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Absence of trapped surfaces and singularities in cylindrical collapse
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Department of Physics, Yale University, New Haven, Connecticut 06511
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The gravitational collapse of an infinite cylindrical thin shell of generic matter in an otherwise empty
spacetime is considered. We show that geometries admitting two hypersurface orthogonal Killing vectors
cannot contain trapped surfaces in the vacuum portion of spacetime causally available to geodesic timelike
observers. At asymptotic future null infinity, however, congruences of outgoing radial null geodesics become
marginally trapped, due to the convergence induced by the shear caused by the interaction of a transverse wave
component with the geodesics. The matter shell itself is shown to be always free of trapped surfaces, for this
class of geometries. Finally, two simplified matter models are analytically examined. For one model, the weak
energy condition is shown to be a necessary condition for collapse to halt; for the second case, it is a sufficient
condition for collapse to be able to halt.
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I. INTRODUCTION

The issue of the formation of horizons in generic gravi
tional collapse remains an outstanding problem of class
general relativity. The original concept oftrapped surface,
due to Penrose@1#, defines it as a compact spatial tw
surfaceS on whichu2u1.0, whereu6 are the expansion
in the future-pointing null directions orthogonal toS.
Trapped surfaces signal thus the boundary of a region w
any initially expanding null congruence begins to conver
clearly, they define regions of ‘‘no escape.’’ Assuming th
cosmic censorship holds, the existence of trapped surf
implies that of an event horizon, which contains the lat
@2#. In spherical symmetry, both necessary and suffici
conditions for the occurrence of trapped surfaces have b
obtained, which are essentially of the formm*r , wherem
and r refer to local~or quasilocal! definitions of mass and
radius@3#.

Understandably, much less is known about horizon form
tion in nonspherical geometries. Arguably one of the str
gest results to date is that of Shoen and Yau@4#, who ob-
tained a sufficient criterion for the formation of trappe
surfaces in anarbitrary spacetime: for a given lower boun
for the mass density, there is an upper bound for the ma
radius, above which trapped surfaces will form. Howev
being a sufficient condition for the occurrence of trapp
surfaces, this result cannot say anything about the condit
under which the collapsing spacetime fails to develop h
zons, possibly leading to naked singularities. As with seve
other notable issues in relativity, a conjecture has been
forward regarding its solution: Thorne’shoop conjecture
states that ‘‘horizons form when and only when a massM
gets compacted into a region whose circumference inevery
direction isC&4pM ’’ @5#. As originally stated, the conjec
ture leaves ample room for different definitions of horizo
mass, and circumference. In spite of this ambiguity,
known counterexample appears to exist: numerical sim
tions of prolate and oblate collapse@6#, gravitational radia-
tion emission in aspherical collapse@7#, and analytical stud-
ies of prolate collapsing spheroids@8# either confirmed or
could not refute the conjecture. Detailed analyses of cy
0556-2821/2002/65~8!/084045~11!/$20.00 65 0840
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drical pressureless dust@9,10#, and counter-rotating dust col
lapse@11# also confirmed the nonoccurrence of horizons.

Cylindrical spacetimes~defined below! constitute an ob-
vious class of spacetimes to study nonperturbative depart
from spherical symmetry. Although such spacetimes do
model exactly the dynamical evolution—and inhere
gravitational-wave emission—of bounded bodies, they p
sess a nontrivial field content and constitute thus a valua
testbed for numerical relativity@12#, quantum gravity@13#,
and for probing the cosmic censorship and hoop conjectu
@14#. Since several definitions of cylindrical symmetry exi
one must adopt one to work with. In this paper, we sh
consider cylindrical spacetimes defined by the existence
two commuting spacelike Killing vector fields~such that the
orthogonal spacetime is integrable!: one translational (]z)
and the other with closed orbits (]f), where the azimutha
coordinatef is to be identified at 0 and 2p. In addition, we
take]z and]f to be hypersurface orthogonal, which implie
that the cylindrical waves in the vacuum regions admit o
one polarization@15,16#.

The purpose of this paper is twofold:~i! study the occur-
rence of trapped surfaces in dynamical cylindrical spa
times with a thin shell of arbitrary matter, and~ii ! motivate
the notion that realistic~in a suitably defined sense! matter is
necessaryto prevent the formation of curvature singularitie
Specifically, we consider an infinite cylindrical thin she
with the most general surface stress-energy tensor define
it, in an otherwise vacuum spacetime. We examine three
ternative criteria for trapped surfaces, and show that they
never form, regardless of the matter content for the shell.
also show that—for one class of matter models—the vio
tion of the weak energy condition~WEC! implies that col-
lapse cannot be halted by an outward pressure gradient,
therefore the formation of an infinite spindlelike singulari
is inevitable.

The paper is organized as follows. Section II derives
needed mathematical framework and the vacuum and ju
tion condition equations for the spacetime. Section III d
cusses trapped surfaces according to three alternative crit
and shows that there are no trapped cylinders anywhere
the spacetime, except at the limiting case of asymptotic n
©2002 The American Physical Society45-1
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SÉRGIO M. C. V. GONÇALVES PHYSICAL REVIEW D 65 084045
infinity. This limiting behavior is then explained via th
Newman-Penrose formalism. In Sec. IV, we consider t
different classes of matter content, and show that the WE
either necessary for collapse to halt or sufficient for it to ha
a chance of being halted. Section V concludes with a su
mary and discussion.

