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Ground state energy in a wormhole space-time
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The ground state energy of the massive scalar field with nonconformal coding short-throat flat-space
wormhole background is calculated by using the zeta renormalization approach. We discuss the renormaliza-
tion and relevant heat kernel coefficients in detail. We show that a stable configuration of wormholes can exist
for £>0.123. In the particular case of a massive conformal scalar field with/6, the radius of the throat of
a stable wormhola~0.16Mm. The self-consistent wormhole has the radius of theea0.0141, and the mass
of the scalar bosom~11.35n, (I, andm, are the Planck length and mass, respectjvely
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[. INTRODUCTION field on the wormhole background. To overcome these diffi-
culties, in this work we will consider a simple model of the
Wormholes are topological handles in space-time linkingwormhole space-time: the short-throat flat-space wormhole.
widely separated regions of a single universe, or “bridges”The model represents two identical copies of Minkowski
joining two different space-times. Interest in these configu-space with spherical regions excised from each copy and
rations dates back at least as far as 19]]6N|th revivals of with the boundaries of those regions to be identified. The
activity following both the classic work of Einstein and Space-time of this model is everywhere flat except for a two-
Rosen in 193%2] and the later series of works initiated by dimensional singular spherical surface. Because of this fact it
Wheeler in 19553]. More recently, interest in the topic has turns out to be possible to construct the complete set of wave
been rekindled by the works of Morris and Thori@§ and ~ Modes of the massive scalar field and calculate the ground
Morris, Thorne, and YurtsevéB]. These authors constructed Staté energy. _
and investigated a class of objects they referred to as “tra- The aim of our work is to calculate the ground state en-
versable wormholes.” Their work led to a flurry of activity in €rgy of the scalar field on the short-throat flat-space worm-
wormhole physic$6]. hole background using the zeta function regularization ap-
The central feature of wormhole physics is the fact thatroach[9,10] which was developed in Refgl1-13. In the
traversable wormholes are accompanied by unavoidable vidfamework of this approach, the ground state energy of the
lations of the null energy condition, i.e., the matter threadingscalar fielde is given by
the wormhole’s throat has to be possessed of “exotic” prop-
erties. Classical matter does satisfy the usual energy condi-
tions; hence, wormholes cannot arise as solutions of classical
relativity and matter. If they exist, they must belong to the
realm of semiclassical or perhaps quantum gravity. In thevhere
absence of a complete theory of quantum gravity, the semi-
classical approach is beginning to play the most important -~ 2 2\ s
role for examining wormholes. However, there are not many Le(s)= % (A +m) )
results concerning quantized fields on the wormhole back-
ground. Recently self-consistent wormholes in semiclassicak the zeta function of the corresponding Laplace operator. To
gravity were studied numerically in our wofl]. Some ar-  make the eigenvalues;, discrete we assume the fiejfito
guments in favor of the possibility of existence of self- he put into a large ball with the Dirichlet boundary condition.

consistent wormhole solutions to the semiclassical Einsteilx(Zn) are eigenvalues of the three dimensional Laplace opera-
equations have also been given by Khatsymovsky in B&f. o,/

Note that all the mentioned results were obtained within
the framework of various approximations, whereas no one up (A= ER) = )\(2n)¢(n) , 3)
to now has succeeded in exact calculations of vacuum expec-
tation values on the wormhole background. The reason fojyhereR is the curvature scalar.
this state of affairs consists in the considerable mathematical The expressiorfl) is divergent in the limits—0 which

difficulties which one faces in trying to quantize a physicalye are interested in. For renormalization we subtract from
Eqg. (1) its divergent part:

1 1
E(s)= EMZSQ(S_ E)’ ()
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where mally thin layer of exotic matter present at the mouth of the
dv ) wormhole.
E™(s)= lim E(s). ©) Such an idealized geometry can be described by the fol-
m= lowing metric:

Because the heat kernel expansion of the zeta function is an d?=—d2+dp?+r2(p)(d@?+sirfade?) (®)

asymptotic expansion for large mass, the divergent part has '

the following form: wherep is the proper radial distance;»<p<, and the

shape function is
e L[8 26 1 P (p)
®=3lm N 1 r(p)=p|+a. 9

(4) T S_E

It is easily seen that in two regiom8, : p>0 andR_: p

<0 separately, one can introduce a new radial coordinate
r.==*p-+a and rewrite the metri¢8) in the usual spherical
coordinates:

X

3
Bom*I'(s—2)+ Bl,2m3F< s—5

1
+ BlmZF(S— l) + B3/2mr< S— E

+BZF(S)], ds’=—dt?+dr2 +r2%(d6?+sirf o de?).

(6) This form of the metric explicitly indicates that the regions
R.:p>0andR_: p<O0 are flat. However, note that this
where B, are the heat kernel coefficients. In this case thechange of coordinates=|p|+a is not global, because it is

renormalized ground state ener¢d) obeys the normaliza- ill defined at the throap=0. Hence, as was expected, the
tion condition space-time is curved at the wormhole throat. To illustrate this
) we calculate the scalar curvaturRép) in the metric(8):
lim E™"=0.
m-ee R(p)=—-8a"18(p). (10

The organization of the paper is as follows. In Sec. Ilwe | ot ys now consider a scalar fielfl in the space-time

describe the space-time of a wormhole in the short-throag;ith the metric(8). The equation of motion of the scalar field
flat-space approximation and analyze the solution of theg

equation of motion for a massive scalar field. In Sec. Il we

obtain closed expressions for the zeta function and ground (O-m?—¢R) =0, (12
state energy and calculate the corresponding heat kernel co-

efficients. We also analyze the expression for the grountvheremis the mass of the scalar field, agids an arbitrary
state energy for different radii of the throat. In Sec. IV we coupling with the scalar curvaturB. In the metric(8), a
discuss our results. Appendixes A and B contain some tectgeneral solution to Eq(11) can be found in the following

nical details of the calculations. form:

We use unitsh=c=G=1 (except in Sec. IY. The sig- it
nature of the space-time, the sign of the Riemann and Ricci b(t,p,0,9)=€"""u(p)Yin(6,¢), (12
'Eir)qsors, are the same as in the book by Hawking and EII|§Vhere Y,.(6,0) are spherical functionsl=0,12...,n

' =0,£1,=2,...,%=1, and the functioru(p) obeys the radial
equation
Il. ATRAVERSABLE WORMHOLE:
THE SHORT-THROAT FLAT-SPACE APPROXIMATION r 1(1+1)
: : . . "+2—u'+| 0?— —m?—¢R|u= 1
In this section we consider a simple model of a travers- u r u @ 2 €Rju=0, (13

r

able wormhole. Assume that the throat of the wormhole is

very short, and that the curvature in the regions outside thevhere a prime denotes the derivatidédp. In the flat re-
mouth of the wormhole is relatively weak. An idealized gions R., wherer(p)==*p+a, r'(p)==*1, and R(p)
model of such a wormhole can be constructed in the follow=0, Eq.(13) reads
ing manner: Consider two copies of Minkowski spagd,,

and M_, with the spherical coordinated,(.,60. ,¢-).

(Notice thatM . andM_ have a common time coordinate u”+ mu' +
One may interpret this fact as the identification—t_.)

Excise from each copy the spherical region<a, wherea ; ; ; ;

is the radius of the sphere, and then identify the boundarieé general solution of this equation can be written as
of those regions: t(a,f0, ,¢.)<—(t,a,0_,¢_). The Rie- u [N (pxa)]=A"hO[N(pxa)]+B hP[\(pxa)],
mann tensor for this model is identically zero everywhere (15)
except at the wormhole mouths where the identification pro-

cedure takes place. Generically, there will be an infinitesiwhere

u=0. (14
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A= a2,

h('[ z] are spherical Hankel functions, aAd ,B;" are arbi-
trary constants.

|w|>m,

The solutionsu;" [\ (p*a)] were obtained in the flat re-
gionsR.. separately. To find a solution in the whole space-

time we must impose matching conditions faf[\(p

+a)] at the throap=0. The first condition demands that the

solution has to be continuous at=0. This gives
ur[—Nal=u;"[ral,
or
A hY[—xa]+B; hP[ - a]- A h{Y[\a]
-B;"h{¥[\a]=0. (16)

To obtain the second condition we integrate ELB) within
the interval (~e€,€¢) and then go to the limigt—0. Taking
into account the following relations:

r(p)=|pl+a, r'(p)=sgnp, r"(p)=24(p),

limf (p)8(p)dp=1(0),
e—0J T €
we find

du; [x]
dx

8¢
X=\a

[
~ dx

7

X=-—\a

Substituting Eq(15) into Eq. (17) gives

PHYSICAL REVIEW [B5 084028

A hMY'[—Na]+B; h@'[—\a]

8¢
—(hfl)’[)\a]JrEhfl)[)\a] Al

8¢

—(hfz)'[Ra]+—ah|(2)[)‘a] B, =0, (18)

N

whereh(V'[ +xa]=(dh{[x]/dX) =+ ra-

In addition to the two matching conditior{6) and (18)
we must demand regular behavior of the scalar field at infin-
ity. For this aim, we will consider a “box approximation,”
i.e., we will assume, in an intermediate stage of the calcula-
tions, that the wormhole space-time has a finite raéiuso
that|p|<R, and we will go, in the end, to the limR—c. In
the framework of the box approximation, we demand that the
scalar field becomes equal to zero at the space-time bounds
p=*R. Taking into account Eq.15) gives

u [-A(R+a)]=0, u/[A(R+a)]=0,

or
A h(M[ =\ (R+a)]+B; hP[-\(R+a)]=0, (19

AhMIN(R+a)]+B, h{P[A(R+a)]=0. (20

The four conditions(16), (18), (19), and (20) obtained
represent a homogeneous system of linear algebraic equa-
tions for four coefficients;” ,B;" . As is known, such a sys-
tem has a nontrivial solution if and only if the matrix of
coefficients is degenerate. Hence we get

h([—\a] h(®[ —\a] —h{Y[\a] —h®[\a]
h(V'[—\a] h#?'[-xa]  —h®'[ra]- §h<l>[>\a] —h{®"[\a]- §h‘”[xa]
: Aa ! ! Aa ! —0. (21)
h[ -\ (R+a)] h{P[—A(R+a)] 0 0
0 0 hU[A(R+a)] h(¥[\(R+a)]
|
After some algebra one can show that the determinant in the L i L )
above formula is factorized, and so Hg1) can be reduced  Vi[\]= 7Va(a+ RI{hMIN(R+a)]h{P[Aa]
to the following two relations:
—h®[X(R+a)]h(V[ra]}, (24)
WilA]=0, (22)
) iN%a N
PI\]=—a(a+R){ h{[A(R+a)]
and 8
X Eh,(2>[>\a]+h|<2>'[xa] —h@[\(R+a)]
WA]=0, (23 \a
X Eh(1>[>\a]+h“)'[)\a] (25)
where the functiona ;[\ ],¥,[\] are defined as follows: Aa ! ! '
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mulas that follow. These factors do not change the relations
(22),(23). The significance of Eq$22) and(23) is that they
determine the set of possible values of the wave number 9
i.e., the spectrum for the scalar field modes. Resolving Eq. xf dA(NZ+m?)V2s—InWin], (32
(22) and Eq.(23) we can obtain two families, respectively, Y A

We introduced additional factors in order to simplify the for- 1
-3

(1) where the contouy runs counterclockwise and must enclose
(@R, p1=123. (263 all solutions of Egs.(22),(23). Shifting the contour to the
imaginary axis, we obtain the following formula for the zeta

