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Yang-Mills solutions on Euclidean Schwarzschild space
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We show that the apparently periodic Charap-Duff Yang-Mills “instantons” in time-compactified Euclidean
Schwarzschild space are actually time independent. For these solutions, the Yang-Mills potential is constant
along the time directiofno barriej and therefore, there is no tunneling. We also demonstrate that the solutions
found to date are three-dimensional monopoles and dyons. We conjecture that there are no time-dependent
solutions in the Euclidean Schwarzschild background.
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Studies[1,2] of Yang-Mills (YM) instantons coupled to processes, such as tunneling. But, unlike the calorons, the
Einstein’s gravity started not long after their discovery in flatapparently time-periodic YM solutions of CD in Euclidean
space[3], but this subject has not received proper interesSchwarzschild turned out to be actuatiyne independent
since. The Lorentzian Einstein-YM system holds quite awhen looked at the proper gauge. As we shall show, these
number of surprises—one of which is a soliton solutjgh  solutions are more like BPS monopoles than instantons. In
which is absent both in pure gravity and in pure YM theoryfact, the YM potential is constant alopg the time direction for
[5]. In Euclidean space, the energy momentum tensor of selfh€se solutions and there is no barrier to tunnel. _
dual YM solutions vanishes and therefore gravity is not dis- 1he Euclidean Schwarzschild space, in Schwarzschild
turbed by the presence of instantons but does affect'tirem and Kruskal coordinates, respectively, is
a number of different ways: in particular it can change the
space-time topology and it can bring a scéabe multiple 1 )
scales. If space is conformally flat, the self-duality equations ds’=H(r)dt*+ mderf r#(d6*+sir’6d¢?),
of flat-space YM theory are intact and the flat space Belavin-
Polyakov-Schwarz-TyupkiiBPST) instantons are formally
solutions. But this is too naive: one has to take into account
the existence of the horizons and the global topology of the
space-time. Euclidean de Sitter space is a good example in
this context: there is a horizon and the time is compactified. 30M? ;

In the literature] 7] one can findstatic three-dimensional so- d<2= ex;{ _ W) (dZ2+dy?)

2M
H(N=1- "=, M

lutions but apparently no fully four-dimensional instanton r

solutions. +r2(d02+sin20d¢2), (2)
Here we shall take the background to be Euclidean

Schwarzschild space. YM theory in this background was

studied long ago by Charap and D¢@D) [1,2], who found ~ Where

self-dual solutions. However, the physical meaning of the

solutions of CD has not hitherto been resolved. CD acknowl- r r y—iz —it

edge that their “instanton” solutions, being periodic in Eu- zz+y2=(m—1)exp<m), ytiz :esz_M' 3

clidean time, do not allow a tunneling interpretation between

vacua. This work started with the intention to show that pe-

riodic instanton solutions in a curved background can belhe Euclidean time can be compactified to remove the sin-

given a normal tunneling interpretation in the same spirit aglularity at the origirfwe set the gravitational consta@tand

the caloron solutionf8] of YM theory onS!X R3. As dem-  the Yang-Mills coupling constangyy to unity: G=gyy

onstrated iff9], the caloron gauge field, initially constructed ~— 1]

to be explicitly periodic, is no longer periodic in the Weyl

gauge A§=0), which is more suitable for the Hamiltonian t—t+B, B=87M, r=2M. (4)

However, once compactified, thd —0 limit is tricky, and
formally it yields a three- instead of four-dimensional Eu-
*Email address: tekin@brandeis.edu clidean space(This suggests that YM instantons in this
IA similar situation arises in three dimensions for a different rea-Packground, if they existed at all, would not limit to the flat
son, the imaginary nature of the Chern-Simons action in Euclideaspace 4D BPST instanton féi —0.)
space: there are Chern-Simons gravity-YM-Higgs “gravitating We take SU(2) YM theory and adopt the spherically
monopole-instanton” solutions which also do not curve sg&le  symmetric instanton ansatz for the YM gauge connection,
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1 construction of these maps in the finite temperature gauge
A= AA% dx+ theory context, we refer the reader[thl] and[12].
Another way to avoid this topological “simplicity” is to
a XaX consider solutions that have non-trivial holonomy for the
- ?[AOTdH—Al _rrdxk Polyakov loop at spatial infinityPexpf5Aqdt+1. This will
effectively break the gauge group td(1) and non-trivial
+ ﬁ( Sak— Xa—)z(k)dxk+ Eakl¢22 xdx !, (5) homotopy will guarantee the solutions. But more generally
r r r we can rely on the cohomology arguments for the existence
of non-trivial solutions. Namely we need the topological
charge to be non-vanishing, expressed as an integral over the
boundary :Q~ [ytrFAF=[ydK=[g.sK. A non-exact
but closed 3-formK can be constructed since the relevant
cohomology groups are non-trivialH}(S*,R)=R and
H2(S?,R)=R. This argument alone does not imply the quan-
tization of the topological charge. This is obtained by the
’bstrdr@_quirement of the single valuedness of the path-integral

