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Slowly decaying tails of massive scalar fields in spherically symmetric spacetimes

Hiroko Koyama* and Akira Tomimatsu†
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We study the dominant late-time behaviors of massive scalar fields in static and spherically symmetric
spacetimes. Considering the field evolution in the far zone where the gravitational field is weak, we show under
which conditions the massive field oscillates with an amplitude that decays slowly ast25/6 at very late times,
as previously found in~say! the Schwarzschild case. Our conclusion is that this long-lived oscillating tail is
generally observed at timelike infinity in black hole spacetimes, while it may not be able to survive if the
central object is a normal star. We also discuss that such a remarkable backscattering effect is absent for the
field near the null cone at larger spatial distances.
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I. INTRODUCTION

One of the most remarkable features of wave dynamic
curved spacetimes is tails. Scalar, electromagnetic and g
tational fields in curved spacetimes do not, in general, pro
gate entirely along the null cone, but are accompanied
‘‘tails’’ which propagate in the interior of the null cone. Thi
implies that at late times waves do not cut off sharply b
rather die off in tails.

In particular, it has been well established that the late-ti
evolution of massless scalar fields propagating in black-h
spacetimes is dominated by an inverse power-law beha
as was first analyzed by Price@1#. In a brilliant work, Leaver
@2# demonstrated that late-time tails can be associated
the existence of a branch cut in the Green’s function for
wave propagation problem. Gundlachet al. @3# showed that
power-law tails also characterize the late-time evolution
radiative fields at future null infinity, while the decay rate
different from that of timelike infinity. Furthermore, it ha
been shown that power-law tails are a genuine feature
gravitational collapse@4–6#: Late-time tails develop even
when no horizon is present in the background, which me
that power-law tails should be present in perturbations
stars, or after the implosion and subsequent explosion
massless field which does not result in black hole formati
The existence of these tails was demonstrated in full non
ear numerical simulations of the spherically symmetric c
lapse of a self-gravitational massless scalar field. Gund
et al. @4# obtained the power-law tails for a massless field
fully nonlinear simulations at fixedr, Marsa and Choptuik
@5# found them both at fixedr and along the event horizon
and Burko and Ori@6# at fixed r, the event horizon, and
future null infinity to very high numerical accuracy.

When the scalar field has a nonzero mass, the tail be
iors are quite different from massless ones. For example
is well known, the tails exist even in Minkowski spacetime
which is related to the fact that different frequencies form
a massive wave packet have different phase velocities@7#. If
the background spacetime is curved, it is expected that in
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esting features peculiar to massive fields develop through
scattering due to the spacetime curvature.

The important role of massive scalar fields has been
vealed in elementary particle physics. For example,
higher-dimensional theories the Fourier modes of a mass
scalar field behave like massive fields known as Kalu
Klein modes, and the recent development of the Kalu
Klein idea~e.g., the Randall-Sundrum model@8# in the string
theory! strongly motivates us to understand the evolutio
features due to the field mass in detail. In addition, sca
fields are astrophysically important, if boson stars made
of self-gravitating scalar fields prove to be viable candida
for dark matter@9#. If such astrophysical objects becom
unstable and collapse to form a black hole, both gravitatio
and scalar fields would be presumably radiated. Further
one example of curious effects peculiar to massive fields
has been argued that unstable quasi-normal modes can
@10,11#. Then the time evolution of massive scalar fields
curved spacetimes~in particular, in black-hole spacetimes!
would become an important problem to be solved.

Recently it was pointed out that the late-time tails of ma
sive scalar fields in Reissner-Nordstro¨m spacetime are quite
different from massless fields in the existence of the interm
diate late time tails@12# ~see also@13#!. If the Compton
wavelengthm21 of a massive field is much longer than th
horizon radius of a black hole with the massM, namely
mM!1, each multiple momentc of the field evolves into
the oscillatory inverse power-law behavior

c;t2 l 23/2sin~mt!, ~1!

