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Absence of trapped surfaces and singularities in cylindrical collapse
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The gravitational collapse of an infinite cylindrical thin shell of generic matter in an otherwise empty
spacetime is considered. We show that geometries admitting two hypersurface orthogonal Killing vectors
cannot contain trapped surfaces in the vacuum portion of spacetime causally available to geodesic timelike
observers. At asymptotic future null infinity, however, congruences of outgoing radial null geodesics become
marginally trapped, due to the convergence induced by the shear caused by the interaction of a transverse wave
component with the geodesics. The matter shell itself is shown to be always free of trapped surfaces, for this
class of geometries. Finally, two simplified matter models are analytically examined. For one model, the weak
energy condition is shown to be a necessary condition for collapse to halt; for the second case, it is a sufficient
condition for collapse to be able to halt.
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[. INTRODUCTION drical pressureless dud,10], and counter-rotating dust col-
lapse[11] also confirmed the nonoccurrence of horizons.
The issue of the formation of horizons in generic gravita- Cylindrical spacetimesdefined below constitute an ob-
tional collapse remains an outstanding problem of classicalious class of spacetimes to study nonperturbative departures
general relativity. The original concept tfapped surface  from spherical symmetry. Although such spacetimes do not
due to Penros¢l], defines it as a compact spatial two- model exactly the dynamical evolution—and inherent
surfaceS on which 6_6,>0, whered.. are the expansions gravitational-wave emission—of bounded bodies, they pos-
in the future-pointing null directions orthogonal t8  sess a nontrivial field content and constitute thus a valuable
Trapped surfaces signal thus the boundary of a region whettestbed for numerical relativity12], quantum gravity{13],
any initially expanding null congruence begins to convergeand for probing the cosmic censorship and hoop conjectures
clearly, they define regions of “no escape.” Assuming that[14]. Since several definitions of cylindrical symmetry exist,
cosmic censorship holds, the existence of trapped surfacese must adopt one to work with. In this paper, we shall
implies that of an event horizon, which contains the latterconsider cylindrical spacetimes defined by the existence of
[2]. In spherical symmetry, both necessary and sufficientwo commuting spacelike Killing vector fieldsuch that the
conditions for the occurrence of trapped surfaces have beesrthogonal spacetime is integraplene translational 4y)
obtained, which are essentially of the fomm=r, wherem  and the other with closed orbitsl {), where the azimuthal
andr refer to local(or quasilocal definitions of mass and coordinateg is to be identified at 0 and-2 In addition, we
radius[3]. taked, andd, to be hypersurface orthogonal, which implies
Understandably, much less is known about horizon formathat the cylindrical waves in the vacuum regions admit only
tion in nonspherical geometries. Arguably one of the stron-one polarizatiorj15,16].
gest results to date is that of Shoen and Yali who ob- The purpose of this paper is twofold) study the occur-
tained a sufficient criterion for the formation of trapped rence of trapped surfaces in dynamical cylindrical space-
surfaces in ararbitrary spacetime: for a given lower bound times with a thin shell of arbitrary matter, arii) motivate
for the mass density, there is an upper bound for the mattehe notion that realisti@n a suitably defined sensmatter is
radius, above which trapped surfaces will form. Howevernecessaryo prevent the formation of curvature singularities.
being a sufficient condition for the occurrence of trappedSpecifically, we consider an infinite cylindrical thin shell
surfaces, this result cannot say anything about the conditionsith the most general surface stress-energy tensor defined on
under which the collapsing spacetime fails to develop horidt, in an otherwise vacuum spacetime. We examine three al-
zons, possibly leading to naked singularities. As with severalernative criteria for trapped surfaces, and show that they can
other notable issues in relativity, a conjecture has been putever form, regardless of the matter content for the shell. We
forward regarding its solution: Thorne’soop conjecture also show that—for one class of matter models—the viola-
states that “horizons form when and only when a miks tion of the weak energy conditioWWEC) implies that col-
gets compacted into a region whose circumferenceviery lapse cannot be halted by an outward pressure gradient, and
direction isC<47M” [5]. As originally stated, the conjec- therefore the formation of an infinite spindlelike singularity
ture leaves ample room for different definitions of horizon,is inevitable.
mass, and circumference. In spite of this ambiguity, no The paper is organized as follows. Section Il derives the
known counterexample appears to exist: numerical simulaneeded mathematical framework and the vacuum and junc-
tions of prolate and oblate collap$€], gravitational radia- tion condition equations for the spacetime. Section Il dis-
tion emission in aspherical collapfg], and analytical stud- cusses trapped surfaces according to three alternative criteria,
ies of prolate collapsing spheroidi8] either confirmed or and shows that there are no trapped cylinders anywhere on
could not refute the conjecture. Detailed analyses of cylinthe spacetime, except at the limiting case of asymptotic null
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infinity. This limiting behavior is then explained via the Kabi=—n,ep, V.l
Newman-Penrose formalism. In Sec. IV, we consider two
different classes of matter content, and show that the WEC is
either necessary for collapse to halt or sufficient for it to have _ X7 » OXEax”
a chance of being halted. Section V concludes with a sum- — Ny 929D +FMVa_§a P (2.9
mary and discussion.
Natural geometrized units, in whichm®&=c=1, are |5 nonvanishing components are
used throughout.

