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Ground state energy in a wormhole space-time
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The ground state energy of the massive scalar field with nonconformal couplingj on a short-throat flat-space
wormhole background is calculated by using the zeta renormalization approach. We discuss the renormaliza-
tion and relevant heat kernel coefficients in detail. We show that a stable configuration of wormholes can exist
for j.0.123. In the particular case of a massive conformal scalar field withj51/6, the radius of the throat of
a stable wormholea'0.16/m. The self-consistent wormhole has the radius of throata'0.0141l p and the mass
of the scalar bosonm'11.35mp ( l p andmp are the Planck length and mass, respectively!.
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I. INTRODUCTION

Wormholes are topological handles in space-time link
widely separated regions of a single universe, or ‘‘bridge
joining two different space-times. Interest in these config
rations dates back at least as far as 1916@1# with revivals of
activity following both the classic work of Einstein an
Rosen in 1935@2# and the later series of works initiated b
Wheeler in 1955@3#. More recently, interest in the topic ha
been rekindled by the works of Morris and Thorne@4# and
Morris, Thorne, and Yurtsever@5#. These authors constructe
and investigated a class of objects they referred to as ‘‘
versable wormholes.’’ Their work led to a flurry of activity i
wormhole physics@6#.

The central feature of wormhole physics is the fact t
traversable wormholes are accompanied by unavoidable
lations of the null energy condition, i.e., the matter thread
the wormhole’s throat has to be possessed of ‘‘exotic’’ pro
erties. Classical matter does satisfy the usual energy co
tions; hence, wormholes cannot arise as solutions of clas
relativity and matter. If they exist, they must belong to t
realm of semiclassical or perhaps quantum gravity. In
absence of a complete theory of quantum gravity, the se
classical approach is beginning to play the most import
role for examining wormholes. However, there are not ma
results concerning quantized fields on the wormhole ba
ground. Recently self-consistent wormholes in semiclass
gravity were studied numerically in our work@7#. Some ar-
guments in favor of the possibility of existence of se
consistent wormhole solutions to the semiclassical Eins
equations have also been given by Khatsymovsky in Ref.@8#.

Note that all the mentioned results were obtained wit
the framework of various approximations, whereas no one
to now has succeeded in exact calculations of vacuum ex
tation values on the wormhole background. The reason
this state of affairs consists in the considerable mathema
difficulties which one faces in trying to quantize a physic
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field on the wormhole background. To overcome these d
culties, in this work we will consider a simple model of th
wormhole space-time: the short-throat flat-space wormh
The model represents two identical copies of Minkows
space with spherical regions excised from each copy
with the boundaries of those regions to be identified. T
space-time of this model is everywhere flat except for a tw
dimensional singular spherical surface. Because of this fa
turns out to be possible to construct the complete set of w
modes of the massive scalar field and calculate the gro
state energy.

The aim of our work is to calculate the ground state e
ergy of the scalar field on the short-throat flat-space wo
hole background using the zeta function regularization
proach@9,10# which was developed in Refs.@11–13#. In the
framework of this approach, the ground state energy of
scalar fieldf is given by

E~s!5
1

2
m2szLS s2

1

2D , ~1!

where

zL~s!5(
(n)

~l (n)
2 1m2!2s ~2!

is the zeta function of the corresponding Laplace operator
make the eigenvaluesl (n)

2 discrete we assume the fieldf to
be put into a large ball with the Dirichlet boundary conditio
l (n)

2 are eigenvalues of the three dimensional Laplace op
tor L

~D2jR!f (n)5l (n)
2 f (n) , ~3!

whereR is the curvature scalar.
The expression~1! is divergent in the limits→0 which

we are interested in. For renormalization we subtract fr
Eq. ~1! its divergent part:

Eren5 lim
s→0

@E~s!2Ediv~s!#, ~4!
©2002 The American Physical Society28-1
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where

Ediv~s!5 lim
m→`

E~s!. ~5!

Because the heat kernel expansion of the zeta function i
asymptotic expansion for large mass, the divergent part
the following form:

Ediv~s!5
1

2 S m

mD 2s 1

~4p!3/2GS s2
1

2D
3H B0m4G~s22!1B1/2m

3GS s2
3

2D
1B1m2G~s21!1B3/2mGS s2

1

2D1B2G~s!J ,

~6!

where Ba are the heat kernel coefficients. In this case
renormalized ground state energy~4! obeys the normaliza
tion condition

lim
m→`

Eren50. ~7!

The organization of the paper is as follows. In Sec. II
describe the space-time of a wormhole in the short-thr
flat-space approximation and analyze the solution of
equation of motion for a massive scalar field. In Sec. III
obtain closed expressions for the zeta function and gro
state energy and calculate the corresponding heat kerne
efficients. We also analyze the expression for the gro
state energy for different radii of the throat. In Sec. IV w
discuss our results. Appendixes A and B contain some te
nical details of the calculations.

We use units\5c5G51 ~except in Sec. IV!. The sig-
nature of the space-time, the sign of the Riemann and R
tensors, are the same as in the book by Hawking and E
@14#.

II. A TRAVERSABLE WORMHOLE:
THE SHORT-THROAT FLAT-SPACE APPROXIMATION

In this section we consider a simple model of a trave
able wormhole. Assume that the throat of the wormhole
very short, and that the curvature in the regions outside
mouth of the wormhole is relatively weak. An idealize
model of such a wormhole can be constructed in the follo
ing manner: Consider two copies of Minkowski space,M1

and M2 , with the spherical coordinates (t,r 6 ,u6 ,w6).
~Notice thatM1 andM2 have a common time coordinatet.
One may interpret this fact as the identificationt1↔t2.)
Excise from each copy the spherical regionr 6,a, wherea
is the radius of the sphere, and then identify the bounda
of those regions: (t,a,u1 ,w1)↔(t,a,u2 ,w2). The Rie-
mann tensor for this model is identically zero everywhe
except at the wormhole mouths where the identification p
cedure takes place. Generically, there will be an infinite
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mally thin layer of exotic matter present at the mouth of t
wormhole.

Such an idealized geometry can be described by the
lowing metric:

ds252dt21dr21r 2~r!~du21sin2udw2!, ~8!

wherer is the proper radial distance,2`,r,`, and the
shape functionr (r) is

r ~r!5uru1a. ~9!

