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Equilibrium of three collinear Kerr particles
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The equilibrium problem of three collinear Kerr particles is studied within the framework of an exact
solution of Einstein’s equations. The system of conditions defining the equilibrium of the particles is derived in
an explicit form and particular equilibrium configurations involving black-hole and hyperextreme constituents
are considered. It is demonstrated that in some equilibrium states a spinning particle can exhibit combined
properties characteristic both of black holes and hyperextreme objects.
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I. INTRODUCTION treme constituents involving only positive masses have been
given.

While static systems of collinear Schwarzschild and Cur- In our Letter[21] we attacked the balance problem of
zon particles were investigated long adge-4], the study of three collinear Kerr particles for the first time. Remarkably,
collinear spinning particles became possible only after thdh€ equilibrium of three Kerr black hole constituents with
development of modern solution generating techniques in thB0Sitive masses is possible, unlike in the aforementioned
late 1970s and early 19805—11]. Angular momentum per- double-Kerr solution, although there still remains an open
mits us, in principle, to achieve gravitational equilibrium of qugonn_of whether the appearance of a massless fing singu-
the constituents comprising the system even when all thg‘rlty which accompanies the "’?OW” particular equ_|!|br|um
masses involved are positive, unlike in the static case Wher§3tates of black holes can be avoided for some specific values
equilibrium is only possible for an odd number of particlesOf thet pakr)argeters. This ad"?‘”tatgﬁ of thre_?-b:)d¥ systte;]ms
(two Scwarzschild particles, for instance, can never be i ver two-body ones conceming the capacily 1o form the

equilibrium independently of the sign of their masseso- lack hole equilibrium configurations might be a reflection

vided that some of the constituents necessarily have negati\f‘)er éher:gt”r\]/s'ﬁ ilﬁrirsnrce? be:gv?en i?ysr:err:skcor?ﬁtosed of ?]?
mass. The stationary collinear systems are, therefore, ta ? el t'u ed 0 Ps. c?rs] OIF a esK 0 actc_:olu
greater physical realism. at exact solutions describing the collinear Kerr particles

The first examples of gravitational equilibrium of two are stationqry gen_eralization_s of the _IsraeI-Khan _multi-
spinning collinear particles with positive individual massesSChV‘""‘rZSChIId metri¢4] for which such differences exist.

were given by Dietz and Hoenseladt2,13. In Ref. [12] In the present paper we would like to consider various

they derived a vacuum solution representing the exterio ossibilities of the balance of three collinear Kerr particles.

gravitational field of two rotating Curzon sources in equilib- irst of all, we would like to give new particular examples Of.
rium (a generalization of that result was given in Rgf4]), t_hr?e balgncmg black holes and_ of two black holes in equi-
and later on13] they discovered the possibility of gravita- I'b”ut”lhw'th ?Nhyperexgleme O.klj.f(.:t' Then f.We s?all suppllle-
tional equilibrium of two identical hyperextreme constituents?en edS(_a Rotgi]ss'.tﬁtequ' Ithnum configura |0(1|_sb earlier
in the double-Kerr solutiof15]. A numerical investigation ISCUSSEd In REl.21] with WO other ones, 1.€., equilibrium

of the analytical expressions for Komar mas&8] of the of two hyperextreme and_ one subextreme constituents, and
subextreme constituents carried out for the latter solution by.c_¢35€ of three balancing hyperextreme _Kerr SOUrces. In
Hoenselaer§17] permitted him to conjecture that two nor- ec. Il we shall present the extended metric describing the

mal Kerr black holes possessing positive masses can neVg;(terior gravitational field of three collinear arbitrary Kerr
be in equilibrium(a rigorous proof of Hoenselaers’ conjec- particles, and in Sec. Ill we shall derive the general balance

ture has been given recently by Manko and Ridig]). In conditions determining the equilibrium of the particles. Par-

Ref. [19] equilibrium of the subextreme and hyperextremet'CUIar equilibrium states for all possible combinations of

