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Width and partial widths of unstable particles in the light of the Nielsen identities
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Fundamental properties of unstable particles, including mass, width, and partial widths, are examined on the
basis of the Nielsen identitigdNI) that describe the gauge dependence of Green functions. In particular, we
prove that the pole residues and associated definitions of branching ratios and partial widths are gauge inde-
pendent to all orders. A simpler, previously discussed definition of branching ratios and partial widths is found
to be gauge independent through next-to-next-to-leading order. It is then explained how it may be modified in
order to extend the gauge independence to all orders. We also show that the physical scattering amplitude is the
most general combination of self-energy, vertex, and box contributions that is gauge independent for arbitrary
s, discuss the analytical properties of the NI functions, and exhibit explicitly their one-loop expressions in the
Z-v sector of the standard model.
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. INTRODUCTION m2=M2Z+ReA(s), (1.9

The conventional definitions of the mass and width of

unstable particles are myl'>=—ImA(s). (1.9

M 2= |\/|c2)+ ReA(M?), (1.1) From_Eq.(1.4), we see that the mass counterterm is given by
ReA(s), rather than RA(M?).
ImA(M?) In the recent past, a number of authors have advocated
m

MT = (1.2) definitions of mass and width based s1i2], and the con-

- 1-ReA’(M?)’ clusions of Ref.[1] have been confirmed by later studies
[3,4] and proven to all order5]. In particular, it has been

whereM, is the bare mass ani(s) is the self-energy in the shown that the gauge dependenced/foéndI’ are numeri-
case of scalar bosons and the transverse self-energy in tally large in the case of a heavy Higgs bo$éh It has also
case of vector bosons. The partial widths are defined by exdeen pointed out that E¢1.2) leads to serious problems if
pressing the numerator of EQL.2) as a sum of cut contri- A(S) is not analytic in the neighborhood ®7, a situation
butions involving distinct sets of final-state physical par-that occurs wheiM is very close to a physical threshdl]
ticles. We will refer toM as the on-shell mass and to Egs. Of, in the resonance region, when the unstable particle is
(1.1) and(1.2) as the conventional on-shell formulation. ~ coupled to massless quanta, as in the cases of\ti@son
However, it was shown in Ref1] that, in a gauge theory, and unstable quarks].
Egs. (1.1) and (1.2) become gauge dependent in next-to- If EQ. (1.5 is a consistent definition of width, an impor-
next-to-leading ordefNNLO), i.e., inO(g*) andO(g®), re-  tant question naturally arises: what is the definition of partial
spectively, wherg is a generic gauge coupling. In the sameWidths? A recent analysis of that concept, with special em-
papers, it was proposed that a way of solving this problem ighasis on issues of gauge independence and additivity, was
to base the definitions of mass and width on the complexgiven in Ref.[8].

valued position of the propagator’s pole: The aim of the present paper is to revisit the important
problem of width and partial widths of unstable particles in

the light of the Nielsen identitiegNIl) [9-13. Since the
variation of Green functions with respect to gauge param-
o eters can be viewed as Becchi-Rouet-Stora-Ty(BRST)
Employing the parametrizatioa= m%—imzl“z of Ref.[1], transformations, it is convenient to enlarge the BRST sym-
we have metry to include also the gauge parameters themselves. In
this new framework, known as extended BRST symmetry, a
particular set of Slavnov-Taylor identitigd4], which are
*Permanent address: Il. Instituirfliheoretische Physik, Univer- frequently called NI, describe the gauge dependence of
sitst Hamburg, Luruper Chaussee 149, 22761 Hamburg, GermanyGreen function$9—-13). [Originally, the NI were formulated

s=M2+A(s). (1.3
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for one-particle-irreducibl€1Pl) Green functions in connec- point function to cancel the tadpole contribution or to reab-
tion with the effective scalar potential in a special class ofsorb it into a redefinition of the self-enerd¥(s, &) [5,15].
gaugesd.In Sec. Il, we employ the NI to show thist andT’, Equation(2.3) permits one to immediately understand the
defined by Eqs(1.1) and(1.2), are indeed gauge dependent gauge independence sf5]. As s is the zero oflI(s, &), we

in O(g*) andO(g®), respectively. For completeness, we alsohaye

briefly review the proof thas is gauge independef5]. In

Sec. lll, we apply the NI to understand and clarify several of H(Egk):o, (2.9

the results and theoretical issues presented in F3f.In

particular, we show that a definition of branching ratios andpifferentiating Eq.(2.4) with respect tof;, we obtain

partial widths based on the pole residues is gauge indepen-
dent to all orders, while a simpler, previously discussed for- 9s 0
mulation is gauge independent through NNLO. In Sec. IV, ——=1I(s,&) +
we explain how the simpler definition can be modified to I& 9s

extend the gauge independence to all orders. In Sec. V, we )
discuss the NI for box diagrams and show that the physicdriowever, Eqs(2.3) and(2.4) tell us that the second term in
amplitude is the most general combination of self-energyEq. (2.5) vanishes. SincelIl(s, &)/ ds=1+0O(g?), we find
vertex, and box contributions that is gauge independent for

all values ofs. Section VI deals with the analytical properties Js

of the NI functions, and the Appendix presents their one-loop e 0, (2.9
expressions in th&-y sector of the standard modgM). !

s P

&&H(s,gk)=o. (2.5

the result of Ref[5].

