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Equilibrium of three collinear Kerr particles
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The equilibrium problem of three collinear Kerr particles is studied within the framework of an exact
solution of Einstein’s equations. The system of conditions defining the equilibrium of the particles is derived in
an explicit form and particular equilibrium configurations involving black-hole and hyperextreme constituents
are considered. It is demonstrated that in some equilibrium states a spinning particle can exhibit combined
properties characteristic both of black holes and hyperextreme objects.
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I. INTRODUCTION

While static systems of collinear Schwarzschild and C
zon particles were investigated long ago@1–4#, the study of
collinear spinning particles became possible only after
development of modern solution generating techniques in
late 1970s and early 1980s@5–11#. Angular momentum per-
mits us, in principle, to achieve gravitational equilibrium
the constituents comprising the system even when all
masses involved are positive, unlike in the static case wh
equilibrium is only possible for an odd number of particl
~two Scwarzschild particles, for instance, can never be
equilibrium independently of the sign of their masses!, pro-
vided that some of the constituents necessarily have neg
mass. The stationary collinear systems are, therefore
greater physical realism.

The first examples of gravitational equilibrium of tw
spinning collinear particles with positive individual mass
were given by Dietz and Hoenselaers@12,13#. In Ref. @12#
they derived a vacuum solution representing the exte
gravitational field of two rotating Curzon sources in equili
rium ~a generalization of that result was given in Ref.@14#!,
and later on@13# they discovered the possibility of gravita
tional equilibrium of two identical hyperextreme constituen
in the double-Kerr solution@15#. A numerical investigation
of the analytical expressions for Komar masses@16# of the
subextreme constituents carried out for the latter solution
Hoenselaers@17# permitted him to conjecture that two no
mal Kerr black holes possessing positive masses can n
be in equilibrium~a rigorous proof of Hoenselaers’ conje
ture has been given recently by Manko and Ruiz@18#!. In
Ref. @19# equilibrium of the subextreme and hyperextrem
Kerr constituents was claimed without a discussion of
sign of their individual masses. The explicit extended form
las determining equilibrium of any combination of the su
extreme and hyperextreme constituents in the double-K
solution have been derived in Ref.@20#, and there severa
particular examples of equilibrium of two nonidentical h
perextreme Kerr sources and of subextreme and hype
0556-2821/2002/65~8!/084027~9!/$20.00 65 0840
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treme constituents involving only positive masses have b
given.

In our Letter @21# we attacked the balance problem
three collinear Kerr particles for the first time. Remarkab
the equilibrium of three Kerr black hole constituents wi
positive masses is possible, unlike in the aforementio
double-Kerr solution, although there still remains an op
question of whether the appearance of a massless ring si
larity which accompanies the known particular equilibriu
states of black holes can be avoided for some specific va
of the parameters. This advantage of three-body syst
over two-body ones concerning the capacity to form
black hole equilibrium configurations might be a reflecti
of the intrinsic differences between systems composed o
odd and even number of particles if one takes into acco
that exact solutions describing the collinear Kerr partic
are stationary generalizations of the Israel-Khan mu
Schwarzschild metric@4# for which such differences exist.

In the present paper we would like to consider vario
possibilities of the balance of three collinear Kerr particle
First of all, we would like to give new particular examples
three balancing black holes and of two black holes in eq
librium with a hyperextreme object. Then we shall supp
ment these two possible equilibrium configurations ear
discussed in Ref.@21# with two other ones, i.e., equilibrium
of two hyperextreme and one subextreme constituents,
the case of three balancing hyperextreme Kerr sources
Sec. II we shall present the extended metric describing
exterior gravitational field of three collinear arbitrary Ke
particles, and in Sec. III we shall derive the general bala
conditions determining the equilibrium of the particles. P
ticular equilibrium states for all possible combinations
subextreme and hyperextreme constituents in the triple-K
solution possessing equatorial symmetry will be conside
in Sec. IV. Concluding remarks are contained in Sec. V.