(2)(a R&), p,=123.... (26b)  function:
1 2 cosms ”
lIl. GROUND STATE ENERGY AND HEAT {|s— 5=~ E 2 (21+1)
KERNEL COEFFICIENTS @=121=0
The ground state energy is given by < fmdk(kz—mz)l’Z*SiInWﬁ[ik] (33)
m (9k ’

E 2 +1)\/)\|(F‘,’52+ m?, (270 where the functiong24),(25) on the imaginary axis\ =ik
P= read

HMg

I\)IH

o

which is, in fact, the zero point energy of the massive scalar x[fll[ik]z I [k(R+a)]K, [ka]— K, [k(R+a)]l [ka],
field. This expression is divergent. In the framework of the (34a
zeta function regularization meth¢#é,10], the ground state
energy is expressed in terms of the zeta function

2r; 1 1r: ka ’
Wilik]=| &= g | Vilik]+ -{l.[k(R+a)]K,[ka]
1
E(s)= Euzség( S— 5) , (28) —K,[k(R+a)]l[ka]}, (34b)

where with

= .
V= +§.

zg(s— %)= S 2 3 @A+ D mrE

a=121=0 p=1
(290  The expressioli33) may be simplified in the large box limit
R>a, which we are interested in. Let us rewr'ﬂql[ik] in
is the zeta function associated with the Laplace operator the following form:
=A—m?—¢R. The parametep, with dimension of mass,
has been introduced in order to have the correct dlmensmnq,l[lk]:lV[k(RJra)]Kv[ka] _ K.[k(R+a)]l,[ka]

for the energy. For simplicity we represent E@8) in a I [k(R+a)]K, [ka]/
slightly different form: (35)
1) p\2 1 In the large box limit, the second term in the large parenthe-
=—|— - = ses obeys the inequalit
E(s) > ( m) (S 2), (30) Yy quality
K[k(R+a)]l [ka] _, o
\évrg(;re we introduced the function with the dimension of en- | [K(R+a)]K [Ka] ¢ (36)
1 1 and gives an exponentially small contribution to the ground
_Zl=m2s _ - state energy.
g(s 2) m=ee| s 2)’ @D Therefore, in the limit of a large box we have
which we shall also call the zeta function. Wifik]=1,[k(a+R)IK,[kal, (373

The solutionsh((a,R,€) of Egs. (22),(23) cannot be
found in closed form For this reason we use the method
suggested in Ref11], which allows us to express the zeta
function in terms of the eigenfunctions. The sum openay
be converted into a contour integral in the compleplane + 2K/ [Ka]
using the principal of argument: namely, 4 ' (37b)

Wilik]~1,[k(a+R)]

3
¢ 5|K.lkal
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formulas. Our approach is valid if the functiods™ on the M s— 5=
imaginary axis do not have zeros in the domain of integra-
tion in Eq. (33). This gives a restriction fo€. The function " 2\ l2-s
‘Ifﬂ[ik] has no zeros on the imaginary axis, but the function xf dx( x2——a>
‘Iff[ik] has simple zeros if>%. Indeed, by using recur- Balv v

rence formulas for Bessel’'s function, let us represent the
function \Iff[ik] in the following form:

At this time we have to make a comment on the above ( 1) Zﬁa COSTS

30

d
X& In{x"K [ vx]}

1 v
\Ifﬁ[ik]=ly[k<a+R>][ §—§_Z)Ky[ka] in

Xv
x”( SK [ vx]+ TKIV[ vx]) ] (44)

ka
_ZKvl[ka]]- B8 Here, Br=M(a+R), B,=ma, §=¢—35, andv=I+13.
The first part of the zeta functlde) depends only on the
Since the Bessel's functiort§, are positive, the expression size of the box with throaR’=R+a and the asymptotic

|n curly brackets may change sign and therefore the functiogtructure of the space-time. It is exactly twice the expression
W[ik] may have zeros, if in the flat Minkowski space time without a thrddtl] calcu-

lated for a massive scalar field inside a ball of radiswith

the Dirichlet boundary condition. The factor of 2 is very
§—§—Z>0 (39  easily explained: we consider a scalar field existing on a
double-sided plane. The second pd#) does not depend on
a boundary; it depends only on the radius of the theoaihd
the nonminimal coupling. It contains information about the
space-time under consideration. The same division of the
zeta function into two parts has already been observed for the

The lowest boundary fof is 1/4 forl =0. More precisely, in
this case we have

\pg:i ;ekR(l_e—Zk(am)) space-time of a thick cosmic striid2] and the space-time
2k Ja(a+R) of a pointlike global monopolEl3]. Because the first part of
the zeta function(43) has already been analyzed in great
_ E_ k_a detail, we proceed now to consideration of the second part
X 172 (40 (a4,

_ ) _ Both expression$43) and (44) and the ground state en-
As long ask>m, the functionW's has a simple zero at the ergy(30) are divergent in the limis— 0 which we are inter-

pointk=(4¢—1)/a if ested in. According to the renormalization procedure, we
have to subtract from the regularized expression for the

>E+ ma (41) ground state energgB80) all terms that survive in the limit
§ 4 4 m— oo, This procedure corresponds to the subtraction of the

five (three without the boundanyirst terms of the DeWitt-
For this reason in this paper we will consider the groundSchwinger expansiofill-13.
state energy forE<1/4. In the opposite case we have to  Our goal now is to find in closed form the expansion of
modify our approach. the zeta function44) at the point (-3) as a power series
Taking into account these formulas we may divide theovers (for arbitrary masp For this reason we use the uni-
zeta function, as well as the ground state end@fy, into  form asymptotic series over the inverse index for Bessel
two parts: functions of large index and argument given in Ré&6]. We
subtract from and add to the integrand of E&f) its uniform

