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This is the second in a series of papers on the construction and validation of a three-dimensional code for the
solution of the coupled system of the Einstein equations and of the general relativistic hydrodynamic equations,
and on the application of this code to problems in general relativistic astrophysics. In particular, we report on
the accuracy of our code in the long-term dynamical evolution of relativistic stars and on some new physics
results obtained in the process of code testing. The following aspects of our code have been validated: the
generation of initial data representing perturbed general relativistic polytropic maefsrotating and non-
rotating, the long-term evolution of relativistic stellar models, and the coupling of our evolution code to
analysis modules providing, for instance, the detection of apparent horizons or the extraction of gravitational
waveforms. The tests involve single nonrotating stars in stable equilibrium, nonrotating stars undergoing radial
and quadrupolar oscillations, nonrotating stars on the unstable branch of the equilibrium configurations mi-
grating to the stable branch, nonrotating stars undergoing gravitational collapse to a black hole, and rapidly
rotating stars in stable equilibrium and undergoing quasiradial oscillations. We have carried out evolutions in
full general relativity and compared the results to those obtained either with perturbation techniques, or with
lower dimensional numerical codes, or in the Cowling approximatiorwhich all the perturbations of the
spacetime are neglectedn all cases an excellent agreement has been found. The numerical evolutions have
been carried out using different types of polytropic equations of state using either the rest-mass density only,
or the rest-mass density and the internal energy as independent variables. New variants of the spacetime
evolution and new high resolution shock capturing treatments based on Riemann solvers and slope limiters
have been implemented and the results compared with those obtained from previous methods. In particular, we
have found the “monotonized central differencing” limiter to be particularly effective in evolving the relativ-
istic stellar models considered. Finally, we have obtained the first eigenfrequencies of rotating stars in full
general relativity and rapid rotation. A long standing problem, such frequencies have not been obtained by
other methods. Overall, and to the best of our knowledge, the results presented in this paper represent the most
accurate long-term three-dimensional evolutions of relativistic stars available to date.
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[. INTRODUCTION tions from high-energy astronomy and gravitational wave as-
tronomy. It is thus not surprising that in recent years hydro-
Computational general relativistic astrophysics is an in-dynamical simulations of compact objects in numerical
creasingly important field of research. Its development is berelativity have become the focus of several research groups
ing driven by a number of factors: firstly, the large amount of[3—10].
observational data by high-energy x-ray apday satellites In a previous papef6] (paper ) we presented a 3D
such as Chandra, XMM and othelr$]; secondly, the new general-relativistic hydrodynamics cod@&R_ASTRO con-
generation of gravitational wave detectors coming online irstructed for the NASA Neutron Star Grand Challenge Project
the next few yearg2]; and thirdly, the rapid increase in [11]. TheGR_ASTROcode has been developed by Washington
computing power through massively parallel supercomputerfniversity and the Albert Einstein Institute and has the ca-
and the associated advance in software technologies, whigiability of solving the coupled set of the Einstein equations
make large-scale, multidimensional numerical simulationsand the general relativistic hydrodynaniR-Hydro equa-
possible. Three-dimensiongBD) simulations of general tions[12]. It has been built using the Cactus Computational
relativistic astrophysical events such as stellar gravitationaloolkit [13] constructed by the Albert Einstein Institute,
collapse or collisions of compact stars and black holes ar&ashington University and other institutes. Paper | presented
needed to fully understand the incoming wealth of observaeur formulation for the GR-Hydro equations coupled either
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to the standard Arnowitt-Deser-MisnekDM ) [14] formula-  cessful determination of the eigenfrequencies for rapidly ro-
tion of the Einstein equations or to a hyperbolic formulationtating stars computed with our code is noteworthy. Such
of the equationg15]. It demonstrated the consistency and frequencies have not been obtained before with the system
convergence of the code for a comprehensive sample of teggeing too complicated for perturbative techniques.

beds having analytic solutions. It gave a detailed analysis of The simulations discussed here make use of two different
twelve different combinations of spacetime and hydrody-Polytropic equations of statécOS. In addition to the stan-
namics evolution methods, including Roe’s and other apdard “adiabatic” EOS, in which the pressure is expres.sed as
proximate Riemann solvers, as well as their relative perfor® Power law of the rest-mass density, we have carried out

mance and comparisons when applied to the variouSimulations ir.nplement?ng the “ideal fluid” EOS, in Whlich
testbeds. The code as described and validated in paper | hH Pressure is proportional to both the rest-mass density and
been applied to various physical problems, such as thodie specific internal energy densﬂy. This IatFe_r choice in-
discussed in Ref§7,16,17, and is now freely availablgL2]. creases the computational cotsere is one add_ltlonal equa-
The main purpose of this paper is to examine and validatdon t©© be solved but allows for the modeling of non-
our code in long-term, accurate simulations of the dynamic&diabatic processes, such as strong shocks and the
of isolated stars in strong gravitational fields. Single relativ-cOnversion of bulk kinetic energy into internal energy, which
istic stars are indeed expected as the end-point of a numb&fe expected to accompany relativistic astrophysical events.
of astrophysical scenaridsuch as gravitational collapse and , 11€ré are a number of reasons why we advocate the care-
binary neutron star mergifgand should provide important fql validation of general_ relativistic astrophysics codes.
information about strong field physics both through eIectro-F',rStly', the space of solutions ,Of the coupled system of the
magnetic and gravitational wave emissions. A number offiNStéin and GR-Hydro equations is, to a large extent, un-
new numerical techniques have been incorporated in th&nown. Secondly, the numerical codes must solve a compli-
present code leading to a much improved ability to simulatéated set of coupled partial differential equations mvolvmg
relativistic stars. These techniques concern both the evoljhousands of terms and there are plenty of chances for coding

tion of the field equations, for which we have implemented®™rs: Thirdly, the complex computational infrastructure

new conformal-traceless formulations of the Einstein equal€€ded for the use of the code in a massively parallel envi-

tions, and the evolution of the hydrodynamical variables, forf@"Mentincreases the risk of computational errors, a risk that
which the use of the “monotonized central differencing” &N only be minimized through meticulous tests such as

(MC) limiter has provided us with the small error growth- those presented here as well as i_n paper |. This. paper, how-
rates necessary for simulations over several dynamical timg/€l» Wants to be more than a list of testbeds: the results
scales. presented show that our current numerical methods are ma-
More precisely, in this paper we focus on the accuracy ofure enough for obta_lnlng answers to new and outstanding
the code during long-term evolution of spherical and rapidlyProPlems in the physics of relativistic stars.
rotating stellar models. We also investigate the nonlinear dy- '€ organization of this paper is as follows: the formula-
namics of stellar models that are unstable to the fundamentdPn ©f the differential equations for the spacetime and the
radial mode of pulsation. Upon perturbation, the unstablgydrodynamics is briefly reviewed in Sec. Il. Section Il
models will either collapse to a black hole, or migrate to adives & short description of the numerical methods, with em-
configuration in the stable branch of equilibrium configura-Phases on the new schemes introduced in this papead-
tions (a behavior studied in the case of unstable boson stafdition to those in papen! Sections IV—VI represent the core
[18]). In the case of collapse, we follow the evolution all the ©f the paper and there we present the main results of our
way down to the formation of a black hole, tracking the simulations. In Sec. 1V, in particular, we focus our attention
generation of its apparent horizon. In the case of migration t&" the simulation of nonrotating relativistic stars. In Sec. V
the stable branch, on the other hand, we are able to accl’® _ConSIder the evolutl_on of rotat_lng_ stars. Section VI is
rately follow the nonlinear oscillations that accompany thisd€dicated to the extraction of gravitational waveforms gen-

process and that can give rise to strong shocks. The ability tgrated by the non-radial pulsations of perturbed relativistic

simulate large amplitude oscillations is important as we exStars. In Sec. VIl we summarize our results and conclusions.

pect a neutron star formed in a supernova core-collaps¥/€ Use @& spacelike signature-(+,+,+) and units in

[19,2 or in the accretion-induced collapse of a white dwarfWhich¢=G=M =1 (geometric units based on solar mass

to oscillate violently in its early stages of life. unless explicitly Sp.GCI'er(.Zi. Greek indices are taken to run
Particularly important for their astrophysical implications, from 0 to 3 and Latin indices from 1 to 3.

we study the linear pulsations of spherical and rapidly rotat-

ing stars. The compl_Jteo! frequencies of radial_, quasi-radial II. BASIC EQUATIONS

and quadrupolar oscillations are compared with the corre-

sponding frequencies obtained with lower-dimensional nu- We give a brief overview of the system of equations in

merical codes or with alternative techniques such as théhis section. We refer the reader to paper | for more details.

