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Rotating charged mass shell: Dragging, antidragging, and the gyromagnetic ratio

Herbert Pfister* and Markus King†

Institut für Theoretische Physik, Universita¨t Tübingen, D-72076 Tu¨bingen, Germany
~Received 24 October 2001; published 8 April 2002!

We calculate explicitly the system of a spherical shell of radiusR, carrying~nearly! arbitrary massM and
chargeq, and rotating slowly around an axis through its center. We discuss, mainly graphically in the plane of
the model parametersM /R andq/R, the following properties of this system: The dragging of inertial frames
which turns over to antidragging in part of the parameter space, the induced magnetic field, the angular
momentum, the magnetic moment, and the gyromagnetic ratio. The latter is very near to the value 2 in an
overwhelming part of the parameter space, and we argue that this signals a deep connection between general
relativity and quantum theory which could be important in the search for quantum gravity.
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I. INTRODUCTION

It has been known since 1918 from the classic work
Thirring that in general relativity a rotating mass shell i
duces a dragging of inertial frames in its interior. In the wo
of Thirring this was a tiny effect since he confined himself
the weak field approximation. Later, however, it was sho
by Brill and Cohen@1# that this dragging becomes comple
~the dragging angular velocity coinciding with the angu
velocity of the shell! in the collapse limit, and this result i
considered as convincing evidence for the realization of~Ma-
chian type! relativity of rotation in general relativity, at leas
for appropriate model systems. Some authors consid
also, in different approximations, the influence of a rotat
mass shell on electromagnetic phenomena, especially
charges sitting inside the mass shell@2–4#, one typical effect
being the induction of a dipolar magnetic field. In@5# we
treated in detail a shell of arbitrarily high charge sitting i
side a shell of arbitrary mass in first order of the angu
velocities of both shells. A comparison with the results
@3,4# could resolve an inconsistency concerning the Mach
interpretation of the induced magnetic fields.

Aside from these models with charges sitting inside a
tating mass shell, it is of interest to treat rotating shells wh
carry at the same place mass and charge with identical a
lar velocities~isolator type material!. In addition to the phe-
nomena of dragging and the induction of a magnetic fie
for such systems the question of their gyromagnetic ratio
of special interest. In@6# these questions were answered fo
shell of arbitrary mass but small charge. In@7# and @8# the
problem was in principle solved for arbitrary mass a
charge but the physical discussion was confined to some
cial cases. In the present paper we calculate and discuss
detail a spherical shell of radiusR ~in isotropic coordinates to
be defined in Sec. II! with ~nearly! arbitrary massM and
chargeq, which rotates slowly around an axis through
center.

In Sec. II we calculate the static shell model. The on
restrictions on the dimensionless parametersM /R and q/R
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are that the invariant radius of the shell is non-negative, t
the model is really static~no collapse, no singularities!, and
that the total massM is non-negative. We discuss the ener
conditions for the shell material, but we allow for violatio
of these conditions. In Sec. III we treat~in analogy to@5#! the
rotation of this charged shell in first order of the angu
velocity v. The~ordinary! differential equations for the drag
ging function and the magnetic field function can be solv
explicitly and analytically~compare@7# and @8#!, and the
integration constants are completely and uniquely de
mined by the regularity at the shell center, the asympto
flatness conditions, and by the continuity or discontinu
conditions at the shell. In Sec. IV we discuss the resu
mainly in graphical form, since the analytic expressions
quite involved. The dragging is again complete in the c
lapse limit, is below completeness in all other cases,
changes sign~resulting in antidragging! in part of the param-
eter space where the weak energy condition is violated.
~constant! magnetic field inside the shell, measured in prop
time, is zero in the collapse limit and in the limit of vanish
ing ~invariant! radius of the shell, and is positive~in the
direction of the rotation axis! in all other cases, i.e., it doe
not change sign due to a violation of the energy conditio
The most important and most surprising result may be t
the gyromagnetic ratioG of the rotating shell is very near to
the valueG52 in an overwhelming part of the paramet
space. Only in a small strip around the parameters wh
due to the violation of the energy conditions, the angu
momentum of the system vanishes,G attains arbitrary other
~positive and negative! values, and it attains of course th
classical valueG51 in an appropriate weak field limit. We
like to argue that the ‘‘robustness’’ of this valueG52, and
its ‘‘coincidence’’ with the valueG'2 for the simplest ro-
tating, charged quantum particles~electron and muon! hints
to a deep connection between general relativity and quan
theory, which could serve as a guideline and control on
way to some future quantum gravity.

