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This is the second in a series of papers on the construction and validation of a three-dimensional code for the
solution of the coupled system of the Einstein equations and of the general relativistic hydrodynamic equations,
and on the application of this code to problems in general relativistic astrophysics. In particular, we report on
the accuracy of our code in the long-term dynamical evolution of relativistic stars and on some new physics
results obtained in the process of code testing. The following aspects of our code have been validated: the
generation of initial data representing perturbed general relativistic polytropic models~both rotating and non-
rotating!, the long-term evolution of relativistic stellar models, and the coupling of our evolution code to
analysis modules providing, for instance, the detection of apparent horizons or the extraction of gravitational
waveforms. The tests involve single nonrotating stars in stable equilibrium, nonrotating stars undergoing radial
and quadrupolar oscillations, nonrotating stars on the unstable branch of the equilibrium configurations mi-
grating to the stable branch, nonrotating stars undergoing gravitational collapse to a black hole, and rapidly
rotating stars in stable equilibrium and undergoing quasiradial oscillations. We have carried out evolutions in
full general relativity and compared the results to those obtained either with perturbation techniques, or with
lower dimensional numerical codes, or in the Cowling approximation~in which all the perturbations of the
spacetime are neglected!. In all cases an excellent agreement has been found. The numerical evolutions have
been carried out using different types of polytropic equations of state using either the rest-mass density only,
or the rest-mass density and the internal energy as independent variables. New variants of the spacetime
evolution and new high resolution shock capturing treatments based on Riemann solvers and slope limiters
have been implemented and the results compared with those obtained from previous methods. In particular, we
have found the ‘‘monotonized central differencing’’ limiter to be particularly effective in evolving the relativ-
istic stellar models considered. Finally, we have obtained the first eigenfrequencies of rotating stars in full
general relativity and rapid rotation. A long standing problem, such frequencies have not been obtained by
other methods. Overall, and to the best of our knowledge, the results presented in this paper represent the most
accurate long-term three-dimensional evolutions of relativistic stars available to date.
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I. INTRODUCTION

Computational general relativistic astrophysics is an
creasingly important field of research. Its development is
ing driven by a number of factors: firstly, the large amount
observational data by high-energy x-ray andg-ray satellites
such as Chandra, XMM and others@1#; secondly, the new
generation of gravitational wave detectors coming online
the next few years@2#; and thirdly, the rapid increase i
computing power through massively parallel supercompu
and the associated advance in software technologies, w
make large-scale, multidimensional numerical simulatio
possible. Three-dimensional~3D! simulations of genera
relativistic astrophysical events such as stellar gravitatio
collapse or collisions of compact stars and black holes
needed to fully understand the incoming wealth of obser
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tions from high-energy astronomy and gravitational wave
tronomy. It is thus not surprising that in recent years hyd
dynamical simulations of compact objects in numeric
relativity have become the focus of several research gro
@3–10#.

In a previous paper@6# ~paper I! we presented a 3D
general-relativistic hydrodynamics code~GR_ASTRO! con-
structed for the NASA Neutron Star Grand Challenge Proj
@11#. TheGR_ASTROcode has been developed by Washingt
University and the Albert Einstein Institute and has the
pability of solving the coupled set of the Einstein equatio
and the general relativistic hydrodynamic~GR-Hydro! equa-
tions @12#. It has been built using the Cactus Computation
Toolkit @13# constructed by the Albert Einstein Institute
Washington University and other institutes. Paper I presen
our formulation for the GR-Hydro equations coupled eith
©2002 The American Physical Society24-1
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to the standard Arnowitt-Deser-Misner~ADM ! @14# formula-
tion of the Einstein equations or to a hyperbolic formulati
of the equations@15#. It demonstrated the consistency a
convergence of the code for a comprehensive sample of
beds having analytic solutions. It gave a detailed analysi
twelve different combinations of spacetime and hydrod
namics evolution methods, including Roe’s and other
proximate Riemann solvers, as well as their relative per
mance and comparisons when applied to the vari
testbeds. The code as described and validated in paper
been applied to various physical problems, such as th
discussed in Refs.@7,16,17#, and is now freely available@12#.

The main purpose of this paper is to examine and valid
our code in long-term, accurate simulations of the dynam
of isolated stars in strong gravitational fields. Single relat
istic stars are indeed expected as the end-point of a num
of astrophysical scenarios~such as gravitational collapse an
binary neutron star merging! and should provide importan
information about strong field physics both through elect
magnetic and gravitational wave emissions. A number
new numerical techniques have been incorporated in
present code leading to a much improved ability to simul
relativistic stars. These techniques concern both the ev
tion of the field equations, for which we have implement
new conformal-traceless formulations of the Einstein eq
tions, and the evolution of the hydrodynamical variables,
which the use of the ‘‘monotonized central differencin
~MC! limiter has provided us with the small error growt
rates necessary for simulations over several dynamical
scales.

More precisely, in this paper we focus on the accuracy
the code during long-term evolution of spherical and rapi
rotating stellar models. We also investigate the nonlinear
namics of stellar models that are unstable to the fundame
radial mode of pulsation. Upon perturbation, the unsta
models will either collapse to a black hole, or migrate to
configuration in the stable branch of equilibrium configu
tions ~a behavior studied in the case of unstable boson s
@18#!. In the case of collapse, we follow the evolution all t
way down to the formation of a black hole, tracking th
generation of its apparent horizon. In the case of migratio
the stable branch, on the other hand, we are able to a
rately follow the nonlinear oscillations that accompany t
process and that can give rise to strong shocks. The abilit
simulate large amplitude oscillations is important as we
pect a neutron star formed in a supernova core-colla
@19,20# or in the accretion-induced collapse of a white dw
to oscillate violently in its early stages of life.

Particularly important for their astrophysical implication
we study the linear pulsations of spherical and rapidly ro
ing stars. The computed frequencies of radial, quasi-ra
and quadrupolar oscillations are compared with the co
sponding frequencies obtained with lower-dimensional
merical codes or with alternative techniques such as
Cowling approximation~in which the spacetime is held fixe
and only the GR-Hyrdo equations are evolved! or relativistic
perturbative methods. The comparison shows an exce
agreement confirming the ability of the code to extract phy
cally relevant information from tiny perturbations. The su
08402
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cessful determination of the eigenfrequencies for rapidly
tating stars computed with our code is noteworthy. Su
frequencies have not been obtained before with the sys
being too complicated for perturbative techniques.

The simulations discussed here make use of two differ
polytropic equations of state~EOS!. In addition to the stan-
dard ‘‘adiabatic’’ EOS, in which the pressure is expressed
a power law of the rest-mass density, we have carried
simulations implementing the ‘‘ideal fluid’’ EOS, in which
the pressure is proportional to both the rest-mass density
the specific internal energy density. This latter choice
creases the computational costs~there is one additional equa
tion to be solved! but allows for the modeling of non
adiabatic processes, such as strong shocks and
conversion of bulk kinetic energy into internal energy, whi
are expected to accompany relativistic astrophysical eve

There are a number of reasons why we advocate the c
ful validation of general relativistic astrophysics code
Firstly, the space of solutions of the coupled system of
Einstein and GR-Hydro equations is, to a large extent,
known. Secondly, the numerical codes must solve a com
cated set of coupled partial differential equations involvi
thousands of terms and there are plenty of chances for co
errors. Thirdly, the complex computational infrastructu
needed for the use of the code in a massively parallel e
ronment increases the risk of computational errors, a risk
can only be minimized through meticulous tests such
those presented here as well as in paper I. This paper, h
ever, wants to be more than a list of testbeds: the res
presented show that our current numerical methods are
ture enough for obtaining answers to new and outstand
problems in the physics of relativistic stars.

The organization of this paper is as follows: the formu
tion of the differential equations for the spacetime and
hydrodynamics is briefly reviewed in Sec. II. Section
gives a short description of the numerical methods, with e
phases on the new schemes introduced in this paper~in ad-
dition to those in paper I!. Sections IV–VI represent the cor
of the paper and there we present the main results of
simulations. In Sec. IV, in particular, we focus our attenti
on the simulation of nonrotating relativistic stars. In Sec.
we consider the evolution of rotating stars. Section VI
dedicated to the extraction of gravitational waveforms g
erated by the non-radial pulsations of perturbed relativis
stars. In Sec. VII we summarize our results and conclusio
We use a spacelike signature (2,1,1,1) and units in
which c5G5M (51 ~geometric units based on solar mas!
unless explicitly specified. Greek indices are taken to
from 0 to 3 and Latin indices from 1 to 3.