Il. NI FOR TI(s,£,) AND GAUGE DEPENDENCE OF M Instead, taking the real part of E(.3), we have
AND MI'
The transverse propagator of a gauge field is of the form %ReH(s &) =2 ReA(s,&)Rell(s, &)
a I ’ 1 1

D=~ e, @ —2ImA(s.EImIIs.6). (27)

, By definition, the on-shell mass is the zero of Rgs, ).
whereQ,,=9,,—pP,p,/s, p, is the four-momentums Thus,

=p?, and¢, is a generic gauge parameter. In the absence of

mixing, we have Rell(M?2,&,)=0. (2.8
_ 2
(s, &) =s—Mg—A(s, &) Differentiating Eq.(2.8) with respect to& and using Eq.

= s—m3— Re[A(s,£) ~ AS. ] (2., we have

2

i M
| |mA(S,§k)- (22) ?REH,(MZ,&()_Z|mA|(M2,§k)|mH(M2,§k):O,

|

In the last expressiom{lg has been expressed in termsmﬁ (2.9
via Eq. (1.4).
The NI forI1(s,&,) reads where the prime indicates a derivative with respect to the
first argument. Equatiof®.9) leads to
Jd

a_&H(S,gk):ZAl(ka)H(S,gk)' (2.3 aMZZZImA|(M2,§k)ImH(M2,§k) (2.10

_ _ 29 Rell’'(M2,&,)
where A((s,&) is a complex, amputated, 1PI, two-point
Green function of(g?) involving the gauge field, its BRST Since RdI’(M2£)=0(1) and both Im\,(M2,&) and
variation, and the gauge fermideee, e.g., Eq42) of Ref. ImII(M2,¢,) are of O(g?), Eq. (2.10 tells us that
[5], Eq. (2.19 of Ref.[10], Eq. (4.93 of Ref.[11], and Eq.  502/5¢ =0O(g%), the conclusion obtained in the pd&t3—
(21) of Ref.[13]]. We recall that the sum of the gauge-fixing 5
and ghost terms in the Lagrangian density can be expresse Turning our attention to E¢(1.2), we note that it may be
as the BRST variation of the gauge fermion, and that thgyitten as
latter is coupled to the BRST variation of the gauge param-
eter¢, . It is understood that the vertex corresponding to the ImII(M2,£,)
BRST variation of ¢ carries zero momentum, so that r=— " Sk
A(s,&) depends kinematically only os1 The simple form Rell’(M?,&,)
of Eq. (2.3) can only be achieved by a proper treatment of
the Higgs tadpole: either one chooses to renormalize the ondhe imaginary part of Eq2.3) tells us that

(2.11
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d

Py ImIT(M?,&) =2 ReA(M?,&)ImTI(M?,&),
|

(2.12
while, from Eqgs.(2.7) and(2.8), we see that

J
72 Rell' (M2, 6) =2 ReA (M2, 6)Rell’ (M2, &)

—2[ImA{(MZ,E)IMII(M?,&)]".
(2.13
Combining Eqgs(2.12 and(2.13), we have

d Im II(M?, &)
9& Rell’ (M?,&,)

_2Im (M2, &)[Im A (M2, &) ImTI(M?, &)1’
- [Rell’(M%,£) 1 '

(2.14
To obtain the total derivative, we add the
(aM?19&)a[ImII(M?)/Rell’ (M?)]/dM? and find that
d ImII(M?) _{ImA(M?)[ImII(M?)]?}’
d§| Rell’(M?) [Rell’ (M2)]2
B ImA;(M?)[ImII(M?)]? ReIl"(M?)
[Rell’(M?)]? '
(2.19

In Eq. (2.15 and henceforth, we do not explicitly display the

dependence of the various Green functionsépn

Since ImA(M?), ImII(M?), and RdI”(M?) are of
0(g?) and RdI’(M?)=0(1), in leading order(LO), Eq.
(2.15 reduces to

i ImII(M?) _ 2 27217 8
dg ReH’(MZ)_Z{lmAI(M ) ImII(M2)]} +0(g®).
(2.19

Thus, we see that the conventional definition of wify.
(1.2)] is gauge dependent in NNLO, i.e., ®(g®), in agree-
ment with the conclusion of Reffl,3-5.

An important implication of the above results is that, in a
gauge theory, Eqg1.1) and(1.2) can be identified with the
physical observables only through next-to-leading order

(NLO).
In the case of mixing between two fields and B, Eq.
(2.3 is replaced by

rlcyﬁ<s>=2(s [AD (ST 55(8) + AP 4(5) T 50(8)],

(2.17

where «,8,6=A,B, the diagonal elementdl,,(s)=s
- nga—AM(s) are the analogues of EqR.2), and, fora

7
d¢

term
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#B, ,58)=—A4(9), with A,4(s) being the mixedA-B
self-energy(we use the sign conventions of REE5]). Here,
Aﬁa(s) are mixed two-point functions involving the fietd,
the BRST variation of the field, and the gauge fermion.
Correspondingly, the pole positiolsg and sg are the zeros
of

D(8)=TIan(S)Tgg(s) — M34(S). (2.18
Using Eq.(2.17), one finds
J
75 D(O=2AAKS) +AT(9)ID(s), (219
and, therefore,
o
a_gD(S):O' (2.20

