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Generalized Weyl solutions
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It was shown by Weyl that the general static axisymmetric solution of the vacuum Einstein equations in four
dimensions is given in terms of a single axisymmetric solution of the Laplace equation in three-dimensional
flat space. Weyl’s construction is generalized here to arbitrary dimensionD>4. The general solution of the
D-dimensional vacuum Einstein equations that admitsD22 orthogonal commuting non-null Killing vector
fields is given either in terms ofD23 independent axisymmetric solutions of Laplace’s equation in three-
dimensional flat space or byD24 independent solutions of Laplace’s equation in two-dimensional flat space.
Explicit examples of new solutions are given. These include a five-dimensional asymptotically flat ‘‘black
ring’’ with an event horizon of topologyS13S2 held in equilibrium by a conical singularity in the form of a
disk.
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I. INTRODUCTION

Exact solutions play an important role in general relat
ity. Examining properties of exact solutions has led to de
insights into the nature of spacetime that would have b
hard to arrive at by other means. For example, much of
progress made in understanding properties of black hole
the 1960s and 1970s relied on the existence of the K
Newman solution. The standard model of cosmology is b
on Friedmann-Robertson-Walker solutions. Examining pr
erties of Bianchi cosmologies has led to insight into h
inflation dissipates anisotropy.

Much effort has been devoted to developing techniq
for finding exact solutions in four dimensions@1,2#. One of
the earliest results in this direction was obtained by Weyl@3#,
who found the general static axisymmetric solution of t
vacuum Einstein equations:

ds252e2Udt21e22U
„e2g~dr21dz2!1r 2df2

…, ~1.1!

where U(r ,z) is an arbitrary axisymmetric solution o
Laplace’s equation in a three-dimensionalflat space with
metric

ds25dr21r 2df21dz2, ~1.2!

andg satisfies

]g

]r
5r F S ]U

]r D 2

2S ]U

]z D 2G , ~1.3!

]g

]z
52r

]U

]r

]U

]z
. ~1.4!
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The solution of these equations is given by a line integ
Since U is harmonic, it can be regarded as a Newton
potential produced by certain~axisymmetric! sources. For
example, the Schwarzschild solution corresponds to tak
the source forU to be a thin rod on thez axis with mass 1/2
per unit length.

Nowadays, interest in solutions of general relativity is
longer restricted to four dimensions. Many interesting so
tions of higher dimensional supergravity theories have b
found. In spite of this, there are basic questions concern
the nature of gravity in higher dimensions that remain un
swered. In four dimensions, it can be proved that each c
nected component of the event horizon of an asymptotic
flat spacetime satisfying the dominant energy condition
topologyS2 @4#. The proof relies on the Gauss-Bonnet the
rem applied to a constant time slice through the horizon,
is therefore invalid in higher dimensions. A different a
proach to rule out nonspherical topologies is based on
notion of ‘‘topological censorship’’@5#. However, this argu-
ment is typically phrased in terms of noncontractible loo
that begin and end at infinity, and which would thre
through a toroidal horizon. In higher dimensions, one c
always unlink two loops by moving them apart in a four
spatial direction. This suggests that it might be possible
the event horizon to have nonspherical topology in hig
dimensions. Indeed, in@6#, it was argued that the horizon o
a time-symmetric black hole in five dimensions must ha
topology given by a connected sum ofS3 andS13S2 terms,
subject to the weak energy condition. Nevertheless, no
ample of an asymptotically flat solution with a nonspheric
event horizon has ever been found.1 One aim of the presen

1A solution with a regular, though degenerate, horizon of topolo
S13S2 has been found in@7#. Although not asymptotically flat, this
solution has a spacelike infinity of topologyS3, which distinguishes
it from examples in which horizons of nonspherical topology a
constructed by taking spacelike infinity to have nonspherical top
ogy.
©2002 The American Physical Society25-1
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paper is to provide an example of such a spacetime.
We will, for simplicity, consider only the vacuum Einste

equations. A lot of work has been devoted to finding ex
solutions of these equations in dimensionsD.4. Most of
this work has looked for solutions with a Kaluza-Klein~KK !
interpretation, i.e., solutions with a Killing vector field alon
which one can perform dimensional reduction to get a s
sible lower dimensional spacetime. For example, KK bla
hole solutions were discussed in@8# and a KK monopole
solution was presented in@9#. KK generalizations of theC
metric @10# and Ernst metric@11# were presented in@12#.
Other axially symmetric solutions in KK theory have be
discussed in@13–16#.

Less work has been devoted to finding solutions of
D-dimensional vacuum Einstein equations that donot admit
a KK interpretation, either because they do not admit
appropriate Killing vector field along which KK reductio
can be performed, or because the reduced spacetime
pathological features. Examples of such spacetimes are
vided by higher dimensional versions of the Schwarzsch
and Kerr black holes@17,18#. When Wick rotated, these so
lutionsdo admit KK interpretations as describing instabilitie
of the KK vacuum@19# or of KK magnetic fields@20,21#, but
their most natural interpretation is certainly as higher dim
sional black holes.

The purpose of the present paper is to obtain and ana
the higher dimensional analogues of Weyl’s class of so
tions. Depending on which feature of Weyl’s class one
cuses on, there are several directions in which one can tr
extend it to higher dimensions. One possibility is to seek
class ofD-dimensional solutions that are static and axisy
metric, in the sense that they admit an isometry groupR
3O(D22) ~with R being time translations!. However, this
has been tried before@22# without success. Instead, obser
that Weyl’s solutions can be characterized as having two
thogonal commuting Killing vector fields. Hence an altern
tive way to generalize Weyl’s solutions to higher dimensio
is to find all solutions of the vacuum Einstein equations t
admit D22 orthogonal commuting Killing vector fields
This is done in Sec. II of this paper.

As in four dimensions, the higher-dimensional Weyl cla
of solutions is parametrized in terms of axisymmetric h
monic functions in an auxiliary flat space. Actually, there a
two classes of Weyl solutions in higher dimensions. The fi
and the most interesting one, is parametrized in terms oD
23 harmonic functions in three-dimensional flat space, a
is the natural analogue of theD54 Weyl solutions discusse
above. The second class of solutions~discussed in Appendix
B! is parametrized in terms ofD24 harmonic functions in
two-dimensional flat space, and therefore has noD54 ana-
logue.

Although Weyl’s construction inD54 describes an infi-
nite class of solutions, most of them are unphysical in
sense that they are not asymptotically flat, or have na
curvature singularities on the axis of symmetry.2 The same is

2E.g., a spherically symmetric point source forU results in a sin-
gular,nonsphericalChazy-Curzon particle.
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true for D.4. In order to select candidate Weyl solution
that might be of physical importance, recall that forD54,
the harmonic functionU can be regarded as a Newtonia
potential produced by an axisymmetric source. It turns
that the most interestingD54 Weyl solutions all have
sources of the same form, namely thin rods on the axis
symmetry. In Sec. III, knownD.4 Weyl solutions of physi-
cal importance are analyzed. Their harmonic functions a
always correspond to thin rods on the axis of symmetry
the auxiliary three-dimensional flat space.

A natural classification scheme for such solutions is p
sented in Sec. IV. In this scheme, the ‘‘zeroth’’ class cons
simply of flat space. The first nontrivial class contains ju
the D54 and D55 Schwarzschild solutions~the D.5
Schwarzschild solutions do not admitD22 commuting Kill-
ing vector fields and are therefore not Weyl solutions!, and
their Wick rotations. These Wick rotations describe obje
known as ‘‘KK bubbles.’’ If one considers the Euclideanize
D54 Schwarzschild solution, then the solution looks a
ymptotically likeR33S1, theS1 corresponding to Euclidean
time, which is periodically identified and can be regarded
a KK compactified dimension. However, the actual topolo
of the solution isR23S2. The size of the two-spheres a
constant radius decreases from infinity to a minimum n
zero value at the location of the Euclidean horizon, wher
noncontractible S2 lies. At this point, the KK circles
smoothly round off and space cannot be continued past
radius. By adding a flat Lorentzian time direction one obta
a solution toD55 KK theory where the non-contractibl
sphere is a static ‘‘bubble of nothing.’’ It is known to b
unstable@23#. A related solution is obtained by Wick rotatin
both the time and one of the ignorable angular coordinate
the five-dimensional Schwarzschild solution. The Wic
rotated angle then becomes a boost coordinate and the
tion describes a bubble exponentially expanding in the fi
dimensional KK vacuum@19#. Its fully Euclideanized
version is an instanton mediating the decay of the K
vacuumM1,33S1.

The second class of Weyl solutions contains theD
54 C metric as well as three new solutions. The most
teresting of these is a Wick rotated version of aD55 metric
discussed in@24#, and can also be related to the KKC metric
of @12#. It is a static, asymptotically flat solution with a
event horizon of topologyS13S2, i.e., it is ablack ring. This
is the first example of an asymptotically flat solution of t
vacuum Einstein equations that has an event horizon of n
spherical topology. The solution is not entirely satisfacto
since it has a conical singularity, but it will be shown in
separate publication that this singularity can be eliminate
the ring rotates@25#.

The two other new solutions in the same class as the b
ring and theC metric both describe superpositions of bla
objects with static KK bubbles. These solutions are entir
regular outside an event horizon. The first is aD55 solution
describing a black hole sitting in the throat of a static K
bubble. The second is aD56 solution describing a loop o
black string with horizon topologyS33S1 sitting in the
throat of a static KK bubble. These solutions asymptote
respectively, the KK vacuaM1,33S1 andM1,43S1. Both are
5-2
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GENERALIZED WEYL SOLUTIONS PHYSICAL REVIEW D65 084025
expected to be unstable. In fact, the evolution of the insta
ity of the former solution can be obtained by a Wick rotati
of the black ring. If these solutions are Euclideanized th
they give new nonsingular instantons for the decay of theT2

compactified KK vacuum inD55 andD56.
Many of the solutions we describe are naturally int

preted in terms of KK compactification along the orbits
one or several of the Killing vector fields. When there
more than one Killing vector field with closed orbits, one c
often dimensionally reduce along different linear combin
tions of them. Physically distinct reduced spacetimes
therefore arise from the same higher dimensional spacet
A good example is the KKC metric and the KK Ernst solu
tion, which are locally isometric in five dimensions@20#.
With this in mind, different KK reductions of the new solu
tions found in this paper are briefly discussed in Sec. IV

Multi-black hole configurations can be readily construct
within Weyl’s class, and are briefly discussed in Sec. IV
Finally, Sec. V contains the conclusions of this work.

II. GENERALIZED WEYL SOLUTIONS

A. Integrable submanifolds

The first step in generalizing Weyl’s construction to mo
than four dimensions is to find a convenient coordinate ch
for the generalD-dimensional line element admittingD22
commuting Killing vector fields~orthogonality of these vec
tor fields will not be assumed yet!. This is a simple generali
zation of what is done in four dimensions~see @2# for a
review!. It will be assumed that the metric is Riemannian
Lorentzian. Letj ( i ) denote the Killing vector fields, 1< i
<D22. Since these commute, it is possible to choose co
dinates (xi ,y1,y2) such thatj ( i )5]/]xi with the metric co-
efficients depending only ony1 andy2.

The next step is to show that one can choose the coo
natesy1 andy2 to span two-dimensional surfaces orthogon
to all of thej ( i ) . In order to do this, one has to show that t
two-dimensional subspaces of the tangent space orthog
to all of the vectorsj ( i ) are integrable, i.e., tangent to two
dimensional surfaces. Sufficient conditions for integrabil
are supplied by the following theorem:

Theorem. Let j ( i ) , 1< i<D22 be commuting Killing
vector fields such that for each i, ~a!
j (1)

[m1j (2)
m2 . . . j (D22)

mD22 ¹nj ( i )
r] vanishes at at least one point of th

spacetime~not necessarily the same point for everyi ), and
~b! j ( i )

n Rn
[rj (1)

m1 j (2)
m2 . . . j (D22)

mD22]
50. Then the two planes or

thogonal to thej ( i ) are integrable.
The proof of this theorem is a straightforward generali

tion of the corresponding theorem in four dimensions,
given in @2#. In this paper, only vacuum solutions of th
Einstein equations will be considered so condition~b! is
trivially satisfied. Condition~a! is less obvious; in four di-
mensions it is usually assumed that one of the Killing vec
fields is an angular coordinate corresponding to rotati
about an axis of symmetry, and must therefore vanish on
axis, which ensures that condition~a! is obeyed. The same
assumption can be used to motivate condition~a! in the
higher dimensional case. Of course, this is not the only w
08402
l-

n

-

-
n
e.

.

.

rt

r

r-

i-
l

nal

-
s

r
s
is

y

in which condition~a! can be satisfied, so this theorem h
wider applicability than just metrics with an axis of rota
tional symmetry.

If the conditions of this theorem are met then the coor
natesy1 and y2 can be chosen in one of the orthogon
surfaces and then extended along the integral curves of
Killing vector fields.3 In this coordinate system, the vecto
]/]yi are orthogonal to]/]xj . If it is further assumed that the
Killing vector fields are orthogonal to each other then t
metric must take the form

ds25 (
i 51

D22

e ie
2Ui~dxi !21gabdyadyb, ~2.1!

wherea andb take the values 1,2, the metric coefficients a
independent ofxi , ande i561 according to whetherj ( i ) is
spacelike or timelike.