Kerr constituents was claimed without a discussion of thesubextreme and hyperexreme constituents in the triple-Kerr

sign of their individual masses. The explicit extended formu—.SOIution possessing equatorial symmetry_will pe considered
las determining equilibrium of any combination of the sub-" Sec. IV. Concluding remarks are contained in Sec. V.
extreme and hyperextreme constituents in the double-Kerr
solution have been derived in R4R0], and there several
particular examples of equilibrium of two nonidentical hy-  Since the collinear Kerr particles can be either subextreme

perextreme Kerr sources and of subextreme and hyperexr hyperextreme objects, we need an extended solution of the

Il. EXTENDED TRIPLE-KERR METRIC
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Einstein equations for their description. As is well known,

the axisymmetric vacuum problem was reduced by Ernst to
solving his famous equatig22]

(E+EE, i+ p 1 ,+E,)=2(8+E%), (1)

wherep and z are the Weyl-Papapetrou cylindrical coordi-
nates, a bar means complex conjugation, and the subindices

following a comma denote partial differentiation with respectA,,n: = am— ap,

to the indicated variables. ¥ is known, the metric coeffi-
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k= (= 1) TRAG AYAAL Ao A RIR R

XRUR Ry (i1, K #1,j,ki’<j'<k'),

|J =(_ 1)I+IAI]AI’]’AI’k/AI/|’AJ’k’AJ’|’Ak’|/ﬁlﬁj

(] K £ <) <k'<I"),

Fhi=\p*+(z—an)?,

XRllRJIRk/Rl/

cientsf, y, andw entering the axisymmetric line elemént

ds?=f"e?"(dp2+dZ?) + p?de?]— f(dt— wde)?, (2)
can be obtained from the equatigr&2,23]
E=f+iQ,

o ,= —pfﬁZQ’Z, w’Z=pf720'p,

Rn : :(an_ﬁl)(an_ﬁz)(an_ﬁs):
Rn:=(an—B1)(an—B2)(an—Ba), (5)

wherea,, are six parameters which can assume arbitrary real
values or occur in complex conjugate pairs. Note thgt
enter Eq(5) instead of three complex parameter$rom Eq.

(4), but the parametrizationde;,8} and {«,,B/} are
equivalent, each counting twelve arbitrary real constants.
The relation ofe, to «, is given by the formula

p — —

Y= W(E,pf,p—f,zg,z).

(E+6)2

Y. RE(E ,E,). &)

A powerful method for the construction of extended solu-
tions of Eq.(1) equally applicable for treating the subex-

6

21 (8- an)
e=-3 3 : (6)
IT 8-BoIl (B-B
SR

The metric functiond, vy, and o corresponding to the

treme and hyperextreme sources was developed by Sibgatyetential(5) have the form

lin [11] on the basis of a brilliant employment of the
opportunities contained in the Hauser-Ernst apprd@thA
starting point in Sibgatullin’s integral equation method is an
arbitrarily prescribed axis expressiefz)=&(p=0,z) of the
Ernst complex potential which is used, through the Riemann-
Hilbert procedure of the continuation of analytic functions,
for obtaining the correspondingp,z) satisfying Eq(1) and
valid in the whole p,z) plane.

In Ref.[24] an extended metric fa collinear Kerr par-
ticles was considered and explicit formulas relating param-
eters of the metric to the axis data and multipole moments
were obtained. The three-body case which is of interest to us
corresponds te(z) of the form

3
€

126

e(z):1+I (4)

where e, and B, are arbitrary complex constants. Fez)
defined by Eq(4), Ref.[24] gives the following expression
for &(p,2):

E=E,/E_, E.=A=T,

A=

£ )\ijkrirjrk, I'= . Vijr'r'
1<i<j<k=6

I y
1=i<j=<6 )

E.E_+E.E. , E.E_+E.E_
f=—2E E , Y= 5 ,
o 23] r,
n=1
4 1m{(A-T)G}
w=2|mo—T,
E.E_+E,E_

>

1<i<j<k=®6

G:_(TA+(Z+;)F+ )\ijk(ai-f—Bjk)rirjrk

- 2

1=i<j<6

vij(Birjr+Byr)riry  (i7,)"k"1

£iji<j'<k'<l"),

o:=B11 B2t B3
=\"1 24 Vij+ z )\ijk(ai+Bjk) )
1=<i<j<6 1<i<j<k=6
A= )\ijk! an==am+an. (7)