a

where 72 are Pauli matrices. We should mention that
Charap-Duff[2] have only three unknown functions in their
ansatz, as they work with an already gauge-fixed instanto
ansatz k! A]-azAl:O) from the start. On the other hand, we
have not fixed the gauge yet. This will be a crucial point for
the physical interpretation of the solutions.

Our task is to solve the self-duality equatiofss =* F
but there are at least one apparent and one serious o
tion to the existence of non-trivial instanton solutions. The(&XP(Q))- . . . )
apparent one is that naive topological considerations seem to The more serious obstruction for the existence of arbitrary
imply that there will be no non-trivial solutions of equations Size instanton solutions is the existence of a scallé, R is
of motion. The topology of the Euclidean Schwarzschildclear that YM theory in the Schwarzschild background is not
space iR?x S?. At spatial infinity (r — ), the space has the scale invariant and the best one can do is to look for “con-
topologys};x Si (we add the point=0 to the time direc- strained instantons” as ifL3]. These are approximate solu-
tion). The relevant homotopy groups vanihl,(SU(2)] tions with scales restricted to a domain, usually given by the
=0] and I1,[SU(2)]=0; considered as a map:S'xS?  scale in the theory. At the end of this paper, we will argue
—SU(2) cannot have a winding number. But this argumentthat Euclidean Schwarzschild space does not allow such so-
is not sufficient to prove that there are no non-trivial solu-lutions. We next show that the solutions reported in the lit-
tions, the existence of calorons in the sa(asymptoti¢ to-  erature are 3D monopoles rather than 4D instantons.
pology being a counterexample. Theran indeed be non- The gauge field strengtitF,=dA—iA/\A, is computed to
trivial maps betweers'x S? and SU(2) [10]. For explicit  be[14,15

1 . . . . .
F= E{(Al_Aé) mdtAAr+[ (= Agp1) T1+ (1 + Agdho) T2 ]dtNAO—[ (1 + Agdhy) 71+ (— ot Agepy) To]dt/\sinfd ¢

+[(Po— A1) 71+ (P1H A1) To]drADO+[(— 1 — A1) 11+ (ho— Arhy) To]dr/Asinfd ¢
—(1— ¢5— Pp3)75d0/\sinod B} (6)

Here ¢’ and¢ denote derivative with respect taandt, respectively. The dual field strength, in the Euclidean Schwarzschild
background, is

1
2

(1= ¢1= d3) madt/\dr+ H(N[(1+ Ardo) 71+ (= i+ A ) o]dUAd O+ H(N) (5~ Arda) 7y

*F= —

N[ =

1 . . 1 .
+ (1t A1p,) To]dt/\sinOdp— m[(‘f’l“‘Aod’z) 71+ (= ¢t Agdy) To]dr/Ad O+ — m[(d’z_Ao(f’l)Tl

+ (1t Agpy) To1drAsind g+ r2(A — Ap) 3d6/\sinod ¢ | . 7)

Before we look at the equations of motion, let us show that there is a nice dimensional reduction of the four-dimensional
YM action to a 2D Abelian Higgs model in a curved background:
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Now let us look at non-zerdl. The charge 1 solution
Sym= fMtrFA*F given by[2] is
1 _ _ M
:87Tf2d2X\/ﬁ[§hMVD#QD| DV(Pi Al_o' AO_)\_ |’_2’
1 1 1/2
+§hﬂahvﬁ|:#y|:aﬁ+z(1—<p$)2 : (8) ¢1=(1—7> Cog A t+ o),

M 1/2

Space-time indices refer td,¢) only andi,j=(1,2), where SN+ wo). (12)

