReA~ s̄!, ~1.4!

m2G252Im A~ s̄!. ~1.5!

From Eq.~1.4!, we see that the mass counterterm is given
ReA( s̄), rather than ReA(M2).

In the recent past, a number of authors have advoca
definitions of mass and width based ons̄ @2#, and the con-
clusions of Ref.@1# have been confirmed by later studie
@3,4# and proven to all orders@5#. In particular, it has been
shown that the gauge dependences ofM andG are numeri-
cally large in the case of a heavy Higgs boson@4#. It has also
been pointed out that Eq.~1.2! leads to serious problems
A(s) is not analytic in the neighborhood ofM2, a situation
that occurs whenM is very close to a physical threshold@6#
or, in the resonance region, when the unstable particle
coupled to massless quanta, as in the cases of theW boson
and unstable quarks@7#.

If Eq. ~1.5! is a consistent definition of width, an impo
tant question naturally arises: what is the definition of par
widths? A recent analysis of that concept, with special e
phasis on issues of gauge independence and additivity,
given in Ref.@8#.

The aim of the present paper is to revisit the importa
problem of width and partial widths of unstable particles
the light of the Nielsen identities~NI! @9–13#. Since the
variation of Green functions with respect to gauge para
eters can be viewed as Becchi-Rouet-Stora-Tyutin~BRST!
transformations, it is convenient to enlarge the BRST sy
metry to include also the gauge parameters themselves
this new framework, known as extended BRST symmetry
particular set of Slavnov-Taylor identities@14#, which are
frequently called NI, describe the gauge dependence
Green functions@9–13#. @Originally, the NI were formulatedy.
©2002 The American Physical Society01-1
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for one-particle-irreducible~1PI! Green functions in connec
tion with the effective scalar potential in a special class
gauges.# In Sec. II, we employ the NI to show thatM andG,
defined by Eqs.~1.1! and ~1.2!, are indeed gauge depende
in O(g4) andO(g6), respectively. For completeness, we al
briefly review the proof thats̄ is gauge independent@5#. In
Sec. III, we apply the NI to understand and clarify severa
the results and theoretical issues presented in Ref.@8#. In
particular, we show that a definition of branching ratios a
partial widths based on the pole residues is gauge inde
dent to all orders, while a simpler, previously discussed f
mulation is gauge independent through NNLO. In Sec.
we explain how the simpler definition can be modified
extend the gauge independence to all orders. In Sec. V
discuss the NI for box diagrams and show that the phys
amplitude is the most general combination of self-ener
vertex, and box contributions that is gauge independent
all values ofs. Section VI deals with the analytical propertie
of the NI functions, and the Appendix presents their one-lo
expressions in theZ-g sector of the standard model~SM!.

II. NI FOR P„s,jk… AND GAUGE DEPENDENCE OF M
AND M G

The transverse propagator of a gauge field is of the fo

Dmn52 i
Qmn

P~s,jk!
, ~2.1!

where Qmn5gmn2pmpn /s, pm is the four-momentum,s
5p2, andjk is a generic gauge parameter. In the absenc
mixing, we have

P~s,jk!5s2M0
22A~s,jk!

5s2m2
22Re@A~s,jk!2A~ s̄,jk!#

2 i Im A~s,jk!. ~2.2!

In the last expression,M0
2 has been expressed in terms ofm2

2

via Eq. ~1.4!.
The NI for P(s,jk) reads

]

]j l
P~s,jk!52L l~s,jk!P~s,jk!, ~2.3!

where L l(s,jk) is a complex, amputated, 1PI, two-poi
Green function ofO(g2) involving the gauge field, its BRST
variation, and the gauge fermion@see, e.g., Eq.~42! of Ref.
@5#, Eq. ~2.15! of Ref. @10#, Eq. ~4.9a! of Ref. @11#, and Eq.
~21! of Ref. @13##. We recall that the sum of the gauge-fixin
and ghost terms in the Lagrangian density can be expre
as the BRST variation of the gauge fermion, and that
latter is coupled to the BRST variation of the gauge para
eterj l . It is understood that the vertex corresponding to
BRST variation of j l carries zero momentum, so th
L l(s,jk) depends kinematically only ons. The simple form
of Eq. ~2.3! can only be achieved by a proper treatment
the Higgs tadpole: either one chooses to renormalize the
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point function to cancel the tadpole contribution or to rea
sorb it into a redefinition of the self-energyP(s,jk) @5,15#.

Equation~2.3! permits one to immediately understand t
gauge independence ofs̄ @5#. As s̄ is the zero ofP(s,jk), we
have

P~ s̄,jk!50. ~2.4!

Differentiating Eq.~2.4! with respect toj l , we obtain

] s̄

] j l

]

] s̄
P~ s̄,jk!1

]

]j l
P~ s̄,jk!50. ~2.5!

However, Eqs.~2.3! and~2.4! tell us that the second term i
Eq. ~2.5! vanishes. Since]P( s̄,jk)/] s̄511O(g2), we find

] s̄

] j l
50, ~2.6!

the result of Ref.@5#.
Instead, taking the real part of Eq.~2.3!, we have

]

]j l
ReP~s,jk!52 ReL l~s,jk!ReP~s,jk!

22 ImL l~s,jk!Im P~s,jk!. ~2.7!

By definition, the on-shell mass is the zero of ReP(s,jk).
Thus,

ReP~M2,jk!50. ~2.8!

Differentiating Eq. ~2.8! with respect toj l and using Eq.
~2.7!, we have

]M2

]j l
ReP8~M2,jk!22 ImL l~M2,jk!Im P~M2,jk!50,

~2.9!

where the prime indicates a derivative with respect to
first argument. Equation~2.9! leads to

]M2

]j l
52

Im L l~M2,jk!Im P~M2,jk!

ReP8~M2,jk!
. ~2.10!

