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Slowly decaying tails of massive scalar fields in spherically symmetric spacetimes
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We study the dominant late-time behaviors of massive scalar fields in static and spherically symmetric
spacetimes. Considering the field evolution in the far zone where the gravitational field is weak, we show under
which conditions the massive field oscillates with an amplitude that decays slowly&st very late times,
as previously found iffsay) the Schwarzschild case. Our conclusion is that this long-lived oscillating tail is
generally observed at timelike infinity in black hole spacetimes, while it may not be able to survive if the
central object is a normal star. We also discuss that such a remarkable backscattering effect is absent for the
field near the null cone at larger spatial distances.
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[. INTRODUCTION esting features peculiar to massive fields develop through the
scattering due to the spacetime curvature.

One of the most remarkable features of wave dynamics in The important role of massive scalar fields has been re-
curved spacetimes is tails. Scalar, electromagnetic and grawealed in elementary particle physics. For example, in
tational fields in curved spacetimes do not, in general, propadigher-dimensional theories the Fourier modes of a massless
gate entire|y a|0ng the null cone, but are accompanied b§calar field behave like massive fields known as Kaluza-
“tails” which propagate in the interior of the null cone. This Klein modes, and the recent development of the Kaluza-
implies that at late times waves do not cut off sharply butKlein idea(e.g., the Randall-Sundrum mod@] in the string
rather die off in tails. theory) strongly motivates us to understand the evolutional

In particular, it has been well established that the late-timdeatures due to the field mass in detail. In addition, scalar
evolution of massless scalar fields propagating in black-holé€lds are astrophysically important, if boson stars made up
spacetimes is dominated by an inverse power-law behavioff self-gravitating scalar fields prove to be viable candidates
as was first analyzed by Pri¢#]. In a brilliant work, Leaver ~ for dark matter[9]. If such astrophysical objects become
[2] demonstrated that late-time tails can be associated witHnstable and collapse to form a black hole, both gravitational
the existence of a branch cut in the Green’s function for theand scalar fields would be presumably radiated. Further, as
wave propagation problem. Gundlaehal. [3] showed that ©ne example of curious effects peculiar to massive fields, it
power-law tails also characterize the late-time evolution ofias been argued that unstable quasi-normal modes can exist
radiative fields at future null infinity, while the decay rate is [10,11. Then the time evolution of massive scalar fields in
different from that of timelike infinity. Furthermore, it has curved spacetimeén particular, in black-hole spacetimes
been shown that power-law tails are a genuine feature oould become an important problem to be solved.
gravitational collapsd4—6]: Late-time tails develop even  Recently it was pointed out that the late-time tails of mas-
when no horizon is present in the background, which meangive scalar fields in Reissner-Nordstrespacetime are quite
that power-law tails should be present in perturbations oflifferent from massless fields in the existence of the interme-
stars, or after the implosion and subsequent explosion of giate late time tail12] (see also[13]). If the Compton
massless field which does not result in black hole formationwavelengthm™* of a massive field is much longer than the
The existence of these tails was demonstrated in full nonlinhorizon radius of a black hole with the mabg namely
ear numerical simulations of the spherically symmetric col-mM<1, each multiple momeny of the field evolves into
lapse of a self-gravitational massless scalar field. Gundlace oscillatory inverse power-law behavior
et al.[4] obtained the power-law tails for a massless field in
fully nonlinear simulations at fixed, Marsa and Choptuik y~t~""F%sin(mt), (1)

[5] found them both at fixed and along the event horizon,
and Burko and Ori6] at fixed r, the event horizon, and at intermediate late times. It is clear from H@) that mas-
future null infinity to very high numerical accuracy. sive fields decay slower than massless ones, and waves with