DifferentiatingD(?):O with respect t@; and employing
Eg. (2.20, one obtains again the resul/9&,=0 [5].
The transverse propagator of the fiélds

gg(s) —i
- = 2.2
'"D(s) s—M3,—A(S)’ (220
where
- AZe(S)
A(S)=Apn(S)+ Mou(S)" (2.22
We also note that Eq$2.17) and(2.19 lead to
9 D) [ . Als(9)ag(s)] D(s)
9§ Ilgg(s) =2 A [gg(s) Hgg(s)
(2.23

Ill. NI FOR VERTEX FUNCTIONS AND
GAUGE PROPERTIES OF POLE RESIDUES
AND PARTIAL WIDTHS

We consider the amplitude—~Z—f, whereZ is an un-
stable gauge boson, andandf are initial and final states,
respectively, involving on-shell particles that are either stable
or have negligible widths.

Using Eq.(1.3), we may express Eq2.1) as

D= —i—— Qur__ 3.9
s—s—A(s)+A(s)
The vertex amplitude defined &/andf is given by
VE(s)=(f|35]0)=2 v{¥(s, .. OMP*, (3.2
a

where M{®* denote various independent vector and axial-
vector matrix elements involving the spinors, polarization
four-vectors, and four-momenta of the final-state particles,
while v{?(s, . . .) arescalar functions. Here, it is understood
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that the amplitudev{(s) is not 1PI, but includes the field of poles in the analytically continued scatteri(f) matrix.
renormalizations of the external, on-shell particles in theOn the other hand, Eq3.7) provides a formal proof of this
statef. The dots indicate their dependence on the additionalmportant conclusion.

invariants constructed from the particles’ momenta. We use In the case of mixing between two fields and B, Eq.
the convention of including the generic couplirgy in  (3.4) is generalized to

the definition ofv{¥(s, ...), sothat, in LO,v{¥(s, ...)

= i © ; J
0(9). E(pandmgvf (s) an_d the denominator of E¢3.1) &—Fﬁ,f(s)zz [Af’a(s)l“‘g’f(s)+Ha§(s)Aﬁ'f“(s)],
abouts=s, the overall amplitude may be expressed as g g 3.9
2(S)V(s) .
Asi(s)=—1i Q‘“’_Vf(s)v' (i) Ny, (3.3 wherea,6=A,B and '} ((s) stand for vertex amplitudes
(s—=s)[1-A'(9)] that, again, include the field renormalizations of the external,

o on-shell particles. However, in the mixing case, the relevant
whereNy; stands for non-resonant contributions and, hencegygrtex parts are combinations of the form

forth, we do not indicate the dependence on the additional

invariants. M ag(S)T'4 ((S)
In the absence of mixing and using the extended BRST Vii(s)=Th(s)— H—(s) (3.9
formalism, it is possible to derive the following identity for BB
the gauge dependence ¢f(s): For instance, in the neutral-current amplitude of the SM, the
P second term in EQ.(3.9 corresponds to one-particle-
—VE(s)=A(s)VE(s) +1I(s)Al4(s), (3.4  reducible contributions to th&°ff vertex arising from the
g ' Z-v mixing. Equationg2.17), (3.8), and(3.9) lead to
whereA{*(s) is a complex Green function depending on the AP (S)TTrg(S)
scalar invariants and involving the gauge fi@ddthe gauge — VA (s)=| ALA(S)— Z1LBYY ARV VE (s)
fermion, and the sources of the fields of the final sfdsee, & " ’ gg(s) '
e.g., Eq.(45) of Ref.[5], Eq.(4.9b of Ref.[11], and Eq.(14) D(s) ARL(STE (s)
of Ref. [13]). For instance, in a four-fermion amplitudg, ANK(s)— LB B
coincides with the two outgoing on-shell fermions, and, Hgg(s)| Tgp(s)
therefore, Af*(s) involves the latter. Although, as discussed (3.10
after Eq.(2.3), the functionA (s, &) is a 1PI Green function,
the new Green functiom\{(s) is of the same nature as Semngs:; Eq. (3.10 reduces to
V#(s). It is functionally independent oA (s) and incorpo- . .
rates the gauge dependence of the velgks) that is not Y= A — AﬁB(s)HAB(s) Y =
proportional to the vertex itself. In LQy(s)=0(g®). Itis a_é':IVA,f(S): Aja(s)— el Vai(8),
important to emphasize that the functidif(s) in Eq. (3.4) 88 (3.12)
does not contain contributions proportional tdI{5) and, in
fact, is not singular at=s. which is the generalization of E@3.6). Differentiating Eq.
Differentiating Eq.(2.3) with respect tos and settings  (2.23 with respect tos, settings=s, and using Eq(3.11),
=s, we have we find
9 _ _ _ m
51 (8)=20 ()" (9), (3.5 d Var(s -0, (3.12

dé \[D(s)/Mee(s)1]_5
while Eq. (3.4) leads to
for any choice off. Noting that[D(s)/HBB(s)];:fl

VS = A SV, 3.9 —A'(9 [cf Egs.(2.21) and (2.22], we see that Eq(3.12

29 generalizes Eq3.7) and implies the gauge independence of
— the pole residues in the mixed case.