Since ReP8(M2,jk)5O(1) and both ImL l(M2,jk) and
Im P(M2,jk) are of O(g2), Eq. ~2.10! tells us that
]M2/]j l5O(g4), the conclusion obtained in the past@1,3–
5#.

Turning our attention to Eq.~1.2!, we note that it may be
written as

MG5
Im P~M2,jk!

ReP8~M2,jk!
. ~2.11!

The imaginary part of Eq.~2.3! tells us that
1-2
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]

]j l
Im P~M2,jk!52 ReL l~M2,jk!Im P~M2,jk!,

~2.12!

while, from Eqs.~2.7! and ~2.8!, we see that

]

]j l
ReP8~M2,jk!52 ReL l~M2,jk!ReP8~M2,jk!

22@ Im L l~M2,jk!Im P~M2,jk!#8.

~2.13!

Combining Eqs.~2.12! and ~2.13!, we have

]

]j l

Im P~M2,jk!

ReP8~M2,jk!

52
Im P~M2,jk!@ Im L l~M2,jk!Im P~M2,jk!#8

@ReP8~M2,jk!#
2

.

~2.14!

To obtain the total derivative, we add the ter
(]M2/]j l)]@ Im P(M2)/ReP8(M2)#/]M2 and find that

d

dj l

Im P~M2!

ReP8~M2!
52

$Im L l~M2!@ Im P~M2!#2%8

@ReP8~M2!#2

22
Im L l~M2!@ Im P~M2!#2 ReP9~M2!

@ReP8~M2!#3
.

~2.15!

In Eq. ~2.15! and henceforth, we do not explicitly display th
dependence of the various Green functions onjk .

Since ImL l(M2), Im P(M2), and ReP9(M2) are of
O(g2) and ReP8(M2)5O(1), in leading order~LO!, Eq.
~2.15! reduces to

d

dj l

Im P~M2!

ReP8~M2!
52$Im L l~M2!@ Im P~M2!#2%81O~g8!.

~2.16!

Thus, we see that the conventional definition of width@Eq.
~1.2!# is gauge dependent in NNLO, i.e., inO(g6), in agree-
ment with the conclusion of Refs.@1,3–5#.

An important implication of the above results is that, in
gauge theory, Eqs.~1.1! and ~1.2! can be identified with the
physical observables only through next-to-leading or
~NLO!.

In the case of mixing between two fieldsA and B, Eq.
~2.3! is replaced by

]

]j l
Pab~s!5(

d
@L l ,a

d ~s!Pdb~s!1L l ,b
d ~s!Pda~s!#,

~2.17!

where a,b,d5A,B, the diagonal elementsPaa(s)[s
2M0,a

2 2Aaa(s) are the analogues of Eq.~2.2!, and, fora
08500
r

Þb, Pab(s)[2Aab(s), with Aab(s) being the mixedA-B
self-energy~we use the sign conventions of Ref.@15#!. Here,
L l ,a

d (s) are mixed two-point functions involving the fielda,
the BRST variation of the fieldd, and the gauge fermion
Correspondingly, the pole positionss̄A and s̄B are the zeros
of

D~s!5PAA~s!PBB~s!2PAB
2 ~s!. ~2.18!

Using Eq.~2.17!, one finds

]

]j l
D~s!52@L l ,A

A ~s!1L l ,B
B ~s!#D~s!, ~2.19!

and, therefore,

]

]j l
D~ s̄!50. ~2.20!

DifferentiatingD( s̄)50 with respect toj l and employing
Eq. ~2.20!, one obtains again the result] s̄/]j l50 @5#.

The transverse propagator of the fieldA is

2 i
PBB~s!

D~s!
5

2 i

s2M0,A
2 2A~s!

, ~2.21!

where

A~s!5AAA~s!1
AAB

2 ~s!

PBB~s!
. ~2.22!

We also note that Eqs.~2.17! and ~2.19! lead to

]

]j l

D~s!

PBB~s!
52FL l ,A

A ~s!2
L l ,B

A ~s!PAB~s!

PBB~s!
G D~s!

PBB~s!
.

~2.23!

III. NI FOR VERTEX FUNCTIONS AND
GAUGE PROPERTIES OF POLE RESIDUES

AND PARTIAL WIDTHS

We consider the amplitudei→Z→ f , whereZ is an un-
stable gauge boson, andi and f are initial and final states
respectively, involving on-shell particles that are either sta
or have negligible widths.

Using Eq.~1.3!, we may express Eq.~2.1! as

Dmn52 i
Qmn

s2 s̄2A~s!1A~ s̄!
. ~3.1!

The vertex amplitude defined byZ and f is given by

Vf
m~s![^ f uJZ

mu0&5(
a

v f
(a)~s, . . . !M f

(a)m , ~3.2!

where M f
(a)m denote various independent vector and axi

vector matrix elements involving the spinors, polarizati
four-vectors, and four-momenta of the final-state particl
while v f

(a)(s, . . . ) arescalar functions. Here, it is understoo
1-3
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that the amplitudeVf
m(s) is not 1PI, but includes the field

renormalizations of the external, on-shell particles in
statef. The dots indicate their dependence on the additio
invariants constructed from the particles’ momenta. We
the convention of including the generic couplingg in
the definition ofv f

(a)(s, . . . ), so that, in LO, v f
(a)(s, . . . )

5O(g). ExpandingVf
m(s) and the denominator of Eq.~3.1!

abouts5 s̄, the overall amplitude may be expressed as

Af i~s!52 i
QmnVf

m~ s̄!Vi
n~ s̄!

~s2 s̄!@12A8~ s̄!#
1Nf i , ~3.3!

whereNf i stands for non-resonant contributions and, hen
forth, we do not indicate the dependence on the additio
invariants.

