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We present a method for generating solutions in some scalar-tensor theories with a minimally coupled
massless scalar field or irrotational stiff perfect fluid as a source. The method is based on the group of
symmetries of the dilaton-matter sector in the Einstein frame. In the case of Barker’s theory the dilaton-matter
sector possesses the @Wgroup of symmetries. In the case of Brans-Dicke theory and the theory with
“conformal coupling,” the dilaton-matter sector has SLR2,as a group of symmetries. We describe an explicit
algorithm for generating exact scalar-tensor solutions from solutions of Einstein minimally coupled scalar field
equations by employing the nonlinear action of the symmetry group of the dilaton-matter sector. In the general
case, when the Einstein frame dilaton-matter sector may not possess nontrivial symmetries, we also present a
solution generating technique which allows us to construct exact scalar-tensor solutions starting with the
solutions of the Einstein minimally coupled scalar field equations. As an illustration of the general techniques,
examples of explicit exact solutions are constructed. In particular, we construct inhomogeneous cosmological
scalar-tensor solutions whose curvature invariants are everywhere regular in space-time. A generalization of the
method for scalar-tensor-Maxwell gravity is outlined.
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[. INTRODUCTION eral case. In fact, scalar-tensor gravity equations are much
more complicated than Einstein equations. In the so-called
Scalar-tensor theories of gravity are considered as th&instein frame the sourceless scalar-tensor equations are re-
most natural generalizations of general relatiity-6]. In duced to Einstein equations with a minimally coupled scalar
these theories gravity is mediated not only by the metric offield. In this case much progress has been achieved in finding
space-time but also by a scalar fidltie so-called gravita- exact homogeneous and inhomogeneous cosomological solu-
tional scala). Scalar-tensor theories contain arbitrary func-tions [28—37. Little has been done in solving scalar-tensor
tions of the scalar field that determine the gravitational “con-equations with a source. The known solutions are perfect
stant” as a dynamical variable. From a theoretical point offluid homogeneous cosmological solutions depending on the
view it should be noted that specific scalar-tensor theorieime coordinate only(see Refs.[12-2( and references
arise naturally as the low-energy limit of string theory. therein. In Ref. [12], Barrow investigated a method which
In the weak field limit scalar-tensor theories differ slightly enables exact solutions to be found for vacuum and radiation
from general relativity. In the strong field regime, however,dominated Friedmann-Robertson-WalkERW) universes of
the predictions of scalar-tensor theories may differ drasticallyall curvatures in scalar-tensor theories with an arbitrary form
from those of general relativity as was shown in R¢#H.  of the coupling functionw(®). Particular classes of solu-

and[8]. tions were presented for specific choicesudfb), including
Scalar-tensor theories have also attracted much interest Brans-Dicke, Barker, and Bekenstein theories. Barrow and
cosmology(see Refs[9—-27] and references thergin Mimoso[13] presented a method for deriving exact solutions

The progress in the understanding of scalar-tensor theder flat FRW cosmological models with a perfect fluid satis-
ries of gravity is closely connected with finding and investi- fying the equation of statp=(y—1)p wherey is constant
gating exact solutions. A theoretical discussion of many aswith 0<vy=<2, in scalar-tensor theories with an arbitrary
pects of the early universe, gravitational waves, gravitationaform for the coupling functionw(®). A number of explicit
collapse, and the structure of compact objects within thesolutions for inflationary universes apd=0 universes were
framework of scalar-tensor theoriéss in general relativily — obtained. Exact FRW cosmological solutions in general
necessitates the use of exact solutions. In addition to thscalar-tensor theories for a stiff perfect fluid or radiation
theoretical motivation for construction of exact solutions,were derived by Mimoso and Wands in REf4]. Homoge-
there is also a more practical one. With the advent of numerineous but anisotropic cosmologies in scalar-tensor theories
cal calculations, exact solutions are useful as comparisonsf gravity were examined by Mimiso and Wands in Ref.
for numerical and approximate solutions and as checks of thgl5]. The authors presented a method for deriving solutions
computer codes. for any isotropic perfect fluid with a barotropic equation of