at intermediate late times. It is clear from Eq.~1! that mas-
sive fields decay slower than massless ones, and waves
peculiar frequencyv quite close tom mainly contribute to
the massive tail, while the dominant contribution to massl
tails should be evaluated in the zero-frequency limitv→0.
Though the oscillatory power-law form~1! has been numeri-
cally verified at intermediate late times,mM!mt
!1/(mM)2, it should be noted that the intermediate tails a
not the final asymptotic behaviors; another wave pattern
dominate at very late times, when it still remains very dif
cult to determine numerically the exact decay rate@12,13#. In
the previous paper@14#, we have analytically found that th
©2002 The American Physical Society31-1
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HIROKO KOYAMA AND AKIRA TOMIMATSU PHYSICAL REVIEW D 65 084031
transition from the intermediate behavior to the asympto
one occurs in a nearly extreme Reissner-Nordstro¨m back-
ground. The oscillatory inverse power-law behavior of t
dominant asymptotic tail is approximately given by

c;t25/6sin~mt!, ~2!

independent of the multiple momentl, and the decay be
comes slower than the intermediate ones. Then, the sim
result for the decay rate has been obtained by conside
massive scalar fields in Schwarzschild background~in the
limited cases thatmM!1 or mM@1, whereM is the black-
hole mass! @15# and massive Dirac fields in Kerr-Newma
backgrounds@16#. Asymptotic behaviors of massive scal
fields in dilaton black-hole backgrounds have also been
cussed@17#.

These results given in@14–16# suggest that massive field
in black hole backgrounds decay ast25/6 generally at very
late times. So it is an interesting subject to study how u
versally such a slowly decaying tail develops. It has be
numerically shown@4# that a power-law tail develops eve
when the collapsing massless scalar field fails to produc
black hole. This is evidence for the late-time tail to be
direct consequence of wave scattering in far distant regio
In this paper we prove that the decay lawt25/6 of massive
scalar fields can be essentially determined by the analys
the far zone where the gravitational field is weak. Howev
we can also derive the conditions for the tails with the de
rate of t25/6 to dominate as an asymptotic behavior. Cons
ering the physical interpretation of the conditions, we c
claim that any spherically symmetric black holes gener
the same asymptotic tails, while the conditions may not
satisfied if the central object is a normal star.

In Sec. II we introduce the Green’s function analysis
investigate the time evolution of a massive scalar field in a
static, spherically symmetric spacetimes. In Sec. III we c
sider the approximation valid in the far zone, and we find
conditions for the tail with the decay rate oft25/6 to develop.
The final section is devoted to discussion, which contain
comment that the tail behavior oft25/6 breaks down as the
region comes close to the light cone. We discuss that the
with the decay rate oft25/6 can develop also in rotating blac
hole spacetimes.

II. GREEN’S FUNCTION ANALYSIS

A. Massive scalar fields in spherically symmetric spacetimes

We consider the evolution of a massive scalar field in
static spherically symmetric background with the asympt
cally flat metric given by

ds252 f ~r !dt21h~r !dr21r 2~du21sin2udw2!. ~3!

Here we do not assume the metric to be a solution of
vacuum or electrovac Einstein equations. The scalar fieldF
with the massm satisfies the wave equation

hF5m2F. ~4!

Resolving the field into spherical harmonics
08403
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F5
c l~ t,r !

r
Yl ,m~u,w!, ~5!

hereafter we omit the indexl of c l for simplicity, and we
obtain a wave equation for each multiple moment

F ]2

]t2
2

]2

]r
*
2

1V~r !Gc50, ~6!

wherer * is the Wheeler tortoise coordinate defined by

dr*
dr

5Ah

f
, ~7!

andV is the effective potential

V5 f F 1

rAf h
SA f

hD 8
1

l ~ l 11!

r 2
1m2G . ~8!

The time evolution of the radial functionc is given by

c~r * ,t !5E @G~r * ,r
*
8 ;t !c t~r

*
8 ,0!

1Gt~r * ,r
*
8 ;t !c~r

*
8 ,0!#dr

*
8 ~9!

for t>0, where the retarded Green’s functionG is defined as

F ]2

]t2
2

]2

]r
*
2

1VGG~r * ,r
*
8 ;t !5d~ t !d~r * 2r

*
8 !. ~10!