Natural geometrized units, in which 8pG5c51, are
used throughout.

II. INFINITE CYLINDRICAL THIN SHELL
OF GENERIC MATTER

The complete four-dimensional spacetime consists of
interior vacuum regionM2 connected to an exterior vacuu
M1 by a three-dimensional thin shellS. The vacuum re-
gions are characterized by the Einstein-Rosen metric@16#

ds6
2 5e2(g62c6)~2dt6

2 1dr6
2 !

1e2c6dz21r 6
2 e22c6df2, ~2.1!

whereg5g(t,r ), c5c(t,r ), and the coordinate system
$x6

m % are adopted. OnS there is a natural holonomic bas
$e(a)% given by

e(a)
m u65

]x6
m

]ja
, ~2.2!

where$ja,a50,1,2% are intrinsic coordinates onS. The in-
duced three-metricgab on S is then

gab5gmne(a)
m e(b)

n , ~2.3!

and it is the same on both sides ofS, since the four-metric
must be continuous across it. This leads to

dsS
2 52dt21e2cS(t)dz21R2~t!e22cS(t)df2, ~2.4!

dt6

dt
5AṘ21e2(cS2g6)[h6 . ~2.5!

Thezz andff components of the metric junction conditio
@gmn#[gmn

1 2gmn
2 50 imply that ther coordinate is continu-

ous acrossS. In the equations above,t is the proper time
measured by an observer comoving with the shell, with fo
velocity

u6
m 5h6d t6

m 1Ṙd r
m , ~2.6!

whereṘ5dR/dt. The shellS is defined by

F~xm!5r 2r S~ t6!5r 2R~t!50. ~2.7!

The spacelike unit normal toS is

n6
m 5a21~ja!g6

mn]n
6F5Ṙd t6

m 1h6d r
m , ~2.8!

wherea[e2(cS2g6)h6
21 is a normalization factor.

The normal extrinsic curvature,Kab
6 , is @17#
08404
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Kabª2nme(b)
n ¹ne(a)

m

52nsS ]2xs

]ja]jb
1Gmn

s
]xm

]ja

]xn

]jbD . ~2.9!

Its nonvanishing components are

Ktt
6 5D'c62D'g62

1

h6
@R̈1Ṙ~ ġ62ċS!#,

~2.10!

Kzz
65e2cSD'c6 , ~2.11!

Kff
6 5e22cSR~2h61RD'c6!, ~2.12!

whereD'[nm¹m is the normal derivative with respect toS,
and the object

d2r S~ t6!

dt6
2

5h6
24e2(c62g6)@R̈1Ṙ~ ġ62ċS!# ~2.13!

was used.
For the matter content on the shell, we consider the m

general stress-energy tensorSab defined onS, compatible
with the metric~2.4!,

Sab5rda
tdb

t1pze
2cSda

zdb
z1pfR2e22cSda

fdb
f ,

~2.14!

wherer, pz , andpf are the proper surface energy densi
pressure along thez direction, and surface stress, respe
tively, as measured by an observer comoving with the s
with four-velocity given by Eq.~2.6!.

A. Vacuum field equations

The vacuum field equations are~where the6 subscript
has been dropped for simplicity!

c ,tt2r 21c ,r2c ,rr 50, ~2.15!

g ,t52rc ,rc ,t , ~2.16!

g ,r5r @~c ,t!
21~c ,r !

2#. ~2.17!

We are thus left with the axisymmetric wave equation~2.15!,
which is decoupledfrom Eqs. ~2.16! and ~2.17!. One first
solves the wave equation with appropriate boundary d
and then solves for Eqs.~2.16! and ~2.17! by quadratures.
Remarkably, these two equations are compatible beca
their integrability condition is precisely the wave equati
~2.15!.

The general~outgoing! solution to the wave equation
~2.15! is given by

c~ t,r !5ReE
0

`

A~v!e2 ivtH0
(1)~vr !dv, ~2.18!
5-2
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ABSENCE OF TRAPPED SURFACES AND . . . PHYSICAL REVIEW D65 084045
whereA(v) is a complex-valued function,Hn
(1)(x)ªJn(x)

1 iYn(x) is a Hankel function of the first kind, andJn andYn
are Bessel functions of the first and second kind, respecti
@18#.

B. Junction conditions for the shell

On the shell, Einstein’s equations reduce to the Darm
Israel junction conditions for the normal extrinsic curvatu
@19,17#,

@Kab#[Kab
1 2Kab

2 52Sab1 1
2 Sgab . ~2.19!

The nonvanishing components of the above equation arezz,
ff, andtt, which yield, respectively,

@D'c#52 1
2 D, ~2.20!

@h#52Rr, ~2.21!

@hg ,r #5pf2
Rr

h1h2
~R̈2ṘċS!, ~2.22!

where

D[2pz2Sa
a5r1pz2pf . ~2.23!

Using the field equations~2.16! and~2.17!, Eq. ~2.22! can be
cast solely in terms of the wave-fieldc:

R̈5ṘċS1h1h2

pf

Rr
2R$ċS

2 1~D'c2!2%

2
h2

r
DS D

4R
2D'c2D . ~2.24!