In the absence of mixing and using the extended BR
formalism, it is possible to derive the following identity fo
the gauge dependence ofVf

m(s):

]

]j l
Vf

m~s!5L l~s!Vf
m~s!1P~s!D l , f

m ~s!, ~3.4!

whereD l , f
m (s) is a complex Green function depending on t

scalar invariants and involving the gauge fieldZ, the gauge
fermion, and the sources of the fields of the final statef ~see,
e.g., Eq.~45! of Ref. @5#, Eq.~4.9b! of Ref. @11#, and Eq.~14!
of Ref. @13#!. For instance, in a four-fermion amplitude,f
coincides with the two outgoing on-shell fermions, an
therefore,D l , f

m (s) involves the latter. Although, as discuss
after Eq.~2.3!, the functionL l(s,jk) is a 1PI Green function
the new Green functionD l , f

m (s) is of the same nature a
Vf

m(s). It is functionally independent ofL l(s) and incorpo-
rates the gauge dependence of the vertexVf

m(s) that is not
proportional to the vertex itself. In LO,D l , f

m (s)5O(g3). It is
important to emphasize that the functionD l , f

m (s) in Eq. ~3.4!
does not contain contributions proportional to 1/P(s) and, in
fact, is not singular ats5 s̄.

Differentiating Eq.~2.3! with respect tos and settings

5 s̄, we have

]

]j l
P8~ s̄!52L l~ s̄!P8~ s̄!, ~3.5!

while Eq. ~3.4! leads to

]

]j l
Vf

m~ s̄!5L l~ s̄!Vf
m~ s̄!. ~3.6!

Combining Eqs.~3.5! and ~3.6!, and recalling thats̄ is j l
independent, we obtain

d

dj l

Vf
m~ s̄!

A12A8~ s̄!
50, ~3.7!

for any choice off, a result that implies the gauge indepe
dence of the pole residues in Eq.~3.3!. This is expected on
general grounds@1,2#, since such amplitudes are the residu
08500
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of poles in the analytically continued scattering~S! matrix.
On the other hand, Eq.~3.7! provides a formal proof of this
important conclusion.

In the case of mixing between two fieldsA and B, Eq.
~3.4! is generalized to

]

]j l
Ga, f

m ~s!5(
d

@L l ,a
d ~s!Gd, f

m ~s!1Pad~s!D l , f
d,m~s!#,

~3.8!

where a,d5A,B and Ga, f
m (s) stand for vertex amplitudes

that, again, include the field renormalizations of the extern
on-shell particles. However, in the mixing case, the relev
vertex parts are combinations of the form

VA, f
m ~s!5GA, f

m ~s!2
PAB~s!GB, f

m ~s!

PBB~s!
. ~3.9!

For instance, in the neutral-current amplitude of the SM,
second term in Eq.~3.9! corresponds to one-particle
reducible contributions to theZ0f f̄ vertex arising from the
Z-g mixing. Equations~2.17!, ~3.8!, and~3.9! lead to

]

]j l
VA, f

m ~s!5FL l ,A
A ~s!2

L l ,B
A ~s!PAB~s!

PBB~s!
GVA, f

m ~s!

1
D~s!

PBB~s!
FD l , f

A,m~s!2
L l ,B

A ~s!GB, f
m ~s!

PBB~s!
G .
~3.10!

Settings5 s̄, Eq. ~3.10! reduces to

]

]j l
VA, f

m ~ s̄!5FL l ,A
A ~ s̄!2

L l ,B
A ~ s̄!PAB~ s̄!

PBB~ s̄!
GVA, f

m ~ s̄!,

~3.11!

which is the generalization of Eq.~3.6!. Differentiating Eq.
~2.23! with respect tos, settings5 s̄, and using Eq.~3.11!,
we find

d

dj l

VA, f
m ~ s̄!

A@D~s!/PBB~s!#s5 s̄
8

50, ~3.12!

for any choice of f. Noting that @D(s)/PBB(s)#s5 s̄
8 51

2A8( s̄) @cf. Eqs.~2.21! and ~2.22!#, we see that Eq.~3.12!
generalizes Eq.~3.7! and implies the gauge independence
the pole residues in the mixed case.

The second term on the right-hand side~RHS! of Eq.
~3.10! informs us that, in the case of mixing, loop correctio
generateO(g3) gauge-dependent contributions toVA, f

m (s)
that are not proportional to the lowest-order matrix eleme
VA, f

m(0)(s). @Here and in the following, a superfix~n! indicates
that the respective quantity is considered atn loops.# They
are proportional to the inverse propagatorD(s)/PBB(s)
5PAA(s)2PAB

2 (s)/PBB(s) and, therefore, vanish ats5 s̄.
This is necessary, since they cannot be canceled by o
1-4
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O(g3) contributions in the amplitude VA, f
m ( s̄)/

A@D(s)/PBB(s)#s5 s̄
8 . On the other hand, the proportionali

to the inverse propagator implies that they contribute to
non-resonant amplitude, where they cancel other gau
dependent terms. Well-known examples are contribution
this type to the neutral-current amplitudes of the SM invo
ing the Z-g self-energy AZg(s), which cancel gauge
dependent terms in the photon-mediated amplitude and
diagrams@16#. We will refer to these terms as off-diagon
contributions.

The above-mentioned property of the residues has m
vated a gauge-independent definition of partial width, to
@8#

m2Ĝ f52
1

6 (
spins

E dF f

QmnVf
m* ~ s̄!Vf

n~ s̄!

u12A8~ s̄!u
, ~3.13!

where the integration is over the phase space of the fi
state particles, a factor of 1/3 arises from the average o
the initial-state polarization, and a factor of 1/2 from t
familiar relation betweenm2Ĝ f and the integrated, square
amplitude. In the mixing case, it is understood thatVf

m(s) is
defined according to Eq.~3.9! and A(s) according to Eq.
~2.22!.

