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It was shown by Weyl that the general static axisymmetric solution of the vacuum Einstein equations in four
dimensions is given in terms of a single axisymmetric solution of the Laplace equation in three-dimensional
flat space. Weyl's construction is generalized here to arbitrary dimeis®a. The general solution of the
D-dimensional vacuum Einstein equations that admits2 orthogonal commuting non-null Killing vector
fields is given either in terms dP —3 independent axisymmetric solutions of Laplace’s equation in three-
dimensional flat space or iy —4 independent solutions of Laplace’s equation in two-dimensional flat space.
Explicit examples of new solutions are given. These include a five-dimensional asymptotically flat “black
ring” with an event horizon of topolog®*x S? held in equilibrium by a conical singularity in the form of a
disk.

DOI: 10.1103/PhysRevD.65.084025 PACS nuni®er04.50-+h, 04.20.Jb, 04.70.Bw

[. INTRODUCTION The solution of these equations is given by a line integral.
Since U is harmonic, it can be regarded as a Newtonian
Exact solutions play an important role in general relativ-potential produced by certaiaxisymmetrig sources. For
ity. Examining properties of exact solutions has led to deeggxample, the Schwarzschild solution corresponds to taking
insights into the nature of spacetime that would have beethe source fotJ to be a thin rod on the axis with mass 1/2
hard to arrive at by other means. For example, much of th@er unit length. _ _ o
progress made in understanding properties of black holes in Nowadays, interest in solutions of general relativity is no
the 1960s and 1970s relied on the existence of the Ke”l_pnger restricted to four dimensions. Many interesting solu-

Newman solution. The standard model of cosmology is bu”¢|ons of higher dimensional supergravity theories have been

on Friedmann-Robertson-Walker solutions. Examining pmpiﬁgnr?a.ltmesg;u;rgt/itt??ﬁ tr:grhee?Iﬂ?rr?Sr?;?oﬂgetig??Zrﬁgi?lcﬁ:1229
_ert|e§ of I_3|a_nch| cosmolog|es has led to insight into hOWswered. In four dimensions, it can be proved that each con-
mfll?/ltlor;]dl?rswiaﬁes a;)msotr((j)py.t d to develoning techni nected component of the event horizon of an asymptotically

iuch efiort has been devoted to developing techniques spacetime satisfying the dominant energy condition has
for finding exact solutions in four dimensiops,2]. One of topology S? [4]. The proof relies on the Gauss-Bonnet theo-
the earliest results in this direction was obtained by Wayl

ho found th | stati . i luti ¢ th rem applied to a constant time slice through the horizon, and
who found the general static axisymmetric solution ot In€q therefore invalid in higher dimensions. A different ap-
vacuum Einstein equations:

proach to rule out nonspherical topologies is based on the
notion of “topological censorship{5]. However, this argu-
ment is typically phrased in terms of noncontractible loops
. ) ) . ] that begin and end at infinity, and which would thread
where U(r,z) is an arbitrary axisymmetric solution of tyough a toroidal horizon. In higher dimensions, one can
Laplace’s equation in a three-dimensiorfldt space with always unlink two loops by moving them apart in a fourth

ds?’=—e?Vdt?+e 2Y(e?”(dr?+ dz%) + r?d¢?), (1.1)

metric spatial direction. This suggests that it might be possible for
the event horizon to have nonspherical topology in higher
ds’=dr’+r?d¢?+dZz, (1.2 dimensions. Indeed, if6], it was argued that the horizon of
a time-symmetric black hole in five dimensions must have
and y satisfies topology given by a connected sum $f and St x S? terms,

subject to the weak energy condition. Nevertheless, no ex-

dy |[dU 2 [9U)\? ample of an asymptotically flat solution with a nonspherical
a "W T\ez) | (1.3 event horizon has ever been foun@ne aim of the present
dy U 9uU N o ,

L= — (1.4 A solution with a regular, though degenerate, horizon of topology
9z ar oz S'x $? has been found ifi7]. Although not asymptotically flat, this

solution has a spacelike infinity of topolo@j, which distinguishes
it from examples in which horizons of nonspherical topology are
*Also at Departamento de’sica Tewica, Universidad del Pai  constructed by taking spacelike infinity to have nonspherical topol-
Vasco, E-48080, Bilbao, Spain. ogy.
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paper is to provide an example of such a spacetime. true for D>4. In order to select candidate Weyl solutions

We will, for simplicity, consider only the vacuum Einstein that might be of physical importance, recall that =4,
equations. A lot of work has been devoted to finding exacthe harmonic functiolJ can be regarded as a Newtonian
solutions of these equations in dimensidds4. Most of  potential produced by an axisymmetric source. It turns out
this work has looked for solutions with a Kaluza-KlgikK)  that the most interestingd=4 Weyl solutions all have
interpretation, i.e., solutions with a Killing vector field along sources of the same form, namely thin rods on the axis of
which one can perform dimensional reduction to get a sensymmetry. In Sec. lll, knowid >4 Weyl solutions of physi-
sible lower dimensional spacetime. For example, KK blackcal importance are analyzed. Their harmonic functions also
hole solutions were discussed [iB] and a KK monopole always correspond to thin rods on the axis of symmetry in
solution was presented 9]. KK generalizations of theCc  the auxiliary three-dimensional flat space.

metric [10] and Ernst metrid 11] were presented ifil2]. A natural classification scheme for such solutions is pre-
Other axially symmetric solutions in KK theory have beensented in Sec. IV. In this scheme, the “zeroth” class consists
discussed i13-16. simply of flat space. The first nontrivial class contains just

Less work has been devoted to finding solutions of thehe D=4 and D=5 Schwarzschild solutiongthe D>5
D-dimensional vacuum Einstein equations thatndbadmit ~ Schwarzschild solutions do not adrit-2 commuting Kill-
a KK interpretation, either because they do not admit aring vector fields and are therefore not Weyl solutiorand
appropriate Killing vector field along which KK reduction their Wick rotations. These Wick rotations describe objects
can be performed, or because the reduced spacetime hiisown as “KK bubbles.” If one considers the Euclideanized
pathological features. Examples of such spacetimes are pr®=4 Schwarzschild solution, then the solution looks as-
vided by higher dimensional versions of the Schwarzschild/mptotically like R®x St, the St corresponding to Euclidean
and Kerr black hole$17,18. When Wick rotated, these so- time, which is periodically identified and can be regarded as
lutionsdo admit KK interpretations as describing instabilities a KK compactified dimension. However, the actual topology
of the KK vacuun19] or of KK magnetic field§20,21], but  of the solution iSR>X S?. The size of the two-spheres at
their most natural interpretation is certainly as higher dimen<constant radius decreases from infinity to a minimum non-
sional black holes. zero value at the location of the Euclidean horizon, where a
The purpose of the present paper is to obtain and analyzsoncontractible S* lies. At this point, the KK circles
the higher dimensional analogues of Weyl's class of solusmoothly round off and space cannot be continued past this
tions. Depending on which feature of Weyl's class one fo-radius. By adding a flat Lorentzian time direction one obtains
cuses on, there are several directions in which one can try ta solution toD=5 KK theory where the non-contractible
extend it to higher dimensions. One possibility is to seek thesphere is a static “bubble of nothing.” It is known to be
class ofD-dimensional solutions that are static and axisym-unstablg23]. A related solution is obtained by Wick rotating
metric, in the sense that they admit an isometry gréup both the time and one of the ignorable angular coordinates of
X O(D—2) (with R being time translations However, this the five-dimensional Schwarzschild solution. The Wick-
has been tried before2] without success. Instead, observe rotated angle then becomes a boost coordinate and the solu-
that Weyl’s solutions can be characterized as having two ortion describes a bubble exponentially expanding in the five-
thogonal commuting Killing vector fields. Hence an alterna-dimensional KK vacuum[19]. Its fully Euclideanized
tive way to generalize Weyl's solutions to higher dimensionsversion is an instanton mediating the decay of the KK
is to find all solutions of the vacuum Einstein equations thatvacuumM3x St
admit D—2 orthogonal commuting Killing vector fields. The second class of Weyl solutions contains the
This is done in Sec. Il of this paper. =4 C metric as well as three new solutions. The most in-
As in four dimensions, the higher-dimensional Weyl classteresting of these is a Wick rotated version dd &5 metric
of solutions is parametrized in terms of axisymmetric har-discussed ih24], and can also be related to the KiKmetric
monic functions in an auxiliary flat space. Actually, there areof [12]. It is a static, asymptotically flat solution with an
two classes of Weyl solutions in higher dimensions. The firstevent horizon of topolog$! x S?, i.e., it is ablack ring This
and the most interesting one, is parametrized in termB of is the first example of an asymptotically flat solution of the
—3 harmonic functions in three-dimensional flat space, anddacuum Einstein equations that has an event horizon of non-
is the natural analogue of the=4 Weyl solutions discussed spherical topology. The solution is not entirely satisfactory
above. The second class of solutigdsscussed in Appendix since it has a conical singularity, but it will be shown in a
B) is parametrized in terms d —4 harmonic functions in  separate publication that this singularity can be eliminated if
two-dimensional flat space, and therefore hasDne4 ana-  the ring rotate$25].
logue. The two other new solutions in the same class as the black
Although Weyl's construction ilD=4 describes an infi- ring and theC metric both describe superpositions of black
nite class of solutions, most of them are unphysical in theobjects with static KK bubbles. These solutions are entirely
sense that they are not asymptotically flat, or have nakecdegular outside an event horizon. The first B &5 solution
curvature singularities on the axis of symmétijhe same is  describing a black hole sitting in the throat of a static KK
bubble. The second is@=6 solution describing a loop of
black string with horizon topologys®x St sitting in the
%E.g., a spherically symmetric point source foresults in a sin-  throat of a static KK bubble. These solutions asymptote to,
gular, nonsphericalChazy-Curzon particle. respectively, the KK vacuM »3x St andM¥#x St. Both are
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expected to be unstable. In fact, the evolution of the instabilin which condition(a) can be satisfied, so this theorem has
ity of the former solution can be obtained by a Wick rotationwider applicability than just metrics with an axis of rota-
of the black ring. If these solutions are Euclideanized thertional symmetry.
they give new nonsingular instantons for the decay ofTthe If the conditions of this theorem are met then the coordi-
compactified KK vacuum iD =5 andD=6. natesy! and y? can be chosen in one of the orthogonal
Many of the solutions we describe are naturally inter-surfaces and then extended along the integral curves of the
preted in terms of KK compactification along the orbits of Killing vector fields® In this coordinate system, the vectors
one or several of the Killing vector fields. When there isd/dy' are orthogonal t@/ox!. If it is further assumed that the
more than one Killing vector field with closed orbits, one canKilling vector fields are orthogonal to each other then the
often dimensionally reduce along different linear combina-metric must take the form
tions of them. Physically distinct reduced spacetimes can
therefore arise from the same higher dimensional spacetime.
A good example is the KKC metric and the KK Ernst solu-
tion, which are locally isometric in five dimensiof&0].
With this in mind, different KK reductions of the new solu- wherea andb take the values 1,2, the metric coefficients are
tions found in this paper are briefly discussed in Sec. IV H.independent ok, and ;= *+1 according to whetheg ) is
Multi-black hole configurations can be readily constructedspacelike or timelike.
within Weyl's class, and are briefly discussed in Sec. IVI.  The final step is to use the freedom to perform coordinate
Fina“y, Sec. V contains the conclusions of this work. transformations Onya_ Loca”y it is a|WayS possib|e to
choose coordinates such that

D-2
ds?= D, €e?Vi(dx)2+g,,dy3dy®, 2.0
i=1

Il. GENERALIZED WEYL SOLUTIONS gabdyadyb:ezchdZ 2.2

A. Integrable submanifolds .
The first step in generalizing Weyl’s construction to more'Where Z and Z are complex conjugate coordinates if the

than four dimensions is to find a convenient coordinate chaffaNsverse space i54 spacelike, and independent real coordi-
for the generaD-dimensional line element admittirg— 2 nates if it is timelike® The functionC is independent ok'.
commuting Killing vector fieldgorthogonality of these vec-

tor fields will not be assumed yefThis is a simple generali- B. Solving the Einstein equations

zation of what is done in four dimensiorisee[2] for a We have shown that anp-dimensional metric that ad-
review). It will be assumed that the metric is Riemannian or pits p — 2 orthogonal commuting Killing vector fields can
Lorentzian. Let§, denote the Killing vector fields, <i be written locally in the form

