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Solution generating in scalar-tensor theories with a massless scalar field and stiff perfect fluid
as a source
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We present a method for generating solutions in some scalar-tensor theories with a minimally coupled
massless scalar field or irrotational stiff perfect fluid as a source. The method is based on the group of
symmetries of the dilaton-matter sector in the Einstein frame. In the case of Barker’s theory the dilaton-matter
sector possesses the SU~2! group of symmetries. In the case of Brans-Dicke theory and the theory with
‘‘conformal coupling,’’ the dilaton-matter sector has SL(2,R) as a group of symmetries. We describe an explicit
algorithm for generating exact scalar-tensor solutions from solutions of Einstein minimally coupled scalar field
equations by employing the nonlinear action of the symmetry group of the dilaton-matter sector. In the general
case, when the Einstein frame dilaton-matter sector may not possess nontrivial symmetries, we also present a
solution generating technique which allows us to construct exact scalar-tensor solutions starting with the
solutions of the Einstein minimally coupled scalar field equations. As an illustration of the general techniques,
examples of explicit exact solutions are constructed. In particular, we construct inhomogeneous cosmological
scalar-tensor solutions whose curvature invariants are everywhere regular in space-time. A generalization of the
method for scalar-tensor-Maxwell gravity is outlined.
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I. INTRODUCTION

Scalar-tensor theories of gravity are considered as
most natural generalizations of general relativity@1–6#. In
these theories gravity is mediated not only by the metric
space-time but also by a scalar field~the so-called gravita-
tional scalar!. Scalar-tensor theories contain arbitrary fun
tions of the scalar field that determine the gravitational ‘‘co
stant’’ as a dynamical variable. From a theoretical point
view it should be noted that specific scalar-tensor theo
arise naturally as the low-energy limit of string theory.

In the weak field limit scalar-tensor theories differ slight
from general relativity. In the strong field regime, howev
the predictions of scalar-tensor theories may differ drastic
from those of general relativity as was shown in Refs.@7#
and @8#.

Scalar-tensor theories have also attracted much intere
cosmology~see Refs.@9–27# and references therein!.

The progress in the understanding of scalar-tensor th
ries of gravity is closely connected with finding and inves
gating exact solutions. A theoretical discussion of many
pects of the early universe, gravitational waves, gravitatio
collapse, and the structure of compact objects within
framework of scalar-tensor theories~as in general relativity!
necessitates the use of exact solutions. In addition to
theoretical motivation for construction of exact solution
there is also a more practical one. With the advent of num
cal calculations, exact solutions are useful as comparis
for numerical and approximate solutions and as checks of
computer codes.