When the scalar field has a nonzero mass, the tail behapeculiar frequencyw quite close tom mainly contribute to
iors are quite different from massless ones. For example, dbe massive tail, while the dominant contribution to massless
is well known, the tails exist even in Minkowski spacetimes,tails should be evaluated in the zero-frequency liant0.
which is related to the fact that different frequencies formingThough the oscillatory power-law forifl) has been numeri-

a massive wave packet have different phase velodifiedf  cally verified at intermediate late timesmM<mt
the background spacetime is curved, it is expected that inter,<1/(mM)?, it should be noted that the intermediate tails are
not the final asymptotic behaviors; another wave pattern can
dominate at very late times, when it still remains very diffi-
*Email address: hiroko@allegro.phys.nagoya-u.ac.jp cult to determine numerically the exact decay fd2,13. In
"Email address: atomi@allegro.phys.nagoya-u.ac.jp the previous papdrl4], we have analytically found that the
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transition from the intermediate behavior to the asymptotic (L)
one occurs in a nearly extreme Reissner-Norastimack- b= Vil 0,¢), )
ground. The oscillatory inverse power-law behavior of the
dominant asymptotic tail is approximately given by hereafter we omit the indek of ' for simplicity, and we

Yt~ Ssin(mt), @ obtain a wave equation for each multiple moment

2 2

independent of the multiple momeht and the decay be- ——(9—+V(r) #=0 (6)
comes slower than the intermediate ones. Then, the similar Jt? ari ’

result for the decay rate has been obtained by considering
massive scalar fields in Schwarzschild backgrodindthe  wherer, is the Wheeler tortoise coordinate defined by
limited cases thanM<1 ormM>1, whereM is the black-

hole masp[15] and massive Dirac fields in Kerr-Newman dr, \ﬁ
backgroundq 16]. Asymptotic behaviors of massive scalar dar V1 @
fields in dilaton black-hole backgrounds have also been dis-
cussed17]. andV is the effective potential
These results given iil4—1§ suggest that massive fields
in black hole backgrounds decay 85" generally at very 1 f\" 1+
late times. So it is an interesting subject to study how uni- v=f W( ﬁ) + r—2+m (8)

versally such a slowly decaying tail develops. It has been
numerically showr{4] that a power-law tail develops even

: ! ; The time evolution of the radial functio# is given b
when the collapsing massless scalar field fails to produce a wisg y

black hole. This is evidence for the late-time tail to be a

direct consequence of wave scattering in far distant regions. (r, ,t)=f [G(ry re OY(ry,0

In this paper we prove that the decay law’'® of massive

scalar fields can be essentially determined by the analysis in +Gy(ry ,ry ) w(r,,0]dr, 9)

the far zone where the gravitational field is weak. However,
we can also derive the conditions for the tails with the decayor t=0, where the retarded Green'’s functiGris defined as
rate oft~>® to dominate as an asymptotic behavior. Consid-
ering the physical interpretation of the conditions, we can
claim that any spherically symmetric black holes generate
the same asymptotic tails, while the conditions may not be
satisfied if the ceptral object is a normal star_. __The causality condition requires thex(r, ,r. ;t)=0 for t

In Sec. Il we introduce the Green’s function analysis togo In order to obtainG(r, ,r’ :t), we use the Fourier
investigate the time evolution of a massive scalar field in amfran.sform *oiw
static, spherically symmetric spacetimes. In Sec. Il we con-
sider the approximation valid in the far zone, and we find the
conditions for the tail with the decay rate o> to develop. é(r* N ;w)=f G(ry ,ry ‘t)eletdt, (12
The final section is devoted to discussion, which contains a
comment that the tail behavior of *® breaks down as the \pic is analytic in the upper halé plane. The correspond-
region comes close to the light cone. We discuss that the taii}]g inversion formula is '
with the decay rate df ' can develop also in rotating black
hole spacetimes. 1 (e+ic _ ,

G(r, ,rl;t)= G(r, 1l ;w)e “d,

V772w ) e
Il. GREEN'S FUNCTION ANALYSIS (12)