<D—2. Since these commute, it is possible to choose coor-
dinates &',yt,y?) such thatg(li)=a/(9x' with the metric co- _ _
efficients depending only op! andy?. ds’= Z €e?Vi(dx)?+e*cdzdz 2.3
The next step is to show that one can choose the coordi- =1
tesy! andy? t two-di ional surf th | _ =
natesy_ancy"fo span two-cimsnsional suriaces or Ogonawhere U; and C are functions ofZ and Z only, and €;=

to all of the&;y . In order to do this, one has to show that the+1 Th i i il not b d for indi
two-dimensional subspaces of the tangent space orthogonal™" € summation convention will not be used for indices

D-2

to all of the vectorst;, are integrable, i.e., tangent to two- bl e .
dimensional surfaces. Sufficient conditions for integrability The components OT the curvature tensors of this Ime eI.e-
are supplied by the following theorem: ment are calculated in Append|x A. The vacuum Einstein
Theorem. Let §;), 1<i<D—2 be commuting Killing equations rea®,,,=0. Theij component gives
vector fields such that for eachi, (3
gE‘l‘)lgéz) . .gfg’;g)vvgfﬂ) vanishes at at least one point of the dz exp( E U,—)azﬂJi +&z[ ex;{ E u,-)azui} =0.
spacetime(not necessarily the same point for eveé)y and ) ) 2.4
(b) g(i)Rlvpgfll) R é‘gjg]fo. Then the two planes or-
thogonal to theg; are integrable. Summing this equation overyields
The proof of this theorem is a straightforward generaliza-
tion of the corresponding theorem in four dimensions, as
given in [2]. In this paper, only vacuum solutions of the &zﬁzexp(; Ui) =0, 2.9
Einstein equations will be considered so conditigm is
trivially satisfied. Condition(a) is less obvious; in four di- which has the general solution
mensions it is usually assumed that one of the Killing vector
fields is an angular coordinate corresponding to rotations———
about an axis of symmetry, and must therefore vanish on this3t js necessary to assume that tg are non-null at this point.
axis, which ensures that conditidg) is obeyed. The same  “The term “Weyl solution” is usually reserved for static solutions
assumption can be used to motivate conditi@h in the (i.e., a spacelike transverse spateit we adopt a more general
higher dimensional case. Of course, this is not the only wayisage here.
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- The constrain{2.6) can be eliminated by using it to ex-
2 Uj=log W(Z) +W(Z2)), (2.6)  press, sayJ; interms ofU, . . . Up_,. If this is done therC
: can be written
wherew=w if Z andZ are complex conjugate, butandw 1 ~
are independent real functions Zf and Z are real coordi- C=5log(dzwizw)— 2, Ui+, (2.14

nates. Substituting Eq2.6) into Eq. (2.4) yields 1
~ ~ herey is given by integratin
2(W+W)dya5U, + d,WwizU + dswa,U,=0. (2.7 rorev IS given by integraing
- _ - w+w| ]
If wis nonconstant theR,,=0 can be rearranged to give dpy= 2 (9,U)2+ 2 3,Ui0,U;
dzW [i>1 1<i<j ]
> 22U, > 37Ui07U; (219
i 1 i<j - )
aZC=—+§ E Uj———. (2.9 - WA W S Ui S U
Ei: dzU; 22 d7U; zr= P _i>1( zVi 15 zVioz j_-
(2.1
A similar equation arises froR7z=0 (assuming thatv is
nonconstant C. Relation to Laplace’s equation
5 Sincew andw have been assumed nonconstant, it is le-
Z a7U; 1 2 d7Ud7U; gitimate to perform a coordinate transformation franand
I I
9;C=———+= >, JFU;— = 29 Ztow(2) andw(Z). In four dimensions, these are referred
> 55U, 29 2> 55U, to as “Weyl's canonical coordinateg’]. This gives
i i
ds?=2, e?Vi(dx)?+ e dwdw. (2.17
I

The first two terms of these equations be integrated immedi-
ately, using Eq(2.6) to give
This coordinate transformation is conformal. Equati¢hg),

1 - X . _
C= = log(d,Wizw)+ v, 2.10 (2.1_],), a_md (2.12 are conformally invariant so the transfor
2 mation just replaceg; by d=4,, anddz by d=dg,. Then the
solution is determined by the following equations:
where
W E E U;=log( (W+Ww), (2.18
&Zv—— &ZW & &ZU &ZUJ, (21])
2(W+W)daU; + dU;+dU, =0, (2.19
AR
dzv= (2.12
W =) Jv=—(W+W) >, dU;dU;, (2.20
i<j
The integrability condition fow is
d,07v=d707V. (2.13 dv=—(W+W) > dU;dU;. (2.21)

i<j
It is straightforward to check that this equation is indeed
satisfied by using Eq€2.6) and (2.7). These equations also If one prefers to eliminate the constrai@ 18 then the met-
ensure that the remaining Einstein equatity3=0 is satis- ric takes the form

fied.

The only assumptions made above were théZ) and dsz=exp( _22 U,)[ezydwde e (W+W)2(dxH)?]
~ I
w(Z) are nonconstant. The special cases when(onéoth i>1

of these functions is constant will be dealt with in Sec. 11 D.
With this exception, it has been demonstrated that the most + E ee?Vi(dx)?, (2.22
general solution of th®-dimensional Einstein equations that i>1

admits D—2 orthogonal commuting Killing vector fields .

takes the form(2.3), where U; are solutions of Eq(2.7)  With y determined by

subject to the constrairi2.6), andC is given by Eq.(2.10.
The functionv in this equation is given by integrating Egs.

21 (aui)2+12 9UaU;|, (2.23

<i<j
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_ - — _ which is just the wave equation in a three-dimensional flat
dy=(W+w) izl (9U;) +1E ~dUjdU;|. (224  spacetime with metric

<i<j

— , , ds’= —dt?+dr2+r2de?, (2.30
If ZandZ are complex conjugate coordinates then, as men-
tioned above, one must take=w. Introduce real coordi- with the functionU; independent of the unphysical coordi-
nates (,z) by w=r +iz, so the canonical form of the metric nate §. The solution is specified bp —2 axisymmetric so-
is lutions of the wave equation in three-dimensional flat space-
time but onlyD—3 of these are independent because the
_ 201 i\ 2 4 a2V( 2 constraint(2.18 states that these solutions must add up to
dsz_Ei eie?i(dx)?+e?(dr*+dz’). (2.29 the static solution describing a point source at the origin of
polar coordinates.
Equation(2.19 then takes the form

D. Special classes of solutions
2 2
. 1 . . ~ —
(9_U'+ - '?_U'+ '?_U':o, (2.26) It was assumed above that(Z) andw(Z) are noncon-
gz roar 72 stant, but there is the possibility that one or both of these
S o _ _ quantities is constant. These solutions are discussed in Ap-
which is just Laplace’s equation in three-dimensional flatpendix B. They will be referred to aspecial Weyl solutions

space with metric to distinguish them from those of the previous sections,
P which will be referred to agieneric Weyl solutiong~or D
ds?=dr?+r2d¢*+dZ. (220 =4 the special solutions are either flat spaceprwaves.

The interpretation of the solutions ID>4 is unclear, so it
The functionU; is independent of théunphysical coordi-  might be interesting to investigate them further. D=5,
nate 0, i.e., it is axisymmetric. The solution is therefore most of the static special solutions appear to be nakedly sin-
specified byD —3 independent axisymmetric solutions of gular but there may be exceptions.
Laplace’s equation in three-dimensional flat space. There are |, the rest of the paper we will consider only statiw (
only D—3 independent; because of the constrai(?2.18),

which can now be written =w) Weyl solutions of the generic class.

Il. WEYL FORM OF KNOWN SOLUTIONS
> U;=logr + const, (2.28 . . . . .
i Generic Weyl metrics are characterized by axisymmetric

harmonic functions in three-dimensional flat space. If such
where the constant term can be freely adjusted by rescalinfyinctions are regarded as Newtonian potentials produced by
the coordinateg'. Note that log is the solution of Laplace’s axisymmetric sources, then Weyl solutions can be com-
equation that describes the Newtonian potential produced bygletely characterized by these sources. In order to identify
an infinite rod of zero thickness lying along thexis, with  the types of sources that might be relevant in attempting to
constant mass 1/2 per unit lendth units G=1). The solu- find interesting new solutions, we study the Weyl form for
tions for U; can also be thought of as Newtonian potentialssome known physically relevant metrics.
produced by certain sources, so the constréri28 states
that these sources must add up to give an infinite rod. Note
that the solution is completely determined by these sources. ) ) _ .
The sources forU; will sometimes be referred to as the e study in Appendix C the circumstances under which
sources foix. the metric(2.3) is flat. There are three possibilities. This first

For D=4, the metric(2.22) can be brought to the stan- is trivially given by taking_a_ll_ of the functiondJ; to be
dard form of Eq.(1.1) by taking e;= — e,=1, x2=t, x* constanf Tr_le second. possibility corresponds to all but one
= ¢/2, andU,=U. However, this form obscures the symme- ©f the functionsU; being constant, and one of thg (say,
try betweerx! andx2, and hides the fact that solutions which Y1) P€ing the potential of an infinite rod along tlaeaxis,
have different sources fdy may actually be equivalent un- U,=logr+const. The_metrlc in this case can be brought to
der interchange of and ¢. We wil illustrate this point with ~ the form(see Appendix €

A. Flat space

an example in Sec. Il B. D-2
If wandw are real coordinates then they can be viewed as ds?= e, £2(dxH)%+ D, €(dx)2+d&2+dn?, (3.0
advanced and retarded null coordinates. Introduce new coor- i=2

dinates {,r) defined byw=r+t, w=r—t. Then Eq.

(2.18 becomes so if e;=+1 thenx! is an azimuthal angle and &=—1

thenx? is a Rindler(boos} time coordinate.
PU;, U, 14U,

By >t —= 0, (2.29

at ar roor 5This can be regarded as belonging to the special Weyl class.
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The third possibility corresponds to all but two of the zaxis. The rod has vanishing thickness and mass 1/2 per unit
functionsU; being constant, with one of the remaining two length. It follows from the constrair2.28 that the function
being the potential of a semi-infinite rod along ttreea por- U, must be the potential produced by semi-infinite rads
tion of the z axis (for somea), and the other being the =M andz<—M. These sources are depicted in Fi¢n)2

potential of a semi-infinite rod along ttze=<a portion of the Note that our approach makes clear the nature of the so-
z axis (see Fig. L lution of theD =4 Weyl clasq1.1) that is obtained by taking
In terms ofw, two semi-infinite rod sources fdy. In our approach it sim-
ply corresponds to interchanging andx?, i.e., interchang-
U;=log|Reya=iw|+const, (3.2 ing the timet and azimuthal angle> coordinates. This gives
a four-dimensional analogue of the expanding KK bubble of
U,=log|Rey—a¥iw|+const. (3.3 [19], and describes the decay of ti®2=4 KK vacuum
- . , M12x St [26].
Writing these in terms of,,z gives The five-dimensional Schwarzschild metric can be written

in Schwarzschild coordinates as

1
U;=5loglasz+(a%2)”+r?]+const, (3.4

-1
ds?=—|1- L |de+ 1—% dR2+ R2d 2
1
— 2 2
Uz—zlog[—aiz+ J(—az*xz)“+r<]+const. (3.5 R sirod ¢+ R? co2 0d 2 38

The upper sign choice correspondse being the potential  \yhere o< o< w12, andp~ p+2m, i~ y+2m. There are

of a semi-infinite rodz=a and U, being that of a semi- ¢learly three orthogonal commuting Killing vector fields.
infinite rod z<a. The lower sign choice corresponds t0 the Take x1=t, x2=¢, x3=y¢ with ;= —1, €r=€3=1.

source forU; being a semi-infinite rodz<—a and the  Then one can read off
source forU, a semi-infinite rodz= —a. The rods are all on

the z axis, have zero thickness, and mass 1/2 per unit length. P 12
The metric in this case can be brought to the fdsme Ap- eVi=|1- = eV2=Rsing, eYs=Rcosé.
pendix Q R
(3.9
D-2
ds?= €, £2(dxY) 2+ e,72(dxD) 2+ D, €(dx)2+de2+dn?,  The constraint2.28 gives
i=3
(3.6 U,+U,+Uz=logr, (3.10

so the coordinates® andx? are azimuthal angles or Rindler

time coordinates according to the signsegfand e,. where the constant term has been absorbed into the normal-

ization ofr. This equation implies

1/2
R? sin 26. (3.11)

B. The Schwarzschild solution

The D-dimensional Schwarzschild solution has isometry r= 2
group RXO(D—1). To write it in Weyl form,D—2 or-
thogonal commuting Killing vector fields are required. For . . . .
the Schwarzschild solution, this occurs only fbr=4,5. To bring the metric to Weyl form, it is necessary to define
: . . ; such that
Hence only the four and five-dimensional Schwarzschild so-
lutions can be written in Weyl form. The Weyl form of the

-1
fo.ur—dimt_ansional Schwar_zschild solution is well known so it dr2+dzzzdwd7vx< 1— el dR?+ R2d 62.
will be discussed only briefly here. R?