II. EXTENDED TRIPLE-KERR METRIC

Since the collinear Kerr particles can be either subextre
or hyperextreme objects, we need an extended solution o
©2002 The American Physical Society27-1
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Einstein equations for their description. As is well know
the axisymmetric vacuum problem was reduced by Erns
solving his famous equation@22#

~E1 Ē!~E,r,r1r21E,r1E,z,z!52~E,r
2 1E,z

2 !, ~1!

wherer and z are the Weyl-Papapetrou cylindrical coord
nates, a bar means complex conjugation, and the subind
following a comma denote partial differentiation with respe
to the indicated variables. IfE is known, the metric coeffi-
cientsf, g, andv entering the axisymmetric line element1

ds25 f 21@e2g~dr21dz2!1r2dw2#2 f ~dt2vdw!2, ~2!

can be obtained from the equations@22,23#

E5 f 1 iV,

v ,r52r f 22V ,z , v ,z5r f 22V ,r ,

g ,r5
r

~E1 Ē!2
~E,rĒ,r2E,zĒ,z!,

g ,z5
2r

~E1 Ē!2
Re~E,rĒ,z!. ~3!

A powerful method for the construction of extended so
tions of Eq. ~1! equally applicable for treating the sube
treme and hyperextreme sources was developed by Sibg
lin @11# on the basis of a brilliant employment of th
opportunities contained in the Hauser-Ernst approach@9#. A
starting point in Sibgatullin’s integral equation method is
arbitrarily prescribed axis expressione(z)[E(r50,z) of the
Ernst complex potential which is used, through the Riema
Hilbert procedure of the continuation of analytic function
for obtaining the correspondingE(r,z) satisfying Eq.~1! and
valid in the whole (r,z) plane.

In Ref. @24# an extended metric forN collinear Kerr par-
ticles was considered and explicit formulas relating para
eters of the metric to the axis data and multipole mome
were obtained. The three-body case which is of interest to
corresponds toe(z) of the form

e~z!511(
l 51

3
el

z2b l
, ~4!

whereel and b l are arbitrary complex constants. Fore(z)
defined by Eq.~4!, Ref. @24# gives the following expression
for E(r,z):

E5E1 /E2 , E65L6G,

L5 (
1< i , j ,k<6

l i jk r i r j r k , G5 (
1< i , j <6

n i j r i r j ,

1Throughout the paper units are used in which the speed of l
and Newton’s gravitational constant are equal to unity.
08402
,
to

es
t

-

ul-

-
,

-
ts
us

l i jk5~21! i 1 j 1kAi j AikAjkAi 8 j 8Ai 8k8Aj 8k8R̃i R̃j R̃k

3Ri 8Rj 8Rk8 ~ i 8, j 8,k8Þ i , j ,k; i 8, j 8,k8!,

n i j 5~21! i 1 jAi j Ai 8 j 8Ai 8k8Ai 8 l 8Aj 8k8Aj 8 l 8Ak8 l 8R̃i R̃j

3Ri 8Rj 8Rk8Rl 8 ~ i 8, j 8,k8,l 8Þ i , j ; i 8, j 8,k8, l 8!,

Amn :5am2an , r nªAr21~z2an!2,

Rn :5~an2b1!~an2b2!~an2b3!,

R̃n :5~an2b̄1!~an2b̄2!~an2b̄3!, ~5!

wherean are six parameters which can assume arbitrary
values or occur in complex conjugate pairs. Note thatan
enter Eq.~5! instead of three complex parametersel from Eq.
~4!, but the parametrizations$el ,b l% and $an ,b l% are
equivalent, each counting twelve arbitrary real consta
The relation ofel to an is given by the formula

el5

2)
n51

6

~b l2an!

)
k51
kÞ l

3

~b l2bk!)
k51

3

~b l2b̃k!