In Ref. @8#, it was pointed out that( f Ĝ f5” G2 when NNLO
contributions are included, i.e., the sum of partial widt
defined by means of Eq.~3.13! does not add up to the tota
width G2 defined on the basis of the pole positions̄ @Eq.
~1.5!#. In principle, the lack of additivity can be circum
vented by a simple rescaling: one defines the branching
tios by Bf5Ĝ f /( f Ĝ f and redefines the partial width asG f
5BfG2, so that( fG f5G2 @8#.

An analysis that leads to an alternative definition of p
tial widths, much closer to the conventional one, is based
the overall amplitude evaluated ats5m2

2 @8#,

Af i~m2
2!52 i

QmnVf
m~m2

2!Vi
n~m2

2!

im2G22A~m2
2!1A~ s̄!

1Ñf i , ~3.14!

where, again,Ñf i represents non-resonant contributions. It
understood that the gauge-dependent, off-diagonal terms
portional to the inverse propagatorD(m2

2)/PBB(m2
2)

' im2G2, discussed in the paragraph after Eq.~3.12!, are not
included in Vf

m(m2
2) or Vi

n(m2
2), since they are needed t

cancel other contributions of the same type in the n
resonant partÑf i .

Equation~3.14! suggests the consideration of the amp
tudes

I f~m2
2!5

1

6 (
spins

E dF fQmnVf
m* ~m2

2!Vf
n~m2

2!. ~3.15!

In fact, 2I f(m2
2)/m2 is the conventional expression for th

partial width of the decay of the unstable particle into t
physical statef, modulo its wave-function renormalization
In particular, I f(m2

2) is the f-cut contribution to I (m2
2)
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[Im A(m2
2) in the decomposition explained after Eq.~1.2!,

except that it is evaluated at the gauge-independent
massm2, rather than the on-shell massM. As explained in
Ref. @8#, if the unstable particle were an asymptotic state,
unitarity of the S matrix would imply thatI (m2

2)5F(m2
2),

where

F~m2
2![(

f
I f~m2

2!. ~3.16!

Since the unstable particle is not an asymptotic state,
is not the case beyond NLO, and we expect a relation of
form

I ~m2
2!5F~m2

2!1G~m2
2!, ~3.17!

where G(m2
2)[I (m2

2)2F(m2
2) involves contributions from

unphysical intermediate states, including would-be Go
stone bosons, Faddeev-Popov ghosts, or longitudinal mo
of gauge bosons. By studying the gauge-independent di
encem2( f Ĝ f2m2G2, it was shown in Ref.@8# thatG(m2

2) is
non-vanishing inO(g6), i.e., in NNLO.

A definition of branching ratios, very similar to the con
ventional one, was discussed in Ref.@8#, to wit

B̃f5
I f~m2

2!

F~m2
2!

. ~3.18!

It is manifestly additive:( f B̃f51. The partial widths are
then defined by

G̃ f5B̃fG2 . ~3.19!

In order to examine the gauge dependence ofI f(m2
2), we

employ the NI of Eq.~3.4!, with s5m2
2, and find

]

]j l
I f~m2

2!52 ReL l~m2
2!I f~m2

2!

1
1

6 (
spins

E dF fQmn@Vf
m* ~m2

2!P~m2
2!D l , f

n ~m2
2!

1D l , f
m* ~m2

2!P* ~m2
2!Vf

n~m2
2!#. ~3.20!

In LO, we have P(m2
2)52 i I (m2

2) and D l , f
n (m2

2)
5d l(m2

2)Vf
n(m2

2), whered l(m2
2)5O(g2) is independent of

the final statef. An illustration of this property is provided by
Eq. ~3.28! and by the coefficient ofGZ, f

m(0)(s) on the RHS of
Eq. ~A7!. Thus, in LO, Eq.~3.20! becomes

]

]j l
I f~m2

2!52@ReL l~m2
2!1I ~m2

2!Im d l~m2
2!#I f~m2

2!

1O~g8!. ~3.21!

We note thatL l(m2
2), I (m2

2), d l(m2
2), and I f(m2

2) are of
O(g2). Equation~3.21! tells us that~i! the gauge dependenc
of I f(m2

2) starts inO(g4) ~NLO!, a well-known fact; and~ii !
through O(g6) ~NNLO!, ]I f(m2

2)/]j l is proportional to
1-5
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I f(m2
2), with an f-independent coefficient. In turn, this pro

portionality implies the gauge independence ofB̃f @Eq.
~3.18!# through NNLO. The same conclusion holds in t
presence of mixing, provided that, as explained after
~3.14!, gauge-dependent, off-diagonal terms proportiona
im2G2 are not included inVf

m(m2
2).

This observation explains a significant result of Ref.@8#,
namely it was shown in that work that, when the cross s
tion of e1e2 annihilation at theZ0-boson peak in the SM is
expressed in terms of the partial widthsG̃ f , it is gauge inde-
pendent through NNLO. From this conclusion it was inferr
in Ref. @8# that the partial widthsG̃ f are also gauge indepen
dent through NNLO, i.e., throughO(g6). We now see that
this result is related to the proportionality betwe
]I f(m2

2)/]j l and I f(m2
2) with an f-independent coefficient

exhibited in Eq.~3.21! throughO(g6). On the other hand
there is no reason to expect that such a proportionality
vives in still higher orders.

Thus, although the definitions of Eqs.~3.18! and ~3.19!
provide gauge-independent results through NNLO, and
is sufficient for the phenomenological requirements of el
troweak physics in the foreseeable future, they are not c
pletely satisfactory from the theoretical point of view, sin
they are not expected to be gauge independent in still hig
orders.