ForD =4, a generic Weyl solution can be converted to the (3.12
form of Eqg.(1.1) as described in Sec. Il C. For the Schwarzs-
child metric, the functiorlJ is given by Substituting the ansatz= g(R)cos 2 into this equation then

uniquely determineg(R), giving
Y 1Iog M—z+\(M—2)°+r? 37
2 2|’ '
2 =Mz M+ 2)% z=£(1—i R2 cos 26. (3.13
2 2R?

whereM is the Schwarzschild mass parameté=U, is the

potential of a finite rod along the M<z=<M portior? of the It also possible to read off:

-1
R?sirf26. (3.14

wo w?

1
—— 4+ _cog24
R? 4R*

50ne is free to shift the rod to any position on thexis with a e2rv="_
transformatiore—z+a. 4
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U, C. Other four-dimensional solutions
Uy

FIG. 1. Sources for the harmonic functions of one of the Weyl
forms of flat space. The thin lines denote thaxis and the thick

Other physically relevant four-dimensional Weyl solu-
tions are:

The Israel-Khan solution$27]. These describe finitely
many collinear black holes in static equilibrium. The forces

lines denote thin rods along this axis. The left and right ends of thé10Iding them apart arise from conical dgficit§ in the form of
figure are to be interpreted as —» andz= -+ respectively. The ~Struts between the black holes, or cosmic strings extending to

sources forU; andU, are semi-infinite rods of mass 1/2 per unit INfinity. If the metric is written in the Weyl forni1.1) then
length. TheU, source lies along=a and theU, source alongz  the sources folJ are finite rods along the axis. The rods
<a for somea. In the classification of Sec. IV B, this is a class 0 have zero thickness, mass 1/2 per unit length, and do not
solution. intersect. The length of each rod determines the mass of the

corresponding black hole. If one considers infinitely many
It remains to write the functions; in terms ofr andz Todo  such rods of equal length and equally spaced then one can
this, letX=e"2 andY=eYs, Equationg3.11) and(3.13 can eliminate the need for conical singularities and obtain a so-
then be written as lution describing an infinite line of black hol¢22].

The C metric[10]. The C metric is a four-dimensional

w metric that describes two black holes accelerating apart. The
r’=| 1—- 2y2 force for the acceleration is provided by a conical deficit
NIV ) : C . p y i icit,
which occurs either in the form of a strut between the two

black holes or as a cosmic string stretching off to infinity

== 1 M (Y2 X?) (3.19 from each hole. The Weyl form of the metric was obtained
2 2(X2+Y?) ’ : in [28,29. The functionU is the potential of a finite rod and
a semi-infinite rod, which do not intersect. Both rods lie
which can be rearranged to give along thez axis, have zero thickness and have mass 1/2 per
unit length[see Fig. 8 with U;=U]. The finite rod corre-
2Y4—(u+42)Y?—-2r2=0, (3.16  sponds to one of the black holes and the semi-infinite rod is
responsible for the acceleration fidlithe second black hole
2X4—(u—4z)X?—2r?=0. (3.17 lies beyond an acceleration horizon, so it is not apparent in
the Weyl coordinates Adding further finite rod sources 19
Solving these yields results in a metric describing multiple accelerating black

holes connected by conical deficj30].

2=5109 % V\7z | : IV. NEW SOLUTIONS
1 — The sources for the solutions discussed in the previous
Us==log ﬁ+z+ Ny ﬁ+z +r2] (3.19 section are all rods of zero thigkness and mas_s_1/2 per_unit
2 4 4 ] length. The rods are on theaxis and can be finite, semi-

o infinite or infinite. More general sources typically give rise to

v can be written in terms ofv and w to check that Egs. naked curvature singularities on the axis of symmetry.
(2.23 and(2.24) are obeyed. The explicit expression will not Hence, in attempting to find interesting new Weyl solutions
be written out here since it can be obtained as a special casee will consider only sources of this form. The examples of
of more general expressions given later in this paperis  the previous section allow us to make some general observa-
the potential of a semi-infinite rod with vanishing thicknesstions that are useful when analyzing a solution given its set
and mass 1/2 per unit length positioned along zrexis at  of sources.
z=uld. Us is the potential of an identical rod along tlze
axis atzs—u/4. The functionU; is obtained from Eq.
(3.10 and is the potential of a rod along the u/4<z
< u/4 portion of thez axis, again with vanishing thickness = The constrain(2.28 is very restrictive: It states that the
and mass 1/2 per unit length. See Figh)2 Note that the sources for the differert);’s must add up to an infinite rod
source corresponding to the time coordinate is a finite rod foalong thez axis, again with mass 1/2 per unit length. Assum-
both theD=4 and theD=5 Schwarzschild solutions. ing that only finitely many rods are present, it follows that

Black branes.For D>5, the D-dimensional Schwarzs- either one of theU;’s has semi-infinite rod sources which
child solution is not a generalized Weyl solution. However,extends t@=o andz= —, or there is on&J; with a semi-
the black branes obtained by taking products ofhe4 or infinite rod source which extends #&= and another with a
D=5 Schwarzschild solution with flat space are easily seesemi-infinite rod source which extend ze= —oo. All of the
to be Weyl solutions. The functiond; associated with the otherU;’s must have bounded sources consisting of a finite
flat directions are all constant, and those associated with theumber of finite rods.
Schwarzschild directions can be read off from the results of If the source folJ; is boundedi.e., involves only finitely
this section. many finite rodgthenU; must approach a constant far from

A. General comments
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FIG. 2. Sources for thé) four dimensional an¢b) five dimensional Schwarzschild solutions. The black hole interpretation requires that
x! is the timelike coordinate. If ifa) x? is the timelike coordinate then this describes an expanding bubble M tR& S' vacuum. If both
x* andx? are spacelike then this describes a static 8bubble(when a trivial time direction is addedf in (b) x? (or x®) corresponds to
time, then it describes an expanding bubble in Mhe3x St vacuum. 1fxt, x?, andx® are all spatial coordinates, then it describesSan
bubble. In the classification of Sec. IV B, these solutions are class I.

the source. It follows thax’ must be a flat direction in the A final fact useful when analyzing Weyl solutions imme-
asymptotic metric. An example of this is provided by the diately follows from the above discussion. bétbe a spatial
Schwarzschild metrics, for which the source correspondingoordinate with a single finite rod source. Thérhas to be
to the time coordinate is a finite rod, and the time directionidentified with a certain period in order to avoid a conical
does indeed become flat in the asymptotic region. singularity at the bolt corresponding to the source. Moreover,
Now consider the behavior near the sources. Assume firsf js a flat coordinate in the asymptotic region. It follows that
thatx' is a time coordinate. For thB=4,5 Schwarzschild i s most naturally interpreted as parametrizing a KK circle
solutions, the source fJ; is a finite rod and the region near a infinity. I there is more than one finite rod source then it
this source corresponds to the event horizon of the blaclight no longer be possible to remove all conical singulari-
hole.. This is also true for the. finite rod sources in Be ties by identifyingx but one would probably still wish to
metric and Israel-Khan solutions. The semi-infinite rod iyimize the number of singularities by an appropriate iden-
source of theC metric corresponds to a horizon that extendstification. Henceif a spatial coordinate khas only finite rod

to_asyn;)ptotlc |nf|rr1]|ty—_th|s IS ag_accelte)ra;;uon hol_rll(zon, ‘t’)Vh'Ch sources then it can be interpreted as a KK coordinate in the
arises because the time coordinate behaves like a boost aly \hiqtic regionThe rod sources, where the KK circle

asymptotic |nf||j|ty. It was shovyn ab_ove tha; flat Space Cayyinks to zero size, appear as singularities in the dimension-
also be written in a Weyl form in which the time coordinate ly reduced description

has a semi-infinite rod source. This source also corresponciatsI Now. since at most two of the’s have sources extend-

to an acceleratiqn horizon_, arisin_g becaus? the time coordihg to i’nfinity, it follows that at Ie:s\sD—4 of thex’s will

n_atg IS a baost, i.e., the Rlndle_r time coc_)rdlnate. To SUMM33ave bounded sources. If one of these is the time coordinate
rize: finite rod sources for the time coordinate correspond toy. " thare will be at leasb —5 spatial coordinates with
event horizons in spacetime, gnd semi-infinite rod SOUICeEounded sources so the asymptotic metric will have at least
correspond to acceleration horizons. D -5 compactified flat directions. It follows that rMd»>5

; Tr(;e t():asE |n|\_/éh|ch§ 1S a spatial c?otrhdlnate tc_an bg_ under-%\/eyl solution can be asymptotically fléh the global senge
stood by Euclideanizing some of the Mercs dISCUSSEq j°h a5 soyrces of the form being considered here.

above. For the Euclidean Schwarzschild solution, the finite
rod source corresponds to the “bolt” where the Euclidean
time direction closes off smoothly, provided it is identified
with a suitable period. A similar interpretation holds for Eu- A solution will be said to be of clagsif it has n finite rod
clideanized Rindler space, with the only difference being thasources(as well as a suitable number of infinite, or semi-
in the former case, the bolt is finite in exte(ittis an S? in infinite rod sources

D=4) whereas in the latter case it extends to infirfityis We make no distinction between metrics related by Wick
R? in D=4). These features also occur for the other ex-otation, so any of th&' can be chosen as the time direction.
amples above. In conclusiorod sources for a spatial coor- The first few classes are:

dinate X correspond to “bolts:” fixed-point sets of the orbits ~ Class 0 If there are no finite rod sources then the sources
of 9/9x'. If the source for Xextends to infinity, then the bolt must be either an infinite rod, or two semi-infinite rd@sg.

will also extend to infinity, corresponding to an axis of rota- 1). It was shown above that the metric is flat in both of these
tional symmetry with 'xacting as the azimuthal angle. cases, so flat space is the only class 0 solution.

In order to avoid a conical singularity' has to be peri- Class | In this class, there is a single finite rod so the
odically identified with a particular period determined by the other sources must be two semi-infinite raég. 2). There
sources. If there is more than one source then there will bere two ways that these sources can be distributed amongst
several bolts, and the appropriate periodsXoat each bolt the U;’s. (a) U; has a finite rod source and, has both
may differ. In this case, conical singularities will result. This semi-infinite rod sources. The othe are constant. This is
occurs for theC metric and Israel-Khan solutions as well as the four-dimensional Schwarzschild solutigimes some flat
those of{ 30]. directions ifD>4). (b) U, has a finite rod source, ard,

B. Classification
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FIG. 3. Sources fofa) C metric, (b) black ring,(c) black hole plus KK bubble, an@l) black string and KK bubble. Note that the sources
for the U;’s have to add up to an infinite rod. In the classification of Sec. IV B, these solutions are class Il.

andU; have semi-infinite rod sources. The otlgrare con-  where one recovers the =4 Schwarzschild solution, Fig.
stant. This is the five-dimensional Schwarzschild solution2(a), by taking to infinity the leftmost end point of th& rod.
(times some flat directions D>5). Effectively, this amounts to removing the acceleration hori-
Class IL The sources are two finite rodg<z<a, and zon from the metric, the well-known limit where the accel-
a,<z=a, and two semi-infinite rodg=a, andz=<a, (Fig.  eration of the black hole is set to zero. T@enetric also has
3). There are four ways to distribute these sources amongseveral limits where flaRindler space, Fig. 1, is recovered.
theU;’s. Flat dimensiongcorresponding to constabl;) will The 1I(b) solution that below will be interpreted as a black
be neglected(a) U; has a semi-infinite rod source and a ring, Fig. 3b), similarly reduces to either@=>5 black hole
finite rod source, as doés,. This gives the four-dimensional [Fig. 2)], or a black string obtained as the product of the
C metric. (b) U, has a finite rod source), has a semi- D=4 black hole[Fig. 2] and a flat spatial direction.
infinite rod, andU5 has a finite rod and a semi-infinite rod.
This is a new “black ring” solution that will be discussed in C. The black ring
Sec. IV C.(c) U; andU, have the finite rods as sources, and In [24] an unconventional neutral limit for the KK

U; has both semi-inf.in.ite rods as its sources. This is a ne"&hargecﬁ metric ([12] dualized to have electric chafgeas
D=5 solution describing a superposition of a black holeiayen The resulting metric was interpreted as describing a

with a Kaluza-Klein bubble(d) U, andU, have the semi-  nair of KK bubbles being accelerated apart by a conical sin-
infinite rods as sources, and; andU, have the finite rods g jarity. We now show that this metric has a less exotic
as sources. This is a nely=6 solution describing the su- interpretation if one Wick rotates it to give

perposition of a black string with a Kaluza-Klein bubble.