1=i<j<k=6

Since we are interested in the case of three separated par-
ticles, we assign the following order to the parameteys
Throughout the paper units are used in which the speed of lightvhich determine the location of the particles on the symme-
and Newton’s gravitational constant are equal to unity. try axis:
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Rea;=Rea,>Reas;=Rea,>Reas=Reags. (8) z z
Il 1 Imo

Then, as usual, a pair of real-valuet, saya; anda,, will I 1 — 1
define a subextreme Kerr black hole, the segmejiz TT ® 11
< a4 being its Killing horizon, and a pair of complex conju- a4 b 110 %
gate a’s, say a; and a,= a4, Will define a hyperextreme I @, ITTT
constituent. In the latter case the whole mass of the particle IIT ad o
will be concentrated along the cut joining the poiatsand 3 5
a4, Which suggests a possible interpretation of the hyperex- & TV “g
treme Kerr constituents as relativistic disks. v

The total massvl and total angular momentuihof our

three-body system are defined by the expressions FIG. 1. Two examples of the systems of three Kerr particles.

Sections I-1V of the symmetry axis should be regular for any par-
ticular equilibrium configuration.

1=<i<j=6 teristic features of the metri¢7), the balance conditions
among them, is simpler using the quantitRsand notX, .
J= ImH VB To conclude this section, it might be worthy to point out
1<i<j<e Y that in view of the evidence on the uniqueness of the double-
Kerr solution for the description of two Kerr particl§26],
the triple-Kerr metric defined by Eq&) and(7) can be also
+ MKK]EQSG Niji(ai+ Bi")} / )‘] ©  considered a unique one for the description of stationary sys-
tems consisting of three collinear Kerr particles.
which are readily obtainable using the results of R24].

It is advantageous for the search of equilibrium configu- Ill. BALANCE CONDITIONS
rations of the Kerr particles to introduce the constant objects » . I
X,, via the formula _ Conditions determining the eqwhbn_um_ of three Kerr par-
ticles due to the balance of the gravitational attraction and
= 5 T -y spin-spin repulsion forces are obtainable by requiring that
X ::&: (an— B)(an— Bo)(an—Bs) , the elementary flatness of the parts of the symmetry axis be
Ry (an=B1)(an—B2)(an—B3) outside the location of the material sources. Mathematically

this is equivalent to the vanishing of the metric functions
and w on the parts of the-axis exterior to and between the
particles[27,12:

n=1,2,3,4,5,6 (10

verifying the relation
y(|-|v) = V) = 0, (13)
XnXn=1, (12)
where the segments | and IV are the upper and lower parts of

where the “tilde operator” again means the conjugation ofthe symmetry axis, i.e., Rg<z<% and —»<z<Reug,
the constantg, exclusively. respectively, and segments Il and Il are the parts of the

The set{a,,X,} is equivalent to the sdtwv,,8,}, and we symmetry axis between the particles, i.e.,cR€z<Rexa,
shall use it in the next sections for the definition of the equaand Revs<z<Rea,, respectively(see Fig. 1
torially symmetric case of three collinear particles and for By construction, the metri¢5), (7) verifies
finding particular equilibrium configurations since the nu- V) _ ()
merical values ofX,, are more easily detected by computer Y =0"=0, (14)
programs than the respecti@e. In terms ofX,, the formulas
(5), (7), (9) remain the same except for the formgf, and
vi; which slightly changesafter cancelling the common fac-
tor 1¢_,R,,) to become

i.e., the functiony is zero on both upper and lower parts of
the symmetry axis, whereas, in general, vanishes only on
the interval Re;;<z<<e. The condition for vanishing» on
the lower part of thez axis, oY) =0, coincides with the

i condition of the asymptotic flatness of the triple-Kerr metric
Nije= (= 1) KA ALALA A0 A 0 XXX ymp P

6
Vij:(_1)i+inin’j’Ai’k’Ai’|’Aj’k’Aj’|’Ak’|’Xin' ZH (Bl—an)
(12) n-t _
Im} > — . =0. (15
=1 -

Mention that the quantitieX,, defined by Eq(10) relate IT B-8olIl (BI—B
the results obtained in Re24] with the aid of Sibgatullin’s Py k=1
method to the “complexified Kinnersley-Chitre transforma-
tion” approach employed by Ernge5]. It should also be In what follows, we shall refer to the Kerr particles de-

remarked that the derivation of many mathematical characfined by the pairs ¢4,a,), (a3,a,), and (as,ag) as to the
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upper, medium, and lower constituents, respectively. The re-
maining four balance conditions involve two segme(its

and lll) between the particles, and their explicit form can be
obtained by considering the coefficients at leading powers of
zin the numerators and denominatorsyond w since both
these functions assume constant values on the symmetry

PHYSICAL REVIEW D 65 084027

axis.