Equations~2.20! and~2.21! match the metric functionsc and
g acrossS, and Eq.~2.24! governs the motion of the shel
We note that, in the absence of a matter shell (r50), it
immediately follows from Eqs.~2.5! and ~2.21! that the
‘‘time’’ coordinate t is continuous acrossS and hence it can
be globally defined, as expected.

An additional constraint is obtained by the conservat
of energy momentum onS,

(3)¹bSa
b52@e(a)

m Tmnnn#, ~2.25!

the only nonvanishing component of which gives

ṙ1~r1pf!
Ṙ

R
1~pz2pf!ċS5@e(t)

m Tmnnn#50.

~2.26!

III. TRAPPED SURFACES

A. Proper circumference radius criterion

We shall use the following operational definition
trapped surface, which is a natural extension of Penro
@1#, for surfaces that are not necessarily compact nor t
dimensional: letSbe any non-null surface andu6 the expan-
sion in the future-oriented null directions normal toS, thenS
08404
ly

s-

n

’s
-

is said to be a trapped surface ifu1u2uS>0, where the in-
equality saturates for the marginally trapped case. In
present case, our surfaceS is that of an infinite cylinder with
proper circumference radiusR5re2c.

Modulo the two-dimensional quotient space orthogona
the symmetry axis, the Einstein-Rosen metric is conforma
Minkowski spacetime~which is why the four-dimensiona
wave equation is formally the same as that of flat space!, and
thus it suffices to introduce flat spacetime null coordina
~where, for simplicity, the ‘‘6 ’’ subscript is omitted!,

u5t2r , v5t1r , ~3.1!

to study the expansion ofSalong normal null directions. We
have then

u65~] t7] r !R. ~3.2!

Trapped surfaces form when

u1u25~R,t!
22~R,r !

2>0. ~3.3!

1. Vacuum regions

In the vacuum regions, the above condition reads

r 2c ,t
2>~12rc ,r !

2. ~3.4!

One can use the asymptotic properties of Bessel funct
~cf. Appendix B! to show that, forvr @1,

c ,t;2c ,r;
1

Ar
ReE

0

`

vA~v!e2 i [v(t1r )23p/4]dv.

~3.5!

Hence, forvr @1,

u1u2;2112rc ,tc ,r,0. ~3.6!

For large radii, this regime covers ‘‘almost’’ all the freque
cies, whereas for small radii, the validity of the inequal
above is restricted to high-frequency modes withv@r 21

@1.
In general, it proves more convenient to look forouter

marginally trapped surfaces~OMTS!—surfaces whose ex
pansion vanishes along future-oriented null norm
directions—since their existence is implied by that
trapped surfaces@20#. Hence, it suffices to show that n
OMTS form, to prove that there are no trapped surfaces.
condition for OMTS is

u152c ,t2
1

r
1c ,r50. ~3.7!

Partial differentiation of this equation with respect tot andr
yields, respectively,

c ,tr5c ,tt , c ,tr5c ,rr 1
1

r 2
. ~3.8!
5-3
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Combining these two equations with the wave equat
~2.15! leads to

c ,r5
1

2
c ,t52

1

r
. ~3.9!

Now, from Eq.~3.5!, we know that these two equalities fa
to hold for vr @1. To show that the same happens forvr
&1, we note that

E
0

a

xnH0
(1)~x!dx,` if n.21, ~3.10!

from which it follows that, asv→0, A(v);vn with n.
21. Hence, forvr &1, we have

c ,t;c ,r;
1

r 21n
, ~3.11!

thereby showing that Eq.~3.9! also fails to hold forvr &1.
By construction, all of the above holds inside and outside
shell, and we conclude therefore that there are no trap
surfaces in either vacuum region.

2. Shell

On the shell, the condition for OMTS is

u15
R

h
e2cSS Ṙ

R
2ċS2

h

R
D 50. ~3.12!

Sinceh/R.0, an obviousnecessarycondition for OMTS is

Ṙ

R
2ċS.0. ~3.13!

However, for a collapsing configuration the physical circu
ference radius must decrease with proper time:

Ṙ,0⇒Ṙ2RċS,0, ~3.14!

which contradicts the necessary condition for OMTS. Hen
a collapsing shell can never become trapped, irrespectiv
the details of the matter content.

B. Specific area radius criterion

An alternative definition of trapped cylinder has been
cently proposed by Hayward@21#, and relies on the specifi
area radius, which is constructed as follows. The two spa
like Killing vectors $]z ,]f% have a well-defined invarian
geometric meaning:

Rªu]fu5A]f•]f ~3.15!

is the proper circumference radius, and

lªu]zu5A]z•]z ~3.16!

is the specific Killing length. One can thus define a spec
area for the cylinder as
08404
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Aª2pRl 52p r̃ , ~3.17!

wherer̃ 5Rl is the specific area radius. A cylinder is said
be trapped, marginal, or untrapped if the vectorNmª¹m r̃ is
timelike, null, or spacelike, respectively@21#. In our case, we
have

R5re2c, l 5ec, r̃ 5r . ~3.18!