Solutions(c) and(d) will be discussed in Secs. IVE and IVF F(x)
respectively. ds?=— 2 F(x)| (y2—1)dy?
F(y) 2 2
The D=4 classn solutions forn>2 have all been dis- AT(X—y
cussed before. Ifi is odd,n=2k—1, then the solution is an F(y) A 1-x2
Israel-Khan solution describing black holes. Ifn is even, + ldyz +F(y)2( X X d¢>2) ,
n= 2k, then the solution is a generalization of tBemetric y2—1 1-x2  F(x)

of the form discussed ih30] and describek accelerating
black holes on each side of an acceleration horizon. Conical
singularities are present in both cases.

A solution in a given class can be reduced to a solution o
a lower class by either contracting to zero size or expanding
to infinity one of its finite rods. The limits that must be taken F(§)=1—-ué. 4.2
to recover a given solution can be easily deduced by looking
at the diagrams for sources in Figs. 1, 2, and 3. For exampl&he parameterg and A will be taken to lie in the range 0
from Fig. 3@ we easily see that th€ metric has a limit =u<1, A>0, the coordinatex in the range—1<x<1

4.9

f/vhere
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and the coordinatg in the rangey< — 1. This metric clearly

PHYSICAL REVIEW D65 084025

Expressions for these quantities in termx@indy are given

has three orthogonal commuting Killing vector fields so it isin Appendix D. Using these expressions, it is easily seen that

a Weyl solution. Choosing=x*, y=x? and ¢=x3, the
functionsU; are given by

F
V1= % (4.3
(y*=1F(x)
e2U2: —AZ(X_y)Z s (44)
02Us_ (1-x*)F(y)? @5

CAZx—y)2F(x)

if one takesa= A then the Weyl form of the metric is given
by

R3— {3
2U; . _ = °°
e R0, (4.15
e?V2=(Ry—{y)/A, (4.1
(Ri+ ) (R—12)
2U5_
T T AR L) (417
I+p Yo Y12 [Ra— (>
2v_ <
4A RiR;R3 VY13 VR3— (3 418

In order to identify the sources that produce this solution it is

necessary to work with the coordinateg. From Eq.(2.28),
it follows that

a
" Ry FOFIATRAGED, 46

for some positive constant. The coordinate is obtained
from the requirement

F(y) F(x)
dr+dz« 1_dex2+ y2_1dy2, 4.7
which yields
9z (y2—1)F(y) or
N S AARS SR 4.8
Ix (1—-x*)F(x) 9y 49
and
9z (1—x?)F(x) ar
Y AR Ay 4.9
ay (y?=1)F(y) X 49

These equations can be integrated to give

a(1—xy)(F(x)+F(y))
Z:
2A%(x—y)?

(4.10

up to a choice of sign and an arbitrary additive constant.
In order to write the solution in Weyl form, it is conve-
nient to define

a;=al(2A?), a,=aul(2A?), az=-—aul(2A?)
(4.11
and then introduce the following notatiga7,30:
{i=z—q;, (4.12
Ri=\r2+¢7, (4.13
Yii=RiR;+ {4 +r2. (4.14

from which it follows thatU; is the Newtonian potential
produced by a finite rod- u/(2A)<z=<ul(2A), U, isthe
potential produced by a semi-infinite rae: 1/(2A), andU4

is the potential produced by a semi-infinite rags
—w/(2A) and a finite rodu/(2A)<z=<1/(2A). Note that,

for u=1, these sources reduce to those of the five-
dimensional Schwarzschild solution and hence the metric
must reduce to the metric of the Schwarzschild solution, so
the function» for Schwarzschild can be read off from the
above.

D. Analysis of the black ring

We now explain why the name “black ring” is appropri-
ate by examining the global structure of this solution. To
start, consider how the general comments of Sec. IV apply
to this solution. The source fdris a finite rod, so the time
direction is expected to be asymptotically flat and there
should be a horizon present. The coordinageand ¢ both
have semi-infinite rod sources, so these coordinates should
be periodically identified and will have the interpretation of
azimuthal angles in the asymptotic metric.

Consider the form of the metric §s— — . Thety part of
the metric becomes

1
- dtr 2

dsi,~F(x) dy?|. (4.19
SR =Lyt Y
Performing the coordinate transformation
4p
V=" poye (4.20
gives
A2Y?
ds§y~F(x)(— Sdt?+dY? . (4.2
4

The metric in brackets is just that of Rindler space with
acceleration parameter=A/(2u). The coordinate transfor-
mation that takes this to a manifestly flat metric is

X=Ycoshat, T=Y sinhat, (4.22

084025-10
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giving /1—,“
5()(:,1):2’# 1— m

dsi~F(x)(—dT2+dX?). (4.23

. (4.29

In both cases, th&¢ part of the metric describes a surface
hat is topologicallyS? with a conical singularity at one of
he poles. In the full metric, this singularity is extended in

. h bleadi d finds that th two other spatial dimensions and hence it describes a “deficit
examines the subleading order terms, one finds that these mbrane,” the five-dimensional analogue of a four-

also regular there if the same coordinate transformation i’aimensional deficit strin§
made. It is easy to see that the other terms of the metric can Asy——1, gy, tendé to zero. To analyze this, set

also be smoothly extended through this surface which is_ . — .
therefore a regular horizon. The near-horizon metric is coshe/v1+u). Near¢=0, theyy part of the metric is

conformal to

Note that the conformal factdf(x) is always positive for
—1=<x=1. This analysis shows that the leading order part oti
the ty metric has a nonsingular horizon yat —c. If one

2

2
B yv X 52
ds?’~F(x)(—dT?+dX?+A"2dy?) +— ~dé&? 2
(x)( LERY B dsj,~dg?+ T4, 00 (430
1—x2 ) This is regular at=0 providedy is identified with period
+ F(x) do” |, (4.24 Ay=2m1+u. y=—1 is then seen as the origin of polar

coordinates and hence cannot be continued beyond1.
and the metric of a constanslice through the horizon is ~ Returning to the horizon m.etn(n.ga, it is now clear that
the topology of the horizon iS!x S?, which justifies calling
21—y this solution a black ring. The circumference of the ring var-
d¢2) 1

>+ ies from a maximum of Z(1+u)A~ ! atx=—1 to a mini-
1-x* F(x) mum of 21— u?A~! at x=1. Sincex is the polar coor-
(4.25 dinate on thes?, it follows thatx= —1 points away from the
ring andx= +1 points into the hole in the center of the ring.
Thus the choice of where to put the conical deficit corre-
sponds either to having the black ring sitting on the rim of a
disk shaped deficit membrarfeith negative deficjt or to
(4.26) having the black ring sitting on the rim of a disk-shaped hole
in an infinitely extended deficit membran(@ith positive
deficit). The area of the horizon is

1
dsz=ﬁ FOX)dy2+ u?

Consider now thex¢ part of the metric, which is confor-
mal to

dx>  1-x°
ds,=——+ de?.
So=1e " Foo 4

Let x=—cosé with 0< §=< . This gived

2(1+
5 Sirt 6 ) Ah=8w2—’“ (A3 2 (4.30)
dsf,=de*+ —1+,ucosed¢ . (4.27
in the former case, and

In order for this metric to be regular &=0 (i.e.x=—1), it
is necessary to identify with period 271+ u. For regu- A1 u?
larity at == (i.e. x=1), it is necessary to identify with Ap=8m UEE (4.32
period 27y 1— w. It is therefore not possible to have regu-
larity at bothx=1 andx= —1. If one demands regularity at j the |atter.
x=—1 then there is a conical singularity>at 1 with deficit It is clear from the metric that the only valuesofindy
angle that can correspond to asymptotic infinity arey=—1. As

these values are approached, the metric takes the asymptotic

[1+u form
5(X=l):_277< H—l), (428)

2 2 2 dy2 dx?
which is negative so this is really an excess angle. If one ds’~—dt +m (y*—1)dy + vi-1 1-x2
demands regularity at=1 then there is a conical singularity
at x=—1 with deficit angle

+(1-x?)d¢?|, (4.33

Ilf w=1 then the following analysis does not apply, but it is easy
to see that thet¢ part of the metric describes a rousd of radius 8For a simpler example of a deficit membrane, consider the metric
2/A provided one identifiess and ¢ with period 2/27. This is  ds’=—dt?+dr+r2d#2+dr3+r3dds whered, is identified with
consistent with the above comment that flae-1 solution is just  period 27 and 6, with period 27— §. The deficit membrane sits at
the five-dimensional Schwarzschild solution. r,=0.
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wherey= y/\1+ u, = ¢/1+ u, andA=A/(1+ ). The
quantitiesg, ¥, both have period 2 if the period of ¢ is
chosen such that the conical deficit liesxat 1. This metric
is in fact known to be flat space. The transformation

; y’—1 V1-x? (4.3
= = y 77: = y .
A(X—=Y) A(X—y)
takes it to the form
ds?~ — dt2+ d&2+ d 92+ EdP2+ n°d P2, (4.35

which is free of conical singularities i and ¢ both have
period 2, which they do if the conical deficit lies at=1. If

the conical deficit lies at=— 1 theng has a conical deficit

&, given by Eq.(4.29, so the asymptotic metric describes a
flat deficit membrane in this case. The structure of the black

ring is summarized in Fig. 4.

PHYSICAL REVIEW D65 084025

The temperature of the black ring can be obtained by
Euclideanizing the near-horizon metrics —i 7. In order to
avoid a new conical singularity = —<, it is necessary to
periodically identify 7. From Eqg.(4.21), one finds that the
temperature is

A

T= dnp’ (4.39
The topology of the Euclidean solution iS{xS?)—St,
where theS® is covered by the coordinates ¢, andy, and
the S? by x and ¢. The circle removed is the circle aty
= —1 parametrized by-.

For either choice of the position of the deficit membrane,
x=1 orx=—1, there is a Smarr relation:

3
MZ—T.Ah.

TR (4.40

Let us now assume the deficit membrane is outside the ring.
"he action of the Euclidean solution can be computed simi-

2., ql ; ; :
oglflot%o(l:%%);ssgtso .fol\:re:]lvaelé/, r?gfcglglr;ceer?;(: r?:r(':hoﬁ hl—?cr)l- _Iarly to [24], by subtracting the action of the deficit mem-
z P pher 120N. FOW rane spacetime, and yields

ever, the solution has conical singularities that prevent this

from occurring. These conical singularities describe a deficit 2 2 [ 32
membrane that either extends to infinity or forms a disk in- = M: M (4.41)
side the ring. In the latter case, the solution is asymptotically GsA® 3T

flat. We believe this to be the first example of an asymptoti-
cally flat solution with an event horizon of nonspherical to- If we now identify the free energy @&=TI=M-TS, then
pology. Of course, this solution requires the presence of #Sing Eq.(4.40 we find that the entropy satisfies the area
conical excessangle, which corresponds to a deficit mem- law
brane of negative tension. This is presumably unphysical, but
it will be shown in[25] that the conical singularity can be
eliminated if the ring rotates in thé direction.

If the asymptotic metric does not contain a conical singu-
larity then the mass of the black ring can be calculated by

An _271'2,u,2\/l—,ug2

S:
4G5 GA®

(4.42

considering the subleading contributiondg. It is easy to
show that neak=y= —1 this behaves as

~ 2u(1tp)
A (E+ 7%

O~ — , (4.36

from which it follows (see e.g.[18]) that the black ring has
mass

3au(l+
M:L’M)

, 4.3
4GgA? 59

whereGg is Newton’s constant in five dimensions. Note that
when u=1 this gives the correct value for a five-
dimensional Schwarzschild black hole of horizon radius. 2/
If, on the other hand, the deficit membrane extends t
infinity, the mass of the ring can be calculated by taking as

reference background the spacetime of a membgaritbout
a ring), with the result

M= 3muN1—u?

4.3
4GgA? 439

It is unclear whether the black ring is a stable solution, or
whether it will become unstable for a certain range of param-
eter values. When the radius of t§& grows to infinity we
recover a translationally invariant black string, which is
known to be unstabl€31], and this suggests that the insta-
bility might set in already for finite but large enough radius.
In that case the ring would be unstable to rippling along the
¢ direction. Given the presence of the deficit membrane, a
detailed analysis is needed to settle the issue.

E. Superposition of a black hole and KK bubble

All of the metrics discussed above were already kndwn
rather than discovered using the general formalism of Sec. Il.
However, in this section and the following section, new class
Il solutions will be constructed by following the steps de-
scribed there.