Solving scalar-tensor theory equations in the presence of state in a spatially flat cosmology. For a stiff fluid or radia-
source is a difficult task due to their complexity in the gen-tion or in vacuum the authors were able to obtain solutions in

a number of anisotropic Bianchi and Kantowski-Sachs met-
rics. Extending the earlier work ¢f1], [12], and[13], Bar-
*Email address: yazad@phys.uni-sofia.bg row and Parsongl6] provided a detailed analysis of FRW
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universes in a wide range of scalar-tensor theories of gravity. 1 — - ~

The authors constructed a range of exact solutions for open, S= mj d4X\/—_9[F(¢)R—Z(‘1))gW(9M®5V®

closed, and flat isotropic universes containing matter with an *

equation of statg<(1/3)p and in vacuum. The early- and —2U(¢>)]+sm[\1rm;"gw], 1)
late-time behaviors of the solutions were examined, too. In

Ref. [17], Billyard and Coley discussed the formal equiva- Here, G, is the bare gravitational constant, aRdis the
lences between Kaluza-Klein gravity, Brans-Dicke theory,Ricci scalar curvature with respect to the space-time metric
and general relativity coupled to a massless scalar field. U%w- The dynamics of the scalar fiel® depends on the
ing the formal equivalences the authors showed that exagtinctionsF(®), Z(®), andU(®P). In order for the gravitons
solutions obtained in one theory will correspond to analo-o carry positive energy the functid®(®) must be positive.
gous solutions in the other two theories. A phase-spac&he action of matter depends on the material fieltls and
analysis of the FRW models in Brans-Dicke theory was peripe space-time metfia,w but does not involve the scalar
formed by Kolitch and Eardlef18]. Their analysis was im-  field @ in order for the weak equivalence principle to be
proved by Holden and Wand49] who presented all FRW  gatisfied. It should be mentioned that the most used param-
models in a single phase plane. Particular attention was fastrization in the literature is the Brans-Dicke one, corre-
cused on the early- and late-time behavior of the solutiongponding toF (&)= andZ(D) = w(P)/P.

and on whether inflation occurs. The qualitative properties of ' |t js much clearer to analyze the equations in the so-called

scalar-tensor theories of gravity were also studied by Cole¥jnstein frame. Let us introduce the new variabjes and
in Ref. [20]. The author presented exact solutions that are; and define

analogues of the general relativistic Jacobs stiff perfect fluid

solutions and vacuum plane wave solutions which act as past 9,,=F(®)g,,,
and future attractors in the class of spatially homogeneous . a
models in Brans-Dicke theory. de\? 3({dInN[F(®)]\2 Z(P)
It should be noted the the methods developed 18], (%) =Z( aD ) 2F (D)’
[13], [14], and[15] are solution generating methods only for
homogeneous cosmological solutions and are not applicable A(@)=F Y2 @)
to more general cases. '
The purpose of this paper is to present a general method 2V(@)=U(D)F (). )

for generating exact solutions to the gravity equations with a

minimally coupled massless scalar figldCSF and irrota-  From now on we will refer tog,, and ¢ as the Einstein
tional stiff perfect fluid within the framework of some scalar- frame metric and dilaton field, respectively.

tensor theories whose Einstein frame dilaton-matter sector | the Einstein frame the actioil) takes the form

has nontrivial symmetries. In the general case, when the Ein-

stein frame dilaton-matter sector may not possess nontrivial 1 4 ,

symmetries, we also present a general solution generating S= RJ d*x= g[R—29""9, 09,0~ 4V(¢)]
technique which allows us to construct exact scalar-tensor

solutions starting with the solutions of the Einstein mini- +Sm[\1fm;A2(<p)g,w] 3
mally coupled scalar fielEMCSB. This technique is based ) o )

on the geodesics of the Riemannian metric associated witihere R is the Ricci scalar curvature with respect to the
the dilaton-matter sector. Einstein frame metrigy,,, .