Taking into account that at region Il we have=«,
-2, ry=a,—2, andri=z—¢;, i=3,4,5,6, the condition
¥W'=0 can be written as

6
;3 )\12i+ E )\ijk=0, (16)

3<i<j<k=6

while the conditionw =0 assumes the form

6

Vit vigt > (7ij+7i'j)+i=23(al+32i)

3=<i<j<k=6

XNzt Npg)+ >

2 (ai+Bjk)
3=<i<j<k=6

X (Njjk T Nj) =0, 17
where we have introduced the quantities
)\i,jk:(_l)iJerrkAiinkAjkAi/j'Ai'k'Aj'k’Xi’Xj’xk’ y

:(_1)i+jAJAirj/Ai/krAir|rAjrkrAjr|/Akr|/

XXi,XJ—,Xk,XV . (18)

Turning now to region Ill, we haver;=a;—z,
=1,2,3,4,r5=2—as, rg=2—ag. Then the condltlony(“')
=0 takes the form

4
;1 Niset X _, Nik=0, (19

1<i<j<k=4

and the conditionn" =0 leads to the equation

z Z z z
—
—
— —
—
——

(a) (b) (c) (d)

FIG. 2. Four possible types of the triple-Kerr systems possess-
ing reflectional symmetry.

4
> (7ij+7i/j)+i21 (a;+Bsg)(Nisgt \ise)

1<i<4

5<j<6

+ 2 (a|+BJk)()\”k+)\l']k)=0 (20)

1<i<j<k<4

Equations(15—(17), (19), (20) constitute a complete set
of conditions determining the equilibrium of three collinear
Kerr particles. It should be underlined that these equations
are valid for the whole range of the parameters i.e., for
any combination of the subextreme and hyperextreme con-
stituents. This can be easily seen in the case of @dg.and
(19) for vy, but the derivation of Eqs(17) and (20) for o
involves multiple complex conjugate quantities and, there-
fore, originally has been carried out by us separately for all
possible combinations of real- and complex-valugd Re-
markably, all the cases have finally permitted a unified rep-
resentation.

IV. PARTICULAR EQUILIBRIUM STATES

It does not look possible to investigate the algebraic sys-
tem (15-(17), (19), (20) analytically, so one is forced to
resort to numerical calculations in order to obtain particular
equilibrium states. But even the task of finding numerical
roots of this system proves to be very complicated in the
general case, thus suggesting some further simplifications. It
is reasonable to single out the systems possessing a reflec-
tional symmetry with respect to tte=0 plane which permit

TABLE |. Purely black-hole equilibrium states.

a 5 5 3 3

ay 2 2 0.5 0.5

as 0.8 1 0.25 0.25
X1 0.9+0.436 0.8-0.6 0.9-0.436 0.8-0.6
X, 0.707+0.707 0.694-0.72 0.564-0.826 0.53-0.848
X3 0.575+0.818 0.642-0.761 0.486-0.874 0.46-0.888
M,=M, 3.537 1.869 1.432 1.001
M, 1.823 5.553 1.33 2.501
Ju=J ~67.156 67.255 13.547 13.807
Im 121.312 —166.255 —28.804 —35.828
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FIG. 4. Stationary limit surfaces corresponding to the equilib-

FIG. 3. Stationary limit surfaces corresponding to the equilib- . ; .
y P 9 q rium configurations from Table II.

rium configurations from Table .