. 1 . .. .
II. INFINITE CYLINDRICAL THIN SHELL Ker=Di¢-—D y.— I[R+ R(ys—¢s)]
OF GENERIC MATTER B (2.10
The complete four-dimensional spacetime consists of an - oy
interior vacuum region\ _ connected to an exterior vacuum Kz7=€"=D i, (2.1
M, by a three-dimensional thin shell. The vacuum re- . -,
gions are characterized by the Einstein-Rosen mgt6¢ Kys=€ *"*R(— 7. +RD, ¢-), (2.12
ds? =e?(r="¥=)(—dt2 +dr?) whereD, =n*V, is the normal derivative with respect

and the object
+e?=d2+rie 2=d¢? (2.1

2
where y=y(t,r), ¢=4(t,r), and the coordinate systems drz—(zti):
{x&} are adopted. Ofx. there is a natural holonomic basis dts
{e@} given by

7PV YI[RAR(y. —s)] (213

was used.
IX® For the matter content on the shell, we consider the most
ef‘a)|i=a—;, (2.2 general stress-energy tensgy, defined on,, compatible
§ with the metric(2.4),
where{&?,a=0,1,2 are intrinsic coordinates oB. The in- _ arer 2ps ST 52 2020 sb b
duced three-metrig/,, on Y, is then Sab= P Oadp TP 030y T PyRo€ 12070y, (2.14
Yab™ gMVe’ELa)eE}b) ’ (23)

wherep, p,, andp, are the proper surface energy density,

pressure along the direction, and surface stress, respec-

tively, as measured by an observer comoving with the shell
with four-velocity given by Eq(2.6).

and it is the same on both sides »f since the four-metric
must be continuous across it. This leads to

ds?=—dr?+e?=(Nd2+R¥(r)e 2x(Nd¢?, (2.4
A. Vacuum field equations

dj: \/mz - (2.5) The vacuum field equations afeshere the+ subscript
dr - ' has been dropped for simplicjty
Thezzand ¢¢ components of the metric junction condition %lf,tt—r’lz/f,,— =0, (2.195
[gW]EgZV—g;EO imply that ther coordinate is continu-
ous across. In the equations above;, is the proper time V=200 by, (2.1
measured by an observer comoving with the shell, with four-
velocity Ya= L)+ ()2 (217
utt=mn.d6 +RSY, (2.6)  We are thus left with the axisymmetric wave equati@ris),
- which is decoupledfrom Egs.(2.16 and (2.17. One first
whereR=dR/dr. The shell¥ is defined by solves the wave equation with appropriate boundary data,
and then solves for Eq$2.16) and (2.17) by quadratures.
d(x*)=r—ry(t)=r—R(7)=0. (2.77  Remarkably, these two equations are compatible because
their integrability condition is precisely the wave equation
The spacelike unit normal t& is (2.19.
_ The general(outgoing solution to the wave equation
ni=a 1(£gL'a, =R} + 7.5, (2.8  (2.19 is given by
Whereazez('/@*?’t).n;l Is a normal+iza.tion factor. Y(t,r)= RerA(w)e“‘"‘Hgl)(wr)dw, (2.18
The normal extrinsic curvaturé;,, is [17] 0
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whereA(w) is a complex-valued functiork(M(x) :=J,(x)
+iY,(X) is a Hankel function of the first kind, an} andY
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is said to be a trapped surfacedf 6_|s=0, where the in-
equality saturates for the marginally trapped case. In the

are Bessel functions of the first and second kind, respectivelpresent case, our surfages that of an infinite cylinder with

[18].

B. Junction conditions for the shell

proper circumference radilB=re¥.
Modulo the two-dimensional quotient space orthogonal to
the symmetry axis, the Einstein-Rosen metric is conformal to

. . . . Minkowski spacetime(which is why the four-dimensional
On _the shell, Einstein’s equations reduce to 'ghe Darmoisy,aye equation is formally the same as that of flat spaaed
Israel junction conditions for the normal extrinsic curvature s it suffices to introduce flat spacetime null coordinates

[19,17,

[Kap]=Kap=Kap=—Sapt 7 S¥ap- (2.19

The nonvanishing components of the above equatiorzare
¢ ¢, and r7, which yield, respectively,

[D, ¢]=—24, (2.20
[7]=—Rp, (2.21)
Ro . ..
(7Y ]=Py— - (R=Ryy), (2.22
where
A=2p,~Si=p+p,~Py- (2.23

Using the field equation®.16) and(2.17), Eq.(2.22 can be
cast solely in terms of the wave-fiel@

B=Rijs + mn_g—Z—R{i/éJr(Dnﬁ-)z}

A2 p 2.2
AT /A (2.29
Equationg2.20 and(2.21) match the metric functiong and
v across, and Eq.(2.24) governs the motion of the shell.
We note that, in the absence of a matter shgh=0), it
immediately follows from Eqgs(2.5 and (2.21) that the
“time” coordinate t is continuous across and hence it can
be globally defined, as expected.