Next, we apply the NI to obtain information about th
function G(m2

2) introduced in Eq.~3.17!. Taking the imagi-
nary part of Eq.~2.3!, settings5m2

2, and recalling from Eq.
~2.2! that ImP(m2

2)52I (m2
2), we have

]

]j l
I ~m2

2!52 ReL l~m2
2!I ~m2

2!12 ImL l~m2
2!Re@A~m2

2!

2A~ s̄!#. ~3.22!

ThroughO(g6), this becomes

]

]j l
I ~m2

2!52 ReL l~m2
2!I ~m2

2!22m2G2 Im L l~m2
2!I 8~m2

2!

1O~g8!. ~3.23!

Inserting Eq.~3.17! into Eq. ~3.23! and subtracting

]

]j l
F~m2

2!52@ReL l~m2
2!1I ~m2

2!Im d l~m2
2!#F~m2

2!,

~3.24!

a relation that follows from Eq.~3.21!, we find

]

]j l
G~m2

2!5
m2G2

2

]

]j l
@ I 8~m2

2!#222m2
2G2

2 Im d l~m2
2!

1O~g8!. ~3.25!

In Eq. ~3.25!, we have neglected terms ofO(g8) and em-
ployed
08500
.
o

c-

r-

is
-
-

er

Im L l~m2
2!52

1

2

]

]j l
I 8~m2

2!1O~g4!, ~3.26!

a result that follows from Eq.~2.3!. Equation~3.25! tells us
that G(m2

2) differs from zero inO(g6) ~NNLO!, a conclu-
sion also reached by a different argument in Ref.@8#. In fact,
Eq. ~16! of Ref. @8# presents an explicit expression for th
O(g6) contribution toG(m2

2) in the Z0-boson case of the
SM, obtained by considering the difference between the
gauge-independent amplitudesm2( f Ĝ f andm2G2. As shown
in that expression, in theZ0-boson case, the leading contr
bution to G(m2

2) depends on the gauge parameterjW asso-
ciated with theW boson. Differentiating Eq.~16! of Ref. @8#
with respect tojW , we find

]

]jW
G~m2

2!5
m2G2

2

]

]jW
@ I 8~m2

2!#22g2cw
2 m2

2G2
2 ]

]jW

3@~jW21!Im hW~m2
2!#1O~g8!, ~3.27!

where cw[ cosuw , with uw being the weak mixing angle
and hW(s) is a gauge-dependent amplitude introduced
Ref. @16#. Comparison of Eqs.~3.25! and ~3.27! shows that
the two expressions have the same structure with the ide
fication

Im dW~m2
2!5

g2cw
2

2

]

]jW
@~jW21!Im hW~m2

2!#.

~3.28!

Thus, the NI permit us to understand the non-vanishing
G(m2

2) and the structure of its leading contribution. A
shown in Ref. @8#, the contribution toG(m2

2) involving
Im hW(m2

2) plays a crucial role in ensuring the gauge ind
pendence of the peak cross section through NNLO. In fac
cancels the gauge dependence of the interference betw
the resonant amplitude and the box diagrams.

IV. EXTENSION TO ALL ORDERS OF THE GAUGE
INDEPENDENCE OF EQS. „3.18… AND „3.19…

A strategy to extend to all orders the gauge independe
of Eq. ~3.18!, and therefore Eq.~3.19!, involves a redefini-
tion of the vertex partsVf

m(m2
2). In general,Vf

m(s) may be
regarded as a functionVf

m(s,m2
2 ,m2G2). The explicit depen-

dence onm2G2 arises from specific cut contributions, o
equivalently, from terms involving ImA(s). As an illustra-
tion, we may consider two-loop contributions to theZ-g self-
energy AZg(s) involving virtual fermion-antifermion pairs
with a vertex correction attached to the photon ending. A
across the fermion-antifermion pairs, summed over all pa
leads ats5m2

2 to a contribution proportional toim2G2. The
fact that higher-order corrections generate contributions
volving m2G2 may also be inferred more generally by exam
ining the structure of Eqs.~2.23! and~3.10!. We note that the
terms involvingD(s)/PBB(s) in these equations are propo
tional to s2 s̄5s2m2

21 im2G2, and it is clear thatim2G2

must be induced by contributions of higher order than th
1-6
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leading tos2m2
2. In the notation of this section, the ampl

tudes Vf
m( s̄) and Vf

m(m2
2) are identified with Vf

m( s̄)

5Vf
m( s̄,m2

2 ,m2G2) and Vf
m(m2

2)5Vf
m(m2

2 ,m2
2 ,m2G2), re-

spectively. A modification that renders Eqs.~3.18! and~3.19!
gauge independent to all orders involves replacingVf

m(m2
2)

in Eq. ~3.15! by V̂f
m(m2

2)[ limG2→0Vf
m( s̄,m2

2 ,m2G2)

5Vf
m(m2

2 ,m2
2,0). We emphasize thatV̂f

m(m2
2) differs from the

usual definition ofVf
m(m2

2). Settings5m2
2 in Eq. ~3.10! and

taking the limitG2→0, we see that

]

]j l
V̂A, f

m ~m2
2!5FL l ,A

A ~m2
2!2

L l ,B
A ~m2

2!PAB~m2
2!

PBB~m2
2!

G
G250

3V̂A, f
m ~m2

2!. ~4.1!

The crucial point is that, fors 5 m2
2, the second term on th

RHS of Eq.~3.10! vanishes in the limitG2→0. This has the
effect of excluding fromV̂A, f

m (m2
2) all the gauge-dependen

~diagonal as well as off-diagonal! contributions that are pro
portional tom2G2. The physical meaning of this exclusion
discussed later.

ReplacingI f(m2
2) in Eq. ~3.15! by

Î f~m2
2!5

1

6 (
spins

E dF fQmnV̂f
m* ~m2

2!V̂f
n~m2

2!, ~4.2!