The final step is to use the freedom to perform coordin
transformations onya. Locally it is always possible to
choose coordinates such that

gabdyadyb5e2CdZdZ̄, ~2.2!

where Z and Z̄ are complex conjugate coordinates if th
transverse space is spacelike, and independent real co
nates if it is timelike.4 The functionC is independent ofxi .

B. Solving the Einstein equations

We have shown that anyD-dimensional metric that ad
mits D22 orthogonal commuting Killing vector fields ca
be written locally in the form

ds25 (
i 51

D22

e ie
2Ui~dxi !21e2CdZdZ̄, ~2.3!

where Ui and C are functions ofZ and Z̄ only, and e i5
61. The summation convention will not be used for indic
i , j , . . . .

The components of the curvature tensors of this line e
ment are calculated in Appendix A. The vacuum Einste
equations readRmn50. The i j component gives

]ZFexpS (
j

U j D ] Z̄Ui G1] Z̄FexpS (
j

U j D ]ZUi G50.

~2.4!

Summing this equation overi yields

]Z] Z̄expS (
j

U j D 50, ~2.5!

which has the general solution

3It is necessary to assume that thej ( i ) are non-null at this point.
4The term ‘‘Weyl solution’’ is usually reserved for static solution

~i.e., a spacelike transverse space! but we adopt a more genera
usage here.
5-3
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(
j

U j5 log „w~Z!1w̃~ Z̄!…, ~2.6!

wherew̃5w̄ if Z andZ̄ are complex conjugate, butw andw̃

are independent real functions ifZ and Z̄ are real coordi-
nates. Substituting Eq.~2.6! into Eq. ~2.4! yields

2~w1w̃!]Z] Z̄Ui1]Zw] Z̄Ui1] Z̄w̃]ZUi50. ~2.7!

If w is nonconstant thenRZZ50 can be rearranged to give

]ZC5

(
i

]Z
2Ui

(
i

]ZUi

1
1

2 (
i

]ZUi2

(
i , j

]ZUi]ZU j

2(
i

]ZUi

. ~2.8!

A similar equation arises fromRZ̄Z̄50 ~assuming thatw̃ is
nonconstant!:

] Z̄C5

(
i

] Z̄
2
Ui

(
i

] Z̄Ui

1
1

2 (
i

] Z̄Ui2

(
i , j

] Z̄Ui] Z̄U j

2(
i

] Z̄Ui

. ~2.9!

The first two terms of these equations be integrated imm
ately, using Eq.~2.6! to give

C5
1

2
log~]Zw] Z̄w̃!1n, ~2.10!

where

]Zn52
w1w̃

]Zw (
i , j

]ZUi]ZU j , ~2.11!

] Z̄n52
w1w̃

] Z̄w̃
(
i , j

] Z̄Ui] Z̄U j . ~2.12!

The integrability condition forn is

]Z] Z̄n5] Z̄]Zn. ~2.13!

It is straightforward to check that this equation is inde
satisfied by using Eqs.~2.6! and ~2.7!. These equations als
ensure that the remaining Einstein equationRZZ̄50 is satis-
fied.

The only assumptions made above were thatw(Z) and
w̃(Z̄) are nonconstant. The special cases when one~or both!
of these functions is constant will be dealt with in Sec. II
With this exception, it has been demonstrated that the m
general solution of theD-dimensional Einstein equations th
admits D22 orthogonal commuting Killing vector field
takes the form~2.3!, where Ui are solutions of Eq.~2.7!
subject to the constraint~2.6!, andC is given by Eq.~2.10!.
The functionn in this equation is given by integrating Eq
~2.11! and ~2.12!.
08402
i-

.
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The constraint~2.6! can be eliminated by using it to ex
press, say,U1 in terms ofU2 . . . UD22. If this is done thenC
can be written

C5
1

2
log~]Zw] Z̄w̃!2(

i .1
Ui1g, ~2.14!

whereg is given by integrating

]Zg5
w1w̃

]Zw F(
i .1

~]ZUi !
21 (

1, i , j
]ZUi]ZU j G ,

~2.15!

] Z̄g5
w1w̃

] Z̄w̃
F(

i .1
~] Z̄Ui !

21 (
1, i , j

] Z̄Ui] Z̄U j G .
~2.16!

C. Relation to Laplace’s equation

Sincew and w̃ have been assumed nonconstant, it is
gitimate to perform a coordinate transformation fromZ and
Z̄ to w(Z) and w̃(Z̄). In four dimensions, these are referre
to as ‘‘Weyl’s canonical coordinates’’@1#. This gives

ds25(
i

e ie
2Ui~dxi !21e2ndwdw̃. ~2.17!

This coordinate transformation is conformal. Equations~2.7!,
~2.11!, and ~2.12! are conformally invariant so the transfo
mation just replaces]Z by ][]w and] Z̄ by ]̄[] w̃ . Then the
solution is determined by the following equations:

(
i

Ui5 log~w1w̃!, ~2.18!

2~w1w̃!]]̄Ui1]Ui1 ]̄Ui50, ~2.19!

]n52~w1w̃!(
i , j

]Ui]U j , ~2.20!

]̄n52~w1w̃!(
i , j

]̄Ui ]̄U j . ~2.21!

If one prefers to eliminate the constraint~2.18! then the met-
ric takes the form

ds25expS 22(
i .1

Ui D @e2gdwdw̃1e1~w1w̃!2~dx1!2#

1(
i .1

e ie
2Ui~dxi !2, ~2.22!

with g determined by

]g5~w1w̃!F(
i .1

~]Ui !
21 (

1, i , j
]Ui]U j G , ~2.23!
5-4
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GENERALIZED WEYL SOLUTIONS PHYSICAL REVIEW D65 084025
]̄g5~w1w̃!F(
i .1

~ ]̄Ui !
21 (

1, i , j
]̄Ui ]̄U j G . ~2.24!

If Z and Z̄ are complex conjugate coordinates then, as m
tioned above, one must takew̃5w̄. Introduce real coordi-
nates (r ,z) by w5r 1 iz, so the canonical form of the metri
is

ds25(
i

e ie
2Ui~dxi !21e2n~dr21dz2!. ~2.25!

Equation~2.19! then takes the form

]2Ui

]r 2
1

1

r

]Ui

]r
1

]2Ui

]z2
50, ~2.26!

which is just Laplace’s equation in three-dimensional fl
space with metric

ds25dr21r 2du21dz2. ~2.27!

The functionUi is independent of the~unphysical! coordi-
nate u, i.e., it is axisymmetric. The solution is therefo
specified byD23 independent axisymmetric solutions
Laplace’s equation in three-dimensional flat space. There
only D23 independentUi because of the constraint~2.18!,
which can now be written

(
i

Ui5 log r 1const, ~2.28!

where the constant term can be freely adjusted by resca
the coordinatesxi . Note that logr is the solution of Laplace’s
equation that describes the Newtonian potential produce
an infinite rod of zero thickness lying along thez axis, with
constant mass 1/2 per unit length~in units G51). The solu-
tions for Ui can also be thought of as Newtonian potenti
produced by certain sources, so the constraint~2.28! states
that these sources must add up to give an infinite rod. N
that the solution is completely determined by these sour
The sources forUi will sometimes be referred to as th
sources forxi .

For D54, the metric~2.22! can be brought to the stan
dard form of Eq.~1.1! by taking e152e251, x25t, x1

5f/2, andU25U. However, this form obscures the symm
try betweenx1 andx2, and hides the fact that solutions whic
have different sources forU may actually be equivalent un
der interchange oft andf. We will illustrate this point with
an example in Sec. III B.

If w andw̃ are real coordinates then they can be viewed
advanced and retarded null coordinates. Introduce new c
dinates (t,r ) defined by w5r 1t, w̃5r 2t. Then Eq.
~2.18! becomes

2
]2Ui

]t2
1

]2Ui

]r 2
1

1

r

]Ui

]r
50, ~2.29!
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which is just the wave equation in a three-dimensional
spacetime with metric

ds252dt21dr21r 2du2, ~2.30!

with the functionUi independent of the unphysical coord
nateu. The solution is specified byD22 axisymmetric so-
lutions of the wave equation in three-dimensional flat spa
time but only D23 of these are independent because
constraint~2.18! states that these solutions must add up
the static solution describing a point source at the origin
polar coordinates.

D. Special classes of solutions

It was assumed above thatw(Z) and w̃(Z̄) are noncon-
stant, but there is the possibility that one or both of the
quantities is constant. These solutions are discussed in
pendix B. They will be referred to asspecial Weyl solutions
to distinguish them from those of the previous sectio
which will be referred to asgeneric Weyl solutions. For D
54 the special solutions are either flat space orpp waves.
The interpretation of the solutions inD.4 is unclear, so it
might be interesting to investigate them further. InD55,
most of the static special solutions appear to be nakedly
gular but there may be exceptions.

In the rest of the paper we will consider only static (w̃

5w̄) Weyl solutions of the generic class.

III. WEYL FORM OF KNOWN SOLUTIONS

Generic Weyl metrics are characterized by axisymme
harmonic functions in three-dimensional flat space. If su
functions are regarded as Newtonian potentials produced
axisymmetric sources, then Weyl solutions can be co
pletely characterized by these sources. In order to iden
the types of sources that might be relevant in attempting
find interesting new solutions, we study the Weyl form f
some known physically relevant metrics.

A. Flat space

We study in Appendix C the circumstances under wh
the metric~2.3! is flat. There are three possibilities. This fir
is trivially given by taking all of the functionsUi to be
constant.5 The second possibility corresponds to all but o
of the functionsUi being constant, and one of theUi ~say,
U1) being the potential of an infinite rod along thez axis,
U15 log r1const. The metric in this case can be brought
the form ~see Appendix C!

ds25e1j2~dx1!21 (
i 52

D22

e i~dxi !21dj21dh2, ~3.1!

so if e1511 thenx1 is an azimuthal angle and ife1521
thenx1 is a Rindler~boost! time coordinate.

5This can be regarded as belonging to the special Weyl class
5-5
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ROBERTO EMPARAN AND HARVEY S. REALL PHYSICAL REVIEW D65 084025
The third possibility corresponds to all but two of th
functionsUi being constant, with one of the remaining tw
being the potential of a semi-infinite rod along thez>a por-
tion of the z axis ~for some a), and the other being the
potential of a semi-infinite rod along thez<a portion of the
z axis ~see Fig. 1!.

In terms ofw,

U15 loguReAa6 iwu1const, ~3.2!

U25 loguReA2a7 iwu1const. ~3.3!

Writing these in terms ofr ,z gives

U15
1

2
log@a7z1A~a7z!21r 2#1const, ~3.4!

U25
1

2
log@2a6z1A~2a6z!21r 2#1const. ~3.5!

The upper sign choice corresponds toU1 being the potential
of a semi-infinite rodz>a and U2 being that of a semi-
infinite rod z<a. The lower sign choice corresponds to t
source for U1 being a semi-infinite rodz<2a and the
source forU2 a semi-infinite rodz>2a. The rods are all on
thez axis, have zero thickness, and mass 1/2 per unit len
The metric in this case can be brought to the form~see Ap-
pendix C!

ds25e1j2~dx1!21e2h2~dx2!21 (
i 53

D22

e i~dxi !21dj21dh2,

~3.6!

so the coordinatesx1 andx2 are azimuthal angles or Rindle
time coordinates according to the signs ofe1 ande2.

B. The Schwarzschild solution

The D-dimensional Schwarzschild solution has isome
group R3O(D21). To write it in Weyl form, D22 or-
thogonal commuting Killing vector fields are required. F
the Schwarzschild solution, this occurs only forD54,5.
Hence only the four and five-dimensional Schwarzschild
lutions can be written in Weyl form. The Weyl form of th
four-dimensional Schwarzschild solution is well known so
will be discussed only briefly here.

For D54, a generic Weyl solution can be converted to t
form of Eq.~1.1! as described in Sec. II C. For the Schwarz
child metric, the functionU is given by

U52
1

2
logF M2z1A~M2z!21r 2

2M2z1A~M1z!21r 2G , ~3.7!

whereM is the Schwarzschild mass parameter.U[U1 is the
potential of a finite rod along the2M<z<M portion6 of the

6One is free to shift the rod to any position on thez axis with a
transformationz→z1a.
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z axis. The rod has vanishing thickness and mass 1/2 per
length. It follows from the constraint~2.28! that the function
U2 must be the potential produced by semi-infinite rodsz
>M andz<2M . These sources are depicted in Fig. 2~a!.

Note that our approach makes clear the nature of the
lution of theD54 Weyl class~1.1! that is obtained by taking
two semi-infinite rod sources forU. In our approach it sim-
ply corresponds to interchangingx1 andx2, i.e., interchang-
ing the timet and azimuthal anglef coordinates. This gives
a four-dimensional analogue of the expanding KK bubble
@19#, and describes the decay of theD54 KK vacuum
M1,23S1 @26#.