the following nontrivial interesting combinations of three ~ With relations(21) taken into account, Eq16) can be

collinear Kerr particles{a) a superposition of three subex- rewritten as
treme (black holg constituents(b) two black holes super-

posed with a hyperextreme objet) two hyperextreme ob- AL AZAZ(XEXEX5+ 1) + BI B XiX3+X3)]
jects superposed with a black hole, dd@la superposition of 5
three hyperextreme constituerisee Fig. 2 +4a3Bif a1A2BX1 X3(X5+1)

In the equatorially symmetric case the balance problem
considerably simplifies since segment IV of the symmetry
axis becomes identical to segment I, and segment Il be-
comes identical to segment Il, so that Ed5) is satisfied and Eq.(17) takes the form
automatically, and Eq$19) and(20) coincide with Eqs(16)

— a,A13B13XoXa(XE+1)]=0, (22)

and (17), respectively. Therefore, only the latter two equa- 2 (2 y2 2 2v2
tions should be solved to get the equilibrium states. In addi- Bral a1ArsB1aXa[Bas(Xz ~ Xs) T AzXoXs 1]
tion, they take a much simpler form since, making use of the — @pAgB X [ B2 X3 — X2) + ATy (X2X5—1)]
general relations obtained in R¢24], it can be shown that

the metric(7) is equatorially symmetric ifx, and X,, are +4ayapazXs[ AygBaX1(X5—1)

subjected to the following restrictions:
—AB1Xo(XE- 1)1}

T T @1, A5T T @2, AT s, + A AZAS( Bt ag) (XEX3X5—1)
X1 Xg=XoX5=X3Xs=—1. (21) +B3B34(B1o— ag) (X2X5—X3)]=0. (23)

TABLE Il. Equilibrium configurations of two black-hole and one hyperextreme constituents.

a 3.5 3.5 3.5 5
ay 3 3 3 1

as ~17 —8i —8i —4i

X, 0.65+0.76 0.5+0.866 0.5+0.866 0.5-0.866
X, 0.984+0.448 1-0.011 0.453-0.892 0.82-0.573
X3 0.15 0.081i ~2.708 ~0.651
M,=M, 1.176 0.457 -0.297 5.429
My, 4.1 1.105 7.465 22.959
Ju=J, -2.012 —0.228 0.129 —90.678
I 80.279 10.037 —74.504 —967.622
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TABLE Ill. Equilibrium states of a black hole and two hyperextreme objects.

= a, 2-2.8 2—4.558 2-3.163 2-1.94
as 1.5 1.5 1.8 1.5
X, =X5 * 1.2-0.8 1.2 1.1i 1.2-0.8 1.2-0.5
X3 0.787-0.611 0.534-0.845 0.822-0.57 0.92-0.392
M,=M, 2.204 1.386 2.179 2.997
M, 2.079 4.285 2.419 0.749
Ju=J; 34.075 40.074 35.866 37.791
I ~55.619 —81.051 —58.787 ~51.767

In Ref. [21] we have already presented two numericalwhich f=0, are plotted in Fig. 3.The dots denote massless
solutions of the systert22), (23), but both of them were of ring singularities lying in the equatoriat€0) plane, whose
the (a) and (b) types since in that paper we were primarily origin is due to the rupture of the stationary limit surface of
interested in the question of how equilibrium of two Kerr the medium black-hole constituent because of a highly large
black holes can be achieved by placing a third Kerr constituvalue of the respective angular momentum. The possibility
ent between them. Below we shall give more examples of théor angular momenta per unit mass to exceed the correspond-
equilibrium states of three subextreme Kerr black holes, twang masses in a system of several Kerr black holes was re-
black holes, and one hyperextreme constituent; we shall algsorted in Ref[29], and the three-black-hole case illustrates
complement our consideration of the balance problem withhis effect even more visually than the two-black-hole one.
the remaining two possibilities of the equilibrium of three  Three black holes in equilibrium can have disconnected
Kerr particles in itemgc) and (d) above. individual stationary limit surfaces, as follows from Figs.