The motivations to consider a MCSF as a source are the We consider scalar-tensor theories with a minimally
following. In view of the complexity of the equations of the coupled(masslessscalar fields as a matter source. A mini-
scalar-tensor gravity, it is natural as a first step to consider gnally coupled massless scalar field also corresponds to an
simple source. On the other hand, in different contexts, théTotational stiff perfect fluid with energy density
scalar field(different from the gravitational scalaplays an - - -
important role in modern physics: the scalar field has been 87G, p=87G,p=—-9""d, 00,0 4
proposed as a candidate for gravitational len$B®y39 and
for dark matter at galaxy scal¢40], as well as at cosmo-
logical scale§41-43. ~ =

Examples of different kinds of explicit exact solutions are Uy=3,0/N=-g"d,00,0 ®)
also considered.

and velocity field

providedg#”d,od,0<0 [36,37.
The Jordan frame action for the scalar field is
Il. SCALAR-TENSOR THEORIES WITH A MINIMALLY

COUPLED SCALAR FIELD AS A SOURCE AND Sn=
SYMMETRIES OF THE DILATON-MATTER SECTOR 167G,

J dx\-9(-29*"d,00,0).  (8)

Scalar-tensor theories are described by the following ack what follows we will consider only the special form of the
tion in the Jordan frame: potentialU(®), U(P)=2AF?(P) or V(¢)=A=const.
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The full Einstein frame action is then wherea>0 andb=0 are arbitrary constants. In the case
L =0 we obtain the Brans-Dicke theory withK|=1/(3
_ 4y D +2w). Whenab+0 the function4(¢) can be presented in
S= 164G f dV=g(R=A+Low) ™ the form
where A(e) =0 cosh{\[K[¢+c)

— v _ 2 v
Lom=—29""0,9d,p=2AN@)g" 000,00 (8 whereQ)=2./ab andc is a constant. Without loss of gener-

is the dilaton-matter sector of the theory Lagrangian. ality we may putc=0. In the special cas@=1 ‘?‘”d’|,K| _
Remarkably, in the case of some specific scalar-tensor /3 e obtain the theory with “conformal couplmgi T2h|s

theories the dilaton-matter sect@ of the theory possesses theory is also described by the functio®)=1-5d

hidden symmetries which allow us to generate exact solu@ndZ(®)=1. . _ _

tions. In order to unveil these symmetries we define a two- 1he scalar-tensor theories possessing #at0) dilaton-

dimensional abstract Riemannian space with a metric ma'ttt)erdst?é:tor have an isometry group B8 and are de-
scribe

dI?=de?+ A%(¢)do?. 9)
A(p)=1+agp
Solution generation techniques consist in finding invariant
transformations of the dilaton-matter sector of the Lagrangeorresponding to the functioris(d)=® and
ian in the action(7). This is equivalent to finding the isom-
etry group of the metri€9). In two dimensions the isometry 1-3a’®
group of Eq.(9) can be eitheG; or G;. Clearly our metric Z(P)= 2a2p?
possesse&, isometry corresponding to the Killing vector
dldo. From a physical point of view, however, this symme- wherea=0 is an arbitrary constant.
try is not interesting because it generates just a shift of the It is worth noting that scalar-tensor theories with the same
scalar fieldo: o—o+const. The metric9) has theG;  group of isometries of the dilaton-matter sector may have
group of isometries only when the Gauss curvatiis con-  rather different behavior from a physical point of view. As an
stant. Conversely, the constant curvature condition imposesexample we may consider Barker’s theory with(e)

differential equation for the functiopl(¢): ~cosfp) and a theory withA(¢) ~cos(/K¢) whereK#1.
, For Barker’s theory the effective gravitational “constant” is
Ke— A~ )d Ale) 10 @ real constanG.~G, (to first order of the weak field
¢ de? limit) while for a theory withK#1 the effective gravita-

tional  “constant” may vary: Gegs~CcoS(VKe)
In this way, by solving the diferential equatidh0) we ob-  +K sir?(VK ).
tain the scalar-tensor theories whose dilaton-matter sector Below we consider in more detail the symmetries of the
possesses the group of isometrigs dilaton-matter sector for the scalar-tensor theories described
When the Gauss curvature is positie> 0) the group of  above and present solution generating formulas. The general
isometries is S(P) (see below The scalar-tensor theories case when the dilaton-matter sector does not possess non-

corresponding to this case are characterized by trivial symmetries is also considered.