II. THE STATIC MODEL

According to a generalization of the Birkhoff theorem,
spherically symmetric, matter-free solution of the Einste
Maxwell equations is automatically static and asymptotica
©2002 The American Physical Society33-1
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flat, and can be represented by the Reissner-Nordstro¨m met-
ric

ds252F~r!dt21F~r!21dr21r2dV2, ~1!

with F(r)5122M /r1q2/r2, and dV25dq21sin2qdw2.
Therefore, our model of a spherically symmetric, massi
and charged shell is simply given by two pieces of t
Reissner-Nordstro¨m metric: one for the region outside th
shell, and one for the interior region. However, a matching
these Reissner-Nordstro¨m metrics with different mass an
charge parameters obviously would not be continuous at
shell position. A global continuous metric is, however, des
able for the physical interpretation of the~nonlocal! dragging
effects, and was also used in Refs.@1–7#. It can be reached
by a transformation of the metric~1! to the isotropic form

ds252e2U(r )dt21e2V(r )~dr21r 2dV2!. ~2!

Identification of Eqs.~2! and ~1! results in

r ~r!5
1

2D
~Ar222Mr1q21r2M !, ~3!

with an arbitrary constantD. For F(r).0, i.e., outside of
horizons,r (r) is real. We simplify the following calculations
by using dimensionless variables:

a5
M

2R
, g5

q

2R
, x5

r

R
. ~4!

In the exterior regionx>1 we setD51 ~thenr andr coin-
cide asymptotically!, and identifyt with t. Then the exterior
potentials read

V1~x!5 logF ~x1a!22g2

x2 G ,

U1~x!5 logF x22a21g2

~x1a!22g2G . ~5!

In the interior regionx,1, we have to setM50 andq
50 in order to guarantee regularity at the originr50. The
interior metric is then automatically flat. The transformatio
r 5r/D, t5Ct produce in the regionx,1 the potentials

V2~x!5 logD5const, U2~x!52 logC5const, ~6!

and the continuity ofV(x) andU(x) at x51 leads to

D5112a1k, C5
D

12k
, ~7!

with the useful abbreviationk5a22g2. We see that the
continuity of the potentialsV(x) andU(x) enforces in gen-
eral nontrivial transformations betweenr andr, andt andt.
In order that the metric~2! with the potentials~5! and ~6!
represents a physically reasonable, static shell model, the
rametersa and k have to satisfy some restrictions:~i! In
order that the invariant radiusR5r(r 5R)5DR of the shell
08403
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~measuring the surface! is non-negative, we have to haveD
>0, or k>2(112a). ~ii ! In order that the shell is really
static, and does not develop a horizon and a gravitatio
collapse, we have to haveC>0, ork<1. ~iii ! Obviously, the
parameterk has to fulfill k<a2 (g real!, and the total mass
of the shell should be non-negative:a>0.

The energy-momentum tensor of the shell has of cou
the form Tn

m5tn
md(r 2R), and can be calculated from Ein

stein’s field equations

Gn
m58p~Tn

m1Sn
m!, ~8!

with Sn
m5(1/4p)Fl

mFn
l representing the electromagnetic co

tribution to the energy-momentum tensor, andFn
m being the

electromagnetic field tensor. Since in our isotropic met
form ~2! the potentialsV(r ) and U(r ) are by construction
continuous at the shell position, the componentstn

m are es-
sentially determined by the discontinuities of the radial d
rivatives ofV andU. Here and in the following, the indice
0,1,2,3 are used to denote, respectively, the variab
t,r ,q,w:

8pt0
05

2

RD2

d

dx
V1~x51!52

4~a1k!

RD3
, ~9!

8pt2
258pt3

35
1

RD2

d

dx
@V1~x51!1U1~x51!#

5
2k

RD2~12k!
. ~10!

Obviously, the stresses in the shell vanish in the extre
Reissner-Nordstro¨m casek50, and they diverge in the col
lapse limitk51. In the sequel, it is useful to introduce th
quantity

Dt52pRCD5~t3
32t0

0!5
C2D

2
~2a13k2k2!, ~11!

which appears also in the weak energy condition@9#:
Tmnumun>0 for all timelike vectorsum, being equivalent to
Dt>0, and 2t0

0>0 for our shell. ‘‘Below’’ the parabola
(k2 3

2 )252(a1 9
8 ) in the (a,k) plane, the energy condition

Dt>0 is violated. Below the linek52a, also the other part
2t0

0>0 of the weak energy condition is violated.~See Figs.
1–5.! For completeness let us also state the dominant en
condition: ut0

0u>ut3
3u which is violated ‘‘above’’ the hyper-

bola k5 1
6 (124a1A1116a116a2) approaching the as

ymptotek5 1
2 for a→`, i.e., in a strip below the collaps

line k51. The strong energy condition reads 2t3
32t0

0>0,
and it is violated below the hyperbolak52a/(21a), ap-
proachingk521 for a→`.

