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Rotating charged mass shell: Dragging, antidragging, and the gyromagnetic ratio
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We calculate explicitly the system of a spherical shell of radRusarrying (nearly arbitrary massvi and
chargeq, and rotating slowly around an axis through its center. We discuss, mainly graphically in the plane of
the model parameted/R andg/R, the following properties of this system: The dragging of inertial frames
which turns over to antidragging in part of the parameter space, the induced magnetic field, the angular
momentum, the magnetic moment, and the gyromagnetic ratio. The latter is very near to the value 2 in an
overwhelming part of the parameter space, and we argue that this signals a deep connection between general
relativity and quantum theory which could be important in the search for quantum gravity.
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I. INTRODUCTION are that the invariant radius of the shell is non-negative, that
the model is really statiéno collapse, no singularitigsand

It has been known since 1918 from the classic work ofthat the total masM is non-negative. We discuss the energy
Thirring that in general relativity a rotating mass shell in- conditions for the shell material, but we allow for violation
duces a dragging of inertial frames in its interior. In the workof these conditions. In Sec. Ill we tre@h analogy td5]) the
of Thirring this was a tiny effect since he confined himself torotation of this charged shell in first order of the angular
the weak field approximation. Later, however, it was showrvelocity w. The(ordinary differential equations for the drag-
by Brill and Coher{1] that this dragging becomes complete ging function and the magnetic field function can be solved
(the dragging angular velocity coinciding with the angularexplicitly and analytically(compare[7] and [8]), and the
velocity of the shell in the collapse limit, and this result is integration constants are completely and uniquely deter-
considered as convincing evidence for the realizatiofMazf-  mined by the regularity at the shell center, the asymptotic
chian type relativity of rotation in general relativity, at least flatness conditions, and by the continuity or discontinuity
for appropriate model systems. Some authors consideregpnditions at the shell. In Sec. IV we discuss the results,
also, in different approximations, the influence of a rotatingmainly in graphical form, since the analytic expressions are
mass shell on electromagnetic phenomena, especially oiuite involved. The dragging is again complete in the col-
charges sitting inside the mass shéll-4], one typical effect lapse limit, is below completeness in all other cases, and
being the induction of a dipolar magnetic field. [B] we  changes sigiresulting in antidraggingin part of the param-
treated in detail a shell of arbitrarily high charge sitting in- eter space where the weak energy condition is violated. The
side a shell of arbitrary mass in first order of the angular(constant magnetic field inside the shell, measured in proper
velocities of both shells. A comparison with the results oftime, is zero in the collapse limit and in the limit of vanish-
[3,4] could resolve an inconsistency concerning the Machiaring (invarianh radius of the shell, and is positivén the
interpretation of the induced magnetic fields. direction of the rotation axjsin all other cases, i.e., it does

Aside from these models with charges sitting inside a ro-not change sign due to a violation of the energy conditions.
tating mass shell, it is of interest to treat rotating shells whichThe most important and most surprising result may be that
carry at the same place mass and charge with identical angthe gyromagnetic ratiG of the rotating shell is very near to
lar velocities(isolator type material In addition to the phe- the valueG=2 in an overwhelming part of the parameter
nomena of dragging and the induction of a magnetic fieldspace. Only in a small strip around the parameters where,
for such systems the question of their gyromagnetic ratio iglue to the violation of the energy conditions, the angular
of special interest. If6] these questions were answered for amomentum of the system vanish& attains arbitrary other
shell of arbitrary mass but small charge.[l] and[8] the  (positive and negatiyevalues, and it attains of course the
problem was in principle solved for arbitrary mass andclassical valueG=1 in an appropriate weak field limit. We
charge but the physical discussion was confined to some splke to argue that the “robustness” of this vali&=2, and
cial cases. In the present paper we calculate and discuss in #B “coincidence” with the valueG~2 for the simplest ro-
detail a spherical shell of radiu(in isotropic coordinates to tating, charged quantum particléslectron and muonhints
be defined in Sec. Jlwith (nearly arbitrary massM and to a deep connection between general relativity and quantum
chargeq, which rotates slowly around an axis through its theory, which could serve as a guideline and control on the
center. way to some future quantum gravity.