Solving scalar-tensor theory equations in the presence
source is a difficult task due to their complexity in the ge
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eral case. In fact, scalar-tensor gravity equations are m
more complicated than Einstein equations. In the so-ca
Einstein frame the sourceless scalar-tensor equations ar
duced to Einstein equations with a minimally coupled sca
field. In this case much progress has been achieved in fin
exact homogeneous and inhomogeneous cosomological
tions @28–37#. Little has been done in solving scalar-tens
equations with a source. The known solutions are per
fluid homogeneous cosmological solutions depending on
time coordinate only~see Refs.@12–20# and references
therein!. In Ref. @12#, Barrow investigated a method whic
enables exact solutions to be found for vacuum and radia
dominated Friedmann-Robertson-Walker~FRW! universes of
all curvatures in scalar-tensor theories with an arbitrary fo
of the coupling functionv(F). Particular classes of solu
tions were presented for specific choices ofv(F), including
Brans-Dicke, Barker, and Bekenstein theories. Barrow a
Mimoso@13# presented a method for deriving exact solutio
for flat FRW cosmological models with a perfect fluid sat
fying the equation of statep5(g21)r whereg is constant
with 0<g<2, in scalar-tensor theories with an arbitra
form for the coupling functionv(F). A number of explicit
solutions for inflationary universes andp50 universes were
obtained. Exact FRW cosmological solutions in gene
scalar-tensor theories for a stiff perfect fluid or radiati
were derived by Mimoso and Wands in Ref.@14#. Homoge-
neous but anisotropic cosmologies in scalar-tensor theo
of gravity were examined by Mimiso and Wands in Re
@15#. The authors presented a method for deriving solutio
for any isotropic perfect fluid with a barotropic equation
state in a spatially flat cosmology. For a stiff fluid or radi
tion or in vacuum the authors were able to obtain solutions
a number of anisotropic Bianchi and Kantowski-Sachs m
rics. Extending the earlier work of@11#, @12#, and@13#, Bar-
row and Parsons@16# provided a detailed analysis of FRW
©2002 The American Physical Society23-1
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universes in a wide range of scalar-tensor theories of gra
The authors constructed a range of exact solutions for o
closed, and flat isotropic universes containing matter with
equation of statep<(1/3)r and in vacuum. The early- an
late-time behaviors of the solutions were examined, too
Ref. @17#, Billyard and Coley discussed the formal equiv
lences between Kaluza-Klein gravity, Brans-Dicke theo
and general relativity coupled to a massless scalar field.
ing the formal equivalences the authors showed that e
solutions obtained in one theory will correspond to ana
gous solutions in the other two theories. A phase-sp
analysis of the FRW models in Brans-Dicke theory was p
formed by Kolitch and Eardley@18#. Their analysis was im-
proved by Holden and Wands@19# who presented all FRW
models in a single phase plane. Particular attention was
cused on the early- and late-time behavior of the soluti
and on whether inflation occurs. The qualitative properties
scalar-tensor theories of gravity were also studied by Co
in Ref. @20#. The author presented exact solutions that
analogues of the general relativistic Jacobs stiff perfect fl
solutions and vacuum plane wave solutions which act as
and future attractors in the class of spatially homogene
models in Brans-Dicke theory.

It should be noted the the methods developed in@12#,
@13#, @14#, and@15# are solution generating methods only f
homogeneous cosmological solutions and are not applic
to more general cases.

The purpose of this paper is to present a general me
for generating exact solutions to the gravity equations wit
minimally coupled massless scalar field~MCSF! and irrota-
tional stiff perfect fluid within the framework of some scala
tensor theories whose Einstein frame dilaton-matter se
has nontrivial symmetries. In the general case, when the
stein frame dilaton-matter sector may not possess nontr
symmetries, we also present a general solution genera
technique which allows us to construct exact scalar-ten
solutions starting with the solutions of the Einstein min
mally coupled scalar field~EMCSF!. This technique is base
on the geodesics of the Riemannian metric associated
the dilaton-matter sector.

The motivations to consider a MCSF as a source are
following. In view of the complexity of the equations of th
scalar-tensor gravity, it is natural as a first step to consid
simple source. On the other hand, in different contexts,
scalar field~different from the gravitational scalar! plays an
important role in modern physics: the scalar field has b
proposed as a candidate for gravitational lensing@38,39# and
for dark matter at galaxy scales@40#, as well as at cosmo
logical scales@41–43#.

Examples of different kinds of explicit exact solutions a
also considered.

II. SCALAR-TENSOR THEORIES WITH A MINIMALLY
COUPLED SCALAR FIELD AS A SOURCE AND

SYMMETRIES OF THE DILATON-MATTER SECTOR

Scalar-tensor theories are described by the following
tion in the Jordan frame:
08402
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S5
1

16pG*
E d4xA2g̃@F~F!R̃2Z~F!g̃mn]mF]nF

22U~F!#1Sm@Cm ;g̃mn#. ~1!

Here, G* is the bare gravitational constant, andR̃ is the
Ricci scalar curvature with respect to the space-time me
g̃mn . The dynamics of the scalar fieldF depends on the
functionsF(F), Z(F), andU(F). In order for the gravitons
to carry positive energy the functionF(F) must be positive.
The action of matter depends on the material fieldsCm and
the space-time metricg̃mn but does not involve the scala
field F in order for the weak equivalence principle to b
satisfied. It should be mentioned that the most used par
etrization in the literature is the Brans-Dicke one, cor
sponding toF(F)5F andZ(F)5v(F)/F.