(where, for simplicity, the “-" subscript is omittedl,

u=t—r, v=t+r, (3.1
to study the expansion &along normal null directions. We

have then

0.=(6+3d;)R. (3.2
Trapped surfaces form when
0.0-=(R)*—(R,)*=0. 3.3

1. Vacuum regions
In the vacuum regions, the above condition reads
r2yi=(1-ry,)2 (3.9
One can use the asymptotic properties of Bessel functions
(cf. Appendix B to show that, foror>1,
1 00 :
¢t~ _ l// o~ _Ref wA(w)e—l[w(t+r)—3'n'/4]dw.
’ y \/F 0
(3.9
Hence, foror>1,
0.0_~—1+2r¢ 4y, <O0. (3.6

For large radii, this regime covers “almost” all the frequen-
cies, whereas for small radii, the validity of the inequality

An additional constraint is obtained by the conservationabove is restricted to high-frequency modes wabrr 1

of energy momentum oR,

PV, S2=—[efyT,.n"1, (2.25

the only nonvanishing component of which gives

: R :
pH(ptPy)g+(Pe=Py)¥s=[e(T,n"]1=0.
(2.26

Ill. TRAPPED SURFACES
A. Proper circumference radius criterion

We shall use the following operational definition of
trapped surface, which is a natural extension of Penrose

[1], for surfaces that are not necessarily compact nor two-

dimensional: leSbe any non-null surface ardl. the expan-
sion in the future-oriented null directions normalScthenS

>1.

In general, it proves more convenient to look fauter
marginally trapped surface$OMTS)—surfaces whose ex-
pansion vanishes along future-oriented null normal
directions—since their existence is implied by that of
trapped surface$20]. Hence, it suffices to show that no
OMTS form, to prove that there are no trapped surfaces. The
condition for OMTS is

1
0=~~~ +9,=0. (3.7

Partial differentiation of this equation with respectttandr
)éields, respectively,

1
’p,tr: ‘p,tt ) w,tr = ‘p,rr + r_2 (3.9
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éo%bilr;iggs ttk(;ese two equations with the wave equation A:i=27RI =277, (3.17
1 1 wherer =Rl is the specific area radius. A cylinder is said to
Ye=5¥=— 1 (3.9  be trapped, marginal, or untrapped if the vedigr:=V,r is

timelike, null, or spacelike, respectivel21]. In our case, we
Now, from Eq.(3.5), we know that these two equalities fail have

to hold for wr>1. To show that the same happens éar - -
=<1, we note that R=re ¥, I=e¥ r=r. (3.18

3 ) _ From a geometrical viewpoint, this definition is perfectly ac-
fo X'Hp (x)dx<eoif - n>—1, (310  ceptable, since, modulo invariant rotations, all of the spatial
(“radial” ) submanifold orthogonal to the axis is covered by

from which it follows that, asw—0, A(w)~ " with n> r e[0,+2). However, from a physical standpoint, this defi-

—1. Hence, foror<1, we have nition is somewhat lacking, since the specific area radius is
simply a coordinate radius, and as sudfangesunder the
1 rescalingz— az asr— a~ 'r, unlike the proper circumfer-

Y~ o~ rz_*” (3.11 ence radius, which remains invariant under such rescaling. In

addition, an external timelike observer can only measure
. . proper circumferences, but not coordinate radii. Despite
thereby showing that Eq3.9) also fails to hold forwr=1. these shortcomings, and because of its useful geometrical

By construction, all of the above holds inside and outside th?neaning we shall examine the formation of trapped surfaces
shell, and we conclude therefore that there are no trappeg '

. . ccording to it.
surfaces in either vacuum region.
1. Vacuum regions

2. Shell
On the shell, the condition for OMTS is In the vacuum regions,
. NVac=g" 3.1
0—R‘¢2R' 7o 3.1 T o
+—7’e R TR/ 312 and thus
Since7/R>0, an obviousecessarygondition for OMTS is (N, NH) o= e~ =0. (3.20