Cowling approximatior(in which the spacetime is held fixed

and only the GR-Hyrdo equations are evolyvedrelativistic

perturbative methods. The comparison shows an excellent

agreement confirming the ability of the code to extract physi- In general relativity, the dynamics of the spacetime is de-

cally relevant information from tiny perturbations. The suc-scribed by the Einstein field equatio®,,=87T with

A. Field equations

v

084024-2



THREE-DIMENSIONAL NUMERICAL ... . 1l.... PHYSICAL REVIEW D 65 084024

G, being the Einstein tensor afd,, the stress-energy ten- traceless extrinsic curvature variabidg, there are evolu-
sor. Many different formulations of the equations have beenion equations for the conformal factas, the trace of the
proposed throughout the years, starting with the ADM for-extrinsic curvatureK and the “conformal connection func-

mulation in 1962[14]. In our code, we have implemented yions» T (following the notation of Ref[22]). We note that
three different formulations of the field equations, includingipe final mixed, first and second-order, evolution system for
the ADM formulation, a hyperbolic formulatiofil5] and a

more recent conformal-traceless formulation based on th
ADM construction[21,27 (see also Ref.23)). : - - . g

In the ADM formulation[14], the spacetime is foliated VvariablesF;=—X;y;; ; were used instead of the'.
with a set of non-intersecting spacelike hypersurfaces. Two In Refs. [23,27 the improved properties of this
kinematic variables relate the surfaces: the lapse funetion conformal-traceless formulation of the Einstein equations
which describes the rate of advance of time along a timelikavere compared to the ADM system. In particular, in Ref.
unit vectorn® normal to a surface, and the shift three-vector[23] @ humber of strongly gravitating systems were analyzed

f' that relates the spatial coordinates of two surfaces. In thigumerically withconvergentigh resolution shock capturing
construction the line element reads HRSO methods with total-variation-diminishing (TVD)

schemes using the equations described in paper I. These in-

ds?= —(a?— B;8)dt2+ 23, dxdt+ yijdxidxj. (1)  cluded weak and strong gravitational waves, black holes, bo-

son stars and relativistic stars. The results show that our
The original ADM formulation casts the Einstein equationstreatment leads to a long-term numerical evolution of the
into a first-order(in time) quasi-lineaf24] system of equa- Many strongly gravitating systems. However, we have also
tions. The dependent variables are the 3-mefjcand the found that the conformal-traceless formulation requires grid

¢,K,7; A, T’} is not in any immediate sense hyperbolic
6]. In the original formulation of Ref[21], the auxiliary

extrinsic curvature; . The evolution equations read resolutions higher than the ones needed in the ADM formu-
! lation (with the driver techniqué28]) to achieve the same
avyij=—2aK; +ViBi+ViBi, (2)  accuracy. Because in long-term evolutions a small error

growth-rate is the most desirable property, we have adopted
the conformal-traceless formulation as our standard form for

aKij=—ViVa+ a| R; +KK;; —2KimKJFn the evolution of the field equations.

B. Hydrodynamic equations

The GR-Hydro equations are obtained from the local con-

servation laws of the density curreftontinuity equatioh
+ B"ViKij + Kim Vi 8™+ K Vi B, (3)  and of the stress-energy tensor, which we assume to be that
of a perfect fluidT#”=phu*u”+ Pg*”, with u* being the

whereV; denotes the covariant derivative with respect to thefjuid 4-velocity andP andh the (isotropid pressure and the
3-metric y;;, R;j is the Ricci curvature of the 3-metric, and specific enthalpy, respectively. In our code the GR-Hydro
K=1+"Kj; Is the trace of the extrinsic curvature. In addition equations are written as a first-order flux-conservative hyper-
to the evolution equations, there are four constraint equapolic systen(29,6]
tions: the Hamiltonian constraint

1
_877(3]_ EYijS)_47TpADM7ij

.
(3)R+K2—K”Kij—167TpADM=0, @ U+ 9iF'=S, (6)
where the evolved state vectdt is given, in terms of the
and the momentum constraints primitive variables: the rest-mass density the 3-velocity
o » v'=U'/W+ B'/« and the specific internal energy as
ViKY = yV;K—87j'=0. (5 B
D \/;Wp

In Egs. (2—(5), papm.i".S;j.S=7"S; are the components )
of the stress-energy tensor projected onto the 3D hypersur- U= \/;Phw Uj . @)
face (for a more detailed discussion, see Reb)). _ pe Vy(phW2— P —Wp)

As mentioned above, in addition to the two formulations
described in paper I, we have recently implemented &ere y is the determinant of the 3-metrig; andW is the
conformal-traceless reformulation of the ADM system, aslLorentz factorw= au0=(1—yijvivj)_l/2. Furthermore, the
proposed by[21,22. Details of our particular implementa- 3_fiyx vectorsF' are given by
tion of this formulation are extensively described in R&B]
and will not be repeated here. We only mention here that this N N P
formulation makes use of a conformal decomposition of the @ ;ﬂ D
3-metric,y;; =e~ *%y;; and the trace-free part of the extrinsic
curvature, Aj; =K;j; — ¥;;K/3, with the conformal factorp F'=| «
chosen to satisfg*®= y3=det(y;;)*. In this formulation,
as shown in Ref{22], in addition to the evolution equations

for the conformal three—metric;yij and the conformal-

mt
[

1. .
<v'—;ﬂ')sj+ﬁp5;} : (8)

T+ \/;viP

a

1
(UI_ZBI
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Finally, the source vectd is given by in a leapfrog step to re-update the solution at the final time
stept"*1. This process is then iterated. The error is defined
0 as the difference between the current and previous solutions
- P on the half time step"* Y2 This error is summed over all
S= aN YT, ' ) gridpoints and all evolved variables. Because the smallest
a\/;(T“Oaﬂa— aT“”I’OW) number of iterations for which the iterative Crank-Nicholson
evolution scheme is stable is three and further iterations do
wherel'®,, are the Christoffel symbols. not improve the order of convergen¢@3,23, we do not

iterate more than three times. Unless otherwise noted, all
simulations reported in this paper use the iterative Crank-

) ] . ) Nicholson scheme for the time evolution of the spacetime.
The code is designed to handle arbitrary shift and lapse

conditions, which can be chosen as appropriate for a given
spacetime simulation. More information about the possible
families of spacetime slicings which have been tested and The numerical integration of the GR-Hydro equations is
used with the present code can be found in RE§s23.  based on high-resolution shock-capturittfRSC schemes,
Here, we limit ourselves to recall details about the specificsPecifically designed to solve nonlinear hyperbolic systems
foliations used in the present evolutions. In particular, weof conservation laws. These conservative schemes rely on

C. Gauge conditions

B. Hydrodynamical evolution

have used algebraic slicing conditions of the form the characteristic structure of the equations in order to build
approximate Riemann solvers. In paper | we presented a
da=—Tf(a)a’K, (10)  spectral decomposition of the GR-Hydro equations, suitable

for a general spacetime metiisee also Ref.34]).
with f(a)>0 but otherwise arbitrary. This choice contains  Approximate Riemann solvers compute, at every cell-
many well known slicing conditions. For example, setting interface of the numerical grid, the solution of local Riemann
=1 we recover the “harmonic” slicing condition, or by set- problems(i.e. the simplest initial value problem with discon-
ting f=q/a, with q being an integer, we recover the gener-tinuous initial data Hence HRSC schemes automatically
alized “1+log” slicing condition [30]. In particular, all of guarantee that physical discontinuities developing in the so-
the simulations discussed in this paper are done using comstion (e.g., shock waves, which appear in core-collapse su-
dition (10) with f=2/a (we caution that “gauge patholo- pernovae or in coalescing neutron star binare® treated
gies” could develop with the “4log” slicings, see Refs. consistently. HRSC schemes surpass traditional approaches
[31,32). The evolutions presented in this paper were carried3,8] which rely on the use of artificial viscosity to resolve
out with the shift vector being either zero or constant in time.such discontinuities, especially for large Lorentz factor
flows. HRSC schemes have a high order of accuracy, typi-
IIl. NUMERICAL METHODS caI_Iy second-order or more, except at shocks ar_1d extremal
points. We refer the reader {85,36 for recent reviews on
We now briefly describe the numerical schemes used ithe use HRSC schemes in relativistic hydrodynamics.
our code. We will distinguish the schemes implemented in One of the major advantages of using HRSC schemes is
the evolution of the Einstein equations from those imple-that we can take advantage of the many different algorithms
mented in the evolution of the hydrodynamic equations. Inthat have been developed and tested in Newtonian hydrody-
both cases, the equations are finite-differenced on spacelikeamics. In this spirit, our code allows for three alternative
hypersurfaces covered with 3D numerical grids using Carteways of performing the numerical integration of the hydro-
sian coordinates. dynamic equations(i) using a flux-split method37]; (ii)
using Roe’s approximate Riemann sol{/88], and(iii ) using
A. Spacetime evolution Marquina’s flux-formula[39]. The different methods differ
imply in the way the numerical fluxes at the cell-interfaces
) i re calculated in the corresponding flux-formula. The code
several different numerical schem¢§,23). Currently, & ;505 slope-limiter methods to construct second-order total
Lgapfrog (non-staggered in timeand an iterative Crank- variation diminishing (TVD) schemes[40] by means of
Nicholson scheme have been coupled to the hydrodynamig,onstonic piecewise linear reconstructions of the cell-
solver. , _centered quantities to the left) and right(R) sides of every
The Leapfrog method assumes that all variables exist ORg\.interface for the computation of the numerical fluxes.

both the current time stef and the previous time step™ 2. . - R - L
Variables are updated fromi~* to t"*?! (future time evalu- More preciselyl/;" andi/y., , are computed to second-order
gccuracy as follows:

ating all terms in the evolution equations on the current tim
stept". The iterative Crank-Nicholson solver, on the other
hand, first evolves the data from the current time stefo
the future time step” ™! using a forward in time, centered in . .
space first-order method. The solutions at st€pandt"** Ut =U 1+ 04 1 (X (2~ Xi+1) (12

are then averaged to obtain the solution on the half time step

t""12 This solution at the half time sty ™2 is then used wherex denotes a generic spatial coordinate. We have fo-

As described in paper I, our code supports the use o

UR=U+ o(Xi + (1129~ %) (11
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cused our attention on two different types of slope limiters,tion of entropy. The use of an adiabatic EOS with a constant
the standard “minmod” limiter and the “monotonized K is computationally less expensive and is physically reason-
central-difference”(MC) limiter [41]. In the first case, the able when modeling configurations that are in near equilib-

slopeo; is computed according to rium, such as stable stellar models in quasi-equilibrium evo-
L R ; lutions. There are however dynamical processes, such as

. Ui—Ui— 1 U1~ U those involving nonlinear oscillations and shocks, in which
o= minmo Ax ' Ax )’ (13 the variations in the energy entropy cannot be neglected. The

simulations discussed in Sec. IV C, where both equations of
whereAx denotes the cell spacing. The minmod function ofstate(15),(16) are used for the same configuration, give di-

two arguments is defined by rect evidence of how a more realistic treatment of the inter-
nal energy of the system can produce qualitatively different
a if |a|<|b|] and ab>0, results.