It is much clearer to analyze the equations in the so-ca
Einstein frame. Let us introduce the new variablesgmn and
w, and define

gmn5F~F!g̃mn ,

S dw

dF D 2

5
3

4 S d ln@F~F!#

dF D 2

1
Z~F!

2F~F!
,

A~w!5F21/2~F!,

2V~w!5U~F!F22~F!. ~2!

From now on we will refer togmn and w as the Einstein
frame metric and dilaton field, respectively.

In the Einstein frame the action~1! takes the form

S5
1

16pG*
E d4xA2g@R22gmn]mw]nw24V~w!#

1Sm@Cm ;A 2~w!gmn# ~3!

where R is the Ricci scalar curvature with respect to t
Einstein frame metricgmn .

We consider scalar-tensor theories with a minima
coupled~massless! scalar fields as a matter source. A mini
mally coupled massless scalar field also corresponds to
irrotational stiff perfect fluid with energy density

8pG* r̃58pG* p̃52g̃mn]ms]ns ~4!

and velocity field

ũm5]ms/A2g̃mn]ms]ns ~5!

providedg̃mn]ms]ns,0 @36,37#.
The Jordan frame action for the scalar field is

Sm5
1

16pG*
E d4xA2g̃~22g̃mn]ms]ns!. ~6!

In what follows we will consider only the special form of th
potentialU(F), U(F)52LF2(F) or V(w)5L5const.
3-2
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The full Einstein frame action is then

S5
1

16pG*
E d4xA2g~R2L1LDM ! ~7!

where

LDM522gmn]mw]nw22A 2~w!gmn]ms]ns ~8!

is the dilaton-matter sector of the theory Lagrangian.
Remarkably, in the case of some specific scalar-ten

theories the dilaton-matter sector~8! of the theory possesse
hidden symmetries which allow us to generate exact s
tions. In order to unveil these symmetries we define a tw
dimensional abstract Riemannian space with a metric

dl25dw21A 2~w!ds2. ~9!

Solution generation techniques consist in finding invari
transformations of the dilaton-matter sector of the Lagra
ian in the action~7!. This is equivalent to finding the isom
etry group of the metric~9!. In two dimensions the isometr
group of Eq.~9! can be eitherG1 or G3. Clearly our metric
possessesG1 isometry corresponding to the Killing vecto
]/]s. From a physical point of view, however, this symm
try is not interesting because it generates just a shift of
scalar fields: s→s1const. The metric~9! has theG3
group of isometries only when the Gauss curvatureK is con-
stant. Conversely, the constant curvature condition impos
differential equation for the functionA(w):

K52A 21~w!
d2A~w!

dw2
. ~10!

In this way, by solving the diferential equation~10! we ob-
tain the scalar-tensor theories whose dilaton-matter se
possesses the group of isometriesG3.

When the Gauss curvature is positive (K.0) the group of
isometries is SU~2! ~see below!. The scalar-tensor theorie
corresponding to this case are characterized by

A~w!5a cos~AKw1b!

which corresponds to the functionsF(F)5F and

Z~F!5
~113K !23Ka2F

2KF~a2F21!

where a.0 and b are arbitrary constants. Since Eqs.~2!
definew up to a constant we may putb50. In the caseK
51 anda51 we obtain Barker’s theory@44#.