The five-dimensional Schwarzschild metric can be writt
in Schwarzschild coordinates as

ds252S 12
m

R2D dt21S 12
m

R2D 21

dR21R2du2

1R2 sin2udf21R2 cos2udc2, ~3.8!

where 0<u<p/2, andf;f12p, c;c12p. There are
clearly three orthogonal commuting Killing vector field
Take x15t, x25f, x35c with e1521, e25e351.
Then one can read off

eU15S 12
m

R2D 1/2

, eU25R sinu, eU35R cosu.

~3.9!

The constraint~2.28! gives

U11U21U35 log r , ~3.10!

where the constant term has been absorbed into the nor
ization of r. This equation implies

r 5
1

2 S 12
m

R2D 1/2

R2 sin 2u. ~3.11!

To bring the metric to Weyl form, it is necessary to definez
such that

dr21dz2[dwdw̄}S 12
m

R2D 21

dR21R2du2.

~3.12!

Substituting the ansatzz5g(R)cos 2u into this equation then
uniquely determinesg(R), giving

z5
1

2 S 12
m

2R2D R2 cos 2u. ~3.13!

It also possible to read offg:

e2g5
1

4 S 12
m

R2
1

m2

4R4
cos22u D 21

R2 sin22u. ~3.14!
5-6
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It remains to write the functionsUi in terms ofr andz. To do
this, letX5eU2 andY5eU3. Equations~3.11! and~3.13! can
then be written as

r 25S 12
m

X21Y2D X2Y2,

z5
1

2 S 12
m

2~X21Y2!
D ~Y22X2!, ~3.15!

which can be rearranged to give

2Y42~m14z!Y222r 250, ~3.16!

2X42~m24z!X222r 250. ~3.17!

Solving these yields

U25
1

2
logFm

4
2z1AS m

4
2zD 2

1r 2G , ~3.18!

U35
1

2
logFm

4
1z1AS m

4
1zD 2

1r 2G . ~3.19!

g can be written in terms ofw and w̄ to check that Eqs.
~2.23! and~2.24! are obeyed. The explicit expression will n
be written out here since it can be obtained as a special
of more general expressions given later in this paper.U2 is
the potential of a semi-infinite rod with vanishing thickne
and mass 1/2 per unit length positioned along thez axis at
z>m/4. U3 is the potential of an identical rod along thez
axis at z<2m/4. The functionU1 is obtained from Eq.
~3.10! and is the potential of a rod along the2m/4<z
<m/4 portion of thez axis, again with vanishing thicknes
and mass 1/2 per unit length. See Fig. 2~b!. Note that the
source corresponding to the time coordinate is a finite rod
both theD54 and theD55 Schwarzschild solutions.

Black branes.For D.5, the D-dimensional Schwarzs
child solution is not a generalized Weyl solution. Howev
the black branes obtained by taking products of theD54 or
D55 Schwarzschild solution with flat space are easily s
to be Weyl solutions. The functionsUi associated with the
flat directions are all constant, and those associated with
Schwarzschild directions can be read off from the results
this section.

FIG. 1. Sources for the harmonic functions of one of the W
forms of flat space. The thin lines denote thez axis and the thick
lines denote thin rods along this axis. The left and right ends of
figure are to be interpreted asz52` andz51` respectively. The
sources forU1 and U2 are semi-infinite rods of mass 1/2 per un
length. TheU1 source lies alongz>a and theU2 source alongz
<a for somea. In the classification of Sec. IV B, this is a class
solution.
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C. Other four-dimensional solutions

Other physically relevant four-dimensional Weyl sol
tions are:

The Israel-Khan solutions@27#. These describe finitely
many collinear black holes in static equilibrium. The forc
holding them apart arise from conical deficits in the form
struts between the black holes, or cosmic strings extendin
infinity. If the metric is written in the Weyl form~1.1! then
the sources forU are finite rods along thez axis. The rods
have zero thickness, mass 1/2 per unit length, and do
intersect. The length of each rod determines the mass of
corresponding black hole. If one considers infinitely ma
such rods of equal length and equally spaced then one
eliminate the need for conical singularities and obtain a
lution describing an infinite line of black holes@22#.

The C metric@10#. The C metric is a four-dimensiona
metric that describes two black holes accelerating apart.
force for the acceleration is provided by a conical defic
which occurs either in the form of a strut between the t
black holes or as a cosmic string stretching off to infin
from each hole. The Weyl form of theC metric was obtained
in @28,29#. The functionU is the potential of a finite rod and
a semi-infinite rod, which do not intersect. Both rods
along thez axis, have zero thickness and have mass 1/2
unit length@see Fig. 3~a! with U15U#. The finite rod corre-
sponds to one of the black holes and the semi-infinite ro
responsible for the acceleration field~the second black hole
lies beyond an acceleration horizon, so it is not apparen
the Weyl coordinates!. Adding further finite rod sources toU
results in a metric describing multiple accelerating bla
holes connected by conical deficits@30#.

IV. NEW SOLUTIONS

The sources for the solutions discussed in the previ
section are all rods of zero thickness and mass 1/2 per
length. The rods are on thez axis and can be finite, semi
infinite or infinite. More general sources typically give rise
naked curvature singularities on the axis of symme
Hence, in attempting to find interesting new Weyl solutio
we will consider only sources of this form. The examples
the previous section allow us to make some general obse
tions that are useful when analyzing a solution given its
of sources.

A. General comments

The constraint~2.28! is very restrictive: It states that th
sources for the differentUi ’s must add up to an infinite rod
along thez axis, again with mass 1/2 per unit length. Assu
ing that only finitely many rods are present, it follows th
either one of theUi ’s has semi-infinite rod sources whic
extends toz5` andz52`, or there is oneUi with a semi-
infinite rod source which extends toz5` and another with a
semi-infinite rod source which extend toz52`. All of the
otherUi ’s must have bounded sources consisting of a fin
number of finite rods.

If the source forUi is bounded~i.e., involves only finitely
many finite rods! thenUi must approach a constant far fro

l

e
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FIG. 2. Sources for the~a! four dimensional and~b! five dimensional Schwarzschild solutions. The black hole interpretation requires
x1 is the timelike coordinate. If in~a! x2 is the timelike coordinate then this describes an expanding bubble in theM1,23S1 vacuum. If both
x1 andx2 are spacelike then this describes a static KKS2 bubble~when a trivial time direction is added!. If in ~b! x2 ~or x3) corresponds to
time, then it describes an expanding bubble in theM1,33S1 vacuum. Ifx1, x2, andx3 are all spatial coordinates, then it describes anS3

bubble. In the classification of Sec. IV B, these solutions are class I.
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the source. It follows thatxi must be a flat direction in the
asymptotic metric. An example of this is provided by t
Schwarzschild metrics, for which the source correspond
to the time coordinate is a finite rod, and the time direct
does indeed become flat in the asymptotic region.

Now consider the behavior near the sources. Assume
that xi is a time coordinate. For theD54,5 Schwarzschild
solutions, the source forUi is a finite rod and the region nea
this source corresponds to the event horizon of the bl
hole. This is also true for the finite rod sources in theC
metric and Israel-Khan solutions. The semi-infinite r
source of theC metric corresponds to a horizon that exten
to asymptotic infinity—this is an acceleration horizon, whi
arises because the time coordinate behaves like a boo
asymptotic infinity. It was shown above that flat space c
also be written in a Weyl form in which the time coordina
has a semi-infinite rod source. This source also correspo
to an acceleration horizon, arising because the time coo
nate is a boost, i.e., the Rindler time coordinate. To sum
rize: finite rod sources for the time coordinate correspond
event horizons in spacetime, and semi-infinite rod sour
correspond to acceleration horizons.

The case in whichxi is a spatial coordinate can be unde
stood by Euclideanizing some of the metrics discus
above. For the Euclidean Schwarzschild solution, the fin
rod source corresponds to the ‘‘bolt’’ where the Euclide
time direction closes off smoothly, provided it is identifie
with a suitable period. A similar interpretation holds for E
clideanized Rindler space, with the only difference being t
in the former case, the bolt is finite in extent~it is an S2 in
D54) whereas in the latter case it extends to infinity~it is
R2 in D54). These features also occur for the other e
amples above. In conclusion:rod sources for a spatial coor
dinate xi correspond to ‘‘bolts:’’ fixed-point sets of the orbit
of ]/]xi . If the source for xi extends to infinity, then the bo
will also extend to infinity, corresponding to an axis of rot
tional symmetry with xi acting as the azimuthal angle.

In order to avoid a conical singularity,xi has to be peri-
odically identified with a particular period determined by t
sources. If there is more than one source then there wil
several bolts, and the appropriate periods forxi at each bolt
may differ. In this case, conical singularities will result. Th
occurs for theC metric and Israel-Khan solutions as well
those of@30#.
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A final fact useful when analyzing Weyl solutions imm
diately follows from the above discussion. Letxi be a spatial
coordinate with a single finite rod source. Thenxi has to be
identified with a certain period in order to avoid a conic
singularity at the bolt corresponding to the source. Moreov
xi is a flat coordinate in the asymptotic region. It follows th
xi is most naturally interpreted as parametrizing a KK circ
at infinity. If there is more than one finite rod source then
might no longer be possible to remove all conical singula
ties by identifyingxi but one would probably still wish to
minimize the number of singularities by an appropriate ide
tification. Hence:if a spatial coordinate xi has only finite rod
sources then it can be interpreted as a KK coordinate in
asymptotic region.The rod sources, where the KK circl
shrinks to zero size, appear as singularities in the dimens
ally reduced description.

Now, since at most two of theUi ’s have sources extend
ing to infinity, it follows that at leastD24 of the xi ’s will
have bounded sources. If one of these is the time coordi
then there will be at leastD25 spatial coordinates with
bounded sources so the asymptotic metric will have at le
D25 compactified flat directions. It follows that noD.5
Weyl solution can be asymptotically flat~in the global sense!
if it has sources of the form being considered here.

B. Classification

A solution will be said to be of classn if it has n finite rod
sources~as well as a suitable number of infinite, or sem
infinite rod sources!.

We make no distinction between metrics related by W
rotation, so any of thexi can be chosen as the time directio
The first few classes are:

Class 0. If there are no finite rod sources then the sourc
must be either an infinite rod, or two semi-infinite rods~Fig.
1!. It was shown above that the metric is flat in both of the
cases, so flat space is the only class 0 solution.

Class I. In this class, there is a single finite rod so t
other sources must be two semi-infinite rods~Fig. 2!. There
are two ways that these sources can be distributed amo
the Ui ’s. ~a! U1 has a finite rod source andU2 has both
semi-infinite rod sources. The otherUi are constant. This is
the four-dimensional Schwarzschild solution~times some flat
directions if D.4). ~b! U1 has a finite rod source, andU2
5-8
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FIG. 3. Sources for~a! C metric,~b! black ring,~c! black hole plus KK bubble, and~d! black string and KK bubble. Note that the sourc
for the Ui ’s have to add up to an infinite rod. In the classification of Sec. IV B, these solutions are class II.
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andU3 have semi-infinite rod sources. The otherUi are con-
stant. This is the five-dimensional Schwarzschild solut
~times some flat directions ifD.5).

Class II. The sources are two finite rodsa3<z<a2 and
a2<z<a1 and two semi-infinite rodsz>a1 andz<a3 ~Fig.
3!. There are four ways to distribute these sources amo
theUi ’s. Flat dimensions~corresponding to constantUi) will
be neglected.~a! U1 has a semi-infinite rod source and
finite rod source, as doesU2. This gives the four-dimensiona
C metric. ~b! U1 has a finite rod source,U2 has a semi-
infinite rod, andU3 has a finite rod and a semi-infinite rod
This is a new ‘‘black ring’’ solution that will be discussed i
Sec. IV C.~c! U1 andU2 have the finite rods as sources, a
U3 has both semi-infinite rods as its sources. This is a n
D55 solution describing a superposition of a black ho
with a Kaluza-Klein bubble.~d! U1 and U2 have the semi-
infinite rods as sources, andU3 andU4 have the finite rods
as sources. This is a newD56 solution describing the su
perposition of a black string with a Kaluza-Klein bubbl
Solutions~c! and~d! will be discussed in Secs. IV E and IV
respectively.

The D54 classn solutions forn.2 have all been dis-
cussed before. Ifn is odd,n52k21, then the solution is an
Israel-Khan solution describingk black holes. Ifn is even,
n52k, then the solution is a generalization of theC metric
of the form discussed in@30# and describesk accelerating
black holes on each side of an acceleration horizon. Con
singularities are present in both cases.

A solution in a given class can be reduced to a solution
a lower class by either contracting to zero size or expand
to infinity one of its finite rods. The limits that must be take
to recover a given solution can be easily deduced by look
at the diagrams for sources in Figs. 1, 2, and 3. For exam
from Fig. 3~a! we easily see that theC metric has a limit
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where one recovers theD54 Schwarzschild solution, Fig
2~a!, by taking to infinity the leftmost end point of thex2 rod.
Effectively, this amounts to removing the acceleration ho
zon from the metric, the well-known limit where the acce
eration of the black hole is set to zero. TheC metric also has
several limits where flat~Rindler! space, Fig. 1, is recovered
The II~b! solution that below will be interpreted as a blac
ring, Fig. 3~b!, similarly reduces to either aD55 black hole
@Fig. 2~b!#, or a black string obtained as the product of t
D54 black hole@Fig. 2~a!# and a flat spatial direction.