From a geometrical viewpoint, this definition is perfectly a
ceptable, since, modulo invariant rotations, all of the spa
~‘‘radial’’ ! submanifold orthogonal to the axis is covered
r P@0,1`). However, from a physical standpoint, this de
nition is somewhat lacking, since the specific area radiu
simply a coordinate radius, and as suchchangesunder the
rescalingz→az as r→a21r , unlike the proper circumfer-
ence radius, which remains invariant under such rescaling
addition, an external timelike observer can only meas
proper circumferences, but not coordinate radii. Desp
these shortcomings, and because of its useful geomet
meaning, we shall examine the formation of trapped surfa
according to it.

1. Vacuum regions

In the vacuum regions,

Nm
vac5dm

r , ~3.19!

and thus

~NmNm!vac5e2(c2g)>0. ~3.20!

Hence there are no trapped surfaces in the vacuum reg
provided the quantityc2g does not diverge negatively~in
which the case a marginally trapped surface would form!.
Sincegrr 52gtt5e2(g2c), it follows that for regular space-
times the inequality must be strict and thus there are
trapped surfaces. This is true foranycylindrical regular met-
ric with two commuting hypersurface orthogonal Killin
vectors. Accordingly, it holds inside and outsideS. In the
interior vacuum region, it is straightforward to show th
regularity of the axis implies the absence of trapped surfa
Let x[u]fu25r 2e22c; then the symmetry axis is regular
the following local flatness condition is obeyed@22#:

lim
r→0

x ,mx ,
m

4x
51, ~3.21!

which requires

g~ t,0!50, c ,tur 50,`, c ,r ur 50,`. ~3.22!

Hence,uNuvac
2 .0 along the axis.

2. Shell

On the shell,

Nm
S5Ṙh21dm

t 1dm
r , ~3.23!
5-4
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which gives

~NmNm!S5h22e2(c2g)~h22Ṙ2!5h22e4(c2g)>0,
~3.24!

where the junction condition~2.5! was used in the last equa
ity. Since the metric must be regular onS, the inequality can
never saturate, and thusS is free of trapped surfaces.

C. Geodesic null congruences

A direct, physical way to probe the occurrence of trapp
surfaces in the vacuum spacetime~s! is to examine the diver-
gence of a congruence of outgoing radial~i.e., orthogonal to
the symmetry axis! null geodesics~ORNG!. To examine the
behavior along null directions, it is convenient to introdu
retarded Bondi coordinates$u,r ,z,f%, in which the Einstein-
Rosen metric reads

ds252e2(g2c)~du212dudr!1e2cdz21r 2e22cdf2.
~3.25!

In these coordinates, the vacuum field equations are

2c ,ur2c ,r1r 21~c ,u2c ,r !50, ~3.26!

g ,u52rc ,u~c ,u1c ,r !, ~3.27!

g ,r5r ~c ,r !
2. ~3.28!

The null vector field tangent to the ORNG is given by

km5
dxm

dl
5X~u,r !d r

m , ~3.29!

wherel is an affine parameter along the geodesics, anX
.0 since the geodesics are outgoing~i.e., r is a monotoni-
cally increasing function of the affine parameter!. The geo-
desic equation reads then

kn¹nkm5X@X,r12X~g ,r2c ,r !#d r
m50, ~3.30!

which readily integrates to

X~u,r !5 f ~u!e2(c2g), ~3.31!

where f (u).0 is an arbitrary function, fixed by the choic
of X for a given value of the coordinater. For such a geode
sic congruence, the expansion scalar is

Qª¹mkm5
X~u,r !

r
5

f

r
e2(c2g). ~3.32!

Clearly, as long as one restricts oneself to finite values or,
there are no trapped surfaces. There could be trapped
faces at asymptotic future null infinity@23# J 1 if, for fixed
u, limr→1`X&O(r ). From a physical viewpoint, the pos
sible occurrence of marginally trapped surfaces atJ 1 is not
worrisome, in that geodesic timelike observers can ne
reachJ 1 @24#. However, from an asymptotic infinity view
point, it is of interest to examine the limiting behavior
08404
d
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geodesic focusing in a radiative spacetime. The asympt
behavior ofQ at J 1 is given by

QuJ 15 lim
r→1`

X~u,r !

r U
u5u0

5 lim
r→1`

f ~u0!

r
e2[c(u0 ,r )2g(u0 ,r )] . ~3.33!

The behavior of the wave-fieldc @which determinesg via
the field equations~3.27!–~3.28!# at J 1 was computed by
Ashtekar, Bičák, and Schmidt@25,26#, and yields

c~u,r !5
c0~u!

Ar
1

1

Ar
(
n51

`

cn~u!r 2n, ~3.34!

g~u,r !5g022E
2`

u

c80
2du2 (

n51

`
bn~u!

n11

1

r 11n
,

~3.35!

wherec085dc0 /du, and the coefficientscn andbn are deter-
mined from the initial Cauchy data. From Eqs.~3.33!–~3.35!
it follows that

QuJ 150. ~3.36!

This limiting behavior reflects the fact that, nearJ 1, the
cylindrical waves behave locally like plane waves, whi
intersect the congruence of ORNG, thereby causing them
start ~marginally! converging~cf. Fig. 1!.

Such behavior is best described using the Newm
Penrose formalism@27#. The two relevant equations are~cf.
Appendix C!

Du5u21ss̄1F00, ~3.37!

