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Yang-Mills solutions on Euclidean Schwarzschild space

Bayram Tekin*
Department of Physics, Brandeis University, Waltham, Massachusetts 02454

~Received 9 January 2002; published 8 April 2002!

We show that the apparently periodic Charap-Duff Yang-Mills ‘‘instantons’’ in time-compactified Euclidean
Schwarzschild space are actually time independent. For these solutions, the Yang-Mills potential is constant
along the time direction~no barrier! and therefore, there is no tunneling. We also demonstrate that the solutions
found to date are three-dimensional monopoles and dyons. We conjecture that there are no time-dependent
solutions in the Euclidean Schwarzschild background.
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Studies@1,2# of Yang-Mills ~YM ! instantons coupled to
Einstein’s gravity started not long after their discovery in fl
space@3#, but this subject has not received proper inter
since. The Lorentzian Einstein-YM system holds quite
number of surprises—one of which is a soliton solution@4#
which is absent both in pure gravity and in pure YM theo
@5#. In Euclidean space, the energy momentum tensor of s
dual YM solutions vanishes and therefore gravity is not d
turbed by the presence of instantons but does affect them1 in
a number of different ways: in particular it can change
space-time topology and it can bring a scale~or multiple
scales!. If space is conformally flat, the self-duality equatio
of flat-space YM theory are intact and the flat space Belav
Polyakov-Schwarz-Tyupkin~BPST! instantons are formally
solutions. But this is too naive: one has to take into acco
the existence of the horizons and the global topology of
space-time. Euclidean de Sitter space is a good examp
this context: there is a horizon and the time is compactifi
In the literature@7# one can findstatic three-dimensional so
lutions but apparently no fully four-dimensional instant
solutions.

Here we shall take the background to be Euclide
Schwarzschild space. YM theory in this background w
studied long ago by Charap and Duff~CD! @1,2#, who found
self-dual solutions. However, the physical meaning of
solutions of CD has not hitherto been resolved. CD ackno
edge that their ‘‘instanton’’ solutions, being periodic in E
clidean time, do not allow a tunneling interpretation betwe
vacua. This work started with the intention to show that p
riodic instanton solutions in a curved background can
given a normal tunneling interpretation in the same spirit
the caloron solutions@8# of YM theory onS13R3. As dem-
onstrated in@9#, the caloron gauge field, initially constructe
to be explicitly periodic, is no longer periodic in the We
gauge (A0

a50), which is more suitable for the Hamiltonia

*Email address: tekin@brandeis.edu
1A similar situation arises in three dimensions for a different r

son, the imaginary nature of the Chern-Simons action in Euclid
space: there are Chern-Simons gravity-YM-Higgs ‘‘gravitati
monopole-instanton’’ solutions which also do not curve space@6#.
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processes, such as tunneling. But, unlike the calorons,
apparently time-periodic YM solutions of CD in Euclidea
Schwarzschild turned out to be actuallytime independent,
when looked at the proper gauge. As we shall show, th
solutions are more like BPS monopoles than instantons
fact, the YM potential is constant along the time direction f
these solutions and there is no barrier to tunnel.

The Euclidean Schwarzschild space, in Schwarzsc
and Kruskal coordinates, respectively, is

ds25H~r !dt21
1

H~r !
dr21r 2~du21sin2udf2!,

H~r !512
2M

r
, ~1!

ds25
32M3

r
expS 2

r

2M D ~dz21dy2!

1r 2~du21sin2udf2!, ~2!

where

z21y25S r

2M
21DexpS r

2M D ,
y2 iz

y1 iz
5exp

2 i t

2M
. ~3!

The Euclidean time can be compactified to remove the
gularity at the origin@we set the gravitational constantG and
the Yang-Mills coupling constantgY M to unity: G5gY M
51#:

t→t1b, b58pM , r>2M . ~4!

However, once compactified, theM→0 limit is tricky, and
formally it yields a three- instead of four-dimensional E
clidean space.~This suggests that YM instantons in th
background, if they existed at all, would not limit to the fl
space 4D BPST instanton forM→0.!

We take SU(2) YM theory and adopt the sphericall
symmetric instanton ansatz for the YM gauge connection

-
n
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A5
1

2
t aAm

a dxm

5
t a

2 H A0

xa

r
dt1A1

xaxk

r 2 dxk

1
f1

r S dak2
xaxk

r 2 Ddxk1eakl

f221

r 2 xkdxl J , ~5!

where t a are Pauli matrices. We should mention th
Charap-Duff@2# have only three unknown functions in the
ansatz, as they work with an already gauge-fixed instan
ansatz (xj Aj

a5A150) from the start. On the other hand, w
have not fixed the gauge yet. This will be a crucial point
the physical interpretation of the solutions.