R . Hence there are no trapped surfaces in the vacuum regions
R #s>0. (.13 provided the quantityy— vy does not diverge negativelyn
which the case a marginally trapped surface would form
However, for a collapsing configuration the physical circum-Sinceg,, = — gy =€?"¥), it follows that for regular space-

ference radius must decrease with proper time: times the inequality must be strict and thus there are no
trapped surfaces. This is true fany cylindrical regular met-
R<0=R-— R¢z<0. (3.14 ric with two commuting hypersurface orthogonal Killing

vectors. Accordingly, it holds inside and outsife In the
which contradicts the necessary condition for OMTS. Henceinterior vacuum region, it is straightforward to show that
a collapsing shell can never become trapped, irrespective oégularity of the axis implies the absence of trapped surfaces.
the details of the matter content. Let x=|d4/>=r?e"?; then the symmetry axis is regular if
the following local flatness condition is obeyg2P]:
B. Specific area radius criterion

yo
An alternative definition of trapped cylinder has been re- |imX’“X’ =1, (3.21)

cently proposed by Haywarl@1], and relies on the specific o 4Xx
area radius, which is constructed as follows. The two space- .
like Killing vectors {d,,d,} have a well-defined invariant which requires

geometric meaning:
(1,00=0, w,tlr:0<°°a lr/f,r|r:0<°c- (3.22

Hence,|N|;,c>0 along the axis.
is the proper circumference radius, and
2. Shell
=], =, 4 (316 On the shell,
is the specific Killing length. One can thus define a specific S S o1t o
area for the cylinder as N,=Rn "6,+95,, (3.23
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which gives

(N3 = 772620772~ R2) = 2680~ M2, Ry
(3.24 ?

where the junction conditio(2.5) was used in the last equal-
ity. Since the metric must_be regular @n the inequality can Initially expanding
never saturate, and thisis free of trapped surfaces. geodesic congruence .

C. Geodesic null congruences \\

A direct, physical way to probe the occurrence of trapped Plane wavefront

surfaces in the vacuum spacetig)das to examine the diver-
gence of a congruence of outgoing radia., orthogonal to
the symmetry axisnull geodesicsORNG). To examine the FIG. 1. Asymptotic behavior of an initially expanding future-
behavior along null directions, it is convenient to intrOdUCEOriented null geodesic congruencejf_ When the radiu$proper

retarded Bondi coordinatdsi,r,z, ¢}, in which the Einstein-  or otherwisg of cylindrical waves tends to infinity, they become

Rosen metric reads plane waves, whose wavefronts orthogonally intersect the null geo-
2y i) ) DU 2 o D 20 12 desic congruence. The transverse wave component in‘titirec-
ds’=—e*0" ¥ (du’+2dudr) +e*/dZ* +r’e”?/d ¢”. tion induces shear on the congruence, which in turn makes it focus,

(3.25 by virtue of the Raychaudhuri-type equatith3?.

In these coordinates, the vacuum field equations are geodesic focusing in a radiative spacetime. The asymptotic

. e
20 y— b 1 N y— ) =0, (3.26 behavior of® at 7" is given by
Yu=2 Ut ), (327 0l = lim 20
2 [— 4o u=uq
7,r:r(¢,r) - (3.28
- - — im0 (g - o) 33
The null vector field tangent to the ORNG is given by im e : (3.33
r—+ow
dx*
k=g =Xu.n)ar, (329  The behavior of the wave-fielgh [which determinesy via

the field equation$3.27—(3.28] at 7+ was computed by

where\ is an affine parameter along the geodesics, ¥nd Ashtekar, Biek, and Schmid{25,26], and yields
>0 since the geodesics are outgoig., r is a monotoni-

[

cally increasing function of the affine parametérhe geo- Co(u) 1 B
desic equation reads then p(u,r)= " + N zl Calw)r=", (3.39
KV k= X[X +2X(y, —,)]8¢=0,  (3.30 )
_ " 12 bn(U) 1
which readily integrates to yun=y=-2| c Odu_nzl n+1 pien’
X(u,r)=f(u)e2t=, (3.31) (3:39

wheref(u)>0 is an arbitrary function, fixed by the choice Whereco=dco/du, and the coefficients, andb, are deter-
of X for a given value of the coordinate For such a geode- Mined from the initial Cauchy data. From E¢8.33—(3.35

sic congruence, the expansion scalar is it follows that
X(u,r) f 0] 7+=0. (3.36
r

= Fezwf— 7, (3.32

©:=V,k¢=
This limiting behavior reflects the fact that, neaf*, the

Clearly, as long as one restricts oneself to finite values of cylindrical waves behave locally like plane waves, which
there are no trapped surfaces. There could be trapped suftersect the congruence of ORNG, thereby causing them to
faces at asymptotic future null infinifi23] 7+ if, for fixed ~ start(marginally converging(cf. Fig. 1.
sible occurrence of marginally trapped surfacegatis not ~ Penrose formalisrfi27]. The two relevant equations afef.
worrisome, in that geodesic timelike observers can neveftPpendix Q
reachJ " [24]. However, from an asymptotic infinity view- o
point, it is of interest to examine the limiting behavior of DO=6’+co+dq, (3.37
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Do=o(0+§)+\lf(o), (3.38 Hence, trapped surfaces form whenever

, (3.44)

where the inequality saturates for the marginally trapped
case. This is the cylindrical analogue of the well-known as-
smptotically flat spherically symmetric conditioB=3 for
Tolman-Bondi spacetimef34], where E=mys/R, is the
l*mB| #m?¥+ 0. (3.39 Misner-Sharp m:;1s§35] per unit proper area radius. In the
present case; <z and the vacuum regions are untrapped.