P
———+V

2 a2 G(ry.ry;)=681)8(r,—r,). (10
*

A. Massive scalar fields in spherically symmetric spacetimes . . )
wherec is some positive constant. Now the Fourier compo-

We consider the evolution of a massive scalar field in "’hent of the Green’s functioﬁ-;(r r!:w) is expressed in
. * 10 %

static Sphe”c"?‘"y symmetric background with the asyrm)mt"terms of two linearly independent solutions for the homoge-
cally flat metric given by

neous equation
ds?=—f(r)dt?+h(r)dr2+r2(d6?+sirfode?). (3)

— +0?=V|§=0, i=1.2 (13

Here we do not assume the metric to be a solution of the ar
*

vacuum or electrovac Einstein equations. The scalar field
with the massn satisfies the wave equation

The boundary condition for the basic solutign is that it

O0®=m2d. (4) should be well behaved on the event horizon if the central
object is a black hole, and at=0 otherwise. On the other
Resolving the field into spherical harmonics hand, the other basic solutioft, is required to be well be-
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\ o 2M  Q?

f=1—T+Q—2+O(r’3) (17)
B r
g and
2 ’ "2

h=1+ —+ —+0(r %), (18

r r2

whereM’, Q andQ’ are some parameters characterizing the

background field in more detail in addition to the gravita-
FIG. 1. The integration contour for E12), whent>r, —r, .  tional massM. Expanding Eq(13) in the same manner and
The original path corresponds to the straight line AOB. An integralneglecting terms of orde®[ (M/r)3] and higher, we obtain
along a branch cut placed along the intervalh<w<m leads to  the approximated form
the power-law tail.

o . . .
haved at spatial infinityr —. Using these two solutions, —f—ul/jz 0, (19
G(r, ,r. ;w) can be written by o
~ ~ , where
é( , ) 1 wl(r*!w)lﬁZ(r*!w)r r*>r~k’
ey @)= ~ ~
U W(@) | Py (r, @) ida(r) @), Te<T}, )\Z_E
(14 2Mw? 2M'(m?—w?) 4
U=(m?—w?)— . + : ey el
whereW(w) is the Wronskian defined by ' (20)
W(w)=t1ipar — i1y 2. (15 The coefficientn in Eq. (20) depends on the multiple mo-

ment | and the other parameteMd, M’, Q and Q’. For
The integrand in Eq(12) has branch points ab==m.  example, in the case of the Reissner-Nordstimackground
Considering the branch points, one may change the integravith massM and chargeQ, we have
tion path in Eq(12). First, ifr, —r >t, the path is closed in

the upper half of thes plane for the integration to converge. 1\? - oo oo B
Since the integrand would have no singularities in the upper A= \/| 1+ 5| +4m"M*~120"M"~m"Q"+20"Q".
half plane, we obtails(r, ,r; ;t)=0 according to the cau- (21)

sality postulate. If , —r, <t, on the other hand, the path can

be deformed to the curve shown in Flg 1. As will be ShOWnWe keep the term of the order ﬁf[(M/r)z] in Eq (19), in
later, the late-time tails are generated owing to the existencgrder to confirm that the decay rate of asymptotic timelike
of a branch cut(in ¥,) placed along the intervat m<w tails found in[14-17 is independent of. Introducing the
=m. variable defined as

B. The analysis in a region far from the gravitational source X=2wr, (22)

It has been found in previous papdrs4—17 that the
. : . ' where
oscillatory power-law tails of massive scalar fields whose
decay rate iz~ >® dominate at asymptotically late times in
black-hole spacetimes. In this paper we show that the decay w=VmT T o, (23
law can be simply derived by considering wave modes only _ _
in a far distant region, as generic behaviors observed in anfd. (19) is rewritten by
black hole spacetime.