For negative Gauss curvature (K,0) the isometry group
is SL~2,R!. The scalar-tensor theories whose dilaton-ma
sector has negative curvature are characterized by

A~w!5a exp~AuKuw!1b exp~2AuKuw!

corresponding to the functionsF(F)5F and

Z~F!5
~123uKu!112uKuabF

2uKuF~124abF!
08402
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wherea.0 andb>0 are arbitrary constants. In the caseb
50 we obtain the Brans-Dicke theory withuKu51/(3
12v).1 WhenabÞ0 the functionA(w) can be presented in
the form

A~w!5V cosh~AuKuw1c!

whereV52Aab andc is a constant. Without loss of gene
ality we may putc50. In the special caseV51 and uKu
51/3 we obtain the theory with ‘‘conformal coupling.’’ This
theory is also described by the functionsF(F)512 1

6 F2

andZ(F)51.
The scalar-tensor theories possessing flat (K50) dilaton-

matter sector have an isometry group Iso(R2) and are de-
scribed by2

A~w!511aw

corresponding to the functionsF(F)5F and

Z~F!5
123a2F

2a2F2

whereaÞ0 is an arbitrary constant.
It is worth noting that scalar-tensor theories with the sa

group of isometries of the dilaton-matter sector may ha
rather different behavior from a physical point of view. As a
example we may consider Barker’s theory withA(w)
;cos(w) and a theory withA(w);cos(AKw) whereKÞ1.
For Barker’s theory the effective gravitational ‘‘constant’’
a real constantGe f f;G* ~to first order of the weak field
limit ! while for a theory withKÞ1 the effective gravita-
tional ‘‘constant’’ may vary: Ge f f;cos2(AKw)
1K sin2(AKw).

Below we consider in more detail the symmetries of t
dilaton-matter sector for the scalar-tensor theories descr
above and present solution generating formulas. The gen
case when the dilaton-matter sector does not possess
trivial symmetries is also considered.

A. Barker’s theory

Barker’s theory@44# is described by the functionsF(F)
5F and Z(F)5(423F)/F(2F22) corresponding to
A 2(w)5cos2(w). The metric~9! is then

dl25dw21cos2~w!ds2. ~11!

This metric can be considered as the standard metric
the unit two-sphere. It is more convenient to present the m
ric in the well known complex form. To do so we introduc
the complex field

z5cot~w/21p/4!eis. ~12!

We obtain then

1Here we consider the casev.23/2.
2We have put the second constant inA(w) equal to 1.
3-3



n
n

se
e
h
be
ua

ol
o

e

to

sy
ults

s-

in

a

id

ns

ell
in

STOYTCHO S. YAZADJIEV PHYSICAL REVIEW D65 084023
dl254
dzdz̄

~11zz̄!2
. ~13!

The metric is invariant under the transformations

z→z85
az1b

2b̄z1ā
~14!

where

U5S a b

2b̄ ā
D PSU~2!.

There is also an independent discrete symmetryz→ z̄ which
corresponds tos→2s.

We note that the SU~2! transformations act nonlinearly o
the scalar fields but leave the Einstein frame metric invaria
gmn8 5gmn . The Jordan frame metricg̃mn , therefore, trans-
forms under Eq.~14! as

g̃mn
8 F 85g̃mnF.

The symmetries of the dilaton-matter sector can be u
to generate new solutions from known ones. In the cas
Barker’s theory, any solution of the Einstein equations wit
minimally coupled scalar field and cosmological term will
a solution of the Einstein frame scalar-tensor MCSF eq
tions with a cosmological term and with vanishingw or s.
Therefore, we can construct Barker counterparts to any s
tion of the EMCSF equations using the nonlinear action
the group SU~2!.

An arbitrary elementUPSU(2) can be presented in th
form

U5D~d!O~b!D~g! ~15!

where

D~g!5S eig/2 0

0 e2 ig/2D ~16!

and

O~b!5S cos~b/2! sin~b/2!

2sin~b/2! cos~b/2!
D PSO~2!. ~17!

It should be noted that the transformations~14! associated
with the subgroup consisting of the matricesD correspond to
a constant shift of the scalar fields: s→s1const. That is
why, without loss of generality, we may restrict ourselves
the subgroup SO~2!.