FIG. 1. Asymptotic behavior of an initially expanding future
oriented null geodesic congruence atJ 1. When the radius~proper
or otherwise! of cylindrical waves tends to infinity, they becom
plane waves, whose wavefronts orthogonally intersect the null g
desic congruence. The transverse wave component in thenm direc-
tion induces shear on the congruence, which in turn makes it fo
by virtue of the Raychaudhuri-type equation~3.37!.
5-5
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Ds5s~u1 ū !1C (0) , ~3.38!

which govern the evolution of the expansionu and shears
of the ORNG, respectively. NearJ 1, the congruence is or
thogonally intersected by plane waves aligned withnm ~cf.
Fig. 1!. The existence of a transverse wave component in
nm direction @28# is signaled by a nonvanishingC (0) :

C (0)52Cabmnl ambl mmn5” 0. ~3.39!

This nonzeroC (0) implies—by Eq.~3.38!—that the congru-
ence starts to shear, with the shear axis being determine
the polarization of the wave~i.e., the wave-fieldc). This
introduces a non-negative term

ss̄5S c ,t2c ,r1
1

2r D
2

~3.40!

into Eq.~3.37!, thereby inducing the congruence to conver

D. C energy

The concept ofC energy was introduced by Thorne@29#
as a local definition of energy density per unit Killing leng
z for cylindrical systems. Being a locally defined quantity
spacetimes with a translational Killing field, its relation
energylike quantities defined in asymptotically flat spa
times @e.g., the Arnowitt-Deser-Misner~ADM ! or Bondi
mass# becomes unclear@30#. In fact, as shown by Ashteka
and Varadarajan@31,32#, the Hamiltonian that generate
asymptotic time translations at spatial infinity isnot the C
energy, but a nonpolynomial function of it, which is positiv
and bounded from above. Nevertheless, being a locally c
served and measurable quantity,C energy remains a very
useful tool for the analysis of cylindrical systems, and, u
surprisingly, it can be linked to the occurrence of conic
singularities@33# and trapped surfaces@21#.

Following Thorne@29#, we introduce theC-energy poten-
tial

C~ t,r !ª 1
8 ~12e22g!, ~3.41!

which is proportional to the totalC energy contained inside
cylinder of specific area radiusr per unit Killing lengthz.
The C-energy flux vectorPm is given by

Pm
ª

1
8 emnabA2g@ ln~128C!# ,n

] (z)a

u]zu2
] (f)b

u]fu2

5
e2(c2g)

r
~C,rd t

m2C,td r
m!, ~3.42!

and obeys the local conservation law¹mPm50. An observer
with 4-velocity um measures aC-energy densityE5Pmum ,
and theC-energy flux across a hypersurfaceS with spacelike
normalnm ~such thatnmum50) is F5Pmnm .

From Eqs.~3.20! and ~3.41! it follows that

~NmNm!vac5e2c~128C!. ~3.43!
08404
e

by

.

-

n-

-
l

Hence, trapped surfaces form whenever

C> 1
8 , ~3.44!

where the inequality saturates for the marginally trapp
case. This is the cylindrical analogue of the well-known a
ymptotically flat spherically symmetric conditionE> 1

2 for
Tolman-Bondi spacetimes@34#, where E[mMS/Rp is the
Misner-Sharp mass@35# per unit proper area radius. In th
present case,C, 1

8 and the vacuum regions are untrapped

IV. SINGULARITIES

The issue of singularity formation in cylindrical collaps
of a thin shell has been addressed for the particular case
pressureless dust and counter-rotating dust~i.e., with a non-
vanishing tangential pressure component!. The pure dust
case was analyzed by Thorne@9# and Echeverria@10#, who
showed that complete collapse is inevitable, and an infin
spindlelike singularity must thus form as a result. The case
counter-rotating dust coupled to Einstein-Rosen waves
addressed by Apostolatos and Thorne@11#, who resorted to
sequences of momentarily static radiation-free~MSRF! con-
figurations andC-energy balance arguments to conclude t
an arbitrarily small amount of counter-rotation~and, very
likely, also of net rotation! suffices to halt collapse, thereb
precluding the formation of spindle singularities. Th
counter-rotating case was recently revisited by Pereira
Wang @36#, who considered a flat interior and an outgoin
null fluid exterior ~as opposed to a ‘‘realistic’’ vacuum con
taining cylindrical waves!; by means of further assumption
for the matter content, they obtained a simple solvable mo
which admits initial data leading to a spindle singularity, th
in apparent contradiction with the earlier results. Howev
the model is highly contrived, and the assumptions ma
render it unphysical, since the dynamics of the exterior n
fluid can only be obtaineda posteriori, after a particular
solution for the motion of the shell is derived. It is therefo
conceivable that a more realistic model, wherein the em
sion of gravitational radiation arisesdynamically from the
inward accelerated motion of the shell, will qualitative
agree with the results of@11#.

We shall conjecture here@37# that realistic matter is re-
quired to prevent the occurrence of singularities.To support
this conjecture, we examine below two classes of ma
models for which the WEC is either necessary for collapse
halt, or sufficient for it to be able to halt.

A. DÄ0

We consider here the caseD50⇒r5pf2pz . This case
includes the Pereira-Wang matter model (pz50, r5pf),
and a subcase of the Apostolatos-Thorne model (pz50, but
not necessarilyr5pf). Then, the junction conditions~2.20!
and ~2.24! simplify to

@D'c#50, ~4.1!