It is easily seen that in two regionsR1 : r.0 andR2: r
,0 separately, one can introduce a new radial coordin
r 656r1a and rewrite the metric~8! in the usual spherica
coordinates:

ds252dt21dr6
2 1r 6

2 ~du21sin2u dw2!.

This form of the metric explicitly indicates that the region
R1 : r.0 andR2 : r,0 are flat. However, note that thi
change of coordinatesr 5uru1a is not global, because it is
ill defined at the throatr50. Hence, as was expected, th
space-time is curved at the wormhole throat. To illustrate t
we calculate the scalar curvatureR(r) in the metric~8!:

R~r!528a21d~r!. ~10!

Let us now consider a scalar fieldf in the space-time
with the metric~8!. The equation of motion of the scalar fiel
is

~h2m22jR!f50, ~11!

wherem is the mass of the scalar field, andj is an arbitrary
coupling with the scalar curvatureR. In the metric ~8!, a
general solution to Eq.~11! can be found in the following
form:

f~ t,r,u,w!5e2 ivtu~r!Yln~u,w!, ~12!

where Yln(u,w) are spherical functions,l 50,1,2, . . . , n
50,61,62, . . . ,6 l , and the functionu(r) obeys the radial
equation

u912
r 8

r
u81S v22

l ~ l 11!

r 2
2m22jRD u50, ~13!

where a prime denotes the derivatived/dr. In the flat re-
gions R6 , where r (r)56r1a, r 8(r)561, and R(r)
50, Eq. ~13! reads

u91
2

r6a
u81S v22m22

l ~ l 11!

~r6a!2D u50. ~14!

A general solution of this equation can be written as

ul
6@l~r6a!#5Al

6hl
(1)@l~r6a!#1Bl

6hl
(2)@l~r6a!#,

~15!

where
8-2
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l5Av22m2, uvu.m,

hl
( i )@z# are spherical Hankel functions, andAl

6 ,Bl
6 are arbi-

trary constants.
The solutionsul

6@l(r6a)# were obtained in the flat re
gionsR6 separately. To find a solution in the whole spac
time we must impose matching conditions forul

6@l(r
6a)# at the throatr50. The first condition demands that th
solution has to be continuous atr50. This gives

ul
2@2la#5ul

1@la#,

or

Al
2hl

(1)@2la#1Bl
2hl

(2)@2la#2Al
1hl

(1)@la#

2Bl
1hl

(2)@la#50. ~16!

To obtain the second condition we integrate Eq.~13! within
the interval (2e,e) and then go to the limite→0. Taking
into account the following relations:

r ~r!5uru1a, r 8~r!5sgnr, r 9~r!52d~r!,

lim
e→0

E
2e

e

f ~r!d~r!dr5 f ~0!,

we find

dul
2@x#

dx
U

x52la

5
dul

1@x#

dx
U

x5la

1
8j

la
ul

1@la#. ~17!

Substituting Eq.~15! into Eq. ~17! gives
th

08402
-

Al
2hl

(1)8@2la#1Bl
2hl

(2)8@2la#

2S hl
(1)8@la#1

8j

la
hl

(1)@la# DAl
1

2S hl
(2)8@la#1

8j

la
hl

(2)@la# DBl
150, ~18!

wherehl
( i )8@6la#5(dhl

( i )@x#/dx)x56la .
In addition to the two matching conditions~16! and ~18!

we must demand regular behavior of the scalar field at in
ity. For this aim, we will consider a ‘‘box approximation,
i.e., we will assume, in an intermediate stage of the calcu
tions, that the wormhole space-time has a finite radiusR, so
that uru<R, and we will go, in the end, to the limitR→`. In
the framework of the box approximation, we demand that
scalar field becomes equal to zero at the space-time bo
r56R. Taking into account Eq.~15! gives

ul
2@2l~R1a!#50, ul

1@l~R1a!#50,

or

Al
2hl

(1)@2l~R1a!#1Bl
2hl

(2)@2l~R1a!#50, ~19!

Al
1hl

(1)@l~R1a!#1Bl
1hl

(2)@l~R1a!#50. ~20!

The four conditions~16!, ~18!, ~19!, and ~20! obtained
represent a homogeneous system of linear algebraic e
tions for four coefficientsAl

6 ,Bl
6 . As is known, such a sys

tem has a nontrivial solution if and only if the matrix o
coefficients is degenerate. Hence we get
U hl
(1)@2la# hl

(2)@2la# 2hl
(1)@la# 2hl

(2)@la#

hl
(1)8@2la# hl

(2)8@2la# 2hl
(1)8@la#2

8j

la
hl

(1)@la# 2hl
(2)8@la#2

8j

la
hl

(2)@la#

hl
(1)@2l~R1a!# hl

(2)@2l~R1a!# 0 0

0 0 hl
(1)@l~R1a!# hl

(2)@l~R1a!#

U50. ~21!
After some algebra one can show that the determinant in
above formula is factorized, and so Eq.~21! can be reduced
to the following two relations:

C l
1@l#50, ~22!

and

C l
2@l#50, ~23!

where the functionsC1@l#,C2@l# are defined as follows:
e
C l

1@l#[
il

2
Aa~a1R!$hl

(1)@l~R1a!#hl
(2)@la#

2hl
(2)@l~R1a!#hl

(1)@la#%, ~24!

C l
2@l#[

il2a

8
Aa~a1R!H hl

(1)@l~R1a!#

3S 4j

la
hl

(2)@la#1hl
(2)8@la# D2hl

(2)@l~R1a!#

3S 4j

la
hl

(1)@la#1hl
(1)8@la# D J . ~25!
8-3
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We introduced additional factors in order to simplify the fo
mulas that follow. These factors do not change the relati
~22!,~23!. The significance of Eqs.~22! and~23! is that they
determine the set of possible values of the wave numbel,
i.e., the spectrum for the scalar field modes. Resolving
~22! and Eq.~23! we can obtain two families, respectively

l lp1

(1)~a,R,j!, p151,2,3, . . . , ~26a!

l lp2

(2)~a,R,j!, p251,2,3, . . . . ~26b!