. ~6!

The metric functionsf, g, and v corresponding to the
potential~5! have the form

f 5
E1Ē21Ē1E2

2E2Ē2

, e2g5
E1Ē21Ē1E2

2ll̄ )
n51

6

r n

,

v52 Ims2
4 Im$~L̄2Ḡ !G%

E1Ē21Ē1E2

,

G52sL1~z1s̄ !G1 (
1< i , j ,k<6

l i jk~a i1Bjk!r i r j r k

2 (
1< i , j <6

n i j ~Bi 8 j 81Bk8 l 8!r i r j ~ i 8, j 8,k8,l 8

Þ i , j ; i 8, j 8,k8, l 8!,

sªb11b21b3

5l21F (
1< i , j <6

n i j 1 (
1< i , j ,k<6

l i jk~a i1Bjk!G ,
lª (

1< i , j ,k<6
l i jk , Bmnªam1an . ~7!

Since we are interested in the case of three separated
ticles, we assign the following order to the parametersan
which determine the location of the particles on the symm
try axis:

ht
7-2
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EQUILIBRIUM OF THREE COLLINEAR KERR PARTICLES PHYSICAL REVIEW D65 084027
Rea1>Rea2.Rea3>Rea4.Rea5>Rea6 . ~8!

Then, as usual, a pair of real-valueda ’s, saya1 anda2, will
define a subextreme Kerr black hole, the segmenta2<z
<a1 being its Killing horizon, and a pair of complex conju
gate a ’s, say a1 and a25ā1, will define a hyperextreme
constituent. In the latter case the whole mass of the par
will be concentrated along the cut joining the pointsa1 and
ā1, which suggests a possible interpretation of the hyper
treme Kerr constituents as relativistic disks.

The total massM and total angular momentumJ of our
three-body system are defined by the expressions

M52 (
1< i , j <6

n i j /l,

J5ImH F (
1< i , j <6

n i j Bi j

1M (
1< i , j ,k<6

l i jk~a i1Bjk!G Y lJ ~9!

which are readily obtainable using the results of Ref.@24#.
It is advantageous for the search of equilibrium config

rations of the Kerr particles to introduce the constant obje
Xn via the formula

Xnª
R̃n

Rn
5

~an2b̄1!~an2b̄2!~an2b̄3!

~an2b1!~an2b2!~an2b3!
,

n51,2,3,4,5,6 ~10!

verifying the relation

XnX̃n51, ~11!

where the ‘‘tilde operator’’ again means the conjugation
the constantsb l exclusively.

The set$an ,Xn% is equivalent to the set$an ,b l%, and we
shall use it in the next sections for the definition of the eq
torially symmetric case of three collinear particles and
finding particular equilibrium configurations since the n
merical values ofXn are more easily detected by comput
programs than the respectiveb l . In terms ofXn the formulas
~5!, ~7!, ~9! remain the same except for the form ofl i jk and
n i j which slightly changes~after cancelling the common fac
tor )n51

6 Rn) to become

l i jk5~21! i 1 j 1kAi j AikAjkAi 8 j 8Ai 8k8Aj 8k8XiXjXk ,

n i j 5~21! i 1 jAi j Ai 8 j 8Ai 8k8Ai 8 l 8Aj 8k8Aj 8 l 8Ak8 l 8XiXj .
~12!

Mention that the quantitiesXn defined by Eq.~10! relate
the results obtained in Ref.@24# with the aid of Sibgatullin’s
method to the ‘‘complexified Kinnersley-Chitre transform
tion’’ approach employed by Ernst@25#. It should also be
remarked that the derivation of many mathematical cha
08402
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teristic features of the metric~7!, the balance conditions
among them, is simpler using the quantitiesRn and notXn .