For that purpose, we assume d> 1 «k A\?>-1/4|-
— -t =0, (24)
; dX2 4 X X2 ¢
wherex is

where M is the gravitational mass of a background field.
Then, the expansion of the metric functioh&nd h as a
power series irM/r leads to

m2

- (M+M")w. (25
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1. TIMELIKE ASYMPTOTIC TAIL OF MASSIVE Using Eqgs(12), (26) and(28), the branch cut contribution to
SCALAR FIELDS the Green’s function is given by
A. The wave modes Uo(F )
Our aim is now to show that the tail with the power-law GO(ry .1} st)= f Y (r ){ \jV( )
decay oft % is a generic asymptotic behavior in black-hole
spacetimes by using the wave modes satisfying(Eg). One To(re™w)|
may claim that the inner boundary condition to determjine - Tl e '“'do
is missed if the analysis is limited to the rande). Hence, W(e"w)
we treaty; as a general solution for E419) and reveal a ap+ bp_
condition which allows the excitation of the asymptotic = —f AG ) _s
power-law tail. Fortunately we will be able to prove that P-
such a condition is always satisfied if the event horizon ex- ~
ists in the background spacetime. _ aq++bq} ‘/’_1(” e e, (32
First, let us givey,, by requiring that it damps exponen- aq: —bqg- | 4jkx
tially for |w|<m and is purely outgoing fow|>m at spatial where
infinity. The outer boundary condition leads to
~ r'(x2n)
Uol(w,1) = W5 (%), (26) po=—g (33)
J— —
whereW, , (x) is the Whittaker functiori18], and the branch F( 2 =\ K)
of w is chosen to be
and
moot  e<m T(+2)
7 ide "2 w>m, (27) qi:%eiw(lQi)\)_ (34)
, . I sxN+k
Note thatw, ,(x) is a many-valued function afs, and there 2

is a cut in,. The late-time tail is generated by the contri-
bution from the branch cut ig,, while ¥, is a one-valued
function of w, as was shown ifi14,15. This is because the mt>1, (35
late-time tail is a consequence of backscattering. On the

other hand, we givé,, using the Whittaker functionst,,  the rapidly oscillating terne”'“! leads to a mutual cancella-

Note that at very late times

and free parametesandb as follows tion between the positive and the negative parts of the inte-
’ grand (32), except for the case that the other terms of the
Pi=aM, ,(X)+bM, _,(x), (2g)  integrand also change rapidly with In fact, it is easy to see

that ¥, neither oscillates rapidly nor changes exponentially
wherea andb will be determined if the inner boundary con- with w in the region

dition for ¥, is specified. Nevertheless the relation
ol <K. (36

7 _7 i
Ya(w)= (€7 w) (29 Then, if k remains small, the effective contribution to the

integral in Eq.(32) is claimed to be limited to the range
—m|=0(1t) or equivalently w=0(ym/t) (see
[12,14,19), and the intermediate tails become dominant at

should be required, sinag, is a one-valued function foss.
Then, we rewrite the parametesisandb as

a=jw Y2\ (30) late times in the range
and
mM<mt< 5 (37
b=km_1/2+)‘, (31) (mM)
wherej andk are some one-valued functions fer. In the vyhen the integra(32) should be estimated under the condi-
following we will clarify under what kind of conditions faa tion
andb the power-law tail with the decay rate o> asymp- )
totically dominates. s m'™M =0(m M\/ﬁ)< 1 (39)
m2_ w2 '

B. Branch cut integration at timelike asymptotic regions
As was discussed ifl4,15, the small value ok represents

As was shown ”i12 14,13, late-time tails are derived by that the backscattering due to the spacetime curvature is not
the integral ofG(r, ,r. ;) around the branch cut in Fig. 1. effective at intermediate late times. It is obvious that the
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intermediate tails given by Eql) dominate at intermediate n N ”
late times(37), which was numerically supported b%2,13.