II. BASIC EQUATIONS

We give a brief overview of the system of equations
this section. We refer the reader to paper I for more deta

A. Field equations

In general relativity, the dynamics of the spacetime is d
scribed by the Einstein field equationsGmn58pTmn , with
4-2
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Gmn being the Einstein tensor andTmn the stress-energy ten
sor. Many different formulations of the equations have be
proposed throughout the years, starting with the ADM f
mulation in 1962@14#. In our code, we have implemente
three different formulations of the field equations, includi
the ADM formulation, a hyperbolic formulation@15# and a
more recent conformal-traceless formulation based on
ADM construction@21,22# ~see also Ref.@23#!.

In the ADM formulation @14#, the spacetime is foliated
with a set of non-intersecting spacelike hypersurfaces. T
kinematic variables relate the surfaces: the lapse functiona,
which describes the rate of advance of time along a time
unit vectornm normal to a surface, and the shift three-vec
b i that relates the spatial coordinates of two surfaces. In
construction the line element reads

ds252~a22b ib
i !dt212b idxidt1g i j dxidxj . ~1!

The original ADM formulation casts the Einstein equatio
into a first-order~in time! quasi-linear@24# system of equa-
tions. The dependent variables are the 3-metricg i j and the
extrinsic curvatureKi j . The evolution equations read

] tg i j 522aKi j 1¹ib j1¹jb i , ~2!

] tKi j 52¹i¹ja1aFRi j 1KKi j 22KimK j
m

28pS Si j 2
1

2
g i j SD24prADMg i j G

1bm¹mKi j 1Kim¹jb
m1Km j¹ib

m, ~3!

where¹i denotes the covariant derivative with respect to
3-metricg i j , Ri j is the Ricci curvature of the 3-metric, an
K[g i j Ki j is the trace of the extrinsic curvature. In additio
to the evolution equations, there are four constraint eq
tions: the Hamiltonian constraint

(3)R1K22Ki j K
i j 216prADM50, ~4!

and the momentum constraints

¹jK
i j 2g i j ¹jK28p j i50. ~5!

In Eqs. ~2!–~5!, rADM , j i ,Si j ,S[g i j Si j are the component
of the stress-energy tensor projected onto the 3D hyper
face ~for a more detailed discussion, see Ref.@25#!.

As mentioned above, in addition to the two formulatio
described in paper I, we have recently implemented
conformal-traceless reformulation of the ADM system,
proposed by@21,22#. Details of our particular implementa
tion of this formulation are extensively described in Ref.@23#
and will not be repeated here. We only mention here that
formulation makes use of a conformal decomposition of
3-metric,g̃ i j 5e24fg i j and the trace-free part of the extrins
curvature,Ai j 5Ki j 2g i j K/3, with the conformal factorf
chosen to satisfye4f5g1/3[det(g i j )

1/3. In this formulation,
as shown in Ref.@22#, in addition to the evolution equation
for the conformal three-metricg̃ i j and the conformal-
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traceless extrinsic curvature variablesÃi j , there are evolu-
tion equations for the conformal factorf, the trace of the
extrinsic curvatureK and the ‘‘conformal connection func

tions’’ G̃ i ~following the notation of Ref.@22#!. We note that
the final mixed, first and second-order, evolution system

$f,K,g̃ i j ,Ãi j ,G̃ i% is not in any immediate sense hyperbo
@26#. In the original formulation of Ref.@21#, the auxiliary

variablesF̃ i52( j g̃ i j , j were used instead of theG̃ i .
In Refs. @23,27# the improved properties of this

conformal-traceless formulation of the Einstein equatio
were compared to the ADM system. In particular, in R
@23# a number of strongly gravitating systems were analyz
numerically withconvergenthigh resolution shock capturing
~HRSC! methods with total-variation-diminishing ~TVD!
schemes using the equations described in paper I. Thes
cluded weak and strong gravitational waves, black holes,
son stars and relativistic stars. The results show that
treatment leads to a long-term numerical evolution of
many strongly gravitating systems. However, we have a
found that the conformal-traceless formulation requires g
resolutions higher than the ones needed in the ADM form
lation ~with the driver technique@28#! to achieve the same
accuracy. Because in long-term evolutions a small er
growth-rate is the most desirable property, we have adop
the conformal-traceless formulation as our standard form
the evolution of the field equations.

B. Hydrodynamic equations

The GR-Hydro equations are obtained from the local c
servation laws of the density current~continuity equation!
and of the stress-energy tensor, which we assume to be
of a perfect fluidTmn5rhumun1Pgmn, with um being the
fluid 4-velocity andP andh the ~isotropic! pressure and the
specific enthalpy, respectively. In our code the GR-Hyd
equations are written as a first-order flux-conservative hyp
bolic system@29,6#

] tUW1] iFW
i5SW , ~6!

where the evolved state vectorUW is given, in terms of the
primitive variables: the rest-mass densityr, the 3-velocity
v i5ui /W1b i /a and the specific internal energy«, as

UW5F D̃

S̃j

t̃
G5F AgWr

AgrhW2v j

Ag~rhW22P2Wr!
G . ~7!

Here g is the determinant of the 3-metricg i j and W is the
Lorentz factor,W5au05(12g i j v

iv j )21/2. Furthermore, the
3-flux vectorsFW i are given by

FW i5F aS v i2
1

a
b i D D̃

aF S v i2
1

a
b i D S̃j1AgPd j

i G
aF S v i2

1

a
b i D t̃1Agv i PG G . ~8!
4-3
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JOSÉA. FONT et al. PHYSICAL REVIEW D 65 084024
Finally, the source vectorSW is given by

SW 5F 0

aAgTmngnsGs
m j

aAg~Tm0]ma2aTmnG0
mn!

G , ~9!

whereG mn
a are the Christoffel symbols.

C. Gauge conditions

The code is designed to handle arbitrary shift and la
conditions, which can be chosen as appropriate for a gi
spacetime simulation. More information about the possi
families of spacetime slicings which have been tested
used with the present code can be found in Refs.@6,23#.
Here, we limit ourselves to recall details about the spec
foliations used in the present evolutions. In particular,
have used algebraic slicing conditions of the form

] ta52 f ~a!a2K, ~10!

with f (a).0 but otherwise arbitrary. This choice contai
many well known slicing conditions. For example, settingf
51 we recover the ‘‘harmonic’’ slicing condition, or by se
ting f 5q/a, with q being an integer, we recover the gene
alized ‘‘11 log’’ slicing condition @30#. In particular, all of
the simulations discussed in this paper are done using
dition ~10! with f 52/a ~we caution that ‘‘gauge patholo
gies’’ could develop with the ‘‘11 log’’ slicings, see Refs.
@31,32#!. The evolutions presented in this paper were carr
out with the shift vector being either zero or constant in tim

III. NUMERICAL METHODS

We now briefly describe the numerical schemes used
our code. We will distinguish the schemes implemented
the evolution of the Einstein equations from those imp
mented in the evolution of the hydrodynamic equations.
both cases, the equations are finite-differenced on spac
hypersurfaces covered with 3D numerical grids using Ca
sian coordinates.

A. Spacetime evolution

As described in paper I, our code supports the use
several different numerical schemes@6,23#. Currently, a
Leapfrog ~non-staggered in time! and an iterative Crank
Nicholson scheme have been coupled to the hydrodyna
solver.

The Leapfrog method assumes that all variables exis
both the current time steptn and the previous time steptn21.
Variables are updated fromtn21 to tn11 ~future time! evalu-
ating all terms in the evolution equations on the current ti
step tn. The iterative Crank-Nicholson solver, on the oth
hand, first evolves the data from the current time steptn to
the future time steptn11 using a forward in time, centered i
space first-order method. The solutions at stepstn and tn11

are then averaged to obtain the solution on the half time
tn11/2. This solution at the half time steptn11/2 is then used
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in a leapfrog step to re-update the solution at the final ti
steptn11. This process is then iterated. The error is defin
as the difference between the current and previous solut
on the half time steptn11/2. This error is summed over al
gridpoints and all evolved variables. Because the smal
number of iterations for which the iterative Crank-Nichols
evolution scheme is stable is three and further iterations
not improve the order of convergence@33,23#, we do not
iterate more than three times. Unless otherwise noted,
simulations reported in this paper use the iterative Cra
Nicholson scheme for the time evolution of the spacetim

B. Hydrodynamical evolution

The numerical integration of the GR-Hydro equations
based on high-resolution shock-capturing~HRSC! schemes,
specifically designed to solve nonlinear hyperbolic syste
of conservation laws. These conservative schemes rely
the characteristic structure of the equations in order to b
approximate Riemann solvers. In paper I we presente
spectral decomposition of the GR-Hydro equations, suita
for a general spacetime metric~see also Ref.@34#!.

Approximate Riemann solvers compute, at every ce
interface of the numerical grid, the solution of local Riema
problems~i.e. the simplest initial value problem with discon
tinuous initial data!. Hence HRSC schemes automatica
guarantee that physical discontinuities developing in the
lution ~e.g., shock waves, which appear in core-collapse
pernovae or in coalescing neutron star binaries! are treated
consistently. HRSC schemes surpass traditional approa
@3,8# which rely on the use of artificial viscosity to resolv
such discontinuities, especially for large Lorentz fac
flows. HRSC schemes have a high order of accuracy, t
cally second-order or more, except at shocks and extre
points. We refer the reader to@35,36# for recent reviews on
the use HRSC schemes in relativistic hydrodynamics.