Eq. ~4.1! leads to the proportionality between] Î f(m2
2)/]j l

and Î f(m2
2) with an f-independent coefficient. In turn, thi

implies the gauge independence to all orders of the modi
definitions

B̂f5
Î f~m2

2!

F̂~m2
2!

,

Ĝ f5B̂fG2 , ~4.3!

whereF̂(m2
2)[( f Î f(m2

2).
A corresponding gauge-independent definition of resid

is obtained by considering

lim
G2→0

QmnVf
m~ s̄!Vf

n~ s̄!

12A8~ s̄!
5

QmnV̂f
m~m2

2!V̂f
n~m2

2!

@12A8~ s̄!#G250

. ~4.4!

The gauge independence of Eq.~4.4! follows by taking the
limit G2→0 of Eq. ~3.7!.

In terms of Eq.~4.4!, the overall amplitude of Eq.~3.3!
may be expressed as

Af i~s!52 i
QmnV̂f

m~m2
2!V̂i

n~m2
2!

~s2 s̄!@12A8~ s̄!#G250

1N̂f i . ~4.5!

The physical meaning of the limitG2→0 can be easily
understood by comparing the first terms in Eqs.~3.3! and
~4.5!. The residues of 1/(s2 s̄) in the two expressions diffe
by terms ofO(g4G2 /m2) ~NNLO!. Such terms give contri-
08500
d

s

butions of zeroth order inG2 to the peak amplitude (s
5m2

2) and, therefore, may be regarded as non-resonan
should be stressed that, in this approach, terms
O„(G2 /m2)n

…, wheren>1, are not neglected, but they a
rather incorporated in the non-resonant amplitude. Thus,
two expressions differ, in a gauge-independent manner
the precise identification of resonant and non-resonant c
tributions. Although the formulation of Eq.~3.3! is probably
more elegant, that of Eq.~4.5! is closer to the calculations
carried out by most particle physicists.

V. NI FOR BOX FUNCTIONS

The gauge independence of the complete amplitude
be tested by considering the NI for the box functionsBf i(s).
In the absence of mixing, we have

]

]j l
Bf i~s!5 iQmn@D l , f

m ~s!Vi
n~s!1Vf

m~s!D l ,i
n ~s!# ~5.1!

~see, e.g., Eq.~46! of Ref. @5# and Eq.~14! of Ref. @13#!.
Equation~5.1! only involves the functionsD l , f

m (s) appearing
in the NI for vertex functions@Eq. ~3.4!#. This is due to
BRST symmetry and the fact that the external statesi and f
are on shell. Indeed, in the NI for off-shell Green function
there are additional contributions proportional to the fie
equations.

Knowing the gauge dependence of all essential build
blocks, we can find the most general combination of se
energy, vertex, and box contributions that is gauge indep
dent for any value ofs. From the NI for self-energies@Eq.
~2.3!#, we can compute the functionL l(s) as

L l~s!5
1

2P~s!

]

]j l
P~s!. ~5.2!

InsertingL l(s) into the NI for vertices@Eq. ~3.4!# and solv-
ing for D l , f

m (s), we find

D l , f
m ~s!5

1

AP~s!

]

]j l

Vf
m~s!

AP~s!
, ~5.3!

and analogously forD l ,i
n (s). Combining Eqs.~5.1! and~5.3!,

the variation ofBf i(s) with respect to the gauge paramet
becomes

]

]j l
Bf i~s!5 i

]

]j l

QmnVf
m~s!Vi

n~s!

P~s!
. ~5.4!

Equation ~5.4! implies that the most general gaug
independent combination is an arbitrary function of

F f i~s!52 i
QmnVf

m~s!Vi
n~s!

P~s!
1Bf i~s!. ~5.5!

Finally, requiring that the combination has a simple po
given by the zero ofP(s), we see that it must be a linea
function of F f i(s). Thus, the NI tell us that, subject to th
latter requirement, the most general combination that
1-7
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gauge independent for arbitrarys is the physical amplitude
This result can be readily extended to the case of field m
ing.

It is interesting to observe that the argument presente
this section may be reversed to give a simple derivation
the functional structure of Eqs.~3.4! and~5.1!. Invoking the
gauge independence of theS-matrix element given in Eq
~5.5! and noting that]Bf i(s)/]j l does not contain terms pro
portional to 1/P(s), one concludes that the same is true
2 i ]@QmnVf

m(s)Vi
n(s)/P(s)#/]j l . Observing thatVf

m(s) and
Vi

n(s) are independent functions and employing Eq.~2.3!,
one readily finds that]Vf

m(s)/]j l satisfies a relation with the
functional structure of Eq.~3.4!, subject to the constraint tha
the functionD l , f

m (s) does not contain 1/P(s) contributions.
Differentiating Eq.~5.5! with respect toj l , inserting Eqs.
~2.3! and ~3.4!, and invoking once more the gauge indepe
dence of theS matrix, one obtains Eq.~5.1!.

VI. ANALYTICAL PROPERTIES AND NI

As is well known, the analytical properties of the Gre
function P(s) permit the use of Cauchy’s theorem,

P~s!5
1

2p i Rg
ds8

P~s8!

s82s
, ~6.1!

where g is a closed contour in the complexs8 plane that
encircles the points counterclockwise. Equation~6.1! and
the distribution-based relation

lim
e→0

1

s2s81 i e
5P

1

s2s8
2 ipd~s2s8!, ~6.2!

whereP denotes the principal value, leads to the derivat
of dispersion relations and sum rules.

Using Eq.~6.1! and the NI of Eq.~2.3!, we have

]

]j l
P~s!5

1

2p i Rg
ds8

2L l~s8!P~s8!

s82s

5
1

~2p i !2 R
g
ds8 R

g8
ds9

2L l~s8!P~s9!