As was also discussed ji4,15, however, the intermedi-
ate tails cannot be an asymptotic behavior, and the long-term o ®
evolution from the intermediate behavior to the final one m
should occur. The asymptotic tail becomes dominant at very
late times such that “ U

1

mt> %, (39 FIG. 2. The schematic behaviors of the integrand
m°M G(r, .r. ;t)e ' nearo=m in Eq. (32). The integrand includes
rapidly oscillating terms o0& ™ ande™ !, but the phase of oscil-
when the effective contribution to the integré82) arises lation is stationary aiv= w.
from the region

_T(2\)T(1-4i0M)

2 L= 4m2M 2)—)\ei77)\
K:ﬂ>1’ (40) & [(1/2+\—2iwM)? (
Jm?— ?
[(—2M)T(1-4iwM) »

. . + _ (4Am?’M?)Ne™ '™ (46)
which means the backscattering effect due to the curvature- [(1/2—=\—2iwM)?
induced potential dominates. In the limit @f—«, the term
(apy +bp-)/(ap; —bp-) becomes in the limit of k— [see(39) and (40) in [15]]. Then the

following inequalities

ap.+bp.  7n,e™+y, e
— - - ,
ap+—bp7 n_e*I‘ITK_’_,y_eMTK

(42) | 7|2 ]y-] (47)

hich includ i ilat £ and h are satisfied whenw=0 respectively[see (43) in [15]].
which Includes very rapid oscillations as' ", and we have When the inequalities (47) hold, the term ap+
) ) +bp_)/(ap.—bp_) can be expressed as the product of the
n==C(2N)ak e '™ =T (=2\)bi"e'™, (42 rapidly oscillating terme=2 7« by €'¢, wheree remains in
the range 8= ¢ <2 even if k becomes very large. The in-
and tegrand(32) includes rapidly oscillating terms & ™ and
e 't which means physically that the scalar waves have
ye=T(2N)ak e ™ +T'(—2\)bxre ™. (43) multiple phases owing to the backscattering by the spacetime
curvature, and the contribution from these waves are can-

Such rapidly oscillatory behaviors are not seen in the othe?ek:fl(lj by tf;)ose with the inverse phase, unless the phase of
term (@q; +bq-)/(ag,—bqg-), which is given by oscillation becomes stationary, i.e.,

. . d
aq.+bqg. ar'(2n)« e "™ +bI(—2\)k e ™ %(thZ’JTK):O (48)
— - -
ag,—ba- ar(2n)x e "™ —br(—2x)krel ™
(44 for =0 respectively. We denote satisfying Eq.(48) by
. o wg. Then, particular waves with the frequenay remain
even in the limit ofk — . without cancellation, and contribute dominantly to the tail

Now we revisit the procedure through which the branchbehaviors(see Fig. 2 In the limit of |w|—m we obtain the
cut integration(32) leads to the tail with the decay rate of solutions of(48) as

t~5% as was shown ifi14,15. For example, in the case of
small mass field HiM<1) in a Schwarzschild background 27 wom?M
with massM, 7. andy. become t=t——— (49
2 YT
77+:F(2)\) ra _4le) (4Am?M?) e imr for =0 respectively, or equivalently
['(1/2+X—2iwM)?
27M\ 18
['(—2\)T(1-4ioM : wo=Vm?— wy=m —) : 50
Pk o )(4m2M2)”e””‘ (45) ° 0 t 0

I'(1/2—\—2iwM)?
Approximating the integratio32) by the contribution from
and the close vicinity ofwg, we obtain
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G 1L 0= e (2m S 5"
X sin(mt+ ¢) g (1, ,m)a(ry ,m).

(51)

Thus we can confirm that the decay lawtoP’® is a result of
wave evolution in far distant regioms>M. We also find the
existence of a phase shift given by

b= 2 2TmMZ(mY = (o) +

2 4 (52)

which modulates the basic oscillation with the period of

27/m (see[15]). The multiple moment and metric compo-

PHYSICAL REVIEW D 65 084031

FIG. 3. The schematic behaviors of the effective potertfiah

Eq. (20) and wave mode/; in Eq. (58) in the far region where all
of the conditiong(16), (36) and (57) are satisfied.