The increased accuracy in the physical description of the
) dynamical system comes with a non-negligible additional
0 if ab=<0. computational cost. It involves the solution of an additional
- . equation(i.e. the evolution equation for the specific internal
On the other hand, the MC slope limiterhich was not energye), increasing the total number of GR-Hydro equa-

included in the previous version of the code discusged iI?'ons from four to five and making accurate long-term evo-
paper ) does not reduce the slope as severely as minmo tions considerably harder
U .

near a discontinuity and, therefore, a sharper resolution ca
be obtained. In this case the slope is computed as

minmoda,b)={ b if |b|<|a|] and ab>0,

D. Boundary conditions

Ui—U—y Uiy~ U (14) In our general-purpose code, a number of different bound-
Ax 7 oAx )7 ary conditions can be imposed for either the spacetime vari-
. . ) ables or for the hydrodynamical variables. We refer the
where the MC function of two arguments is defined by reader 16,23 for details. In all of the runs presented in this
MC(a.b) paper we have used static boundary conditions for the hydro-
' dynamical variables and radiative outgoing boundary condi-
2a if |a|<|b|, and da|<]|c|, and ab>0 tions for the spacetime variables. The only exception to this
. is the evolution of rotating starsee Sec. Y, for which the
2b if |b[<la|, and 3b|<]c|, and ab>0 spacetime variables have also been held fixed at the outer
c if |c|]<2]al, and [c|<2|b|, and ab>0 boundary.

0 if ab=0

O'iZMC

IV. SPHERICAL RELATIVISTIC STARS

Zecond-order accurhey for smaoth Satutons, whils i sats; Ve tUr next to the description of the numercal evolu-
. ¥ tions of relativistic star configurations. We start by consider-
fying the TVD property. In Sec. IV A we will report on a ing spherical models
comparison between the two algorithms and justify the use '
of the MC slope limiter as our preferred one.
A. Long-term evolution of stable configurations

C. Equations of state Using isotropic coordinate., 6, ¢), the metric describ-

As mentioned in the Introduction, to explore the behavioring a static, spherically symmetric relativistic star reads
of our code in long-term evolutions of equilibrium configu-

. . . . — _ p2vA42 2\ 2 2 2 2ai 2
rations, we used two different polytropic equations of state ds’=—e?dt*+e? (dr’+r?d6*+r’sind4?), (17)
and at various central rest-mass densities. In particular, we

have implemented both aadiabatic (or zero temperatufe wherev and\ are functions of the radial coordinateonly.

EOS The form of the metric component,, is much simpler in
P=Kpl=KpltIN, (15) these coordinates than ip Schwarzschild coordir_1ates, which
are often used to describe a Tolman-Oppenheimer-Volkoff

and as a so-calledideal fluid’ EOS (TOV) equilibrium stellar solution. In additiong,, is not
constrained to be equal to unity at the center of the stellar
P=(I'-1)pe, (16)  configuration, as in Schwarzschild coordinates. We have

found that these two properties of the isotropic coordinates
whereK is the polytropic constant, the polytropic index are very beneficial to achieve long-term numerical evolutions
andN=(I'—1)"? the polytropic exponent. The ideal fluid of relativistic stars. Therefore, all simulations of spherical
EOS(16) depends on both the rest-mass dengiand on the  relativistic stars shown in this paper have been performed
specific internal energy; it corresponds to allowing the adopting the line elemeritl7) expressed in Cartesian coor-
polytropic coefficientK in adiabatic EOS15) to be a func- dinates.
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FIG. 2. Evolution of the normalized central rest-mass density
FIG. 1. Evolution of the central rest-mass dengify(in units of  for a nonrotatingM =1.65M, star. Different lines show a com-
the initial central rest-mass densjty o) for a nonrotating star with  parison between Roe’s Riemann solver and Marquina’s flux formula
gravitational massM=1.65M, . Using Roe’s approximate Rie- for different slope limiters.
mann solver, the figure shows a comparison in the use of the min-

qu an_d of the MC slope limiters for both the ideal fluid and the is the isotropic coordinate radius of the $tale use radia-
adiabatic EOS. tive boundary conditions with a rfall-off. Irrespective of
the slope limiter used, the magnitude of the secular drift

Although the initial configurations refer to stellar models observed in the central rest-mass density evolution is roughly
in stable equilibrium, the truncation errors at the center ané factor of two smaller for the adiabatic EOS than for the
at the surface of the star excite small radial pulsations thateal fluid EOS. As a result, in all of the evolutions of stable
are damped in time by the numerical viscosity of the codeconfigurations which remain close to equilibriuguch as
Moreover, these pulsations are accompanied by a seculgulsating stars, with no shock developinghe adiabatic
evolution of the values of the central rest-mass density awafOS is preferred.
from its initial value. Similar features have been reported in  Figure 1 also gives a comparison of the use of the min-
Refs.[42,43. These features converge away at the correctnod and the MC slope limiters in the evolution of the nor-
rate with increasing grid resolution and do not influence themalized central rest-mass density. For both the ideal fluid and
long-term evolutions. Moreover, the secular evolution of thethe adiabatic EOS, the MC limiter shows a significantly
central rest-mass density varies according to the EOSmaller secular increase in the central rest-mass density, as
adopted: when using the ideal fluid EOS, we have observedompared to the minmod one. The simulations in Fig. 1 em-
that the secular drift of the central rest-mass density is toployed Roe’s approximate Riemann solver in the fluid evo-
wards lower densities. However, if we enforced the adiabatid¢ution scheme and this is then compared to Marquina’s flux-
condition (which is justified for the case of a near- formula in Fig. 2 for the evolution of the central rest-mass
equilibrium evolution, we have observed that the dominant density. The secular increase is significantly smaller when
truncation error has opposite sign and the central rest-massing Marquina’s flux-formula than when using Roe’s solver,
density evolves towards larger values. The different behavioand this is especially noticeable for the minmod slope lim-
shown by the two equations of state should not be surprisingter. A comparison of the increase of the maximum error in
The stellar models we are solving for are in fact static only inthe Hamiltonian constraint after several ms of evolutinat
the ideal limit of infinite numerical resolution. On a finite shown hergindicates that it is about 80% smaller with Mar-
grid, however, these models are not static and indeed shoguina than with Roe, when using the adiabatic EOS. As a
pulsations in their fundamental mode of oscillati@ee the result of the above comparisons, we have adopted Marqui-
subsequent discussipiin this case it is natural to expect that na’s scheme with the MC slope limiter as our preferred
different equations of state could lead to qualitatively differ-scheme for evolution of the GR-Hydro equations. Unless

ent secular behaviors. otherwise noted, all of the simulations presented in this paper
This is shown in Fig. 1 where we plot the evolution of a have been obtained with such a scheme.
TOV star with gravitational masél =1.65M 4, constructed Next, we show in Fig. 3 the long-term evolution of the

with anN=1 polytrope. In our units, the polytropic constant central rest-mass density for three different grid resolutions.
is K=123.5 and the central rest-mass density of the star ifor this, we consider a nonrotatiifi= 1 polytropic star with
pc=1.00x10 3. For these tests, a very coarse grid of 35 gravitational massM=1.4 M, circumferential radiusR
gridpoints in octant symmetry is sufficient and allows the=14.15 km, central rest-mass density=1.28< 10 > and
major effects to be revealed with minimal computationalK=100. The different simulations used 3264°> and 96
costs. The outer boundary is placed at about l(&hererg  gridpoints with octant symmetry and with the outer boundary
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FIG. 3. Time evolution of the normalized central rest-mass den- FIG. 4. Convergence of the L2-norm of the Hamiltonian con-
sity at three different grid resolutions (3264° and 96 gridpoints,  straint, at three different grid resolutions £3%64° and 96 grid-
respectively, foranM =1.4 M, N=1 relativistic, spherical poly- points, respectively foranM=1.4 My, N=1 polytropic spheri-
trope. The evolution of the central rest-mass density is mainlycal relativistic star. The rate of convergence is close to second-order
modulated by the fundamental radial mode of oscillation of the starwith increasing grid resolution.