R̈5ṘċS1h1h2

pf

Rr
2R$ċS

2 1~D'c2!2%, ~4.2!
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and the local conservation equation on the shell become

ṙ

r
1S 11

pf

r D Ṙ

R
2ċ50. ~4.3!

This equation can be easily integrated by assuming a fu
tional relation betweenr and pf , which, for simplicity, we
take to be of barotropic form:pf5ar, where the real con-
stanta2,1, to preserve causality. This gives then

r5A
ecS

R11a
, ~4.4!

whereA.0 is an integration constant, which isdimensionful
and scales as@A#;Ra;La, such that@r#;L21. This con-
stantA turns out to be constrained by the fact that there is
upper limit for the total rest mass per unit proper leng
which arises from the requirement of radial nonclosure
space. Specifically, the space around a given cylindrical c
figuration is radially nonclosed if@38#

2pRsAT, 1
4 , ~4.5!

where sAT[r/(8p) is the total rest mass per unit prop
area~the factor of 8p arises because we work with units
which 8pG51, whereas Apostolatos and Thorne useG
51). In our case, the total rest mass per unit proper lengt
the dimensionless quantity

mp5
1
4 Rr5 1

4 AecSR2a, ~4.6!

from which it follows that we must have

Rr,1, ~4.7!

or A,e2cSRa, if Eq. ~4.4! holds. ~We note that this con-
straint on the rest mass per unit proper length plays no rol
the subsequent assertion that the WEC is a necessary c
tion for singularities not to form.!

We now look for local extrema ofR, and show that the
obedience of the WEC is necessary for collapse to be ha
Local extrema ofR occur att5te , such thatṘe50 and
R̈e5” 0. From Eq.~4.2! we have then

R̈e52h2~r1pz!S 12
h2

Rr D2R$ċS
2 1~D'c2!2%,

~4.8!

where the junction condition~2.21! was used, and the right
hand side is to be evaluated att5te . Since the last sum
mand is manifestly negative andh2.0, a necessary condi
tion for collapse to be halted~i.e., for R̈e.0) is

~r1pz!S h2

Rr
21D.0. ~4.9!

By Eqs.~2.5! and~2.21!, the second term is always positiv
for r.0. It then follows that we must haver1pz.0 if
collapse is to be halted. This means that the WEC~which
requiresr.0 andr1pi.0 ; i ) must be satisfied in orde
08404
c-

n
,
f
n-

is

in
di-

d.

for R to admit a real positive minimum; in addition, sinc
r5pf2pz by hypothesis, we must also havepf.0. If pz
,2r and/or pf,0, then condition~4.9! is violated and
there are no local minima ofR, with collapse inevitably pro-
ceeding toR50, wherein a spindlelike singularity forms. W
remark that this case requires at least one of the princ
pressures to be nonvanishing, sincepz5pf50⇒r50.

B. DÄr

This case corresponds to isotropic pressure,D5r⇒pz
5pf . The acceleration equation at the local extrema rea

R̈e5h2S h1

pf

Rr
1D'c2D2

h2r

4R

2R$ċS
2 1~D'c2!2%. ~4.10!

At the extrema,Ṙe50, and, sinceD5r, it follows from the
junction conditions~2.20! and ~2.21! that

@D'c#5@h#c ,r
S5

1

2R
@h#⇒c ,r

S ute
5

1

2Re
. ~4.11!

Equation~4.10! can then be rewritten as

R̈e5
h2

Re
S h1

pf

r
1

h2

4 D2S ReċS
2 1

rh2

4Re
D . ~4.12!

The last summand is manifestly negative, so a neces
condition forR̈e.0 is

h1

pf

r
1

1

4
h2.0, ~4.13!

where all quantities are evaluated att5te . Clearly, if the
WEC holds, the condition above is satisfied. Conditi
~4.13! defines a negative lower bound forpf ,

pf.2
1

4
r

h2

h1
, ~4.14!

which would be incompatible with a violation of the WE
~i.e., with pf,2r! if 4h1>h2 . By the junction condition
~2.21!, this is equivalent to h1

e >(Rr)/3, where h1
e

5ecS2g1. Now, for a givenr * 5R(t* ), we can rescale the
Killing coordinatez, such thatcS* 5cS(R* )50; doing this
for Re , the inequalityh1

e >(Rr)/3 becomes

g1
e <2 ln~Rr/3!. ~4.15!

To examine whether this can at all be verified, we will a
sume that, in addition to being momentarily static~which, by
definition, is the case at the extrema!, the configuration is
also radiation-free att5te , i.e., thatc ,t5c ,tt50 at t6(te).
With theseAnsätze, the wave equation~2.15! has the trivial
solution

c65cS2k6ln~r /R!, ~4.16!
5-7
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wherek6 is a constant. Then, Eqs.~2.16! and ~2.17! yield

g65g6
e 1k6

2 ln~r /R!. ~4.17!

The regularity conditions~3.22! imply k25g2
e 50, thereby

fixing the interior solution asc25cS and g250. From
Eqs.~2.5! and~2.21!, together with the solution forg2 , we
get

g1
e 52 ln~12Rr!. ~4.18!