III. GROUND STATE ENERGY AND HEAT
KERNEL COEFFICIENTS

The ground state energy is given by

E5
1

2 (
a51,2

(
l 50

`

(
p51

`

~2l 11!Al lp
(a)21m2, ~27!

which is, in fact, the zero point energy of the massive sca
field. This expression is divergent. In the framework of t
zeta function regularization method@9,10#, the ground state
energy is expressed in terms of the zeta function

E~s!5
1

2
m2szLS s2

1

2D , ~28!

where

zLS s2
1

2D5 (
a51,2

(
l 50

`

(
p51

`

~2l 11!~l lp
(a)2

1m2!1/22s

~29!

is the zeta function associated with the Laplace operatoL̂
5D2m22jR. The parameterm, with dimension of mass
has been introduced in order to have the correct dimen
for the energy. For simplicity we represent Eq.~28! in a
slightly different form:

E~s!5
1

2 S m

mD 2s

zS s2
1

2D , ~30!

where we introduced the function with the dimension of e
ergy

zS s2
1

2D5m2szLS s2
1

2D , ~31!

which we shall also call the zeta function.
The solutionsl lp

(a)(a,R,j) of Eqs. ~22!,~23! cannot be
found in closed form. For this reason we use the meth
suggested in Ref.@11#, which allows us to express the ze
function in terms of the eigenfunctions. The sum overp may
be converted into a contour integral in the complexl plane
using the principal of argument: namely,
08402
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zS s2
1

2D5
m2s

2p i (
a51,2

(
l 50

`

~2l 11!

3E
g
dl~l21m2!1/22s

]

]l
ln C l

a@l#, ~32!

where the contourg runs counterclockwise and must enclo
all solutions of Eqs.~22!,~23!. Shifting the contour to the
imaginary axis, we obtain the following formula for the ze
function:

zS s2
1

2D52m2s
cosps

p (
a51,2

(
l 50

`

~2l 11!

3E
m

`

dk~k22m2!1/22s
]

]k
ln C l

a@ ik#, ~33!

where the functions~24!,~25! on the imaginary axisl5 ik
read

C l
1@ ik#5I n@k~R1a!#Kn@ka#2Kn@k~R1a!#I n@ka#,

~34a!

C l
2@ ik#5S j2

1

8DC l
1@ ik#1

ka

4
$I n@k~R1a!#Kn8@ka#

2Kn@k~R1a!#I n8@ka#%, ~34b!

with

n5 l 1
1

2
.

The expression~33! may be simplified in the large box limi
R@a, which we are interested in. Let us rewriteC l

1@ ik# in
the following form:

C l
1@ ik#5I n@k~R1a!#Kn@ka#S 12

Kn@k~R1a!#I n@ka#

I n@k~R1a!#Kn@ka# D .

~35!

In the large box limit, the second term in the large parent
ses obeys the inequality

Kn@k~R1a!#I n@ka#

I n@k~R1a!#Kn@ka#
,e22mR ~36!

and gives an exponentially small contribution to the grou
state energy.

Therefore, in the limit of a large box we have

C l
1@ ik#'I n@k~a1R!#Kn@ka#, ~37a!

C l
2@ ik#'I n@k~a1R!#H S j2

1

8DKn@ka#

1
ka

4
Kn8@ka#J . ~37b!
8-4
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At this time we have to make a comment on the abo
formulas. Our approach is valid if the functionsC l

m on the
imaginary axis do not have zeros in the domain of integ
tion in Eq. ~33!. This gives a restriction forj. The function
C l

1@ ik# has no zeros on the imaginary axis, but the funct
C l

2@ ik# has simple zeros ifj. 1
4 . Indeed, by using recur

rence formulas for Bessel’s function, let us represent
function C l

2@ ik# in the following form:

C l
2@ ik#5I n@k~a1R!#H S j2

1

8
2

n

4DKn@ka#

2
ka

4
Kn21@ka#J . ~38!

Since the Bessel’s functionsKn are positive, the expressio
in curly brackets may change sign and therefore the func
C l

2@ ik# may have zeros, if

j2
1

8
2

n

4
.0. ~39!

The lowest boundary forj is 1/4 for l 50. More precisely, in
this case we have

C0
25

1

2k

1

Aa~a1R!
ekR~12e22k(a1R)!

3S j2
1

4
2

ka

4 D . ~40!

As long ask.m, the functionC0
2 has a simple zero at th

point k5(4j21)/a if

j.
1

4
1

ma

4
. ~41!

For this reason in this paper we will consider the grou
state energy forj,1/4. In the opposite case we have
modify our approach.

Taking into account these formulas we may divide t
zeta function, as well as the ground state energy~30!, into
two parts:

zS s2
1

2D5zR
extS s2

1

2D1za
intS s2

1

2D , ~42!

where

zR
extS s2

1

2D52
2bR

2s cosps

p~a1R! (
l 50

`

n222s

3E
bR /n

`

dxS x22
bR

2

n2 D 1/22s

3
]

]x
2 ln$x2nI n@nx#%, ~43!
08402
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za
intS s2

1

2D52
2ba

2s cosps

pa (
l 50

`

n222s

3E
ba /n

`

dxS x22
ba

2

n2 D 1/22s

3
]

]x H ln$xnKn@nx#%

1 lnFxnS dKn@nx#1
xn

4
Kn8@nx# D G J . ~44!

Here,bR5m(a1R), ba5ma, d5j2 1
8 , andn5 l 1 1

2 .
The first part of the zeta function~43! depends only on the

size of the box with throatR85R1a and the asymptotic
structure of the space-time. It is exactly twice the express
in the flat Minkowski space time without a throat@11# calcu-
lated for a massive scalar field inside a ball of radiusR8 with
the Dirichlet boundary condition. The factor of 2 is ve
easily explained: we consider a scalar field existing on
double-sided plane. The second part~44! does not depend on
a boundary; it depends only on the radius of the throata and
the nonminimal couplingj. It contains information about the
space-time under consideration. The same division of
zeta function into two parts has already been observed for
space-time of a thick cosmic string@12# and the space-time
of a pointlike global monopole@13#. Because the first part o
the zeta function~43! has already been analyzed in gre
detail, we proceed now to consideration of the second p
~44!.

Both expressions~43! and ~44! and the ground state en
ergy ~30! are divergent in the limits→0 which we are inter-
ested in. According to the renormalization procedure,
have to subtract from the regularized expression for
ground state energy~30! all terms that survive in the limit
m→`. This procedure corresponds to the subtraction of
five ~three without the boundary! first terms of the DeWitt-
Schwinger expansion@11–13#.