To conclude this section, it might be worthy to point o
that in view of the evidence on the uniqueness of the dou
Kerr solution for the description of two Kerr particles@26#,
the triple-Kerr metric defined by Eqs.~5! and~7! can be also
considered a unique one for the description of stationary s
tems consisting of three collinear Kerr particles.

III. BALANCE CONDITIONS

Conditions determining the equilibrium of three Kerr pa
ticles due to the balance of the gravitational attraction a
spin-spin repulsion forces are obtainable by requiring t
the elementary flatness of the parts of the symmetry axis
outside the location of the material sources. Mathematic
this is equivalent to the vanishing of the metric functionsg
andv on the parts of thez-axis exterior to and between th
particles@27,12#:

g (I-IV) 5v (I-IV) 50, ~13!

where the segments I and IV are the upper and lower part
the symmetry axis, i.e., Rea1,z,` and 2`,z,Rea6,
respectively, and segments II and III are the parts of
symmetry axis between the particles, i.e., Rea3,z,Rea2
and Rea5,z,Rea4, respectively~see Fig. 1!.

By construction, the metric~5!, ~7! verifies

g (I,IV) 5v (I)50, ~14!

i.e., the functiong is zero on both upper and lower parts
the symmetry axis, whereasv, in general, vanishes only o
the interval Rea1,z,`. The condition for vanishingv on
the lower part of thez axis, v (IV) 50, coincides with the
condition of the asymptotic flatness of the triple-Kerr met

Im5 (
l 51

3 2)
n51

6

~b l2an!

)
k51
kÞ l

3

~b l2bk!)
k51

3

~b l2b̃k!6 50. ~15!

In what follows, we shall refer to the Kerr particles d
fined by the pairs (a1 ,a2), (a3 ,a4), and (a5 ,a6) as to the

FIG. 1. Two examples of the systems of three Kerr particl
Sections I–IV of the symmetry axis should be regular for any p
ticular equilibrium configuration.
7-3
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MANKO, MANKO, AND RUIZ PHYSICAL REVIEW D 65 084027
upper, medium, and lower constituents, respectively. The
maining four balance conditions involve two segments~II
and III! between the particles, and their explicit form can
obtained by considering the coefficients at leading power
z in the numerators and denominators ofg andv since both
these functions assume constant values on the symm
axis.

Taking into account that at region II we haver 15a1
2z, r 25a22z, and r i5z2a i , i 53,4,5,6, the condition
g (II) 50 can be written as

(
i 53

6

l12i1 (
3< i , j ,k<6

l i jk50, ~16!

while the conditionv (II) 50 assumes the form

g121g128 1 (
3< i , j ,k<6

~g i j 1g i j8 !1(
i 53

6

~a11B2i !

3~l12i1l12i8 !1 (
3< i , j ,k<6

~a i1Bjk!

3~l i jk1l i jk8 !50, ~17!

where we have introduced the quantities

l i jk8 5~21! i 1 j 1kAi j AikAjkAi 8 j 8Ai 8k8Aj 8k8Xi 8Xj 8Xk8 ,

n i j8 5~21! i 1 jAi j Ai 8 j 8Ai 8k8Ai 8 l 8Aj 8k8Aj 8 l 8Ak8 l 8

3Xi 8Xj 8Xk8Xl 8 . ~18!

Turning now to region III, we haver i5a i2z, i
51,2,3,4, r 55z2a5 , r 65z2a6. Then the conditiong (III)

50 takes the form

(
i 51

4

l i561 (
1< i , j ,k<4

l i jk50, ~19!

and the conditionv (III) 50 leads to the equation
08402
e-
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try

(
1< i<4
5< j <6

~g i j 1g i j8 !1(
i 51

4

~a i1B56!~l i561l i568 !

1 (
1< i , j ,k<4

~a i1Bjk!~l i jk1l i jk8 !50. ~20!