In Sec. Il we calculate the static shell model. The only
restrictions on the dimensionless parametdiilkR and g/R L. THE STATIC MODEL
According to a generalization of the Birkhoff theorem, a
*Electronic address: herbert.pfister@uni-tuebingen.de spherically symmetric, matter-free solution of the Einstein-
"Electronic address: markus.king@uni-tuebingen.de Maxwell equations is automatically static and asymptotically
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flat, and can be represented by the Reissner-Nomistnet-  (measuring the surfagés non-negative, we have to haie
ric =0, or k=—(1+2a). (i) In order that the shell is really
B 2. 2o static, and does not develop a horizon and a gravitational
ds’=—F(p)d7*+F(p) *dp®+p*dQ)?, (1) collapse, we have to ha@=0, or k<1. (iii ) Obviously, the

with F(p)=1—2M/p+q%/p2, and d02=d o2+ sirfdde? parametel has to fulfill k<a? (y real, and the total mass

Therefore, our model of a spherically symmetric, massive,Of the shell should be non-negative=0.
The energy-momentum tensor of the shell has of course

and charged shell is simply given by two pieces of this g .
Reissner-Nordstra metric: one for the region outside the the_ f?”*_‘ =, 5(_r—R), and can be calculated from Ein-
stein’s field equations

shell, and one for the interior region. However, a matching o
these Reissner-Nordstro metrics with different mass and
charge parameters obviously would not be continuous at the
shell position. A global continuous metric is, however, desir-
able for the physical interpretation of ti@onloca) dragging
effects, and was also used in Ref$-7]. It can be reached
by a transformation of the metrid) to the isotropic form

GH=8m(TH+SH), ®

with %= (1/47)F/F’, representing the electromagnetic con-
tribution to the energy-momentum tensor, &l being the
electromagnetic field tensor. Since in our isotropic metric
form (2) the potentialsV(r) and U(r) are by construction

ds?=—e?V(dt2+e2V()(dr2+r2dQ3?). (2)  continuous at the shell position, the componerifsare es-
sentially determined by the discontinuities of the radial de-
Identification of Eqs(2) and (1) results in rivatives ofV andU. Here and in the following, the indices
1 0,1,2,3 are used to denote, respectively, the variables
'(p)= 55 (Vp*=2Mp+a?+p=M), @ Lrie
. ) . ) o 2 d A(a+ k)
with an arbitrary constanD. For F(p)>0, i.e., outside of 8mry= _Zd_xvl(le):_ — 9
horizonsy (p) is real. We simplify the following calculations RD RD
by using dimensionless variables:
1 d
M r 8mra=8mra=—— —[Vi(x=1)+ U (x=1)]
a=e Yok X @ RD? dx
2R 2R R

In the exterior regiox=1 we setD=1 (thenr andp coin- _ 2K
cide asymptotically, and identifyt with 7. Then the exterior RDX(1—«)
potentials read

(10

Obviously, the stresses in the shell vanish in the extreme

(X+a)?—9? Reissner-Nordstm casex=0, and they diverge in the col-
Vi(x)=log 2 , lapse limitk=1. In the sequel, it is useful to introduce the
quantity
U (X):|og m (5) D5 3 0 C2D 2
1 (x+ @)= 2 . A7=27RC (7'3—70)—7(2a+3f<—1< ), (11

In the interior regiorx<<1, we have to seM=0 andq  which appears also in the weak energy conditii:
=0 in order to guarantee regularity at the origirr 0. The T,,u*u"=0 for all timelike vectorsu”, being equivalent to
interior metric is then automatically flat. The transformationsA7=0, and — 70=0 for our shell. “Below” the parabola
r=p/D, t=Cr produce in the regiom<1 the potentials (k—32)2=2(a+32) in the (a, ) plane, the energy condition
A7=0 is violated. Below the ling&= — «, also the other part

Va(x)=logD=const, Ux(x)=—logC=const, (6)  _ 79=0 of the weak energy condition is violate@Gee Figs.

and the continuity of/(x) andU(x) atx=1 leads to 1-5) For completeness let us also state the dominant energy
condition: | 70|=| 73| which is violated “above” the hyper-
D bola k=%(1—4a+ 1+ 16a+16a?) approaching the as-