The first example is th® =5 solution that was labeled

il(c) above. It will be convenient to parametrize these

sources slightly differently from above, takingy, to be the
potential of a finite rogu/(2A)<z=<1/(2A), U, to be the
potential of a finite rod- w/(2A) <z=< u/(2A) andU; to be

9Although the black ring metric had not been interpreted as such.
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For the black ring, the coordinate transformatianzj
—(x,y) [defined by Eqs(4.6), (4.10 with a=A] gives a
form of the metric that is easier to analyze. This suggests
performing the same coordinate transformation here. The
transformation ofir?+ dz? under this change of coordinates
can be obtained from the above analysis of the black ring. In
these new coordinates, the metric takes the form

(1-X)F(y)
2u 1\2
TyF PO
(1+X)(1=-y)X(— 1= y)F () F(y)
(x—y)*
L Y21t e A=YFX) o
Afx=y)® | 17y

2u3

A4

X

(dx®)?

FIG. 4. Spatial sections of the black ring metric. The coordinate

¢ is suppressed. The surfaces of constaate nested surfaces of
topology S St. The coordinatey is the coordinate ors'. The

coordinatesx and ¢ are, respectively, the polar and azimuthal
angles onS?. The smallest constant surface corresponds to the
horizon, aty= —«. The surface ay= —1 degenerates into an axis
of rotation where the orbits of shrink to zero. The surfaces of
constank are denoted by dotted lines= —1 points out of the ring

and x=+1 points into the ring. The conical singularity may be

1-y)°F
+( y) (y)dx2
1—x?

, (4.47

where the similarity with the black ring has suggested taking
x? to be the time direction, normalized such that=0. The
square of the Riemann tensor divergesxatl/u, at y
=1/u and aty=1. This suggests taking the ranges of the

chosen to lie inside the ring or, as in the case shown, outside theoordinates to be, agaif; 1<x<1 andy=<—1.

ring (so that it extends to infinidy Infinity is atx=y=—1.

the potential of the semi-infinite rods=1/(2A) and z<
—wl(2A). The parametege will be taken in the range 0
<u<1 (in order to prevent the rods from overlappingys-
ing the same notation as for the black ring, this gives

Ry~

e?Vi=g21 =%, 4.4
Ri—{ (443
R3—{3

2U, _ q2u

e?Vo=g2 ==, 4.4
Ro— 0 “49

e?V3=e?"3(R;— {1)(R3+{3), (4.49

where theu; are arbitrary constants that reflect the freedom

to rescale the coordinated. This will be used to avoid any

conical singularities along the axes: according to the general
will be made here. Lettingg=x* and = x3, the metric now

comments of Sec. IV A, they can all be eliminated.

This metric has an event horizonyat —, just as for the
black ring. The orbits ofx® shrink to zero size ak=1.
Regularity requires that® is identified with period 2r and

(4.48

The orbits ofx® shrink to zero size at botk=—1 andy=
—1. The metric will be regular in both casesxit is identi-
fied with period 27 and

e?U3=2,/2e2%0,

e?U1=22(1— u?) A %e?o,

(4.49

Having made these identifications, the above metric is com-
plete and nonsingular and cannot be extended except through
the event horizon af= —c0. Note thaty, could be absorbed
into A and can therefore be chosen to take any convenient
value. The choice

A2

V2(1+ )

eZVO =

(4.50

Following the prescription of Sec. Il, one now computestakes the form

the functionv by writing the functionsU; in terms of the
complex coordinatew=r+iz and then integrating Egs.
(2.20 and(2.21). This calculation is performed in Appendix
E. The result is

e2 Y0

2v_
® TRiRR;

Ri—&
VY 1Y 13Y o3 =——, 4.4
1213V g =7 (4.49
wherey, is an arbitrary constant of integration. The quanti-

tiesR;, i, andYj; are the same as for the black ring, Egs.
(4.12), (4.13, and(4.14).

X

_FX) 2(1—p) (L=xF(y)  ,
F(y)

ds*= a2 (I=yF(X)

dt?+

+2(1+x)(1—y)2(—1—y)F(X)F(y) 42
(1+pw)A*(x—y)*

(1=Y)F)  , (1=y)°F(y) ,
gy dy“+ 12 dx

L1
A%(x—y)?

(4.5)
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where ¢ and ¢ both have period 2. The event horizon at mension varies. This is depicted in Fig. 6. The solution de-

y=—o has topologys®. scribes a black hole sitting in the “throat” of a static KK
To interpret this metric, it is helpful to look first at certain bubble.

limiting cases. Ifu— 0 then the sources for this solution tend  In order to see that the topology of the horizorsts note

to the sources for a metric consisting of a flat time directionfirst that the structure of the sources around the rod for the

times theD =4 Euclidean Schwarzschild solution. This is time coordinate? in Fig. 3(c) is locally the same as the rod

the metric of a static KK bubble. Ii.— 1 then the sources gtrycture in Fig. 2b) (with x* as timé. In more detail, note

tend to the sources for@=5 black string, withg becoming  that for the KK bubble, the KK circle closes off st 2M on

the translation coordinate along the striegie has to rescale 5 2 et ge [0,7] denote the polar coordinate on this

¢ by y1—pu before takingu—1). Hence this metric must gphere. If the black hole is now included then its horizon
somehow interpolate between a static KK bubble and a black;arsacts thes? at a circle (parametrized byy) at, say,0

szg' totic infinity is a—=v—=—1. N v——1 th =6, with the exterior region at € <6, . As one moves
symptotic Infinity 1S ak=y==1. Neax=y==1, € it of the throat, th&? expands, the KK circle opens up and
metric takes the forn? . oo
0, increases. Eventually, reachesr and the horizon is no
longer present. One can choose coordinates on the horizon to
be 6, , ¢, and . At the initial value ofé, , the circle pa-

ds?~ —dt?+ i (1=x) d? rametrized by¢ shrinks to zero, and at the final val#g
Az (1-y) =1, the circle parametrized by shrinks to zero, from
5 which it follows that the topology of the horizon &2. If
n 2(1+x)(1-y)"(=1-y) dy? u—0 then the black hole horizon shrinks to zero, leaving a
A%(x—y)* KK bubble. If u— 1 then the horizon grows until it swallows
5 the throat of the bubble. When this happens, the KK direc-
N 1 (1-y)F(X) Vvt (1-y)°F(y) dx2 tion no longer closes off, and one is left with a compactified
A2(x—y)3| —1-y 1—x2 ' black string with an event horizon of topolof x St.

If one Euclideanizes the solution then conical singularities
can be avoided if the Euclidean time directions periodi-
cally identified with a periodB=1/T, corresponding to a

whereA=A/\1+ x and = (1— w)/(1+ w) ¢. This met- temperature

ric is what one would obtain from the full metrigd.51) with
parameters,A), wheren = 0. It must therefore be the met-

ric of a static KK bubble. The periodicity @b is inconsistent T= . (4.53

with regularity atx=1 but this metric is only supposed to be 477\/;

an approximation to the metri@.51) nearx=y=—1. The

important point is that the static KK bubble is known to be

asymptotic toR>*x St, which is the KK vacuum metric. It This instanton can probably be interpreted as describing an

follows that the metrig4.51) must also be asymptotic to the instability of flat space at finite temperature in KK theory.

KK vacuum, with the KK circle parametrized hy. This is a simultaneous manifestation of two different insta-
The orbits ofy shrink to zero size at=—1 and aty= bilities: the bubble nucleation instability of the KK vacuum

—1. To understand what this means, it is convenient to cont19] and the black hole nucleation instability of flat space at

sider the KK bubble £=0) metric and how the coordinates finite temperatur¢23]. The instanton might also be used to

(x,y) relate to the Schwarzschild coordinatd®, ¢) in this ~ describe a decay of a compactified black string by KK

case. This can be done by settigg, equal tdt 1-2M/R bubble nueleatlon. Presumably this instanton is not allowed

andg,, equal toR?sir?d. Thenx=—1 corresponds to the When fermions are included. _ _

axis =0 andy=—1 to the axis#= . The surfaces of It is known that the static KK bubble is classically un-

constantx andy take the form shown on the left in Fig. 5. stable so it seems likely that a similar instability will afflict
The metric(4.51) contains a horizon ag= —. At that  this solution. One might therefore wonder whether _there is

point, the radius of the KK circle is finite. This leads to the @n analogue of the expanding KK bubble solutidescribed

picture on the right in Fig. 5. The full geometry of the spatial Py the Wick rotated> =5 Schwarzschild solutiof19]) de-

sections can be visualized by considering how the KK di-Scribing a black hole sitting in the throat of the expanding
bubble. Such a solution does indeed exist, and is obtained by

a Wick rotation of the black ring solution: if one lets-
10Near x=y=—1 one has +x~2 etc.; however factors of 1 17 and ¢—it in the black ring solution then one obtains
—x etc. have been retained here for purposes of comparison witH€ metric?
the KK bubble.
1The value ofM can be fixed by looking at the sources in the
Weyl form of the metric and comparing with the Weyl form of the  *2n terms of the original notation for Fig(88), this means that the
Schwarzschild metric: the lengths of the rods should match. time coordinate is.

(4.52
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F(x) 2,

= T
F(y) A?(x—y)?

F
2<y> 42
y-—1

ds?

¥ ¥
F(x)((yz—l)ddxz 2 S
dx>  1-x2
+F(y)2(1_xz— 00 dtZH.
(4.54

The causal structure of this metric can be understood by first!
examining thext part: ‘

dx*>  1-x2
ds?= - dt?. 4.5
1 F(X) (459
By changing to Kruskal coordinates, it can be seen that there y=-1 y =-1

are regular horizons at= =1 with different surface gravi-

ties. The coordinatesx(t) can be reintroduced beyond these FIG. 5. (1) Schematic depiction of th®¢ plane of the KK
horizons. Continuing beyond the horizonxat 1, one finds  bubble. The throat of the bubblgvhere the KK circle shrinks to
that the square of the Riemann tensor diverges=afl/u. zero siz¢is atR=2M. In the (x,y) coordinates, this corresponds to
Beyond the horizon at=—1, the metric is asymptotically X=1 ory=—o. The axes§=0,7 correspond tox=—1 andy=
de Sitter. Figure 7 shows the Carter-Penrose diagram for this 1 respectiv_ely. Solid and dashed lines denqte curves of constant
two-dimensional metric. The causal structure is the same a&1dY respectively(2) Thexy plane of the metri¢4.51). There is a
Schwarzschild—de Sitter with the horizon =mt1 corre- horizon aty=—c and the KK circle shrinks to zero size 1.
sponding to the-black hole horizon arjd the h.orizomat <z<ul(2A) and U, is the potential of a finite rog/(2A)
—1 corresponding to the cosmological horizon. As for<,<1/2a). This gives

Schwarzschild—de Sitter it appears that there are many black

holes and asymptotic regions present, but one is free to iden- e?Vi=e?"yR,— (), (4.56)
tify these if one chooses. Doing so clearly makes the spatial
sections compact. e?V2=e?2(R3+ {3), (4.57

It is easy to see that the full five-dimensional metric will
also have regular horizons at=*+1. The horizon ak=1 e2Us_ g2u; Rs—{s
has topologyS® and the one ak=—1 has topologyS* R,— (5’
X R? (with the St direction parametrized by). Continuing
beyond the horizon at=1, there is a curvature singularity
as above. Asymptotic infinity is at=y and lies beyond the
horizon atx=—1. Near infinity, the metric approaches the
KK vacuum with the KK circle parametrized by. The
causal structure is illustrated in Fig2¥The interpretation of
this metric is that the horizon at=1 is a black hole horizon
(or horizong and the horizon ak=—1 an acceleration ho-
rizon that separates causal curves that can fall into the black ¢ = o

hole from those that cannot owing to the expansion of space l .
between them and the hole. This expansion of space is just "

(4.58

the expansion of the throat region of a KK bubble, which is

where the black hole is located. The asymptotic region be- ¢ =7
yond the acceleration horizon is the region outside the
bubble.

F. Superposition of a black string and KK bubble

We parametrize the sources for the typ@)lisolution as

follows. U, is the potential of a semi-infinite rod

=1/(2A), U, is the potential of a semi-infinite rod<

—ul(2A), Ug is the potential of a finite rod- u/(2A) FIG. 6. Geometry of the metrit4.51). This picture shows the
surfaces¢p=0 (upper half and ¢= (lower half), which join to-
gether smoothly ax=1. The horizon aty= —« corresponds to a

BNull infinity is presumably incomplete, as for the expanding KK black hole sitting at the center of the “throat” of a static Kaluza-
bubble[20]. Klein bubble.
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Ra—{>

2U 4 — ~2u

eri=eth—r, (4.59
Ri—&1

where theu; are arbitrary constants. As in the previous con-

figuration, all conical singularities can be cancelled by an

appropriate choice of these constants and periodic identifica-

tions.