1 ox 1 int expansion up to terms proportional #0 . After subtraction
{s=3|=fr|s7 5| TS5/ (42 we may lets—0. The second part, which is the uniform
expansion of the integrand, gives us the pole structure of the
where zeta function. In this waysee the details in Appendix)Ave
btaln the following series for the zeta function at the point
oxf o 1 282 cosms i (-2
R 2 7T(a+ R) <o
1/2—s int 1 1 a4
J‘oo 5 lgé) a|S™ 2 = 1 oBal’(s—2)
X dx| xc-—— 50 3/2 _ =
Balv 2 (4m)~<al’| s 2)
J —v a 3 3 apn2
X&Z In{x~ "1 ,[vx]}, (43 +b3650| s— > +b3Bal'(s—1)
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1
+b§, ar(s—i +b§1’(s)]
1 a 2 al
T Ten2g DI Aot O Ball (45
E“(s— 3) = - {bé‘ﬂér(s—m
2o (477)3’2(a+R)F(S— 3)
2

3
+bRB2r(s—1)

+b5 %1" S_E

R 1 R
+b3/25RF S_E +b2F(S)

{oRIn B&+ QR Brl}.

 16n4(a+R)
(46)
Here
8 1
b8=—?, b3=0, b?:3277[§—6}
1 2
3= 64773’2[ & 5} , 47
ba_87-r 128596 2+56 68
2= 3 | 128764 g
16 45 93
2’2:?773/2[9654_7253+21§2_1_6 +%},
a 1 a4 a2 a
b%=>b3B3—biB5+Db3, (49)
and
8 16 1
b('?:?, b= —47%? b?Zgﬁi b§/2=—§773/2,
(49
32 1
R__ 77 a _ _ 32
P2 31s™ P "
R 1 R 4 R 2 R
b =§b0,8R—b1,8R+b2. (50)

The above expressiorg5) and (46) contain all terms that
survive in the limits—0. The details of calculation and a
closed form forQ?[B,] are outlined in Appendix A. The
function Q¢ B,] tends to a constant fo3,—0 and
Q[ B]=—bIn B+ \mbg /B, +0O(1B5)  for B,

—w (a=a,R).

PHYSICAL REVIEW D65 084028

Comparing the above expression with that obtained by the
Mellin transformation taking the trace of the heat kertiel

three dimensions

1 m2$ o0
g(S— E) :—1,[0 dtts_slzK[t]tﬂo
v rlsg

1
=—( Bom*T (s—2)
(477)3/2F( S—§>

+B;m?I'(s—1)

3
+ Bl,2m3I‘( s—3

5| +Bal ()

+ B3,2mF< S—

(51)

we obtain the heat kernel coefficients:

8w
Bo=—-[(a+R)*~a’],
Byo=—4m(a+R)?,

16
a+ 3’77(34- R),

1
81=327T[§— 5

1

1 2
83/2: 64#3/2[ f— g} - § 773/2, (52)

32
3_15(a+ R)’

™

B,=o7| 1083 a2y 20p_ 00

2" 3a &7 64 55 105
_16773’2 . . , 45

Bs/z—§¥ 968" — 7267+ 2187 — 7o &+

1 77_3/2

60 (a+R)?’

Using the above scheme we also calculated the coefficient
Bs;,, which we will need later for the analysis. We should
like to note the difference between Edg5),(46) and Eq.
(51). Equation(51) is an asymptotic expansion of the zeta
function over the inverse mass—o but the formulas
(45),(46) are correct for arbitrary mass and smalls—0. In
fact, we extracted the asymptotfor m— o) part of the zeta
function in the form(51) and saved the finite part of it. In the
limit m— oo the finite part tends to zero and the two formulas
are in agreement. This is the reason that the func-
tion Q[B,]=—bIn g2+ \7bg /B, +O(LB%) for B,
—» (a=a,R).

As long as the space-time under consideration has a sin-
gular two-dimensional surfac® with codimension 1, we
cannot use the standard formulas obtained for a smooth
background, and we have to utilize the formulas obtained by
Gilkey, Kirsten, and Vassilevich in Rgf16]. The heat kernel
coefficients(52) coincide exactly with those obtained from
general formulas in three dimensions given in R&g]. We
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have to take into account that the extrinsic curvature tensot E
of the surface is obtained as the covariant derivative of the  0.01
outward unit normal vectolN,, :

0.008
KaB:VaNB' (53 0.006
For this reason this vector has coordinaies=(0,*1,0,0) 0.004
on the spherep=*R, and
0.002
: \
- ma
trK RTa (54) 0.2 0. - : 1
-0.002

in both cases. In Appendix A we found general formulas for

the arbitrary heat kernel coefficients and traced them in FIG. 1. The ground state ener§y=E™"”/m as a function ofna

manifest form up tds. for fixed massm and é=1/6. Theenergy has a minimum at the
To obtain the ground state energy we have to subtrageointma~0.16 with depthE,/m~ —0.0025.

from our expression§30), (43), and(44) all terms that will

survive in the limitm—c. Then we ses=0 and the radius b3
of the boxR—c. Therefore we arrive at the following ex- f(Ba)~——InBa, Ba—0,
pression: 16m
Eene - 1 (A g2+ 0 8]} (55) f(ﬁa)*&’ Pa—ee.
32n%a : = 32m°2p,

A similar general structure for the ground state energy in the T0 characterize the behavior of the ground state energy as

massless case was obtained first by Blau, Visser, and Wigt function of¢ we note that the coefficietts, is positive for

[9] using dimensional considerations only, and it was con2ll values of¢ and hence the ground state energy tends to

firmed by detailed calculations in Refd.2,13. —0 as Ba—=. In the limit g;—0, the behavior of the
Using the above-mentioned behavior 6f2[B,], the  ground state energy is determined by the sigh.ofsee Eq.

ground state energy tends to zero for large radius of théd7)] and depends og. For §<§,~0.123,b, is negative
throat: and the ground state energy tends to minus infinity; other-

wise it tends to plus infinity. This difference in asymptotic
2, behavior at3,— 0 results in two qualitatively different pic-
O~ — —— —,  a—®, (56) tures describing the behavior of the ground state energy. In
327 ma the first case¢é<¢, , the ground state energy is monotoni-
cally increasing from—o to 0 and has no extremuiisee

and it is divergent for small radius of the throat: Fig. 2: while in the second casé>¢, , it has a global

b2 minimum. For example, in Fig. 1 the graphBf7m versus
Eren~ — 22 In(ma), a—0. (57) Ba is shown foré=¢. It is seen that the ground state energy
6m“a has a minimum aB,~0.16 with depthE,,;,,/m~ —0.0025.