D=1+2a+x, C=7— (7))  ymptote k=1 for a—, i.e., in a strip below the collapse

line k=1. The strong energy condition reads32 73=0,
with the useful abbreviationc=a?—y?. We see that the and it is violated below the hyperbole= — a/(2+ «), ap-
continuity of the potential®¥/(x) andU(x) enforces in gen- proachingk=—1 for a— .
eral nontrivial transformations betweerandp, andt and . The electromagnetic field tensor belonging to the
In order that the metri¢2) with the potentials(5) and (6) Reissner-Nordstm metric (1) has only a radial component
represents a physically reasonable, static shell model, the pa-F,,= Ep=q/p2. Transformation of this component to our
rameterse and k have to satisfy some restriction§) In isotropic coordinates, under the condition that the chayge
order that the invariant radit®= p(r =R) =DR of the shell be concentrated solely on the shellratR, leads to—F,
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=E,=(g/r)e" VH(r—R), where H(r —R) is the Heaviside w3|n215~ d| ,d

function, and the potentialé5) have to be inserted for 2 dpP ﬁA(P)) =qBy. (17)
=R. Herewith, and with the inhomogeneous Maxwell equa-

tion (1N—-g)(y—gF'*) ,=4mj', the charge density=j'  This equation, together with the fact that in the limit-0

at the shell at =R can be calculated: For the metf2), we  gis0 the magnetic field should vanish in our model, suggests
have —g=eCV*Yr%sin®, and only F'=e 2V*VIE is  the ansatB,= wqf(r)sir?d, with a dimensionless function
nonzero. Therefore/—gF'" is equal tog sin (independent f(r). Equation (15 then enforces the form B,

of r) for r=R, and zero for <R. Ther derivative of this = wqRg(r)sindcosd, with f(r)=—(R/2)dg(r)/dr. Be-

expression gives then &function-type charge density: cause of continuity across the shell, the formsBgrandB,
are also valid in the interior of this shell. Then E¢s4) and
gqC (16) constitute two coupled ordinary differential equations
o(X)= 47TR—3D35(X_ 1). (12 for the unknown functioné\(r) andg(r).
Inside the shell, these equations decouple, and read
lll. FIRST ORDER ROTATION OF THE SHELL d d g2 2
. . . . (r —A|=0, —g——g=0. (18
In this section the notation and the details of the calcula- dr dr dr? r2

tions are essentially taken frofs], Sec. Ill, but we repeat

some of these calculations in order to make the present afFhe solutions, which are regular e¢0, are given by
ticle self-contained. We write the rotational extension of the

metric (2) for physical intuition in the form Ay(r)=pu, gu(r)=nr?/R? (19

ds?=—e?Y(0dt2+e?V{dr2+r2d 92+ r2sirtd with dimensionless constanis and 7z, which have later to
be fixed by continuity at the shell. Because 8&(r)
_ 2
X[de—wA(r)dt]7, (13 =const, the interior region stays flat in first order perturba-

tion in w, as is physically to be expected. The magnetic field
neglecting, however, in the following all terms of second andCom onents, andB, represent in Cartesian coordinates a
higher order inw. In this first order ofw, the potentialdJ(r) P o fep

and V(1) can b taken over uncharged om Sec. 1, and 1o TESB(ualR) long hez ais, o i wel
A(r) is independent of. The radial dependence of the drag- ged, g

. ; . . : ) . sical electrodynamics.
gl)nng functionA(r) is essentially given by the Einstein equa- In the exterior region, due t8,~f(r)~dg(r)/dr, one

integration of Eq(17) is straightforward:

_wsmzﬂd( dA )STﬁ 14 q 1
37T o dpl PP e (19 gpAP)= (27RO —AMREN], (20

The electric components of the field tengqy, reduce in our
approximation to the fieldg, from Sec. Il. The magnetic
components are of ordes, because a magnetic field results
only from the induction due to the rotating shell. However,
since there are no electric currents in thand 9 directions d 8MRA
in our model, the compone,=F,; is identically zero, (p)—g(p) g(p)=— ]
according to the inhomogeneous Maxwell equations. There- p?

fore, in the first order ofv, there remains only one nontrivial (21
homogeneous Maxwell equation

with a dimensionless integration constantinsertion of Eq.
(20) into Eg. (16), together withj*=0 outside the shell,
results in the differential equation fo(p):

2 2
Lt
p?