The initial amplitude of the oscillation converges to zero at second-

order, while the secular increase in the central rest-mass densityhe small deviations from the original profiles are worth

converges away at almost second-order. emphasizing. The small inset shows a magnification of the
rapid change in the gradient of the rest-mass density profile

placed at 1.7;. These grid resolutions correspond to aboutat the surface of the star.

19, 38 and 56 gridpoints per star radius, respectively. Figure

3 shows the oscillations in the central rest-mass density and B. Radial pulsations
the secular evolution away from the initial value mentioned
above. The oscillations are produced by the first-order trun

cation error at the center and the surface of the &ar ; 4 o . L
hydrodynamical evolution schemes are globally second orr—""d'al pulsations .Of the initially sta't|c re|atIV.IS.'[I.C stégee
der, but only first-order at local extrema; see related discusRef' [45] for a review. These pulsations are initiated at the

sions in Ref.[23], where long-term convergence tests are

_As mentioned in the previous section, the truncation er-
rors of the hydrodynamical schemes used in our code trigger

resolution of 96, the final central density, averaged over the  0-2 o 12 14065

last three periods of oscillations, is just 0.25% larger than the
initial central density. 00 b b b b b M b bond 60

For the same configuration, we show, in Fig. 4, the time 0 2 4 6 8 10 12 14 16 I8
evolution of the L2-norm of the violation of the Hamiltonian X (km)
constraint at the three different grid resolutions. Also in this 15 5. variation of the original profiles along theaxis of the
case, the violation of the Hamllltonllan constraint CoNVerges Qggt-mass densitgfeft vertical axig and lapse functiorright verti-
zero at nearly second-order with increasing grid resolution. .4 axig, foranM=1.4M,,, N=1 polytropic spherical relativistic

In Fig. 5, we show other aspects of the accuracy of theyar, after 7 ms of evolution. A $6grid in octant symmetry was
simulation with 96 gridpoints, by comparing the initial pro- used in the simulation. The small inset shows a magpnification of the
files of the rest-mass densityand of the lapse functioa of  rapid change in the gradient of the rest-mass density profile at the
the TOV star with those obtained after 7 ms of evolution.surface of the star.

presentef] but both the amplitude of the initial oscillation 2 T T 090

and the rate of the secular change converge to zero at near L — =0

second-order with increasing grid resolution. 1.0 p ——— =7 ms 0.85
Note that the evolutions shown in Figs. 3—5 extend to 7 - 1

ms, corresponding to about 10 dynamical tinteking the 08 F 4 0.80

fundamental radial mode period of pulsation as a measure o C _

the dynamical time scalesignificantly longer than, say, the 5‘0‘6 '_ d o753

ones reported by other authof8,44]. Our evolutions are & r |

limited by the time availablga simulation with 98 grid- -

points and up to 7 ms takes about 40 hours on a 128 proces 04 - 070

sor Cray-T3E supercompujerWe have found that for a F . . ’
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IR I L L L L resolution of 98 gridpoints, the secular change in the aver-
1.001 - n age central rest-mass density is less than 0.02% for the total
i ] evolution time shown.
1.000 h The use of truncation error as an initial perturbation de-
- - serves commenting on. The oscillations caused by truncation
| ] error will converge away with increasing resolution, hence
3 0.999 |- i the overall oscillation amplitude can carry no physical infor-
> U - mation about the system. However, the frequencies and nor-
0.998 L ] malized eigenfuntions of particular normal-modes of oscilla-
- . tion of the star are physicdin the sense that they match the
[ ] eigenfrequencies and eigenfunctions calculated through per-
0.997 |- n turbative analysgsand can be extracted from these simula-
[ ] tions by carrying out a Fourier transform of the time evolu-
0996 Lottt ittty tion of the radial velocity or of the rest-mass density. As the

(=)

1 2 3 4 5 6 small-amplitude pulsations are in the linear regime, the
t (ms) eigenfunctions can be normalized arbitrarily.g. to 1.0 at
] ) . the surface of the starAt increasing resolution, the solution
M—FllG4 SI' Tm':Ie_ivolultlon of thehce_””?' relst_-ma_ss densulty ‘;f_ aNconverges to the mode-frequencies and to the normalized
1=1.4Mgo, N=1 polytropic spherical relativistic star. In this o0 n1nctions, even though the overall oscillation amplitude
simulation the spacetime is heftked and the hydrodynamic vari- . .
converges to zero. Such evolutions are useful for extracting

ables have been evolved on a numerical grid of @dpoints. The th " i | d f illati |
evolution is a superposition of radial normal modes of pulsation, € properties ot linear normal-modes or osciliation, as long

excited by truncation errors of the hydrodynamical scheme. HighefS the resolution is fine enough that the pulsations excited by

overtones are damped faster by the small but non-zero numeric&'iuncat_ion errors are in the linear regime _and as Iong as the
viscosity. resolution is coarse enough that the various local first and

second order truncation errors of the numerical scheme result

surface of the star, where the gradients of the rest-mass detit & time evolution that is dominated by a sum of normal
sity are the largestcf. Fig. 5. Because gravitational waves modes(at very fine resolutions the Fourier transform of the
cannot be emitted through the excitation of radial pulsationgime evolution would be very small and thus have a very
of nonrotating relativistic stars, these pulsations are dampeuoisy power spectrum due to roundoff errors, in which case
only by the numerical viscosity of the code in numerical the physical normal-mode frequencies would be difficult to
simulations of inviscid stars. In treatments more dissipativeextract—this has not been the case for the resolutions used in
than the HRSC schemes used in our code, such as thoggis papey. We also note that different variants of our hydro-
using artificial viscosity or particle methode.g. smoothed dynamical evolution schemes excite the various physical
particle hydrodynamigs these oscillations will be damped normal-modes at different amplitudes. For example, second
significantly faster. _ order schemes employing the minmod limiter tend to clearly
In order to test the properties of the long-term hydrody-excite a large number of high-frequency overtones, whereas
namical evolution separately from those of the spacetimene yse of the MC limiter results in the clear excitation of
evolution, we have first examined the small-amplitude radiabmy a few low-frequency overtones and a more noisy power
p_ulsations ir_1 'gf@xed spacetimef an initially static relativi_s- spectrum at higher frequenciéfr the resolutions used in
tic star. As initial data, we use thel=1.4M¢, polytropic ._this paper. This difference in behavior is due to the differ-

- , "nces in the local truncation errors inherent in these numeri-
up to 7 ms of the normalized star’s central rest-mass densné{aI schemes

with a numerical grid of 98gridpoints. The amplitude of the
excited pulsations in this purely hydrodynamical evolution IStion. Since the radial pulsations triggered by truncation errors

minute (less than 1 part in 200and is significantly smaller h I litud he f )
than the corresponding amplitude in a coupled hydrodynami?@ve @ small amplitude, one can compare the irequencies

cal and spacetime evolutioftompare the vertical axes of With that computed by linear perturbation theg#] or with
Figs. 3 and & hydrodynamical evolutions of similar models in 2B2,43.

A closer look at Fig. 6 reveals that the evolution of the In this way we can validate that the “artificial” perturbations
central rest-mass density is a superposition of different radig?roduced by the truncation errors do excite “physical”
normal modes of pulsation. The higher-frequency modes arglodes of oscillation for a relativistic star. However, before
damped faster, so that after a certain time the evolution prodiscussing the results of this comparison, it is important to
ceeds mainly in the fundamental mode of pulsation. Noteemphasize that the identification of the frequency peaks in
also the small damping rate of the fundamental pulsatiorthe Fourier transform of the time evolution of a given vari-
mode, indicating the small effective numerical viscosity ofable with physical frequencies must be done with care. A real
our HRSC hydrodynamical scheme. The evolution towardgulsation frequency must be glob@he same at every point
larger values of the central rest-mass density is similar to thah the star, at least for discrete normal mode frequeneied
discussed in Sec. IV A but less pronounced in this case. At & should appear in the time evolution of different physical

~

The radial pulsations are a sum of eigenmodes of pulsa-
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IR LA LR R TABLE I. Comparison of small-amplitude radial pulsation fre-
0.30 1 I I I I I (I guencies obtained with the present 3D nonlinear evolution code

i | | | | | I with frequencies obtained with an independent 2D code. Both codes
0.25 [ F HI: HZ: H3: H4: H5: H6: -] evolve the GR-Hydro equations in fixed spacetimend for an

] : : : : : : ] equilibrium model of anN=1 relativistic polytrope withM/R

I 7 =0.15.