Our goal now is to find in closed form the expansion
the zeta function~44! at the point (2 1

2 ) as a power series
over s ~for arbitrary mass!. For this reason we use the un
form asymptotic series over the inverse index for Bes
functions of large index and argument given in Ref.@15#. We
subtract from and add to the integrand of Eq.~44! its uniform
expansion up to terms proportional ton23. After subtraction
we may lets→0. The second part, which is the uniform
expansion of the integrand, gives us the pole structure of
zeta function. In this way~see the details in Appendix A! we
obtain the following series for the zeta function at the po
(2 1

2 ):

za
intS s2

1

2D
s→0

5
1

~4p!3/2aGS s2
1

2D H b0
aba

4G~s22!

1b1/2
a ba

3GS s2
3

2D1b1
aba

2G~s21!
8-5
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1b3/2
a baGS s2

1

2D1b2
aG~s!J

2
1

16p2a
$ba ln ba

21Va@ba#%, ~45!

zR
extS s2

1

2D
s→0

5
1

~4p!3/2~a1R!GS s2
1

2D H b0
RbR

4G~s22!

1b1/2
R bR

3GS s2
3

2D1b1
RbR

2G~s21!

1b3/2
R bRGS s2

1

2D1b2
RG~s!J

2
1

16p2~a1R!
$bR ln bR

21VR@bR#%.

~46!

Here

b0
a52

8p

3
, b1/2

a 50, b1
a532pFj2

1

6G ,
b3/2

a 564p3/2Fj2
1

8G2

, ~47!

b2
a5

8p

3 F128j3264j21
56

5
j2

68

105G ,
b5/2

a 5
16

3
p3/2F96j4272j3121j22

45

16
j1

93

640G ,
ba5

1

2
b0

aba
42b1

aba
21b2

a , ~48!

and

b0
R5

8p

3
, b1/2

R 524p3/2, b1
R5

16

3
p, b3/2

R 52
1

3
p3/2,

~49!

b2
R52

32

315
p, b5/2

a 52
1

60
p3/2,

bR5
1

2
b0

RbR
42b1

RbR
21b2

R. ~50!

The above expressions~45! and ~46! contain all terms that
survive in the limits→0. The details of calculation and
closed form forVa@ba# are outlined in Appendix A. The
function Va@ba# tends to a constant forba→0 and
Va@ba#52ba ln ba

21Apb5/2
a /ba1O(1/ba

2) for ba

→` (a5a,R).
08402
Comparing the above expression with that obtained by
Mellin transformation taking the trace of the heat kernel~in
three dimensions!,

zS s2
1

2D
m→`

5
m2s

GS s2
1

2D E0

`

dt ts23/2K@ t# t→0

5
1

~4p!3/2GS s2
1

2D
H B0m4G~s22!

1B1/2m
3GS s2

3

2D1B1m2G~s21!

1B3/2mGS s2
1

2D1B2G~s!1•••J ,

~51!

we obtain the heat kernel coefficients:

B05
8p

3
@~a1R!32a3#,

B1/2524p3/2~a1R!2,

B1532pFj2
1

6Ga1
16

3
p~a1R!,

B3/2564p3/2Fj2
1

8G2

2
1

3
p3/2, ~52!

B25
8p

3a F128j3264j21
56

5
j2

68

105G2
32

315

p

~a1R!
,

B5/25
16

3

p3/2

a2 F96j4272j3121j22
45

16
j1

93

640G
2

1

60

p3/2

~a1R!2
.

Using the above scheme we also calculated the coeffic
B5/2, which we will need later for the analysis. We shou
like to note the difference between Eqs.~45!,~46! and Eq.
~51!. Equation~51! is an asymptotic expansion of the ze
function over the inverse massm→` but the formulas
~45!,~46! are correct for arbitrary massm and smalls→0. In
fact, we extracted the asymptotic~for m→`) part of the zeta
function in the form~51! and saved the finite part of it. In th
limit m→` the finite part tends to zero and the two formul
are in agreement. This is the reason that the fu
tion Va@ba#52ba ln ba

21Apb5/2
a /ba1O(1/ba

2) for ba
→` (a5a,R).

As long as the space-time under consideration has a
gular two-dimensional surfaceS with codimension 1, we
cannot use the standard formulas obtained for a smo
background, and we have to utilize the formulas obtained
Gilkey, Kirsten, and Vassilevich in Ref.@16#. The heat kernel
coefficients~52! coincide exactly with those obtained from
general formulas in three dimensions given in Ref.@16#. We
8-6
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have to take into account that the extrinsic curvature ten
of the surfaceS is obtained as the covariant derivative of t
outwardunit normal vectorNa :

Kab5¹aNb . ~53!

For this reason this vector has coordinatesNa5(0,61,0,0)
on the spheresr56R, and

tr K5
2

R1a
~54!

in both cases. In Appendix A we found general formulas
the arbitrary heat kernel coefficients and traced them
manifest form up tob3.

To obtain the ground state energy we have to subt
from our expressions~30!, ~43!, and~44! all terms that will
survive in the limitm→`. Then we sets50 and the radius
of the boxR→`. Therefore we arrive at the following ex
pression:

Eren52
1

32p2a
$ba ln ba

21Va@ba#%. ~55!

A similar general structure for the ground state energy in
massless case was obtained first by Blau, Visser, and W
@9# using dimensional considerations only, and it was c
firmed by detailed calculations in Refs.@12,13#.

Using the above-mentioned behavior ofVa@ba#, the
ground state energy tends to zero for large radius of
throat:

Eren'2
b5/2

a

32p3/2ma2
, a→`, ~56!

and it is divergent for small radius of the throat:

Eren'2
b2

a

16p2a
ln~ma!, a→0. ~57!

The numerical calculations of the ground state ene
Eren/m @Eq. ~55!# as a function ofba5ma is depicted in
Figs. 1 and 2 forj5 1

6 andj50, respectively. The details o
the numerical calculations are analyzed in Appendix B.

IV. DISCUSSION

We have calculated the ground state energy of the mas
scalar field on a short-throat flat-space wormhole backgro
@see Eq.~55!#. It can be written down in the form1

Eren52
\c

a
f ~ba!, ~58!

whereba5mca/\, and f (ba) is a function ofba which has
the asymptotic

1In this section we use dimensional unitsG, c, and\.
08402
or
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ct

e
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e

y

ve
d

f ~ba!'
b2

a

16p2
ln ba , ba→0,

f ~ba!'
b5/2

a

32p3/2ba

, ba→`.