We write the general solution of this equation in the form

d d —
arBrt g Bo=0. (19 01(1) =A3(p(r)+£(p(N))+2a(p(r)),  (22)
and one nontrivial inhomogeneous Maxwell equation with dimensionless integration constaits, whereg(p) is
a spec_ial solution of the inhomogeneous equatit), and
dmi¥— 1 d ([ B, a(p), E(p) are fundamental solutions of the corresponding
@l 2 Sirt9 dp[ (p)Byl— ASin,& dd\sing homogeneous equation. As first observedh and inde-
pendently rediscovered [5], these solutions can be given in
explicit, analytic form:
+——(pZAE) (16)

4

o)== gip)= 1( 3 2+2q) 23
In the exterior region, Eq(14) reads, withE,= q/p?: 9(p 3p’ 9(p p°—3q Mo/
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=)= 3M2R | 2g? 209? "
TV I e VEY B
+R?g(p)S(p;M, Q) |, (24)
with
[ 1 ( p—M
———— alCCOo{ ——
/qZ_MZ /qZ_MZ
- for g>>M?,
S(p;M,q)=
S 1 p—|\/|+\/|\/|2—q2)
log
2 M2_q2 p—M— /M2_q2
| for g*<M?,

where we define the branch p& arccot) such that it goes
from 7r to zero in the range— — o0 t0 z— + .

Sinceg(p) diverges forp— oo, the integration constardt

in Eq. (22) has to be set to zero. The normalizationg_tﬁb)
has been chosen such that it behaves asymptotical®/ @as

(independent oM andq). After transformation to Cartesian
coordinates, all components of the magnetic field have th

asymptotic behavioB;~p~3~r~3, as is physically ex-

pected. With the general magnetic field functmy{r) avail-

able in the exterior region, we can also calculate the general

dragging functiorA;(r) by integrating Eq(20). If we write
A1(r) in the suggestive form

202 . _ —
Al(r)=%[AA(p(r)HfA(p(r))+§A(p(r))]

. AMR2\ -
3(p(r)*’
we get
. R4 q2 q4
A(p)=——, A(p)=R| — =4+ —=-— . (26
(p) 2 (p) ERETVI (26)
:Z) 3MR* 1+M
P 8(M2_q2)2 p P2
+q2+2|v|2 q?(M?+2g?)
3p3 3Mp?
2M_
+| 1+ %Ap) |S(piM,q) |- 27

For p—, f(p) behaves like— R*/4p*.

In the process of integration of the magnetic field function
0, and of the dragging factdk in the two regions, we had to

introduce a total of four nontrivial integration constanis:

PHYSICAL REVIEW D65 084033

7, \, and {. These constants have now to be fixed by the
continuity conditions for these functions at the shell position
r=R, or p=RD, and by the appropriate discontinuity con-
ditions for their radial derivatives. In this connection it
should be remarked quite generally that the function
S(p;M,q), introduced in Eq.(24), attains the relatively
simple values

(1 ( 1+« for k<0
——— arccof ——— k<0,
2\ — K 2\ — K
RSRD;M,q)=¢ 1 for k=0,
1 1+ K
— log| ———= for k>0,
[ 2V 1—&)
(28)

which makes the introduction of the parameter a®— y?
especially profitable. Furthermore, thandp derivatives of

all functions at the outer and inner edge of the shell are
connected by the factors

dp

dr

D d
===1—k, d_P
R, r

=D.
R_

(29

The continuity conditionsg,(r=R)=g,(r=R) and
‘75\1(r =R)=A,(r=R) lead to homogeneous, linear equations
between the integration constants

4 =
—n+ 5s=\N+g(RD){=0,

3D (30

1 aD—9?

_ - 2N -
ghT Y A+ y?A(RD)(=0.

(31)

The discontinuities of the radial derivativesAfr) andg(r)

are determined, respectively, by the mass and charge currents
of the shell. The energy-momentum tengdi= 7, 6(r — R)

of the shell has of course to satisfy the eigenvalue equations
THu”=—pou#, whereu*=u(1,0,0p) is the purely axial,

and, due to rigid rotationg-independent four-velocity vector

of the shell matter, an@, is the rest-energy density. Com-
parison of the componengs=0 andu =3 of the eigenvalue
equations, together with the metric forth3) and the defini-

tion (11), gives, in first order ofo,

4wRCsid
D3

0__
8mry=

(1—w)Ar. (32

On the other hand, integration of the Einstein equatib,
together with Eq(20), gives

1 d
8mrg=— 5 wR?CZSi’ 9 A(r=R)