One of the major advantages of using HRSC scheme
that we can take advantage of the many different algorith
that have been developed and tested in Newtonian hydro
namics. In this spirit, our code allows for three alternati
ways of performing the numerical integration of the hydr
dynamic equations:~i! using a flux-split method@37#; ~ii !
using Roe’s approximate Riemann solver@38#, and~iii ! using
Marquina’s flux-formula@39#. The different methods differ
simply in the way the numerical fluxes at the cell-interfac
are calculated in the corresponding flux-formula. The co
uses slope-limiter methods to construct second-order t
variation diminishing ~TVD! schemes@40# by means of
monotonic piecewise linear reconstructions of the ce
centered quantities to the left~L! and right~R! sides of every
cell-interface for the computation of the numerical fluxe
More precisely,UW i

R andUW i 11
L are computed to second-orde

accuracy as follows:

UW i
R5UW i1s i~xi 1(1/2)2xi ! ~11!

UW i 11
L 5UW i 111s i 11~xi 1(1/2)2xi 11! ~12!

where x denotes a generic spatial coordinate. We have
4-4
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cused our attention on two different types of slope limite
the standard ‘‘minmod’’ limiter and the ‘‘monotonize
central-difference’’~MC! limiter @41#. In the first case, the
slopes i is computed according to

s i5minmodS UW i2UW i 21

Dx
,
UW i 112UW i

Dx
D , ~13!

whereDx denotes the cell spacing. The minmod function
two arguments is defined by

minmod~a,b![H a if uau,ubu and ab.0,

b if ubu,uau and ab.0,

0 if ab<0.

On the other hand, the MC slope limiter~which was not
included in the previous version of the code discussed
paper I! does not reduce the slope as severely as minm
near a discontinuity and, therefore, a sharper resolution
be obtained. In this case the slope is computed as

s i5MCS UW i2UW i 21

Dx
,
UW i 112UW i

Dx
D , ~14!

where the MC function of two arguments is defined by

MC~a,b!

[5
2a if uau,ubu, and 2uau,ucu, and ab.0

2b if ubu,uau, and 2ubu,ucu, and ab.0

c if ucu,2uau, and ucu,2ubu, and ab.0

0 if ab<0

and wherec[(a1b)/2. Both schemes provide the desire
second-order accuracy for smooth solutions, while still sa
fying the TVD property. In Sec. IV A we will report on a
comparison between the two algorithms and justify the
of the MC slope limiter as our preferred one.

C. Equations of state

As mentioned in the Introduction, to explore the behav
of our code in long-term evolutions of equilibrium config
rations, we used two different polytropic equations of st
and at various central rest-mass densities. In particular,
have implemented both anadiabatic ~or zero temperature!
EOS

P5KrG5Kr111/N, ~15!

and as a so-called ‘‘ideal fluid’’ EOS

P5~G21!r«, ~16!

whereK is the polytropic constant,G the polytropic index
and N[(G21)21 the polytropic exponent. The ideal flui
EOS~16! depends on both the rest-mass densityr and on the
specific internal energy«; it corresponds to allowing the
polytropic coefficientK in adiabatic EOS~15! to be a func-
08402
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tion of entropy. The use of an adiabatic EOS with a const
K is computationally less expensive and is physically reas
able when modeling configurations that are in near equi
rium, such as stable stellar models in quasi-equilibrium e
lutions. There are however dynamical processes, such
those involving nonlinear oscillations and shocks, in whi
the variations in the energy entropy cannot be neglected.
simulations discussed in Sec. IV C, where both equation
state~15!,~16! are used for the same configuration, give d
rect evidence of how a more realistic treatment of the int
nal energy of the system can produce qualitatively differ
results.

The increased accuracy in the physical description of
dynamical system comes with a non-negligible additio
computational cost. It involves the solution of an addition
equation~i.e. the evolution equation for the specific intern
energy«), increasing the total number of GR-Hydro equ
tions from four to five and making accurate long-term ev
lutions considerably harder.

D. Boundary conditions

In our general-purpose code, a number of different bou
ary conditions can be imposed for either the spacetime v
ables or for the hydrodynamical variables. We refer t
reader to@6,23# for details. In all of the runs presented in th
paper we have used static boundary conditions for the hy
dynamical variables and radiative outgoing boundary con
tions for the spacetime variables. The only exception to t
is the evolution of rotating stars~see Sec. V!, for which the
spacetime variables have also been held fixed at the o
boundary.

IV. SPHERICAL RELATIVISTIC STARS

We turn next to the description of the numerical evo
tions of relativistic star configurations. We start by consid
ing spherical models.

A. Long-term evolution of stable configurations

Using isotropic coordinates (t,r ,u,f), the metric describ-
ing a static, spherically symmetric relativistic star reads

ds252e2ndt21e2l~dr21r 2du21r 2sin2udf2!, ~17!

wheren andl are functions of the radial coordinater only.
The form of the metric componentgrr is much simpler in
these coordinates than in Schwarzschild coordinates, w
are often used to describe a Tolman-Oppenheimer-Volk
~TOV! equilibrium stellar solution. In addition,grr is not
constrained to be equal to unity at the center of the ste
configuration, as in Schwarzschild coordinates. We h
found that these two properties of the isotropic coordina
are very beneficial to achieve long-term numerical evolutio
of relativistic stars. Therefore, all simulations of spheric
relativistic stars shown in this paper have been perform
adopting the line element~17! expressed in Cartesian coo
dinates.
4-5
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Although the initial configurations refer to stellar mode
in stable equilibrium, the truncation errors at the center a
at the surface of the star excite small radial pulsations
are damped in time by the numerical viscosity of the co
Moreover, these pulsations are accompanied by a sec
evolution of the values of the central rest-mass density a
from its initial value. Similar features have been reported
Refs. @42,43#. These features converge away at the corr
rate with increasing grid resolution and do not influence
long-term evolutions. Moreover, the secular evolution of
central rest-mass density varies according to the E
adopted: when using the ideal fluid EOS, we have obser
that the secular drift of the central rest-mass density is
wards lower densities. However, if we enforced the adiab
condition ~which is justified for the case of a nea
equilibrium evolution!, we have observed that the domina
truncation error has opposite sign and the central rest-m
density evolves towards larger values. The different beha
shown by the two equations of state should not be surpris
The stellar models we are solving for are in fact static only
the ideal limit of infinite numerical resolution. On a finit
grid, however, these models are not static and indeed s
pulsations in their fundamental mode of oscillation~see the
subsequent discussion!. In this case it is natural to expect th
different equations of state could lead to qualitatively diffe
ent secular behaviors.

This is shown in Fig. 1 where we plot the evolution of
TOV star with gravitational massM51.65 M ( , constructed
with anN51 polytrope. In our units, the polytropic consta
is K5123.5 and the central rest-mass density of the sta
rc51.0031023. For these tests, a very coarse grid of 33

gridpoints in octant symmetry is sufficient and allows t
major effects to be revealed with minimal computation
costs. The outer boundary is placed at about 1.7r s ~wherer s

FIG. 1. Evolution of the central rest-mass densityrc ~in units of
the initial central rest-mass densityrc,0) for a nonrotating star with
gravitational massM51.65 M ( . Using Roe’s approximate Rie
mann solver, the figure shows a comparison in the use of the m
mod and of the MC slope limiters for both the ideal fluid and t
adiabatic EOS.
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is the isotropic coordinate radius of the star!. We use radia-
tive boundary conditions with a 1/r fall-off. Irrespective of
the slope limiter used, the magnitude of the secular d
observed in the central rest-mass density evolution is roug
a factor of two smaller for the adiabatic EOS than for t
ideal fluid EOS. As a result, in all of the evolutions of stab
configurations which remain close to equilibrium~such as
pulsating stars, with no shock developing!, the adiabatic
EOS is preferred.

Figure 1 also gives a comparison of the use of the m
mod and the MC slope limiters in the evolution of the no
malized central rest-mass density. For both the ideal fluid
the adiabatic EOS, the MC limiter shows a significan
smaller secular increase in the central rest-mass densit
compared to the minmod one. The simulations in Fig. 1 e
ployed Roe’s approximate Riemann solver in the fluid ev
lution scheme and this is then compared to Marquina’s fl
formula in Fig. 2 for the evolution of the central rest-ma
density. The secular increase is significantly smaller wh
using Marquina’s flux-formula than when using Roe’s solv
and this is especially noticeable for the minmod slope li
iter. A comparison of the increase of the maximum error
the Hamiltonian constraint after several ms of evolution~not
shown here! indicates that it is about 80% smaller with Ma
quina than with Roe, when using the adiabatic EOS. A
result of the above comparisons, we have adopted Mar
na’s scheme with the MC slope limiter as our preferr
scheme for evolution of the GR-Hydro equations. Unle
otherwise noted, all of the simulations presented in this pa
have been obtained with such a scheme.