A(g)=acos VK¢ +b) A. Barker's theory
which corresponds to the functiof{®)=®d and Barker’s theory[44] is described by the functions(®)

) =® and Z(P)=(4—-3D)/P(2d—2) corresponding to
D)= (1+3K)—3Ka"® A?(¢)=cog(¢). The metric(9) is then
2KD(a’Pd—1)
dI?=de?+ cog(¢)do?. (12)

wherea>0 andb are arbitrary constants. Since Edg)
define ¢ up to a constant we may pbt=0. In the case& This metric can be considered as the standard metric on
=1 anda=1 we obtain Barker's theor{44]. the unit two-sphere. It is more convenient to present the met-

For negative Gauss curvaturk £ 0) the isometry group ric in the well known complex form. To do so we introduce
is SL(2,R). The scalar-tensor theories whose dilaton-mattethe complex field
sector has negative curvature are characterized by

Ale)=aexp([K[¢)+b exp— VK[¢)
corresponding to the functioris(®)=® and

z=cot( ¢/2+ 7/4)e’, (12
We obtain then

(1- 3| K|) + 12| K|abd> IHere we consider the case> — 3/2.

2(®)= 2|K|®(1—-4abd) 2We have put the second constantAfie) equal to 1.
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dI2:4dZ—d_Z. (13 o=arcsi _Sm(UO) .
V1—sir?(B8)cog (o)
(19
The metric is invariant under the transformations
Once having the solution in the Einstein frame it is easy

az+b to recover the corresponding Jordan frame one. The results
7—7'=—— (14 are summarized in the following proposition.
—bz+a Proposition Let (g,,,00) be a solution to the EMCSF

equations with a cosmological termv. Then (E]W,(D,a)

where form a solution to the Barker-MCSF equations with a cos-
a b mological potential Y®)=2A®? whereo is given by Eq.
d
u=( = _) eSU(2). (19) an
—b a

& Y og)=1—sir?(B)cog(ay), (20
There is also an independent discrete symmzm%zwhich _
corresponds te— — o. 90 =P Y(00)0,, - (21)
We note that the S(2) transformations act nonlinearly on
the scalar fields but leave the Einstein frame metric invariantWithout going into detail we formulate the proposition in

9.,,=9,,. The Jordan frame metrig,,,, therefore, trans- terms of a perfect fluid.

forms under Eq(14) as Proposition. Let(gw,po,uf)) be a solution to the Ein-
stein equations with an irrotational stiff perfect fluid and a
9.,0'=7,,P. cosmological termA. Then(g,,,,®,p,u,) is a solution to

the Barker equations with an irrotational stiff perfect fluid

The symmetries of the dilaton-matter sector can be usednd cosmological potential (dp) =2A ®? if P and~g,w are
to generate new solutions from known ones. In the case dfiven by Egs. (20) and (21), and
Barker’s theory, any solution of the Einstein equations with a

minimally coupled scalar field and cosmological term will be p=cog(B)P3(00)po,
a solution of the Einstein frame scalar-tensor MCSF equa-
tions with a cosmological term and with vanishiggor o. U,=0 Yo yu(®
® 0 )
Therefore, we can construct Barker counterparts to any solu-
tion of the EMCSF equations using the nonlinear action of v
the group S(2). 87G, po=—9""d,00d,00. (22
An arbitrary element) e SU(2) can be presented in the
form B. Brans-Dicke theory

_ Brans-Dicke theory is characterized by the functions
U=D(3)O(B)D(7) 19 F(®)=d and Z(®)=w/® which correspond taAd?(¢)
=e?*¢ wherea?=|K|=1/(3+2w). In the Brans-Dicke case
the metric(9) takes the form

ei vI2 0 d|2:d¢2+e2a<pdo_2_ (23)
0 e—iy/Z (16)

where

D(y)=
The metric(23), up to the parameter, also appears in the
and so-called dilaton-axion gravity45]. It should be noted, how-
ever, that we consider E@23) in a different physical con-
text. The symmetries of the dilaton-axion sector are well
) eSQ2). (17) known, but for completeness we will describe them again in
our context.
Introducing the complex field

cogBl2) sin(B/2)

OB) ( —sin(Bl2) cogBI2)

It should be noted that the transformatidfid) associated
with the subgroup consisting of the matric@<orrespond to E=ao+ie (24)
a constant shift of the scalar fielet o— o+ const. That is ’
why, without loss of generality, we may restrict ourselves to, o 41 write the metri€23) in the Klein form
the subgroup SQ).