H | | | | | | —
0.20 H | | | | | | | E

I : : ' : : : : ] Present 3D code 2D code Relative Difference
0.15 [t | | | | | I Mode (kHz) (kHz) (%)

H | | | | | | 4

1 | | | | | | | 4
0.10 | | | i i - F 2.696 2.701 0.2

i I I | I I I ] H1 4.534 4.563 0.6

I I T 1 R | N N A H2 6.346 6.352 0.1
0.05 [t -

I I I I | I ] H3 8.161 8.129 0.4

I 1 N US ANY AV AVIRAVAAY: H4 9.971 9.875 1.0
0.00 - | : |' : | I o |I II ) }I II—_ H5 11.806 11.657 1.3

0 2 4 6 8 10 12 14 H6 13.605 13.421 1.7

f (kH
(kHz) shown in Fig. 7(see dotted line in Fig.)7which corresponds

FIG. 7. Fourier transform of the central rest-mass density evoo an evolution with 62 grid-points.

lution of an M=1.4M, N=1 polytropic spherical relativistic After establishing the accuracy of the long-term evolution
star, in afixed spacetimevolution. HereF represents the funda- of the GR-Hydro equations, we have examined the eigenfre-
mental normal mode frequency, whitel -H6 indicate the first six  quencies of the radial pulsations of spherical starsoimpled
overtones. The frequency peaks in the power spectrum are in excehydrodynamical and spacetime evolutions. A Fourier trans-
lent agreement with the radial normal mode frequené@®wn  form of the evolution of the radial velocityfor the same
here as dashed vertical linesomputed with an independent 2D equilibrium model as the one discussed befdseshown in
code using spherical polar coordinates. The solid and dotted Iine|sig_ 8. Again in this case, we have been able to identify
were computed vyith %and_ 64 gridpoints, respectively. The units several frequency peaks in the Fourier spectrum with the
of the vertical axis are arbitrary. normal mode frequencies obtained with linear perturbation

guantities describing the star’s structure and dynamics. T(t)echnlques[47]. A detailed comparison of these frequencies

eliminate possible ambiguities, we have carried out our fre-
quency identification procedure for different variables and at1.0
different positions in the star.

Figure 7 shows the Fourier transform of the time evolu-
tion of the central rest-mass density of the same initial model0-8
as in Fig. 6, but using theninmodlimiter (which gives a
clearer excitation of the higher overtone®/e indicate with
F the fundamental normal mode frequency and with 0.6
H1-H6 the next six higher frequency modésvertones
We have also compared the frequency peaks in the Fourie
spectrum to both the normal mode frequencies expected b0.4
linear perturbation theory in the Cowling approximaticee
Ref.[46]) and to the frequencies computed with an indepen-
dent 2D axisymmetric nonlinear codé3], which uses the 0.2
same HRSC schemes but in spherical polar coordinate:
(shown as dashed vertical lines in Fig. 7

As can be seen from Table |, the agreement is extremely0.0
good. The relative difference between the 3D and 2D results
at this grid resolution is better than 1% up tbl4) and
slightly larger for higher frequenciedH6 andH®6), which
become un(_jer-re_sol_v_ed at this grid resolutlon_. This excellgnt FIG. 8. Fourier transform of the evolution of the radial velocity
agreement is a S|gn|f|cant test for the correct |mplementat|o_tfbr anM=1.4Mg, N=1 polytropic spherical relativistic star in a
of the hydrodynamical evolution schemes in our code, and igoypledspacetime and hydrodynamical evolution. The frequency
an indication of the level of accuracy we can achieve, resolvpeaks in the spectrum are in excellent agreement with the radial
ing and following these small deviations away from the equi-normal mode frequencies computed by perturbation thésirgwn
librium configuration. As one would expect, lower or higher here as dashed vertical line#\s in Fig. 7, hereF represents the
resolution runs(e.g. with 64 or 144 gridpointg, which  fundamental normal mode frequency, whitel—H3 are the next
have intrinsically larger or smaller perturbation amplitudes,three higher frequency modes. The units of the vertical axis are
respectively, reproduce the peaks in the power spectrurarbitrary.

F Hi H2 H3

A

1 2 3 4 5 6 71 8 9
f (kHz)

O_Illlllllllllllllllll
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TABLE Il. Comparison of small-amplitude radial pulsation fre- 12— 7T+ 7 T 7 T T T
quencies obtained with the present 3D nonlinear evolution code
with linear perturbation mode frequencies, in fulgupledevolu-

tions. The equilibrium model is a nonrotatifg=1 relativistic 14
polytrope withM/R=0.15.
- - i 0.8
Present 3D code Perturbation code Relative Difference
Mode (kHz) (kHz) (%) g
< 0.6
F 1.450 1.442 0.6 a
H1 3.958 3.955 0.0
H2 5.935 5.916 03 04
H3 7.812 7.776 0.4

is shown in Table Il. The agreement is again excellent. Note

the rather large differences between the frequencies shown il 0

Tables | and Il. The Cowling approximation is rather inaccu- t (ms)

rate for the lowest radial mode-frequenci@s], but is in-

creasingly more accurate for nonradial pulsations or for FIG. 9. Evolution of thelnormalized central rest-mass density

higher frequencief48]. p¢ during the migration of an unstable relativistic star to a stable
All of the results discussed so far refer to simulationsmodel with the same rest-mass. When an adiabatic EOS is used

involving stable relativistic configurations. In the following (dotted ling the difference in gravitational binding energy between

section we consider numerical evolutions of relativistic stardne unstable and stable models is periodically converted in bulk
which are initially in an unstable equilibrium. kinetic energy through highly nonlinear, nearly constant amplitude
pulsations. In contrast, when an ideal fluid EOS is usadid line),

the gravitational binding energy is gradually converted into internal
energy via shock heating. As a result, the oscillations are damped

The numerical evolution of a nonrotating, relativistic starand the heated stable equilibrium model approaches a central den-
in an equilibrium unstable to the fundamental radial mode ofity slightly smaller than the rest-mass density of a zero temperature
pulsation is mainly determined by the numerical truncationstar of the same rest-masmdicated by an asterisk on the left
errors that cause it to evolve away from its initial configura-vertical axis.
tion. Depending on the type of perturbation, the star can
either collapse to a black hole or expand and migrate to thaitial value problem and represents an important test of the
stable branch of the sequence of equilibrium models, reachaccuracy of the code in a highly dynamical and non-adiabatic
ing a new, stable equilibrium configuration with approxi- evolution. We use such an initial data set to study large am-
mately the same rest-mass of the perturbed star. We haysitude oscillations of relativistic stars, which cannot be
therefore constructed a model of &h=1, K=100 poly- treated accurately by linear perturbation theory. Large ampli-
tropic star with rest-masM ,=1.535M, (M=1.447M) tude oscillations about a configuration on the stable branch
and a central rest-mass densjty=8.0x10 3, which is  could occur after a supernova core-collap@] or after an
larger than the central rest-mass density of the maximumaccretion-induced collapse of a white dwarf. While the actual
mass stable model. The star is therefore initially in an unset of quasi-normal modes excited will depend on the exci-
stable equilibrium(see the inset of Fig.)9and under the tation process, the ability to simulate large amplitude oscil-
perturbation introduced by the truncation error, it expandslations is important.
evolving rapidly to smaller central rest-mass densities, until Figure 9 shows the evolution of the central rest-mass den-
it reaches the stable branch of equilibrium configurations. Arsity p. normalized to its initial value and up to a final time of
analogous behavior has been observed in numerical simuld-26 ms. On a very short dynamical time scale of 0.5 ms the
tions of relativistic boson starsl8] (see also Ref[49] for  star has expanded and has its central density dropped to
recent numerical simulations of expanding unstable bosoabout 3% of its initial central rest-mass density. Note that
stars. this is less than the central rest-mass density-1.35

In a realistic astrophysical scenario, a stable neutron stax 10~ 3, of the stable model of the same rest-mass, which is
can accrete matter e.g. from a companion star in a binarindicated with an asterisk on the vertical axis of Fig. 9. Dur-
system or from infalling matter after its formation in a su- ing the rapid decrease of the central rest-mass density, the
pernova core-collapse. The star would then secularly movetar acquires a large radial momentum. The star then enters a
towards larger central densities along the stable branch gfhase of large amplitude radial oscillations about the stable
equilibrium configurations, exceed the maximum-mass limitequilibrium model with the same rest-mass. Because the un-
and collapse to a black hole. No secular mechanism couldtable and stable models have rather different degrees of
evolve the star to the unstable branch. In this respect, theompactness, the migration to the stable branch will be ac-
migration mechanism discussed here cannot occur in pracompanied by the release of a significant amount of gravita-
tice. Nevertheless, it provides a consistent solution of thdgional binding energy which could either be converted to

C. Migration of unstable configurations to the stable branch
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R R L B B mantle forms a shock at the inner-core—mantle boundary
03 =

\ — 084ms (dotted lines at=0.98 ms in Fig. 1D After the inner core
N ?-?gms i bounces, it expands and pressure waves at the inner-core—
02 - ——— 1.13ms —

mantle boundary feed the shock wave with kinetic energy
(dashed lines at=1.13 ms in Fig. 10 In this way, the
shock wave is dissipating the initial binding energy of the
star so that the amplitude of the central density oscillations
decreases with time. The above process is very similar to the
core bounce in neutron star formatitsee, for instance, the
description in[50]), except for the fact that here the outer
mantle is created during the first rapid expansion from ma-
terial of the initial unstable star.