Equations~15!–~17!, ~19!, ~20! constitute a complete se
of conditions determining the equilibrium of three colline
Kerr particles. It should be underlined that these equati
are valid for the whole range of the parametersan , i.e., for
any combination of the subextreme and hyperextreme c
stituents. This can be easily seen in the case of Eqs.~16! and
~19! for g, but the derivation of Eqs.~17! and ~20! for v
involves multiple complex conjugate quantities and, the
fore, originally has been carried out by us separately for
possible combinations of real- and complex-valuedan . Re-
markably, all the cases have finally permitted a unified r
resentation.

IV. PARTICULAR EQUILIBRIUM STATES

It does not look possible to investigate the algebraic s
tem ~15!–~17!, ~19!, ~20! analytically, so one is forced to
resort to numerical calculations in order to obtain particu
equilibrium states. But even the task of finding numeric
roots of this system proves to be very complicated in
general case, thus suggesting some further simplification
is reasonable to single out the systems possessing a re
tional symmetry with respect to thez50 plane which permit

FIG. 2. Four possible types of the triple-Kerr systems posse
ing reflectional symmetry.
TABLE I. Purely black-hole equilibrium states.

a1 5 5 3 3
a2 2 2 0.5 0.5
a3 0.8 1 0.25 0.25
X1 0.910.436i 0.820.6i 0.920.436i 0.820.6i
X2 0.70710.707i 0.69420.72i 0.56420.826i 0.5320.848i
X3 0.57510.818i 0.64220.767i 0.48620.874i 0.4620.888i
Mu5Ml 3.537 1.869 1.432 1.001
Mm 1.823 5.553 1.33 2.501
Ju5Jl 267.156 67.255 13.547 13.807
Jm 121.312 2166.255 228.804 235.828
7-4
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EQUILIBRIUM OF THREE COLLINEAR KERR PARTICLES PHYSICAL REVIEW D65 084027
the following nontrivial interesting combinations of thre
collinear Kerr particles:~a! a superposition of three subex
treme ~black hole! constituents,~b! two black holes super
posed with a hyperextreme object,~c! two hyperextreme ob-
jects superposed with a black hole, and~d! a superposition of
three hyperextreme constituents~see Fig. 2!.

In the equatorially symmetric case the balance prob
considerably simplifies since segment IV of the symme
axis becomes identical to segment I, and segment III
comes identical to segment II, so that Eq.~15! is satisfied
automatically, and Eqs.~19! and~20! coincide with Eqs.~16!
and ~17!, respectively. Therefore, only the latter two equ
tions should be solved to get the equilibrium states. In ad
tion, they take a much simpler form since, making use of
general relations obtained in Ref.@24#, it can be shown tha
the metric ~7! is equatorially symmetric ifan and Xn are
subjected to the following restrictions:

a652a1 , a552a2 , a452a3 ,

X1X65X2X55X3X4521. ~21!

FIG. 3. Stationary limit surfaces corresponding to the equi
rium configurations from Table I.
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With relations~21! taken into account, Eq.~16! can be
rewritten as

A12@A13
2 A23

2 ~X1
2X2

2X3
211!1B13

2 B23
2 ~X1

2X2
21X3

2!#

14a3B12@a1A23B23X1X3~X2
211!

2a2A13B13X2X3~X1
211!#50, ~22!

and Eq.~17! takes the form

B12$a1A13B13X1@B23
2 ~X2

22X3
2!1A23

2 ~X2
2X3

221!#

2a2A23B23X2@B13
2 ~X1

22X3
2!1A13

2 ~X1
2X3

221!#

14a1a2a3X3@A23B23X1~X2
221!

2A13B13X2~X1
221!#%

1A12@A13
2 A23

2 ~B121a3!~X1
2X2

2X3
221!

1B13
2 B23

2 ~B122a3!~X1
2X2

22X3
2!#50. ~23!