Combining Egs.(3.5) and (3.6), and recalling thas is ¢ The second term on the right-hand sitRHS) of Eq.
independent, we obtain (3.10 informs us that, in the case of mixing, loop corrections

_ generateO(g®) gauge-dependent contributions Y ¢(S)
a Vi(s) _o 3 that are not proportional to the lowest-order matrix elements

d¢ m_ ’ (3.7 V4(P)(s). [Here and in the following, a superfix) indicates

that the respective quantity is considerechdbops] They

for any choice off, a result that implies the gauge indepen-2are proportional to the inverse propagatd(s)/I1gg(s)
dence of the pole residues in E®.3). This is expected on =HAA(s)—H,§B(s)/HBB(s) and, therefore, vanish &t=s.
general groundEgl, 2], since such amplitudes are the residuesThis is necessary, since they cannot be canceled by other
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O(g®) contributions in the amplitude V4 (s)/ =Im A(m3) in the decomposition explained after Hd.2),
\/[D(s)/HBB(s)];zg On the other hand, the proportionality except that it is evaluated at the gauge—mdepe.nden.t pole
to the inverse propagator implies that they contribute to th assmy, rather than the qn-shell mabk As explglned n
non-resonant amplitude, where they cancel other gaug _e_f. [8]’ if the unstablg particle were an asymg’to“c stazlte, the
dependent terms. Well-known examples are contributions ofMtrity of the S matrix would imply thatl (m3) =F(mj),

this type to the neutral-current amplitudes of the SM involy-Where

ing the Z-y self-energy Az,(s), which cancel gauge-

dependent terms in the photon-mediated amplitude and box F(m%)EE If(mg). (3.16
diagrams[16]. We will refer to these terms as off-diagonal f

contributions. . L . .
The above-mentioned property of the residues has moti- Since the unstable particle is not an asymptotic state, this

vated a gauge-independent definition of partial width, to wi Is not the case beyond NLO, and we expect a relation of the

(8]

orm

I(m3)=F(m3)+G(mj5), (3.17)

1 QuVi* (s)Vi(s)
2 qu)f — y 13) h G ZEI 2_F 2y i | ibuti f
11-A'(s)| where .(mz) (mz). (m3) involves cpntn utions from
unphysical intermediate states, including would-be Gold-
where the integration is over the phase space of the finabtone bosons, Faddeev-Popov ghosts, or longitudinal modes
state particles, a factor of 1/3 arises from the average ove¥f gauge bosons. By studying the gauge-independent differ-
the initial-state polarization, and a factor of 1/2 from the encem,3I';—m,I',, it was shown in Ref.8] thatG(m3) is
familiar relation betweem,{"; and the integrated, squared non-vanishing in0(g®), i.e., in NNLO.
amplitude. In the mixing case, it is understood th#(s) is A definition of branching ratios, very similar to the con-
defined according to Eq:3.9) and A(s) according to Eq. Ventional one, was discussed in REg], to wit
(2.22. ,
In Ref.[8], it was pointed out thatI';# ', when NNLO B= (m3) _ (3.18
contributions are included, i.e., the sum of partial widths F(m3)
defined by means of E¢3.13 does not add up to the total
width ', defined on the basis of the pole positiefEqg. It is manifestly additive:=;B;=1. The partial widths are
(1.9]. In principle, the lack of additivity can be circum- then defined by
vented by a simple rescaling: one defines the branching ra- L
tios by B;=1;/3:I'; and redefines the partial width &5 I'i=Bl'. 319
= Bfrz, SO thathFf=F2 [8]
An analysis that leads to an alternative definition of par
tial widths, much closer to the conventional one, is based o
the overall amplitude evaluated st m3 [8],

myl=—=
2 6spins

In order to examine the gauge dependencd f(Jrfng), we
gmploy the NI of Eq(3.4), with s= m3, and find

%.f(mg):z ReA (m3)1(m3)
Qu VARV (m?) |

im,I',— A(m2) +A(s) N, (319

Ari(md)=—i 1
~ E do V”* 2 11 2 A? 2
+6$pins fQ"“’[ i (M) II(m3) I,f(mz)
where, againNﬂ represents non-resonant contributions. It is .
understood that the gauge-dependent, off-diagonal terms pro- + AL (M) (M3)VE(m3)]. (3.20
i | h i 2 Il 2
portional to the inverse propagatoD(my)/Mea(My) ||y o have I(m3)=—il(m3) and A/{(m3)

~im,I,, discussed in the paragraph after E§}12, are not L
2 2 palagrap E12 = 8(m3)V}(m3), where §(m3)=0(g?) is independent of

included in V#(m32) or V’(m3), since they are needed to . . ! ) : :
cancel otherfcorftributiolns (Z)f the same type in the non:[he final statd. An illustration of this property is provided by
Eq. (3.28 and by the coefficient of 4)(s) on the RHS of

resonant parNy; . )
Equation(3.14 suggests the consideration of the ampli- Eq. (A7). Thus, in LO, Eq.(3.20 becomes

tudes J ) ) ) ) )
—li(m3)=2[ReA(m3) +1(m3)Im & (m3) ]l ;(m3)

¢

1
l{(md)== > fdcprWv;**(mg)vf”(mg). (3.15

6 spins +0(g®). (3.21)

In fact, —1(m2)/m, is the conventional expression for the ~ We note thatA;(m3), 1(m3), &(m3), andl¢(m3) are of
partial width of the decay of the unstable particle into theO(g?). Equation(3.21) tells us that(i) the gauge dependence
physical statef, modulo its wave-function renormalization. of If(mg) starts inO(g*) (NLO), a well-known fact; andii)
In particular, 1{(m3) is the f-cut contribution tol(m2)  through O(g® (NNLO), al¢(m3)/d& is proportional to
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If(mg), with anf-independent coefficient. In turn, this pro-

portionality implies the gauge independence Bf [Eq.