C. The black ring

In @24# an unconventional neutral limit for the KK
chargedC metric ~ @12# dualized to have electric charge! was
taken. The resulting metric was interpreted as describin
pair of KK bubbles being accelerated apart by a conical s
gularity. We now show that this metric has a less exo
interpretation if one Wick rotates it to give

ds252
F~x!

F~y!
dt21

1

A2~x2y!2 FF~x!S ~y221!dc2

1
F~y!

y221
dy2D 1F~y!2S dx2

12x2
1

12x2

F~x!
df2D G ,

~4.1!

where

F~j!512mj. ~4.2!

The parametersm andA will be taken to lie in the range 0
<m<1, A.0, the coordinatex in the range21<x<1
5-9
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and the coordinatey in the rangey<21. This metric clearly
has three orthogonal commuting Killing vector fields so it
a Weyl solution. Choosingt5x1, c5x2, and f5x3, the
functionsUi are given by

e2U15
F~x!

F~y!
, ~4.3!

e2U25
~y221!F~x!

A2~x2y!2
, ~4.4!

e2U35
~12x2!F~y!2

A2~x2y!2F~x!
. ~4.5!

In order to identify the sources that produce this solution i
necessary to work with the coordinatesr ,z. From Eq.~2.28!,
it follows that

r 5
a

A2~x2y!2
AF~x!F~y!~12x2!~y221!, ~4.6!

for some positive constanta. The coordinatez is obtained
from the requirement

dr21dz2}
F~y!

12x2
dx21

F~x!

y221
dy2, ~4.7!

which yields

]z

]x
56A~y221!F~y!

~12x2!F~x!

]r

]y
, ~4.8!

and

]z

]y
57A~12x2!F~x!

~y221!F~y!

]r

]x
. ~4.9!

These equations can be integrated to give

z5
a~12xy!„F~x!1F~y!…

2A2~x2y!2
~4.10!

up to a choice of sign and an arbitrary additive constant.
In order to write the solution in Weyl form, it is conve

nient to define

a15a/~2A2!, a25am/~2A2!, a352am/~2A2!

~4.11!

and then introduce the following notation@27,30#:

z i[z2ai , ~4.12!

Ri[Ar 21z i
2, ~4.13!

Yi j [RiRj1z iz j1r 2. ~4.14!
08402
s

Expressions for these quantities in terms ofx andy are given
in Appendix D. Using these expressions, it is easily seen
if one takesa5A then the Weyl form of the metric is given
by

e2U15
R32z3

R22z2
, ~4.15!

e2U25~R12z1!/A, ~4.16!

e2U35
~R11z1!~R22z2!

A~R32z3!
, ~4.17!

e2n5
11m

4A

Y23

R1R2R3
AY12

Y13
AR22z2

R32z3
, ~4.18!

from which it follows thatU1 is the Newtonian potentia
produced by a finite rod2m/(2A)<z<m/(2A), U2 is the
potential produced by a semi-infinite rodz>1/(2A), andU3
is the potential produced by a semi-infinite rodz<
2m/(2A) and a finite rodm/(2A)<z<1/(2A). Note that,
for m51, these sources reduce to those of the fi
dimensional Schwarzschild solution and hence the me
must reduce to the metric of the Schwarzschild solution,
the functionn for Schwarzschild can be read off from th
above.

D. Analysis of the black ring

We now explain why the name ‘‘black ring’’ is appropr
ate by examining the global structure of this solution.
start, consider how the general comments of Sec. IV ap
to this solution. The source fort is a finite rod, so the time
direction is expected to be asymptotically flat and the
should be a horizon present. The coordinatesf andc both
have semi-infinite rod sources, so these coordinates sh
be periodically identified and will have the interpretation
azimuthal angles in the asymptotic metric.

Consider the form of the metric asy→2`. Thety part of
the metric becomes

dsty
2 ;F~x!S 2

1

muyu
dt21

m

A2uyu3
dy2D . ~4.19!

Performing the coordinate transformation

y52
4m

A2Y2
~4.20!

gives

dsty
2 ;F~x!S 2

A2Y2

4m2
dt21dY2D . ~4.21!

The metric in brackets is just that of Rindler space w
acceleration parametera5A/(2m). The coordinate transfor
mation that takes this to a manifestly flat metric is

X5Y coshat, T5Y sinhat, ~4.22!
5-10
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giving

dsty
2 ;F~x!~2dT21dX2!. ~4.23!

Note that the conformal factorF(x) is always positive for
21<x<1. This analysis shows that the leading order par
the ty metric has a nonsingular horizon aty52`. If one
examines the subleading order terms, one finds that thes
also regular there if the same coordinate transformatio
made. It is easy to see that the other terms of the metric
also be smoothly extended through this surface which
therefore a regular horizon. The near-horizon metric is

ds2;F~x!~2dT21dX21A22dc2!1
m2

A2 S dx2

12x2

1
12x2

F~x!
df2D , ~4.24!

and the metric of a constantt slice through the horizon is

ds25
1

A2 FF~x!dc21m2S dx2

12x2
1

12x2

F~x!
df2D G .

~4.25!

Consider now thexf part of the metric, which is confor
mal to

dsxf
2 5

dx2

12x2
1

12x2

F~x!
df2. ~4.26!

Let x52cosu with 0<u<p. This gives7

dsxf
2 5du21

sin2u

11m cosu
df2. ~4.27!

In order for this metric to be regular atu50 ~i.e. x521), it
is necessary to identifyf with period 2pA11m. For regu-
larity at u5p ~i.e. x51), it is necessary to identifyf with
period 2pA12m. It is therefore not possible to have reg
larity at bothx51 andx521. If one demands regularity a
x521 then there is a conical singularity atx51 with deficit
angle

d (x51)522pSA11m

12m
21D , ~4.28!

which is negative so this is really an excess angle. If o
demands regularity atx51 then there is a conical singularit
at x521 with deficit angle

7If m51 then the following analysis does not apply, but it is ea
to see that thexcf part of the metric describes a roundS3 of radius
2/A provided one identifiesf and c with period 2A2p. This is
consistent with the above comment that them51 solution is just
the five-dimensional Schwarzschild solution.
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d (x521)52pS 12A12m

11m D . ~4.29!

In both cases, thexf part of the metric describes a surfac
that is topologicallyS2 with a conical singularity at one o
the poles. In the full metric, this singularity is extended
two other spatial dimensions and hence it describes a ‘‘de
membrane,’’ the five-dimensional analogue of a fou
dimensional deficit string.8

As y→21, gcc tends to zero. To analyze this, sety5
2cosh(j/A11m). Near j50, the yc part of the metric is
conformal to

dsyc
2 'dj21

j2

11m
dc2. ~4.30!

This is regular atj50 providedc is identified with period
Dc52pA11m. y521 is then seen as the origin of pola
coordinates and hencey cannot be continued beyond21.
Returning to the horizon metric~4.25!, it is now clear that
the topology of the horizon isS13S2, which justifies calling
this solution a black ring. The circumference of the ring v
ies from a maximum of 2p(11m)A21 at x521 to a mini-
mum of 2pA12m2A21 at x51. Sincex is the polar coor-
dinate on theS2, it follows thatx521 points away from the
ring andx511 points into the hole in the center of the rin
Thus the choice of where to put the conical deficit cor
sponds either to having the black ring sitting on the rim o
disk shaped deficit membrane~with negative deficit!, or to
having the black ring sitting on the rim of a disk-shaped h
in an infinitely extended deficit membrane~with positive
deficit!. The area of the horizon is

Ah58p2
m2~11m!

A3
~4.31!

in the former case, and

Ah58p2
m2A12m2

A3
~4.32!

in the latter.
It is clear from the metric that the only values ofx andy

that can correspond to asymptotic infinity arex5y521. As
these values are approached, the metric takes the asymp
form

ds2;2dt21
1

Ã2~x2y!2 F ~y221!dc̃21
dy2

y221
1

dx2

12x2

1~12x2!df̃2G , ~4.33!

8For a simpler example of a deficit membrane, consider the me
ds252dt21dr1

21r 1
2du1

21dr2
21r 2

2du2
2 whereu1 is identified with

period 2p andu2 with period 2p2d. The deficit membrane sits a
r 250.
5-11
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ROBERTO EMPARAN AND HARVEY S. REALL PHYSICAL REVIEW D65 084025
wherec̃5c/A11m, f̃5f/A11m, andÃ5A/(11m). The
quantitiesf̃, c̃, both have period 2p if the period off is
chosen such that the conical deficit lies atx51. This metric
is in fact known to be flat space. The transformation

j5
Ay221

Ã~x2y!
, h5

A12x2

Ã~x2y!
, ~4.34!

takes it to the form

ds2;2dt21dj21dh21j2dc̃21h2df̃2, ~4.35!

which is free of conical singularities ifc̃ and f̃ both have
period 2p, which they do if the conical deficit lies atx51. If
the conical deficit lies atx521 thenf̃ has a conical deficit
d2 given by Eq.~4.29!, so the asymptotic metric describes
flat deficit membrane in this case. The structure of the bl
ring is summarized in Fig. 4.

It has been shown that the black ring has an event hor
of topologyS23S1. Naively, one might expect such a hor
zon to collapse to form a spherical black hole horizon. Ho
ever, the solution has conical singularities that prevent
from occurring. These conical singularities describe a de
membrane that either extends to infinity or forms a disk
side the ring. In the latter case, the solution is asymptotic
flat. We believe this to be the first example of an asympt
cally flat solution with an event horizon of nonspherical t
pology. Of course, this solution requires the presence o
conical excessangle, which corresponds to a deficit mem
brane of negative tension. This is presumably unphysical,
it will be shown in @25# that the conical singularity can b
eliminated if the ring rotates in thec direction.

If the asymptotic metric does not contain a conical sing
larity then the mass of the black ring can be calculated
considering the subleading contribution togtt . It is easy to
show that nearx5y521 this behaves as

gtt;2S 12
2m~11m!

A2~j21h2!
1••• D , ~4.36!

from which it follows ~see e.g.,@18#! that the black ring has
mass

M5
3pm~11m!

4G5A2
, ~4.37!

whereG5 is Newton’s constant in five dimensions. Note th
when m51 this gives the correct value for a five
dimensional Schwarzschild black hole of horizon radius 2A.

If, on the other hand, the deficit membrane extends
infinity, the mass of the ring can be calculated by taking a
reference background the spacetime of a membrane~without
a ring!, with the result

M5
3pmA12m2

4G5A2
. ~4.38!
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The temperature of the black ring can be obtained
Euclideanizing the near-horizon metric:t52 i t. In order to
avoid a new conical singularity aty52`, it is necessary to
periodically identifyt. From Eq.~4.21!, one finds that the
temperature is

T5
A

4pm
. ~4.39!

The topology of the Euclidean solution is (S33S2)2S1,
where theS3 is covered by the coordinatest, c, andy, and
the S2 by x andf. The circle removed is the circle atx5y
521 parametrized byt.

For either choice of the position of the deficit membran
x51 or x521, there is a Smarr relation:

M5
3

8G5
TAh . ~4.40!

Let us now assume the deficit membrane is outside the r
The action of the Euclidean solution can be computed si
larly to @24#, by subtracting the action of the deficit mem
brane spacetime, and yields

I 5
p2m2A12m2

G5A3
5

M

3T
. ~4.41!

If we now identify the free energy asF5TI5M2TS, then
using Eq.~4.40! we find that the entropy satisfies the ar
law

S5
Ah

4G5
5

2p2m2A12m2

G5A3
. ~4.42!

It is unclear whether the black ring is a stable solution,
whether it will become unstable for a certain range of para
eter values. When the radius of theS1 grows to infinity we
recover a translationally invariant black string, which
known to be unstable@31#, and this suggests that the inst
bility might set in already for finite but large enough radiu
In that case the ring would be unstable to rippling along
c direction. Given the presence of the deficit membrane
detailed analysis is needed to settle the issue.

E. Superposition of a black hole and KK bubble

All of the metrics discussed above were already know9

rather than discovered using the general formalism of Sec
However, in this section and the following section, new cla
II solutions will be constructed by following the steps d
scribed there.

The first example is theD55 solution that was labeled
II ~c! above. It will be convenient to parametrize the
sources slightly differently from above, takingU1 to be the
potential of a finite rodm/(2A)<z<1/(2A), U2 to be the
potential of a finite rod2m/(2A)<z<m/(2A) andU3 to be

9Although the black ring metric had not been interpreted as su
5-12
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GENERALIZED WEYL SOLUTIONS PHYSICAL REVIEW D65 084025
the potential of the semi-infinite rodsz>1/(2A) and z<
2m/(2A). The parameterm will be taken in the range 0
,m,1 ~in order to prevent the rods from overlapping!. Us-
ing the same notation as for the black ring, this gives

e2U15e2u1
R22z2

R12z1
, ~4.43!

e2U25e2u2
R32z3

R22z2
, ~4.44!

e2U35e2u3~R12z1!~R31z3!, ~4.45!

where theui are arbitrary constants that reflect the freed
to rescale the coordinatesxi . This will be used to avoid any
conical singularities along the axes: according to the gen
comments of Sec. IV A, they can all be eliminated.