C=

(eI

which govern the evolution of the expansiérand sheawr
of the ORNG, respectively. Neaf *, the congruence is or-
thogonally intersected by plane waves aligned with (cf.
Fig. 1). The existence of a transverse wave component in th
n* direction[28] is signaled by a nonvanishing g, :

V)=~ Cappur
This nonzeroV o) implies—by Eq.(3.38—that the congru-
ence starts to shear, with the shear axis being determined by IV. SINGULARITIES
the polarization of the wavé.e., the wave-fieldy). This

. . The issue of singularity formation in cylindrical collapse
introduces a non-negative term

of a thin shell has been addressed for the particular cases of

2 pressureless dust and counter-rotating dust, with a non-
Y=+ 2—) (3.40  vanishing tangential pressure componerthe pure dust

r case was analyzed by Thorf@] and Echeverrid10], who

showed that complete collapse is inevitable, and an infinite
'spindlelike singularity must thus form as a result. The case of
counter-rotating dust coupled to Einstein-Rosen waves was
D. C energy addressed by Apostolatos and Thofdé], who resorted to

The concept ofC energy was introduced by Thorfigg] ~ Sequences of momentarily static radiation-f(sSRF con-
as a local definition of energy density per unit Killing length figurations andC-energy balance arguments to conclude that
z for cylindrical systems. Being a locally defined quantity in &1 arbitrarily small amount of counter-rotati¢and, very
spacetimes with a translational Killing field, its relation to likely, also of net rotationsuffices to halt collapse, thereby
energylike quantities defined in asymptotically flat spacePrecluding the formation of spindle singularities. The
times [e.g., the Arnowitt-Deser-MisnetADM) or Bondi ~ counter-rotating case was recently revisited by Pereira and
masg becomes uncledi30]. In fact, as shown by Ashtekar Wang[36], who considered a flat interior and an outgoing
and Varadarajar{31,32, the Hamiltonian that generates nu_II.fIU|d gxter_mr(as opposed to a “realistic” vacuum con-
asymptotic time translations at spatial infinity rist the C ~ taining cylindrical waveg by means of further assumptions
energy, but a nonpolynomial function of it, which is positive for the matter content, they obtained a simple solvable model
and bounded from above. Nevertheless, being a locally corvhich admits initial data leading to a spindle singularity, thus
served and measurable quanti§,energy remains a very N apparent contradiction with the earlier results. However,
useful tool for the analysis of cylindrical systems, and, un-the model is highly contrived, and the assumptions made
surprisingly, it can be linked to the occurrence of conicalrender it unphysical, since the dynamics of the exterior null

g0 =

into Eq.(3.37), thereby inducing the congruence to converge

singularities|33] and trapped surfacdg1]. fluid can only be obtainea posteriori after a particular
Following Thorne[29], we introduce theC-energy poten-  Solution for the motion of the shell is derived. It is therefore
tial conceivable that a more realistic model, wherein the emis-
sion of gravitational radiation arisedynamicallyfrom the
C(t,r):=2(1—e 27), (3.41) inward accelerated motion of the shell, will qualitatively

o _ _ o agree with the results ¢fL1].
which is proportional to the totdl energy contained inside a  We shall conjecture herg87] that realistic matter is re-
cylinder of specific area radius per unit Killing lengthz.  quired to prevent the occurrence of singularitids. support

The C-energy flux vectoP* is given by this conjecture, we examine below two classes of matter
models for which the WEC is either necessary for collapse to
I\ O halt, or sufficient for it to be able to halt.
Pri=ter = g[In(1-8C)] ,— 2o ~22
9217 |94
A. A=0
2(—7) ; — i
e We consider here the cade=0=p=p,—p,. This case
= (C 8! —C 30, (3.42 AN

r includes the Pereira-Wang matter modpL€0, p=py,),

and a subcase of the Apostolatos-Thorne mog@eQ, but
and obeys the local conservation 1&yP#=0. An observer ot necessarilp=p). Then, the junction condition&.20

with 4-velocity u* measures &£-energy densitf=P*u,,  and(2.24 simplify to
and theC-energy flux across a hypersurfatewvith spacelike D ~0 4.1
normaln# (such tham“u,=0) is F=P#n,, . [D.¢]=0, (4.7)

From Egs.(3.20 and(3.4)) it follows that

. &_ 5 2
(N,u.NM)vac: er//(l_SC)_ (343) R= R¢2+ N+ 1M- Rp R{‘//E_F(DL lﬂ—) }1 (42)
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and the local conservation equation on the shell becomes for R to admit a real positive minimum; in addition, since
p=Pp,— P, by hypothesis, we must also hapg>0. If p,
<—p and/orp,<0, then condition(4.9 is violated and
there are no local minima d®, with collapse inevitably pro-
ceeding taR= 0, wherein a spindlelike singularity forms. We
This equation can be easily integrated by assuming a fun@emark that this case requires at least one of the principal
tional relation betweep andp,, which, for simplicity, we  pressures to be nonvanishing, singe=p,=0=p=0.