To characterize the behavior of the ground state energ
a function ofj we note that the coefficientb5/2 is positive for
all values ofj and hence the ground state energy tends
20 as ba→`. In the limit ba→0, the behavior of the
ground state energy is determined by the sign ofb2 @see Eq.
~57!# and depends onj. For j,j* '0.123,b2 is negative
and the ground state energy tends to minus infinity; oth
wise it tends to plus infinity. This difference in asymptot
behavior atba→0 results in two qualitatively different pic
tures describing the behavior of the ground state energy
the first casej,j* , the ground state energy is monoton
cally increasing from2` to 0 and has no extremum~see
Fig. 2!; while in the second casej.j* , it has a global
minimum. For example, in Fig. 1 the graph ofEren/m versus
ba is shown forj5 1

6 . It is seen that the ground state ener
has a minimum atba'0.16 with depthEmin /m'20.0025.

Let us now speculate about the result obtained. Supp
that the quantum massive scalar field plays the role of

FIG. 1. The ground state energyE5Eren/m as a function ofma
for fixed massm and j51/6. Theenergy has a minimum at th
point ma'0.16 with depthEmin /m'20.0025.

FIG. 2. The ground state energyE5Eren/m as a function ofma
for fixed massm and j50. There is no minimum energy; it is
always negative.
8-7
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‘‘exotic’’ matter maintaining the existence of the short-thro
flat-space wormhole in a self-consistent manner. This me
that the semiclassical Einstein equations have to be satis

Gmn5
8pG

c4 ^Tmn&
ren, ~59!

whereGmn is the Einstein tensor, and̂Tmn& are the renor-
malized vacuum expectation values of the stress-energy
sor of the scalar field. The total energy in a static space-t
is given by

E5E
V
«Ag(3)d3x, ~60!

where«52^Tt
t& ren52Gt

tc4/8pG is the energy density, an
the integral is calculated over the whole space. In the sph
cally symmetric metric~8! we obtain

E52
c4

2GE
2`

`

Gt
tr 2~r!dr. ~61!

Using the relationsGt
t52r 9/r 1(r 8221)/r 2 and r (r)5uru

1a we can calculate

E52
2c4a

G
. ~62!

Note that the total energy is negative.
In the self-consistent case the total energy must coinc

with the ground state energy of the scalar field. Equat
Eqs.~58! and ~62! gives

2c4a

G
5

\c

a
f ~ba!,

or

a5 l PAf ~ba!

2
, ~63!

where l P5A\G/c3 is the Planck length. To make furthe
estimations we take into account that in order to be stab
quantum system should be in the state with the minimum
ground state energy. This requirement can be satisfied in
case j.j* . In particular, for j51/6 the minimum
Emin /mc2'20.0025 is achieved atba5mca/\'0.16. This
gives f (ba)'431024, so that

a'0.0141l P ~64!

and

m'11.35mP , ~65!

wheremP5(\c/G)1/2 is the Planck mass.
Thus, our estimations have revealed that the s

consistent semiclassical wormhole, if it exists, should p
sess a throat of sub-Planckian radius, and the quantum s
field maintaining the wormhole’s existence should ha
08402
t
ns
d:

n-
e

ri-

e
g

a
f

he

f-
-
lar

e

super-Planckian mass. Of course, it should be noted that
consideration has been restricted to the toy model of a sh
throat flat-space wormhole, and so one may expect tha
more realistic models the results will be slightly changed

Let us emphasize that the result obtained in this work
the wormhole configuration can be generalized. Really,
behavior of ground state energy for small~57! and large~56!
values of the throat’s radiusa depends only on two dimen
sionless heat kernel coefficientsb2 and b5/2, respectively.
Instead of the radiusa, we could use a typical system sizel
~throat! and calculate the coefficientsb2 andb5/2 on the cor-
responding background. Now let us consider the dimens
less ground state energyEren/m. Obviously, it will depend
only on the dimensionless combinationml, and hence the
limit of large ~small! mass will correspond to the limit o
large~small! size of the system. Since for renormalization w
have to subtract the first five terms~up to b2) of the expan-
sion for large mass the ground state energy in this li
should be proportional to the next nonvanishing term of
expansion:

Eren'
1

2

1

~4p!3/2

b5/2

~ml!2

GS s1
1

2D
GS s2

1

2D U
s→0

52
b5/2

32p3/2~ml!2
,

~66!

which coincides with Eq.~56!. We would like to note that the
coefficient b5/2 is nonzero in the limitR→` for a back-
ground with singular scalar curvature, as was shown in R
@16#. For smooth, nonsingular geometrical characteristics
the background, it is zero and we have to take into acco
the next nonvanishing coefficient, which isb3. In this case
we have the following expression in the limitml→`:

Eren'2
b3

32p2~ml!3
. ~67!

The origin of the logarithmic term, as well as the behav
for small size of the system is the following. The structure
poles of zeta functions does not depend on the paramete
the systemm andl. The subtraction of the asymptotics fo
large mass gives us the following contribution to the grou
state energy:

~ml!2s21

2~lm!~4p!3/2GS s2
1

2D
3H b0~lm!4G~s22!1b1/2~lm!3GS s2

3

2D
~68!

1b1~lm!2G~s21!1b3/2~lm!GS s2
1

2D
1b2G~s!%s→0 , ~69!
8-8
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whereba are dimensionless heat kernel coefficients. Tak
the limit in this formula we observe that the heat kern
coefficients with integer indices will survive:

2
1

32p2~lm!
S 1

2
b0~lm!42b1~lm!21b2D ln~lm!2.

~70!

Therefore in the limitl→0 one has

Eren'2
b2 ln~lm!

16p2~lm!
, ~71!

in agreement with Eq.~57!.
Therefore the necessary condition that the ground s

energy will possess a minimum is the following: the coe
cientsb2 and the next nonvanishing coefficient (b5/2 for sin-
gular curvature andb3 for nonsingular! must be positive. If
this is so, the discussion above is valid and the s
consistent semiclassical wormhole exists. The radius of
throat of a stable wormhole and the mass of the scalar bo
in this case depend on the model of the wormhole and
value of the nonconformal couplingj.
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APPENDIX A

The uniform asymptotic expansions of the modifi
Bessel’s functions have the form below:

Kn@nx#5Apt

2n
e2nh(

k50

`
uk@ t#

~2n!k
,

I n@nx#5A t

2pn
enh(

k50

`
uk@ t#

nk
, ~A1!