The equilibrium states which will be considered below are3(i)—(iii ), or can form a joint stationary limit surface, as in
all characterized by the particular values of the parameterBig. 3(iv). Note also that equilibrium states of three black
aq,as,a3,X1,X,5,X3, and by the corresponding individual holes are characterized by counter-rotation of the middle
Komar masseM,,M,,M; (u, m, and| denote, respec- constituent to the two other constituents, unlike in the two-
tively, the upper, medium, and lower constitugrgied angu- body case. It is interesting to point out that the systems of
lar momental,, ,J,,J; . In view of the reflectional symmetry, balancing black holes as a whole satisfy the inequamﬁil
we haveM,=M,, J,=J;, and it is advantageous to calcu- >J? valid for a single subextreme Kerr black hdg0,22.
late the masses and angular momenta of the equilibrium coreach balancing black hole verifies Smarr's mass formula

figurations using Tomimatsu’s formul§28] [31]
1 M= ! S+2 ) (25
M:_ZJ 00 ;dz IR
H

wherek, S andw" are the surface gravity, area of the ho-
rizon, and value of the metric coefficient on the horizon,

1 1 respectively. To see this, one has only to use Tomimatsu’s
)= Zwa 1+§wﬂ'z)dz’ (24 formula[32]
1 _1
whereH stands for the horizon of a black-hole constituent E"is_ﬁ(“ﬁ*l_“m)' (26)

and w is calculated at the horizon. Then, after evaluafihg
and J for any chosen black-hole constituent, the mass and (B) Equilibrium of two black holes and a hyperextreme
angular momentum of the remaining black-hole or hyperexobject Qualitatively, the equilibrium states of two black-hole
treme constituei$) can be found usinil, J andM,, J;. In and one hyperextreme constituents are similar to the black-
the case of three hyperextreme Kerr particles the Komahole-hyperextreme equilibrium configurations in the ex-
masses and angular momenta should be calculated via fofended double-Kerr solution considered in Re0]. In Table
mulas(23) of Ref.[20]. Il we give some typical examples of such a balance with the
(A) Equilibrium of three Kerr black holedn Table | four  corresponding stationary limit surfaces plotted in Fig. 4. The
different purely black-hole equilibrium states are giv@ime  first two of them are well behaved in the sense that they
numerical values are presented up to three decimal placesnvolve only positive individual Komar masses and their sta-
Searching for the roots of the syste(®2), (23) we were tionary limit surfaces consist of three disconnected regions
fixing the values ofxq, a5, a3, X1, and finding the values of
X, andXj taking into account that the latter two quantities in
the black-hole case have the propelifs|?=|X;|?=1. The 2In Figs. 3-5 the horizontal and vertical axes define, respectively,
corresponding stationary limit surfaces, i.e., the surfaces op andz coordinates.
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FIG. 5. Stationary limit surfaces corresponding to the equilib- FIG. 6. Stationary limit surfaces corresponding to the equilib-
rium configurations from Table IlI. rium configurations from Table IV.

without any anormalies; however, the black-hole constituentghe same as in the caém), i.e., the rupture of the stationary
satisfy the inequality ;| <J5 | valid for a single Kerr hy-  |imit surface due to the “dual” properties of the middle con-
perextreme particle. The third example shows that for astituent: it is a black hole with a horizon defined by the rod
given set of the constants,, ay, as, X, there exist differ- [ — o5 a5], and at the same time its mass and angular mo-
ent numerical solutions of the syste@?), (23) for X, and  mentum verify the inequalityM#<J? characteristic of a
X3, and unlike in the third example, the valiés andX3 of  single hyperextreme Kerr particle. As a consequence, the
the third example lead to the negative masses of the blackprresponding stationary limit surface consists of two topo-
hole constituents and, consequently, to t_vvo ring §ingularitie$ogica||y different parts, th&? topology representing the ba-
at p=0.143,z==*3.25 denoted by dots in Fig. éii). The  sjc black-hole nature of the constituent, and 8te< St to-
last example illustrates that the tyf® equilibrium configu- pology originating from the mass-angular-momentum
rations can be achieved by three corotating constituentshequality which is inherent to the hyperextreme Kerr
however, in this case the Kerr particles form a kind of agoyrces. As in the purely black-hole equilibrium configura-
stationary limit surface preventing a test particle to reach theions, the counter-rotation of the constituents comprising
parts of the symmetry axis separating the constituents Withtype (c) systems seems necessary to achieve the balance.
out crossing It. ) ) o ) (D) Equilibrium states of three hyperextreme Kerr par-
(C) Two hyperextreme objects in equilibrium with a black iicles, The equatorial symmetry implies that in this cassis
hole. While searching for the equilibrium states of this type, pyre imaginary, hence it is most convenient to solve the sys-
it is convenient to use; and the imaginary part of; as  tem(22), (23) for a; andXs. The equilibrium states given in
unknowns in Egs(22), (23), fixing all other quantities. A Taple |V provide some interesting information about the bal-
p_ecullz_ir feature Qf the particular equilibrium conflg_uratl_onsance of three hyperextreme Kerr particles. In Fig. 6 we have
given in Table IIl is that they possess a massless ring singujotted the stationary limit surfaces corresponding to the
larity in the equatorial planesee Fig. $ which corresponds  equilibrium configurations of Table IV, and one can see that
to the black-hole constituent. The origin of the singularity iSthese surfaces may consist of three disconnected regions,
each region being related to the respective hyperextreme
constituent; of two disconnected regions, when the middle
— particle has no stationary limit surface; and of a single region