take to be of barotropic formp,=ap, where the real con-

p Py R .
“+1+ 22 = —y=o0. 4.3
p R Y (4.3

stanta®<1, to preserve causality. This gives then B.A=p
e¥s This case corresponds to isotropic pressutes p=p,
p:AR1+a’ (4.4 =p,. The acceleration equation at the local extrema reads
. . . . ) ) .. Py n-p
whereA>0 is an integration constant, whichdémensionful Re=7n_| 74 Ro +D, | — R
and scales agA]~R*~L?, such thaf p]~L . This con- P
stantA turns out to be constrained by the fact that there is an —R{ ¢§+ (D, ¢_)3. (4.10

upper limit for the total rest mass per unit proper length,
which arises from the requirement of radial nonclosure of

space. Specifically, the space around a given cylindrical con'e‘t the extremaR, =0, and, sincé =p, it follows from the

figuration is radially nonclosed [38] junction conditiong2.20 and (2.21) that

1 1 1
2mRoM <3, 49 [D, ¢1=[ 0l =55[ M=V =5 (41D
e
where o =p/(87) is the total rest mass per unit proper

area(the factor of 8r arises because we work with units in Equation(4.10 can then be rewritten as
which 87G=1, whereas Apostolatos and Thorne uSe

=1). In our case, the total rest mass per unit proper length is e M- Py  m-) co  PT-
the dimensionless quantity Re= R\7*p " a Reds + R/ (4.12
mp:%RPZ%Ae‘pER_aa (4.6 The last summand is manifestly negative, so a necessary

from which it follows that we must have condition forRe>0 is

1
Rp<1, 4.7) 7. %Jr 27>, 4.13
or A<e ¥:R¢, if Eq. (4.4 holds. (We note that this con-

straint on the rest mass per unit proper length plays no role ivhere all quantities are evaluated & 7. Clearly, if the
the subsequent assertion that the WEC is a necessary con#*EC holds, the condition above is satisfied. Condition

tion for singularities not to form. (4.13 defines a negative lower bound fpy,,

We now look for local extrema oR, and show that the
obedience of the WEC is necessary for collapse to be halted. - 1 7 il
Local extrema ofR occur atr= 7., such thatR,=0 and Po a® 7.’ 4.14

R.#0. From Eq.(4.2) we have then _ _ _ _ o
which would be incompatible with a violation of the WEC

.. n_ > (i.e., withp,<—p) if 4, =7_. By the junction condition
Re=—7_(ptp)| 1~ R_p) ~R{yi+ (DY), (2.21), this is equivalent to 5% =(Rp)/3, where 7%
4.8 =e’*7 7+, Now, for a givenr, =R(r,), we can rescale the

Killing coordinatez, such thatys = ¢s (R, )=0; doing this
where the junction conditiof2.21) was used, and the right- for R, the inequality;® = (Rp)/3 becomes
hand side is to be evaluated &t 7.. Since the last sum-
mand is manifestly negative angl. >0, a necessary condi- y2<-In(Rp/3). (4.15
tion for collapse to be halted.e., for R,.>0) is
To examine whether this can at all be verified, we will as-
sume that, in addition to being momentarily stdtihich, by
definition, is the case at the extrem#he configuration is
also radiation-free at=r,, i.e., thaty ;= ¢ =0 att. (7).
By Egs.(2.5) and(2.21), the second term is always positive With theseAnsdze the wave equatiof2.15 has the trivial
for p>0. It then follows that we must havp+p,>0 if solution
collapse is to be halted. This means that the WE®@ich
requiresp>0 andp+p;>0 V i) must be satisfied in order Y=t —kiIn(r/R), (4.1

(p+p2)

n_
R_p_ 1) >0. (4.9
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wherek.. is a constant. Then, Eq&.16) and(2.17) yield ymptotes null dust. Such approximations are valuable for an
) analytical treatment of the singularity and its structure. In the
y+=7y2+k%In(r/R). (4.17  presence of pressures, however, total implosion is not guar-