~s82s!~s92s8!
,

~6.3!

where the contourg8 encirclesg counterclockwise. Rewrit-
ing the factor 1/@(s82s)(s92s8)#, the last member of Eq
~6.3! becomes

]

]j l
P~s!5

1

~2p i !2 R
g
ds8 R

g8
ds92L l~s8!P~s9!

3F 1

~s82s!~s92s!
1

1

~s92s8!~s92s!
G ,

~6.4!
08500
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where the second term vanishes, since the integration oves8
along the contourg does not encircle any singularity. There
fore, we find

]

]j l
P~s!5F 1

2p i Rg
ds8

2L l~s8!

s82s
GP~s!, ~6.5!

which, in conjunction with Eq.~2.3!, implies thatL l(s) ad-
mits a spectral representation, analogous to Eq.~6.1!, that is
compatible with the analyticity of Green functions.

A clear example of the analyticity of the functionsL l(s)
can be read off from the absorptive part of the Higgs-bos
two-point function ImPHH(s) presented in Ref.@4#. From
the imaginary part of Eq.~2.3! at one loop,1 we have

]

]jW
Im PHH

(1) ~s!52~s2MH
2 !Im LW,H

H(1)~s!. ~6.6!

Comparison with Ref.@4# shows that

Im LW,H
H(1)~s!5

GMW
2

2
~s1MH

2 !F 1

2s S 12
4jWMW

2

s D 21/2

3u~s24jWMW
2 !2S 12

4jWMW
2

s D 1/2

3d~s24jWMW
2 !G , ~6.7!

whereG5Gm /(2pA2), with Gm being the muon decay con
stant. Although the second term seems to violate the ana
icity of Green functions because of the presence of thed
function, the factor (124jWMW

2 /s)1/2 leads to the vanishing
of this contribution. Thus, we obtain

Im LW,H
H(1)~s!5

GMW
2

4 S 11
MH

2

s D S 12
4jWMW

2

s D 21/2

3u~s24jWMW
2 !. ~6.8!

The function LW,H
H(1)(s) can also be obtained by a dire

evaluation of the relevant Feynman diagrams. In fact,
~6.8! has the structure one expects from such a computat
It shows that the one-loop Green functionLW,H

H(1)(s) contains
absorptive parts, but they are proportional tou functions cen-
tered at some unphysical thresholds. This is due to the
that, in the diagrams forLW,H

H(1)(s), only unphysical modes
propagate at one loop. However,u functions centered a
physical thresholds may appear at higher orders.

The NI tell us that the gauge dependence of a Green fu
tion is described by another Green function, which can
computed in terms of Feynman rules. The factorization i
plied by the NI is far from being trivial, and the Higgs-boso

1The decoupling of unphysical modes, the mixing with the neu
would-be Goldstone boson, and the NI for Higgs bosons are
cussed in Ref.@5#.
1-8
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example shows how analyticity works in the factorization
the second member of the NI.

VII. CONCLUSIONS

In this paper, we examined fundamental properties of
stable particles, such as their masses, widths, and pa
widths, in the light of the NI, which describe the gauge d
pendence of Green functions.

In Sec. II, we applied the NI to show that the convention
definitions of mass and width of unstable particles are ga
dependent in NNLO. This shows that, in the gauge-the
context, the conventional treatment of unstable particle
strictly valid through NLO. For completeness, in the sa
section, we revisited the formal proof, to all orders, of t
gauge independence of the pole positions̄ @5#.

In Sec. III, we applied the NI for vertex functions to prov
the gauge independence of the pole residues. This motiv
a gauge-independent definition of partial widths. As e
plained in Ref.@8#, this definition does not satisfy the add
tivity property in NNLO. However, this problem can be ci
cumvented by a judicious rescaling of the partial widths.

We then considered an alternative definition of branch
ratios B̃f and partial widthsG̃ f that are manifestly additive
and closely resemble the conventional ones. Using the
we showed thatB̃f and G̃ f are gauge independent throug
NNLO. This explains a significant result obtained in Ref.@8#,
namely that the cross section ofe1e2 annihilation at the
Z0-boson peak in the SM, expressed in terms ofG̃ f , is gauge
independent through NNLO. Although this result is sufficie
for the phenomenological requirements of electroweak ph
ics in the foreseeable future,B̃f andG̃ f are not expected to b
gauge independent in still higher orders.

We also used the NI to show that the usual assump
that ImA(m2

2) can be expressed as a sum of physical
contributions fails in NNLO. The difference between the
two quantities is given by a functionG(m2

2) that emerges in
NNLO. In Ref. @8#, G(m2

2) was shown to be non-vanishin
by studying the difference between two gauge-independ
definitions of total width based, respectively, on the p
residues and the pole position. In the present paper, we
ployed the NI to derive an expression forG(m2

2) with the
same mathematical structure.

In Sec. IV, we showed how to modify the alternative de
nition of branching ratios, discussed in Sec. III, in order
extend the gauge independence to all orders.

In Sec. V, we discussed the NI for box diagrams a
showed that the physical amplitude is the most general c
bination of self-energy, vertex, and box contributions tha
gauge independent for arbitrarys. Reversing the argumen
we also showed that the functional structure of the NI
vertex and box functions can be derived starting from
gauge independence of theSmatrix and well-known proper-
ties of the box amplitudes. It should also be emphasized
the gauge independence of the physical amplitude imp
the same property for the coefficients of its Laurent exp
sion.

Section VI discusses the analytic properties of the Gr
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functionsL l(s) that play an important role in the NI.
The Appendix gives the explicit one-loop relations b

tween the functionsL l ,a
d (s) andD l , f

d,m(s) that occur in the NI
and the calculations of Ref.@16# in theZ-g sector of the SM.
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APPENDIX: ONE-LOOP CONTRIBUTIONS TO NI
FUNCTIONS

In this appendix, we present the one-loop contributions
the NI for theZ-g sector of the SM. In particular, we discus
the relation between the NI Green functionsL l ,a

d (s) and
D l , f

d,m(s) defined in Eqs.~2.17! and ~3.8!, respectively, and
the one-loop computations of Ref.@16#.