F.=d,A,—d,A, andD ,¢;=d,¢;+€;A,p; are the two- $2= ( == )
dimensional Abelian field strength and covariant derivative,
respectivelyS is a semi-infinite strip in the upper-half plane This solution will be smootfr e [2M,) andte[0,87M],
with the following metric: if one sets\ = 1/4M. The non-Abelian gauge field is periodic
[A%(r,t=0)=A{(r,t=87M)]. w, is an integration con-
df—n dx“dx”=H(r) 4 stant which denotes the angular location of the instanton in
4 r2 the time interval and without loss of generality we choose
wo= /2. Observe that there is n@rbitrary size for the
This reduction of course follows from the conformal invari- solution. In this periodic gauge, the flat space limh! (
ance of the Yang-Mills action. One can simply pull out a —0) does not seem to be well defined. But it is clear that we
factor of r? from the metric(1). The result(8) merely gen-  can gauge transform this solution to a time-independent so-
eralizes that of the flat space cagkd]: four-dimensional |ution using Eq.(11), with a gauge transformation function
Yang-Mills theory onR*, for spherically symmetric solu- f(r,t)=—\t. Then the solution will be
tions, reduces to the two-dimensional Abelian-Higgs model
on the upper half-plane with the Poincaraetric ds? _ M
—r(d2+ dr?). A1=0, Ao=—17,
Now let us study the self-duality equatioRss =* F, ex- (13
pressed as 2M ) 12

$1=0, ¢2:<1_ e

r

dr?. 9)

r2H(r)

. 1

A~ Al=T5(1—¢°— ¢2), . . . .
1" Ao=Fz(1- 41 ¢2) This solution has an artificialgauge singularity atr =2M

and this is the same solution as the one CD obtained from the

o= Agpr=TH(r) () + A1), (10)  spin connection in their first paper on the subjedt We can
show that it is a charge 1 monopole, by associating an Abe-
b1+ Agdo=TH(T)(bs—Archy). lian field strength through 't Hooft'516] definition (and also

see Abbott-Deserl7])
Both the equations of motion and the action are invariant
under the non-Abelian gauge transformatigbix,t)=exp

—i[f(r,t)/2]x- 7) which transform the ansatz functions in the Aa_ pa apa
following way: whereAqs=Ag/ V(AoAo).

fw=0,(A3A2) =3, (AJA) + 2*°AZ A3, AY (1)

- . XiA} €jig X2
AO:A0+f, fOi:_Ir O, f”: Ijaz . (15)
r

A=A+, L : .
The electric fieldg;=f,; decays rapidly and so the electric
charge of the solution is zero but the magnetic charge is 1.
Thus, as promised, we have demonstrated that the solution of
[2] is time independent and corresponds to a monopole. An-
other way to see this is to look at the gauge-invariant Yang-
Mills potential. It reads

$,=+ ¢p,cosf + ¢sinf,

$1=— ¢,sinf+ ¢,cosf. (11)

In flat spaceM =0 andH(r)=1, Eqgs.(10), augmented with
a gauge condition, are integrable and were solved4 to -
obtainn-instanton solutions located on thexis at arbitrary V(t)= zwf dr[ 2H(r) () +Ardhp)2+2H(r)
locations and with arbitrary sizegAnother interesting fact 2M

about these equations was noted 19] and[20]: Eq. (10)

corresponds to extremal surfaces in R&%, for H(r)=1. (b — 2 i 42 422

For genericH(r), Egs. (10) can be shown to reduce to a (¢~ Arb)™+ r2(1 P12 (16
problem of finding anon-extremal surface whose Gaussian

curvature is a function of H) [21].) For Eq.(12), we have
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T Departing from CD, new solutions can be obtained, one
V=ou (17)  of which is the following
~ ~ 2Mt
It is time independent and so there is no barrier to tunnel Ag=0, A;=- -3

unlike the flat-space BPST instanton or the time-periodic cal-
oron[9]. Its kinetic energy is

- 2M\ Y2 Mt
¢1= 1—7 co r—2+wo,

_ 2M 1/2
SRETTEN
2 . . r

+ W(¢2_A0¢1)2+ r2(A;—Ap?1, (22)

(18)  This is again a topological charge 1 solution but siﬁ@
=0, it does not seem to allow a monopole interpretation. But
which is computed to be one can easily show that this solution is relatedﬁ to the
CD solution (12) by a large gauge transformatiofv(x,t)
T =exd —if(r.)x-o/2], where f(r,t)=t[(M/r?)—\]. There-
Exkinetic(t) = 537 - (19 fore Eq.(22) is simply in “bad,” Weyl, gauge as far as the
monopole structure is concerned. The Yang-Mills potential
and the rest of the gauge invariant objects are the same as the
D solution of course. But the decomposition of the topo-
gical charge differs in these two gauges.
Following the discussion df9], let us now see how the
topological charge can be decomposed into the radial part
and the Chern-Simons patrts,

ke 2 .
Ekinetic(t)ZZWJZMdr(m((ﬁl'FAO(ﬁZ)Z Mt
r_2 + wq | .