The causality condition requires thatG(r * ,r
*
8 ;t)50 for t

<0. In order to obtainG(r * ,r
*
8 ;t), we use the Fourier

transform

G̃~r * ,r
*
8 ;v!5E G~r * ,r

*
8 ;t !eivtdt, ~11!

which is analytic in the upper halfv plane. The correspond
ing inversion formula is

G~r * ,r
*
8 ;t !52

1

2pE2`1 ic

`1 ic

G̃~r * ,r
*
8 ;v!e2 ivtdv,

~12!

wherec is some positive constant. Now the Fourier comp
nent of the Green’s functionG̃(r * ,r

*
8 ;v) is expressed in

terms of two linearly independent solutions for the homog
neous equation

F ]2

]r
*
2

1v22VG c̃ i50, i 51,2. ~13!

The boundary condition for the basic solutionc̃1 is that it
should be well behaved on the event horizon if the cen
object is a black hole, and atr 50 otherwise. On the othe
hand, the other basic solutionc̃2 is required to be well be-
1-2
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SLOWLY DECAYING TAILS OF MASSIVE SCALAR . . . PHYSICAL REVIEW D 65 084031
haved at spatial infinity,r→`. Using these two solutions
G̃(r * ,r

*
8 ;v) can be written by

G̃~r * ,r
*
8 ;v!5

1

W~v! H c̃1~r
*
8 ,v!c̃2~r * ,v!, r * .r

*
8 ,

c̃1~r * ,v!c̃2~r
*
8 ,v!, r * ,r

*
8 ,
~14!

whereW(v) is the Wronskian defined by

W~v!5c̃1c̃2,r
*
2c̃1,r

*
c̃2 . ~15!

The integrand in Eq.~12! has branch points atv56m.
Considering the branch points, one may change the inte
tion path in Eq.~12!. First, if r * 2r

*
8 .t, the path is closed in

the upper half of thev plane for the integration to converge
Since the integrand would have no singularities in the up
half plane, we obtainG(r * ,r

*
8 ;t)50 according to the cau

sality postulate. Ifr * 2r
*
8 ,t, on the other hand, the path ca

be deformed to the curve shown in Fig. 1. As will be sho
later, the late-time tails are generated owing to the existe
of a branch cut~in c̃2) placed along the interval2m<v
<m.

B. The analysis in a region far from the gravitational source

It has been found in previous papers@14–17# that the
oscillatory power-law tails of massive scalar fields who
decay rate ist25/6 dominate at asymptotically late times
black-hole spacetimes. In this paper we show that the de
law can be simply derived by considering wave modes o
in a far distant region, as generic behaviors observed in
black hole spacetime.

For that purpose, we assume

r

M
@1, ~16!

where M is the gravitational mass of a background fie
Then, the expansion of the metric functionsf and h as a
power series inM /r leads to

FIG. 1. The integration contour for Eq.~12!, when t.r * 2r
*
8 .

The original path corresponds to the straight line AOB. An integ
along a branch cut placed along the interval2m<v<m leads to
the power-law tail.
08403
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2M

r
1

Q2

r 2
1O~r 23! ~17!

and

h511
2M 8

r
1

Q82

r 2
1O~r 23!, ~18!

whereM 8, Q andQ8 are some parameters characterizing
background field in more detail in addition to the gravit
tional massM. Expanding Eq.~13! in the same manner an
neglecting terms of orderO@(M /r )3# and higher, we obtain
the approximated form

]2c̃

]r 2
2Uc̃50, ~19!

where

U5~m22v2!2
2Mv2

r
1

2M 8~m22v2!

r
2

l22
1

4

r 2
.

~20!

The coefficientl in Eq. ~20! depends on the multiple mo
ment l and the other parametersM, M 8, Q and Q8. For
example, in the case of the Reissner-Nordstro¨m background
with massM and chargeQ, we have

l5AS l 1
1

2D 2

14m2M2212v2M22m2Q212v2Q2.

~21!

We keep the term of the order ofO@(M /r )2# in Eq. ~19!, in
order to confirm that the decay rate of asymptotic timel
tails found in@14–17# is independent ofl. Introducing the
variable defined as

x52Ãr , ~22!

where

Ã5Am22v2, ~23!