Kn8@nx#52A p

2nx2t
e2nh(

k50

`
vk@ t#

~2n!k
,

I n8@nx#5A 1

2pnx2t
enh(

k50

`
vk@ t#

nk
,

where

t5
1

A11x2
, h5A11x21 ln

x

11A11x2
,

uk11@ t#5
1

2
t2~12t2!uk8@ t#1

1

8E0

t

~125t2!uk@ t#dt,
08402
g
l

te

f-
e

on
e

,

n

u0@ t#51, ~A2!

vk11@ t#5uk11@ t#1t~ t221!H 1

2
uk@ t#1tuk8@ t#J ,

v0@ t#51.

Taking into account these formulas in Eq.~44! we obtain
a power series overs for the zeta function. The uniform
asymptotic expansion~A1! up to n2n allows us to take into
account terms up tom32n. Because we need all terms th
survive in the limitm→` we use the uniform expansion u
to n53.

Therefore we have the following expression for the z
function:

za
intS s2

1

2D52
2ba

2s cosps

pa (
l 50

`

n222s

3E
ba /n

`

dxS x22
ba

2

n2 D 1/22s

3
]

]x H ln$xnKn@nx#%

1 lnFxnS dKn@nx#1
xn

4
Kn8@nx# D G

2 (
k521

3

~2n!2kNkJ 2
2ba

2s cosps

pa

3(
l 50

`

n222sE
ba /n

`

dxS x22
ba

2

n2 D 1/22s
]

]x

3 (
k521

3

~2n!2kNk , ~A3!

where the functionsNp may be found in closed form fo
arbitrary indexp using a simple program in the packag
MATHEMATICA . For p>0 they are polynomial of degree 3p
and have the following form:

Np@ t#5 (
k50

p

ap,kt
p12k. ~A4!

The first fiveNp are listed below:
8-9
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N050, N2152h,

N15F4d2
1

4G t1 1

12
t3, ~A5!

N2528Fd2
1

8G2

t222Fd2
1

8G t42
1

8
t6,

N35
1

3 F64d3224d21
9

2
d2

19

64G t31
1

5 F40d2225d

1
169

64 G t51
1

7 F49

2
d2

329

64 G t71
179

576
t9.

We should like to note that the expression~A3! is identical to
the original one~44!. The first term is finite in the limits
→0; all divergences are contained in the second part.

Integrating overx with the help of the integral

E
b/n

`

dxxS x22
b2

n2 D 1/22s

~11x2!2p/2

5

GS 3

2
2sDG„s1~p23!/2…

2G~p/2! S n

b D p2312s

3S 11
n2

b2D 2s2(p23)/2

~A6!

and taking the limits→0 in the first term, we get

za
intS s2

1

2D
s→0

52
1

16p2a
Af@ba#

1
1

~4p!3/2aGS s2
1

2D (
k521

3

~21!kAk@ba#,

~A7!

where

Af@ba#532p(
l 50

`

n2E
b/n

`

dxAx22
b2

n2

]

]x

3S ln Kn~nx!1 lnFdKn~nx!1
xn

4
Kn8~nx!G

12nh~x!1
1

n
N12

1

n2
N21

1

n3
N3D , ~A8!

A2154pb2GS s2
1

2D(
l 50

` Z~0,l 1s21!

G~ l 1s11/2!
, ~A9!
08402
Ap528p3/2b12p(
k50

p
ap,k

G~ l 1s11/2!

3ZS 2k,s1k1
p21

2 D , ~A10!

Z~p,s!5G~s!(
l 50

`
2n

~11n2/ba
2!s S n

ba
D p

. ~A11!

The first fourAp are listed below:

A0@ba#50,

A1@ba#528pF S 4d2
1

4DZ~0,s!1
1

6
Z~2,s11!G ,

A2@ba#5
4p3/2

ba
F16S d2

1

8D 2

ZS 0,s1
1

2D
14S d2

1

8DZS 2,s1
3

2D1
1

8
ZS 4,s1

5

2D G ,
~A12!

A3@ba#52
16p

3ba
2 F S 64d3224d21

9

2
d2

19

64DZ~0,s11!

1
2

5 S 40d2225d1
169

64 DZ~2,s12!

1
4

35S 49

2
d2

329

64 DZ~4,s13!

1
179

2520
Z~6,s14!G .

To find the heat kernel coefficients we have to take
limit m→` in Eq. ~A7!. The asymptotic expansion o
Z(0,q) over inverse powers ofba

2 was found in Ref.@13#:

Z~0,s!5ba
2G~s21!

12(
l 50

`
~21! l

l !
G~ l 1s!ba

22lzHS 2122l ,
1

2D ,

~A13!

wherezH(s,a) is the Hurwitz zeta function

zH~s,a!5(
l 50

`

~ l 1a!2s, s.1. ~A14!

The other functionsZ„2k,s1k1(p21)/2… in Eq. ~A10!
are expressed in terms ofZ(0,q) by the relation
8-10
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ZS 2k,s1k1
p21

2 D5 (
n50

k
k!

n! ~k2n!!

G„k1~p21!/21s…

G„n1~p21!/21s…

3ZS 0,n1
p21

2
1sD . ~A15!

Taking into account the above formulas we obtain
following formulas for the heat kernel coefficients:

bn52
1

G~s221n! (
p50

n

an2p21~2p21!, ~A16!

bn11/25
1

GS s2
3

2
1nD (

p50

n

an2p21~2p!,

~A17!

where (l ,p>0)

a21~21!5
8p

3
G~s22!,

a l~21!516p~21! l

zHS 2122l ,
1

2D
l ! ~122l !

G~s211 l !,

a l~p!528p3/2(
k50

p
ap,k

GS k1
p

2D zl~p,k!, ~A18!

z21~p,k!5 (
n50

k

~21!n
k!

n! ~k2n!!

G„k1~p21!/21s…

n1~p23!/21s
,

zl~p,k!52
~21! l

l !
zHS 2122l ,

1

2D (
n50

k

~21!n
k!

n! ~k2n!!