_4wRCg¥ﬁ
- D

42 —
(a—g—g)x—yzg<RD>4.
(33
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Comparison of Eqs(32) and (33) leads to the inhomoge- tive u) for such model parameters for which the energy con-
neous equation ditions in the shell material are violated. Secondly, it is of
interest how the strength of the (constant magnetic field,
induced inside the shell, depends @rand x, and whether it
also can become zero or change the sign. In detall, it is more
natural to analyze noy by itself but the constant= 75/C,
defining the interior magnetic field, measured by a
coordinate-stationary observer in his proper timé hirdly,

2

a— 4—7)>\—y2?(RD)g=AT. (34)

AT p+ 3D

In Eq. (16), obviously only thep derivatives ofB, andE,
contribute localized currents proportional &§x—1), with

the result the total angular momentum of our system can be read off
s from lim,_ . A(r)=4MR?\/3r3 as J=3wMR?\, i.e., it is
A7j®= ©qC — R d—g(r=R)+,u S(x—1)|. essentially given by the constant A sometimes useful al-
RD3| 2CD gr? ternative definition of] can be given, according to Tolmans

(350  theorem, by the Komar-like integral
If we assume that the charge elements have the same four- o m 27 0 w0
velocity u#=u°(1,0,0w) as the mass elementas is, e.g., J= fo drfo dﬁfo doV—g[T3+S;]
the case, if the shell consists of isolator mategyigfl can also

be expressed by the charge density from @&): AwR3
=3 [(1-wAr+ ¥*7). (39
) wqC
A7|*=4mwo(X)= 3 35(X— 1). (36)
R°D Indeed, it can be easily checkdd.g., by comparing the

) ) , i terms proportional to 4 7)¥] that both expressions far co-
Comparison of Eqs(35) and (36) gives, after integration jncige. As a fourth property we consider the magnetic mo-
from x=1—¢ to x=1+¢, the last inhomogeneous equation ment of the shell. From classical electrodynamics it is well
between the integration constants known that a magnetic moment produces a magnetic field
B(r)=[3e(g-m)—m]r 3, resulting in a componenB,
=(2m/r)sindcosd in isotropic coordinates. Comparing
this with the asymptotic behavior Ilim..g(r)=(¢
+ 3\)R/r of the magnetic field of our rotating shell, allows
In total, Eqs.(30), (31), (34), and(37) comprise the inhomo- us to read off its magnetic moment as
geneous, linear system

1 4 d=
+—n+—|—A-R—g(RD)¢|=1. (3

1 3
4 _ m:§wqR2 S{F2\N], (40)
°© -1 3 9(RD)
1 D2 0 whereiwqR? is the magnetic moment of a rotating charged
-0 @ Y ZX(RD) M shell in classical electrodynamic&Ve do not know of any
8 3D* Y 7 0 formula for the magnetic moment as a volume integral in a
42 N Ar curved manifold. Therefore, for calculating and discussing
A7 0 a——=— _ 72§(RD) the magnetic momenh, we need, besides, in an essential
3D 4 1 way the integration constant Fifthly, a quantity of high
1 2 R d— physical interest is the gyromagnetic ratio of our shell sys-
. - = r @ . . )
CD 30D? o202 dpg(RD) tem..the gene.rally,.the gyri)magnetlc ratio Qf a charged,
rotating system is defined bg=2Mm/qJ. Inserting the re-
(38 sults ford and m, gives
from which all four integration constangs, », A, and{ can 3¢
be calculated in a straightforward manner. We have numeri- G=2+—2> (41)

cally checked that the determinant of this system is nonzero 2\

(in fact negative in the whole physical region of the model _
parametersy and «, as described in Sec. II. The physical constanig, 7, \, £, andG, in their depen-
dence on the model parametersand «, are in principle

given explicitly and analytically by solving the linear system

. . . . {38, and inserting the valueg(RD), dg(RD)/dp, and
We see essentially five properties of our massive an )
charged rotating shell which deserve a detailed analysis anti(RD) from Eqgs.(24), (27), and(28). Since these expres-

physical discussion: This is first the dragging constarin  Sions are, however, algebraically quite involved, we find that
its dependence on the model parametersM/2R and «  the simplest and most informative presentation of our results
=(M2-q?)/4R?, and the question whether the usual drag-can be given graphically by drawing the level linesaf 7,

ging of the inertial frames turns over to antidraggiimgga- A, ¢, andG for representative values in thex(x) plane.