As a result of the damping of the radial oscillations, the
star settles down, on a secular time scale, to a stable equilib-
rium configuration with central density somewhat smaller
than the central density of a stable star with the same rest-
mass as the initial unstable star. This is because part of the

FIG. 10. Shock formation in the outer core mantle, during thematter of the initial star forms a heated mantle around the
first bounce at equilibrium densities of an unstable star, evolvednner core.
with an ideal fluid EOS. The top and bottom panels show the inter-  The evolution shown in Fig. 9 was obtained using a reso-
nal energye and radial velocity, , respectively, at three different |ytion of 96° gridpoints. Since the initial unstable configura-
times: the homologous infall phase, th_e ir_mer core bpunce and thf?on is much more compact than the final configuration, the
outwards shock propagatlon. The oscillations of the inner core arg Jundaries of the computational grid were placed at about
damped by shock heating. 4.5 . As a result, the grid resolution of the initial configu-
bulk kinetic energy or to internal energy depending on the'ation is rather low, causing an additional, non-negligible de-
choice of EOS. viation of the average central rest-mass density of the pulsat-

In order to investigate both responses, we have performeifld star away from the expected central rest-mass density of
two different evolutions of the same initial model. In the first the zero-temperature star of the same rest-mass.
case(the “adiabatic EOS” in Fig. 9, we have enforced the The evolution of the highly nonlinear and nonadiabatic
adiabatic condition during the evolution, i.e. we have as-pulsations of a star when it settles down on the stable branch,
sumed that the star remains at zero temperature following annderlines the importance of evolving all of the thermody-
adiabatic EOS. As shown in Fig. 9 with a dotted line, in thisnamic variablegincluding the specific internal energgand
case the star behaves like a compressed spring which is ahe importance of using HRSC methods in order to resolve
lowed to expand, oscillating with a nearly constant ampli-the formation and evolution of shocks correctly. These capa-
tude. This indicates that the star periodically converts all objlities of the numerical code will be important in the correct
the excess gravitational binding energy into the kinetic ensimylation of general relativistic astrophysical events such as
ergy and vice versa. As the oscillations are highly nonlinearyg merging of a neutron star binary system or the formation

the restoring force is weaker at higher densities than at lowegt 4 neytron star in an accretion-induced collapse of a white
densities and the oscillations are therefore far from beingy, 4.

sinusoidal.

In the second casghe “ideal fluid EOS” in Fig. 9, we
do not enforce the abiabatic condition, but allow all of the
thermodynamic variables to evolve in time. As a result, the As mentioned in the previous section, the numerical
oscillations are gradually damped in time, while the star osscheme used in the hydrodynamical evolution is such that it
cillates around a central density close to that of a stable stavauses a nonrotating relativistic star in an unstable equilib-
with the same rest-mass. rium to expand and migrate to the configuration of the same

The rapid decrease in the oscillation amplitude is due tgest-mass located on the stable branch of equilibrium con-
the dissipation of kinetic energy via shock heating. At thefigurations. In order to study the gravitational collapse to a
end of the first expansiofi.e. at the first minimum in Fig.)9  black hole of an unstable model we need to add to the initial
the star has expanded almost to the edge of the numericenodel a small radial perturbation in the rest-mass density
grid. At this point, the outer parts of the initial star have distribution. A very small perturbation of the order 6f1%
formed a low-density, outer-core mantle around the highis sufficient and its radial dependence can be simply given by
density inner core and the star then starts to contract. Figureos@rr/2r ), wherer is the coordinate distance from the cen-
10 shows with solid lines the supersonic infall of the outerter andr its value at the surface of the star.
core mantle at=0.84 ms, while the inner core is contracting  The addition of this small perturbation dominates over the
homologously. After this “point of last good homology,” the truncation error and causes the star to collapse to a black
high-density inner core reaches its maximum infall velocityhole. Note that after the perturbation is added to the initial
and then starts slowing down. The infalling low-density equilibrium configuration, the constraint equations are solved

) 5 10 15 20 25 30
x (km)

D. Gravitational collapse of unstable configurations
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FIG. 11. Profiles along th&-axis of representative metric and t (ms)

fluid quantities during the gravitational collapse to a black hole of |G, 12. Horizon mass as a function of time. A black hole is

— — -3 it i . .
an unstableN=1, p.=8.0x10"" relativistic polytrope showing formed att=0.21 ms and the horizon mass then starts to increase
different snapshots of the time evolution. The top, medium andyg 3 result of accretion.

bottom panels show the evolution of the lapse function, ofghe

metric component, and of normalized rest-mass density, respec- . . _
tively. The thick solid and dashed lines indicate the initial and mafinally levelling off, until aboutt=0.27 ms. The subsequent

(t=0.29 ms) profiles. Intermediate profiles, indicated by thin dot-growth of the horizon m_ass is the “?SU“ of_the inc_reasing
ted dashed lines, are shown every 0.049 ms. error due to grid stretching—the radial metric function de-
velops a sharp peak which cannot be resolved adequately.

to provide initial data which is a solution to the field equa-
tions[25].

The (forced collapse to a black hole of an unstable A. Stationary equilibrium models
spherical relativistic star is shown in Fig. 11 for a simulation
with 128 gridpoints in octant symmetry, using Roe’s solver lib
and an ideal fluid EOS. The figure shows the profiles alon
the x-axis of the lapse functiottop pane), of theg,, metric
component(middle panel and of the normalized rest-mass
density(bottom panel Different lines refer to different times
of the evolution, with the thick solid line in each panel indi-
cating the initial profile and with the thick dashed line cor-
responding to the final time slice &t 0.29 ms; intermediate
times (shown every 0.049 msare indicated with dotted
lines. The evolution of the lapse function shows the charac
teristic “collgpse of the Iapse," a distinctive feature of black the four metric potentials, B, x, andw needed to describe
hole formation. The evolutpn of thg,, metric component spacetime with line element
and of the rest-mass density also clearly exhibits features

V. RAPIDLY ROTATING RELATIVISTIC STARS

The long-term evolution of rapidly rotating, stable equi-
rium relativistic stars represents a much more demanding
Yest for a numerical code. In this case, in fact, the use of a
non-zero shift vector is strictly necessary and this, in turn,
involves the testing of parts of the code that are not involved
in the evolution of a nonrotating stellar model. The initial
data used here are numerical solutions describing general
relativistic stationary and axisymmetric equilibrium models
rotating uniformly with angular velocitf). The models are
constructed with the rns cod®3,54 (see Ref.[55] for a
recent review of rotating stars in relativityhich provides

typical of black hole formation, such as the large peak de- ds?= —e?"dt?+ B2~ 2"r?sirf6(d ¢ — wdt)?
veloping in gy, Or the continuous increase in the central 5 s oy
rest-mass density. +e A (dro+rode”). (18

While the collapse of the lapse is a good indication of the
formation of a black hole, the formation of an apparent ho-In the nonrotating limit, the above metric reduces to the met-
rizon (the outermost of the trapped surfacesthe course of ric of a static, spherically symmetric spacetime in isotropic
the simulation is an unambiguous signature of black holeoordinates. A rotating model is uniquely determined upon
formation. An apparent horizon finder based on the fast-flonspecification of the EOS and two parameters, such as the
algorithm[51] was used to detect the appearance of horizons;entral rest-mass density and the ratio of the polar to the
and to calculate the horizon mass. This apparent horizorquatorial coordinate radiaxes rati.
finder, and its validation, is described in RE52]. Using the standard Jacobian transformations between the

Figure 12 shows the evolution of the horizon mass as &pherical polar coordinates,@, ¢#) and the Cartesian coor-
function of time. Initially there is no horizon. At a time  dinates &,y,z), the initial data for a rotating star are trans-
=0.21 ms a black hole forms and an apparent horizon apformed to Cartesian coordinates. Convergence tests of the
pears. As the remaining stellar material continues to accretmitial data on the Cartesian grid at various resolutions, show
onto the newly formed black hole its horizon mass increaseghat the Hamiltonian and momentum constraints converge at
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second-order everywhere except at the surface of the star, 557~ ' T~ ' T T T T
where some high-frequency noise is present. This noise is N\
due to Gibbs phenomena at the surface of the star, which are
inherent to the methofb6] used in the construction of the 2.00
2D initial data(see the relevant discussion in RE4]). To
our knowledge, all currently available methods for construct-
ing initial data describing rotating relativistic stars suffer 175
from some kind of Gibbs phenomena at the surface of the
star, with the only exception being a recent multi-domain
spectral method that uses surface-adapted coordifafés
The high-frequency noise does not appear to affect the long-
term evolution of the initial data at the grid resolutions em- 1.25
ployed in our simulations. The evolution is carried out up to
several rotational periods, using the shift 3-vector obtained
from the solution of the stationary problem, which we do not ool b b 1 e 1
evolve in time. 0 3 10 15 20 25

We have evolved models at various rotation rates and for X (kem)

sevc_aral polytropic EOS, all showing simil_ar long-term Dbe- FIG. 14. Profile of the metric componeg}, along thex-axis
havior and convergence. Hereafter we will focus onNaN 34 z-axis at two different coordinate times, for the same evolution
=1 polytropic model, rotating at 92% of the allowed mass-ghown in Fig. 13.

shedding limit for a uniformly rotating star with the same

central rest-mass density. In particular, we have c_hosen @ Our simulations have been performed only in the volume
stellar m_odel with the same central rest-mass dlen§|.ty as ”@oove the %,y) plane which is covered with 120129x 66

nonrotating model 9f Sec.. IV A and which IS 5'9“""Fa”?'y gridpoints. At such grid resolutions, we have been able to
flattened by the rapid rotatiofthe polar coordinate radius is o\ e g stationary rapidly rotating relativistic star for three
only 70% of the equatorial coordinate radius complete rotational periods, before the numerical solution

Similarly to what is observeq in the numericall evolutipn departs noticeably from the initial configuration. Note that
of nonrotating stars, the truncation errors trigger, in a rapidly,