Taking as a seed solution,=e€'“c and performing a

SQ(2) transformation with the matri©)(3) we obtain a new di2=— iz dg_d_g (25)
solutionz which in terms ofe and o reads a (g—¢)?
p=arcsifsin(B)cog o)1, (18 The dilaton-matter sector is ,R) invariant:
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, AE+B (005(,8/2) sin( B/2)
€SQ?2). (32

§¢8 =CerD (26) OB=| _singr2) cospl2)

where
C. A(¢)~cosh\[K|¢) theory

_ A B Here we consider the scalar-tensor theories wiity)
L= e SL(2R). . X
C D =) cosh(/|K]|¢), Q>0. Introducing the complex field

There is also a discrete symmetfy- — £ which corresponds — =T i
= 4+

The Jordan frame metrg,,, transforms under Eq26) as ) ) ) )
~r o~ the metric can be written in the Klein form,
9,9 =09,,P.

Let us consider a solutiorg(,, ,0¢) to the EMCSF equa- 3
. . N ) ) . 4 dfdg
tions. This solution is also a solution to the Einstein frame dli?2=—- — —. (34
scalar-tensor equations witig=ie ™ “?0. The SL(2,R) trans- Kl (=0

formation with the matrixL gives a new solutiorz=ao

+ie—%¢ where The case under consideration is analogous to the Bran-Dicke

case and we directly present the final results, omitting the
e%¢=C2e~ %04 D2g2%), (27) intermediate details:
Proposition. Let(g,,,00) be a solution to the EMCSF

1 ACe *?0+BDe*70 equations with a cosmological ter. Then (gw,CD,o) form

7= C2e 270+ D270 | (28) 4 solution to the equations of thel(qo):Qcosh(\/m@)
theory with a MCSF and a cosmological potential
In this way we have proved the following proposition. U(P) =2Ad? if o, P, and@,, are given by
Proposition. Let(g,,,00) be a solution to the EMCSF ‘
equations with a cosmological termv. Then (g, ,®,0) ezﬂ\mgzlﬁL(Ace‘m‘T“‘ BDe ™ Kloo)2 35
form a solution to the Brans-Dicke equations with a MCSF (C2e Koot p2g—TKlogy2
and a cosmological potential ()=2Ad2 where o is
given by Eqg. (28) and (D_l(O'O) _ QZ[1+ (ACe€WUO+ BDe™ GWUO)Z],
O~V gy) = C2e™ @0+ D20, (29 (36)
=@ H00)0,0,- (30) 9= @00 G 37

It is not difficult to rewrite this proposition for the case of

Applied to the case of a stiff perfect fluid the proposition a stiff perfect fluid. The fluid energy density is given by

becomes the following.
Proposition. Let(gw,po,uﬁf’)) be a solution to the Ein- 7 — O2(AD+BC)2D3 38
stein equations with an irrotational stiff perfect fluid and a P ( )" (0)po- 38)
cosmological termA. Then(g,,,,®,p,u,) is a solution to
the Brans-Dicke equations with an irrotational stiff perfect
fluid and a cosmological potential (@)=2A®? if ® and As we have seen, the theory with a flat dilaton-matter

9, are given by Egs. (29) and (30), and sector is described byl(¢)=1+a¢. Let us introduce the
a complex field

D. Theory with a flat dilaton-matter sector

p=4C2D%®3(0)py,

s=(1l+ag)e'’. (39
DM=¢‘1’2(00)U2, The dilaton-matter sector metric then takes the standard flat
form
87TG*p0:_gMVaMO'0&V(To. (31)
. . . dI?=dsds. 40
The transformationg26) associated with the subgroup sHs (40
consisting of matrices of the form The metric is invariant under the group I&%) i.e., under
the transformations
A B

= 0 A! s—s'=es+yp (42)

correspond to either a constant shift or a rescaling of thevherep=A+iBeC.
scalar fields. That is why, without loss of generality, we may Let us take as a seed solutiop= 1+ ao. It is not diffi-
restrict ourselves to the matrices cult to see that two of the parameters of the group RE)(
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can be absorbed as constant shifts> o+ const, and only de
one essential parameter remains. Performing a translation f \/?:Cli T,
with 7=iB we obtain a new solution with 1-CA%e)