IV. RESULTS AND DISCUSSION
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For the dragging constapt, this is done in Fig. 1. We see otherwise necessarily spacetime is globally fl@hich in our
that in the collapse limitk—1 we have total dragging model class results only fat= «=0).
=1 in the interior of the charged mass shell. This result was Figyre 2 depicts in a similar way the constapt repre-
already derived iri7], and it generalizes the importafifla-  genting the(constant magnetic field inside the shell, mea-

chian result of Brill and Coherﬁ_l] that a collapsing rotating ?ured by a coordinate-stationary observer in his proper time
mass shell Ie_:ads to total dragging, to a strongly charged shell. t,iq constant is zero in the collapse limit 1, as already
Also for arbitrary k<1 and a—o°, the constanj reaches

) . K X observed and discussed[#] and[7], but also in the limit of
the valuex=1. Figure 1 shows also increasingly oblique . S . . o~ .
curves for decreasing values afuntil we arrive at a curve 2 Snell with vanishing invariant radius. Otherwisgis posi-

(with slopedx/da=—2 at the origin, and the asymptotic tive in the whole physical range of the parametersc, and

slope dx/da~ —0.44) the valuew=0: no draaging. This reaches arbitrarily high values, e.g., on the line — « (i.e.,
peciida ) M gging 9=0) for a— it grows like a. For fixed values ok, and

curve lies everywhere in the energy condition violating re-70 -
gion A7<0, depicted in gray shadow, but “above” the re- @—, 7 attains finite values. In the weak field limit

gion —79<0, depicted in dark gray shadow. Below the <1, y<1, 7 attains of course the limiz=2, known from
curve u=0 we reach negative values of the dragging con-<lassical electrodynamics. In the collapse linsit1, the
stant w. This interesting antidragging phenomenon was al-gravitational and electromagnetic fields in the exterior region
ready observed ifi7], Sec. VI, case D, but only for the weak r>R constitute the Kerr-Newman fieldn first order ofw),

field region @<1, y<1, whereu behaves likeu=35(3a  according to the no hair theorefsee alsd5]).

+4k). Physically, the antidragging phenomenon is of course In Fig. 3 we have plotted the level lines of the angular
caused by the violation of the weak energy condition of themomentumJ (measured in units oR%w). In the («,«) re-
shell material(In a trivial manner, we could have antidrag- gion with A7=0 the functionJ is monotonically increasing
ging already for the uncharged, weakly massive Thirringfor fixed values ofk, and increasing values @f. In the part
model in the cas®1 <0. In our model class, “playing” with  of the parameter space withir<0, there exists a curve with
the two parametersl/R andg/R allows us to have antidrag- J=0. There the positive contribution of the electromagnetic
ging also for the positive total mass of the systein.the field to the total angular momentum compensates the nega-
limit of a shell with vanishing invariant radiu§i.e., x  tive mechanical ones, coming from the surfaces stresses and
=—(1+2a)] the dragging constant. reaches even the from the rest mass density. Below this cuyés negative,
value u— —. For vanishing total mass, respectively en-e.g., fora=0 and —1<«<0. The expressiort39) for J
ergy, we have antidragging in the whole admissiklater-  shows that this is due to the violation of the energy condition
val —1<k=0, starting from the valug.=—8q%/9R? for =~ Ar=0, since the electromagnetic contributiop?» to
k<1, and growing monotonically to the valuex for k  3J/4wR? is, as already said, everywhere positive, according
— —1. This antidragging behavior is again a consequence db Fig. 2, and sincex<1, according to Fig. 1. The angular

a violation of the energy conditions: Becauseawf0 and momentum is, in addition to the case described above, zero
k<0 obviously all componentsT#” of the energy- in the trivial casee=«=0, and for an infinitely small shell
momentum tensor of the shell are negative, according to Egsi.e., k= —(1+2a)]. In the weak field limitJ reaches the

(9) and (10). But this is to be expected according to the classical valu&MR?w of Newtonian physics.

positive energy theorem: For total energly=0 “nontrivial Figure 4 shows a behavior of the magnetic moment
phenomena” occur only if the energy conditions are violated (measured in units of wqR?) rather similar to the angular