anteed(in fact it was shownnot to occur, in the case of
The regularity condition$3.22) imply k_=y% =0, thereby  counter-rotating dusti1]) and, accordingly, one cannot use
fixing the interior solution asy =y and y_=0. From  any approximation for the late stages, since one cannot know
Egs.(2.5 and(2.21), together with the solution foy_, we  a priori whether and/or when collapse is halted. To be able to
get make statements about the end state of collapse without nu-
. merical aid, one must thus resort to specific classes of mod-
Yi=—In(1-Rp). (4.18  els and look for simplifyingbut admissableAnsaze
. . o To examine the effects of matter on the occurrence of
Hence, condition(4.15 would be automatically satisfied gjngylarities, we considered here two classes of matter mod-
(i.e., the WEC would be a necessary condition for collapse tqs " \hich generalize and complement existing examples in
halt) if the literature. By using the junction conditions on the shell,
4.19 together with the assumption of positive energy density, we
' showed that, for the first class the WEC isi@cessarycon-
[jition for collapse to halt, and a sufficient condition for col-
nonclosure of spaceRp<1), and as such may or may not apse to be able to halt in the second matter model. Based on
&hese results, and those of pressureless and counter-rotating

hold at= 7. For this particular case, the approach adopte . ) o
here cannot show that a violation of the WEC contradictstSt' we have put forward the mild conjecture thelistic

condition (4.13 without additional assumptions for the ini- mat_tertls requll_r?_d _to prevetn;[ synglllla;;;cytf?r:m%\t/lgg ;held
tial data(this does not, of course, imply that a violation of conjecturereaiistic 1Is meant to imply that the 1010S
the WEC necessarily allows for collapse to be haltddis andat "?aSt one of the principal Pressures 1s nonvanishing.
case is nevertheless instructive in thati)t shows that the The inclusion of another polarization makes the model

WEC is a sufficient condition for collapse to have a Chancénathematically more complicated, but the physics appears to

of being halted, andi) provides a self-consistency check: if remain largely unchange_ajin particular, no singularities
the WEC holds, then the requirement of radial nonclosure o eem to form[40]. Accordingly, we expect the trapped sur-
space is automatically satisfied ace results presented here to qualitatively extend to the un-

polarized case, as well as the conditions regarding the shell
dynamics. Work in this direction is currently underwjahi].

Blw

Rp=

This inequality is stronger than the one imposed by radia

V. CONCLUSIONS

We studied in detail the formation of trapped surfaces in ACKNOWLEDGMENTS

poliatrlzesvcyll?]drlczzl stﬁatcelflmest\ﬁnh .?ﬂl"n shell (:f arblt(rjary It is a pleasure to thank Vince Moncrief for helpful dis-
matter. We showe at, for arbitrarily ‘arge no trappe cussions and comments on the manuscript. This work was

surfaces form, either in the vacuum regions or on the shell ) ) )
regardless of the matter content of the latter. We studied th%ggorted by FCTPortugal Grant No. SFRH-BPD-5615

limiting behavior of the expansion of a congruence of future-
directed outgoing radial null geodesics, and found that they
become marginally trapped exactly at future null infinity.
This limiting behavior is due to the interaction between the
null geodesics and an orthogonébcally) plane wave, Let us consider the stress-energy tensor associatedwith
whose nonvanishing transverse component induces the cogxpressed as a four-dimensional distribution:
gruence to start focusing, via a Raychaudhuri-type equation.

The fact that no trapped surfaces form irrespective of the T§”:=Sabef‘a)e(”b)|a| S(D). (A1)
matter content for the shatbuld suggest that this is perhaps
an artifact of the simple geometry adopted, in which case iltS components are
would not necessarily hold in a fully generic cylindrical B _ A
spacetime, with non-hypersurface-orthogonal Killing vectors T¢'=pn. e 5(@)
(and whose vacuum regions, because of this, admit two po-
larizations. However, preliminary calculatior89] indicate

that this maynot be the case, thus in accord with the spirit of 1o independent nonvanishing component&agf, are
the hoop conjecture.

APPENDIX A: NONEXISTENCE OF A GLOBAL FOUR-
DIMENSIONAL COORDINATE SYSTEM

xdiag 72 ,R? p,e 2’s,p,R2e?x).  (A2)

Even for the simple case of irrotational dugp,€p, Gtt:G”:_d,Zt_l/,ZrH*lyr, (A3)
=0), an analytical solution for the shell motion in closed ’ ' '
form appears imp(_)ssible_ to obtain, with f[he only a\_/ailable Gtr:_zw,tw,r+r717,tv (A4)
fully dynamic solution being numericl0]. Since there is no
pressure, total implosion is inevitable, and one can thus de- Go=e 2" M 2(py— =1 Yy,)
rive analytical approximations for the late stages of collapse, s 5
when the dynamics is highly relativistic, and the shell as- TV Y Wt (AS)
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G¢¢=e‘27r2( Y= Vi~ l/f,2t+ lﬂi). (AB) Hence,| ,~—1 ; for wr>1, thereby justifying Eq(3.5).
Einstein’s equations give then APPENDIX C: NEWMAN-PENROSE FORMALISM
2 2. 1 FOR THE ANALYSIS OF LIMITING GEODESIC
YL Ty =T =T (A7) BEHAVIOR AT 7+
Yi=204 b, (A8) Here we present a summary of the Newman-Pen(id&e