(3.18] through NNLO. The same conclusion holds in the

PHYSICAL REVIEW D65 085001

19

5 g (M) +0(g?),

Im A(m3)=—

(3.26

presence of mixing, provided that, as explained after Eq2 result that follows from Eq2.9. Equation(3.29 tells us
(3.14, gauge-dependent, off-diagonal terms proportional tghat G(m3) differs from zero inO(g”) (NNLO), a conclu-

im,I", are not included inv#(m3).
This observation explains a significant result of H&f,

namely it was shown in that work that, when the cross sec

sion also reached by a different argument in R&}. In fact,
Eq. (16) of Ref. [8] presents an explicit expression for the
0(g® contribution toG(m3) in the Z%-boson case of the

tion of e*e~ annihilation at thez®-boson peak in the SM is SM, obtained by considering the difference between the two

expressed in terms of the partial widtfis, it is gauge inde-

gauge-independent amplitudes ;I'; andm,I",. As shown

pendent through NNLO. From this conclusion it was inferredin that expression, in th&°-boson case, the leading contri-

in Ref.[8] that the partial widthd'; are also gauge indepen-

bution to G(m%) depends on the gauge paramefgrasso-

dent through NNLO, i.e., throug®(g®). We now see that cifated with thew boson._ Differentiating Eq(16) of Ref.[8]
this result is related to the proportionality betweenWith respect oy, we find

al{(m3)/9¢ and1¢(m3) with an f-independent coefficient,
exhibited in Eq.(3.21) throughO(g®). On the other hand,
there is no reason to expect that such a proportionality sur-

vives in still higher orders.
Thus, although the definitions of Eq&.18 and (3.19

provide gauge-independent results through NNLO, and thi
is sufficient for the phenomenological requirements of elec
troweak physics in the foreseeable future, they are not co
pletely satisfactory from the theoretical point of view, since

they are not expected to be gauge independent in still highqrcation

orders.

Next, we apply the NI to obtain information about the
function G(m3) introduced in Eq(3.17). Taking the imagi-
nary part of Eq(2.3), settings=m§, and recalling from Eq.

(2.2) that ImII(m3)=—1(m3), we have

%I(m§)=2 ReA(m3)I(m3)+2 ImA,(m3)Re[ A(m3)
|

—A(9)]. (3.22
ThroughO(g®), this becomes

9
29

1(m3)=2 ReA(m3)l(m3)—2m,I', Im A;(m3)1’(m3)
+0(g®). (3.23

Inserting Eq.(3.17) into Eqg.(3.23 and subtracting

m3) =2[ReA(m3)+ I (m3)Im §(m3)]F(m3),

(3.29

iy
3 (

a relation that follows from Eq3.21), we find

J 2 _m2I‘2 J 11212 9212 2
a_ae(mz)_Ta_g.[' (m3)]°=2m3I'5 Im §;(mj3)
+0(g®). (3.25

In Eqg. (3.25, we have neglected terms @f(g®) and em-
ployed

m,l, 4
2 déw
X[ (éw—1)Im py(m3)]+0(g®),

J
[1"(m3)]>—g?cimal's—
déw

(3.27

J G 2\
€ (m3)=

Where c,= coséb,,, with 6,, being the weak mixing angle,
and ny(s) is a gauge-dependent amplitude introduced in
MRef. [16]. Comparison of Eqs(3.25 and(3.27) shows that

the two expressions have the same structure with the identi-

gzcz
Im (M) = =5 7o [(bw=1)Im u(my)].

(3.28

Thus, the NI permit us to understand the non-vanishing of
G(m%) and the structure of its leading contribution. As
shown in Ref.[8], the contribution toG(m3) involving

Im nw(m%) plays a crucial role in ensuring the gauge inde-
pendence of the peak cross section through NNLO. In fact, it
cancels the gauge dependence of the interference between
the resonant amplitude and the box diagrams.

IV. EXTENSION TO ALL ORDERS OF THE GAUGE
INDEPENDENCE OF EQS. (3.18 AND (3.19

A strategy to extend to all orders the gauge independence
of Eq. (3.18), and therefore E¢(3.19, involves a redefini-
tion of the vertex part3/#(m3). In general,V¥#(s) may be
regarded as a functio‘m#(s,mg ,m,I",). The explicit depen-
dence onm,I", arises from specific cut contributions, or,
equivalently, from terms involving IPA(s). As an illustra-
tion, we may consider two-loop contributions to they self-
energy Az,(s) involving virtual fermion-antifermion pairs
with a vertex correction attached to the photon ending. A cut
across the fermion-antifermion pairs, summed over all pairs,
leads ats=m§ to a contribution proportional tam,I",. The
fact that higher-order corrections generate contributions in-
volving m,I", may also be inferred more generally by exam-
ining the structure of Eq$2.23 and(3.10. We note that the
terms involvingD (s)/I1z5(s) in these equations are propor-
tional to s—s=s—ms+im,I',, and it is clear thaim,I,
must be induced by contributions of higher order than those

085001-6



WIDTH AND PARTIAL WIDTHS OF UNSTABLE . ..