1 FIG. 1. Level lines for repre-
sentative values of the interior,
0.98 constant dragging functio in

the physical region of the model
parameters a=M/2R and «
=(M2—g?)/4R?. The energy con-
dition violating regionA7<0 is
shown in light gray shadow; the
region where the condition- 79
=0 also is violated is shown in
05 dark gray shadow. The boundaries
of the presented region in the
(a,x) plane are given (from
above to belowby the conditions
0 that the shell lies outside the hori-
zon, the charge is real, the mass is
non-negative, and the invariant ra-
-05 dius of the shell is non-negative.
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K

FIG. 2. Level lines for repre-
sentative values of the interior,
constant magnetic fieldB, [in
units of wqC/R, with C from Eq.
(7)] in the physical region of the
model parametergsr=M/2R and
k=(M?—g?)/4R?.  Concerning
boundaries of the region, and gray
shadows, see the caption of Fig. 1.

0.. 07113162 25 3 4 5

momentumJ in its dependence on the model parameters algebraic simplifications, the gyromagnetic rati® has a
and k. Only the zero of the functiom does not start atv  very delicate and interesting behavior in the, £) plane, as
=k=0, but at the valuee=0,k~ —0.15. The dependence of is shown in Fig. 5, and which comes about essentially
the angular momenturd and the magnetic momemn as  through the interaction between strong gravitational and
functions of the charge-to-mass and radius-to-mass ratios h&tectric fields:G approaches the value 2 in the collapse limit
been illustrated for special values @fM in [8]. x—1, with a correction ternG—2=—4¢/3a(1+a)” for
Finally, we come to the especially interesting and impor-<=1— €, which, although being linear i\, becomes very
tant discussion of the gyromagnetic rafio=2+(3¢/2\) of ~ small for largea. For fixed x, anda—, G approaches 2
our rotating shell. In the ratio@2\, the algebraically com- With a correction term proportional te~> (and proportional
plicated determinant of the linear systéB8) cancels, with 10 @~ * for k=1 andx=—3). G- 2 is identically zero on a

the result branch of the hyperbolax=21(5+ a— 25+ 22a+ a?),
which approacheg= —3 for a— . Also in the lower part
3¢ 8k%(1-k)[—Kk*+k(5+a)+3a] of the figure,G approaches the valu@=2 very rapidly, e.g.,
G=2=5~ P(5:4)+3a(1—x)P(5;3)RS k)’ in all asymptotic directions with slope-2<d«/da<

—0.698 the correction term is proportional 40 ®2. On the
with R «) from Eq.(28), and whereP(i;j) denote polyno- other handG diverges, due td=0, on a curve which starts
mials of orderi in «, and ordejj in «. Notwithstanding these with slope dx/da=—¢ at the origin, and reaches an

of wR%) in the physical region of

2&5& \\
the model parametersa=M/2R

\ o0 and k= (M?—q?)/4R?. Concern-
2 ing boundaries of the region, and
gray shadows, see the caption of
Fig. 1.
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1000 FIG. 3. Level lines for repre-
sentative values of the angular
momentumJ (measured in units
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400

FIG. 4. Level lines for repre-
sentative values of the magnetic
momentm (measured in units of
%wqu) in the physical region of
the model parameters=M/2R
and k=(M?—q?)/4R?. Concern-
ing boundaries of the region, and
gray shadows, see the caption of
Fig. 1.
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asymptotic slopedx/da~ —0.697. Below this curve there Some special cases of this behavior of the gyromagnetic
exists a region with negative values Gf due toJ<<0, and ratio G have already been discussed @8] (see alsd10]
m>0 in this part of parameter spa¢see Figs. 3 and)4  for the behavior ofG in a non-shell-like model systemwe
However, the region witls <0 is extremely small: it starts find it very interesting, however, hows behaves in the
with a width A k~0.15 ata=0, which diminishes very rap- whole physical range of the parametersand «, especially

Id|y with growing «. The reason for this is that the magnetic the “extreme” behavior ofG around the lineJ=0, and the
momentm=}wqR?(3{+2)\) changes from a positive to fact thatG is very near to the valu&=2 in an overwhelm-
negative sign at the lower end of the regiGr<0, because ing part of the @, «x) plane. The latter fact may be seen more
there the contribution of ¢ (which is positive below the impressively in the three-dimensional pl8{«, «) of Fig. 6
curve G=2) can no longer compensate the negative contrithan from the level lines of Fig. §This fact, for the special
bution from 2n. At the left edge of the figureq=0,—1  valueq/M=1.01, may also be read off from Fig. 5a [&f],
<k=<0) we haveG=0. Remarkable is also that the weak but it was not commented and discussed there in a more
field limit of G (for a<<1, k<<1) is “direction dependent”:  general way.