- FIG. 4. Stationary limit surfaces corresponding to the equil
rium configurations from Table II.
TABLE II. Equilibrium configurations of two black-hole and one hyperextreme constituents.

a1 3.5 3.5 3.5 5
a2 3 3 3 1
a3 217i 28i 28i 24i
X1 0.6510.76i 0.510.866i 0.510.866i 0.520.866i
X2 0.98410.448i 120.011i 0.45320.892i 0.8220.573i
X3 0.15i 0.081i 22.706i 20.657i
Mu5Ml 1.176 0.457 20.297 5.429
Mm 4.1 1.105 7.465 22.959
Ju5Jl 22.012 20.228 0.129 290.678
Jm 80.279 10.037 274.504 2967.622
7-5
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TABLE III. Equilibrium states of a black hole and two hyperextreme objects.

a15ā2
222.8i 224.558i 223.163i 221.94i

a3 1.5 1.5 1.8 1.5

X15X̄2
21 1.220.8i 1.221.1i 1.220.8i 1.220.5i

X3 0.78720.617i 0.53420.845i 0.82220.57i 0.9220.392i
Mu5Ml 2.204 1.386 2.179 2.997
Mm 2.079 4.285 2.419 0.749
Ju5Jl 34.075 40.074 35.866 37.791
Jm 255.619 281.051 258.787 251.767
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In Ref. @21# we have already presented two numeric
solutions of the system~22!, ~23!, but both of them were of
the ~a! and ~b! types since in that paper we were primar
interested in the question of how equilibrium of two Ke
black holes can be achieved by placing a third Kerr const
ent between them. Below we shall give more examples of
equilibrium states of three subextreme Kerr black holes,
black holes, and one hyperextreme constituent; we shall
complement our consideration of the balance problem w
the remaining two possibilities of the equilibrium of thre
Kerr particles in items~c! and ~d! above.

The equilibrium states which will be considered below a
all characterized by the particular values of the parame
a1 ,a2 ,a3 ,X1 ,X2 ,X3, and by the corresponding individua
Komar massesMu ,Mm ,Ml (u, m, and l denote, respec
tively, the upper, medium, and lower constituents! and angu-
lar momentaJu ,Jm ,Jl . In view of the reflectional symmetry
we haveMu5Ml , Ju5Jl , and it is advantageous to calcu
late the masses and angular momenta of the equilibrium
figurations using Tomimatsu’s formulas@28#

M52
1

4EH
vV ,z dz,

J52
1

4EH
vS 11

1

2
vV ,zDdz, ~24!

whereH stands for the horizon of a black-hole constitue
andv is calculated at the horizon. Then, after evaluatingM
and J for any chosen black-hole constituent, the mass
angular momentum of the remaining black-hole or hyper
treme constituent~s! can be found usingM, J andMt , Jt . In
the case of three hyperextreme Kerr particles the Kom
masses and angular momenta should be calculated via
mulas~23! of Ref. @20#.

~A! Equilibrium of three Kerr black holes.In Table I four
different purely black-hole equilibrium states are given~the
numerical values are presented up to three decimal plac!.
Searching for the roots of the system~22!, ~23! we were
fixing the values ofa1 ,a2 ,a3 , X1, and finding the values o
X2 andX3 taking into account that the latter two quantities
the black-hole case have the propertyuX2u25uX3u251. The
corresponding stationary limit surfaces, i.e., the surfaces
08402
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which f 50, are plotted in Fig. 3.2 The dots denote massles
ring singularities lying in the equatorial (z50) plane, whose
origin is due to the rupture of the stationary limit surface
the medium black-hole constituent because of a highly la
value of the respective angular momentum. The possib
for angular momenta per unit mass to exceed the corresp
ing masses in a system of several Kerr black holes was
ported in Ref.@29#, and the three-black-hole case illustrat
this effect even more visually than the two-black-hole on

Three black holes in equilibrium can have disconnec
individual stationary limit surfaces, as follows from Fig
3~i!–~iii !, or can form a joint stationary limit surface, as
Fig. 3~iv!. Note also that equilibrium states of three bla
holes are characterized by counter-rotation of the mid
constituent to the two other constituents, unlike in the tw
body case. It is interesting to point out that the systems
balancing black holes as a whole satisfy the inequalityMt

4

.Jt
2 valid for a single subextreme Kerr black hole@30,22#.