Our task is to solve the self-duality equations,F56* F,
but there are at least one apparent and one serious obs
tion to the existence of non-trivial instanton solutions. T
apparent one is that naive topological considerations see
imply that there will be no non-trivial solutions of equation
of motion. The topology of the Euclidean Schwarzsch
space isR23S2. At spatial infinity (r→`), the space has th
topology Sb

13S`
2 ~we add the pointt50 to the time direc-

tion!. The relevant homotopy groups vanish@P2(SU(2)#
50# and P1@SU(2)#50; considered as a map,A:S13S2

→SU(2) cannot have a winding number. But this argume
is not sufficient to prove that there are no non-trivial so
tions, the existence of calorons in the same~asymptotic! to-
pology being a counterexample. Therecan indeed be non-
trivial maps betweenS13S2 and SU(2) @10#. For explicit
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construction of these maps in the finite temperature ga
theory context, we refer the reader to@11# and @12#.

Another way to avoid this topological ‘‘simplicity’’ is to
consider solutions that have non-trivial holonomy for t
Polyakov loop at spatial infinity:Pexp*0

bA0dtÞ61. This will
effectively break the gauge group toU(1) and non-trivial
homotopy will guarantee the solutions. But more genera
we can rely on the cohomology arguments for the existe
of non-trivial solutions. Namely we need the topologic
charge to be non-vanishing, expressed as an integral ove
boundary :Q;*MtrF `F5*MdK5*S23S1K. A non-exact
but closed 3-formK can be constructed since the releva
cohomology groups are non-trivial:H1(S1,R)5R and
H2(S2,R)5R. This argument alone does not imply the qua
tization of the topological charge. This is obtained by t
requirement of the single valuedness of the path-integ
^exp(iQ)&.

The more serious obstruction for the existence of arbitr
size instanton solutions is the existence of a scale, 2M . It is
clear that YM theory in the Schwarzschild background is n
scale invariant and the best one can do is to look for ‘‘co
strained instantons’’ as in@13#. These are approximate solu
tions with scales restricted to a domain, usually given by
scale in the theory. At the end of this paper, we will arg
that Euclidean Schwarzschild space does not allow such
lutions. We next show that the solutions reported in the
erature are 3D monopoles rather than 4D instantons.

The gauge field strength ,F5dA2 iA`A, is computed to
be @14,15#
hild

nsional
F5
1

2
$~Ȧ12A08!t3dt`dr1@~ḟ22A0f1!t11~ḟ11A0f2!t2#dt`du2@~ḟ11A0f2!t11~2ḟ21A0f1!t2#dt`sinudf

1@~f282A1f1!t11~f181A1f2!t2#dr`du1@~2f182A1f2!t11~f282A1f1!t2#dr`sinudf

2~12f1
22f2

2!t3du`sinudf%. ~6!

Heref8 andḟ denote derivative with respect tor andt, respectively. The dual field strength, in the Euclidean Schwarzsc
background, is

* F5
1

2 H 2
1

r 2 ~12f1
22f2

2!t3dt`dr1H~r !@~f181A1f2!t11~2f281A1f1!t2#dt`du1H~r !@~f282A1f1!t1

1~f181A1f2!t2#dt`sinudf2
1

H~r !
@~ḟ11A0f2!t11~2ḟ21A0f1!t2#dr`du12

1

H~r !
@~ḟ22A0f1!t1

1~ḟ11A0f2!t2#dr`sinudf1r 2~Ȧ12A08!t3du`sinudfJ . ~7!

Before we look at the equations of motion, let us show that there is a nice dimensional reduction of the four-dime
YM action to a 2D Abelian Higgs model in a curved background:
5-2
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SY M5E
M

trF`* F

58pE
S
d2xAhH 1

2
hmnDmw i Dnw i

1
1

8
hmahnbFmnFab1

1

4
~12w i

2!2J . ~8!

Space-time indices refer to (t,r ) only andi , j 5(1,2), where
Fmn5]mAn2]nAm andDmw i5]mw i1e i j Amw j are the two-
dimensional Abelian field strength and covariant derivati
respectively.S is a semi-infinite strip in the upper-half plan
with the following metric:

ds25hmndxmdxn5
H~r !

r 2 dt21
1

r 2H~r !
dr2. ~9!

This reduction of course follows from the conformal inva
ance of the Yang-Mills action. One can simply pull out
factor of r 2 from the metric~1!. The result~8! merely gen-
eralizes that of the flat space case@14#: four-dimensional
Yang-Mills theory onR4, for spherically symmetric solu
tions, reduces to the two-dimensional Abelian-Higgs mo
on the upper half-plane with the Poincare´ metric ds2

5r 22(dt21dr2).
Now let us study the self-duality equationsF56* F, ex-

pressed as

Ȧ12A0857
1

r 2 ~12f1
22f2

2!,

ḟ22A0f156H~r !~f181A1f2!, ~10!