G—[1+(5«/6a)] 1. Only approaching the origin of the Now, it is well known that a valu&=2 results in quan-
(a,k) plane from the upper-right quadrafin the under- tum mechanics if the simplest rotating objéatspin— par-
extreme or extreme Reissner-Nordstraase, leads to the ticle without inner structureis minimally coupled(accord-
classical values=1. ing to the gauge principjeto an electromagnetic field, and

K

1.999

1.7 /1.831.9, 195

FIG. 5. Level lines for repre-
— sentative values of the gyromag-
-1 : netic ratioG in the physical region
of the model parametersa
=M/2R and k=(M?—q?)/4R?.
X Concerning boundaries of the re-
-2 gion, and gray shadows, see the

caption of Fig. 1.
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FIG. 6. A three-dimensional
plot of the gyromagnetic ratio
G(a, k), showing especially dras-
tic that G=2 in an overwhelming
part of the physical ¢,«) plane.

Gla.x)

this equally in a non-relativisti¢Galilei-covariant and in a  classical and quantum Rutherford formula for the birth of
relativistic (Poincarecovarianj scheme. Furthermore, the quantum mechanigsTo make this argument even more con-
valueG=2 is nearly perfectly realized in nature for some of vincing, it would be helpful to extend our analysis of the
the most elementary particles: the electron and the muorgyromagnetic ratio to rapidly rotating charged mass shells, or
And there are even strong arguments @t 2 also for other  even to full(non-shell-like charged bodies. It is, however, to
elementary particles of the standard model, e.g., forthe be expected that such an analysis can be sucessfully per-
boson[11]. A value G=2 is, however, hardly reachable in formed, if any, only numerically. And it is to be expected that
any classical mode{without strong gravity, and if it is  the results depentseverely’? on the detailed material prop-
reachable in special modelsee, e.g.[12]), G=2 is by no  erties of the rotating bodies, as they show up, e.g., in the
means a natural or preferred value. Insofar as it is very reeentrifugal deformation, in the nonspherical distribution of
markable that general relativity predicts for some of its sim-the mass and charge densities, and in possible differential
plest and most unique solutions, the Kerr-Newman class ofotations(compare[16] and[17]). Indeed, such a numerical
back hole solutions, also the val@=2, as was first ob- study of theG factor for more realistic charged, rotating
served by Cartef13]. (This result extends also to the bodies, and also for high values @f will now be started by
charged Tomimatsu-Sato solutioh$4,15, and to a large a group in MeudorE. Gourgoulhon and J. Novakin con-
class of other solutionsThat the same value results for ro- trast to[ 7] we resist, however, from describing quantum par-
tating, charged shell models in the collapse lipgif7], is to ticles like the electron and the proton literally by our models.
be expected from the no hair theorems. The new and surpri®esides the unrealistic shell structure, such an identification
ing result of our analysis is that this val@=2 is “ex-  would have the irritating consequences that one would be in
tremely robust” in the sense that in a big part of the paramhe range of extremely weak electric and gravitational fields
eter space 4,«) in Figs. 5 and 6, and not only in the (valuesa~10 *3for the electron, and~ 10 >®for the pro-
collapse limit, G deviates from the valu&=2 only by a  ton), that the velocitywR (calculated from)= 37%) would be
very small amount. And this is true not only in regions of in the range of 25@ for the electron, and bigger than 1000
(a,x) where, due to the shell structure of our model, thefor the proton(what would also be inconsistent with our first
stresses5= 73 are unrealistically highfas compared to the order approximation inw), and that the “radius” would be
energy density— 7-8) but also for valuegx|<1 where the much smaller for the proton than for the electron. In conclu-
stresses are arbitrary small. sion, it may be remarked that the valGe=2 was also de-
We like to argue that this “naturalness” @g=2 for a  fived for a specialMajumdar-Papapetrou-likeclass of su-

large class of rotating shell systems with strong gravitationaPergravity solitong18].

and electric fields, and its “coincidence” with the val@

~2 for the most elementary quantum p_a_rticles, signals a ACKNOWLEDGMENTS
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