(1+ag)=y(1+aoe)’+B? (42 =C+C f 2d— (50)
A%(g(7))

1 B
=3 arCSi{ﬁ . (43 whereC, C,, andC, are constants. The consta@g andC,
(1+a00)°+B are unimportant and we shall omit them.
. " As a concrete example we consider the theory with
So we hayg the following proposition. . F(®)=d and Z(®)=31(d2—3d+3)/Dd(d—1) corre-
Proposition. Let(g,,,00) be a solution to the EMCSF sponding tad2(¢) = 1/(1+ ¢2). Solving the geodesic equa-

equations with a cosmological termv. Then(g,,.®,0)  tions for the metricdI?=de?+do?/(1+ ¢?) we obtain
form a solution to the equations of th& ¢) =1+ a¢ theory

with a MCSF and a cosmological potential ) = 2A ®? if 1 5
o is given by Eq. (43) and =g V1-Csin(Cay), (51)
& Yop)=(1+acy)?+B?, (44) 1402 _c2
0T="%¢ 90" ac2 sin(2Cayq)
g,LLV:¢71(O-O)g/.LV' (45) (52)
In the case of a stiff perfect fluid we obtain where 0<C?<1.
Therefore, if @, ,00) is a solution to the EMCSF equa-
p=B2D3(0p)po. (46)  tions with a cosmological term, then (q ,,®,0) is a so-

lution to the equations afd 2(¢)=1/(1+ (,02) theory with a
MCSF and a cosmological potentid(®)=2A®? whereo
is given by Eq.(52) and

When the metrid¢9) has nontrivial isometries we can use
them to generate new solutions from known ones. In the 1-C?
general case, however, the met(® has only trivial sym- ®(og)=1+ TSIHZ(CUO)-
metry o— o +const. That is why the solution generating
procedure considered above fails. Nevertheless, when the ~
dilaton-matter sector does not possess nontrivial symmetries 9ur=P " (00) 9y (53
we can still generate scalar-tensor solutions starting with so-
lutions to the EMCSF equations. For this purpose we con-
sider the geodesics of the mett®). It is not difficult to see
that if (¢(7),0(7)) is an affinely parametrized geodesic and

E. Other theories

In the case of a stiff perfect fluid this solution corresponds
to the energy density

~ 263
(9, ,00) is a solution to the EMCSF equations with a cos- p=C0(00)po- (54)
mological termA, then(gw,<P(T)|T:(rO:U(T)|T:UO) is a so-
lution to the scalar-tensor MCSF equations with a cosmo- lIl. EXAMPLES OF EXACT SOLUTIONS

logical termA.
In this way we obtain the following proposition.
Proposition. Let(¢(7),0(7)) be an affinely parametrized
geodesic of the metric (9) an@,, o) a solution to the
EMCSF equations with a cosmological term. Then

(ij,tb,a) form a solution to the scalar-tensor equations

As an illustration of the general techniques we consider
some particular examples of exact solutions. Here we\set

A. Homogeneous cosmological solutions

with a MCSF and a cosmological potential (&) Our first examples are homogeneous isotropic cosmologi-
=2AF?(®) where cal solutions with an irrotational stiff perfect fluid. Consider
the metric
o=0(7)] -4, 47
dsi=—dt?+t?(dx®+dy?>+dZ). (55)
-1 — 42
F(®(00))=A ((P(T))|T="0’ (48) This is a flat Friedmann-Robertson-Walker metric for a stiff
perfect fluid. The fluid energy density isi®, po=1/3t? and
ij= F‘l(tb(cro))gw. (49)  the four-velocity isu,= —d,t. The fluid velocity potential is
70=—(1/Y3)In().
The geodesic equations for the met{® can be formally Since our seed solution is fixed the generated solutions
solved and we obtain will be completely determined only by the explicit form of
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® (o). That is why, for brevity, we shall present only the 4 (t)=\/b2—1arctafisinh(2mt)]. (59)
explicit form of ® (o) and the energy density.