According to Eq.~2.17!, in the Z-g case, the transvers
self-energiesPZZ(s), PZg(s), andPgg(s) satisfy

]

]j l
PZZ~s!52 (

d5Z,g
L l ,Z

d ~s!PdZ~s!,

]

]j l
PZg~s!5 (

d5Z,g
@L l ,Z

d ~s!Pdg~s!

1L l ,g
d ~s!PdZ~s!#,

]

]j l
Pgg~s!52 (

d5Z,g
L l ,g

d ~s!Pdg~s!, ~A1!

where L l ,Z
Z (s), L l ,Z

g (s), L l ,g
Z (s), and L l ,g

g (s) involve the
gauge fieldsZ or g ~lower index!, the BRST variations asso
ciated withZ or g ~upper index!, and the gauge fermion. A
implied by the statement before Eq.~2.18!, the complex pole
positionss̄ are given by the equation

PZZ~ s̄!Pgg~ s̄!2PZg
2 ~ s̄!50, ~A2!

which, being a quadratic polynomial ins̄ at tree level, has
two solutions at all orders. Actually, one solution is trivial
s̄50, due to BRST symmetry~cf. Ref. @17#!.

In order to compare this with the explicit one-loop com
putations of Ref.@16#, we reduce Eq.~A1! to the one-loop
level using the fact that theL l ,a

d (s) andPZg(s) functions are
of O(g2):
1-9
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]

]j l
PZZ

(1)~s!52~s2MZ
2!L l ,Z

Z(1)~s!,

]

]j l
PZg

(1)~s!5@sL l ,Z
g(1)~s!1~s2MZ

2!L l ,g
Z(1)~s!#,

]

]j l
Pgg

(1)~s!52sL l ,g
g(1)~s!. ~A3!

Comparing Eq.~A3! with the results of Ref.@16# and em-
ploying the functionsvW(s) andhW(s) defined in that work,
we obtain

E
1

jW
djW8 LW,Z

Z(1)~s,jW8 !52g2cw
2 ~jW21!FvW~s!1

1

2
~s

2MZ
2!hW~s!G ,

E
1

jW
djW8 LW,Z

g(1)~s,jW8 !52g2swcw~jW21!FvW~s!1
1

2
~s

2MZ
2!hW~s!G ,

E
1

jW
djW8 LW,g

Z(1)~s,jW8 !52g2swcw~jW21!FvW~s!

1
s

2
hW~s!G ,

E
1

jW
djW8 LW,g

g(1)~s,jW8 !52g2sw
2 ~jW21!FvW~s!

1
s

2
hW~s!G , ~A4!

where sw[sinuw . The other functionsL l ,a
d(1)(s,jk), with l

ÞW anda,d5Z,g, vanish. From Eq.~A4!, we can imme-
diately see that there are only two functionally independ
Green functions, viz.

LW,Z
3(1)~s,jW!5LW,Z

Z(1)~s,jW!1
sw

cw
LW,Z

g(1)~s,jW!,

LW,g
3(1)~s,jW!5

cw

sw
LW,g

Z(1)~s,jW!1LW,g
g(1)~s,jW!.

~A5!

This result is expected on the basis of BRST symmetry
fact, following Ref. @17#, one only introduces the sourc
coupled to non-linear BRST transformations; for examp
one needs the sources of the BRST variations of the ga
bosonsWm

i of theSU(2) triplet, but not the one of the Abe
lian gauge fieldBm . This implies that there are only tw
independent functionsL l ,a

d (s,jk) in the Z-g sector.
As for the vertex functions, from Eq.~3.8! at one loop, we

have
08500
t

n

,
ge

]

]j l
GZ, f

m(1)~s!5 (
d5Z,g

L l ,Z
d(1)~s!Gd, f

m(0)~s!1~s2MZ
2!D l , f

Z,m(1)~s!,

]

]j l
Gg, f

m(1)~s!5 (
d5Z,g

L l ,g
d(1)~s!Gd, f

m(0)~s!1sD l , f
g,m(1)~s!.

~A6!

Comparing with the results of Ref.@16#, we find

E
1

jW
djW8 DW, f

Z,m(1)~s,jW8 !5
g2cw

2

2
~jW21!hW~s!

3FGZ, f
m(0)~s!1

sw

cw
Gg, f

m(0)~s!G ,

E
1

jW
djW8 DW, f

g,m(1)~s,jW8 !5
g2swcw

2
~jW21!hW~s!

3FGZ, f
m(0)~s!1

sw

cw
Gg, f

m(0)~s!G .
~A7!

The other functionsD l , f
d,m(1)(s,jk), with l 5” W and d5Z,g,

vanish. We note again thatDW, f
d,m(1)(s,jW), with d5Z,g, are

not independent, but proportional to

DW, f
3,m(1)~s,jW!5DW, f

Z,m(1)~s,jW!1
sw

cw
DW, f

g,m(1)~s,jW!,

~A8!

which is expected from BRST symmetry, as explain
above. Moreover, we see that they are proportional to a c
bination of tree-level vertex functions. By inserting Eq
~A4! and ~A7! in Eq. ~A6!, we obtain

]

]jW
GZ, f

m(1)~s,jW!52g2cw
2 ]

]jW
@~jW21!vW~s!#

3FGZ, f
m(0)~s!1

sw

cw
Gg, f

m(0)~s!G ,
]

]jW
Gg, f

m(1)~s,jW!52g2swcw

]

]jW
@~jW21!vW~s!#

3FGZ, f
m(0)~s!1

sw

cw
Gg, f

m(0)~s!G , ~A9!

in agreement with the vertex computations in Ref.@16#.
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