Following the prescription of Sec. II, one now comput
the functionn by writing the functionsUi in terms of the
complex coordinatew5r 1 iz and then integrating Eqs
~2.20! and~2.21!. This calculation is performed in Appendi
E. The result is

e2n5
e2g0

R1R2R3
AY12Y13Y23

R12z1

R32z3
, ~4.46!

whereg0 is an arbitrary constant of integration. The quan
ties Ri , z i , andYi j are the same as for the black ring, Eq
~4.12!, ~4.13!, and~4.14!.

FIG. 4. Spatial sections of the black ring metric. The coordin
f is suppressed. The surfaces of constanty are nested surfaces o
topology S23S1. The coordinatec is the coordinate onS1. The
coordinatesx and f are, respectively, the polar and azimuth
angles onS2. The smallest constanty surface corresponds to th
horizon, aty52`. The surface aty521 degenerates into an ax
of rotation where the orbits ofc shrink to zero. The surfaces o
constantx are denoted by dotted lines.x521 points out of the ring
and x511 points into the ring. The conical singularity may b
chosen to lie inside the ring or, as in the case shown, outside
ring ~so that it extends to infinity!. Infinity is at x5y521.
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For the black ring, the coordinate transformation (r ,z)
→(x,y) @defined by Eqs.~4.6!, ~4.10! with a5A# gives a
form of the metric that is easier to analyze. This sugge
performing the same coordinate transformation here. T
transformation ofdr21dz2 under this change of coordinate
can be obtained from the above analysis of the black ring
these new coordinates, the metric takes the form

ds252
F~x!

F~y!
dt21e2u1

~12x!F~y!

~12y!F~x!
~dx1!21

e2u3

A4

3
~11x!~12y!2~212y!F~x!F~y!

~x2y!4
~dx3!2

1
A2~11m!e2g0

A4~x2y!3 F ~12y!F~x!

212y
dy2

1
~12y!2F~y!

12x2
dx2G , ~4.47!

where the similarity with the black ring has suggested tak
x2 to be the time direction, normalized such thatu250. The
square of the Riemann tensor diverges atx51/m, at y
51/m and aty51. This suggests taking the ranges of t
coordinates to be, again,21<x<1 andy<21.

This metric has an event horizon aty52`, just as for the
black ring. The orbits ofx1 shrink to zero size atx51.
Regularity requires thatx1 is identified with period 2p and

e2u152A2~12m2!A24e2g0. ~4.48!

The orbits ofx3 shrink to zero size at bothx521 andy5
21. The metric will be regular in both cases ifx3 is identi-
fied with period 2p and

e2u352A2e2g0. ~4.49!

Having made these identifications, the above metric is co
plete and nonsingular and cannot be extended except thro
the event horizon aty52`. Note thatg0 could be absorbed
into A and can therefore be chosen to take any conven
value. The choice

e2g05
A2

A2~11m!
~4.50!

will be made here. Lettingf5x1 andc5x3, the metric now
takes the form

ds252
F~x!

F~y!
dt21

2~12m!

A2

~12x!F~y!

~12y!F~x!
df2

1
2~11x!~12y!2~212y!F~x!F~y!

~11m!A2~x2y!4
dc2

1
1

A2~x2y!3 F ~12y!F~x!

212y
dy21

~12y!2F~y!

12x2
dx2G ,

~4.51!
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ROBERTO EMPARAN AND HARVEY S. REALL PHYSICAL REVIEW D65 084025
wheref andc both have period 2p. The event horizon a
y52` has topologyS3.

To interpret this metric, it is helpful to look first at certa
limiting cases. Ifm→0 then the sources for this solution ten
to the sources for a metric consisting of a flat time direct
times theD54 Euclidean Schwarzschild solution. This
the metric of a static KK bubble. Ifm→1 then the sources
tend to the sources for aD55 black string, withf becoming
the translation coordinate along the string~one has to rescale
f by A12m before takingm→1). Hence this metric mus
somehow interpolate between a static KK bubble and a b
string.

Asymptotic infinity is atx5y521. Nearx5y521, the
metric takes the form10

ds2;2dt21
2

Ã2

~12x!

~12y!
df̃2

1
2~11x!~12y!2~212y!

Ã2~x2y!4
dc2

1
1

Ã2~x2y!3 F ~12y!F~x!

212y
dy21

~12y!2F~y!

12x2
dx2G ,

~4.52!

whereÃ5A/A11m and f̃5A(12m)/(11m)f. This met-
ric is what one would obtain from the full metric~4.51! with
parameters (m̃,Ã), wherem̃50. It must therefore be the me
ric of a static KK bubble. The periodicity off̃ is inconsistent
with regularity atx51 but this metric is only supposed to b
an approximation to the metric~4.51! nearx5y521. The
important point is that the static KK bubble is known to
asymptotic toR1,43S1, which is the KK vacuum metric. It
follows that the metric~4.51! must also be asymptotic to th
KK vacuum, with the KK circle parametrized byf.

The orbits ofc shrink to zero size atx521 and aty5
21. To understand what this means, it is convenient to c
sider the KK bubble (m50) metric and how the coordinate
(x,y) relate to the Schwarzschild coordinates (R,u) in this
case. This can be done by settinggcc equal to11 122M /R
andgff equal toR2 sin2u. Thenx521 corresponds to the
axis u50 and y521 to the axisu5p. The surfaces of
constantx andy take the form shown on the left in Fig. 5.

The metric~4.51! contains a horizon aty52`. At that
point, the radius of the KK circle is finite. This leads to th
picture on the right in Fig. 5. The full geometry of the spat
sections can be visualized by considering how the KK

10Near x5y521 one has 12x'2 etc.; however factors of 1
2x etc. have been retained here for purposes of comparison
the KK bubble.

11The value ofM can be fixed by looking at the sources in th
Weyl form of the metric and comparing with the Weyl form of th
Schwarzschild metric: the lengths of the rods should match.
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mension varies. This is depicted in Fig. 6. The solution d
scribes a black hole sitting in the ‘‘throat’’ of a static KK
bubble.

In order to see that the topology of the horizon isS3, note
first that the structure of the sources around the rod for
time coordinatex2 in Fig. 3~c! is locally the same as the ro
structure in Fig. 2~b! ~with x1 as time!. In more detail, note
that for the KK bubble, the KK circle closes off atr 52M on
a S2. Let uP@0,p# denote the polar coordinate on th
sphere. If the black hole is now included then its horiz
intersects theS2 at a circle~parametrized byc) at, say,u
5u* with the exterior region at 0<u,u* . As one moves
out of the throat, theS2 expands, the KK circle opens up an
u* increases. Eventually,u* reachesp and the horizon is no
longer present. One can choose coordinates on the horizo
be u* , f, andc. At the initial value ofu* , the circle pa-
rametrized byf shrinks to zero, and at the final valueu*
5p, the circle parametrized byc shrinks to zero, from
which it follows that the topology of the horizon isS3. If
m→0 then the black hole horizon shrinks to zero, leaving
KK bubble. If m→1 then the horizon grows until it swallow
the throat of the bubble. When this happens, the KK dir
tion no longer closes off, and one is left with a compactifi
black string with an event horizon of topologyS23S1.

If one Euclideanizes the solution then conical singularit
can be avoided if the Euclidean time directiont is periodi-
cally identified with a periodb51/T, corresponding to a
temperature

T5
A

4pAm
. ~4.53!

This instanton can probably be interpreted as describing
instability of flat space at finite temperature in KK theor
This is a simultaneous manifestation of two different ins
bilities: the bubble nucleation instability of the KK vacuu
@19# and the black hole nucleation instability of flat space
finite temperature@23#. The instanton might also be used
describe a decay of a compactified black string by K
bubble nucleation. Presumably this instanton is not allow
when fermions are included.

It is known that the static KK bubble is classically un
stable so it seems likely that a similar instability will afflic
this solution. One might therefore wonder whether there
an analogue of the expanding KK bubble solution~described
by the Wick rotatedD55 Schwarzschild solution@19#! de-
scribing a black hole sitting in the throat of the expandi
bubble. Such a solution does indeed exist, and is obtaine
a Wick rotation of the black ring solution: if one letst→
2 i t and f→ i t in the black ring solution then one obtain
the metric12

ith

12In terms of the original notation for Fig. 3~b!, this means that the
time coordinate isx3.
5-14
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ds25
F~x!

F~y!
dt21

1

A2~x2y!2 FF~x!S ~y221!dc2

1
F~y!

y221
dy2D 1F~y!2S dx2

12x2
2

12x2

F~x!
dt2D G .

~4.54!

The causal structure of this metric can be understood by
examining thext part:

ds25
dx2

12x2
2

12x2

F~x!
dt2. ~4.55!

By changing to Kruskal coordinates, it can be seen that th
are regular horizons atx561 with different surface gravi-
ties. The coordinates (x,t) can be reintroduced beyond the
horizons. Continuing beyond the horizon atx51, one finds
that the square of the Riemann tensor diverges atx51/m.
Beyond the horizon atx521, the metric is asymptotically
de Sitter. Figure 7 shows the Carter-Penrose diagram for
two-dimensional metric. The causal structure is the sam
Schwarzschild–de Sitter with the horizon atx51 corre-
sponding to the black hole horizon and the horizon atx5
21 corresponding to the cosmological horizon. As f
Schwarzschild–de Sitter it appears that there are many b
holes and asymptotic regions present, but one is free to id
tify these if one chooses. Doing so clearly makes the spa
sections compact.

It is easy to see that the full five-dimensional metric w
also have regular horizons atx561. The horizon atx51
has topologyS3 and the one atx521 has topologyS1

3R2 ~with the S1 direction parametrized byc). Continuing
beyond the horizon atx51, there is a curvature singularit
as above. Asymptotic infinity is atx5y and lies beyond the
horizon atx521. Near infinity, the metric approaches th
KK vacuum with the KK circle parametrized byt. The
causal structure is illustrated in Fig. 7.13 The interpretation of
this metric is that the horizon atx51 is a black hole horizon
~or horizons! and the horizon atx521 an acceleration ho
rizon that separates causal curves that can fall into the b
hole from those that cannot owing to the expansion of sp
between them and the hole. This expansion of space is
the expansion of the throat region of a KK bubble, which
where the black hole is located. The asymptotic region
yond the acceleration horizon is the region outside
bubble.

F. Superposition of a black string and KK bubble

We parametrize the sources for the type II~d! solution as
follows. U1 is the potential of a semi-infinite rodz
>1/(2A), U2 is the potential of a semi-infinite rodz<
2m/(2A), U3 is the potential of a finite rod2m/(2A)

13Null infinity is presumably incomplete, as for the expanding K
bubble@20#.
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<z<m/(2A) and U4 is the potential of a finite rodm/(2A)
<z<1/(2A). This gives

e2U15e2u1~R12z1!, ~4.56!

e2U25e2u2~R31z3!, ~4.57!

e2U35e2u3
R32z3

R22z2
, ~4.58!

FIG. 5. ~1! Schematic depiction of theRu plane of the KK
bubble. The throat of the bubble~where the KK circle shrinks to
zero size! is atR52M . In the (x,y) coordinates, this corresponds t
x51 or y52`. The axesu50,p correspond tox521 andy5
21 respectively. Solid and dashed lines denote curves of constax
andy respectively.~2! Thexy plane of the metric~4.51!. There is a
horizon aty52` and the KK circle shrinks to zero size atx51.

FIG. 6. Geometry of the metric~4.51!. This picture shows the
surfacesf50 ~upper half! andf5p ~lower half!, which join to-
gether smoothly atx51. The horizon aty52` corresponds to a
black hole sitting at the center of the ‘‘throat’’ of a static Kaluz
Klein bubble.
5-15
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ROBERTO EMPARAN AND HARVEY S. REALL PHYSICAL REVIEW D65 084025
e2U45e2u4
R22z2

R12z1
, ~4.59!

where theui are arbitrary constants. As in the previous co
figuration, all conical singularities can be cancelled by
appropriate choice of these constants and periodic identi
tions.

The functionn is calculated using the method of Appe
dix E with the result

e2n5
e2g0

R1R2R3
AY12Y23AR12z1

R32z3
, ~4.60!

whereg0 is arbitrary. Once again, it proves useful to conv
from the Weyl coordinates (r ,z) to the black ring coordinate
(x,y) using Eqs.~4.6! and~4.10! ~with a5A). This leads to

ds252
F~x!

F~y!
dt21e2u4

~12x!F~y!

~12y!F~x!
~dx4!2

1
2e2g0

A2~x2y!2 H F~x!F dy2

212y
1

1

2
e2(u12g0)~y221!

3~dx1!2G1~12y!F~y!F dx2

12x2
1

1

2
e2(u22g0)~11x!