The electromagnetic field tensor belonging to t
Reissner-Nordstro¨m metric ~1! has only a radial componen
2Ftr5Er5q/r2. Transformation of this component to ou
isotropic coordinates, under the condition that the chargq
be concentrated solely on the shell atr 5R, leads to2Ftr
3-2
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ROTATING CHARGED MASS SHELL: DRAGGING, . . . PHYSICAL REVIEW D 65 084033
5Er5(q/r2)eU2VH(r2R), where H(r 2R) is the Heaviside
function, and the potentials~5! have to be inserted forr
>R. Herewith, and with the inhomogeneous Maxwell equ
tion (1/A2g)(A2gFtm) ,m54p j t, the charge densitys5 j t

at the shell atr 5R can be calculated: For the metric~2!, we
have A2g5e(3V1U)r 2sinq, and only Ftr5e22(U1V)Er is
nonzero. Therefore,A2gFtr is equal toq sinq ~independent
of r ) for r>R, and zero forr ,R. The r derivative of this
expression gives then ad-function-type charge density:

s~x!5
qC

4pR3D3
d~x21!. ~12!

III. FIRST ORDER ROTATION OF THE SHELL

In this section the notation and the details of the calcu
tions are essentially taken from@5#, Sec. III, but we repea
some of these calculations in order to make the presen
ticle self-contained. We write the rotational extension of t
metric ~2! for physical intuition in the form

ds252e2U(r )dt21e2V(r )$dr21r 2dq21r 2sin2q

3@dw2vA~r !dt#2%, ~13!

neglecting, however, in the following all terms of second a
higher order inv. In this first order ofv, the potentialsU(r )
and V(r ) can be taken over unchanged from Sec. II, a
A(r ) is independent ofv. The radial dependence of the dra
ging functionA(r ) is essentially given by the Einstein equ
tion

G3
052

v sin2q

2r2

d

dr S r4
d

dr
A~r! D58p~T3

01S3
0!. ~14!

The electric components of the field tensorFmn reduce in our
approximation to the fieldEr from Sec. II. The magnetic
components are of orderv, because a magnetic field resu
only from the induction due to the rotating shell. Howev
since there are no electric currents in ther andq directions
in our model, the componentBw5Frq is identically zero,
according to the inhomogeneous Maxwell equations. The
fore, in the first order ofv, there remains only one nontrivia
homogeneous Maxwell equation

d

dr
Br1

d

dq
Bq50, ~15!

and one nontrivial inhomogeneous Maxwell equation

4p j w5
1

r2sin2q

d

dr
@F~r!Bq#2

1

r4sinq

d

dq S Br

sinq D
1

v

r2

d

dr
~r2AEr!. ~16!

In the exterior region, Eq.~14! reads, withEr5q/r2:
08403
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v sin2q

4

d

dr S r4
d

dr
A~r! D5qBq . ~17!

This equation, together with the fact that in the limitq→0
also the magnetic field should vanish in our model, sugge
the ansatzBq5vq f(r )sin2q, with a dimensionless function
f (r ). Equation ~15! then enforces the form Br
5vqRg(r )sinq cosq, with f (r )52(R/2)dg(r )/dr. Be-
cause of continuity across the shell, the forms forBq andBr
are also valid in the interior of this shell. Then Eqs.~14! and
~16! constitute two coupled ordinary differential equatio
for the unknown functionsA(r ) andg(r ).

Inside the shell, these equations decouple, and read

d

dr S r 4
d

dr
AD50,

d2

dr2
g2

2

r 2
g50. ~18!

The solutions, which are regular atr 50, are given by

A2~r !5m, g2~r !5hr 2/R2, ~19!

with dimensionless constantsm and h, which have later to
be fixed by continuity at the shell. Because ofA2(r )
5const, the interior region stays flat in first order perturb
tion in v, as is physically to be expected. The magnetic fi
componentsBr andBq represent in Cartesian coordinates
constant fieldBz5(vq/R)h along thez axis, as is well
known for the interior of a charged, rotating shell from cla
sical electrodynamics.

In the exterior region, due toBq; f (r );dg(r )/dr, one
integration of Eq.~17! is straightforward:

d

dr
A~r!5

1

r4
@2q2Rg~r!24MR2l#, ~20!

with a dimensionless integration constantl. Insertion of Eq.
~20! into Eq. ~16!, together with j w[0 outside the shell,
results in the differential equation forg(r):

d

dr FF~r!
d

dr
g~r!G2

2

r2 S 11
2q2

r2 D g~r!52
8MRl

r4
.