We have seen that, even though the monopole has an as
ciated electric field, its flux at infinity is zero. The “mass” of |
the monopole can be defined as the sum of the kinetic anc?
the potential energies: namety M. In flat space the mono-
pole action (mass dt) is divergent, but here, because of the
compactness of the time dimension, its action € 8This is

numerically the same as the topological charge 1 instanton 1
action, but as argued above, the solution at hand is a BPS Q= Wf trF/\F
monopole. M
We can also give a suggestive argument of how to inter-
pret the mass of the monopole. Needless to A8ylays the =477J2d2x[ €,,€jD , $iD

role of an adjoint Higgs field, as is already clear from the
definition of the Abelian field strengtfil4). The flat space 1
BPS 't Hooft-Polyakov monopole, obtained from YM fields - EEWFM(l— i d;i)]
has a mass #v, wherev is the expectation value ¢Af| at
spatial infinity. Even though the explicit solutions of the flat 8rM o d
space and the curved-space BPS monopole are quite differ- = Jo dt;CSO+ LMdfaK(f)- (23
ent, they nevertheless allow similar interpretations in the
non-singular gaugel2). We haveAq(r —)=1/4M: the in- | torms of the ansatz fields, the Chern-Simons fe@
verse of the Schwarzschild radius determines the symmetry JdKy, is
breaking scale and so the mass of the curved BPS monopole '
IS 1 [

CS= 5= [ dajs,- .04
aa

Mmonopole=M=47TAO(r_>oo)- (20) —A1(1—¢§—¢§)+¢1] (24

The second, dyon, solution reported[R] is while the radial part is

1 (8wM X .
1 K(r)=2—f dtf P12~ hohy
A1:¢1:¢2:0, AO:i(C_ F) (21) TJo

+Ag(1—¢i— 85— dal. (25)
Computing Eq.(15) for this solution one observes that this
solution has both electric and magnetic charges of unity. Its———
Abelian nature was also explored 8] from a different  2Dyon solution isA;=*(c—t/r?) and the rest of the fields van-
perspective. The YM potential for this BPS dyon is twice ish.
that of the monopolél7). 30ur signs are different from those [4].
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For CD gaugg12), we have Ag=—2d/Inp, A;=dlnp
8Mm?3 - —1—
CS)=0, K(r)=1— . (260) d1=rdolnp, P,=1—rd/Inp (28
where
for which all the contributions to the topological charge r
come from the radial part. In the Weyl gau@@?), X sinf(m
t am2[  2M P(rO=1+ 750 : t @9
CSV=g- " K(r):—rz—(l—T) (27) Cosl’(m)—cm{m)
all the contributions to the topological charge come from theBut clearly, for distances>g=8wM, time dependence
Chern-Simons part. drops out and the caloron looks exactly like a three-

In conclusion we have demonstrated that the apparentigimensional(time-independentdipole [22]. Therefore be-
time periodic instanton solutions in Euclidean Schwarzschildcause of the proximity of the two scalgs,and 2\, there is
background are actually time independent and do not depractically no room for time-dependent “constrained instan-
scribe tunneling. To get this result, it was important to workton” solutions® Numerical study of the self-duality equations
in the proper gauge. All the solutions reported in the litera-Would be necessary to decide this issue.

ture (including the ones we proposed heage monopoles in | am grateful to Stanley Deser for extended discussions
the sense of 't Hooft and Polyakov: they are non-singularng for helping me in every step of the work. | would like to

three-dimensional solutions with an associated Abelian fielghank Gerald Dunne for useful correspondence. This work
strength. This clarifies the physical interpretation of thesgygg supported by National Science Foundation grant

solutions. _ PHY99-73935.
We have also argued that even though the topological ob-

struction brought by gravity can be circumvented, the dimen

sionful scale(Schwarzschild radigsorought by it eliminates  4ere we exclusively deal with periodic solutions. On the other

four-dimensionalarbitrary siz¢ instantons. _ hand, “quasi-periodic” solutions can be constructed for multi-
How about “constrained instanton$13]? Looking at the  jnstantons(A quasi-periodic solution broadly means that the ratio

equations of motior{10) we see that, for>2M, the equa-  of the periods of two constituent instantons is irrational and one

tions reduce to those of flat space with a compact timecannot define a “universal” periodQuasi-periodic solutions ifiat

Therefore the usual caloron solution[8] indeed a solution  space were found by Chakrabarti[i®3]. It remains to be seen if

for r>2M: Euclidean Schwarzschild space allows these types of solutions.
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