Eq. ~19! is rewritten by

F d2

dx2
2

1

4
1

k

x
2

l221/4

x2 G c̃50, ~24!

wherek is

k5
Mm2

Ã
2~M1M 8!Ã. ~25!

l

1-3
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III. TIMELIKE ASYMPTOTIC TAIL OF MASSIVE
SCALAR FIELDS

A. The wave modes

Our aim is now to show that the tail with the power-la
decay oft25/6 is a generic asymptotic behavior in black-ho
spacetimes by using the wave modes satisfying Eq.~19!. One
may claim that the inner boundary condition to determinec̃1
is missed if the analysis is limited to the range~16!. Hence,
we treatc̃1 as a general solution for Eq.~19! and reveal a
condition which allows the excitation of the asympto
power-law tail. Fortunately we will be able to prove th
such a condition is always satisfied if the event horizon
ists in the background spacetime.

First, let us givec̃2, by requiring that it damps exponen
tially for uvu,m and is purely outgoing foruvu.m at spatial
infinity. The outer boundary condition leads to

c̃2~Ã,r !5Wk,l~x!, ~26!

whereWk,l(x) is the Whittaker function@18#, and the branch
of Ã is chosen to be

Ã5HAm22v2, v,m,

2 iAv22m2, v.m.
~27!

Note thatWk,l(x) is a many-valued function ofÃ, and there
is a cut inc̃2. The late-time tail is generated by the cont
bution from the branch cut inc̃2, while c̃1 is a one-valued
function of Ã, as was shown in@14,15#. This is because the
late-time tail is a consequence of backscattering. On
other hand, we givec̃1, using the Whittaker functionsMk,l
and free parametersa andb as follows,

c̃15aMk,l~x!1bMk,2l~x!, ~28!

wherea andb will be determined if the inner boundary con
dition for c̃1 is specified. Nevertheless the relation

c̃1~Ã!5c̃1~eipÃ! ~29!

should be required, sincec̃1 is a one-valued function forÃ.
Then, we rewrite the parametersa andb as

a5 j Ã21/22l ~30!

and

b5kÃ21/21l, ~31!

where j and k are some one-valued functions forÃ. In the
following we will clarify under what kind of conditions fora
andb the power-law tail with the decay rate oft25/6 asymp-
totically dominates.

B. Branch cut integration at timelike asymptotic regions

As was shown in@12,14,15#, late-time tails are derived by
the integral ofG̃(r * ,r 8 ;v) around the branch cut in Fig. 1
*

08403
-

e

Using Eqs.~12!, ~26! and~28!, the branch cut contribution to
the Green’s function is given by

GC~r * ,r
*
8 ;t !52

1

2pE2m

m

c̃1~r 8!F c̃2~r ,Ã!

W~Ã!

2
c̃2~r ,eipÃ!

W~eipÃ!
Ge2 ivtdv

5
1

2pE2m

m

c̃1~r 8!Fap11bp2

ap12bp2

2
aq11bq2

aq12bq2
G c̃1~r !

4 jkl
e2 ivtdv, ~32!

where

p65
G~62l!

GS 1

2
6l2k D ~33!

and

q65
G~62l!

GS 1

2
6l1k D eip(1/27l). ~34!

Note that at very late times

mt@1, ~35!

the rapidly oscillating terme2 ivt leads to a mutual cancella
tion between the positive and the negative parts of the in
grand ~32!, except for the case that the other terms of t
integrand also change rapidly withv. In fact, it is easy to see
that c̃1 neither oscillates rapidly nor changes exponentia
with v in the region

vr !k. ~36!

Then, if k remains small, the effective contribution to th
integral in Eq.~32! is claimed to be limited to the rangeuv
2mu5O(1/t) or equivalently Ã5O(Am/t) ~see
@12,14,15#!, and the intermediate tails become dominant
late times in the range

mM!mt!
1

~mM!2
, ~37!

when the integral~32! should be estimated under the cond
tion

k.
m2M

Am22v2
5O~mMAmt!!1. ~38!

As was discussed in@14,15#, the small value ofk represents
that the backscattering due to the spacetime curvature is
effective at intermediate late times. It is obvious that t
1-4



-
er
ne
e

ur

he

ch
f
f
d

he

-

ve
time
an-
e of

ail

nd

SLOWLY DECAYING TAILS OF MASSIVE SCALAR . . . PHYSICAL REVIEW D 65 084031
intermediate tails given by Eq.~1! dominate at intermediate
late times~37!, which was numerically supported by@12,13#.