Each balancing black hole verifies Smarr’s mass form
@31#

M5
1

4p
kS12

J

vH
, ~25!

wherek, S, andvH are the surface gravity, area of the h
rizon, and value of the metric coefficientv on the horizon,
respectively. To see this, one has only to use Tomimat
formula @32#

1

4p
k iSi5

1

2
~a2i 212a2i !. ~26!

~B! Equilibrium of two black holes and a hyperextrem
object. Qualitatively, the equilibrium states of two black-ho
and one hyperextreme constituents are similar to the bla
hole-hyperextreme equilibrium configurations in the e
tended double-Kerr solution considered in Ref.@20#. In Table
II we give some typical examples of such a balance with
corresponding stationary limit surfaces plotted in Fig. 4. T
first two of them are well behaved in the sense that th
involve only positive individual Komar masses and their s
tionary limit surfaces consist of three disconnected regi

2In Figs. 3–5 the horizontal and vertical axes define, respectiv
r andz coordinates.
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without any anormalies; however, the black-hole constitue
satisfy the inequalityMu,l

4 ,Ju,l
2 valid for a single Kerr hy-

perextreme particle. The third example shows that fo
given set of the constantsa1 , a2 , a3 , X1 there exist differ-
ent numerical solutions of the system~22!, ~23! for X2 and
X3, and unlike in the third example, the valuesX2 andX3 of
the third example lead to the negative masses of the bl
hole constituents and, consequently, to two ring singulari
at r.0.143, z.63.25 denoted by dots in Fig. 4~iii !. The
last example illustrates that the type~b! equilibrium configu-
rations can be achieved by three corotating constitue
however, in this case the Kerr particles form a kind of
stationary limit surface preventing a test particle to reach
parts of the symmetry axis separating the constituents w
out crossing it.

~C! Two hyperextreme objects in equilibrium with a bla
hole. While searching for the equilibrium states of this typ
it is convenient to useX3 and the imaginary part ofa1 as
unknowns in Eqs.~22!, ~23!, fixing all other quantities. A
peculiar feature of the particular equilibrium configuratio
given in Table III is that they possess a massless ring sin
larity in the equatorial plane~see Fig. 5! which corresponds
to the black-hole constituent. The origin of the singularity

TABLE IV. Equilibrium states of three hyperextreme objects.

a15ā2
323i 223i 323i 323i

a3 25.553i 24.663i 26.059i 26.304i

X15X̄2
21 2.121.2i 1.820.6i 1.920.4i 1.920.4i

X3 0.542i 0.054i 0.147i 21.81i
Mu5Ml 1.89 2.309 2.474 1.166
Mm 0.64 0.018 0.231 21.664
Ju5Jl 211.844 213.262 215.228 21.164
Jm 16.661 1.072 5.611 233.744

FIG. 5. Stationary limit surfaces corresponding to the equi
rium configurations from Table III.
08402
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the same as in the case~A!, i.e., the rupture of the stationar
limit surface due to the ‘‘dual’’ properties of the middle con
stituent: it is a black hole with a horizon defined by the r
@2a3 ,a3#, and at the same time its mass and angular m
mentum verify the inequalityMm

4 ,Jm
2 characteristic of a

single hyperextreme Kerr particle. As a consequence,
corresponding stationary limit surface consists of two top
logically different parts, theS2 topology representing the ba
sic black-hole nature of the constituent, and theS13S1 to-
pology originating from the mass-angular-momentu
inequality which is inherent to the hyperextreme Ke
sources. As in the purely black-hole equilibrium configur
tions, the counter-rotation of the constituents compris
type ~c! systems seems necessary to achieve the balanc