Hence, condition~4.15! would be automatically satisfie
~i.e., the WEC would be a necessary condition for collaps
halt! if

Rr< 3
4 . ~4.19!

This inequality is stronger than the one imposed by rad
nonclosure of space (Rr,1), and as such may or may no
hold att5te . For this particular case, the approach adop
here cannot show that a violation of the WEC contradi
condition ~4.13! without additional assumptions for the in
tial data~this does not, of course, imply that a violation
the WEC necessarily allows for collapse to be halted!. This
case is nevertheless instructive in that it~i! shows that the
WEC is a sufficient condition for collapse to have a chan
of being halted, and~ii ! provides a self-consistency check:
the WEC holds, then the requirement of radial nonclosure
space is automatically satisfied.

V. CONCLUSIONS

We studied in detail the formation of trapped surfaces
polarized cylindrical spacetimes with a thin shell of arbitra
matter. We showed that, for arbitrarily larger, no trapped
surfaces form, either in the vacuum regions or on the sh
regardless of the matter content of the latter. We studied
limiting behavior of the expansion of a congruence of futu
directed outgoing radial null geodesics, and found that t
become marginally trapped exactly at future null infini
This limiting behavior is due to the interaction between t
null geodesics and an orthogonal~locally! plane wave,
whose nonvanishing transverse component induces the
gruence to start focusing, via a Raychaudhuri-type equat

The fact that no trapped surfaces form irrespective of
matter content for the shellcouldsuggest that this is perhap
an artifact of the simple geometry adopted, in which cas
would not necessarily hold in a fully generic cylindrica
spacetime, with non-hypersurface-orthogonal Killing vect
~and whose vacuum regions, because of this, admit two
larizations!. However, preliminary calculations@39# indicate
that this maynot be the case, thus in accord with the spirit
the hoop conjecture.

Even for the simple case of irrotational dust (pz5pf
50), an analytical solution for the shell motion in close
form appears impossible to obtain, with the only availa
fully dynamic solution being numeric@10#. Since there is no
pressure, total implosion is inevitable, and one can thus
rive analytical approximations for the late stages of collap
when the dynamics is highly relativistic, and the shell a
08404
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ymptotes null dust. Such approximations are valuable for
analytical treatment of the singularity and its structure. In
presence of pressures, however, total implosion is not g
anteed~in fact it was shownnot to occur, in the case o
counter-rotating dust@11#! and, accordingly, one cannot us
any approximation for the late stages, since one cannot k
a priori whether and/or when collapse is halted. To be able
make statements about the end state of collapse without
merical aid, one must thus resort to specific classes of m
els and look for simplifying~but admissable! Ansätze.

To examine the effects of matter on the occurrence
singularities, we considered here two classes of matter m
els, which generalize and complement existing example
the literature. By using the junction conditions on the sh
together with the assumption of positive energy density,
showed that, for the first class the WEC is anecessarycon-
dition for collapse to halt, and a sufficient condition for co
lapse to be able to halt in the second matter model. Base
these results, and those of pressureless and counter-rot
dust, we have put forward the mild conjecture thatrealistic
matter is required to prevent singularity formation.In the
conjecture,realistic is meant to imply that the WEC hold
and at least one of the principal pressures is nonvanishin

The inclusion of another polarization makes the mo
mathematically more complicated, but the physics appear
remain largely unchanged~in particular, no singularities
seem to form! @40#. Accordingly, we expect the trapped su
face results presented here to qualitatively extend to the
polarized case, as well as the conditions regarding the s
dynamics. Work in this direction is currently underway@41#.
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APPENDIX A: NONEXISTENCE OF A GLOBAL FOUR-
DIMENSIONAL COORDINATE SYSTEM

Let us consider the stress-energy tensor associated wiS
expressed as a four-dimensional distribution:

TS
mn
ªSabe(a)

m e(b)
n uaud~F!. ~A1!

Its components are

TS
mn5rh6

21e2(cS2g6)d~F!

3diag~h6
2 ,Ṙ2,pze

22cS,pfR22e2cS!. ~A2!

The independent nonvanishing components ofGmn are

Gtt5Grr 52c ,t
22c ,r

2 1r 21g ,r , ~A3!

Gtr522c ,tc ,r1r 21g ,t , ~A4!

Gzz5e22g14c@2~c ,tt2c ,rr 2r 21c ,r !

1g ,rr 2g ,tt2c ,t
21c ,r

2 #, ~A5!
5-8
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Gff5e22gr 2~g ,rr 2g ,tt2c ,t
21c ,r

2 !. ~A6!

Einstein’s equations give then

2c ,t
22c ,r

2 1r 21g ,r5Ttt5Trr , ~A7!

g ,t52rc ,tc ,r , ~A8!

c ,tt2c ,rr 2r 21c ,r5
1

2h
~pz2pf!d~F!. ~A9!

In the vacuum regions, these equations reduce to the
~2.15!–~2.17!, as expected. On the shell, however, they i
ply Ttt

S5Trr
S ⇒h25Ṙ2, which is only true if@cf. Eq. ~2.5!#

g6
S →1`, but this in turn renders the four-metric singular o

S. This simply means that onecannotuse a four-dimensiona
formulation for the whole spacetime, since the~four-
dimensional! Einstein equationTtt5Trr only holds in the
vacuum regions. One must therefore adopt two different
ordinate systems, for the inner and outer vacuum regio
and match them acrossS via the Darmois-Israel junction
conditions.