The functionw is calculated using the method of Appen-
dix E with the result

e?70 51
5o VYi2Yas (4.60

“RiR:Rs

wherey, is arbitrary. Once again, it proves useful to convert
from the Weyl coordinates (z) to the black ring coordinates
(x,y) using Eqs(4.6) and(4.10 (with «=A). This leads to

FOX) 0 o, (L=X)F(y) 5 FIG. 7. (1) Causal structure of the two-dimensional metric
ds?=— ?Y)dt m ) (4.595. The dotted lines denote curvature singularities, the thick
solid lines denote asymptotic infinity and the thin solid lines denote
26270 dy2 horizons. The pattern can repeat indefinitely to the left and right, or
5 5 ( )[ 1 + Eez(ulfyo)(yz—l) can be made finite by identification&) Causal structure of the
A(X—y) Ly Wick rotated black ring metric.
1y2 dx* 1 2(Uz— o)
X(dx)? | +(1=y)F(y) 1_X2+§e 27 70(1+x) 4o F(x)Olter 2(1-p) (1- X)F(y)
F(y) Az (1-y)F(0) X
X (dx2)2 } (4.61) 1 y’ 2 2
+——={F(X) +2(y-—=1)d
A%(x—y)? —1-y Y v
The coordinatex® has been chosen as the time coordinate 2
and normalized so that;=0. The ranges of the coordinates +(1-Yy)F(y) 5 +2(1+x)dp?|},  (4.66
will again be taken to be-1=x<1 andy<-—1. —X

This metric has an event horizonyat — . The orbits of
X2 shrmk to zero ak= —1. The metric will be regular there where y=x4, y=x!, and ¢=x2 all have period 2. This

if x* is identified with period 2 and metric is complete and nonsingular outside of an event hori-
, , zon aty= — with topologyS®x St, where theS! is param-
e“2=4e0, (462 etrized byy.
This metric can be analyzed using arguments similar to
The orbits ofx* shrink to zero ak=1. The metric will be  those of the previous section. It can be seen that the metric is

regular there ifx* is identified with period 2- and asymptotic to aD=6 static KK bubble described by the
product of a flat time direction with th® =5 Euclidean
e?a=4(1— u)A 2?0, (4.63 Schwarzschild solution. It follows that the metric is

asymptotic to theD =6 KK vacuumM4x S, with the St
The orbits ofx! shrink to zero ay= — 1. The metric will be  Parametrized by. Note that theS' of the horizon doesiot

regular there if! is identified with period 2 and wrap the KK circle: spacelike infinity and the horizon both
have topologyS®x St but in the former case, th! is pa-
e2U1=4e2% (4.64) rametrized byy and in the latter byy.

Consider the spatial topology of the static KK bubble. The
center of the bubbléwhere the KK direction collapsgfas
topologyS®. Moving out of the bubble, th&® grows and the
KK direction opens up so surfaces of constant radius from
the bubble have topolog$®x S)l(. For the above solution,

e270= E (4.65 this geometry is altered by the presence of an event horizon.
2 This event horizon intersects the minin®l of the static KK
bubble on &aT?. To see how this happens, introduce coordi-
The metric therefore takes the form nates @, ¢, ) on theS? such thatp andy correspond to the

The constanty, could be absorbed intd and can be conve-
niently chosen as
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coordinates used aboves®¥= /2 and the orbits ofy and  [24]. Finally, takingx® to be the time coordinate leads to the
¢ collapse atd=0 and 6= /2 respectively. For example, solution describing an expanding KK bubble with a black
the round metric onS® would take the formds’=d#?>  hole sitting in the throat.
+sinfody?+cosad¢?. The event horizon intersects the mini-  For the newD =5 solution, I(c) [Fig. 3(c)], it is clear that
mal S® at some valug= 0, , so this intersection has topol- taking x! or x2 as the time coordinate gives physically
ogy T?=S},X S,. The metric outside the event horizon is at equivalent choices. Above we took as time, giving the
0=<6<6, . static black hole—KK bubble metric. However, takigg to
Moving away from the center of the bubble, t88 ex-  pe the time direction leads to a new metric. This is obtained
pands, the KK circleS; opens up and, increases. When from the metric(4.51) by Wick rotatingt— —i 7 and —it.
0, reachesw/2, S} collapses to zero size. Beyond this The resulting metric is asymptotic #d%2x T2 and has ac-
point, the event horizon no longer intersects ®& The  celeration horizons at=—1 and y=—1. The KK direc-
event horizon can therefore be parametrized by the coordtions are parametrized by and 7. Figure 8 shows the ge-
nates @, ,x,,¢). At the initial value ofé, , S)l( shrinks  ometry of the spatial sections with the KK directions
to a point and at the final value, = /2, S<li> shrinks to a  suppressed. The figure on the left shows the region covered
point. Sﬁ, remains finite over the horizon. Hence the horizonby the coordinatesx,y). When the metric is analytically
has topology S®x Sb, where theS® is parametrized by continued beyond the acceleration horizorat—1 it yields
(6, ,4,0). a new region isometric to the first. This can then be contin-
In the limit ©—0, the event horizon shrinks to nothing ued beyond the horizon gt=—1 to yield yet a new region.
and the metric reduces to the static KK bubbleAs 1, the ~ Therefore, there can be infinitely many such regions. By
event horizon grows to engulf the minim& and hence making identifications, the number of regions can be made
there is nowhere that the KK direction collapses. In thisfinite. For example, the figure on the right shows how to
limit, the metric reduces to a black string wrapped around thédentify in order to obtain just two regions. Figure 9 shows
KK direction, so the event horizon has topologx S)l(. the rgsultmg spatial geometry. The solution descnbes_an ex-
If the metric is Euclideanized by setting=—ir then pgndmg KK 'bubble. The KK circles collapse to zero size in
conical singularities can be avoided by identifyimgwith different regions of the bubble’s throat. These regions inter-

period 8, corresponding to a temperature sectin points_. The acceleration horizons separate the regions
that these points can causally influence as the throat expands.
A The Euclidean metric is an instanton for this decay of the
T= _ (467 MY2XT? KK vacuum.
477\/; For the newD =6 solution, 1(d) [Fig. 3(d)], there are

only two physically inequivalent choices of the time coordi-
The topology of the Euclidean solution isS{XS®)~T?  nate. In the discussion in Sec. I\ was chosen as the time
where oneS?® is covered by the coordinates, (,y) and the  direction, giving the static black string—KK bubble metric.
other by (x,¢,x) and theTZ:S)l(X Sﬁ, is atx=y=—1. The remaining possibility is to take, sax? to be the time
The static KK bubble is known to be unstable, which coordinate. This corresponds to the Wick rotatibns
suggests that this new solution is probably also unstable. Forir, ¢—it of the metric(4.66). The resulting metric is
the black-hole bubble solution discussed above, it was posasymptotic toM %3x T2, and has an acceleration horizon at
sible to obtain the solution describing the evolution of thex=—1. The KK directions are parametrized kyand 7,
instability by Wick rotating the black ring. In the present while i is an azimuthal angle at infinity. One can continue
case, however, one can argue that such a solution, if it existsarough the acceleration horizon as described above, leading
is not a class Il solution, and perhaps not even a Wey! soluto an identical region. This solution can be interpreted as an
tion. expanding KK bubble. Thg and 7 circles collapse in dif-
ferent regions of the bubble’s throat. In a dimensionally re-
G. Other Wick rotations duced picture, the KK bubble appears as a singularity of

2 Wi i i )
In order to complete the discussion of these new solu:mpoIOgyS , With ¢ the azimuthal angle. Thg circle col

tions, this section will discuss the metrics obtained by Wicklapses near the poles of this sphere, andrtbiecle collapses

; A . —on the rest of the sphere. The acceleration horizon slices
rotation. Thinking about the sources for the Weyl solutions 'Sthrough the equator. If this metric is Euclideanized then it
useful in understanding what happens when one Wick rotates. :

H H 1,3 2

the class Il solutions. For example, in tBemetric, U, and gives an instanton for this decay of the™*<T= vacuum.
U, both have a finite rod and a semi-infinite rod as sources.
Therefore it does not matter whether or x? is taken to be
the time coordinate. For the black ring, the sources are quali- We have seen in Sec. IV A that if a spatial coordingite
tatively different for eactJ; and hence the choice of which has only finite rod sources, then it is naturally interpreted as
x' is to be the time coordinate leads to physically distincta KK compactified direction. Above we have been consider-
results. These have all been discussed already. Taking  ing that points are identified along the orbits of the Killing
be the time coordinate leads to the black ring. Takidgo vector £y . However, when there is more than one Killing
be the time coordinate leads to the solution describing a paidirection with compact orbitévhether their radius is asymp-
of KK bubbles being accelerated apart by a conical deficitotically constant or ngtit is possible to perform the identi-

H. Different KK reductions
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in the reduction, they are not independent parameters.
Proceeding this way we are led to alternative interpreta-
tions of many of the Weyl solutions that contain KK bubbles.
The D=5 Schwarzschild solution was found to describe in
this manner a pair of oppositely charged magnetic mono-
poles accelerating away under the pull of a magnetic flux
tube[20,21]. Consider now the solutions in classh [refer
) ] ] to Fig. 3b)], with x! as the KK coordinate. Dimensionally
FIG. 8. Spatial sections of the Wick rotated black hole—KK reduce along the orbits @f(l)+(AX3/AX1) &3y sox? is the

bubble solutior(4.51). The KK coordinates) and r are suppressed. .. . . .
The diagram on the left shows the region covered by the coordi:ume“ke coordinate. The end points of thi rod have the

nates &,y). The dotted and solid lines are curves of consieand fou,r'dimenSional interpretatiqn O_f ff’l magneticz r_nonODOIe and
y respectively. There are acceleration horizongat—1 andy= antimonopoleU, has a semi-infinite rod, se” is a boost
—1. The¢ direction closes off smoothly at= + 1 and ther circle ~ coordinate and the pair are accelerating, but notice they do it
closes off smoothly ag= —. The heavy dots denote points where together By extending the solution across the acceleration
both circles close off. The diagram on the right shows how twohorizon, we expect to find a similar monopole-antimonopole
copies of this region may be pasted together to give a completdipole accelerating in the opposite direction. The dipoles ac-
geometry. celerate under the pull of a magnetic flux tube, and each
dipole is held together by the presence of a conical singular-

fications along the orbits of different linear combinations ofity running between the poles.
the Killing vectors. Say that', x/ are naturally identified Now suppose we reduce along the orbits &f)
with periodicitiesAx', Ax, in the sense that these identi- ~(AX*/Ax")£(). From the sources for the time coordinate
fications result in the absence @ft least someconical sin- x3 we infer the presence of an acceleration horizon, but also
gularities along the axis of symmetry. Then it would also beof @ black hole horizon. The vectoig;y and &) do not
possible to, instead of identifying points along the orbits ofshare common fixed points: in this case the magnetic charge
&y identify them along the orbits of;)+ (Ax//AX') &), is not soqrceo_l b_y a monopole, but by a black hole. The
with no new singularities arising. If the bolts ¢f,, and&,  interpretation is in terms of a nonextremal KK magnetic
intersect over a common fixed point, then, as Shovvliﬁ][l black hole moving with uniform acceleratlc(and Its oppo-
the circle action of this linear combination generates a Hop#ite counterpart, from analytic continuation, beyond the ac-
fibration of S°. This change in the global identifications ob- celeration horizon Since, as we explained, the charge and
viously does not affect the local structure of the solution, buthe magnetic field cannot be varied independently of each
it may result in a different interpretation of the dimensionally other, the solution is only a particular case of the magnetic
reduced solution. An exhaustive study of this constructiorKK Ernst solution of{12].
has been performed {i21]. In a similar vein, the lic) solution with identifications
When applied to the Weyl solutions, the most interestingdlong &)+ (Ax%*Ax?) &, leads to a static configuration
case is that wherg' is a KK direction with asymptotically With @ magnetic monopole and an oppositely charged mag-
constant radius, and is an azimuthal angle. In other words, netic black hole. A flux tube keeps them apart(imstable
U; has only finite rod sources, atd} has at least one semi- equilibrium. The I[d) solution, with an interpretation in
infinite rod source. In this case, the twisted KK circle action
is interpreted as the Hopf fibration of a magnetic monopole. -
The isolated fixed point of the fibration—the common fixed
point of £y and §;)—appears, in the reduced spacetime, as
the (singulay source of a magnetic field.
To illustrate this with an example21], consider adding a
flat time direction to théd =4 Euclidean Schwarzschild so-
lution [refer to Sec. I B and Fig.@)]. x* is a KK direction,
with natural periodicity 8-M, andx? is an azimuthal angle
of period 2. With the conventionaluntwisted identifica-
tions this describes a static KK bubble. Howeveéy,
+(1/4M) &,y generates Hopf actions with opposite orienta-
tions around the end points of the rod. Identifying points
along these orbits, these end points appear in the reduced
four-dimensional description as a pair of oppositely charged  gG. 9. Throat region of the () solution obtained by Wick
magnetic monopoles. This reduced spacetime is not asymMpgtation of the black holebubble metric(4.5) to t——ir,
totically flat: the change in the identifications results also in a_.jt. The ¢ and = circles close off ak=+1 andy=— respec-
KK magnetic Melvin flux tubg12], which balances the at- tively, denoted by dotted and solid lines. Both circles close off at
traction between the monopole and the antimonopole. SinCthe points denoted by heavy dots. As the throat expands, the dis-
the strength of the external magnetic flux tube and the chargence between these points increases and the acceleration horizons
of the monopoles are both determined by the amount of twisteparate regions which can receive light signals from each point.

identify

y=—00 r=1
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terms of T? compactified KK theory, admits even more com- tions of infinitely many rods will suffer from the same draw-
binations, which we shall leave to the reader to analyze. back.
Configurations with multiple concentric black rings are
I. Multi-black hole configurations also possible, but we shall stop at this point.