! S . . much longer evolution time@nore than an order of magni-
rotating star, oscillations that are quasi-radial. As a result, th de longer and essentially limited by the time availalkn
rotating star pulsates mainly in its fundamental quasi-radi

hieved if th time is held fixed and only the hy-
mode and, during the long-term evolution, © acnieved ! the Spacetime 1S Neid Txed and only the ny

dunr : its central resty 4y namical equations in a curved background are evolved.
mass density drifts towards higher values. Also in this cas his has been demonstrated recently in HafZ], with a

both the amplitude of the pulsations and the central dens_itxode based on the one used in the present paper and in which
growth rate converge to zero at nearly second order wn% third-order piecewise parabolic meth¢@PM) [58] was
increasing grid resolution. used for the hydrodynamical evolution and applied to the

— =0
——— =3.78 ms (3P)

1.50

I B AL B LU B BN IR study of nonlinearr-modes in rapidly rotating relativistic
1.0 - stars and the occurrence of differential of a kinematical dif-
i — =0 ] ferential rotation/59] (see Refs[60,61] for a recent review
0s | ——— 1=3.78 ms (3P) . on ther-mode instability. While our current second-order
I ] 030 7T T T T T
S0 ] [ — t=0 ]
s 1 025 - ——— 1=3.78 ms 3P) 7
04 - - C P ]
r 1 0.20 + Y .
L _ C S ]
02 3 g 015 =
OO o Lo Lo Lo Lo — 0 10 -_ _-
0 2 4 6 8 10 12 14 16 M J
x (km) C ]
0.05 - ]
FIG. 13. Profiles of thénormalized rest-mass density along the C ]
x-axis andz-axis at two coordinate time$=0 (solid lineg andt 000 Bl DN
=3.78 ms(dashed lines corresponding to three rotational periods o 2 4 6 8 0 12 14 16
(P). The star is atN=1, p.=1.28x10"2 polytrope rotating at x (km)
92% of the mass-shedding limit. The simulation has been per-
formed only in the volume above tha,{) plane which is covered FIG. 15. The velocity component’ along thex-axis at two
with 129X 129X 66 gridpoints. different coordinate times, for the same evolution as in Fig. 13.
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TVD method with the MC limiter is not as accurat®er the TABLE Ill. Comparison of small-amplitude quasi-radial pulsa-

same grid resolutionas the third-order PPM method, it has, tion frequencies obtained with the present 3D codéxed space-

nevertheless, a very good accuracy, significantly better thafime with frequencies obtained with an independent 2D code. The

that of the minmod limiter. equilibrium model is alN=1 relativistic polytrope rotating at 92%
Results of our simulations of rapidly-rotating stars are°f the mass-shedding limit.

plotted in Figs. 13-15. In particular, Fig. 13 shows ther-

malized rest-mass density along theand z axes at two

Present 3D code 2D code Relative Difference

coordinate timest=0 (solid lineg andt=3.78 ms(dashed  Mode (kHz) (kHz) (%)

lines), with the latter corresponding to three rotational peri- E 2 468 2 456 05
ods. The outer bo.undary of the grid is placed at about twice 4 4.344 4.357 0.3
the equatorial radius. After three rotational periods, the rest- H2 6.250 6.270 03

mass density profile is still very close to the initial one. Simi-
larly, Fig. 14 shows the metric componegy, along thex
andzaxes at the same coordinate times of Fig. 13. Again, thgngdes of rotating relativistic stars have been studied only
change irgy, is minimal and only near the stellar surface canynder simplifying assumptions such as in the slow-rotation
one observe a noticeable differendae error there grows anproximatior[63,64 or in the relativistic Cowling approxi-
faster for rotating starthan for nonrotating starsdue to the  mation [48,65. The spectrum of quasi-radial pulsations in
Gibbs phenomenon in the initial dgta full general relativity has not been solved to date with per-

In addition to triggering the appearance of quasiradial pulyyrpation techniquetsee Ref[55] for a recent review of the
sations and the secular increase in the central rest-mass defifjecj.

sity, the truncation errors also induce the formation of a local |, this section we take a step forward in the solution of

maximum at the stellar surface for the evolved “momentum” this |ong standing problem in the physics of relativistics stars
variable S; [cf. Eq. (7)]. The existence of this local extre- and obtain the first mode-frequencies of rotating stars in full
mum reduces, at the surface of the rotating star, the order @feneral relativity and rapid rotation. As done in Sec. IV B for
our TVD schemes to first-order only. As a result, the angulathe radial pulsation of nonrotating stars, we take advantage
momentum profile at the surface gradually drifts away fromof the very small numerical viscosity of our code to extract
the initial uniformly rotating one, with the rate of conver- physically relevant information from the quasi-radial pertur-
gence of this drift being only first-order with increasing grid bations induced by truncation errors. The ability to do so
resolution. We emphasize, however, that this is only a locatlemonstrates that our current numerical methods are mature
effect: everywhere else inside the star, the angular momerenough to obtain answers to new problems in the physics of
tum evolution is second-order accurate. Figure 15 shows theelativistics stars.
velocity component? along thex-axis at the same coordi- Following the approach outlined in Sec. IV B, we have
nate times of Figs. 13 and 14. Alternative evolution schemes$irst computed the quasi-radial mode frequencies from nu-
based on third-order methods have been shown to have raerical evolutions of the GR-Hydro equations infized
smaller truncation error at the surface of the star, both for 2Bpacetimesvolution in order to compare with recent results
and 3D evolutions of the same initial d4#8,17), at leastin  coming from an independent 2D nonlinear evolution code
the Cowling approximation. [65]. Table Il shows the comparison of between the eigen-
Note that plotting the velocity profile as in Fig. 15 allows frequencies computed in the Cowling approximation with the
one to ascertain the accuracy in the preservation of the v&2D code for the equilibrium model of the previous section.
locity field. Isocontours or vector plots of the velocity field Note that the newly obtained frequencies differ by less than
can, in fact, easily mask the secular evolution shown in Fig0.5%, verifying that our code can accurately reproduce them.
15. We also note that the variable evolved in the code is not Next, we have computed the quasi-radial frequencies in
the rotational velocity, but a corresponding momentum comeoupled hydrodynamical and spacetime evolutions for rap-
ponent which depends on the local rest-mpds Eq. (7)].  idly rotating stars. As mentioned before, this is a novel study
The error in the rotational velocity near the surface is thereand the results obtained cannot be compared with corre-
fore also influenced by the small value of the rest-mass dersponding results in the literature. To study this, we have car-
sity in that region. ried out two types of analysis. Firstly, we have followed the
same procedure used in the case of a nonrotating star and
obtained the normalized frequency spectrum of oscillations
induced by the truncation errors. Secondly, we have com-
The quasi-radial pulsations of rotating neutron stars are auted the frequency spectrum of oscillations triggered by a
potential source of detectable gravitational waves and couldmall but specified perturbation. More precisely, we have
be excited in various astrophysical scenarios, such as a rotattroduced the same radial perturbation in the rest-mass den-
ing core-collapse, a core-quake in a rotating neutron(dtag  sity used in Sec. IV D to induce collapse: i&cos(mr/2r ),
to a large phase-transition in the equation of gtatethe  whereA=0.02,r is the coordinate distance from the center,
formation of a high-mass neutron star in a binary neutrorandr, is the radial coordinate position of the poles. When
star merger. An observational detection of such pulsationsompared, the results of the two treatments indicate that the
would yield valuable information about the equation of statefundamental mode frequency agrees to within 2%, while the
of relativistic stars[62]. So far, however, the quasi-radial H1 mode near the mass-shedding limit is probably accurate

B. Quasi-radial modes of rapidly rotating relativistic stars
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TABLE IV. Quasi-radial pulsation frequencies for a sequence ofdependence on the increased rotation which is similar to the

rotatingN=1 polytropes with rotation rates up to 97% of the mass-one observed for the corresponding frequencies in the Cowl-
shedding limit. The frequencies of the fundamental mbBdend of  ing approximatior{65].

the first overtoned1 are computed fronsoupledhydrodynamical In particular, theF-mode frequency decreases monotoni-
and spacetime evolutions. The ratio of polgrto equatorialre  cally as the maximum rotation rate is approached. Near the
coordinate radii of the rotating models is also shown. mass-shedding limit, the frequency is 18% smaller than the

frequency of the nonrotating star. The difference between the

Mp/re Q0 F (kH2) H1 (kHz) F-mode frequency computed here and the corresponding re-
1.000 0.000 1.450 3.058 sult in the Cowling approximation is nearly constant. Thus,
0.950 0.407 1.411 3.852 one can construct an approximate empirical relation for the
0.850 0.692 1.350 3.867 fundamental quasi-radial frequency of rapidly rotating stars,
0.825 0.789 1.329 3.894 using only the corresponding frequency in the Cowling ap-
0.775 0.830 1287 3.953 proximation, F couiing @nd the frequency of the fundamental
0.750 0.867 1.265 4.031 radial mode in the nonrotating IimiE,Q:O. For.the particular
0.725 0.899 1.245 3974 sequence shown above, the empirical relation reads