Let us now speculate about the result obtained. Suppose

The numerical calculations of the ground state energyhat the quantum massive scalar field plays the role of the
E™m [Eqg. (55)] as a function of8,=ma is depicted in

Figs. 1 and 2 fog=% and&=0, respectively. The details of E
the numerical calculations are analyzed in Appendix B. 1

IV. DISCUSSION . = ™ T3 » Ma

We have calculated the ground state energy of the massivi*
scalar field on a short-throat flat-space wormhole backgrounc_,

[see Eq(55)]. It can be written down in the fori
-3

ren_ he —4
E™=——1(Ba), (58)

whereB,=mcd#, andf(B3,) is a function of 3, which has
the asymptotic

FIG. 2. The ground state enerfy=E™"m as a function ofna
for fixed massm and £&=0. There is no minimum energy; it is
YIn this section we use dimensional un@s c, and#. always negative.
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“exotic” matter maintaining the existence of the short-throat super-Planckian mass. Of course, it should be noted that our

flat-space wormhole in a self-consistent manner. This meansonsideration has been restricted to the toy model of a short-

that the semiclassical Einstein equations have to be satisfiethroat flat-space wormhole, and so one may expect that in
more realistic models the results will be slightly changed.

G :@“_ yren (59) Let us emphasize that the result obtained in this work for
progh Nl the wormhole configuration can be generalized. Really, the

behavior of ground state energy for sm@&@v) and large(56)

whereG,,, is the Einstein tensor, andl,,) are the renor- values of the throat's radius depends only on two dimen-

malized vacuum expectation values of the stress-energy teionless heat kernel coefficients and bs,, respectively.

sor of the scalar field. The total energy in a static space-timgnstead of the radiua, we could use a typical system sixe

is given by (throad and calculate the coefficients andbs, on the cor-
responding background. Now let us consider the dimension-

E:j e\g@d3x, (60)  less ground state e_nerg?;le”/m. Obviously, it will depend

Vv only on the dimensionless combinatiom\, and hence the

. 4 _ _ limit of large (smal) mass will correspond to the limit of
wheree = —(T;)"*"= — G,c"/8wG is the energy density, and |arge(smal) size of the system. Since for renormalization we
the integral is calculated over the whole space. In the spheriave to subtract the first five ternisp tob,) of the expan-

cally symmetric metrid8) we obtain sion for large mass the ground state energy in this limit
should be proportional to the next nonvanishing term of the
C4
E=—- — G{rz(p)dp. (61) expansion:
2G ) _»
1
Using the relationsG}=2r"/r +(r'2—1)/r? andr(p)=|p 11 by Ils+3 b/
+a we can calculate ) (4m)%2 ()2 o 1 == 3’2773/2—(m)\)2
_ 2c*a 21,

E=——5 (62) 66)

Note that the total energy is negative. which coincides with Eq(56). We would like to note that the

In the self-consistent case the total energy must coincid€o€fficientbg, is nonzero in the limitR—o for a back-
with the ground state energy of the scalar field. Equatinground with singular scalar curvature, as was shown in Ref.
Egs.(58) and (62) gives 16]. For smooth, nonsingular geometrical characteristics of

the background, it is zero and we have to take into account
2c*a ke the next nonvanishing coefficient, whichbis. In this case
G ?f(lga), we have the following expression in the limmit\ — oo:

or bs

ren,_ S
; 327%(mn)° ©0
1 [fBa) ©3
P 2 The origin of the logarithmic term, as well as the behavior
for small size of the system is the following. The structure of
where lp=\AG/c” is the Planck length. To make further poles of zeta functions does not depend on the parameters of
estimations we take into account that in order to be stable ghe systenm and\. The subtraction of the asymptotics for

quantum system should be in the state with the minimum ofarge mass gives us the following contribution to the ground
ground state energy. This requirement can be satisfied in th@ate energy:

case &>¢, . In particular, for ¢€=1/6 the minimum
Emin/Mc~—0.0025 is achieved @,=mca%~0.16. This (m\)%—1
givesf(B,)~4x10 4, so that

2()\m)(477)3/2F(s— %)

a~0.0141, (64)
and 4 3 3
X3 bo(AM)*T(s—2)+bq(Am)°T S_E
m~11.35mp, 65
P (65) 68
wheremp=(%c/G)*? is the Planck mass. L
Thus, our estimations have revealed that the self- 2
o ; ; e +by(AM)T(s—1)+ by (Am)['| s— =
consistent semiclassical wormhole, if it exists, should pos- (AT (1) +bg(Am) (S 2)
sess a throat of sub-Planckian radius, and the quantum scalar
field maintaining the wormhole’s existence should have +b,oI'(S)}s 0, (69
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whereb, are dimensionless heat kernel coefficients. Taking
the limit in this formula we observe that the heat kernel
coefficients with integer indices will survive:

Uo[t]=1, (A2)

1
1 Uks 1[t]= U a[t] (12— 1): uk[t]+tuk[t]]
bo()\m) —by(Am)2+b, [In(Am)2.