The energy density and the four-velocity are given by
1. Barker’s theory

Using the solution generating procedure for Barker’s 87G, po=4m*(b*~1)cosh 2>~P)(2mt)
theory we obtain X cosh #P(P=1(mr), (60)

1 _ _

P t)=1— sin2(,8)co§( —In(t)) , ul?= cosit~°(2mt)costt®~(mr) 9.
V3 (61)

~ CcoS(B) Here,m andb (b>>1) are free parameters.
8mG, p= 7 ©(0). (56) The solution is everywhere regular and satisfies the global
3t

hyperbolicity condition. The curvature invariants are regular
for the whole space-time. In addition, the space-time de-
scribed by this solution admits two commuting spacelike

In the case of Brans-Dicke theory the transformati@3  Killing vectors 9/9z and 9/d¢ which are mutually and hy-
y|e|d the fO”OWing Soluti0n2 persurface orthogonaL

2. Brans-Dicke theory

&~ M(1)=C? B+ D23, 1. Barker’s theory

4C2D2 Using as a seed solution E(9) and applying the solu-
p= >—d3(1). (57)  tion generating formula&?) we obtain the following Barker
3t theory three-parametric solution:

3. A%(¢)=1(1+¢?) theory @~ (1) = 1—sirP(B)cog{\b?— Larctafisin 2mt)]},
The solution generating formuldS3) and (54) give
, p=cog(B)P3(t)po. (62)
1-C°
PM)=1+ C2 smz(ﬁln(t)), When cosB)=0 the solution becomes a vacuum scalar-
tensor solution. That is why we shall focus our attention on
c? the more interesting case ¢B%¢0. In this case the gravita-
87G, p=-5D3(1). (58  tional scalar and energy density are everywhere regular in
3t space-time. Moreover, we have calculated the curvature in-
. . . ) variants
The solution(57) (presented in coordinates different from
those used heyavas derived by Gurevicht al. [48] and by leawaﬁ@waﬁ, T2=~RW~R“”, T,=R?

Mimoso and Wands[14] using a completely different
method. Although the solution6) and (58) can also be ) ~ .
derived by the methods developed in Ref$3,14, they  With respect to the metrig,,,=® *(00)g,,, and found that
have not been presented so far in an explicit form. It is wortHheY are everywhere regular. In this sense the solu@i@nis
noting that the methods used here to derive the homogeneof8nsingular in the case cgge-0.

cosmological solutions are much more elegant and powerful
than the methods developed in the previous work on the
subject. In the case of Brans-Dicke theory, the solution generating

formulas(31) give

2. Brans-Dicke theory

B. Inhomogeneous cosmological solutions /
—1/204y — h2—1 ;
Our next examples are much more interesting. We presen‘P (t)=cos'(B/2)exp{ab® ~ 1arctafisinh 2mt) ]}

new inhomogeneous stiff perfect fluid cosmological solu- +sirA(Bl2)expl — a /—bz—larctarﬁsinr’(th)]},
tions with everywhere regular curvature invariants. The

gravitational scalar and the energy density are everywhere
regular, too.

We consider the following solution to the Einstein equa-
tions with an irrotational stiff perfect fluif46,47:

p=sir(B)®3(1)po. (63)

In the solution(63) we have restricted ourselves to the sub-

group SO(2LSL(2R).

dsi=costt* " (2mt)cosHP~Y(mr)(—dt?+ dr?) The gravitational scalar and the energy density are every-

+ cosRA-D)(2mt)sint(mr) cosB 20 (mr)d b2 WheIe regular in space-time. The curvature invariants ,,
and|; are also everywhere regular. In this sense the space-

+cos?(2mt)cosHP(mr)d 2, time described by the solutioi$3) is nonsingular.
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3. A%(¢)=1(1+¢?) theory
The solution generating formul&@S3) and(54) applied to