~21!

We write the general solution of this equation in the form

g1~r !5lĝ„r~r !…1jḡ„r~r !…1z ḡ̄„r~r !…, ~22!

with dimensionless integration constantsj,z, whereĝ(r) is
a special solution of the inhomogeneous equation~21!, and

ḡ(r), ḡ̄(r) are fundamental solutions of the correspondi
homogeneous equation. As first observed in@7#, and inde-
pendently rediscovered in@5#, these solutions can be given i
explicit, analytic form:

ĝ~r!5
4R

3r
, ḡ~r!5

1

R2 S r223q21
2q4

Mr D , ~23!
3-3
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ḡ̄~r!5
3M2R

4~M22q2!2 F2q2

3r S 11
2q2

M2 D 2r2M

1R2ḡ~r!S~r;M ,q!G , ~24!

with

S~r;M ,q!55
1

Aq22M2
arccotS r2M

Aq22M2D
for q2.M2,

1

2AM22q2
logS r2M1AM22q2

r2M2AM22q2D
for q2,M2,

where we define the branch ofy5arccot(z) such that it goes
from p to zero in the rangez→2` to z→1`.

Sinceḡ(r) diverges forr→`, the integration constantj

in Eq. ~22! has to be set to zero. The normalization ofḡ̄(r)
has been chosen such that it behaves asymptotically asR/r
~independent ofM andq). After transformation to Cartesia
coordinates, all components of the magnetic field have
asymptotic behaviorBi;r23;r 23, as is physically ex-
pected. With the general magnetic field functiong1(r ) avail-
able in the exterior region, we can also calculate the gen
dragging functionA1(r ) by integrating Eq.~20!. If we write
A1(r ) in the suggestive form

A1~r !5
2q2

R2
@lÂ„r~r !…1jĀ„r~r !…1z Ā̄„r~r !…#

1
4MR2l

3~r~r !!3
, ~25!

we get

Â~r!52
R4

3r4
, Ā~r!5RS 2

1

r
1

q2

r3
2

q4

2Mr4D , ~26!

Ā̄~r!5
3MR4

8~M22q2!2 F2
1

r
1

M

r2

1
q212M2

3r3
2

q2~M212q2!

3Mr4

1S 11
2M

R
Ā~r! DS~r;M ,q!G . ~27!

For r→`, Ā̄(r) behaves like2R4/4r4.
In the process of integration of the magnetic field functi

g, and of the dragging factorA in the two regions, we had to
introduce a total of four nontrivial integration constants:m,
08403
e
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h, l, and z. These constants have now to be fixed by t
continuity conditions for these functions at the shell positi
r 5R, or r5RD, and by the appropriate discontinuity con
ditions for their radial derivatives. In this connection
should be remarked quite generally that the funct
S(r;M ,q), introduced in Eq.~24!, attains the relatively
simple values

RS~RD;M ,q!55
1

2A2k
arccotS 11k

2A2k
D for k,0,

1 for k50,

1

2Ak
logS 11Ak

12Ak
D for k.0,

~28!

which makes the introduction of the parameterk5a22g2

especially profitable. Furthermore, ther andr derivatives of
all functions at the outer and inner edge of the shell
connected by the factors

dr

dr U
R1

5
D

C
512k,

dr

drU
R2

5D. ~29!

The continuity conditions g1(r 5R)5g2(r 5R) and
A1(r 5R)5A2(r 5R) lead to homogeneous, linear equatio
between the integration constants

2h1
4

3D
l1 ḡ̄~RD!z50, ~30!

2
1

8
m1

aD2g2

3D4
l1g2Ā̄~RD!z50. ~31!

The discontinuities of the radial derivatives ofA(r ) andg(r )
are determined, respectively, by the mass and charge cur
of the shell. The energy-momentum tensorTn

m5tn
md(r 2R)

of the shell has of course to satisfy the eigenvalue equat
Tn

mun52%0um, whereum5u0(1,0,0,v) is the purely axial,
and, due to rigid rotation,q-independent four-velocity vecto
of the shell matter, and%0 is the rest-energy density. Com
parison of the componentsm50 andm53 of the eigenvalue
equations, together with the metric form~13! and the defini-
tion ~11!, gives, in first order ofv,

8pt3
05

4vRCsin2q

D3
~12m!Dt. ~32!