Weyl's construction inD=4 easily allows for configura-
tions with an arbitrary number of black holes along the sym-

metry axis: these are the Israel-Khan soluti¢@g]. As is We have succeeded in generalizing Weyl's class of solu-
obvious from physical considerations, the conical singularitions to arbitrary dimension by finding the general solution
ties can only be cancelled if there are an infinite number obf the vacuum Einstein equations i dimensions that ad-
them (and then the masses and distances between them atéts D—2 orthogonal commuting non-null Killing vector
properly adjusted With such a periodic array of black holes, fields. There are two classes of static Weyl solutions. The
it is natural to periodically identify the coordinate, which  first (the “generic” Weyl solution$ is parametrized byD
gives a solution describing a black hole localized on the KK—3 independent axisymmetric harmonic functions in three
circle of D=4 KK theory[22]. dimensional flat space. The second cldks “special” Weyl

with several disconnected horizons. This provides the first_4 independent harmonic functions in two dimensional flat

example of a construction of static multi-black hole solutionsspace_ All known physically relevant solutions fall into the

mk Tghhi: d|men3|?nal }/?ﬁuuml gt.fa""y- ngz Wedv¥|ll Or][h/ first class, and these solutions were all found to have har-
fog gtructirzrorg?rr]:sthoan g?visr?gutrl\OenfsuﬁSrne?rigge rom M€ onic functions produced by sources consisting of thin rods

The simplest solution with two black hole horizons, eacholn th_ez_aX|s£hW|th rratgs 1/2 per unit Ieng:jh. A natlijr_al w?y 3:
of topology S, results from the class Ill sources shown in classifying the solutions was proposed, according o the
number of finite rod sources for the harmonic functions. This

Fig. 10(@). However, due to the isolated finite rod source for S .
U,, the coordinate? is asymptotically a KK circle, so this is classification scheme presented three new solutions as prom-

not an asymptotically flat solution. Instead, the configuratior{Sing candidates for deeper stutsee Table)l _
describes two black holes at the north and south pole of a Perhaps the most interesting new solution is the black ring
KK bubble: add a second black hole to Fig. 6, sitting oppo-of Sec. VC. Th|s.|s thg first ex_ample of a stationary solution
site to the one that is already present. The distribution of th€f the vacuum Einstein equations that is asymptotically flat
sources also reveals that no conical singularities are need@dd has an event horizon of nonspherical topofdgyhe
to keep the black holes apart. When the two black hole$lack ring is supported against collapse by a conical deficit
coalesce, the solution does not reduce to a single, largesjngularity in the form of a disk that sits inside the ring. This
black hole but rather to a black string. singularity might be regarded as the gravitational effect of a
A three-black hole solution is obtained from the sourceghin membrane of matter, much as a deficit string can be
of Fig. 1Qb). This solutionis asymptotically flat, with the regarded as an idealization of a real cosmic string. The defi-
two spatial Killing directionsx?, x® becoming azimuthal cit for the black ring hasiegativedeficit angle, and hence
angles at infinity. It necessarily contains conical singularitiescorresponds to a negative tension source. It is not likely that
However, the black holes cannot be described as collineaj can be modeled by any reasonable matter source, since the
The first and second black holésumbering sources from \veak energy condition would not be obeyed. An alternative
the leff lie at the north and south pole of a topologi@  which is perhaps physically more reasonable is to take the
parametrized by andx”, while the second and third black ¢onjcal deficit to lie outside the ring. A deficit membrane of
holes lie similarly on another t°p0|09"38? parametrized by  ositive tension is then present which extends to infinity, so
zandx?. So the second black hole is collinear with each ofihe solution is no longer asymptotically flat.
the other two, but along different axes. If two of the black | the plack ring were charged, one might envisage bal-
holes coalesce, then we find a configuration of a black hol@ncing it against collaps@nd therefore cancelling the coni-
encircled by a black ring. _ cal singularity by immersing it in a background field. This is
Solutions with an infinite number of black hole horizons aeyally the " situation with the five-dimensional charged
can be obtained in several ways. The simplest possibility igjack ring solution of(7], which is the first example of a
shown in Fig. 1Qc). Itis likely that conical singularities can - giationary solution with spacelike infinity of spherical topol-
be eliminated from this solution if ead has sources con- gy and a regular horizon of nonspherical topology. The ho-
sisting of rods of equal length. It is natural to periodically rizon of the ring in that case is an extremal, degenerate one,

identify the z axis to obtain a solution with a single black ith vanishing horizon area. It is nevertheless completely
hole localized on a KK circle, parametrized kay of fixed

length at infinity. The coordinate€ andx® also parametrize

circles but these do not approach a constant length at infinity 145 5rgidal horizon in four dimensions has been observed in nu-
so they cannot be regarded as KK directions. Spacelike inyerical simulations of collapse [82]. It is a transient phase of the
finity has topologyS;x Six S. rather thanS*x S} which collapse: the hole in the torus closes up faster than the speed of

would be appropriate for a description of a black hole localHight, thereby preventing asymptotic observers from probing the
ized on a KK circle. It is clear that other similar configura- topology of the horizori33].

V. CONCLUDING REMARKS
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U, U
U2 U2
Us Us
(a) (b)
U, .. .
U, -
U, .. .
(©)

FIG. 10. Sources fofa) two-black hole configuratior(p) three-black hole configuration, afd) infinite periodic array of black holes.

nonsingular. The presence of the background field implies To conclude, we have performed a systematic analysis of
that the spacetime is not asymptotically flat, instead it asan infinite class of exact solutions of vacuum gravity in di-
ymptotes to a fluxbrane solution. An alternative to couplingmensions higher than four, and exhibited new solutions with
to a background field is to set the ring into rotation. It will be qualitatively new properties. We hope that this work helps
shown in[25] that one can indeed obtain a vacuum solutionstimulate further systematic studies on the rich structure of
describing an asymptotically flat rotating black rtAghat is  exact solutions of higher-dimensional gravity.

free of conical singularities.

The other new solutions contain KK bubbles in addition ACKNOWLEDGMENTS
to black holes or black strings. Some of them describe new )
decays of the KK vacua with intern&@! or T2. We have We are grateful to Andrew Chamblin, Fay Dowker, Jer-

exhibited but a few examples of the wide range of possibili-0me Gauntlett an_d Gary Gibbons for discussions. R.E. ac-
ties for solutions which are singular in the KK reduced de-knowledges partial support from UPV grant 063.310-
scription but nevertheless completely regular in higher di-EB187/98 and CICYT AEN99-0315. H.S.R. was supported
mensions. Just as the black ring arose from a reinterpretatidw PPARC.
of a previously known solution, maybe the other clas®ltl
highep solutions have unexpected applications. APPENDIX A: CURVATURE COMPONENTS

We have sketched the construction of multi-black hole
configurations. In contrast to the Israel-Khan solution®in
=4, the generalized Weyl solutions cannot describe a linear i_ AUy Z_.C Z_Cq7
array of five-dimensional black holgsvhich would have e=eldx, e"=ewdz, e"=ewdz (AD)
symmetryRx O(3) instead oRx O(2)?]. Nevertheless, we The summation convention is not being used for the indices
have given the first examples of static vacuum multi-blackj j, ... . The tangent space metrig,z is given by z;
hole configurations in dimensions higher than four. Unlike=¢, | 5,5= 7,=1/2, with other components vanishing.
the Israel-Khan solutions, some of the hlgher dimensiona1|'he connection 1-forms are defined by
solutions with finitely many black holes do not contain coni-
cal singularities. de*=—w®s/\eP, (A2)

There are several directions for extensions of the Weyl o ) )
classes in this paper. Consideration of nonorthogonal Killing?d explicit calculation gives
vectors would lead to nonstatic, stationary solutions, or so-
lutions with twists among the axes. However,Dr=4 there

We introduce a vielbein for the metric of E®.3):

__-cC __c _
wiz=e ~dUie, wz=e ~dUe, w;=0,

: ) = (A3)
is no general solution for nonorthogonal Killing vectors, so
progress here could probably only be made in special cases. 1 1 _
It would also be interesting to study the additionpsform wr7=— Ee*CaZCeZJrEe*Co?zCeZ. (A4)
gauge fields.
The curvature 2-forms are defined by

®0Other recent solutions where rotation plays a role in balancing 0,=dw,pt 0, Nw,;. (A5)
charged, ring-like or tube-like configurations have been given in
[34]. The nonvanishing curvature 2-forms are
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TABLE |. Summary of the main solutions studied in this paper, in the classification of Sec. IV B. The
sources and metrics are referred to the figures and equations in this paper, respectively. Only the topology of
finite area horizons is described. Other interpretations, by different Wick rotations or KK reductions, are

discussed in Secs. IVG and IV H.

Class SourcefFig.) Metric (Eq.) Interpretation Horizon
0 1 (3.6 Flat (Rindlen space
I 2(a) 4D Black hole s?
2(b) (3.9 5D Black hole s?
Il 3(a) C metric S
3(b) 4.3 Black ring S?x st
3(b) (4.549 Black hole in expanding KK bubble s?
3(c) (4.5 Black hole in static KK bubble s?
3(d) (4.66) Black string in static KK bubble S3x st
>l 10(a,b,c,d Multi-black holes ®,S°
0 =—2e 2(9,U,7U,+ 9,U 97U e/ \e;,
' (9201720, 32U,92U0 1)@ /e, (A6) Rj=—2e % zazazUpLaZUi; J7U,
o a—2Cr 52y, N2 e A aZ
0iz e “[azU;+(92U)) ZaZC&ZLil]e/\e +(92Ui2k a,U, M\ (A16)
—e %[ 3,07U;+ 3,U;97U, Je/\ €%, (A7)

Oiz=—e ?U[dz07U;+d;U 37U e/ \e” — e_zc[‘?%ui

+(93U))2—203Ca3U e \é?,

@ ZE: e ZCO'?Z(?ZT ez/\ ez.

(A8)

(A9)

Roz=—e 2% (3Uy+ (32,2~ 20,
I
(A17)

Rz=—e-2°2i (P2, + (97U))%—257Ca7U)),
(A18)

The tangent space components of the Riemann tensor are

obtained from these expressions by
1 IA oS
®aﬁ:§Raﬂ’Y§e /\e ’

with the results

(A10)

Riji = —2e~2%(9,U;07U;+ 37U97U0) (1 50— 1 k) »

Rizjz=—€ 2“[ 95U+ (9;U,)?—23,Ca,U;1m;; ,
— —2C 2 2
Riziz= —e “[d7U;+(dzU;)°—257CazU;] »;;

Riziz= —€ ?“(d7d7U;+ d;U;2U)) m;; ,

Ryzzz=e€ 2©3,97C,

(A11)

(A12)

(A13)
(Al4)

(A15)

Ryz=—€ 2% 23,0;C+ X, 9,07V,
]

+> azuiagui}.
(A19)

APPENDIX B: THE SPECIAL WEYL SOLUTIONS

When solving the Einstein equations in Sec. IIB, a spe-
cific assumption was made in order to deal with ## and

ZZ components: that the function&(Z) andw(Z) that ap-
pear in Eq.2.6) are nonconstant. In this appendix we inves-
tigate the cases in which one or both of these quantities is

constant. Consider first the case in whizlandZ are com-
plex conjugate coordinates. THémw(Z)=w(Z)* so bothw

andw must be constant. Thi¢ components of the vacuum
Einstein equations therefore reduce to

Z U;=const, (B1)

with any other nonvanishing components related to these by
the symmetries of the Riemann tensor. The nonvanishing L
tangent space components of the Ricci tensor are given by Note thatw(Z)* =w(Z2).
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d797U;=0. (B2) 2 2(2)=3, (B11)

These equations have the solution

Ui(Z,.2)=2(2)+&(2)*, (B3) > a(2)=logw—aw 2 (B12)

with a;(Z) arbitrary except for the constraint _ o
wherea is a constant. Th&Z component of the Einstein
E a,(Z)=const. (B4) equation reduces to