As was also discussed in@14,15#, however, the intermedi
ate tails cannot be an asymptotic behavior, and the long-t
evolution from the intermediate behavior to the final o
should occur. The asymptotic tail becomes dominant at v
late times such that

mt@
1

m2M2
, ~39!

when the effective contribution to the integral~32! arises
from the region

k.
m2M

Am22v2
@1, ~40!

which means the backscattering effect due to the curvat
induced potential dominates. In the limit ofk→`, the term
(ap11bp2)/(ap12bp2) becomes

ap11bp2

ap12bp2
→ h1eipk1g1e2 ipk

h2e2 ipk1g2eipk
, ~41!

which includes very rapid oscillations ase6 ipk, and we have

h65G~2l!ak2le2 ipl6G~22l!bkleipl, ~42!

and

g65G~2l!ak2leipl6G~22l!bkle2 ipl. ~43!

Such rapidly oscillatory behaviors are not seen in the ot
term (aq11bq2)/(aq12bq2), which is given by

aq11bq2

aq12bq2
→ aG~2l!k2le2 ipl1bG~22l!kleipl

aG~2l!k2le2 ipl2bG~22l!kleipl

~44!

even in the limit ofk→`.
Now we revisit the procedure through which the bran

cut integration~32! leads to the tail with the decay rate o
t25/6, as was shown in@14,15#. For example, in the case o
small mass field (mM!1) in a Schwarzschild backgroun
with massM, h6 andg6 become

h65
G~2l!2G~124ivM !

G~1/21l22ivM !2
~4m2M2!2le2 ipl

6
G~22l!2G~124ivM !

G~1/22l22ivM !2
~4m2M2!leipl ~45!

and
08403
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g65
G~2l!2G~124ivM !

G~1/21l22ivM !2
~4m2M2!2leipl

6
G~22l!2G~124ivM !

G~1/22l22ivM !2
~4m2M2!le2 ipl ~46!

in the limit of k→` @see~39! and ~40! in @15##. Then the
following inequalities

uh6u:ug6u ~47!

are satisfied whenv:0 respectively@see ~43! in @15##.
When the inequalities ~47! hold, the term (ap1

1bp2)/(ap12bp2) can be expressed as the product of t
rapidly oscillating terme62ipk by eiw, wherew remains in
the range 0<w,2p even if k becomes very large. The in
tegrand~32! includes rapidly oscillating terms ofe2ipk and
e2 ivt, which means physically that the scalar waves ha
multiple phases owing to the backscattering by the space
curvature, and the contribution from these waves are c
celed by those with the inverse phase, unless the phas
oscillation becomes stationary, i.e.,

d

dv
~vt72pk!50 ~48!

for v:0 respectively. We denotev satisfying Eq.~48! by
v0. Then, particular waves with the frequencyv0 remain
without cancellation, and contribute dominantly to the t
behaviors~see Fig. 2!. In the limit of uvu→m we obtain the
solutions of~48! as

t.6
2pv0m2M

~m22v0
2!3/2

~49!

for v:0 respectively, or equivalently

Ã0[Am22v0
2.mS 2pM

t D 1/3

. ~50!

Approximating the integration~32! by the contribution from
the close vicinity ofv0, we obtain

FIG. 2. The schematic behaviors of the integra

G̃(r * ,r
*
8 ;t)e2 ivt nearv.m in Eq. ~32!. The integrand includes

rapidly oscillating terms ofe2ipk ande2 ivt, but the phase of oscil-
lation is stationary atv5v0.
1-5
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GC~r * ,r
*
8 ;t !.

m

4A3l jk
~2p!5/6~mM!1/3~mt!25/6

3sin~mt1f!c̃1~r * ,m!c̃1~r
*
8 ,m!.

~51!

Thus we can confirm that the decay law oft25/6 is a result of
wave evolution in far distant regionsr @M . We also find the
existence of a phase shiftf given by

f52
3

2
~2pmM!2/3~mt!1/32w~Ã0!1

3

4
p, ~52!

which modulates the basic oscillation with the period
2p/m ~see@15#!. The multiple momentl and metric compo-
nenth(r ) can affect only this modulation term in the asym
totically late-time evolution.