One may claim that the conditiod7) changes according
to the value ofA. However, we can give the unified interpre-

nenth(r) can affect only this modulation term in the asymp- tation, independent of the value Bf by paying attention to

totically late-time evolution.
Note that if the condition$47) break down, i.e., either

| 7+[S |yl (53
for ©=0, respectively, or
| 7| =]yl (54

Y in the region

1
wlr<<—
K

(57)

in addition to Eq.(36). When all of the condition§16), (36)
and (57) are satisfied, the second term which represents the
Newtonian part in the effective potenti@0) becomes domi-

nant, compared with the other terms. In this regipp is

are satisfied, all the qontributions from_scglar waves will beapproximated by
canceled more effectively. Then the tail with the decay rate

t—5/6

of cannot survive. Therefore, the conditiof%7) are

necessary for the tail to dominate. The physical implication

is given in the next subsection.

C. Physical interpretation of the condition for the tail
generation

It is easy to see that the inequalitie) are satisfied for
the background spacetimes discussed in previous ppgpees
(63) in [14], and(43) and(74) in [15]], in which the tail with

the decay rate of 6 can dominate at very late times. Now

we give the physical interpretation of E47) to discuss

T =Ad2x 4 Bgi2VkxX (58)
whereA andB are
A= 71_—1/2K—1/4X1/4(2)\)e—iw/4{K—Aar(2}\)e—iv)\
—K'bI'(—2\)e' ™ (59
and
B= ﬂ_—1/2K—1/4X1/4(2)\)e—iw/4{K—)\al—‘(2)\)eiw)\
—kMol(—2N)e '™, (60)

which background spacetime allows the development of the

late-time tail.

Because\? in Eq. (20) is real,\ should be either real or
purely imaginary. From the expressig2l) in Reissner-
Nordstran background, we find that the small masaN|
<1) gives a reak, while the large massifM>1) gives an
imaginary\. The two inequalitie$47) for =0 can be re-
duced to

i
X(ab* —a*bh)=0 (55)
when\ is real, and
1
;dmﬁﬂm%zo (56)

when\ (=ivy) is purely imaginary, respectively.

respectivelysee Fig. 3. In this region, independent af, the
mode clearly shows a wave behavior with the amplitydgs
and|B| corresponding to the outgoing and ingoing parts for
»>0, while |A| and|B| correspond to the ingoing and out-
going parts fore<0. The difference betwed|? and|B|?
is

|B|?—|A|?=2iN7(ab* —a*Db) (61)
when\ is real. The condition$55) under which the rapid
oscillation ofe? ™ survives are equivalent with the inequali-
ties

[BI=[A] (62)

for @=0 respectively. On the other hand, whe(=ivy) is
purely imaginary, we have

[BI2—[A12= 20 2T (20) (b2~ a2 (2™ ~e™)
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=8my(|b|*>—|al?), (63  and the saddle point ai=w, (50) has disappeared because
of the terms o™~ """ which change exponentially. There-

. i, . . fore it is obvious that theé~>® tail dominates only within the
which means the conditior{56) are also equivalent with the y

inequalities(62). Therefore, it is sufficient to consider the region

inequalities(62) independent of, as the conditions for the 13213

tail with the decay rate of >® to dominate at late times. r<M28, (66)
Equation(62) meansthe amplitude of ingoing waves fai, _ . _ _ _

is larger than that of outgoing waves the region where What kind of behavior dominates in the regian
Egs.(16), (36) and(57) are all satisfied. >MY3%23 in particular, near the null cone—t? Now we