On the other hand, integration of the Einstein equation~14!,
together with Eq.~20!, gives

8pt3
052

1

2
vR2C2sin2q

d

dr
A1~r 5R!

5
4vRCsin2q

D3 F S a2
4g2

3D Dl2g2ḡ̄~RD!zG .
~33!
3-4
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Comparison of Eqs.~32! and ~33! leads to the inhomoge
neous equation

Dt m1S a2
4g2

3D Dl2g2ḡ̄~RD!z5Dt. ~34!

In Eq. ~16!, obviously only ther derivatives ofBq andEr

contribute localized currents proportional tod(x21), with
the result

4p j w5
vqC

R3D3 F2
R2

2CD

d2

dr2
g~r 5R!1m d~x21!G .

~35!

If we assume that the charge elements have the same
velocity um5u0(1,0,0,v) as the mass elements~as is, e.g.,
the case, if the shell consists of isolator material!, j w can also
be expressed by the charge density from Eq.~12!:

4p j w54pvs~x!5
vqC

R3D3
d~x21!. ~36!

Comparison of Eqs.~35! and ~36! gives, after integration
from x512e to x511e, the last inhomogeneous equatio
between the integration constants

m1
1

CD
h1

1

2C2 F 4

3D2
l2R

d

dr
ḡ̄~RD!zG51. ~37!

In total, Eqs.~30!, ~31!, ~34!, and~37! comprise the inhomo-
geneous, linear system

1
0 21

4

3D ḡ̄~RD!

2
1

8
0

aD2g2

3D4 g2Ā̄~RD!

Dt 0 a2
4g2

3D 2g2ḡ̄~RD!

1
1

CD

2

3C2D2

2R

2C2

d

dr
ḡ̄~RD!

2 S m

h

l

z

D 5S 0

0

Dt

1

D ,

~38!

from which all four integration constantsm, h, l, andz can
be calculated in a straightforward manner. We have num
cally checked that the determinant of this system is nonz
~in fact negative! in the whole physical region of the mode
parametersa andk, as described in Sec. II.

IV. RESULTS AND DISCUSSION

We see essentially five properties of our massive
charged rotating shell which deserve a detailed analysis
physical discussion: This is first the dragging constantm in
its dependence on the model parametersa5M /2R and k
5(M22q2)/4R2, and the question whether the usual dra
ging of the inertial frames turns over to antidragging~nega-
08403
ur-
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tive m) for such model parameters for which the energy co
ditions in the shell material are violated. Secondly, it is
interest how the strengthh of the ~constant! magnetic field,
induced inside the shell, depends ona andk, and whether it
also can become zero or change the sign. In detail, it is m
natural to analyze noth by itself but the constanth̃5h/C,
defining the interior magnetic field, measured by
coordinate-stationary observer in his proper timet. Thirdly,
the total angular momentum of our system can be read
from limr→`A(r )54MR2l/3r 3 as J5 2

3 vMR2l, i.e., it is
essentially given by the constantl. A sometimes useful al-
ternative definition ofJ can be given, according to Tolman
theorem, by the Komar-like integral

J5E
0

`

drE
0

p

dqE
0

2p

dwA2g@T3
01S3

0#

5
4vR3

3
@~12m!Dt1g2h#. ~39!

Indeed, it can be easily checked@e.g., by comparing the
terms proportional to (Dt)k# that both expressions forJ co-
incide. As a fourth property we consider the magnetic m
ment of the shell. From classical electrodynamics it is w
known that a magnetic momentm produces a magnetic field
B(r )5@3er(er•m)2m#r 23, resulting in a componentBr
5(2m/r )sinq cosq in isotropic coordinates. Comparin
this with the asymptotic behavior limr→`g(r )5(z
1 4

3 l)R/r of the magnetic field of our rotating shell, allow
us to read off its magnetic moment as

m5
1

3
vqR2S 3

2
z12l D , ~40!

where 1
3 vqR2 is the magnetic moment of a rotating charg

shell in classical electrodynamics.~We do not know of any
formula for the magnetic moment as a volume integral in
curved manifold.! Therefore, for calculating and discussin
the magnetic momentm, we need, besidesl, in an essential
way the integration constantz. Fifthly, a quantity of high
physical interest is the gyromagnetic ratio of our shell s
tem. Quite generally, the gyromagnetic ratio of a charg
rotating system is defined byG52Mm/qJ. Inserting the re-
sults forJ andm, gives

G521
3z

2l
. ~41!