327%(Am) \ 2
(70
Uo[t] - 1
Therefore in the limih—0 one has
b, In(Am) Taking into account these formulas in E¢4) we obtain
Eeh~— 16220m)” (71)  a power series oves for the zeta function. The uniform

asymptotic expansio(Al) up to» " allows us to take into
account terms up ton®~". Because we need all terms that

in agreement with EQS7). urvive in the limitm—o we use the uniform expansion u
Therefore the necessary condition that the ground stat@ - P P

ton=3.
energy will possess a minimum is the following: the coeffi- . .
cientsb, and the next nonvanishing coefficiettsf, for sin- fun'(l;ggge:‘fore we have the following expression for the zeta

gular curvature antb; for nonsingulay must be positive. If
this is so, the discussion above is valid and the self-

consistent semiclassical wormhole exists. The radius of the
throat of a stable wormhole and the mass of the scalar boson

in this case depend on the model of the wormhole and the évmt( _ }) - Zﬁa cosms 2

value of the nonconformal coupling
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2

- 2\ 1/2—s
xf dx( xz—&)
Balv V2
X J In{x"K
| INX"K,[ox]

x”( SK [ vx]+ );—VK’V[vx])

APPENDIX A +1n
The uniform asymptotic expansions of the modified 3 228
, ; . B B3 cosws
Bessel's functions have the form below: _ E (—v) ka] _“Fa 777
=1 ma
[t oout] oc o\ 12—s
K vx]=\/5¢€ "7 , *

Lvx] 2v I(ZO(_V)k x> Vz_ZSJ dx xz—'ga1 —
=0 Balv V2 IX

t Zut]
= e’”/
1 [vx] \/ZW go i
T ” vl t]

Kilvx]=—\/ e 7 ,
L] 2vx%t kZO (—v)K

[ 1 Zolt]
I'Tvx]= e’ ,
L] 2mwxt ,(20 K

where
t ! V1+x2+1 X
= ) = X n—/-—,
J1+x2 7 1+1+x?

Ugs1[t]= ;tz(l—tz)u;[th %f;u— 5t2)u, [ t]dt,

(Al) (A3)

where the functiondN, may be found in closed form for
arbitrary indexp using a simple program in the package
MATHEMATICA . For p=0 they are polynomial of degreep3
and have the following form:

p+2k_ (A4)

p
N, [t]= a, .t
p[]go DK

The first fiveNp are listed below:
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NOZO, N_1:277,

1
t+ —t3,

12 (A5)

4

1
N [45——

1
4_".6
8t

N,=—8| 6 122 2|8 !
2= =8| 6—g| t?=2[ -t

19, 1
=0——|t3+ 4052—

27 64

1 495 329 ,
29 el

1
N3=§[6453—2452 256

169 .
64

179 4

We should like to note that the expressi@8) is identical to

the original one(44). The first term is finite in the limits

—0; all divergences are contained in the second part.
Integrating oveix with the help of the integral

1/2~
” 2 Bz ) 2\ —pl2
dxx| x - (1+x°)
14

Blv
3
[ 5=s|I(s+(p=3)/2) | |\ p-z+2s
N 2T (p/2) (E)
2 —s—(p—3)/2
x| 1+— (AB)

and taking the limits— O in the first term, we get

é‘”‘(s— E) == ——AllBal
a 2 s—0 167728. ! 2
1 3
+ i 2, (CD*ALB,
(47)%%arl| s ) B
(A7)
where
2
f[Ba] 32#20 B/de \[X - —25

Xv
SK ,(vX)+ TK;( VX)

X | InK,(vx)+In
1 1 1
v v v

Z(0l+s—1)

A_1=47TB2F(S )2 m (A9)

PHYSICAL REVIEW D65 084028

a
=— 321-p p.k
8B E o T(I+s+1/2)

2| 2k, s+ k+ p% , (A10)
93 al
= e . All
2p.s) =T 2, 2/3)3(/3) (A11)
The first fourAp are listed below:
Aol Bal=0,
1 1
A Bal= —877[(45— Z) Z(O,s)+EZ(2,s+ 1),
4732 1\? 1
Az[ﬂa]z ,8_3[16( o— g) Zl 0,5+ E)
1) 1 5
4 5—5 Z 2,S+§ +§Z 4,S+§ ,
(A12)

16m , 9 19
Agl Bal=— 3B 645°— 245+ = 0= 52/ 205+ 1)

2
+2 405%— 255+16922 +2
5 64| A20T2)
+4495 924 +3
35,29 &) 2453

179 654
+—25202( Ss+4)|.

To find the heat kernel coefficients we have to take the

limit m—o in Eq. (A7). The asymptotic expansion of
2(0,g) over inverse powers g82 was found in Ref[13]:

Z(05)=pB3T (s 1)

% _ |
+2> (|—|1)F(' +s)ﬁ;2'gH( —1—2|,1),
0 : 2

(A13)
where{y(s,a) is the Hurwitz zeta function
Ly(s,a)=2, (1+a)7s, s>1. (A14)
=0

The other functionsZ(2k,s+k+(p—1)/2) in Eq. (A10)
are expressed in terms &f(0,q) by the relation
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) Ek) ki T(k+(p—1)/2+s)
ni=o nl(k—n)! T'(n+(p—1)/2+5s)

Z(Zk,s+k+

X Z (A15)

-1
on+ pT+s).