TABLE IV. Equilibrium states of three hyperextreme objects.

@1= @ 3-3i 2-3i 8-3i 3-3i which is formed as the result of merging of the individual
as —-5553  —4.663  -6.059  -6.304 stationary limit surfaces in one. The first three equilibrium
Xi=X;1 21-12 18-06 19-04 1.9-04 states are characterized by the positive Komar masses of the
X3 0.542 0.054 0.147 —1.81i particles and by the counter-rotation of the middle constitu-
M, =M, 1.89 2.309 2.474 1.166 ent with respect to the other two particles. The last example
M 0.64 0.018 0.231 —1.664 is of special interest even though the middle particle has a
J.=J —11.844 —13.262 —15.228 —1.164 negative mass. The two remarkable feature of the latter equi-
I 16.661 1.072 5611 —33.744 librium state are, first, that the intermediate hyperextreme

constituent verifies the inequalit\ﬂfn> J% characteristic of a
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single subextreme Kerr black hole, and, secondly, that irsupport this conjecture, it would be, of course, interesting to
spite of its negative mass, this constituent is not accompaconsider the case of four Kerr particles, but apparently it
nied by a ring singularity outside the symmetry axis. Thewould contain by far more technical difficulties than the case
former property illustrates well that hyperextreme objectsof the triple-Kerr solution. We leave the quadruple-Kerr
such as black holes, can exhibit “dual” nature; the latterequilibrium problem as an interesting and important future
feature clearly shows that a massless ring singularity has tsk.

topological origin related to the formation of the stationary The remarkable phenomena revealed by our study of three
limit surface since such a singularity does not appear if &Kerr particles are the “duality” properties which the balanc-
hyperextreme object possessing negative mass has no stag particles, both the black holes and the hyperextreme ob-

tionary limit surface® jects, are capable to develop, and the absence of ring singu-
larities outside the symmetry axis when a hyperextreme
V. CONCLUSIONS object with negative mass has no stationary limit surface.

Further work is needed, however, to discover the mecha-

The main conclusion which can be drawn from the analynisms standing behind these phenomena which, in our opin-
sis of the extended triple-Kerr metric carried out in our papetion, should manifest themselves even stronger in the systems
is that the collinear Kerr particles described by the solutionyith a larger number of particles.
[24], such as the collinear Schwarzschild particles described Although the numerical solution of the balance equations
by the Israel-Khan solutiof¥], display a different aptitude (22), (23) exhibits no difficulty, providing one with particular
with regard to forming the equilibrium configurations, de- equilibrium states, we have been unable, in spite of our ef-
pending on whether the number of particles is even or oddort, to solve them analytically, which would be likely to
Since the principle difference between the stationary vacuurstablish general relations between the parameters defining
systems composed of an even or odd number of particleghe balance of the Kerr particles. In this respect we wonder if
seems to be the capacity to form the physically meaningfuhny approximate method similar to that recently employed
black-hole equilibrium states, it is tempting to conjecture thatpy Bonnor[34] for treating the two-body problem might be

no one system having an even number of collinear Kerr paryseful for obtaining such general physical relations in the
ticles possesses purely black-hole equilibrium configurationghree-body case.

with positive Komar masses of all of its constituents. To
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