3
G„k1~p21!/21s…

G„n1~p21!/21s…
GS l 1n1

p21

2
1sD .

Using these formulas, one obtains the following expr
sions for the heat kernel coefficients:

b0
a52

8p

3
, b1/2

a 50, b1
a532pFj2

1

6G ,
b3/2

a 564p3/2Fj2
1

8G2

,

b2
a5

8p

3 F128j3264j21
56

5
j2

68

105G ,
b5/2

a 5
16

3
p3/2F96j4272j3121j22

45

16
j1

93

640G ,
~A19!
08402
e

-

b3
a5

8p

3 F4096

5
j52

4096

5
j41

35584

105
j3

2
1088

15
j21

848

105
j2

144

385G .
The coefficientbk/2 is a polynomial of (k21)th order overj.
The coefficientb2 changes its sign at the pointj* '0.123
andb5/2 is positive for arbitraryj.

Our problem now is to take the limits→0 in the second
part of Eq. ~A3!. Because the functionZ(p,s) with p
52,4, . . . may beexpressed in terms ofZ(0,s) only, let us
analyze it in detail. Let us suppose for a moment thatba
,1 and representZ(0,s) as a power series overba :

Z~0,s!52ba
2s(

n50

`
~21!n

n!
G~n1s!ba

2n

3zHS 2n12s21,
1

2D . ~A20!

The gamma functionG(s) has simple poles at the pointss
50,21,22, . . . and theHurwitz zeta functionzH(s,p) has
a simple pole only at one points51. They have the follow-
ing expansion near their poles:

G~s2n!s→05
~21!n

n! S 1

s
1C@n11# D1O~s!,

zH~s11,p!s→05
1

s
2C@p#1O~s!, ~A21!

whereC@x# is the digamma function.
All divergences of the functionZ(0,s) @Eq. ~A20!# in the

limit s→0 are contained in the first two terms withn50,1.
The rest of the series is finite and we sets50 in it. Therefore
we obtain the following expression:

Z~0,s!s→052ba
2sH 1

2
ba

2G~s21!1
1

24
G~s!

1
1

2
ba

2@122g24 ln 2#

2
1

12
@12zR8 ~21!1 ln 2#J

12(
n52

`
~21!n

n
ba

2nzHS 2n21,
1

2D1O~s!,

~A22!

wherezR(s) is the Riemann zeta function andg is the Euler
constant.

The series in the above formula may be analytically co
tinued for arbitrary values ofba . First of all, using the series
representation of the Hurwitz zeta function~A14! we repre-
sent this series in the following form:
8-11
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j 2~ba!5 (
n52

`
~21!n

n
ba

2nzHS 2n21,
1

2D
5(

l 50

`

nF2 lnS 11
ba

2

n2 D 1
ba

2

n2G . ~A23!

Then, taking into account the integral representation for
logarithm,

ln x5E
0

x dt

11t
,

and the closed expression for the series below

j 0~x2!5(
l 50

`
1

n~n21x2!

5
1

2x2 H CS 1

2
2 ix D1CS 1

2
1 ix D22CS 1

2D J ,

~A24!

one has

j 2~b!5b2E
0

1

dx xH CS 1

2
2 ixb D1CS 1

2
1 ixb D22CS 1

2D J .

~A25!

The function on the right-hand side is analytical in the wh
complex plane and therefore it gives the analytical conti
ation of the seriesj 2(ba) for arbitrary values ofba . This
representation ofj 2(b) is preferable for numerical calcula
tions.

Using the same approach for the otherZ(p,q) we arrive
at the following formulas forAk@ba#:

A21@ba#52
8p

3
ba

2sH 7

160
G~s!2

1

4
ba

2G~s21!

2ba
4G~s22!J 1v21~ba!,

A1@ba#52
8p

3
ba

2sH S d2
1

16DG~s!

112S d2
1

48Dba
2G~s21!J 1v1~ba!,

A2@ba#54p3/2ba
2sH 16d2baGS s2

1

2D
1

4

3ba
S d2

1

8D 2

GS s1
1

2D J 1v2~ba!,

A3@ba#52
8p

3
ba

2sH 128d3216d21
1

5
d1

71

3360J G~s!

1v3~ba!, ~A26!
08402
e

-

where

v21~ba!58pH F2
7

160
2

7

2
z8~23!1

1

240
ln 2G

1ba
2F2z8~21!1

1

6
ln 21

1

4G
1ba

4F1

3
g2

13

36
1

2

3
ln 2G1 j 3~ba!J ,

v1~ba!5216pH F1

4
z8~21!1

1

48
ln 21

1

144G
1dF24z8~21!2

1

3
ln 2G1ba

2F S 1

12
g2

1

8

1
1

6
ln 2D1d~24g28 ln 212!G

14S d2
1

16D j 2~ba!1
1

6
ba

4 j 0~ba
2!J ,

v2~ba!528p2H 216d2ba216Fd2
1

8G2

j 1/2,0~ba!

22Fd2
1

8G j 3/2,0~ba!2
3

32
j 5/2,0~ba!J , ~A27!

v3~ba!52
32

3
pH F 71

3360
ln 21

757

20160
1

71

6720
gG

1dF 1

10
g2

4

5
1

1

5
ln 2G1d2@28g18216 ln 2#

1d3@128 ln 2164g#1F64d3224d21
9

2
d

2
19

64G j 1,1~ba!1
2

5 F40d2225d1
169

64 G j 2,1~ba!

1
8

35F49

2
d2

329

64 G j 3,1~ba!1
179

420
j 4,1~ba!J .

Here we introduced the following notation:

j 3~b!5 (
n53

`
~21!n

nS n2
1

2D ~n21!

b2nzHS 2n23,
1

2D ,

~A28!

j p,q~b!5 (
n51

`
~21!n

n!

G~n1p!

G~p!
b2nzHS 2n1q,

1

2D .

~A29!

The functionsj 3(b) and j p,q(b) with integer p and q are
expressed in terms of the functionj 0(b) only by the rela-
tions
8-12
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j 3~b!522b4E
0

1

dxx~12x!2H CS 1

2
2 ibxD

1CS 1

2
1 ibxD22CS 1

2D J ,

j 1,1~b!52x j0~x!ux5b2,

j 2,1~b!522x j0~x!2x2 j 08~x!ux5b2, ~A30!

j 3,1~b!523x j0~x!23x2 j 08~x!2
1

2
x3 j 09~x!ux5b2,

j 4,1~b!524x j0~x!26x2 j 08~x!22x3 j 09~x!