The physical constantsm, h̃, l, z, andG, in their depen-
dence on the model parametersa and k, are in principle
given explicitly and analytically by solving the linear syste

~38!, and inserting the valuesḡ̄(RD), dḡ̄(RD)/dr, and

Ā̄(RD) from Eqs.~24!, ~27!, and ~28!. Since these expres
sions are, however, algebraically quite involved, we find t
the simplest and most informative presentation of our res
can be given graphically by drawing the level lines ofm, h̃,
l, z, andG for representative values in the (a,k) plane.
3-5
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For the dragging constantm, this is done in Fig. 1. We se
that in the collapse limitk→1 we have total draggingm
51 in the interior of the charged mass shell. This result w
already derived in@7#, and it generalizes the important~Ma-
chian! result of Brill and Cohen@1# that a collapsing rotating
mass shell leads to total dragging, to a strongly charged s
Also for arbitraryk,1 anda→`, the constantm reaches
the valuem51. Figure 1 shows also increasingly obliqu
curves for decreasing values ofm until we arrive at a curve
~with slope dk/da52 3

4 at the origin, and the asymptoti
slope dk/da'20.44) the valuem50: no dragging. This
curve lies everywhere in the energy condition violating
gion Dt,0, depicted in gray shadow, but ‘‘above’’ the re
gion 2t0

0,0, depicted in dark gray shadow. Below th
curve m50 we reach negative values of the dragging co
stantm. This interesting antidragging phenomenon was
ready observed in@7#, Sec. VI, case D, but only for the wea
field region a!1, g!1, wherem behaves likem5 8

9 (3a
14k). Physically, the antidragging phenomenon is of cou
caused by the violation of the weak energy condition of
shell material.~In a trivial manner, we could have antidrag
ging already for the uncharged, weakly massive Thirr
model in the caseM,0. In our model class, ‘‘playing’’ with
the two parametersM /R andq/R allows us to have antidrag
ging also for the positive total mass of the system.! In the
limit of a shell with vanishing invariant radius@i.e., k
52(112a)# the dragging constantm reaches even the
value m→2`. For vanishing total mass, respectively e
ergy, we have antidragging in the whole admissiblek inter-
val 21<k<0, starting from the valuem528q2/9R2 for
k!1, and growing monotonically to the value2` for k
→21. This antidragging behavior is again a consequenc
a violation of the energy conditions: Because ofa50 and
k,0 obviously all componentsTmn of the energy-
momentum tensor of the shell are negative, according to E
~9! and ~10!. But this is to be expected according to th
positive energy theorem: For total energyM50 ‘‘nontrivial
phenomena’’ occur only if the energy conditions are violat
08403
s

ll.

-

-
l-

e
e

g

of

s.

,

otherwise necessarily spacetime is globally flat~which in our
model class results only fora5k50!.

Figure 2 depicts in a similar way the constanth̃, repre-
senting the~constant! magnetic field inside the shell, mea
sured by a coordinate-stationary observer in his proper t
t. This constant is zero in the collapse limitk51, as already
observed and discussed in@6# and@7#, but also in the limit of
a shell with vanishing invariant radius. Otherwise,h̃ is posi-
tive in the whole physical range of the parametersa, k, and
reaches arbitrarily high values, e.g., on the linek52a ~i.e.,
t0

050) for a→` it grows likea. For fixed values ofk, and

a→`, h̃ attains finite values. In the weak field limita
!1, g!1, h̃ attains of course the limith̃5 2

3 , known from
classical electrodynamics. In the collapse limitk51, the
gravitational and electromagnetic fields in the exterior reg
r .R constitute the Kerr-Newman field~in first order ofv),
according to the no hair theorem~see also@5#!.

In Fig. 3 we have plotted the level lines of the angu
momentumJ ~measured in units ofR3v). In the (a,k) re-
gion with Dt>0 the functionJ is monotonically increasing
for fixed values ofk, and increasing values ofa. In the part
of the parameter space withDt,0, there exists a curve with
J50. There the positive contribution of the electromagne
field to the total angular momentum compensates the ne
tive mechanical ones, coming from the surfaces stresses
from the rest mass density. Below this curveJ is negative,
e.g., for a50 and 21,k,0. The expression~39! for J
shows that this is due to the violation of the energy condit
Dt>0, since the electromagnetic contributiong2h to
3J/4vR3 is, as already said, everywhere positive, accord
to Fig. 2, and sincem<1, according to Fig. 1. The angula
momentum is, in addition to the case described above, z
in the trivial casea5k50, and for an infinitely small shel
@i.e., k52(112a)#. In the weak field limitJ reaches the
classical value2