APPENDIX B: ELEMENTARY PROPERTIES OF BESSEL
FUNCTIONS

Consider the integral

I ~ t,r ![E
0

`

A~v!e2 ivtH0
(1)~vr !dv, ~B1!

where A(v) is a complex-valued function, andHn
(1)(x)

ªJn(x)1 iYn(x) is a Hankel function of the first kind, an
Jn andYn are Bessel functions of the first and second kin
respectively. Partial differentiation ofI yields

I ,t52E
0

`

ivA~v!e2 ivtH0
(1)~vr !dv, ~B2!

I ,r52E
0

`

vA~v!e2 ivtH1
(1)~vr !dv. ~B3!

Now, for z@1, we have

Hn
(1)~z!;A 2

pz
ei $z2(p/2)[n1(1/2)]%, ~B4!

from which it follows that, forvr @1,

I ,t;2 i E
0

`A2v

pr
A~v!ei [v(r 2t)2(p/4)]dv, ~B5!

I ,r;2E
0

`A2v

pr
A~v!ei [v(r 2t)2(3p/4)]dv,

; i E
0

`A2v

pr
A~v!ei [v(r 2t)2(p/4)]dv. ~B6!
08404
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Hence,I ,r;2I ,t for vr @1, thereby justifying Eq.~3.5!.

APPENDIX C: NEWMAN-PENROSE FORMALISM
FOR THE ANALYSIS OF LIMITING GEODESIC

BEHAVIOR AT J¿

Here we present a summary of the Newman-Penrose~NP!
formalism@27#, which is particularly useful for a geometrica
analysis of the behavior of null congruences. We introduc
null tetrad, given by two real null vectorsl m andnm, and a
complex conjugate pairmm and m̄m, defined such that~i!
their only nonvanishing inner products are

l mnm52mmm̄m51, ~C1!

and ~ii ! the metric completness relation holds:

gmn5 l mnn1nml n2mmm̄n2m̄mmn . ~C2!

With these definitions, the Ricci and Weyl tensors can
naturally decomposed in terms of their tetrad compone
The Ricci tensor can be decomposed into a scalar compo
~which gives the curvature scalar! and a Hermitian (333)
matrix FAB which represents the trace-free part of the Ri
tensor and satisfiesFAB5F̄BA . The ten independent com
ponents of the Weyl tensorCabmn , which represent the ten
degrees of freedom of the gravitational field, are con
niently expressed as five complexNP scalars. The one rel-
evant for our purposes is

C (0)52Cabmnl ambl mmn. ~C3!

Each NP scalar has a distinct physical interpretation, ass
ated with the presence of gravitational waves along the
directionsl m andnm; C (0) denotes a transverse wave com
ponent in thenm direction.

The behavior of geodesic null congruences~among other
things! can be conveniently described in terms ofNP spin
coefficients, which are complex linear combinations of th
Ricci rotation coefficients associated with the null tetrad.
the present case, the relevant spin coefficients are

u5¹nl mmmm̄n, ~C4!

s5¹nl mmmmn, ~C5!

k5¹nl mmml n. ~C6!

They measure the expansion, shear, and deviations f
~null! geodesic motion for null rays alongl m, respectively.
The evolution of these quantities is given by directional d
rivatives in the directions of the four tetrad vectors:

D5 l m¹m , D5nm¹m , d5mm¹m , d̄5m̄m¹m ,
~C7!

from which one obtains

Du2 d̄k5u21ss̄2 k̄t2k~3a1b̄2p!1F00, ~C8!
5-9
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Ds2dk5s~u1 ū !1s~e2 ē !

2k~p2p̄1ā13b!1C (0) . ~C9!

These equations govern the evolution of the expansion
shear along the nulll m direction.

The natural null tetrad for the Einstein-Rosen metric~2.1!
is ~where the metric signature has been changed to22, to
conform with the original NP construction!

l m5e2(g2c)~dm
t 1dm

r !, ~C10!

nm5
1

2
~dm

t 2dm
r !, ~C11!

mm52
1

A2
ec~ idm

z 1re22cdm
f!. ~C12!

The nonvanishing Ricci components are

F00, F02, F11, F22. ~C13!

The nonvanishing NP scalars are

C (0) , C (2) , C (4) . ~C14!
f
n-

,

ys

n-

ail

-

08404
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Finally, the nonvanishing NP spin coefficients are~modulo
complex conjugation! s, l, u, m, ande. The relevant ones
are

s5s̄5c ,t2c ,r1
1

2r
, ~C15!

u5 ū5
1

2r
, ~C16!

e5 ē5c ,r2c ,t2g ,r1g ,t . ~C17!

The relevant evolution equations become then

Du5u21ss̄1F00, ~C18!

Ds5s~u1 ū !1C (0) . ~C19!

All of the NP objects were computed with the aid of th
algebraic packageGRTENSORIIfor MAPLE V. Most of the non-
zero objects are ‘‘too large’’ to be explicitly written in an
convenient way. Since only the fact that they are nonvan
ing matters for our purposes~specifically,C (0)5” 0), we omit
here their explicit form.
l
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