PHYSICAL REVIEW [B5 084028

87[4096 . 4096 , 35584

=0 &- &+

8 3| 5 5 105
1088 , 848 144

15 ¢ " 105¢ 385"

Taking into account the above formulas we obtain theThe coefficienb,, is a polynomial of k—1)th order oveg.

following formulas for the heat kernel coefficients:

1

bn=~ Fs=27n) &, *n-p-1(2P~1).  (AL6)

n
E an—p—l(zp)y
p=0

By 10= 3
F(s— §+n

(A17)

where (,p=0)

8
a (—1)= ?F(S— 2),

1
o 1a

a(—1)=16m(—1)' =20

T(s—1+1),

P
a(p)=-8772 5
- F(k+§

Lk)zl(p'k), (Als)

K ki T'(k+(p—1)/2+s)
Z—l(pak):nzo(_l) n'(k—=n)! n+(p—3)/2+s

_ (_1)| ( )2 n_ !
z(p,k)=2—— i hl —1-21, (—-1) n'(k Y

I'(k+(p—1)/2+5)
'(n+(p—121)/2+s)

-1
),

I''l+n 5

Using these formulas, one obtains the following expres-

sions for the heat kernel coefficients:

8m 1
bo=— 3 b3=0, b?:3277[§— g}

1 2
b%,= 64773’2[5— —} :
8
b5= om 128:%-6 2+ 08
Ell il f 105]’
93

16 45
- 4 3 2~ —
=g Z[%g 72634 21 16g+640},
(A19)

The coefficientb, changes its sign at the poigt ~0.123
andbs, is positive for arbitraryé.

Our problem now is to take the limg—0 in the second
part of Eq. (A3). Because the functionZ(p,s) with p
=2,4,... may beexpressed in terms a£(0,s) only, let us
analyze it in detail. Let us suppose for a moment tAat
<1 and represeng(0,s) as a power series ovel, :

(— )n

2(08)= 23?2 I'(n+s)B3"

¢ (A20)

2n+2 11
n+2s ,E.

The gamma functiod’(s) has simple poles at the poings
=0,—1,-2,... and theHurwitz zeta functionZ,,(s,p) has
a simple pole only at one poist=1. They have the follow-
ing expansion near their poles:

(-1
F(s—n)sﬂ(,:T §+\P[n+1] +0(s),
1
Cn(st1p)s-o=g ~YIPI+O(s), (A21)

whereWV[x] is the digamma function.

All divergences of the functio£(0,s) [Eq. (A20)] in the
limit s—0 are contained in the first two terms with=0,1.
The rest of the series is finite and we set0 in it. Therefore
we obtain the following expression:

Z(o,s>sHo=2B2( A (s= 1)+, F(s)
1 2
+5B1-2y—4In2]

1
— 1—2[12§§(—1)+|n 2]]

©

+0(s),

(-1" 2n 1
. h I 2n—1.§
(A22)

wherelg(s) is the Riemann zeta function andis the Euler
constant.

The series in the above formula may be analytically con-

tinued for arbitrary values g8, . First of all, using the series
representation of the Hurwitz zeta functiohl4) we repre-
sent this series in the following form:
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(_ )n 1 where
sza)—E B;‘;”zH(zn—l,E)
8| L (-3t
. 2\ @ 0-1(Ba) =87 | ~ 7557 56" (73 F o4l
=3 V{_ += = (A23)
=0 14 14 1 1
+B3 20 (- 1)+ In2+
Then, taking into account the integral representation for the
logarithm, N J41 In2 N )|
,Ba 3’)’ 36 3 J3(Ba
Inx= Xi
ol+t’ 1 1 1
wl(ﬂa):_lﬁ’ﬂ g ( 1)+—|n2+r44
and the closed expression for the series below
1 1
—4'(-1)—<In2|+p2 o
jo(x?) = E — 3 8
=0 p(v?+x?) 1
+ = +6(—4y— +
1 [q,(l Nw 1+ ) 2\1}(1)] 6In2 S(—4y—8In2+2)
=— =—iX iX =,
2x2 2 2 ( 1) 1 4 .2
(A24) +4| 6— 1_6)]2(:8a)+glga10(ﬁa) )
one has 112
L 1 1 wZ(IBa):_SW[ 1652Ba_16[ } Jllzo(Ba)
. _ 2 __. - - _ -
j12(B)=pB fodxx[\lf 5 ixXg|+w¥ 2+|x,8 2?(2)]. s 1] 3 ,
(A25) - _513/2,0(,351)_3—2]5/2,0(361) ., (A27)

The function on the right-hand side is analytical in the whole

complex plane and therefore it gives the analytical continu-

ation of the serieg,(B8,) for arbitrary values of3,. This
representation of,(3) is preferable for numerical calcula-
tions.

Using the same approach for the otti#ip,q) we arrive
at the following formulas foA[ B,]:

8
A—l[Ba]: - %Bgs( 160F(S)_ _B F(S 1)

—BaT(s—2)  +w_1(Ba),

8w 2s 1
Al[ﬁa]z—?ﬂa (5_ﬂ‘> I'(s)

+12 + 01(Ba),

1) )
5= 45 Bl (s=1)

1
)

Aol Bal =47 is( 1652Bar
1 2

( 6— —) r

s

8
+ w3(Ba),

N
3Ba

+_
ST2

+ wy(Ba),

1
1285°—168%+ = 6+ ——

A3[Ba] = 5

71
3360 | (©
(A26)

757 71
20160 67207

|

5[—8y+8—-16In2]

32 71
w3(Ba)=— ?77 3360'” 2+

51
+ F)‘y

4 1| 2|4
§+—n

9
648%—245%+ =6

+ 6°[128In 2+ 64y]+ 5

169
406%2— 255+

121(,3a)

19 2
- ajll,l(ﬂa)‘F 5

8
35

49
2

329

179
+ o4 Jj31(Ba)+ 420141(,8a)

6—

Here we introduced the following notation:

)

-1)" 1
13(,3)223 S ,32”§H(2n—3,§),
" n(n—z)(n—l)
(A28)
. o (=D"T(n+p) 1
Jp,q(ﬂ):nZlT F(p) Bz §H<2n+q1§)

(A29)

The functionsj3(8) and j, «(B8) with integerp andq are
expressed in terms of the functigg(B) only by the rela-
tions
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v !