ḟ11A0f257H~r !~f282A1f1!.

Both the equations of motion and the action are invari
under the non-Abelian gauge transformations„U(xW ,t)5exp
2i@f(r,t)/2# x̂•tW… which transform the ansatz functions in th
following way:

Ã05A01 ḟ ,

Ã15A11 f 8,

f̃251f2cosf 1f1sin f ,

f̃152f2sin f 1f1cosf . ~11!

In flat space,M50 andH(r )51, Eqs.~10!, augmented with
a gauge condition, are integrable and were solved in@14# to
obtainn-instanton solutions located on thet axis at arbitrary
locations and with arbitrary sizes.„Another interesting fact
about these equations was noted in@19# and @20#: Eq. ~10!
corresponds to extremal surfaces in theR(2,1), for H(r )51.
For genericH(r ), Eqs. ~10! can be shown to reduce to
problem of finding a~non-extremal! surface whose Gaussia
curvature is a function of H~r! @21#.…
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Now let us look at non-zeroM. The charge 1 solution
given by @2# is

A150, A05l2
M

r 2 ,

f15S 12
2M

r D 1/2

cos~lt1v0!,

f25S 12
2M

r D 1/2

sin~lt1v0!. ~12!

This solution will be smoothr P@2M ,`) and tP@0,8pM #,
if one setsl51/4M . The non-Abelian gauge field is periodi
@Am

a (r ,t50)5Au
a(r ,t58pM )#. v0 is an integration con-

stant which denotes the angular location of the instanton
the time interval and without loss of generality we choo
v05p/2. Observe that there is no~arbitrary! size for the
solution. In this periodic gauge, the flat space limit (M
→0) does not seem to be well defined. But it is clear that
can gauge transform this solution to a time-independent
lution using Eq.~11!, with a gauge transformation functio
f (r ,t)52lt. Then the solution will be

A150, A052
M

r 2 ,

~13!

f150, f25S 12
2M

r D 1/2

.

This solution has an artificial~gauge! singularity atr 52M
and this is the same solution as the one CD obtained from
spin connection in their first paper on the subject@1#. We can
show that it is a charge 1 monopole, by associating an A
lian field strength through ’t Hooft’s@16# definition ~and also
see Abbott-Deser@17#!

f mn5]m~Â0
aAn

a!2]n~Â0
aAm

a !1eabcÂ0
a]mÂ0

b]nÂ0
c ~14!

whereÂ0
a5A0

a/A(A0
aA0

a),

f 0i5
xiA08

r
, f i j 5

e i jaxa

r 2
. ~15!

The electric fieldEi5 f 0i decays rapidly and so the electr
charge of the solution is zero but the magnetic charge i
Thus, as promised, we have demonstrated that the solutio
@2# is time independent and corresponds to a monopole.
other way to see this is to look at the gauge-invariant Ya
Mills potential. It reads

V~ t !52pE
2M

`

drH 2H~r !~f181A1f2!212H~r !

3~f282A1f1!21
1

r 2
~12f1

22f2
2!2J . ~16!

For Eq.~12!, we have
5-3
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V5
p

2M
. ~17!

It is time independent and so there is no barrier to tun
unlike the flat-space BPST instanton or the time-periodic c
oron @9#. Its kinetic energy is

Ekinetic~ t !52pE
2M

`

drH 2

H~r !
~ḟ11A0f2!2

1
2

H~r !
~ḟ22A0f1!21r 2~Ȧ12A08!2J ,

~18!

which is computed to be

Ekinetic~ t !5
p

2M
. ~19!

We have seen that, even though the monopole has an a
ciated electric field, its flux at infinity is zero. The ‘‘mass’’ o
the monopole can be defined as the sum of the kinetic
the potential energies: namelyp/M . In flat space the mono
pole action (*mass dt) is divergent, but here, because of t
compactness of the time dimension, its action is 8p2. This is
numerically the same as the topological charge 1 instan
action, but as argued above, the solution at hand is a
monopole.

We can also give a suggestive argument of how to in
pret the mass of the monopole. Needless to say,A0

a plays the
role of an adjoint Higgs field, as is already clear from t
definition of the Abelian field strength~14!. The flat space
BPS ’t Hooft-Polyakov monopole, obtained from YM field
has a mass 4pv, wherev is the expectation value ofuA0

au at
spatial infinity. Even though the explicit solutions of the fl
space and the curved-space BPS monopole are quite d
ent, they nevertheless allow similar interpretations in
non-singular gauge~12!. We haveA0(r→`)51/4M : the in-
verse of the Schwarzschild radius determines the symm
breaking scale and so the mass of the curved BPS mono
is

Mmonopole5
p

M
54pA0~r→`!. ~20!

The second, dyon, solution reported in@2# is

A15f15f250, A056S c2
1

r D . ~21!