Note that if the conditions~47! break down, i.e., either

uh6u"ug6u, ~53!

for v:0, respectively, or

uh6u5ug6u ~54!

are satisfied, all the contributions from scalar waves will
canceled more effectively. Then the tail with the decay r
of t25/6 cannot survive. Therefore, the conditions~47! are
necessary for the tail to dominate. The physical implicat
is given in the next subsection.

C. Physical interpretation of the condition for the tail
generation

It is easy to see that the inequalities~47! are satisfied for
the background spacetimes discussed in previous papers@see
~63! in @14#, and~43! and~74! in @15##, in which the tail with
the decay rate oft25/6 can dominate at very late times. No
we give the physical interpretation of Eq.~47! to discuss
which background spacetime allows the development of
late-time tail.

Becausel2 in Eq. ~20! is real,l should be either real o
purely imaginary. From the expression~21! in Reissner-
Nordström background, we find that the small mass (mM
!1) gives a reall, while the large mass (mM@1) gives an
imaginaryl. The two inequalities~47! for v:0 can be re-
duced to

i

l
~ab* 2a* b!:0 ~55!

whenl is real, and

1

g
~ ubu22uau2!:0 ~56!

whenl(5 ig) is purely imaginary, respectively.
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One may claim that the condition~47! changes according
to the value ofl. However, we can give the unified interpre
tation, independent of the value ofl, by paying attention to
c̃1 in the region

vr !
1

k
~57!

in addition to Eq.~36!. When all of the conditions~16!, ~36!
and ~57! are satisfied, the second term which represents
Newtonian part in the effective potential~20! becomes domi-
nant, compared with the other terms. In this regionc̃1 is
approximated by

c̃1.Aei2Akx1Be2 i2Akx, ~58!

whereA andB are

A5p21/2k21/4x1/4~2l!e2 ip/4$k2laG~2l!e2 ipl

2klbG~22l!eipl% ~59!

and

B5p21/2k21/4x1/4~2l!e2 ip/4$k2laG~2l!eipl

2klbG~22l!e2 ipl%, ~60!

respectively~see Fig. 3!. In this region, independent ofl, the
mode clearly shows a wave behavior with the amplitudesuAu
and uBu corresponding to the outgoing and ingoing parts
v.0, while uAu and uBu correspond to the ingoing and ou
going parts forv,0. The difference betweenuAu2 and uBu2
is

uBu22uAu252ilp~ab* 2a* b! ~61!

when l is real. The conditions~55! under which the rapid
oscillation ofe2ipk survives are equivalent with the inequa
ties

uBu:uAu ~62!

for v:0 respectively. On the other hand, whenl(5 ig) is
purely imaginary, we have

uBu22uAu25u2lu2uG~2l!u2~ ubu22uau2!~e22ipl2e2ipl!

FIG. 3. The schematic behaviors of the effective potentialU in

Eq. ~20! and wave modec̃1 in Eq. ~58! in the far region where all
of the conditions~16!, ~36! and ~57! are satisfied.
1-6
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58pg~ ubu22uau2!, ~63!

which means the conditions~56! are also equivalent with the
inequalities~62!. Therefore, it is sufficient to consider th
inequalities~62! independent ofl, as the conditions for the
tail with the decay rate oft25/6 to dominate at late times
Equation~62! meansthe amplitude of ingoing waves forc̃1
is larger than that of outgoing waves, in the region where
Eqs.~16!, ~36! and ~57! are all satisfied.

The origin of the slowly decaying tail ast25/6 of a mas-
sive scalar field can be considered a resonance by coop
tion between dispersion and backscattering. It is a comm
feature when the scalar field has a nonzero mass that in
distant regions the effective potential~20! is a monotonously
increasing function withr and the radial mode shows a wav
behavior. If the central object is a black hole, the conditio
~62! are surely satisfied because of the existence of the e
horizon. So, we can conclude that this long-lived oscillat
tail is generally observed in arbitrary spherical symme
black-hole spacetimes.