Next, we show in Fig. 3 the long-term evolution of th
central rest-mass density for three different grid resolutio
For this, we consider a nonrotatingN51 polytropic star with
gravitational massM51.4 M ( , circumferential radiusR
514.15 km, central rest-mass densityrc51.2831023 and
K5100. The different simulations used 323, 643 and 963

gridpoints with octant symmetry and with the outer bounda

n-

FIG. 2. Evolution of the normalized central rest-mass densityrc

for a nonrotatingM51.65 M ( star. Different lines show a com
parison between Roe’s Riemann solver and Marquina’s flux form
for different slope limiters.
4-6
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placed at 1.7r s . These grid resolutions correspond to abo
19, 38 and 56 gridpoints per star radius, respectively. Fig
3 shows the oscillations in the central rest-mass density
the secular evolution away from the initial value mention
above. The oscillations are produced by the first-order tr
cation error at the center and the surface of the star~our
hydrodynamical evolution schemes are globally second
der, but only first-order at local extrema; see related disc
sions in Ref.@23#, where long-term convergence tests a
presented! but both the amplitude of the initial oscillatio
and the rate of the secular change converge to zero at n
second-order with increasing grid resolution.

Note that the evolutions shown in Figs. 3–5 extend to
ms, corresponding to about 10 dynamical times~taking the
fundamental radial mode period of pulsation as a measur
the dynamical time scale!, significantly longer than, say, th
ones reported by other authors@8,44#. Our evolutions are
limited by the time available~a simulation with 963 grid-
points and up to 7 ms takes about 40 hours on a 128 pro
sor Cray-T3E supercomputer!. We have found that for a
resolution of 963, the final central density, averaged over t
last three periods of oscillations, is just 0.25% larger than
initial central density.

For the same configuration, we show, in Fig. 4, the ti
evolution of the L2-norm of the violation of the Hamiltonia
constraint at the three different grid resolutions. Also in t
case, the violation of the Hamiltonian constraint converge
zero at nearly second-order with increasing grid resolutio

In Fig. 5, we show other aspects of the accuracy of
simulation with 963 gridpoints, by comparing the initial pro
files of the rest-mass densityr and of the lapse functiona of
the TOV star with those obtained after 7 ms of evolutio

FIG. 3. Time evolution of the normalized central rest-mass d
sity at three different grid resolutions (323, 643 and 963 gridpoints,
respectively!, for anM51.4 M ( , N51 relativistic, spherical poly-
trope. The evolution of the central rest-mass density is ma
modulated by the fundamental radial mode of oscillation of the s
The initial amplitude of the oscillation converges to zero at seco
order, while the secular increase in the central rest-mass de
converges away at almost second-order.
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The small deviations from the original profiles are wor
emphasizing. The small inset shows a magnification of
rapid change in the gradient of the rest-mass density pro
at the surface of the star.

B. Radial pulsations

As mentioned in the previous section, the truncation
rors of the hydrodynamical schemes used in our code trig
radial pulsations of the initially static relativistic star~see
Ref. @45# for a review!. These pulsations are initiated at th

-

y
r.
-
ity

FIG. 4. Convergence of the L2-norm of the Hamiltonian co
straint, at three different grid resolutions (323, 643 and 963 grid-
points, respectively!, for an M51.4 M ( , N51 polytropic spheri-
cal relativistic star. The rate of convergence is close to second-o
with increasing grid resolution.

FIG. 5. Variation of the original profiles along thex-axis of the
rest-mass density~left vertical axis! and lapse function~right verti-
cal axis!, for anM51.4 M ( , N51 polytropic spherical relativistic
star, after 7 ms of evolution. A 963 grid in octant symmetry was
used in the simulation. The small inset shows a magnification of
rapid change in the gradient of the rest-mass density profile at
surface of the star.
4-7
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surface of the star, where the gradients of the rest-mass
sity are the largest~cf. Fig. 5!. Because gravitational wave
cannot be emitted through the excitation of radial pulsati
of nonrotating relativistic stars, these pulsations are dam
only by the numerical viscosity of the code in numeric
simulations of inviscid stars. In treatments more dissipat
than the HRSC schemes used in our code, such as t
using artificial viscosity or particle methods~e.g. smoothed
particle hydrodynamics!, these oscillations will be dampe
significantly faster.

In order to test the properties of the long-term hydrod
namical evolution separately from those of the spacet
evolution, we have first examined the small-amplitude rad
pulsations in afixed spacetimeof an initially static relativis-
tic star. As initial data, we use theM51.4 M ( polytropic
star of the previous section. We show, in Fig. 6, the evolut
up to 7 ms of the normalized star’s central rest-mass den
with a numerical grid of 963 gridpoints. The amplitude of the
excited pulsations in this purely hydrodynamical evolution
minute ~less than 1 part in 200! and is significantly smaller
than the corresponding amplitude in a coupled hydrodyna
cal and spacetime evolution~compare the vertical axes o
Figs. 3 and 6!.

A closer look at Fig. 6 reveals that the evolution of t
central rest-mass density is a superposition of different ra
normal modes of pulsation. The higher-frequency modes
damped faster, so that after a certain time the evolution p
ceeds mainly in the fundamental mode of pulsation. N
also the small damping rate of the fundamental pulsa
mode, indicating the small effective numerical viscosity
our HRSC hydrodynamical scheme. The evolution towa
larger values of the central rest-mass density is similar to
discussed in Sec. IV A but less pronounced in this case.

FIG. 6. Time evolution of the central rest-mass density of
M51.4 M ( , N51 polytropic spherical relativistic star. In thi
simulation the spacetime is heldfixed and the hydrodynamic vari
ables have been evolved on a numerical grid of 963 gridpoints. The
evolution is a superposition of radial normal modes of pulsati
excited by truncation errors of the hydrodynamical scheme. Hig
overtones are damped faster by the small but non-zero nume
viscosity.
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resolution of 963 gridpoints, the secular change in the ave
age central rest-mass density is less than 0.02% for the
evolution time shown.

The use of truncation error as an initial perturbation d
serves commenting on. The oscillations caused by trunca
error will converge away with increasing resolution, hen
the overall oscillation amplitude can carry no physical info
mation about the system. However, the frequencies and
malized eigenfuntions of particular normal-modes of oscil
tion of the star are physical~in the sense that they match th
eigenfrequencies and eigenfunctions calculated through
turbative analyses! and can be extracted from these simu
tions by carrying out a Fourier transform of the time evo
tion of the radial velocity or of the rest-mass density. As t
small-amplitude pulsations are in the linear regime,
eigenfunctions can be normalized arbitrarily~e.g. to 1.0 at
the surface of the star!. At increasing resolution, the solutio
converges to the mode-frequencies and to the normal
eigenfunctions, even though the overall oscillation amplitu
converges to zero. Such evolutions are useful for extrac
the properties of linear normal-modes of oscillation, as lo
as the resolution is fine enough that the pulsations excited
truncation errors are in the linear regime and as long as
resolution is coarse enough that the various local first
second order truncation errors of the numerical scheme re
in a time evolution that is dominated by a sum of norm
modes~at very fine resolutions the Fourier transform of t
time evolution would be very small and thus have a ve
noisy power spectrum due to roundoff errors, in which ca
the physical normal-mode frequencies would be difficult
extract—this has not been the case for the resolutions use
this paper!. We also note that different variants of our hydr
dynamical evolution schemes excite the various phys
normal-modes at different amplitudes. For example, sec
order schemes employing the minmod limiter tend to clea
excite a large number of high-frequency overtones, wher
the use of the MC limiter results in the clear excitation
only a few low-frequency overtones and a more noisy pow
spectrum at higher frequencies~for the resolutions used in
this paper!. This difference in behavior is due to the diffe
ences in the local truncation errors inherent in these num
cal schemes.

The radial pulsations are a sum of eigenmodes of pu
tion. Since the radial pulsations triggered by truncation err
have a small amplitude, one can compare the frequen
with that computed by linear perturbation theory@43# or with
hydrodynamical evolutions of similar models in 2D@42,43#.
In this way we can validate that the ‘‘artificial’’ perturbation
produced by the truncation errors do excite ‘‘physica
modes of oscillation for a relativistic star. However, befo
discussing the results of this comparison, it is important
emphasize that the identification of the frequency peaks
the Fourier transform of the time evolution of a given va
able with physical frequencies must be done with care. A r
pulsation frequency must be global~the same at every poin
in the star, at least for discrete normal mode frequencies! and
it should appear in the time evolution of different physic
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THREE-DIMENSIONAL NUMERICAL . . . . II. . . . PHYSICAL REVIEW D 65 084024
quantities describing the star’s structure and dynamics.
eliminate possible ambiguities, we have carried out our
quency identification procedure for different variables and
different positions in the star.