PHYSICAL REVIEW D 65 085001

leading tos—m3. In the notation of this section, the ampli- butions of zeroth order i, to the peak amplitude s(

tudes VA(s) and V#(m2) are identified with V#(s)
=V{(ssm;,myl';) and Vi(m3)=V{(m3,m;,myl,), re-
spectively. A modification that renders E¢3.18 and(3.19
gauge independent to all orders involves replacwgmg)
in Eq. (315 by Vi¥(mj)=limp,_oVi(s,m5m,ly)
=V#(m3,m3,0). We emphasize that*(m3) differs from the
usual definition ofv#(m3). Settings=mj3 in Eq. (3.10 and
taking the limitI',—0, we see that

J . ALG(M3)TT pg(M3)
— V& (m3)=| Af'a(m3)— —
29 HBB(mg) r,=0

X V& (m3). 4.2

The crucial point is that, fos = m3, the second term on the

RHS of Eq.(3.10 vanishes in the limil’,— 0. This has the

effect of excluding from\A/’A"f(mg) all the gauge-dependent

(diagonal as well as off-diagonatontributions that are pro-

portional tom,I",. The physical meaning of this exclusion is .

discussed later.
Replacinglf(mg) in Eq. (3.15 by

f(mz) f d‘DfQWV”*(mz)Vf(mz) (4.2

6 spins

Eq. (4.1) leads to the proportionality betweer ;(m3)/ ¢

=m§) and, therefore, may be regarded as non-resonant. It
should be stressed that, in this approach, terms of
O(I',/my)"), wheren=1, are not neglected, but they are
rather incorporated in the non-resonant amplitude. Thus, the
two expressions differ, in a gauge-independent manner, in
the precise identification of resonant and non-resonant con-
tributions. Although the formulation of E@3.3) is probably
more elegant, that of Eq4.5) is closer to the calculations
carried out by most particle physicists.

V. NI FOR BOX FUNCTIONS

The gauge independence of the complete amplitude can
be tested by considering the NI for the box functi@yg(s).
In the absence of mixing, we have

72 Bf.(S) Q. [Af(8)Vi(s) +VE(s)Afi(s)] (5.1)

(see, e.g., Eq(46) of Ref. [5] and Eq.(14) of Ref. [13)).
Equation(5.1) only involves the functiona{*(s) appearing
in the NI for vertex functiondEq. (3.4)]. This is due to
BRST symmetry and the fact that the external statesd f
are on shell. Indeed, in the NI for off-shell Green functions,
there are additional contributions proportional to the field
equations.

Knowing the gauge dependence of all essential building
blocks, we can find the most general combination of self-
energy, vertex, and box contributions that is gauge indepen-

and If(mz) with an f-independent coefficient. In turn, this dent for any value ok. From the NI for self-energiefEq.
implies the gauge independence to all orders of the modified2.3)], we can compute the functiof,(s) as

definitions
. m
B - T(m3)
(mz)
ff: Bsz, (43)

whereF (m3)=3i¢(m3).

A corresponding gauge-independent definition of residues

is obtained by considering

Q,,WV“(S)Vf(S)
1-A’ (s)

Qu V() Vi (mi)
[1-A'()]r,-0

The gauge independence of H¢.4) follows by taking the

limit I',—0 of Eq.(3.7).

In terms of Eq.(4.4), the overall amplitude of Eq.3.3
may be expressed as

(4.9

F2~>0

VEmMHVI(mI) .
Afi(s): —i QML f(mZ) |_(m2) + Ny .
(s=s)[1-A"(S)]r,-o0

(4.9

The physical meaning of the limif,—0 can be easily
understood by comparing the first terms in E¢%.3) and
(4.5). The residues of 14— s) in the two expressions differ
by terms ofO(g*I',/m,) (NNLO). Such terms give contri-

A(s)= II(s). (5.2

1
211(s) 9§

InsertingA (s) into the NI for verticed Eq. (3.4)] and solv-
ing for Af(s), we find

1 9 VH(9)
JIL(s) ﬁ§| JII(s)
and analogously foA[;(s). Combining Egs(5.1) and(5.3),

the variation ofB;;(s) with respect to the gauge parameter
becomes

Af4(s)= (5.3

d . d Q. VF(S)V{(s)
96 B =1 e T i)

Equation (5.4 implies that the most general gauge-
independent combination is an arbitrary function of

 QuVH(SIVI(S)
II(s)

(5.9

dgi(s)=— +Bsi(s). (5.9

Finally, requiring that the combination has a simple pole
given by the zero oll(s), we see that it must be a linear
function of ®¢;(s). Thus, the NI tell us that, subject to the
latter requirement, the most general combination that is
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gauge independent for arbitrasyis the physical amplitude. where the second term vanishes, since the integrationsver
This result can be readily extended to the case of field mixalong the contoury does not encircle any singularity. There-

ing. fore, we find
It is interesting to observe that the argument presented in
this section may be reversed to give a simple derivation of 9 1 2A,(s")
the functional structure of Eq$3.4) and(5.1). Invoking the a—aH(S)Z Py idS' o s I1(s), (6.5

gauge independence of ttf&matrix element given in Eq.
(5.5 and noting thatB;;(s)/d&; does not contain terms pro-
portional to 1I1(s), one concludes that the same is true of
_ia[Q“VV%L(S)V‘V(S)/H(S)]/a‘?' - Observing ‘haw(s) and compatible with the analyticity of Green functions.