~D! Equilibrium states of three hyperextreme Kerr pa
ticles.The equatorial symmetry implies that in this casea3 is
pure imaginary, hence it is most convenient to solve the s
tem ~22!, ~23! for a3 andX3. The equilibrium states given in
Table IV provide some interesting information about the b
ance of three hyperextreme Kerr particles. In Fig. 6 we h
plotted the stationary limit surfaces corresponding to
equilibrium configurations of Table IV, and one can see t
these surfaces may consist of three disconnected reg
each region being related to the respective hyperextre
constituent; of two disconnected regions, when the mid
particle has no stationary limit surface; and of a single reg
which is formed as the result of merging of the individu
stationary limit surfaces in one. The first three equilibriu
states are characterized by the positive Komar masses o
particles and by the counter-rotation of the middle const
ent with respect to the other two particles. The last exam
is of special interest even though the middle particle ha
negative mass. The two remarkable feature of the latter e
librium state are, first, that the intermediate hyperextre
constituent verifies the inequalityMm

4 .Jm
2 characteristic of a

FIG. 6. Stationary limit surfaces corresponding to the equil
rium configurations from Table IV.

-
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MANKO, MANKO, AND RUIZ PHYSICAL REVIEW D 65 084027
single subextreme Kerr black hole, and, secondly, tha
spite of its negative mass, this constituent is not accom
nied by a ring singularity outside the symmetry axis. T
former property illustrates well that hyperextreme objec
such as black holes, can exhibit ‘‘dual’’ nature; the lat
feature clearly shows that a massless ring singularity ha
topological origin related to the formation of the stationa
limit surface since such a singularity does not appear
hyperextreme object possessing negative mass has no
tionary limit surface.3

V. CONCLUSIONS

The main conclusion which can be drawn from the ana
sis of the extended triple-Kerr metric carried out in our pa
is that the collinear Kerr particles described by the solut
@24#, such as the collinear Schwarzschild particles descri
by the Israel-Khan solution@4#, display a different aptitude
with regard to forming the equilibrium configurations, d
pending on whether the number of particles is even or o
Since the principle difference between the stationary vacu
systems composed of an even or odd number of parti
seems to be the capacity to form the physically meaning
black-hole equilibrium states, it is tempting to conjecture t
no one system having an even number of collinear Kerr p
ticles possesses purely black-hole equilibrium configurati
with positive Komar masses of all of its constituents.

3As was shown by Hoenselaers and Perje´s @33#, the singularities
of an axisymmetric vacuum metric are defined by zeros of the
nominator of Ernst’s potentialE, hence they all lie on the stationar
limit surface f 50.
y

-
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support this conjecture, it would be, of course, interesting
consider the case of four Kerr particles, but apparently
would contain by far more technical difficulties than the ca
of the triple-Kerr solution. We leave the quadruple-Ke
equilibrium problem as an interesting and important futu
task.

The remarkable phenomena revealed by our study of th
Kerr particles are the ‘‘duality’’ properties which the balan
ing particles, both the black holes and the hyperextreme
jects, are capable to develop, and the absence of ring si
larities outside the symmetry axis when a hyperextre
object with negative mass has no stationary limit surfa
Further work is needed, however, to discover the mec
nisms standing behind these phenomena which, in our o
ion, should manifest themselves even stronger in the syst
with a larger number of particles.

Although the numerical solution of the balance equatio
~22!, ~23! exhibits no difficulty, providing one with particula
equilibrium states, we have been unable, in spite of our
fort, to solve them analytically, which would be likely t
establish general relations between the parameters defi
the balance of the Kerr particles. In this respect we wonde
any approximate method similar to that recently employ
by Bonnor@34# for treating the two-body problem might b
useful for obtaining such general physical relations in
three-body case.
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