IV. DISCUSSION

We have found that whether or not the tail with the dec
rate of t25/6 develops at very late times can be judged r
evantly by wave modes only in far distant regions. Th
even when the central object is a rotating black hole, only
parametersM 8 andl in the effective potential~20! will be
changed in far distant regions. Strictly, background spa
times in this paper are limited to the class of static a
spherically symmetric. However, since these are not relev
to the conditions~62!, the same tail behaviors are expected
dominate also in Kerr spacetimes.

We compare our analytical result with their numeric
simulation@12#. As far as the intermediate late-time behav
is concerned, our result agrees with@12#. However they
claimed ‘‘SI perturbation fields decay at late times slow
than any power law’’ in @12#, which disagrees with ou
present result and previous ones@14,15# that the late-time tail
of a massive scalar field is a power law with index25/6. We
believe that the integration time in@12# is too short to find
the true asymptotic behavior.

Now we remark that the region of spacetimes where
tail with the decay rate oft25/6 dominates is limited. This
feature can be understood by considering the behavior ofc̃1.
In the region

Ã0r *k~v0!, ~64!

c̃1 is reduced to

c̃1.A2

p
lH S k

2eÃ D k

eÃr 2k ln r~h2eipk1g2e2 ipk!

1S k

2eÃ D 2k

e2Ãr 1k ln reip/22 ipkg2J ~65!
08403
ra-
n

far
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e
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r

e

and the saddle point atv5v0 ~50! has disappeared becau
of the terms ofeÃr 2k ln r which change exponentially. There
fore it is obvious that thet25/6 tail dominates only within the
region

r !M1/3t2/3. ~66!

What kind of behavior dominates in the regionr
@M1/3t2/3, in particular, near the null coner→t? Now we
must find saddle points as solutions of the following equat

]

]v
~2 ivt1Ãr 2k ln r !50, ~67!

instead of Eq.~48!. In general, solutions of Eq.~67! are
complex functions oft andr. However we can find a simple
asymptotic solution as

v1.
imt

At22 r̃ 2
, ~68!

for high frequencyv1@m, which is compatible with the
limit of

r̃→t, ~69!

where r̃ is

r̃[r 1~M1M 8!ln r , ~70!

which is modified due to red shift. The expression~68!
means that we can calculate Green’s function using
saddle point integration by deforming the integration conto
into the straight line AOB in Fig. 1. Whenv1 is a large
value, considering the region 2v1r 8@1 also, Green’s func-
tion is reduced to

G~r * ,r
*
8 ;t !;E 2

e2 ivt

2Ã
~e2ÃR1eÃR!dv, ~71!

and we obtain

v1.
imt

At22R2
~72!

as the saddle point rather than Eq.~68!, whereR is

R5 r̃ 2 r̃ 8. ~73!

Approximating the integration~12! by the contribution from
the immediate vicinity ofv1, we obtain
1-7
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G~r * ,r
*
8 ;t !;Uei (2vt1Av22m2R)

2iAv22m2 U
v5v1

E dv

3expF iU ]2

]v2
~2vt1Av22m2R!U

v5v1

3~v2v1!2G
5ei (2v1t1Av1

2
2m2R)223/4m21/2

3~ t1R!21/4~ t2R!21/4. ~74!

The radial part of the scalar fieldF near null coneR.t,
together with the geometrical factor 1/r , behaves as

c

r
;e2 im(2tu)1/2

223/4m21/2t25/4u21/4, ~75!

whereu is

u5t2R. ~76!
s

08403
This behavior~75! is similar to the case of Minkowski space

times, except forr̃ including red shift factor, instead ofr.
Massive fields near the null cone decay more rapidly th
t25/6.

Finally we comment about late-time tail behaviors wh
the central object is a normal star such as a neutron star

boson star. If the expression ofc̃1 in Eq. ~28! is assumed to

be extended to the regionr<M , then we must requirec̃1 to
be regular atr 50. This leads to the equalityuAu5uBu which
means that the amplitude of outgoing is equivalent to tha
ingoing. Then the tail with the decay rate oft25/6 never
develops. Though this extension of Eq.~28! may not be
valid, we can expect the equalityuAu5uBu to be valid, unless
some absorption of waves occurs in the inner region. Thi
a future problem to be checked by giving a backgrou
gravitational field with a regular center.
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