Figure 7 shows the Fourier transform of the time evo
tion of the central rest-mass density of the same initial mo
as in Fig. 6, but using theminmod limiter ~which gives a
clearer excitation of the higher overtones!. We indicate with
F the fundamental normal mode frequency and w
H1 –H6 the next six higher frequency modes~overtones!.
We have also compared the frequency peaks in the Fou
spectrum to both the normal mode frequencies expected
linear perturbation theory in the Cowling approximation~see
Ref. @46#! and to the frequencies computed with an indep
dent 2D axisymmetric nonlinear code@43#, which uses the
same HRSC schemes but in spherical polar coordin
~shown as dashed vertical lines in Fig. 7!.

As can be seen from Table I, the agreement is extrem
good. The relative difference between the 3D and 2D res
at this grid resolution is better than 1% up to (H4) and
slightly larger for higher frequencies (H5 andH6), which
become under-resolved at this grid resolution. This excel
agreement is a significant test for the correct implementa
of the hydrodynamical evolution schemes in our code, an
an indication of the level of accuracy we can achieve, reso
ing and following these small deviations away from the eq
librium configuration. As one would expect, lower or high
resolution runs~e.g. with 643 or 1443 gridpoints!, which
have intrinsically larger or smaller perturbation amplitud
respectively, reproduce the peaks in the power spect

FIG. 7. Fourier transform of the central rest-mass density e
lution of an M51.4 M ( , N51 polytropic spherical relativistic
star, in afixed spacetimeevolution. HereF represents the funda
mental normal mode frequency, whileH1 –H6 indicate the first six
overtones. The frequency peaks in the power spectrum are in e
lent agreement with the radial normal mode frequencies~shown
here as dashed vertical lines! computed with an independent 2
code using spherical polar coordinates. The solid and dotted l
were computed with 963 and 643 gridpoints, respectively. The unit
of the vertical axis are arbitrary.
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shown in Fig. 7~see dotted line in Fig. 7!, which corresponds
to an evolution with 643 grid-points.

After establishing the accuracy of the long-term evoluti
of the GR-Hydro equations, we have examined the eigen
quencies of the radial pulsations of spherical stars incoupled
hydrodynamical and spacetime evolutions. A Fourier tra
form of the evolution of the radial velocity~for the same
equilibrium model as the one discussed before! is shown in
Fig. 8. Again in this case, we have been able to iden
several frequency peaks in the Fourier spectrum with
normal mode frequencies obtained with linear perturbat
techniques@47#. A detailed comparison of these frequenci

-

el-

es

TABLE I. Comparison of small-amplitude radial pulsation fre
quencies obtained with the present 3D nonlinear evolution c
with frequencies obtained with an independent 2D code. Both co
evolve the GR-Hydro equations in afixed spacetimeand for an
equilibrium model of anN51 relativistic polytrope withM /R
50.15.

Present 3D code 2D code Relative Difference
Mode ~kHz! ~kHz! ~%!

F 2.696 2.701 0.2
H1 4.534 4.563 0.6
H2 6.346 6.352 0.1
H3 8.161 8.129 0.4
H4 9.971 9.875 1.0
H5 11.806 11.657 1.3
H6 13.605 13.421 1.7

FIG. 8. Fourier transform of the evolution of the radial veloci
for an M51.4 M ( , N51 polytropic spherical relativistic star in a
coupledspacetime and hydrodynamical evolution. The frequen
peaks in the spectrum are in excellent agreement with the ra
normal mode frequencies computed by perturbation theory~shown
here as dashed vertical lines!. As in Fig. 7, hereF represents the
fundamental normal mode frequency, whileH1 –H3 are the next
three higher frequency modes. The units of the vertical axis
arbitrary.
4-9
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is shown in Table II. The agreement is again excellent. N
the rather large differences between the frequencies show
Tables I and II. The Cowling approximation is rather inacc
rate for the lowest radial mode-frequencies@48#, but is in-
creasingly more accurate for nonradial pulsations or
higher frequencies@48#.

All of the results discussed so far refer to simulatio
involving stable relativistic configurations. In the followin
section we consider numerical evolutions of relativistic st
which are initially in an unstable equilibrium.

C. Migration of unstable configurations to the stable branch

The numerical evolution of a nonrotating, relativistic st
in an equilibrium unstable to the fundamental radial mode
pulsation is mainly determined by the numerical truncat
errors that cause it to evolve away from its initial configu
tion. Depending on the type of perturbation, the star c
either collapse to a black hole or expand and migrate to
stable branch of the sequence of equilibrium models, rea
ing a new, stable equilibrium configuration with approx
mately the same rest-mass of the perturbed star. We h
therefore constructed a model of anN51, K5100 poly-
tropic star with rest-massM051.535M ( (M51.447M ()
and a central rest-mass densityrc58.031023, which is
larger than the central rest-mass density of the maxim
mass stable model. The star is therefore initially in an
stable equilibrium~see the inset of Fig. 9! and under the
perturbation introduced by the truncation error, it expan
evolving rapidly to smaller central rest-mass densities, u
it reaches the stable branch of equilibrium configurations.
analogous behavior has been observed in numerical sim
tions of relativistic boson stars@18# ~see also Ref.@49# for
recent numerical simulations of expanding unstable bo
stars!.

In a realistic astrophysical scenario, a stable neutron
can accrete matter e.g. from a companion star in a bin
system or from infalling matter after its formation in a s
pernova core-collapse. The star would then secularly m
towards larger central densities along the stable branc
equilibrium configurations, exceed the maximum-mass li
and collapse to a black hole. No secular mechanism co
evolve the star to the unstable branch. In this respect,
migration mechanism discussed here cannot occur in p
tice. Nevertheless, it provides a consistent solution of

TABLE II. Comparison of small-amplitude radial pulsation fre
quencies obtained with the present 3D nonlinear evolution c
with linear perturbation mode frequencies, in fullycoupledevolu-
tions. The equilibrium model is a nonrotatingN51 relativistic
polytrope withM /R50.15.

Present 3D code Perturbation code Relative Differen
Mode ~kHz! ~kHz! ~%!

F 1.450 1.442 0.6
H1 3.958 3.955 0.0
H2 5.935 5.916 0.3
H3 7.812 7.776 0.4
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initial value problem and represents an important test of
accuracy of the code in a highly dynamical and non-adiab
evolution. We use such an initial data set to study large a
plitude oscillations of relativistic stars, which cannot b
treated accurately by linear perturbation theory. Large am
tude oscillations about a configuration on the stable bra
could occur after a supernova core-collapse@20# or after an
accretion-induced collapse of a white dwarf. While the act
set of quasi-normal modes excited will depend on the ex
tation process, the ability to simulate large amplitude os
lations is important.

Figure 9 shows the evolution of the central rest-mass d
sity rc normalized to its initial value and up to a final time o
4.26 ms. On a very short dynamical time scale of 0.5 ms
star has expanded and has its central density droppe
about 3% of its initial central rest-mass density. Note th
this is less than the central rest-mass density,rc51.35
31023, of the stable model of the same rest-mass, which
indicated with an asterisk on the vertical axis of Fig. 9. Du
ing the rapid decrease of the central rest-mass density,
star acquires a large radial momentum. The star then ente
phase of large amplitude radial oscillations about the sta
equilibrium model with the same rest-mass. Because the
stable and stable models have rather different degree
compactness, the migration to the stable branch will be
companied by the release of a significant amount of grav
tional binding energy which could either be converted

e

e

FIG. 9. Evolution of the~normalized! central rest-mass densit
rc during the migration of an unstable relativistic star to a sta
model with the same rest-mass. When an adiabatic EOS is
~dotted line! the difference in gravitational binding energy betwe
the unstable and stable models is periodically converted in b
kinetic energy through highly nonlinear, nearly constant amplitu
pulsations. In contrast, when an ideal fluid EOS is used~solid line!,
the gravitational binding energy is gradually converted into inter
energy via shock heating. As a result, the oscillations are dam
and the heated stable equilibrium model approaches a central
sity slightly smaller than the rest-mass density of a zero tempera
star of the same rest-mass~indicated by an asterisk on the le
vertical axis!.
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bulk kinetic energy or to internal energy depending on
choice of EOS.

In order to investigate both responses, we have perform
two different evolutions of the same initial model. In the fir
case~the ‘‘adiabatic EOS’’ in Fig. 9!, we have enforced the
adiabatic condition during the evolution, i.e. we have
sumed that the star remains at zero temperature followin
adiabatic EOS. As shown in Fig. 9 with a dotted line, in th
case the star behaves like a compressed spring which i
lowed to expand, oscillating with a nearly constant amp
tude. This indicates that the star periodically converts al
the excess gravitational binding energy into the kinetic
ergy and vice versa. As the oscillations are highly nonline
the restoring force is weaker at higher densities than at lo
densities and the oscillations are therefore far from be
sinusoidal.