2
1

6
x4 j 0-~x!ux5b2.

For half-integer indexesp andq in Eq. ~A29! we use the
integral representation for the Hurwitz zeta function fro
Ref. @17#:

zH~s,v !5
1

G~s!
E

0

`e2(v21)xxs21 dx

ex21
, ~A31!

and obtain the following formulas:

j 1/2,0~b!52bE
0

` dx

sinh~x!
J1~2bx!,

j 3/2,0~b!52bE
0

` dx

sinh~x!
$3J1~2bx!

22bxJ2~2bx!%, ~A32!

j 5/2,0~b!52bE
0

` dx

sinh~x!H 5J1~2bx!

2
20

3
bxJ2~2bx!1

4

3
bxJ3~2bx!J .

Substituting the formulas obtained in Eq.~A7! one has

za
intS s2

1

2D
s→0

5
ba

2s

~4p!3/2GS s2
1

2D H b0
am4G~s22!

1b1/2
a m3GS s2

3

2D1b1
am2G~s21!

1b3/2
a mGS s2

1

2D1b2
aG~s!J

2
1

16p2a
Va~ba!, ~A33!
08402
where

Va~ba!5Af
a~ba!1 (

k521

3

~21!kvk~ba!. ~A34!

In the limit s→0 an additional finite contribution appea
due to multiplyings ln ba

2 and the gamma functions in th
curly brackets in Eq.~A33!. Because the gamma function ha
simple poles at the points 0,21,22, . . . , theheat kernel
coefficients with integer indices will give finite contribution
and we arrive at the following expression:

za
intS s2

1

2D
s→0

5
1

~4p!3/2aGS s2
1

2D H b0
aba

4G~s22!

1b1/2
a ba

3GS s2
3

2D1b1
aba

2G~s21!

1b3/2
a baGS s2

1

2D1b2
aG~s!J

2
1

16p2a
$ba ln ba

21Va@ba#%. ~A35!

Therefore we have divided the zeta function into two pa
the asymptotic singular part of the zeta function in stand
form and a finite contribution.

Using the same approach forzR
ext(s2 1

2 ) one has

zR
extS s2

1

2D
s→0

5
1

~4p!3/2~a1R!GS s2
1

2D H b0
RbR

4G~s22!

1b1/2
R bR

3GS s2
3

2D1b1
RbR

2G~s21!

1b3/2
R bRGS s2

1

2D1b2
RG~s!J

2
1

16p2~a1R!
$bR ln bR

21VR@bR#%.

~A36!

By virtue of the fact that in the limitm→` the above
formulas must give us the asymptotic expansion~51!, the
function V@b# has the following behavior@ba→`,(a
5a,R)#:
8-13
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Va@ba#52ba ln ba
22

2Ap

GS s2
1

2D (
k55

`

bk/2
a ba

42k

3GS s1
k

2
22D U

s→0

52ba ln ba
21 (

k55

`

bk/2
a ba

42kGS k

2
22D

52ba ln ba
21Apb5/2

a ba
211O~ba

22!. ~A37!

APPENDIX B

The main problem for numerical calculation of the grou
state energy is the termAf@b# given by Eq.~A8!. The series
in Eq. ~A8! is poorly convergent. To calculate this expressi
let us, first of all, represent it in the following form:

Āf[
Af

32p
5(

l 50

`

sn , ~B1!

where

sn5n2E
b/n

`

dxAx22
b2

n2

]

]x S ln Kn~nx!1 lnFdKn~nx!

1
xn

4
Kn8~nx!G12nh~x!1

1

n
N12

1

n2
N21

1

n3
N3D ,

~B2!

and divide the series into two parts:

Āf5(
l 50

N

sn1 (
l 5N11

`

sn . ~B3!

The first sum we calculate numerically. The calculatio
become lighter because the Bessel functions of the sec
kind with half-integer indexes are polynomial with a simp
exponent factor@15#. In the second sum we use the unifor
expansion of the integrand over inverse powers of the in
n. Since we have already subtracted the first three termsN1 ,
N2, andN3, the uniform expansion of the integrand will sta
from n24, and we obtain the following expression:

(
l 5N11

`

s l5 (
l 5N11

`

n2E
b/n

`

dxAx22
b2

n2

]

]x

3 (
p54

`

~2n!2pNp@ t#, ~B4!

whereNp@ t# is the polynomial of degree 3p:

Np@ t#5 (
k50

p

ap,kt
p12k. ~B5!
08402
s
nd

x

The coefficientsap,k for p51,2,3 may be singled out from
Eq. ~A5!.

Then one takes derivatives and integrals in Eq.~B4! and
changes the sums overp and l. After this we arrive at the
following formula:

(
l 5N11

`

s l5 (
p54

`

N̄p , ~B6!

where

N̄p5
Ap

2
~21!32p(

k50

p

ap,k

G~p/221/21k!

G~p/21k!

3h@p,p12k,b,N#, ~B7!

h@p,q,b,N#5 (
l 5N11

`

n22pS 11
b2

n2 D 2(q21)/2

. ~B8!

The functionh may be found in closed form for integerp and
q.

The above functionh may be estimated by

h@p,q,b,N#'S N1
3

2D 22p

, ~B9!

and the series~B6! is quickly convergent for largeN. We use
N510 and in order to work with precision 10210 it is enough
to take the expansion up top58 ~five terms!. In fact, this
procedure converts the poorly convergent series to a qui
convergent series overN22p.

To illustrate the above approach we reproduce in Fig
the three steps of calculation ofĀf : ~i! the zero term~thick
curve!, ~ii ! the contribution of the first 11 terms up tol
510 ~medium thickness!, and ~iii ! the exact curve~up to p
58 in the uniform expansion, thin curve!. Ten terms
l 51 –10 give us a the correction of 36% for the zero ter
and the series froml 511 to ` gives us a 4% correction.

FIG. 3. The functionA5Af /32p as a function ofma for j
51/6. Thick curve is zero term (l 50) contribution. The curve of
medium thickness is the contribution of the first 11 terms up tl
510. The thin curve reproduces the calculations with high precis
~up to p58 of the uniform expansion!.
8-14
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