3 MR2v of Newtonian physics.
Figure 4 shows a behavior of the magnetic momentm

~measured in units of13 vqR2) rather similar to the angula
,

l

s
e

i-
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FIG. 1. Level lines for repre-
sentative values of the interior
constant dragging functionA in
the physical region of the mode
parameters a5M /2R and k
5(M22q2)/4R2. The energy con-
dition violating regionDt,0 is
shown in light gray shadow; the
region where the condition2t0

0

>0 also is violated is shown in
dark gray shadow. The boundarie
of the presented region in th
(a,k) plane are given ~from
above to below! by the conditions
that the shell lies outside the hor
zon, the charge is real, the mass
non-negative, and the invariant ra
dius of the shell is non-negative.
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FIG. 2. Level lines for repre-
sentative values of the interior
constant magnetic fieldBz @in
units of vqC/R, with C from Eq.
~7!# in the physical region of the
model parametersa5M /2R and
k5(M22q2)/4R2. Concerning
boundaries of the region, and gra
shadows, see the caption of Fig.
f
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momentumJ in its dependence on the model parametersa
and k. Only the zero of the functionm does not start ata
5k50, but at the valuea50,k'20.15. The dependence o
the angular momentumJ and the magnetic momentm as
functions of the charge-to-mass and radius-to-mass ratios
been illustrated for special values ofq/M in @8#.

Finally, we come to the especially interesting and imp
tant discussion of the gyromagnetic ratioG521(3z/2l) of
our rotating shell. In the ratio 3z/2l, the algebraically com-
plicated determinant of the linear system~38! cancels, with
the result

G225
3z

2l
5

8k2~12k!@2k21k~51a!13a#

P~5;4!13a~12k!P~5;3!RS~k!
,

with RS(k) from Eq.~28!, and whereP( i ; j ) denote polyno-
mials of orderi in k, and orderj in a. Notwithstanding these
08403
as
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algebraic simplifications, the gyromagnetic ratioG has a
very delicate and interesting behavior in the (a,k) plane, as
is shown in Fig. 5, and which comes about essentia
through the interaction between strong gravitational a
electric fields:G approaches the value 2 in the collapse lim
k→1, with a correction termG22524e/3a(11a)2 for
k512e, which, although being linear ine, becomes very
small for largea. For fixedk, anda→`, G approaches 2
with a correction term proportional toa23 ~and proportional
to a24 for k51 andk523). G22 is identically zero on a
branch of the hyperbolak5 1

2 (51a2A25122a1a2),
which approachesk523 for a→`. Also in the lower part
of the figure,G approaches the valueG52 very rapidly, e.g.,
in all asymptotic directions with slope22<dk/da,
20.698 the correction term is proportional toa25/2. On the
other hand,G diverges, due toJ50, on a curve which starts
with slope dk/da52 6

5 at the origin, and reaches a
r

d
of
FIG. 3. Level lines for repre-
sentative values of the angula
momentumJ ~measured in units
of vR3) in the physical region of
the model parametersa5M /2R
and k5(M22q2)/4R2. Concern-
ing boundaries of the region, an
gray shadows, see the caption
Fig. 1.
3-7



ic

d
of

HERBERT PFISTER AND MARKUS KING PHYSICAL REVIEW D65 084033
FIG. 4. Level lines for repre-
sentative values of the magnet
momentm ~measured in units of
1
3 vqR2) in the physical region of
the model parametersa5M /2R
and k5(M22q2)/4R2. Concern-
ing boundaries of the region, an
gray shadows, see the caption
Fig. 1.
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asymptotic slopedk/da'20.697. Below this curve there
exists a region with negative values ofG, due toJ,0, and
m.0 in this part of parameter space~see Figs. 3 and 4!.
However, the region withG,0 is extremely small: it starts
with a widthDk'0.15 ata50, which diminishes very rap
idly with growing a. The reason for this is that the magne

moment m5 1
3 vqR2( 3

2 z12l) changes from a positive to
negative sign at the lower end of the regionG,0, because
there the contribution of32 z ~which is positive below the
curveG52) can no longer compensate the negative con
bution from 2l. At the left edge of the figure (a50,21
<k<0) we haveG[0. Remarkable is also that the wea
field limit of G ~for a!1, k!1) is ‘‘direction dependent’’:
G→@11(5k/6a)#21. Only approaching the origin of the
(a,k) plane from the upper-right quadrant~in the under-
extreme or extreme Reissner-Nordstro¨m case!, leads to the
classical valueG51.
08403
i-

Some special cases of this behavior of the gyromagn
ratio G have already been discussed in@6–8# ~see also@10#
for the behavior ofG in a non-shell-like model system!. We
find it very interesting, however, howG behaves in the
whole physical range of the parametersa andk, especially
the ‘‘extreme’’ behavior ofG around the lineJ50, and the
fact thatG is very near to the valueG52 in an overwhelm-
ing part of the (a,k) plane. The latter fact may be seen mo
impressively in the three-dimensional plotG(a,k) of Fig. 6
than from the level lines of Fig. 5.~This fact, for the special
valueq/M51.01, may also be read off from Fig. 5a of@8#,
but it was not commented and discussed there in a m
general way.!