1
= o . > (778)°=0. (B13)
TheZZ andZZ components of the Einstein equation reduce [

to
The ZZ component of the Einstein equation gives

> (97a))2=0. (B5) 1 o
' C(Z,2)= Elog I;W+rv+c(2), (B14)

The chomponent of the Einstein equation can be written

Where?:(f) is arbitrary and
1
azaz(CJrZZ Ui2>=0, (B6)
I

__ " > 9U;0U B15
0"21/— aZ_Wi<j J i(9 i ( )
with solution

The ZZcomponent of the Einstein equation is satisfied as a

Cc(z,2)=- % E U2+c(2)+c(2)*, (B7)  consequence of these equations. The arbitrary funa@)_
: reflects the freedom to do a coordinate transformaon

wherec(Z) is arbitrary. This arbitrary function just reflects —*Z (£), and one can also do a coordinate transformation
the freedom to change coordina@s-Z'(Z). Thus the dis- Z—>vy(Z) to eI|m|nateW(Z_). Hence these solutions are char-
tinct solutions are labeled by the functioagZ). TheseD Elctsnzed byD—2 functions a;(Z) and D—2 functions

— 2 functions are constrained by E@B4) and(B5), so only ~ @i(Z). However, the constraini®11) and (B13) imply that

D —4 of them are independent. FDr=4 the solution is flat only D—4 of the functionsa; are independent, and the con-
space. ForD>4 the solutions are nontrivial and have no straint(B12) implies that onlyD — 3 of the functionsa; are
four-dimensional analogue. Note that eaghis a solution of  independent. FoD =4, the solution is given by a single
the Laplace equation in two-dimensional flat space, so thigrpitrary functiona;(Z) and 4/dZ is a null Killing vector
special class of solutions is determined Dy-4 harmonic  fie|d so the solution describes @p-wave spacetimel].
functions in two flat dimensions, in contrast to the class ofrhese solutions admit a Killing sping85]. The higher di-

generic Weyl solutions discussed in Sec. Il B, which wasmensional analogues of thegep waves are the solutions
determined in terms ob —3 axisymmetric harmonic func- @a,=0 for all i, and it is straightforward to show that

t'?.n.?l N tf:reet;lat d|m(tan§|(t)ns. IBt - 5 tlt |sb[t)o_SS|bI|§ to (TX' these are the only Weyl solutions that satisfy the integrability
plicitly solve the constraints on th&’s to obtain a line ele- conditions for the existence of a Killing spinor.

ment parametrized by an arbitrary function of one complex

coordinate.
Now consider the case in whichandZ are independent APPENDIX C: WEYL FORMS OF FLAT SPACE
real coordinates and is constant buwv(Z) is not.w can be The results of Appendix A show that the Riemann tensor
absorbed intav(Z). Theij Einstein equations reduce to  Of the metric(2.3) vanishes if, and only if,
&ZU,&ﬂJ]+&ZU]&ﬂJ|=O, |7£J, (Cl)
2 Uj=log(w(2)), (B8)
93U+ (9,U;)?—23,Ca,U; =0, (C2)
2WdzdzU;+ dzwdzU; =0, (B9) 5
d5U;+(97U)?— 297Ca7U, =0, (C3)
with solution
— - — dz07Ui+d7U;97U;=0, (C4
Ui(Z,.2)=ai(2) +a(Z2)w 7, (B10)
- 3,07C=0. (C5)
where a;(Z) and a;(Z) are arbitrary except for the con-
straints Equation(C4) can be immediately solved:
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Ui(Z,Z2)=log(ai(2) +ai(2)*), (Co)
wherea;(Z) is arbitrary.

It is convenient to choose the labeling of the such that
d78;# 0 for 1<i=<r andd,a;=0 fori>r. Equation(C2) is
automatically satisfied if>r or j>r. If i,j<r then this
equation implies

dzai  (dza)* .
78, (9za))*

ij (C7)
where\;; is a real nonzero constant.if>2 then it follows
that

dz83=1N320782= — N3ph 21972 . (C8
However, this contradict8,az;=i\397a,. Hencer=0,1 or
2. These three cases will be discussed individually.

If r=0 thena;(Z) is a constant for all and henceaJ; is
constant for alli. Equations(C2) and (C3) are trivially sat-
isfied and Eq(C5) has the solution

C(Z,2)=c(2)+c(2)*, (C9
wherec(Z2) is arbitrary. This arbitrary function can be elimi-
nated by a coordinate transformati@—Z'(Z). The line
element is then obviously flat.

If r=1 or 2 then Eqs(C2) and(C3) are trivially satisfied
for i>r. Fori=<r, the solution is

— 1
C(Z,2)= Elog(azai)(azai)* +const, (C10

which also ensures that EGC5) is satisfied. For =1, after
changing coordinates frord to a;(Z), settinga;=¢&+in

PHYSICAL REVIEW D65 084025

Forr=1,
to

U; is constant foi >1 so Eq.(2.18 reduces

U,=log(w+w)+const=logr +const,  (C13

wherew=r +iz. The constant term can be eliminated by
rescaling the coordinate!. U, is the Newtonian potential
produced by an infinite rod lying on tteaxis. The rod has
vanishing thickness and mass 1/2 per unit length.

Forr=2, U is constant foi>2. U, andU, are given
by Eq. (C6). Recall that d,a,=iN,;d,a; hence a,
=\y4(ia;+c), wherec is a constant. The imaginary part of
¢ does not affect), soc can be taken to be real. Equation
(2.18 then gives

w+w* c[a; +aj J[i(a;—a)* +2c], (C19

which can be solved to giva; in terms ofw, and then
expresdJ; andU, in terms ofw:

U,=log|Reya+iw|+const, (C1H
U,=log|Rey—a=xiw|+const, (C16

wherea is an arbitrary real constant.

APPENDIX D: FORMULAS FOR THE BLACK RING

In order to write the metric of the black ring in Weyl
form, it turns out to be convenient to look for constantnd
BB such that

r’+(z—c/A?)?= (apxy—2cx—2cy+B)%

(D1)

4(x—y)2A?

and rescaling the coordinates to eliminate constants, the lin& priori, one would not expect such constants to exist. How-

element takes the form

D-2
dsz=61§2(dx1)2+22 e(dx)2+d&2+dy2 (ClD

This line element is manifestly flat, with* an angular coor-
dinate(if e;=1) or the boost coordinate in Rindler spdde
€1= — 1) .

ever, it turns out that they do, and are given by

Forr=2, after changing and rescaling the coordinates asne solutions are

above, the line element takes the form
D-2
ds?= e, £2(dxY) 2+ e, 72(dX)) 2+ X, €(dx)2+dE2+d7?,
=3
(C12

which is manifestly flat, withk* an angular or boost coordi-
nate depending on the sign ef, and similarly forx?.

a’u
sz, (DZ)
and
B+ aup’—a(u’+4)B—a’u(u’~4)=0. (D3)
B=aw, Cc=al2, B=a(2—pn), c=aul2,
B=—a(2+u), c=—aul. (D4)

Note that the solutions for can be written ag#\?a;, where
the quantitiesa; were defined in Sec. IV C. It follows that
each functiorR; defined in Sec. IV C is the square root of the

In order to identify the source terms for Laplace’s equa-fight-hand side of Eq(D1) for the appropriate value of.
tion that these flat metrics correspond to, one must firsBince the right-hand side of this equation is a perfect square,

change the coordinate frodto w(Z) [defined by Eq(2.18

with w=w*]. However, this is not possible if=0 because
thenw is constant. Hence=0 corresponds to the special
case analyzed in Sec. IID.

the expressions fdr; turn out to be quite simple:

_a(pxy—X—y+p)
2A%(x~y)

1 (D5)
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Xy— uX—uy+2— 2a%F(x)F
2:“(“ y Mz wy M) D6) Yo a4 (X) (Zy)_ (D16)
2A%(x—y) A (x=—y)
APPENDIX E: CALCULATING v INTEGRALS
— uXYy— uX—uy+2+
R3= (7 puxy 'Z il 'u). (D7) The purpose of this appendix is to explain how the quan-
2A%(x—y) tity v in Eq. (2.17) is calculated for the solutions of Sec. IV.
It is also possible to show Consider first the solution of Sec. IV E. In terms of the com-
P plex coordinatesv, the functionsU; take the form
Rit e _a(1-x)F(y) ©08) U1 =log|Rd (a,+iw)"?]| — log| Re (ay +iw)™]],
T A(x—y)? (ED
U,=log|Re (ag+iw)"?]| ~log|Re (a,+iw)*7]],
R _a(yz—l)F(x) .- (E2)
1 gl_m (D9)
Us=log|Re (a;+iw)Y?]| +log|Im[ (ag+iw)Y?]],
(E3
Ry+ ¢ _ (14X (1-y)F(x) (D10)  Where the constant are defined in Eq(4.11) and arbitrary
202 A%(x—y)? additive constants are suppressed. To calculatdirectly,
these expressions could be substituted into Eg20 and
(2.273). On the right-hand side of these equations there would
a(l-x)(—1-y)F(y) be 12 terms (4 from eachU;dU;). Alternatively, one can
27627 A2(x—y)? (D1D) instead deal withy, which is determined by Eq$2.23 and
(2.24), with only 10 terms on the right-hand side. Having
obtainedy, v can be immediately calculated using
Ryt ¢ _a(1+x)(1-y)F(y) (D12
3 3™
A?(x—y)? v=y— U;. (E4)
I
a(1-X)(— 1—y)F(X) Equation(2.23 takes the form
Rs— (3= A2 (x—y)? , (D13) )
dy= aw + F+(W,V_V; a;)+ F+(W,V_V; a,)+ F+(W,W;a3)
201 _ _ _ _
_ (1= =y)FX)F(Y) (D14) +F_(w,w;az)—2G, ;(w,w;a,,a3)
12 2A4(x—y)2 ’
+2G_(w,w;a;,a3) + G (W, w;a,,a3)
:0[2(1+/,L)2(1—X)(1—y) 015 —G, 1 (W,w;a;,a) —G_ (W, W;az,83), (E9
v 2A%(x—y)? ’ where the function§ andG are defined by
F.(w,w0) wew )
+(w,w;c)=— — ,
- 4(c+iw)[(c+iw)Y2x (c—iw)t?)?
_ wWH+w
Gtt/(W!W;Crd): - (E7)

A(c+iw) Y2(d+iw) M (c+iw) M2+ (c—iw) Y[ (d+iw) V2= (d—iw) Y7
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wherec andd are real constants witt>d. In order to inte- _
grate Eq(E5), it is necessary to integrafeandG. This can j dwG_ ,(w,w;c,d)
be done by a change of variable fo=(c+iw)*? which
yields =log Im[(d+iw)*?]—log Im[ (c+iw)*?
— 1 . . o L 12
f dwF.(w,w;c)=— Zlog(c+iw) +log[ (c+ iw)2 +(d+iw) 2]+ >logl(c+iw)

_ i 1

+(c—iw) Y2+ - - -, (E8) +H(d+iw) P+ (E12

where the ellipsis denotes an arbitrary functionvafOne | "€S€ results yielg, and hencer, up to an arbitrary func-

similarly obtains tion of w. This fL_mct|on can be ldetermlned up to a real con-
stant of integration by demanding thatbe real. Finally, the

— following expressions can be used to express terms of
j dwG, , (w,w;c,d) R i, gnd\?ij : p
. . 1 . Ri: ai+iW ,
=log Re (c-+iw) "+ (d+iw) "] =S logl (c-+iw)*? | | (E13
+(d+iw) Y2+ (E9) R — &i=|Re (a;+iw) Y2, (E14)
f dwG._(w.wic.d) R+ ¢ =|Im[(a;+iw)¥?]|, (E15

1 Yi;=2 log Re (a;+iw)*?]|+ 2 log Re (a; +iw)*?]|
=log Im[ (c+iw) M2+ (d+iw) "] > logl (c-+iw)*? 44 Togl(a,+iw) Y2 (a +iw) 12
[ ]

+(d+iw)¥+. .- (E10 — 4 log|Re (a;+iw) 2+ (a;+iw) 7], (E16
where additive constants have again been suppressed. The

following identity is useful in rearranging so that it can be
written in terms of the above expressions:

J dwG, _(w,w;c,d)
=log Rd (d+iw)Y?]—log R (c+iw)*/?
log|Im[ (c+iw) Y2+ (d+iw)Y2]|—log|Im[ (d+iw) 2|
=log|Rg (c+iw)Y?+ (d+iw)*?|
+(d+iw)Y2+- - -, (E11) —log|Re (c+iw)¥?]]. (E1?)

+(d+iw) M2+ %Iog[(c+iw)1’2
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