0.700 0.929 1.247 3.887 F=(F cowing— 1.246 kHz, (19)
0.675 0.953 1.209 3.874

0.650 0.974 1.195 3.717 and yields the correct frequencies with an accuracy of better

than 2% for the most rapidly rotating model. More generally,
if Fcowingo=0 IS the frequency of the fundamental radial
to several percent onlat this resolution mode in the Cowling approximation, then the empirical re-
To study quasi-radial modes of rapidly rotating relativistic |ation can be written as
stars we have built a sequence of models having the same
grid resolution, the same equation of state and central rest- F=F -0t Fcowing— Fcowiinga=0- (20
mass density used in the previous section, varying only the
rotation rate(). The sequence starts with a nonrotating starSuch an empirical relation is very useful, as it allows one to
and terminates with a star at 97% of the maximum alloweddbtain a good estimate of the fundamental quasi-radial mode
rotational frequencyQ,=0.5363<10* s ! for uniformly  frequency of rapidly rotating stars by solving the hydrody-
rotating stars(mass-shedding limit The results of these namical problem in a fixed spacetime, rather than solving the
simulations are reported in Table IV and shown in Fig. 16, much more expensive evolution problem in which the space-
where the frequencies of the lowest two quasi-radial modetime and the hydrodynamics are coupled.
are shown. Interestingly, the fundamental mode-frequencies The frequency of thédl mode shows a non-monotonic
(solid lineg and their first overtoneédashed linesshow a  decrease as the mass-shedding limit is approached, departing
from the behavior obtained in the Cowling approximation.
7 — 7 —— The oscillations in the frequency at larger rotation rates
full GRH could be due to “avoided crossings” with frequencies of
) ) other modes of oscillation\We recall that “avoided cross-
~—— relativ. Cowling approx. ing” refers to the typical behavior shown by two eigenfre-
quency curves which approach smoothly but then depart
from each other without crossing. At the point of closest
approach, the properties of the modes on each sequence are
exchanged66]). Similar avoided crossings have been ob-
served also in the Cowling approximation for higher over-
tones and near the mass-shedding liteite Refs[48,65]).
Our results indicate therefore that the avoided crossings in a
sequence of relativistic rotating stars occur for smaller rota-
tion rates than predicted by the Cowling approximation. This
increases the importance of avoided crossings and makes the
frequency spectrum in rapidly rotating stars more complex
than previously thought.

W
LI L L L L
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VI. GRAVITATIONAL WAVES FROM A PULSATING STAR

FIG. 16. Quasi-radial pulsation frequencies for a sequence of . L . .
rotatingN=1 polytropes and a number of different rotation rates. | he ability to extract gravitational wave information from

The frequencies of the fundamental mddéfilled squaresand of ~ Simulations of relativistic compact objects is an important
the first overtoneH1 (filled circles are computed froncoupled ~ feature of any 3D general relativistic hydrodynamics code.
hydrodynamical and spacetime evolutiofsolid lineg. The se-  To assess the ability of our code to extract self-consistent and

quences are also compared with the corresponding results obtainégcurate gravitational waveforms we have excited simple
from computations in the relativistic Cowling approximation. quadrupolar perturbations in our standard spherial1
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(1% B = S L B B lutions of 64 (dashed lingand 96 gridpoints(solid line),
respectively. Note that the gravitational wave signal con-
verges to a constant amplitude, as the true gravitational-wave
damping timescale for this mode is several orders of magni-
tude larger than the total evolution time shown. The small
decrease in the amplitude observed in our numerical evolu-

0.05

i
i
—
1l
—
=]
B
' |

§

—0.05 tion is thus entirely due to the effective numerical viscosity
o010 FH1 ] of our scheme. At a resolution of 9§ridpoints, the effective
r — 96 ] numerical viscosity is sufficiently low to allow for a quanti-
0.05 o -6t E tative study of gravitational waves from pulsating stars over

a time scale of many dynamical timéthe largest relative
numerical error estimated on the basis of the simulations
presented in Fig. 17 is 3.3%

As done in the previous sections, we have compared the
PR I R I frequencies derived from our numerical simulations with

1 2 3 4 those obtained from perturbative techniques ffonode os-
t (ms) cillations of N=1 polytropes. Again in this case the com-

FIG. 17. Gravitation-wave extractions{>”) of a perturbed non- parison has revealed a very good agreemerlt between the wo
rotating relativistic star, pulsating mainly in the fundamental qua_approacheg. As one would expect, the dominant fre.quency of
drupolar mode. The top panel shows the rescaled waverforms %Qe gravitational waves we extradt56 kH2 agrees with the
undamental quadrupolemode frequency of the stdd.58

extracted arg=17.7 km(dotted ling and atrg=23.6 km(solid 17 0 . 9Bari )
line). The lower panel, on the other hand, shows the amplitude okH2) [47] to within 1.3%(at a resolution of 96grid-points.

%0 extracted arg=23.6 km for two different resolutions of 84
(dashed lingand 96 gridpoints(solid line), respectively.

0.00

-0.05

|

=]
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VII. CONCLUSIONS

polytrope. In particular, on the basis of the angular behavior We have presented results obtained with a 3D general
of the =2, f-mode in linear perturbation theory, we have relativistic codeGR_ASTROIn a comprehensive study of the
introduced in the initial model a perturbation in the velocity long-term dynamics of relativistic stars. The code has been
of the form built by the Washington University/Albert Einstein Institute
collaboration for the NASA Neutron Star Grand Challenge
Uy(t=0)=Asin(wr/rg)sin 6 cose, (21) Project[12] and is based on the Cactus Computational Tool-
kit [13]. The simulations reported here have benefited from
whereA=0.02 is the amplitude of the perturbation ands  several new numerical strategies that have been implemented
the coordinate radius of the star. in the code and that concern both the evolution of the field
Following York [25], we have then constructed the initial equations and the solution of the hydrodynamical equations.
data for the perturbed model by solving the constraint equa addition to the features of the code discussed in paper |,
tions for the unperturbed model with added perturbations anthe present version of the code can construct various types of
then proceeded to evolve this solution in time. As a responsitial data representing spherical and rapidly rotating rela-
to the initial perturbations, the star has started a series afvistic stars, extract gravitational waves produced during the
periodic oscillations, mainly in the fundamental quadrupolarsimulations and track the presence of an apparent horizon
mode of oscillation. Other, higher-order modes are also exwhen formed.
cited (and observedbut these are several orders of magni-  All of these improvements have allowed tests and perfor-
tude smaller and play no dynamical role. mances well superior to those reported in the companion
As a consequence of the time-varying mass quadrupolgsaper |. With this improved setup we have shown that our
triggered by the oscillations, the perturbed star emits gravieode is able to succesfully pass stringent long-term evolution
tational waves, which are extracted through a perturbativeests, such as the evolution of both, static and rapidly rotat-
technique discussed in detail in Reffl§7-69, and in which  ing, stationary configurations. We have also considered the
the Zerilli function is expanded in terms of spherical har-evolution of relativistic stars unstable to either gravitational
monics with each component being the solution of an ordicollapse or expansion. In particular, we have shown that un-
nary differential equation. stable relativistic stars can, in the course of a numerical evo-
We plot, in Fig. 17, thd=2m=0 component of the Zer- |ution, expand and migrate to the stable branch of equilib-
illi function ?°. The upper panel, in particular, shows the rium configurations. As an application of this property, we
waverforms as extracted gt=17.7 km(dotted ling and at have studied the large-amplitude nonlinear pulsations pro-
re=23.6 km(solid line) respectively, with the first having duced by the migration. Nonlinear oscillations are expected
been rescaled as *? to allow a comparison. The very good to accompany the formation of a proto-neutron star after a
agreement between the two waveforms is an indication thagupernova core-collapse or after an accretion-induced col-
the gravitational waves have reached their asymptotic wavdapse of a white dwarf.
form. The lower panel, on the other hand, shows the ampli- Particularly significant for their astrophysical application,
tude of ?° extracted atg=23.6 km for two different reso- we have investigated the pulsations of both rapidly rotating
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and nonrotating relativistic stars and compared the computedl Miller, M. Shibata, K. Uryu, and Shin Yoshida. The simu-
frequencies of radial, quasi-radial and quadrupolar oscillalations in this paper have made use of code components de-
tions with the frequencies obtained from perturbative methveloped by several authors. In what follows we report the
ods or from axisymmetric nonlinear evolutions. We havenames of the different components, their use and their main
shown that our code reproduces these results with excelle@athor. BAM (elliptic equation solver B. Brugman; AH-
accuracy. As a particularly relevant result, we have obtaine@t|NDER (apparent horizon findgr M. Alcubierre; CONF-

the first mode-frequencies of rotating stars in full generalzppy (evolution scheme for the field equatiorssd MAHC
relativity and rapid rotation. A long standing problem, SUCh(evqution scheme for the GRHydro equatipns!. Miller;
frequencies had not been obtained so far by other methodssgMm-sOL (solver for the hydrodynamical primitive vari-

In our view the results discussed in this paper have ap 04 p Gressman; RNS-IDinitial data solver for rotating
double significance. Firstly, they establish the accuracy an nd perturbed relativistic starsN. Stergioulas; EXTRACT

reliability of the numerical techniques employed in our code, - . L
which tZ) the best of our knowlec(]jge repFr)es)(/ant the most aC(_grawtatlonal wave analysisG. Allen. The application code

curate long-term 3D evolutions of relativistic stars available' built on the CACTUS Computational Toolkit written by P.

to date. Secondly, they show that our current numerica .alker_et al. (version 3_and T. Goodaleet al. (vers.|on 3.
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methods are mature enough to obtain answers to new prol'J:- , - i
lems in the physics of relativistic stars. NSF KDI Astrophysics Simulation CollaboratoryASQ)
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