Computing Eq.~15! for this solution one observes that th
solution has both electric and magnetic charges of unity.
Abelian nature was also explored in@18# from a different
perspective. The YM potential for this BPS dyon is twi
that of the monopole~17!.
08403
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Departing from CD, new solutions can be obtained, o
of which is the following2

Ã050, Ã152
2Mt

r 3 ,

f̃15S 12
2M

r D 1/2

cosS Mt

r 2 1v0D ,

f̃25S 12
2M

r D 1/2

sinS Mt

r 2 1v0D .

~22!

This is again a topological charge 1 solution but sinceÃ0
a

50, it does not seem to allow a monopole interpretation. B
one can easily show that this solution is related to
CD solution ~12! by a large gauge transformationW(xW ,t)
5exp@2if (r,t)x̂•s/2#, where f (r ,t)5t@(M /r 2)2l#. There-
fore Eq. ~22! is simply in ‘‘bad,’’ Weyl, gauge as far as th
monopole structure is concerned. The Yang-Mills poten
and the rest of the gauge invariant objects are the same a
CD solution of course. But the decomposition of the top
logical charge differs in these two gauges.

Following the discussion of@9#, let us now see how the
topological charge can be decomposed into the radial
and the Chern-Simons parts,

Q5
1

8p2E
M

trF`F

54pE
S
d2xH emne i j Dmf iDnf j

2
1

2
emnFmn~12f if i !J

5E
0

8pM

dt
d

dt
CS~ t !1E

2M

`

dr
d

dr
K~r !. ~23!

In terms of the ansatz fields, the Chern-Simons term3 CS
[*d3xK0, is

CS~ t !5
1

2pE2M

`

dr@f18f22f1f28

2A1~12f1
22f2

2!1f18# ~24!

while the radial part is

K~r !5
1

2pE0

8pM

dt@f1ḟ22f2ḟ1

1A0~12f1
22f2

2!2ḟ1#. ~25!

2Dyon solution isA156(c2t/r 2) and the rest of the fields van
ish.

3Our signs are different from those of@9#.
5-4



e

th

nt
il
d
rk
ra

la
e
s

o
en

e

e-

n-
s

ons
to
ork
ant

er
ti-
tio
ne

.

YANG-MILLS SOLUTIONS ON EUCLIDEAN . . . PHYSICAL REVIEW D65 084035
For CD gauge~12!, we have

CS~ t !50, K~r !512
8M3

r 3 , ~26!

for which all the contributions to the topological charg
come from the radial part. In the Weyl gauge~22!,

CS~ t !5
t

8pM
, K~r !5

4M2

r 2 S 12
2M

r D ~27!

all the contributions to the topological charge come from
Chern-Simons part.

In conclusion we have demonstrated that the appare
time periodic instanton solutions in Euclidean Schwarzsch
background are actually time independent and do not
scribe tunneling. To get this result, it was important to wo
in the proper gauge. All the solutions reported in the lite
ture ~including the ones we proposed here! are monopoles in
the sense of ’t Hooft and Polyakov: they are non-singu
three-dimensional solutions with an associated Abelian fi
strength. This clarifies the physical interpretation of the
solutions.

We have also argued that even though the topological
struction brought by gravity can be circumvented, the dim
sionful scale~Schwarzschild radius! brought by it eliminates
four-dimensional~arbitrary size! instantons.

How about ‘‘constrained instantons’’@13#? Looking at the
equations of motion~10! we see that, forr @2M , the equa-
tions reduce to those of flat space with a compact tim
Therefore the usual caloron solution is@8# indeed a solution
for r @2M :
-

ev
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A052] r ln r, A15]0ln r

f15r ]0ln r, f2512r ] r ln r ~28!

where

r~r ,t !511
l2

4Mr

sinhS r

4M D
coshS r

4M D2cosS t

4M D . ~29!

But clearly, for distancesr @b58pM , time dependence
drops out and the caloron looks exactly like a thre
dimensional~time-independent! dipole @22#. Therefore be-
cause of the proximity of the two scales,b and 2M , there is
practically no room for time-dependent ‘‘constrained insta
ton’’ solutions.4 Numerical study of the self-duality equation
would be necessary to decide this issue.

I am grateful to Stanley Deser for extended discussi
and for helping me in every step of the work. I would like
thank Gerald Dunne for useful correspondence. This w
was supported by National Science Foundation gr
PHY99-73935.

4Here we exclusively deal with periodic solutions. On the oth
hand, ‘‘quasi-periodic’’ solutions can be constructed for mul
instantons.~A quasi-periodic solution broadly means that the ra
of the periods of two constituent instantons is irrational and o
cannot define a ‘‘universal’’ period!. Quasi-periodic solutions inflat
space were found by Chakrabarti in@23#. It remains to be seen if
Euclidean Schwarzschild space allows these types of solutions
lor,
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