The Origin of the S|ow|y decaying tail a§5/6 of a mas- must find saddle pOintS as solutions of the fO”OWing equation

sive scalar field can be considered a resonance by coopera-

tion between dispersion and backscattering. It is a common )

feature when the scalar field has a nonzero mass that in far 7 (Tlettwr—«inr=0, (67)
distant regions the effective potent{@0) is a monotonously
increasing function witlr and the radial mode shows a wave . .
behavior.glf the central object is a black hole, the conditiondnStéad of Eq.(48). In general, solutions of Eq67) are
(62) are surely satisfied because of the existence of the eveﬁPmpleX TU"‘C“OF‘S ot andr. However we can find a simple
horizon. So, we can conclude that this long-lived oscillatingasymptouc solution as

tail is generally observed in arbitrary spherical symmetric

black-hole spacetimes. imt

w1= ’—tz_}‘z’

We have found that whether or not the tail with the decayfor high frequencyw;>m, which is compatible with the
rate oft~ %6 develops at very late times can be judged rel-limit of
evantly by wave modes only in far distant regions. Then,
even when the central object is a rotating black hole, only the

(68)
IV. DISCUSSION

parameterdM’ and\ in the effective potentia(20) will be r—t (69)
changed in far distant regions. Strictly, background space-
times in this paper are limited to the class of static andyherer is
spherically symmetric. However, since these are not relevant
to the condition$62), the same tail behaviors are expected to ~
r=r+(M+M")Inr, (70

dominate also in Kerr spacetimes.

We compare our analytical result with their numerical
simulation[12]. As far as the intermediate late-time behaviorwhich is modified due to red shift. The expressi®8)
is concerned, our result agrees with2]. However they means that we can calculate Green’s function using the
claimed “Sl perturbation fields decay at late times slowersaddle point integration by deforming the integration contour
than any power law” in[12], which disagrees with our into the straight line AOB in Fig. 1. Whew; is a large
present result and previous onéd,15 that the late-time tail  value, considering the region«r’>1 also, Green’s func-
of a massive scalar field is a power law with inde%/6. We  tion is reduced to
believe that the integration time {12] is too short to find
the true asymptotic behavior.

Now we remark that the region of spacetimes where the G(ry .ry ;t)~f -

—iwt

(e "R+e"Rdw, (71

tail with the decay rate of *6 dominates is limited. This 2w
feature can be understood by considering the behavigt, of )
In the region and we obtain
wol = k(wg), (64) 0 imt (72)
te-R?
¥y is reduced to
as the saddle point rather than E§8), whereR is
hl/‘/ —~ \E)\ K Kem’rfkln r( ei7n<+ e*iWK) R_?_F, (73)
1 T |\ 2ew K Y- B '
n K _Ke,mr” Inrgiml2-ime,, 65) Approximating the integratiol12) by the contribution from
2ew - the immediate vicinity ofw,, we obtain
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f dw
w:wl

52
X ex i‘—z(—wt-i- Jo’—m?R)
Jw

gl (—ot+ Vw?-m?R)
G(re 1y O~ ——F———

2iJw?—m?

w:wl

X(a)—a)l)z

— @i(-ogt+ x/wi—mzR)z—SMrn—UZ

X (t+R) " Y4t—R) 4 (74

The radial part of the scalar field near null coneR=t,
together with the geometrical factorr 1behaves as

f _ e—im(ztu)l’zz 3/~ 12~ 5/4,,~ 1/4
r 7

(75
whereu is

u=t—R. (76)
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This behavioK75) is similar to the case of Minkowski space-

times, except for including red shift factor, instead of
Massive fields near the null cone decay more rapidly than
t_5/6.

Finally we comment about late-time tail behaviors when
the central object is a normal star such as a neutron star or a

boson star. If the expression @f in Eq. (28) is assumed to

be extended to the regians M, then we must requires; to

be regular at =0. This leads to the equality\| =|B| which
means that the amplitude of outgoing is equivalent to that of
ingoing. Then the tail with the decay rate bf°® never
develops. Though this extension of E@8 may not be
valid, we can expect the equality| =|B| to be valid, unless
some absorption of waves occurs in the inner region. This is
a future problem to be checked by giving a background
gravitational field with a regular center.
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