3~dx2!2G J . ~4.61!

The coordinatex3 has been chosen as the time coordin
and normalized so thatu350. The ranges of the coordinate
will again be taken to be21<x<1 andy<21.

This metric has an event horizon aty52`. The orbits of
x2 shrink to zero atx521. The metric will be regular there
if x2 is identified with period 2p and

e2u254e2g0. ~4.62!

The orbits ofx4 shrink to zero atx51. The metric will be
regular there ifx4 is identified with period 2p and

e2u454~12m!A22e2g0. ~4.63!

The orbits ofx1 shrink to zero aty521. The metric will be
regular there ifx1 is identified with period 2p and

e2u154e2g0. ~4.64!

The constantg0 could be absorbed intoA and can be conve
niently chosen as

e2g05
1

2
. ~4.65!

The metric therefore takes the form
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ds252
F~x!

F~y!
dt21

2~12m!

A2

~12x!F~y!

~12y!F~x!
dx2

1
1

A2~x2y!2 H F~x!F dy2

212y
12~y221!dc2G

1~12y!F~y!F dx2

12x2
12~11x!df2G J , ~4.66!

wherex5x4, c5x1, and f5x2 all have period 2p. This
metric is complete and nonsingular outside of an event h
zon aty52` with topologyS33S1, where theS1 is param-
etrized byc.

This metric can be analyzed using arguments similar
those of the previous section. It can be seen that the metr
asymptotic to aD56 static KK bubble described by th
product of a flat time direction with theD55 Euclidean
Schwarzschild solution. It follows that the metric
asymptotic to theD56 KK vacuumM1,43S1, with the S1

parametrized byx. Note that theS1 of the horizon doesnot
wrap the KK circle: spacelike infinity and the horizon bo
have topologyS33S1 but in the former case, theS1 is pa-
rametrized byx and in the latter byc.

Consider the spatial topology of the static KK bubble. T
center of the bubble~where the KK direction collapses! has
topologyS3. Moving out of the bubble, theS3 grows and the
KK direction opens up so surfaces of constant radius fr
the bubble have topologyS33Sx

1 . For the above solution
this geometry is altered by the presence of an event horiz
This event horizon intersects the minimalS3 of the static KK
bubble on aT2. To see how this happens, introduce coor
nates (u,f,c) on theS3 such thatf andc correspond to the

FIG. 7. ~1! Causal structure of the two-dimensional metr
~4.55!. The dotted lines denote curvature singularities, the th
solid lines denote asymptotic infinity and the thin solid lines den
horizons. The pattern can repeat indefinitely to the left and right
can be made finite by identifications.~2! Causal structure of the
Wick rotated black ring metric.
5-16
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GENERALIZED WEYL SOLUTIONS PHYSICAL REVIEW D65 084025
coordinates used above, 0<u<p/2 and the orbits ofc and
f collapse atu50 andu5p/2 respectively. For example
the round metric onS3 would take the formds25du2

1sin2udc21cos2udf2. The event horizon intersects the min
mal S3 at some valueu5u* , so this intersection has topo
ogy T25Sc

13Sf
1 . The metric outside the event horizon is

0<u,u* .
Moving away from the center of the bubble, theS3 ex-

pands, the KK circleSx
1 opens up andu* increases. When

u* reachesp/2, Sf
1 collapses to zero size. Beyond th

point, the event horizon no longer intersects theS3. The
event horizon can therefore be parametrized by the coo
nates (u* ,x,c,f). At the initial value ofu* , Sx

1 shrinks
to a point and at the final valueu* 5p/2, Sf

1 shrinks to a
point. Sc

1 remains finite over the horizon. Hence the horiz
has topologyS33Sc

1 , where theS3 is parametrized by
(u* ,c,f).

In the limit m→0, the event horizon shrinks to nothin
and the metric reduces to the static KK bubble. Asm→1, the
event horizon grows to engulf the minimalS3 and hence
there is nowhere that the KK direction collapses. In t
limit, the metric reduces to a black string wrapped around
KK direction, so the event horizon has topologyS33Sx

1 .
If the metric is Euclideanized by settingt52 i t then

conical singularities can be avoided by identifyingt with
periodb, corresponding to a temperature

T5
A

4pAm
. ~4.67!

The topology of the Euclidean solution is (S33S3)2T2,
where oneS3 is covered by the coordinates (t,c,y) and the
other by (x,f,x) and theT25Sx

13Sf
1 is at x5y521.

The static KK bubble is known to be unstable, whi
suggests that this new solution is probably also unstable.
the black-hole bubble solution discussed above, it was p
sible to obtain the solution describing the evolution of t
instability by Wick rotating the black ring. In the prese
case, however, one can argue that such a solution, if it ex
is not a class II solution, and perhaps not even a Weyl s
tion.

G. Other Wick rotations

In order to complete the discussion of these new so
tions, this section will discuss the metrics obtained by W
rotation. Thinking about the sources for the Weyl solutions
useful in understanding what happens when one Wick rot
the class II solutions. For example, in theC metric, U1 and
U2 both have a finite rod and a semi-infinite rod as sourc
Therefore it does not matter whetherx1 or x2 is taken to be
the time coordinate. For the black ring, the sources are qu
tatively different for eachUi and hence the choice of whic
xi is to be the time coordinate leads to physically distin
results. These have all been discussed already. Takingx1 to
be the time coordinate leads to the black ring. Takingx2 to
be the time coordinate leads to the solution describing a
of KK bubbles being accelerated apart by a conical defi
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@24#. Finally, takingx3 to be the time coordinate leads to th
solution describing an expanding KK bubble with a bla
hole sitting in the throat.

For the newD55 solution, II~c! @Fig. 3~c!#, it is clear that
taking x1 or x2 as the time coordinate gives physical
equivalent choices. Above we tookx2 as time, giving the
static black hole–KK bubble metric. However, takingx3 to
be the time direction leads to a new metric. This is obtain
from the metric~4.51! by Wick rotatingt→2 i t andc→ i t .
The resulting metric is asymptotic toM1,23T2 and has ac-
celeration horizons atx521 and y521. The KK direc-
tions are parametrized byf and t. Figure 8 shows the ge
ometry of the spatial sections with the KK direction
suppressed. The figure on the left shows the region cove
by the coordinates (x,y). When the metric is analytically
continued beyond the acceleration horizon atx521 it yields
a new region isometric to the first. This can then be con
ued beyond the horizon aty521 to yield yet a new region.
Therefore, there can be infinitely many such regions.
making identifications, the number of regions can be ma
finite. For example, the figure on the right shows how
identify in order to obtain just two regions. Figure 9 show
the resulting spatial geometry. The solution describes an
panding KK bubble. The KK circles collapse to zero size
different regions of the bubble’s throat. These regions in
sect in points. The acceleration horizons separate the reg
that these points can causally influence as the throat expa
The Euclidean metric is an instanton for this decay of
M1,23T2 KK vacuum.

For the newD56 solution, II~d! @Fig. 3~d!#, there are
only two physically inequivalent choices of the time coord
nate. In the discussion in Sec. IV Fx3 was chosen as the tim
direction, giving the static black string–KK bubble metri
The remaining possibility is to take, say,x2 to be the time
coordinate. This corresponds to the Wick rotationt→
2 i t, f→ i t of the metric~4.66!. The resulting metric is
asymptotic toM1,33T2, and has an acceleration horizon
x521. The KK directions are parametrized byx and t,
while c is an azimuthal angle at infinity. One can contin
through the acceleration horizon as described above, lea
to an identical region. This solution can be interpreted as
expanding KK bubble. Thex and t circles collapse in dif-
ferent regions of the bubble’s throat. In a dimensionally
duced picture, the KK bubble appears as a singularity
topology S2, with c the azimuthal angle. Thex circle col-
lapses near the poles of this sphere, and thet circle collapses
on the rest of the sphere. The acceleration horizon sl
through the equator. If this metric is Euclideanized then
gives an instanton for this decay of theM1,33T2 vacuum.

H. Different KK reductions

We have seen in Sec. IV A that if a spatial coordinatexi

has only finite rod sources, then it is naturally interpreted
a KK compactified direction. Above we have been consid
ing that points are identified along the orbits of the Killin
vector j ( i ) . However, when there is more than one Killin
direction with compact orbits~whether their radius is asymp
totically constant or not! it is possible to perform the identi
5-17
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fications along the orbits of different linear combinations
the Killing vectors. Say thatxi , xj are naturally identified
with periodicitiesDxi , Dxj , in the sense that these ident
fications result in the absence of~at least some! conical sin-
gularities along the axis of symmetry. Then it would also
possible to, instead of identifying points along the orbits
j ( i ) , identify them along the orbits ofj ( i )1(Dxj /Dxi)j ( j ) ,
with no new singularities arising. If the bolts ofj ( i ) andj ( j )
intersect over a common fixed point, then, as shown in@21#,
the circle action of this linear combination generates a Ho
fibration of S3. This change in the global identifications ob
viously does not affect the local structure of the solution, b
it may result in a different interpretation of the dimensional
reduced solution. An exhaustive study of this constructi
has been performed in@21#.

When applied to the Weyl solutions, the most interesti
case is that wherexi is a KK direction with asymptotically
constant radius, andxj is an azimuthal angle. In other words
Ui has only finite rod sources, andU j has at least one semi
infinite rod source. In this case, the twisted KK circle actio
is interpreted as the Hopf fibration of a magnetic monopo
The isolated fixed point of the fibration—the common fixe
point of j ( i ) andj ( j )—appears, in the reduced spacetime,
the ~singular! source of a magnetic field.

To illustrate this with an example@21#, consider adding a
flat time direction to theD54 Euclidean Schwarzschild so
lution @refer to Sec. III B and Fig. 2~a!#. x1 is a KK direction,
with natural periodicity 8pM , andx2 is an azimuthal angle
of period 2p. With the conventional~untwisted! identifica-
tions this describes a static KK bubble. However,j (1)
1(1/4M )j (2) generates Hopf actions with opposite orient
tions around the end points of the rod. Identifying poin
along these orbits, these end points appear in the redu
four-dimensional description as a pair of oppositely charg
magnetic monopoles. This reduced spacetime is not asy
totically flat: the change in the identifications results also in
KK magnetic Melvin flux tube@12#, which balances the at-
traction between the monopole and the antimonopole. Si
the strength of the external magnetic flux tube and the cha
of the monopoles are both determined by the amount of tw

FIG. 8. Spatial sections of the Wick rotated black hole–K
bubble solution~4.51!. The KK coordinatesf andt are suppressed.
The diagram on the left shows the region covered by the coo
nates (x,y). The dotted and solid lines are curves of constantx and
y respectively. There are acceleration horizons atx521 andy5
21. Thef direction closes off smoothly atx511 and thet circle
closes off smoothly aty52`. The heavy dots denote points wher
both circles close off. The diagram on the right shows how tw
copies of this region may be pasted together to give a comp
geometry.
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in the reduction, they are not independent parameters.
Proceeding this way we are led to alternative interpre

tions of many of the Weyl solutions that contain KK bubble
The D55 Schwarzschild solution was found to describe
this manner a pair of oppositely charged magnetic mo
poles accelerating away under the pull of a magnetic fl
tube@20,21#. Consider now the solutions in class II~b! @refer
to Fig. 3~b!#, with x1 as the KK coordinate. Dimensionall
reduce along the orbits ofj (1)1(Dx3/Dx1)j (3) , sox2 is the
timelike coordinate. The end points of theU1 rod have the
four-dimensional interpretation of a magnetic monopole a
antimonopole.U2 has a semi-infinite rod, sox2 is a boost
coordinate and the pair are accelerating, but notice they d
together. By extending the solution across the accelerat
horizon, we expect to find a similar monopole-antimonop
dipole accelerating in the opposite direction. The dipoles
celerate under the pull of a magnetic flux tube, and e
dipole is held together by the presence of a conical singu
ity running between the poles.

Now suppose we reduce along the orbits ofj (1)

1(Dx2/Dx1)j (2) . From the sources for the time coordina
x3 we infer the presence of an acceleration horizon, but a
of a black hole horizon. The vectorsj (1) and j (2) do not
share common fixed points: in this case the magnetic cha
is not sourced by a monopole, but by a black hole. T
interpretation is in terms of a nonextremal KK magne
black hole moving with uniform acceleration~and its oppo-
site counterpart, from analytic continuation, beyond the
celeration horizon!. Since, as we explained, the charge a
the magnetic field cannot be varied independently of e
other, the solution is only a particular case of the magne
KK Ernst solution of@12#.

In a similar vein, the II~c! solution with identifications
along j (2)1(Dx3/Dx2)j (3) leads to a static configuratio
with a magnetic monopole and an oppositely charged m
netic black hole. A flux tube keeps them apart in~unstable!
equilibrium. The II~d! solution, with an interpretation in

i-

te

FIG. 9. Throat region of the II~c! solution obtained by Wick
rotation of the black hole1bubble metric~4.51! to t→2 i t, c
→ i t . The f andt circles close off atx511 andy52` respec-
tively, denoted by dotted and solid lines. Both circles close off
the points denoted by heavy dots. As the throat expands, the
tance between these points increases and the acceleration ho
separate regions which can receive light signals from each poi
5-18
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GENERALIZED WEYL SOLUTIONS PHYSICAL REVIEW D65 084025
terms ofT2 compactified KK theory, admits even more com
binations, which we shall leave to the reader to analyze.