In the second case~the ‘‘ideal fluid EOS’’ in Fig. 9!, we
do not enforce the abiabatic condition, but allow all of t
thermodynamic variables to evolve in time. As a result,
oscillations are gradually damped in time, while the star
cillates around a central density close to that of a stable
with the same rest-mass.

The rapid decrease in the oscillation amplitude is due
the dissipation of kinetic energy via shock heating. At t
end of the first expansion~i.e. at the first minimum in Fig. 9!,
the star has expanded almost to the edge of the nume
grid. At this point, the outer parts of the initial star ha
formed a low-density, outer-core mantle around the hi
density inner core and the star then starts to contract. Fig
10 shows with solid lines the supersonic infall of the ou
core mantle att50.84 ms, while the inner core is contractin
homologously. After this ‘‘point of last good homology,’’ th
high-density inner core reaches its maximum infall veloc
and then starts slowing down. The infalling low-dens

FIG. 10. Shock formation in the outer core mantle, during
first bounce at equilibrium densities of an unstable star, evol
with an ideal fluid EOS. The top and bottom panels show the in
nal energye and radial velocityvx , respectively, at three differen
times: the homologous infall phase, the inner core bounce and
outwards shock propagation. The oscillations of the inner core
damped by shock heating.
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mantle forms a shock at the inner-core–mantle bound
~dotted lines att50.98 ms in Fig. 10!. After the inner core
bounces, it expands and pressure waves at the inner-c
mantle boundary feed the shock wave with kinetic ene
~dashed lines att51.13 ms in Fig. 10!. In this way, the
shock wave is dissipating the initial binding energy of t
star so that the amplitude of the central density oscillatio
decreases with time. The above process is very similar to
core bounce in neutron star formation~see, for instance, the
description in@50#!, except for the fact that here the out
mantle is created during the first rapid expansion from m
terial of the initial unstable star.

As a result of the damping of the radial oscillations, t
star settles down, on a secular time scale, to a stable equ
rium configuration with central density somewhat smal
than the central density of a stable star with the same r
mass as the initial unstable star. This is because part of
matter of the initial star forms a heated mantle around
inner core.

The evolution shown in Fig. 9 was obtained using a re
lution of 963 gridpoints. Since the initial unstable configur
tion is much more compact than the final configuration,
boundaries of the computational grid were placed at ab
4.5r s . As a result, the grid resolution of the initial configu
ration is rather low, causing an additional, non-negligible d
viation of the average central rest-mass density of the pul
ing star away from the expected central rest-mass densit
the zero-temperature star of the same rest-mass.

The evolution of the highly nonlinear and nonadiaba
pulsations of a star when it settles down on the stable bra
underlines the importance of evolving all of the thermod
namic variables~including the specific internal energy! and
the importance of using HRSC methods in order to reso
the formation and evolution of shocks correctly. These ca
bilities of the numerical code will be important in the corre
simulation of general relativistic astrophysical events such
the merging of a neutron star binary system or the format
of a neutron star in an accretion-induced collapse of a w
dwarf.

D. Gravitational collapse of unstable configurations

As mentioned in the previous section, the numeri
scheme used in the hydrodynamical evolution is such tha
causes a nonrotating relativistic star in an unstable equ
rium to expand and migrate to the configuration of the sa
rest-mass located on the stable branch of equilibrium c
figurations. In order to study the gravitational collapse to
black hole of an unstable model we need to add to the in
model a small radial perturbation in the rest-mass den
distribution. A very small perturbation of the order of;1%
is sufficient and its radial dependence can be simply given
cos(pr/2r s), wherer is the coordinate distance from the ce
ter andr s its value at the surface of the star.

The addition of this small perturbation dominates over
truncation error and causes the star to collapse to a b
hole. Note that after the perturbation is added to the ini
equilibrium configuration, the constraint equations are solv
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to provide initial data which is a solution to the field equ
tions @25#.

The ~forced! collapse to a black hole of an unstab
spherical relativistic star is shown in Fig. 11 for a simulati
with 1283 gridpoints in octant symmetry, using Roe’s solv
and an ideal fluid EOS. The figure shows the profiles alo
thex-axis of the lapse function~top panel!, of thegxx metric
component~middle panel! and of the normalized rest-mas
density~bottom panel!. Different lines refer to different times
of the evolution, with the thick solid line in each panel ind
cating the initial profile and with the thick dashed line co
responding to the final time slice att50.29 ms; intermediate
times ~shown every 0.049 ms! are indicated with dotted
lines. The evolution of the lapse function shows the char
teristic ‘‘collapse of the lapse,’’ a distinctive feature of blac
hole formation. The evolution of thegxx metric component
and of the rest-mass density also clearly exhibits featu
typical of black hole formation, such as the large peak
veloping in gxx , or the continuous increase in the cent
rest-mass density.

While the collapse of the lapse is a good indication of
formation of a black hole, the formation of an apparent h
rizon ~the outermost of the trapped surfaces! in the course of
the simulation is an unambiguous signature of black h
formation. An apparent horizon finder based on the fast-fl
algorithm@51# was used to detect the appearance of horizo
and to calculate the horizon mass. This apparent hori
finder, and its validation, is described in Ref.@52#.

Figure 12 shows the evolution of the horizon mass a
function of time. Initially there is no horizon. At a timet
50.21 ms a black hole forms and an apparent horizon
pears. As the remaining stellar material continues to acc
onto the newly formed black hole its horizon mass increas

FIG. 11. Profiles along thex-axis of representative metric an
fluid quantities during the gravitational collapse to a black hole
an unstableN51, rc58.031023 relativistic polytrope showing
different snapshots of the time evolution. The top, medium a
bottom panels show the evolution of the lapse function, of thegxx

metric component, and of normalized rest-mass density, res
tively. The thick solid and dashed lines indicate the initial and fi
(t50.29 ms) profiles. Intermediate profiles, indicated by thin d
ted dashed lines, are shown every 0.049 ms.
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finally levelling off, until aboutt50.27 ms. The subsequen
growth of the horizon mass is the result of the increas
error due to grid stretching—the radial metric function d
velops a sharp peak which cannot be resolved adequate

V. RAPIDLY ROTATING RELATIVISTIC STARS

A. Stationary equilibrium models

The long-term evolution of rapidly rotating, stable equ
librium relativistic stars represents a much more demand
test for a numerical code. In this case, in fact, the use o
non-zero shift vector is strictly necessary and this, in tu
involves the testing of parts of the code that are not involv
in the evolution of a nonrotating stellar model. The initi
data used here are numerical solutions describing gen
relativistic stationary and axisymmetric equilibrium mode
rotating uniformly with angular velocityV. The models are
constructed with the rns code@53,54# ~see Ref.@55# for a
recent review of rotating stars in relativity! which provides
the four metric potentialsn, B, m, andv needed to describe
the spacetime with line element

ds252e2ndt21B2e22nr 2 sin2u~df2vdt!2

1e2m~dr21r 2du2!. ~18!

In the nonrotating limit, the above metric reduces to the m
ric of a static, spherically symmetric spacetime in isotrop
coordinates. A rotating model is uniquely determined up
specification of the EOS and two parameters, such as
central rest-mass density and the ratio of the polar to
equatorial coordinate radii~axes ratio!.

Using the standard Jacobian transformations between
spherical polar coordinates (r ,u,f) and the Cartesian coor
dinates (x,y,z), the initial data for a rotating star are tran
formed to Cartesian coordinates. Convergence tests of
initial data on the Cartesian grid at various resolutions, sh
that the Hamiltonian and momentum constraints converg

f
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-

FIG. 12. Horizon mass as a function of time. A black hole
formed att50.21 ms and the horizon mass then starts to incre
as a result of accretion.
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second-order everywhere except at the surface of the
where some high-frequency noise is present. This nois
due to Gibbs phenomena at the surface of the star, which
inherent to the method@56# used in the construction of th
2D initial data~see the relevant discussion in Ref.@54#!. To
our knowledge, all currently available methods for constru
ing initial data describing rotating relativistic stars suff
from some kind of Gibbs phenomena at the surface of
star, with the only exception being a recent multi-doma
spectral method that uses surface-adapted coordinates@57#.
The high-frequency noise does not appear to affect the lo
term evolution of the initial data at the grid resolutions e
ployed in our simulations. The evolution is carried out up
several rotational periods, using the shift 3-vector obtain
from the solution of the stationary problem, which we do n
evolve in time.

We have evolved models at various rotation rates and
several polytropic EOS, all showing similar long-term b
havior and convergence. Hereafter we will focus on anN
51 polytropic model, rotating at 92% of the allowed mas
shedding limit for a uniformly rotating star with the sam
central rest-mass density. In particular, we have chose
stellar model with the same central rest-mass density as
nonrotating model of Sec. IV A and which is significant
flattened by the rapid rotation~the polar coordinate radius i
only 70% of the equatorial coordinate radius!.