aV1-\2

DY) = co(BI2) T TN s l2) g N,

the seed solutiof59) yield the following solution: 1
o=—-sin(B)
1— Cz 2a
— i 2__ H
O(t)=1+ —= sirf{C+/b?— 1arctafisinn(2mt)]}, fgﬁ—fgam
X .
~ V12 . —av122
p=C2D3(t) po. cod(BI2)f VM +sir(Bl2) o VT
(66)
The solution(64) is nonsingular. The gravitational scalar and
the energy density and the curvature invaridntd ,,15 are 3. A%(@)=1(1+¢?) theory
regular everywhere. The solution generating transformations for the case un-
Clearly the solution generating techniques developed ijer consideration yield the solution
the present paper allow us to construct inhomogeneous cos- ,
mological solutions with everywhere regular curvature in- . 1-Cc —
variants in many other scalar-tensor theories different from P=1+ c? SIF[CV1-Nn(fo)],
those considered above.
1+C*
C. Static spherically symmetric solutions 97 72C 1=Mn(fo)
Finally we present examples of new static, spherically 1-C2
symmetric solutions. ~ e sif2Cy1—A2In(fy)]. (67)
As a seed solution we take the Janis-Newman-Winicour
solution[49] to the EMCSF equations: We recall that the Jordan frame metric in the above three
d%= _fg)\dt2+f62)\dr2+fg(l_)\)rZ(d02+Sin20d¢2)’ examples is given bﬁlw:dfl(fo)'gw where the explicit
form of ®(f,) depends on the particular scalar-tensor theory.
In this section we have constructed different kinds of ex-
7o=1=A2 In(fo) (64)

act scalar-tensor solutions in the presence of a stiff perfect
’ fluid or a minimally coupled scalar field. Using the solution
wherefg=1-2M/r and O<A=<1. generating methods developed in the present work we can, of
When we have asymptotically flat seed backgrounds it igoyrse, generate many more and much more complicated
natural to consider the solution generating transformationgcgjar-tensor solutions taking as seed solutions the known
preserving the asymptotic flatness of the field configurationgo|ytions of the EMCSF equatiorfor example, se¢30—

trices of the form scalar-tensor solutions, however, require a separate investi-
gation.
u=D| 2o =
2 B 2 IV. CONCLUSION
[i.e., isomorphic to SO(2) SU(2)] preserves the asymptot- In this paper we have presented a general method for

ics in the case of Barker's theory. In the case of Brans-Dickegyenerating exact solutions in some scalar-tensor theories of
theory, the subgroup preserving the asymptotics igyravity with a MCSF or irrotational stiff perfect fluid and

SO(2)CSL(2R) consisting of the matrice®(3). with a potential term of a special kind for the gravitational
scalar. The method is based on the symmetries of the dilaton-
1. Barker’s theory matter sector in the Einstein frame. In the case of Barker’s

eory the dilaton-matter sector possess a group of symmetry
U(2). In the case of Brans-Dicke theory and the theory with
“conformal coupling” the dilaton-matter sector is 8,R)
1 _ . . ] symmetric.
© " (fo) = 1-si(B)sinT V1 - MIn(fo) ], We have described an explicit algorithm for generating
exact scalar-tensor solutions starting from solutions to the
. cog B)sir V1—-\?In(fy)] EMCSF equations with a cosmological term by employing
o=arcs \/1—sin2(,3)sinz[ JI=\2n(fo)] . (69 the nonlinear action of the symmetry group of the dilaton-
matter sector.
We have also presented a general method for generating
scalar-tensor solutions with a MCSF from solutions of
The scalar-tensor image of E@4) in the case of Brans- EMCSF equations using the geodesics of the Riemannian
Dicke theory is metric (9) in the general case, when the met{® does not

The solution generating transformations that preserve th
asymptotics yield the following solution:

2. Brans-Dicke theory

084023-8
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possess nontrivial symmetries. As is seen the dilaton-scalar field sector possesses the
As an illustration of the solution generating techniquessame symmetrieswhen they exist as in the case of the
explicit exact solutions have also been constructed. In parmbsence of the Maxwell field, and they can be employed to
ticular, we have constructed inhomogeneous cosmologicajenerate new solutions with electromagnetic field from
solutions with everywhere regular curvature invariants. known ones. In the general case when the metric associated
The solution generating method can be generalized fowith the dilaton MCSF sector may not possess nontrivial
scalar-tensor Maxwell gravity. Taking into account that thesymmetries we can construct exact scalar-tensor solutions in

Maxwell action(in four dimensionsis conformally invariant

the presence of the electromagnetic field using the geodesics

we can immediately write the scalar-tensor MCSF Maxwellof the dilaton-scalar field sector metric.

action in the Einstein frame

1
4 ey a2 v
1677G*fdx[R 29"73,9d,¢—2A(¢)9""d,0d,0

S:

—F, F#"—A].
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