Now, it is well known that a valueG52 results in quan-
tum mechanics if the simplest rotating object~a spin–1

2 par-
ticle without inner structure! is minimally coupled~accord-
ing to the gauge principle! to an electromagnetic field, an
-

-
e

FIG. 5. Level lines for repre-
sentative values of the gyromag
netic ratioG in the physical region
of the model parametersa
5M /2R and k5(M22q2)/4R2.
Concerning boundaries of the re
gion, and gray shadows, see th
caption of Fig. 1.
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FIG. 6. A three-dimensiona
plot of the gyromagnetic ratio
G(a,k), showing especially dras
tic that G'2 in an overwhelming
part of the physical (a,k) plane.
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this equally in a non-relativistic~Galilei-covariant! and in a
relativistic ~Poincare´-covariant! scheme. Furthermore, th
valueG52 is nearly perfectly realized in nature for some
the most elementary particles: the electron and the mu
And there are even strong arguments forG52 also for other
elementary particles of the standard model, e.g., for theW
boson@11#. A value G52 is, however, hardly reachable i
any classical model~without strong gravity!, and if it is
reachable in special models~see, e.g.,@12#!, G52 is by no
means a natural or preferred value. Insofar as it is very
markable that general relativity predicts for some of its si
plest and most unique solutions, the Kerr-Newman clas
back hole solutions, also the valueG52, as was first ob-
served by Carter@13#. ~This result extends also to th
charged Tomimatsu-Sato solutions@14,15#, and to a large
class of other solutions.! That the same value results for ro
tating, charged shell models in the collapse limit@6,7#, is to
be expected from the no hair theorems. The new and sur
ing result of our analysis is that this valueG52 is ‘‘ex-
tremely robust’’ in the sense that in a big part of the para
eter space (a,k) in Figs. 5 and 6, and not only in th
collapse limit,G deviates from the valueG52 only by a
very small amount. And this is true not only in regions
(a,k) where, due to the shell structure of our model, t
stressest2

25t3
3 are unrealistically high~as compared to the

energy density2t0
0) but also for valuesuku!1 where the

stresses are arbitrary small.
We like to argue that this ‘‘naturalness’’ ofG52 for a

large class of rotating shell systems with strong gravitatio
and electric fields, and its ‘‘coincidence’’ with the valueG
'2 for the most elementary quantum particles, signal
deep connection between general relativity and quan
theory, which should serve as a guideline and control in
attempt to build some ‘‘quantum gravity.’’~Remember the
importance of the coincidence between inertial and grav
tional mass as a cornerstone of Einstein’s general relati
theory, and the importance of the coincidence between
08403
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classical and quantum Rutherford formula for the birth
quantum mechanics.! To make this argument even more co
vincing, it would be helpful to extend our analysis of th
gyromagnetic ratio to rapidly rotating charged mass shells
even to full~non-shell-like! charged bodies. It is, however, t
be expected that such an analysis can be sucessfully
formed, if any, only numerically. And it is to be expected th
the results depend~severely?! on the detailed material prop
erties of the rotating bodies, as they show up, e.g., in
centrifugal deformation, in the nonspherical distribution
the mass and charge densities, and in possible differe
rotations~compare@16# and @17#!. Indeed, such a numerica
study of theG factor for more realistic charged, rotatin
bodies, and also for high values ofv, will now be started by
a group in Meudon~E. Gourgoulhon and J. Novak!. In con-
trast to@7# we resist, however, from describing quantum p
ticles like the electron and the proton literally by our mode
Besides the unrealistic shell structure, such an identifica
would have the irritating consequences that one would b
the range of extremely weak electric and gravitational fie
~valuesa'10243 for the electron, anda'10236 for the pro-
ton!, that the velocityvR ~calculated fromJ5 1

2 \) would be
in the range of 250c for the electron, and bigger than 1000c
for the proton~what would also be inconsistent with our fir
order approximation inv), and that the ‘‘radius’’ would be
much smaller for the proton than for the electron. In conc
sion, it may be remarked that the valueG52 was also de-
rived for a special~Majumdar-Papapetrou-like! class of su-
pergravity solitons@18#.
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