Similarly to what is observed in the numerical evolutio
of nonrotating stars, the truncation errors trigger, in a rapi
rotating star, oscillations that are quasi-radial. As a result,
rotating star pulsates mainly in its fundamental quasi-ra
mode and, during the long-term evolution, its central re
mass density drifts towards higher values. Also in this ca
both the amplitude of the pulsations and the central den
growth rate converge to zero at nearly second order w
increasing grid resolution.

FIG. 13. Profiles of the~normalized! rest-mass density along th
x-axis andz-axis at two coordinate times,t50 ~solid lines! and t
53.78 ms~dashed lines!, corresponding to three rotational period
(P). The star is anN51, rc51.2831023 polytrope rotating at
92% of the mass-shedding limit. The simulation has been
formed only in the volume above the (x,y) plane which is covered
with 1293129366 gridpoints.
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Our simulations have been performed only in the volu
above the (x,y) plane which is covered with 1293129366
gridpoints. At such grid resolutions, we have been able
evolve a stationary rapidly rotating relativistic star for thr
complete rotational periods, before the numerical solut
departs noticeably from the initial configuration. Note th
much longer evolution times~more than an order of magni
tude longer and essentially limited by the time available! can
be achieved if the spacetime is held fixed and only the
drodynamical equations in a curved background are evolv
This has been demonstrated recently in Ref.@17#, with a
code based on the one used in the present paper and in w
a third-order piecewise parabolic method~PPM! @58# was
used for the hydrodynamical evolution and applied to
study of nonlinearr-modes in rapidly rotating relativistic
stars and the occurrence of differential of a kinematical d
ferential rotation@59# ~see Refs.@60,61# for a recent review
on the r-mode instability!. While our current second-orde

r-

FIG. 14. Profile of the metric componentgxx along thex-axis
andz-axis at two different coordinate times, for the same evolut
shown in Fig. 13.

FIG. 15. The velocity componentvy along thex-axis at two
different coordinate times, for the same evolution as in Fig. 13.
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JOSÉA. FONT et al. PHYSICAL REVIEW D 65 084024
TVD method with the MC limiter is not as accurate~for the
same grid resolution! as the third-order PPM method, it ha
nevertheless, a very good accuracy, significantly better t
that of the minmod limiter.

Results of our simulations of rapidly-rotating stars a
plotted in Figs. 13–15. In particular, Fig. 13 shows the~nor-
malized! rest-mass density along thex and z axes at two
coordinate times,t50 ~solid lines! and t53.78 ms~dashed
lines!, with the latter corresponding to three rotational pe
ods. The outer boundary of the grid is placed at about tw
the equatorial radius. After three rotational periods, the r
mass density profile is still very close to the initial one. Sim
larly, Fig. 14 shows the metric componentgxx along thex
andz axes at the same coordinate times of Fig. 13. Again,
change ingxx is minimal and only near the stellar surface c
one observe a noticeable difference@the error there grows
faster for rotating stars~than for nonrotating stars!, due to the
Gibbs phenomenon in the initial data#.

In addition to triggering the appearance of quasiradial p
sations and the secular increase in the central rest-mass
sity, the truncation errors also induce the formation of a lo
maximum at the stellar surface for the evolved ‘‘momentum
variable S̃j @cf. Eq. ~7!#. The existence of this local extre
mum reduces, at the surface of the rotating star, the orde
our TVD schemes to first-order only. As a result, the angu
momentum profile at the surface gradually drifts away fro
the initial uniformly rotating one, with the rate of conve
gence of this drift being only first-order with increasing gr
resolution. We emphasize, however, that this is only a lo
effect: everywhere else inside the star, the angular mom
tum evolution is second-order accurate. Figure 15 shows
velocity componentvy along thex-axis at the same coordi
nate times of Figs. 13 and 14. Alternative evolution schem
based on third-order methods have been shown to ha
smaller truncation error at the surface of the star, both for
and 3D evolutions of the same initial data@43,17#, at least in
the Cowling approximation.

Note that plotting the velocity profile as in Fig. 15 allow
one to ascertain the accuracy in the preservation of the
locity field. Isocontours or vector plots of the velocity fie
can, in fact, easily mask the secular evolution shown in F
15. We also note that the variable evolved in the code is
the rotational velocity, but a corresponding momentum co
ponent which depends on the local rest-mass@cf. Eq. ~7!#.
The error in the rotational velocity near the surface is the
fore also influenced by the small value of the rest-mass d
sity in that region.

B. Quasi-radial modes of rapidly rotating relativistic stars

The quasi-radial pulsations of rotating neutron stars a
potential source of detectable gravitational waves and co
be excited in various astrophysical scenarios, such as a r
ing core-collapse, a core-quake in a rotating neutron star~due
to a large phase-transition in the equation of state! or the
formation of a high-mass neutron star in a binary neut
star merger. An observational detection of such pulsati
would yield valuable information about the equation of st
of relativistic stars@62#. So far, however, the quasi-radia
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modes of rotating relativistic stars have been studied o
under simplifying assumptions such as in the slow-rotat
approximation@63,64# or in the relativistic Cowling approxi-
mation @48,65#. The spectrum of quasi-radial pulsations
full general relativity has not been solved to date with p
turbation techniques~see Ref.@55# for a recent review of the
subject!.

In this section we take a step forward in the solution
this long standing problem in the physics of relativistics st
and obtain the first mode-frequencies of rotating stars in
general relativity and rapid rotation. As done in Sec. IV B f
the radial pulsation of nonrotating stars, we take advant
of the very small numerical viscosity of our code to extra
physically relevant information from the quasi-radial pertu
bations induced by truncation errors. The ability to do
demonstrates that our current numerical methods are ma
enough to obtain answers to new problems in the physic
relativistics stars.

Following the approach outlined in Sec. IV B, we ha
first computed the quasi-radial mode frequencies from
merical evolutions of the GR-Hydro equations in afixed
spacetimeevolution in order to compare with recent resu
coming from an independent 2D nonlinear evolution co
@65#. Table III shows the comparison of between the eige
frequencies computed in the Cowling approximation with t
2D code for the equilibrium model of the previous sectio
Note that the newly obtained frequencies differ by less th
0.5%, verifying that our code can accurately reproduce th

Next, we have computed the quasi-radial frequencies
coupledhydrodynamical and spacetime evolutions for ra
idly rotating stars. As mentioned before, this is a novel stu
and the results obtained cannot be compared with co
sponding results in the literature. To study this, we have c
ried out two types of analysis. Firstly, we have followed t
same procedure used in the case of a nonrotating star
obtained the normalized frequency spectrum of oscillatio
induced by the truncation errors. Secondly, we have co
puted the frequency spectrum of oscillations triggered b
small but specified perturbation. More precisely, we ha
introduced the same radial perturbation in the rest-mass
sity used in Sec. IV D to induce collapse: i.e.A cos(pr/2r p),
whereA50.02, r is the coordinate distance from the cent
and r p is the radial coordinate position of the poles. Wh
compared, the results of the two treatments indicate that
fundamental mode frequency agrees to within 2%, while
H1 mode near the mass-shedding limit is probably accu

TABLE III. Comparison of small-amplitude quasi-radial puls
tion frequencies obtained with the present 3D code infixed space-
time, with frequencies obtained with an independent 2D code. T
equilibrium model is anN51 relativistic polytrope rotating at 92%
of the mass-shedding limit.

Present 3D code 2D code Relative Difference
Mode ~kHz! ~kHz! ~%!

F 2.468 2.456 0.5
H1 4.344 4.357 0.3
H2 6.250 6.270 0.3
4-14
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THREE-DIMENSIONAL NUMERICAL . . . . II. . . . PHYSICAL REVIEW D 65 084024
to several percent only~at this resolution!.
To study quasi-radial modes of rapidly rotating relativis

stars we have built a sequence of models having the s
grid resolution, the same equation of state and central r
mass density used in the previous section, varying only
rotation rateV. The sequence starts with a nonrotating s
and terminates with a star at 97% of the maximum allow
rotational frequencyVK50.53633104 s21 for uniformly
rotating stars~mass-shedding limit!. The results of these
simulations are reported in Table IV and shown in Fig. 1
where the frequencies of the lowest two quasi-radial mo
are shown. Interestingly, the fundamental mode-frequen
~solid lines! and their first overtones~dashed lines! show a

TABLE IV. Quasi-radial pulsation frequencies for a sequence
rotatingN51 polytropes with rotation rates up to 97% of the ma
shedding limit. The frequencies of the fundamental modeF and of
the first overtoneH1 are computed fromcoupledhydrodynamical
and spacetime evolutions. The ratio of polarr p to equatorialr e

coordinate radii of the rotating models is also shown.

r p /r e V/VK F ~kHz! H1 ~kHz!