Vi(s) arg |n'dependentM functions .an'd employ!ng @3), A clear example of the analyticity of the functions(s)

one readily finds thatV{(s)/ 9§, satisfies a relation with the .5 pe read off from the absorptive part of the Higgs-boson
functional structure of Eq.3.4), subject to the constraint that two-point function ImiT,(s) presented in Reff4]. From

the functionA{’(s) does not contain II(s) contributions.  he imaginary part of E¢2.3) at one loop: we have
Differentiating Eq.(5.5 with respect to¢;, inserting Egs.

which, in conjunction with Eq(2.3), implies thatA,(s) ad-
mits a spectral representation, analogous to(Ed), that is

(2.3 and(3.4), and invoking once more the gauge indepen- J " ) H)
dence of theS matrix, one obtains Eq5.1). E\/lm () =2(s—Mp)Im Ay (s). (6.6)
VI. ANALYTICAL PROPERTIES AND NI Comparison with Ref{4] shows that
As is well known, the analytical properties of the Green 2 1 4¢,M?2 -1/2

; : ) H(1) _ w 2 . WHViw

functionII(s) permit the use of Cauchy’s theorem, ImAwH(s)= 5 (s+Mp) E( 1 S )
1 ,H(S/) ) 4§WM\2N 1/2
H(S)—ﬁ éyds o s , (6.1 X0(8—4§WMW)— 1— s

where y is a closed contour in the complex plane that X 8(s—4EWME) |, (6.7)
encircles the poins counterclockwise. Equatiof6.1) and

the distribution-based relation ) )
whereG= Gﬂ/(zm/f) » With G, being the muon decay con-

1 1 stant. Although the second term seems to violate the analyt-

lim —p —imd(s—s'), (6.2 icity of Green functions because of the presence of dhe
c.0S—S +ie s—s function, the factor (+4&yM3,/s)Y? leads to the vanishing
of this contribution. Thus, we obtain
whereP denotes the principal value, leads to the derivation 5 5 o\ 1
of dispersion relations and sum rules. m AR g = MW (L Mi 1 45wMyy
Using Eq.(6.1) and the NI of Eq(2.3), we have MAwH(S) S
2
J H(S) 1 é dSIZAI(S/)H(S/) X G(S_4§WMW) (68)
9€| 2mi Jy s'—s The function Ali{{{(s) can also be obtained by a direct
evaluation of the relevant Feynman diagrams. In fact, Eq.
_ 1 3€ ds’ 4; ds’ 2A(sHTI(s") (6.8 has the structure one expects from such a computation.
(2mi)* T, Yy (s'—s)(s"—s')’ It shows that the one-loop Green functiAr{j\',(’ﬁ)(s) contains

absorptive parts, but they are proportionabtfunctions cen-
tered at some unphysical thresholds. This is due to the fact
that, in the diagrams foAj{)(s), only unphysical modes
propagate at one loop. Howeved, functions centered at
physical thresholds may appear at higher orders.

The NI tell us that the gauge dependence of a Green func-
5 1 tion is described by another Green function, which can be
7 _ , ’ , " computed in terms of Feynman rules. The factorization im-
9& M(s)= (2i)? ﬁds ﬁlds’ 2A(SHII(S") plied by the NI is far from being trivial, and the Higgs-boson

(6.3

where the contouy’ encirclesy counterclockwise. Rewrit-
ing the factor 1/(s’ —s)(s”"—s’)], the last member of Eq.
(6.3) becomes

1 1
X (s'—s)(s"—s) + (s"—s")(s"— S)] ! 1The decoupling of unphysical modes, the mixing with the neutral
would-be Goldstone boson, and the NI for Higgs bosons are dis-
(6.4 cussed in Ref[5].
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example shows how analyticity works in the factorization offunctionsA(s) that play an important role in the NI.

the second member of the NI. The Appendix gives the explicit one-loop relations be-
tween the functiond{ (s) andA{#(s) that occur in the NI
VIl. CONCLUSIONS and the calculations of Rf16] in the Z-y sector of the SM.
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tivity property in NNLO. However, this problem can be cir-
cumvented by a judicious rescaling of the partial widths. APPENDIX: ONE-LOOP CONTRIBUTIONS TO NI
We then considered an alternative definition of branching FUNCTIONS

ratios B; and partial widthd'; that are manifestly additive In this appendix, we present the one-loop contributions to

and closely resemble the conventional ones. Using the Niye N for thez- sector of the SM. In particular, we discuss
we showed thaB; and T’y are gauge independent through the relation between the NI Green functions ,(s) and
NNLO. This explains a significant result obtained in H&f, AP#(s) defined in Eqs(2.17 and (3.8), respectively, and
namely that the cross section ef e~ annihilation at the the one-loop computations of Ré1L6].