= —1pX

5718
v 1

2 1

1
js(8)= 2 | axx1-x)?
0
e
v §+|,8x —

J11(B) = = Xjo(X)|x= g2,

J2.4(B)=—2xXjo(X) =X 5(X)|x= g2, (A30)
. 1
j3.1(B)=—3xXjo(x) — 3x?] o(X)— X360 |x= g2,
jai(B)=—4xjo(x) —6x%]o(x) — 2x%]3(x)

N/

GX JO )|X=ﬁ2'

For half-integer indexep andq in Eq. (A29) we use the
integral representation for the Hurwitz zeta function from

Ref. [17]:
1 jwe(vl)XxS'ldx A3l
S O
and obtain the following formulas:
) = dx
J12.dB)= _Bfo Wh(zﬁx),
) = dx
Jai2dB)= _'Bfo m{&]l(zﬁx)
—2Bx3,(2x)}. (A32)

) = dx
Is2.dB)= _,BJ'O m{ 5J1(28x)

20 4
— E,BXJZ(Zﬁx)ﬂL §,BXJ3(2,8X) .
Substituting the formulas obtained in E@&\7) one has

. 1 B3
é?‘( s— —) = {bam“r(s— 2)
2 s—0 1) 0

(477)3/2F(S— >

3
s=5|+ bim?I'(s—1)

+ b‘},zm?‘l“(

1
+ bg,zml“( S— 5) + bgl“(s)}

0%(Ba), (A33)

" 167%a

PHYSICAL REVIEW [B5 084028

where

3

QB =Af(Ba)+ 2 (

—Dfo(Ba).  (A34)

In the limit s—0 an additional finite contribution appears
due to muItipIyingsInB§l and the gamma functions in the
curly brackets in Eq(A33). Because the gamma function has
simple poles at the points 61,—2, ..., theheat kernel
coefficients with integer indices will give finite contributions
and we arrive at the following expression:

é‘”t(s— E) = b2B4T (s—2)
a 2 <0 1) oFa

(4m)%2al'| s

3
+ bg‘,zﬁgr( 5= 5| +bigal(s—1)

- bg,z,ear< s—5|+ bgl“(s)]

{b*In B3+ Q% Bal}. (A35)

162

Therefore we have divided the zeta function into two parts:
the asymptotic singular part of the zeta function in standard
form and a finite contribution.

Using the same approach f6g(s—3) one has

1

ext] 1 R H4
{r (S_ 5) = 1 [boBRF(S_ 2)
=0 (477)3’2(a+R)F(S— E)

3
+ b?,zﬁgr( s— | +biBRI(s—1)

R 1 R
+b5BRI| 5= 5| +bET(s)

- m{bR In B&+ QR Br1}.

(A36)

By virtue of the fact that in the limiitn—c the above
formulas must give us the asymptotic expansiéi), the
function Q[B] has the following behaviolf B8,— >, («
=a,R)]:

084028-13



NAIL R. KHUSNUTDINOV AND SERGEY V. SUSHKOV PHYSICAL REVIEW D65 084028

A
QB,]=—b%In B2 ————r 2 b8
F(S‘ z)
k -0.002¢
XI'ls+=—2
2 50 -0.004

[ k 0 i
=—bIn g2+, bﬁ,zﬁi_kl“<§—2) 0o
k=5

-0.008¢

=—b*In B2+ \7bg,8, 1 +0(8,%). (A37)

FIG. 3. The functionA=A:/327 as a function ofma for ¢
=1/6. Thick curve is zero terml €0) contribution. The curve of
The main problem for numerical calculation of the ground medium thickness is the contribution of the first 11 terms up to
state energy is the terdy[ 8] given by Eq.(A8). The series =10. The thin curve reproduces the calculations with high precision
in Eq. (A8) is poorly convergent. To calculate this expression(UP to p=8 of the uniform expansion
let us, first of all, represent it in the following form:

APPENDIX B

The coefficientsa, , for p=1,2,3 may be singled out from

A o Eqg. (A5).
A= ?ZE o,, (B1) Then one takes derivatives and integrals in &) and
7 1=0 changes the sums overand|. After this we arrive at the
following formula:
where
f dx\/x?— =—| InK,(vx)+In| 6K (vx) 2 => N, (B6)
Blv =N =a P
Xy 1 1 1 where
+ ZKV(VX) +2V77(X)+ ;Nl_ ?Nz“l‘ ;Na y
®2) M- T (1703, ,, LP2 L2
=5 Pk T (pl2+Kk)
and divide the series into two parts:
N )
A= o+ > T (B3) e g2\ (@D
oA hp,a.8NI= X »*7° 1+= (B8)
I=N+1 1

The first sum we calculate numerically. The calculations
become lighter because the Bessel functions of the secorithe functionh may be found in closed form for integprand
kind with half-integer indexes are polynomial with a simple q.
exponent factof15]. In the second sum we use the uniform  The above functiorh may be estimated by
expansion of the integrand over inverse powers of the index
v. Since we have already subtracted the first three t&fms
N,, andN3, the uniform expansion of the integrand will start hip.a.8.N]~
from »~#, and we obtain the following expression:

2

2-p
+ —) , (B9)

and the seriefB6) is quickly convergent for larghl. We use

* B2 9 N=10 and in order to work with precision 1€°it is enough

> o= f dx\/x>— Iox to take the expansion up =28 (five terms. In fact, this
I=N¥1o 0= N“ plv X procedure converts the poorly convergent series to a quickly

convergent series ové? P,
% 2 (— ) "PN[t], (B4) To illustrate the above approach we reproduce in Fig. 3
p=4 the three steps of calculation 8f : (i) the zero term(thick
curve, (ii) the contribution of the first 11 terms up {o
=10 (medium thickness and (iii) the exact curvdup to p
=8 in the uniform expansion, thin curkeTen terms
No[t]= 2 a, ([APT2K (B5) I=1-10 gi\{e us a the correcti_on of 36% for the zero term,
0o and the series frorh=11 to« gives us a 4% correction.

whereN[t] is the polynomial of degree[8
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