I. Multi-black hole configurations

Weyl’s construction inD54 easily allows for configura-
tions with an arbitrary number of black holes along the sy
metry axis: these are the Israel-Khan solutions@27#. As is
obvious from physical considerations, the conical singula
ties can only be cancelled if there are an infinite numbe
them ~and then the masses and distances between them
properly adjusted!. With such a periodic array of black hole
it is natural to periodically identify thez coordinate, which
gives a solution describing a black hole localized on the
circle of D54 KK theory @22#.

It is a simple matter to describe Weyl solutions inD.4
with several disconnected horizons. This provides the fi
example of a construction of static multi-black hole solutio
in higher dimensional vacuum gravity. Here we will on
sketch the properties of the solutions as deduced from t
rod structure, rather than giving the full metrics.

The simplest solution with two black hole horizons, ea
of topology S3, results from the class III sources shown
Fig. 10~a!. However, due to the isolated finite rod source
U2, the coordinatex2 is asymptotically a KK circle, so this is
not an asymptotically flat solution. Instead, the configurat
describes two black holes at the north and south pole
KK bubble: add a second black hole to Fig. 6, sitting opp
site to the one that is already present. The distribution of
sources also reveals that no conical singularities are ne
to keep the black holes apart. When the two black ho
coalesce, the solution does not reduce to a single, lar
black hole but rather to a black string.

A three-black hole solution is obtained from the sourc
of Fig. 10~b!. This solutionis asymptotically flat, with the
two spatial Killing directionsx2, x3 becoming azimutha
angles at infinity. It necessarily contains conical singulariti
However, the black holes cannot be described as collin
The first and second black holes~numbering sources from
the left! lie at the north and south pole of a topologicalS2

parametrized byz and x3, while the second and third blac
holes lie similarly on another topologicalS2 parametrized by
z andx2. So the second black hole is collinear with each
the other two, but along different axes. If two of the bla
holes coalesce, then we find a configuration of a black h
encircled by a black ring.

Solutions with an infinite number of black hole horizo
can be obtained in several ways. The simplest possibilit
shown in Fig. 10~c!. It is likely that conical singularities can
be eliminated from this solution if eachUi has sources con
sisting of rods of equal length. It is natural to periodica
identify the z axis to obtain a solution with a single blac
hole localized on a KK circle, parametrized byz, of fixed
length at infinity. The coordinatesx2 andx3 also parametrize
circles but these do not approach a constant length at infi
so they cannot be regarded as KK directions. Spacelike
finity has topologyS2

13S3
13Sz

1 rather thanS23Sz
1 which

would be appropriate for a description of a black hole loc
ized on a KK circle. It is clear that other similar configur
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tions of infinitely many rods will suffer from the same draw
back.

Configurations with multiple concentric black rings a
also possible, but we shall stop at this point.

V. CONCLUDING REMARKS

We have succeeded in generalizing Weyl’s class of so
tions to arbitrary dimension by finding the general soluti
of the vacuum Einstein equations inD dimensions that ad-
mits D22 orthogonal commuting non-null Killing vecto
fields. There are two classes of static Weyl solutions. T
first ~the ‘‘generic’’ Weyl solutions! is parametrized byD
23 independent axisymmetric harmonic functions in thr
dimensional flat space. The second class~the ‘‘special’’ Weyl
solutions!, analyzed in Appendix B, is parametrized byD
24 independent harmonic functions in two dimensional fl
space. All known physically relevant solutions fall into th
first class, and these solutions were all found to have h
monic functions produced by sources consisting of thin ro
on thez axis, with mass 1/2 per unit length. A natural way
classifying the solutions was proposed, according to
number of finite rod sources for the harmonic functions. T
classification scheme presented three new solutions as p
ising candidates for deeper study~see Table I!.

Perhaps the most interesting new solution is the black r
of Sec. V C. This is the first example of a stationary soluti
of the vacuum Einstein equations that is asymptotically
and has an event horizon of nonspherical topology.14 The
black ring is supported against collapse by a conical de
singularity in the form of a disk that sits inside the ring. Th
singularity might be regarded as the gravitational effect o
thin membrane of matter, much as a deficit string can
regarded as an idealization of a real cosmic string. The d
cit for the black ring hasnegativedeficit angle, and hence
corresponds to a negative tension source. It is not likely t
it can be modeled by any reasonable matter source, since
weak energy condition would not be obeyed. An alternat
which is perhaps physically more reasonable is to take
conical deficit to lie outside the ring. A deficit membrane
positive tension is then present which extends to infinity,
the solution is no longer asymptotically flat.

If the black ring were charged, one might envisage b
ancing it against collapse~and therefore cancelling the con
cal singularity! by immersing it in a background field. This i
actually the situation with the five-dimensional charg
black ring solution of@7#, which is the first example of a
stationary solution with spacelike infinity of spherical topo
ogy and a regular horizon of nonspherical topology. The
rizon of the ring in that case is an extremal, degenerate o
with vanishing horizon area. It is nevertheless complet

14A toroidal horizon in four dimensions has been observed in
merical simulations of collapse in@32#. It is a transient phase of the
collapse: the hole in the torus closes up faster than the spee
light, thereby preventing asymptotic observers from probing
topology of the horizon@33#.
5-19
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FIG. 10. Sources for~a! two-black hole configuration,~b! three-black hole configuration, and~c! infinite periodic array of black holes.
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nonsingular. The presence of the background field imp
that the spacetime is not asymptotically flat, instead it
ymptotes to a fluxbrane solution. An alternative to coupli
to a background field is to set the ring into rotation. It will b
shown in@25# that one can indeed obtain a vacuum solut
describing an asymptotically flat rotating black ring15 that is
free of conical singularities.

The other new solutions contain KK bubbles in additi
to black holes or black strings. Some of them describe n
decays of the KK vacua with internalS1 or T2. We have
exhibited but a few examples of the wide range of possib
ties for solutions which are singular in the KK reduced d
scription but nevertheless completely regular in higher
mensions. Just as the black ring arose from a reinterpreta
of a previously known solution, maybe the other class II~or
higher! solutions have unexpected applications.

We have sketched the construction of multi-black h
configurations. In contrast to the Israel-Khan solutions inD
54, the generalized Weyl solutions cannot describe a lin
array of five-dimensional black holes@which would have
symmetryR3O(3) instead ofR3O(2)2#. Nevertheless, we
have given the first examples of static vacuum multi-bla
hole configurations in dimensions higher than four. Unli
the Israel-Khan solutions, some of the higher dimensio
solutions with finitely many black holes do not contain co
cal singularities.

There are several directions for extensions of the W
classes in this paper. Consideration of nonorthogonal Kill
vectors would lead to nonstatic, stationary solutions, or
lutions with twists among the axes. However, inD54 there
is no general solution for nonorthogonal Killing vectors,
progress here could probably only be made in special ca
It would also be interesting to study the addition ofp-form
gauge fields.

15Other recent solutions where rotation plays a role in balanc
charged, ring-like or tube-like configurations have been given
@34#.
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To conclude, we have performed a systematic analysi
an infinite class of exact solutions of vacuum gravity in d
mensions higher than four, and exhibited new solutions w
qualitatively new properties. We hope that this work he
stimulate further systematic studies on the rich structure
exact solutions of higher-dimensional gravity.
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APPENDIX A: CURVATURE COMPONENTS

We introduce a vielbein for the metric of Eq.~2.3!:

ei5eUidxi , eZ5eCdZ, eZ̄5eCdZ̄. ~A1!

The summation convention is not being used for the indi
i , j , . . . . The tangent space metrichab is given by h i i
5e i , hZZ̄5h Z̄Z51/2, with other components vanishing
The connection 1-forms are defined by

dea52va
b`eb, ~A2!

and explicit calculation gives

v iZ5e2C]ZUiei , v i Z̄5e2C] Z̄Uiei , v i j 50,
~A3!

vZZ̄52
1

2
e2C]ZCeZ1

1

2
e2C] Z̄CeZ̄. ~A4!

The curvature 2-forms are defined by

Qab5dvab1va
g`vgb . ~A5!

The nonvanishing curvature 2-forms are

g
n

5-20
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TABLE I. Summary of the main solutions studied in this paper, in the classification of Sec. IV B.
sources and metrics are referred to the figures and equations in this paper, respectively. Only the top
finite area horizons is described. Other interpretations, by different Wick rotations or KK reduction
discussed in Secs. IV G and IV H.

Class Sources~Fig.! Metric ~Eq.! Interpretation Horizon

0 1 ~3.6! Flat ~Rindler! space
I 2~a! 4D Black hole S2

2~b! ~3.8! 5D Black hole S3

II 3~a! C metric S2

3~b! ~4.1! Black ring S23S1

3~b! ~4.54! Black hole in expanding KK bubble S3

3~c! ~4.51! Black hole in static KK bubble S3

3~d! ~4.66! Black string in static KK bubble S33S1

.II 10~a,b,c,d! Multi-black holes % nS3
in
b

pe-

s-
s is
Q i j 522e22C~]ZUi] Z̄U j1]ZU j] Z̄Ui !ei`ej ,
~A6!

Q iZ52e22C@]Z
2Ui1~]ZUi !

222]ZC]ZUi #ei`eZ

2e22C@]Z] Z̄Ui1]ZUi] Z̄Ui #ei`eZ̄, ~A7!

Q i Z̄52e22C@]Z] Z̄Ui1]ZUi] Z̄Ui #ei`eZ2e22C@] Z̄
2
Ui

1~] Z̄Ui !
222] Z̄C] Z̄Ui #ei`eZ̄, ~A8!

QZZ̄5e22C]Z] Z̄CeZ`eZ̄. ~A9!

The tangent space components of the Riemann tensor
obtained from these expressions by

Qab5
1

2
Rabgdeg`ed, ~A10!

with the results

Ri jkl 522e22C~]ZUi] Z̄U j1]ZU j] Z̄Ui !~h ikh j l 2h i l h jk!,

~A11!

RiZ jZ52e22C@]Z
2Ui1~]ZUi !

222]ZC]ZUi #h i j ,
~A12!

RiZ̄ jZ̄52e22C@] Z̄
2
Ui1~] Z̄Ui !

222] Z̄C] Z̄Ui #h i j ,
~A13!

RiZ jZ̄52e22C~]Z] Z̄Ui1]ZUi] Z̄Ui !h i j , ~A14!

RZZ̄ZZ̄5e22C]Z] Z̄C, ~A15!

with any other nonvanishing components related to these
the symmetries of the Riemann tensor. The nonvanish
tangent space components of the Ricci tensor are given
08402
are

by
g

y

Ri j 522e22CF2]Z] Z̄Ui1]ZUi(
k

] Z̄Uk

1] Z̄Ui(
k

]ZUkGh i j , ~A16!

RZZ52e22C(
i

„]Z
2Ui1~]ZUi !

222]ZC]ZUi…,

~A17!

RZ̄Z̄52e22C(
i

„] Z̄
2
Ui1~] Z̄Ui !

222] Z̄C] Z̄Ui…,

~A18!

RZZ̄52e22CF2]Z] Z̄C1(
i

]Z] Z̄Ui

1(
i

]ZUi] Z̄Ui G .
~A19!

APPENDIX B: THE SPECIAL WEYL SOLUTIONS

When solving the Einstein equations in Sec. II B, a s
cific assumption was made in order to deal with theZZ and
Z̄Z̄ components: that the functionsw(Z) and w̃(Z̄) that ap-
pear in Eq.~2.6! are nonconstant. In this appendix we inve
tigate the cases in which one or both of these quantitie
constant. Consider first the case in whichZ and Z̄ are com-
plex conjugate coordinates. Then16 w̃(Z̄)5w(Z)* so bothw

and w̃ must be constant. Thei j components of the vacuum
Einstein equations therefore reduce to

(
i

Ui5const, ~B1!

16Note thatw(Z)* [w̄(Z̄).
5-21
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ROBERTO EMPARAN AND HARVEY S. REALL PHYSICAL REVIEW D65 084025
]Z] Z̄Ui50. ~B2!

These equations have the solution

Ui~Z,Z̄!5ai~Z!1ai~Z!* , ~B3!

with ai(Z) arbitrary except for the constraint

(
i

ai~Z!5const. ~B4!

The ZZ andZ̄Z̄ components of the Einstein equation redu
to

(
i

~]Zai !
250. ~B5!