Z%-boson peak in the SM, expressed in term$ pf is gauge According to Eq.(2.17), in the Z-y case, the transverse
independent through NNLO. Although this result is sufficientself-energiedI,(s), I1z,(s), andIl,,(s) satisfy

for the phenomenological requirements of electroweak phys-

ics in the foreseeable futurB; andT'; are not expected to be i _ 5

gauge independent in still higher orders. I€| HZZ(S)_Z(SE’Y A7 Z(s) 57(s),
We also used the NI to show that the usual assumption

that ImA(mg) can be expressed as a sum of physical cut 9 5

contributions fails in NNLO. The difference between these —Iz(5)= > [Al(9)I;/(s)

o . 5 . 29 Py %
two quantities is given by a functioB(ms3) that emerges in
NNLO. In Ref.[8], G(m3) was shown to be non-vanishing + AL () 52(s)],

by studying the difference between two gauge-independent

definitions of total width based, respectively, on the pole d s

residues and the pole position. In the present paper, we em- a—glﬂw(s)=25=22 A7 (9)ITs)(s), (A1)

ployed the NI to derive an expression f@(m%) with the 7

same mathematical structure. _ _ where A{,(s), A75(s), Af(s), and A7 (s) involve the
_In Sec. IV, we showed how to modify the alternative defi- y5,ge fieldsZ or y (lower index, the BRST variations asso-

nition of branching ratios, discussed in Sec. lll, in order t0gjated withZ or y (upper index, and the gauge fermion. As

extend the gauge independence to all orders. implied by the statement before .18, the complex pole

In Sec. V, we discussed the NI for box diagrams and
showed that the physical amplitude is the most general conP
bination of self-energy, vertex, and box contributions that is
gauge independent for arbitrasy Reversing the argument,
we also showed that the functional structure of the NI for . ) =
vertex and box functions can be derived starting from theéVhich, being a quadratic polynomial mat tree level, has
gauge independence of tSanatrix and well-known proper- WO solutions at all orders. Actually, one solution is trivially
ties of the box amplitudes. It should also be emphasized tha&g=0, due to BRST symmetrcf. Ref.[17]).
the gauge independence of the physical amplitude implies In order to compare this with the explicit one-loop com-
the same property for the coefficients of its Laurent expanputations of Ref[16], we reduce Eq(Al) to the one-loop
sion. level using the fact that thAﬁa(s) andll,(s) functions are

Section VI discusses the analytic properties of the Greewnf O(g?):

ositionss are given by the equation

I,5(s)I,,(s)—113,(s)=0, (A2)
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(Dig)y=2(s— Z(1)
75 18(5) =2(s-MH)ATDs),

78 12)(9)=[SATL(8) + (5= MDATE(s)],

H(l)(s) =2sA7(s). (A3)

29
Comparing Eq.(A3) with the results of Ref[16] and em-

ploying the functions,(s) and ny(s) defined in that work,

we obtain

1
f dEWANZ(S, &) = —g°Chléw—1)| vud(S) T5 (s

M2) 7u(S) |,

1
UW(S)+§(5

3
j 1 AL AR Ep) = — gZSuCul Ew—1)

- M%) nw(S) |,

vw(s)

f deWAG (s, &) = —g%suCu(éw—1)

S
+ E 77W(S) ’

s2(éw—1)

vw(s)

j d&WAY (s 60 =~ 07

s
+ 5 7w(S) |

- (A%)

where s, =sinf,. The other functions\ (s, &), with |
#W and a,8=2,y, vanish. From Eq(A4), we can imme-

PHYSICAL REVIEW D65 085001

o= 3 ADOTLOS) + (s- MHAFHD(s),
9 Py :

52 I*,u(l)(s E Aa(l)(S)F'“(O)(S)+SA7’“(1)(S)
[
(A6)
Comparing with the results of Rf16], we find
202
W
| M agadiis. g = G- o)
Sw
X F’zL,(fO)(S)JFaF’yL,(fO)(S) \
2
o g%suC
f dépA (s, &)= = (Ew—1) nw(s)
X M(O)(S)+ il"ﬂ(o)(s)
(A7)

The other functions P#((s, &), with |#W and 6=2,,
vanish. We note again thaty/4™)(s, &), with 6=2,, are
not independent, but proportional to

AR (s, 600 = AFED(S, ) + 2 AT ),
(A8)

which is expected from BRST symmetry, as explained
above. Moreover, we see that they are proportional to a com-

diately see that there are only two functionally independenbination of tree-level vertex functions. By inserting Egs.

Green functions, viz.

AR (s, 6w) = AG(s,Ew) + —M“z’(s,gvv),

C
AS(s, Ew) = %A%é,?(sfw) +AUL(s, Ew).
(A5)

(A4) and (A7) in Eqg. (A6), we obtain

aE PZ(s,éw) = —0? Cwag HEw= Dowls)]

Sw
x|T5Ps)+ =T4Ps)|,
W

This result is expected on the basis of BRST symmetry. In
fact, following Ref.[17], one only introduces the source
coupled to non-linear BRST transformations; for example,
one needs the sources of the BRST variations of the gauge
bosonsVV' of the SU(2) triplet, but not the one of the Abe-
lian gauge fieldB, . This implies that there are only two
independent functlonA| «(8,&y) in the Z-y sector.

As for the vertex functions, from E@3.8 at one loop, we
have
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x| T40(s)+

agw #( )(S Ew)=—02 chW § [(Ew—1)vw(s)]

S
S ThPs), (a9
W

in agreement with the vertex computations in Héb].
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