1.000 0.000 1.450 3.958
0.950 0.407 1.411 3.852
0.850 0.692 1.350 3.867
0.825 0.789 1.329 3.894
0.775 0.830 1.287 3.953
0.750 0.867 1.265 4.031
0.725 0.899 1.245 3.974
0.700 0.929 1.247 3.887
0.675 0.953 1.209 3.874
0.650 0.974 1.195 3.717

FIG. 16. Quasi-radial pulsation frequencies for a sequence
rotating N51 polytropes and a number of different rotation rate
The frequencies of the fundamental modeF ~filled squares! and of
the first overtoneH1 ~filled circles! are computed fromcoupled
hydrodynamical and spacetime evolutions~solid lines!. The se-
quences are also compared with the corresponding results obt
from computations in the relativistic Cowling approximation.
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dependence on the increased rotation which is similar to
one observed for the corresponding frequencies in the Co
ing approximation@65#.

In particular, theF-mode frequency decreases monoto
cally as the maximum rotation rate is approached. Near
mass-shedding limit, the frequency is 18% smaller than
frequency of the nonrotating star. The difference between
F-mode frequency computed here and the corresponding
sult in the Cowling approximation is nearly constant. Thu
one can construct an approximate empirical relation for
fundamental quasi-radial frequency of rapidly rotating sta
using only the corresponding frequency in the Cowling a
proximation,FCowling and the frequency of the fundament
radial mode in the nonrotating limit,FV50. For the particular
sequence shown above, the empirical relation reads

F5~FCowling21.246! kHz, ~19!

and yields the correct frequencies with an accuracy of be
than 2% for the most rapidly rotating model. More genera
if FCowling,V50 is the frequency of the fundamental radi
mode in the Cowling approximation, then the empirical r
lation can be written as

F5FV501FCowling2FCowling,V50 . ~20!

Such an empirical relation is very useful, as it allows one
obtain a good estimate of the fundamental quasi-radial m
frequency of rapidly rotating stars by solving the hydrod
namical problem in a fixed spacetime, rather than solving
much more expensive evolution problem in which the spa
time and the hydrodynamics are coupled.

The frequency of theH1 mode shows a non-monoton
decrease as the mass-shedding limit is approached, depa
from the behavior obtained in the Cowling approximatio
The oscillations in the frequency at larger rotation ra
could be due to ‘‘avoided crossings’’ with frequencies
other modes of oscillation.~We recall that ‘‘avoided cross
ing’’ refers to the typical behavior shown by two eigenfr
quency curves which approach smoothly but then dep
from each other without crossing. At the point of close
approach, the properties of the modes on each sequenc
exchanged@66#!. Similar avoided crossings have been o
served also in the Cowling approximation for higher ove
tones and near the mass-shedding limit~see Refs.@48,65#!.
Our results indicate therefore that the avoided crossings
sequence of relativistic rotating stars occur for smaller ro
tion rates than predicted by the Cowling approximation. T
increases the importance of avoided crossings and make
frequency spectrum in rapidly rotating stars more comp
than previously thought.

VI. GRAVITATIONAL WAVES FROM A PULSATING STAR

The ability to extract gravitational wave information from
simulations of relativistic compact objects is an importa
feature of any 3D general relativistic hydrodynamics co
To assess the ability of our code to extract self-consistent
accurate gravitational waveforms we have excited sim
quadrupolar perturbations in our standard sphericalN51
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polytrope. In particular, on the basis of the angular behav
of the l 52, f-mode in linear perturbation theory, we hav
introduced in the initial model a perturbation in the veloc
of the form

uu~ t50!5A sin~pr /r s!sinu cosu, ~21!

whereA50.02 is the amplitude of the perturbation andr s is
the coordinate radius of the star.

Following York @25#, we have then constructed the initi
data for the perturbed model by solving the constraint eq
tions for the unperturbed model with added perturbations
then proceeded to evolve this solution in time. As a respo
to the initial perturbations, the star has started a serie
periodic oscillations, mainly in the fundamental quadrupo
mode of oscillation. Other, higher-order modes are also
cited ~and observed! but these are several orders of mag
tude smaller and play no dynamical role.

As a consequence of the time-varying mass quadrup
triggered by the oscillations, the perturbed star emits gra
tational waves, which are extracted through a perturba
technique discussed in detail in Refs.@67–69#, and in which
the Zerilli function is expanded in terms of spherical ha
monics with each component being the solution of an o
nary differential equation.

We plot, in Fig. 17, thel 52,m50 component of the Zer
illi function c20. The upper panel, in particular, shows th
waverforms as extracted atr E517.7 km~dotted line! and at
r E523.6 km ~solid line! respectively, with the first having
been rescaled asr 23/2 to allow a comparison. The very goo
agreement between the two waveforms is an indication
the gravitational waves have reached their asymptotic wa
form. The lower panel, on the other hand, shows the am
tude ofc20 extracted atr E523.6 km for two different reso-

FIG. 17. Gravitation-wave extraction (c (20)) of a perturbed non-
rotating relativistic star, pulsating mainly in the fundamental qu
drupolar mode. The top panel shows the rescaled waverform
extracted atr E517.7 km ~dotted line! and atr E523.6 km ~solid
line!. The lower panel, on the other hand, shows the amplitude
c20 extracted atr E523.6 km for two different resolutions of 643

~dashed line! and 963 gridpoints~solid line!, respectively.
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lutions of 643 ~dashed line! and 963 gridpoints ~solid line!,
respectively. Note that the gravitational wave signal co
verges to a constant amplitude, as the true gravitational-w
damping timescale for this mode is several orders of mag
tude larger than the total evolution time shown. The sm
decrease in the amplitude observed in our numerical ev
tion is thus entirely due to the effective numerical viscos
of our scheme. At a resolution of 963 gridpoints, the effective
numerical viscosity is sufficiently low to allow for a quant
tative study of gravitational waves from pulsating stars o
a time scale of many dynamical times~the largest relative
numerical error estimated on the basis of the simulati
presented in Fig. 17 is 3.3%!.

As done in the previous sections, we have compared
frequencies derived from our numerical simulations w
those obtained from perturbative techniques forf-mode os-
cillations of N51 polytropes. Again in this case the com
parison has revealed a very good agreement between the
approaches. As one would expect, the dominant frequenc
the gravitational waves we extract~1.56 kHz! agrees with the
fundamental quadrupolef-mode frequency of the star~1.58
kHz! @47# to within 1.3%~at a resolution of 963 grid-points!.

VII. CONCLUSIONS

We have presented results obtained with a 3D gen
relativistic codeGR_ASTROin a comprehensive study of th
long-term dynamics of relativistic stars. The code has b
built by the Washington University/Albert Einstein Institu
collaboration for the NASA Neutron Star Grand Challen
Project@12# and is based on the Cactus Computational To
kit @13#. The simulations reported here have benefited fr
several new numerical strategies that have been impleme
in the code and that concern both the evolution of the fi
equations and the solution of the hydrodynamical equatio
In addition to the features of the code discussed in pape
the present version of the code can construct various type
initial data representing spherical and rapidly rotating re
tivistic stars, extract gravitational waves produced during
simulations and track the presence of an apparent hor
when formed.

All of these improvements have allowed tests and perf
mances well superior to those reported in the compan
paper I. With this improved setup we have shown that o
code is able to succesfully pass stringent long-term evolu
tests, such as the evolution of both, static and rapidly ro
ing, stationary configurations. We have also considered
evolution of relativistic stars unstable to either gravitation
collapse or expansion. In particular, we have shown that
stable relativistic stars can, in the course of a numerical e
lution, expand and migrate to the stable branch of equi
rium configurations. As an application of this property, w
have studied the large-amplitude nonlinear pulsations p
duced by the migration. Nonlinear oscillations are expec
to accompany the formation of a proto-neutron star afte
supernova core-collapse or after an accretion-induced
lapse of a white dwarf.

Particularly significant for their astrophysical applicatio
we have investigated the pulsations of both rapidly rotat
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and nonrotating relativistic stars and compared the comp
frequencies of radial, quasi-radial and quadrupolar osc
tions with the frequencies obtained from perturbative me
ods or from axisymmetric nonlinear evolutions. We ha
shown that our code reproduces these results with exce
accuracy. As a particularly relevant result, we have obtai
the first mode-frequencies of rotating stars in full gene
relativity and rapid rotation. A long standing problem, su
frequencies had not been obtained so far by other metho

In our view the results discussed in this paper hav
double significance. Firstly, they establish the accuracy
reliability of the numerical techniques employed in our cod
which, to the best of our knowledge, represent the most
curate long-term 3D evolutions of relativistic stars availa
to date. Secondly, they show that our current numer
methods are mature enough to obtain answers to new p
lems in the physics of relativistic stars.
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