formalism[27], which is particularly useful for a geometrical
1 analysis of the behavior of null congruences. We introduce a
A e z(pz— Py) (D). (A9)  null tetrad, given by two real null vectot$¢ andn#, and a
complex conjugate paim* and m*, defined such thafi)
In the vacuum regions, these equations reduce to the s#heir only nonvanishing inner products are
(2.19—(2.17, as expected. On the shell, however, they im- .
ply T>=T> = 7°=R?, which is only true if[cf. Eq. (2.5)] | ,n#=—m,m*=1, (CY
7i—> +o0, but this in turn renders the four-metric singular on
3,. This simply means that or@nnotuse a four-dimensional
formulation for the whole spacetime, since théour- - —
dimensional Einstein equatioriT,,=T,, only holds in the 9ur=luNy+n,l,—m,m,—m,m,. (€2
vacuum regions. One must therefore adopt two different co;

ordinate systems, for the inner and outer vacuum regionsWIth these definitions, the Ricci and Weyl tensors can be

. ) . ; naturally decomposed in terms of their tetrad components.
and match them across via the Darmois-Israel junction ) ;
conditions. The Ricci tensor can be decomposed into a scalar component

(which gives the curvature scalaand a Hermitian (X 3)
matrix ® 55 Which represents the trace-free part of the Ricci

tensor and satisfie@ABzd_DBA. The ten independent com-

and (ii) the metric completness relation holds:

APPENDIX B: ELEMENTARY PROPERTIES OF BESSEL

FUNCTIONS -
ponents of the Weyl tens& 4, , which represent the ten
Consider the integral degrees of freedom of the gravitational field, are conve-
niently expressed as five compl®&® scalars The one rel-
I(t,r)zf A(w)e “HO(or)do, (B1) evant for our purposes is
0
W (0)= — Cappuid *mPl#m”. (C3

where A(w) is a complex-valued function, an#i{M(x)
:=J,(X)+iY,(X) is a Hankel function of the first kind, and
J, andY, are Bessel functions of the first and second kin
respectively. Partial differentiation dfyields

Each NP scalar has a distinct physical interpretation, associ-
d ated with the presence of gravitational waves along the null
directions* andn#; ¥ ) denotes a transverse wave com-

ponent in then* direction.

% _ The behavior of geodesic null congruené¢among other
¢ —f iwA(w)e “'H{(wr)do, (B2)  things can be conveniently described in termsNi® spin
coefficients which are complex linear combinations of the
Ricci rotation coefficients associated with the null tetrad. In

0

| ,=- fo wA(w)e H{P(wr)do. (B3)  the present case, the relevant spin coefficients are
0=V, ,m*m”, (C4)
Now, for z>1, we have
5 o=V, ,m*m*, (CH
Hgl)(z)w ; /_ei{z—(wlz)[n+(1/2)]}, (B4)
mZ k=V,l,mH". (C6)
from which it follows that, foror=>1, They measure the expansion, shear, and deviations from
. (null) geodesic motion for null rays alond, respectively.
|~ _if , /Z_wA(w)ei[w(r—t)—(wM)]dw (B5) The evolution of these quantities is given by directional de-
! 0 T ’ rivatives in the directions of the four tetrad vectors:
= Reo . D=I*V,, A=n*V,, &=mtV,, 6=mtV
— i [o(r—t)— (37/4)] wr wo wo wo
I J;) 7TrA(w)e' do, (C7)
> from which one obtains
o w .
~if \/—A(w)eler-9-("0q,,, (B6) - o = = —
o vVar DO— 6k=60+cgo—kr—k(3a+B—m)+ Dy, (CH
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Do— dk=a( 6’+5) + 0'(6—:)

—k(m—m+a+38)+¥ . (C9)

These equations govern the evolution of the expansion and

shear along the nuli* direction.

The natural null tetrad for the Einstein-Rosen met#id)
is (where the metric signature has been changed 2 to
conform with the original NP construction

— a2(y— t
1,=e*0"9(8,+5)), (C10
1 t r
nﬂzi(ﬁﬂ—ﬁﬁ), (C1y
! i 57 -2y 5
m,=— Ee (io,+re ="sy). (C12
The nonvanishing Ricci components are
Doy, Pgp, P11, Py (C13
The nonvanishing NP scalars are
Yoy, Yo, Y- (C19

PHYSICAL REVIEW D 65 084045

Finally, the nonvanishing NP spin coefficients @msodulo
complex conjugationa, X\, 6, u, ande. The relevant ones
are

1

o=0=y— Y+ o (C15
6=5—— C16
— U= E) ( )
e=e= Y= vet v (C17)

The relevant evolution equations become then
D 6=+ co+ Dy, (C19
Do=a(6+0)+¥ . (C19

All of the NP objects were computed with the aid of the
algebraic packagerRTENSORIIfor MAPLE V. Most of the non-
zero objects are “too large” to be explicitly written in any
convenient way. Since only the fact that they are nonvanish-
ing matters for our purposéspecifically, ¥ 4,#0), we omit
here their explicit form.
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