The ZZ̄ component of the Einstein equation can be writte

]Z] Z̄S C1
1

4 (
i

Ui
2D 50, ~B6!

with solution

C~Z,Z̄!52
1

4 (
i

Ui
21c~Z!1c~Z!* , ~B7!

wherec(Z) is arbitrary. This arbitrary function just reflect
the freedom to change coordinatesZ→Z8(Z). Thus the dis-
tinct solutions are labeled by the functionsai(Z). TheseD
22 functions are constrained by Eqs.~B4! and~B5!, so only
D24 of them are independent. ForD54 the solution is flat
space. ForD.4 the solutions are nontrivial and have n
four-dimensional analogue. Note that eachUi is a solution of
the Laplace equation in two-dimensional flat space, so
special class of solutions is determined byD24 harmonic
functions in two flat dimensions, in contrast to the class
generic Weyl solutions discussed in Sec. II B, which w
determined in terms ofD23 axisymmetric harmonic func
tions in three flat dimensions. InD55, it is possible to ex-
plicitly solve the constraints on theai ’s to obtain a line ele-
ment parametrized by an arbitrary function of one comp
coordinate.

Now consider the case in whichZ andZ̄ are independen
real coordinates andw̃ is constant butw(Z) is not.w̃ can be
absorbed intow(Z). The i j Einstein equations reduce to

(
i

Ui5 log„w~Z!…, ~B8!

2w]Z] Z̄Ui1]Zw] Z̄Ui50, ~B9!

with solution

Ui~Z,Z̄!5ai~Z!1ãi~ Z̄!w21/2, ~B10!

where ai(Z) and ãi(Z̄) are arbitrary except for the con
straints
08402
is

f
s
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(
i

ãi~ Z̄!5ã, ~B11!

(
i

ai~Z!5 logw2ãw21/2, ~B12!

where ã is a constant. TheZ̄Z̄ component of the Einstein
equation reduces to

(
i

~] Z̄ãi !
250. ~B13!

The ZZ component of the Einstein equation gives

C~Z,Z̄!5
1

2
log]Zw1n1 c̃~ Z̄!, ~B14!

wherec̃(Z̄) is arbitrary and

]Zn52
w

]Zw (
i , j

]Ui]U j . ~B15!

The ZZ̄ component of the Einstein equation is satisfied a
consequence of these equations. The arbitrary functionc̃(Z̄)
reflects the freedom to do a coordinate transformationZ̄

→Z̄8(Z̄), and one can also do a coordinate transformat
Z→w(Z) to eliminatew(Z). Hence these solutions are cha
acterized byD22 functions ai(Z) and D22 functions
ãi(Z̄). However, the constraints~B11! and ~B13! imply that
only D24 of the functionsãi are independent, and the con
straint ~B12! implies that onlyD23 of the functionsai are
independent. ForD54, the solution is given by a single
arbitrary functionai(Z) and ]/]Z̄ is a null Killing vector
field so the solution describes app-wave spacetime@1#.
These solutions admit a Killing spinor@35#. The higher di-
mensional analogues of thesepp waves are the solution
with ãi50 for all i, and it is straightforward to show tha
these are the only Weyl solutions that satisfy the integrabi
conditions for the existence of a Killing spinor.

APPENDIX C: WEYL FORMS OF FLAT SPACE

The results of Appendix A show that the Riemann ten
of the metric~2.3! vanishes if, and only if,

]ZUi] Z̄U j1]ZU j] Z̄Ui50, i 5” j , ~C1!

]Z
2Ui1~]ZUi !

222]ZC]ZUi50, ~C2!

] Z̄
2
Ui1~] Z̄Ui !

222] Z̄C] Z̄Ui50, ~C3!

]Z] Z̄Ui1]ZUi] Z̄Ui50, ~C4!

]Z] Z̄C50. ~C5!

Equation~C4! can be immediately solved:
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Ui~Z,Z̄!5 log„ai~Z!1ai~Z!* …, ~C6!

whereai(Z) is arbitrary.
It is convenient to choose the labeling of theUi such that

]ZaiÞ0 for 1< i<r and]Zai50 for i .r . Equation~C2! is
automatically satisfied ifi .r or j .r . If i , j <r then this
equation implies

]Zai

]Zaj
52

~]Zai !*

~]Zaj !*
5 il i j , ~C7!

wherel i j is a real nonzero constant. Ifr .2 then it follows
that

]Za35 il32]Za252l32l21]Za1 . ~C8!

However, this contradicts]Za35 il31]Za1. Hencer 50,1 or
2. These three cases will be discussed individually.

If r 50 thenai(Z) is a constant for alli and henceUi is
constant for alli. Equations~C2! and ~C3! are trivially sat-
isfied and Eq.~C5! has the solution

C~Z,Z̄!5c~Z!1c~Z!* , ~C9!

wherec(Z) is arbitrary. This arbitrary function can be elim
nated by a coordinate transformationZ→Z8(Z). The line
element is then obviously flat.

If r 51 or 2 then Eqs.~C2! and~C3! are trivially satisfied
for i .r . For i<r , the solution is

C~Z,Z̄!5
1

2
log~]Zai !~]Zai !* 1const, ~C10!

which also ensures that Eq.~C5! is satisfied. Forr 51, after
changing coordinates fromZ to a1(Z), setting a15j1 ih
and rescaling the coordinates to eliminate constants, the
element takes the form

ds25e1j2~dx1!21 (
i 52

D22

e i~dxi !21dj21dh2. ~C11!

This line element is manifestly flat, withx1 an angular coor-
dinate~if e151) or the boost coordinate in Rindler space~if
e1521).

For r 52, after changing and rescaling the coordinates
above, the line element takes the form

ds25e1j2~dx1!21e2h2~dx2!21 (
i 53

D22

e i~dxi !21dj21dh2,

~C12!

which is manifestly flat, withx1 an angular or boost coordi
nate depending on the sign ofe1, and similarly forx2.

In order to identify the source terms for Laplace’s equ
tion that these flat metrics correspond to, one must fi
change the coordinate fromZ to w(Z) @defined by Eq.~2.18!
with w̃5w* #. However, this is not possible ifr 50 because
then w is constant. Hencer 50 corresponds to the speci
case analyzed in Sec. II D.
08402
ne

s

-
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For r 51, Ui is constant fori .1 so Eq.~2.18! reduces
to

U15 log~w1w̄!1const5 log r 1const, ~C13!

where w5r 1 iz. The constant term can be eliminated b
rescaling the coordinatex1. U1 is the Newtonian potentia
produced by an infinite rod lying on thez axis. The rod has
vanishing thickness and mass 1/2 per unit length.

For r 52, Ui is constant fori .2. U1 andU2 are given
by Eq. ~C6!. Recall that ]Za25 il21]Za1 hence a2
5l21( ia11c), wherec is a constant. The imaginary part o
c does not affectU2 so c can be taken to be real. Equatio
~2.18! then gives

w1w* }@a11a1* #@ i ~a12a1!* 12c#, ~C14!

which can be solved to givea1 in terms of w, and then
expressU1 andU2 in terms ofw:

U15 loguReAa6 iwu1const, ~C15!

U25 loguReA2a7 iwu1const, ~C16!

wherea is an arbitrary real constant.

APPENDIX D: FORMULAS FOR THE BLACK RING

In order to write the metric of the black ring in Wey
form, it turns out to be convenient to look for constantsc and
b such that

r 21~z2c/A2!25
1

4~x2y!2A4
~amxy22cx22cy1b!2.

~D1!

A priori, one would not expect such constants to exist. Ho
ever, it turns out that they do, and are given by

c5
a2m

am1b
, ~D2!

and

b31amb22a2~m214!b2a3m~m224!50. ~D3!

The solutions are

b5am, c5a/2, b5a~22m!, c5am/2,

b52a~21m!, c52am/2. ~D4!

Note that the solutions forc can be written asA2ai , where
the quantitiesai were defined in Sec. IV C. It follows tha
each functionRi defined in Sec. IV C is the square root of th
right-hand side of Eq.~D1! for the appropriate value ofc.
Since the right-hand side of this equation is a perfect squ
the expressions forRi turn out to be quite simple:

R15
a~mxy2x2y1m!

2A2~x2y!
, ~D5!
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R25
a~mxy2mx2my122m!

2A2~x2y!
, ~D6!

R35
a~2mxy2mx2my121m!

2A2~x2y!
. ~D7!

It is also possible to show

R11z15
a~12x2!F~y!

A2~x2y!2
, ~D8!

R12z15
a~y221!F~x!

A2~x2y!2
, ~D9!

R21z25
a~11x!~12y!F~x!

A2~x2y!2
, ~D10!

R22z25
a~12x!~212y!F~y!

A2~x2y!2
, ~D11!

R31z35
a~11x!~12y!F~y!

A2~x2y!2
, ~D12!

R32z35
a~12x!~212y!F~x!

A2~x2y!2
, ~D13!

Y125
a2~12x!~12y!F~x!F~y!

2A4~x2y!2
, ~D14!

Y135
a2~11m!2~12x!~12y!

2A4~x2y!2
, ~D15!
08402
Y235
2a2F~x!F~y!

A4~x2y!2
. ~D16!

APPENDIX E: CALCULATING n INTEGRALS

The purpose of this appendix is to explain how the qu
tity n in Eq. ~2.17! is calculated for the solutions of Sec. IV
Consider first the solution of Sec. IV E. In terms of the co
plex coordinatesw, the functionsUi take the form

U15 loguRe@~a21 iw !1/2#u2 loguRe@~a11 iw !1/2#u,
~E1!

U25 loguRe@~a31 iw !1/2#u2 loguRe@~a21 iw !1/2#u,
~E2!

U35 loguRe@~a11 iw !1/2#u1 loguIm@~a31 iw !1/2#u,
~E3!

where the constantsai are defined in Eq.~4.11! and arbitrary
additive constants are suppressed. To calculaten directly,
these expressions could be substituted into Eqs.~2.20! and
~2.21!. On the right-hand side of these equations there wo
be 12 terms (4 from each]Ui]U j ). Alternatively, one can
instead deal withg, which is determined by Eqs.~2.23! and
~2.24!, with only 10 terms on the right-hand side. Havin
obtainedg,n can be immediately calculated using

n5g2(
i

Ui . ~E4!

Equation~2.23! takes the form

]g5
1

4w
1F1~w,w̄;a1!1F1~w,w̄;a2!1F1~w,w̄;a3!

1F2~w,w̄;a3!22G11~w,w̄;a2 ,a3!

12G21~w,w̄;a1 ,a3!1G11~w,w̄;a1 ,a3!

2G11~w,w̄;a1 ,a2!2G21~w,w̄;a2 ,a3!, ~E5!

where the functionsF andG are defined by
F6~w,w̄;c!52
w1w̄

4~c1 iw !@~c1 iw !1/26~c2 iw̄ !1/2#2
, ~E6!

G668~w,w̄;c,d!52
w1w̄

4~c1 iw !1/2~d1 iw !1/2@~c1 iw !1/268~c2 iw̄ !1/2#@~d1 iw !1/26~d2 iw̄ !1/2#
, ~E7!
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wherec andd are real constants withc.d. In order to inte-
grate Eq.~E5!, it is necessary to integrateF andG. This can
be done by a change of variable toZ5(c1 iw)1/2, which
yields

E dwF6~w,w̄;c!52
1

4
log~c1 iw !1 log@~c1 iw !1/2

6~c2 iw̄ !1/2#1•••, ~E8!

where the ellipsis denotes an arbitrary function ofw̄. One
similarly obtains

E dwG11~w,w̄;c,d!

5 log Re@~c1 iw !1/21~d1 iw !1/2#2
1

2
log@~c1 iw !1/2

1~d1 iw !1/2#1••• ~E9!

E dwG22~w,w̄;c,d!

5 log Im@~c1 iw !1/21~d1 iw !1/2#2
1

2
log@~c1 iw !1/2

1~d1 iw !1/2#1•••, ~E10!

E dwG12~w,w̄;c,d!

5 log Re@~d1 iw !1/2#2 log Re@~c1 iw !1/2

1~d1 iw !1/2#1
1

2
log@~c1 iw !1/2

1~d1 iw !1/2#1•••, ~E11!
s

,

f
n-

.

s.
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E dwG21~w,w̄;c,d!

5 log Im@~d1 iw !1/2#2 log Im@~c1 iw !1/2

1~d1 iw !1/2#1
1

2
log@~c1 iw !1/2

1~d1 iw !1/2#1•••. ~E12!

These results yieldg, and hencen, up to an arbitrary func-
tion of w̄. This function can be determined up to a real co
stant of integration by demanding thatn be real. Finally, the
following expressions can be used to expressn in terms of
Ri , z i , andYi j :

Ri5uai1 iwu,
~E13!

Ri2z i5uRe@~ai1 iw !1/2#u, ~E14!

Ri1z i5uIm@~ai1 iw !1/2#u, ~E15!

Yi j 52 loguRe@~ai1 iw !1/2#u12 loguRe@~aj1 iw !1/2#u

14 logu~ai1 iw !1/21~aj1 iw !1/2u

24 loguRe@~ai1 iw !1/21~aj1 iw !1/2#u, ~E16!

where additive constants have again been suppressed.
following identity is useful in rearrangingn so that it can be
written in terms of the above expressions:

loguIm@~c1 iw !1/21~d1 iw !1/2#u2 loguIm@~d1 iw !1/2#u

5 loguRe@~c1 iw !1/21~d1 iw !1/2#u

2 loguRe@~c1 iw !1/2#u. ~E17!
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