Taking as a seed solutionz05eis0 and performing a
SO~2! transformation with the matrixO(b) we obtain a new
solutionz which in terms ofw ands reads

w5arcsin@sin~b!cos~s0!#, ~18!
08402
t:

d
of
a

-

u-
f

s5arcsinF sin~s0!

A12sin2~b!cos2~s0!
G .

~19!

Once having the solution in the Einstein frame it is ea
to recover the corresponding Jordan frame one. The res
are summarized in the following proposition.

Proposition. Let (gmn ,s0) be a solution to the EMCSF

equations with a cosmological termL. Then (g̃mn ,F,s)
form a solution to the Barker-MCSF equations with a co
mological potential U(F)52LF2 wheres is given by Eq.
(19) and

F21~s0!512sin2~b!cos2~s0!, ~20!

g̃mn5F21~s0!gmn . ~21!

Without going into detail we formulate the proposition
terms of a perfect fluid.

Proposition. Let(gmn ,r0 ,um
(0)) be a solution to the Ein-

stein equations with an irrotational stiff perfect fluid and

cosmological termL. Then(g̃mn ,F,r̃,ũm) is a solution to
the Barker equations with an irrotational stiff perfect flu

and cosmological potential U(F)52LF2 if F and g̃mn are
given by Eqs. (20) and (21), and

r̃5cos2~b!F3~s0!r0 ,

ũm5F21/2~s0!um
(0) ,

8pG* r052gmn]ms0]ns0 . ~22!

B. Brans-Dicke theory

Brans-Dicke theory is characterized by the functio
F(F)5F and Z(F)5v/F which correspond toA 2(w)
5e2aw wherea25uKu51/(312v). In the Brans-Dicke case
the metric~9! takes the form

dl25dw21e2awds2. ~23!

The metric~23!, up to the parametera, also appears in the
so-called dilaton-axion gravity@45#. It should be noted, how-
ever, that we consider Eq.~23! in a different physical con-
text. The symmetries of the dilaton-axion sector are w
known, but for completeness we will describe them again
our context.

Introducing the complex field

j5as1 ie2aw, ~24!

we can write the metric~23! in the Klein form

dl252
4

a2

djdj̄

~j2 j̄ !2
. ~25!

The dilaton-matter sector is SL~2,R! invariant:
3-4
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j→j 85
Aj1B

Cj1D
~26!

where

L5S A B

C DD PSL~2,R!.

There is also a discrete symmetryj→2 j̄ which corresponds
to s→2s.

The Jordan frame metricg̃mn transforms under Eq.~26! as

g̃mn
8 F 85g̃mnF.

Let us consider a solution (gmn ,s0) to the EMCSF equa-
tions. This solution is also a solution to the Einstein fram
scalar-tensor equations withj05 ie2as0. The SL~2,R! trans-
formation with the matrixL gives a new solutionz5as
1 ie2aw where

eaw5C2e2as01D2eas0, ~27!

s5
1

a

ACe2as01BDeas0

C2e2as01D2eas0
. ~28!

In this way we have proved the following proposition.
Proposition. Let(gmn ,s0) be a solution to the EMCSF

equations with a cosmological termL. Then (g̃mn ,F,s)
form a solution to the Brans-Dicke equations with a MC
and a cosmological potential U(F)52LF2 where s is
given by Eq. (28) and

F21/2~s0!5C2e2as01D2eas0, ~29!

g̃mn5F21~s0!gmn . ~30!

Applied to the case of a stiff perfect fluid the propositio
becomes the following.

Proposition. Let(gmn ,r0 ,um
(0)) be a solution to the Ein-

stein equations with an irrotational stiff perfect fluid and

cosmological termL. Then(g̃mn ,F,r̃,ũm) is a solution to
the Brans-Dicke equations with an irrotational stiff perfe
fluid and a cosmological potential U(F)52LF2 if F and

g̃mn are given by Eqs. (29) and (30), and

r̃54C2D2F3~s0!r0 ,

ũm5F21/2~s0!um
0 ,

8pG* r052gmn]ms0]ns0 . ~31!

The transformations~26! associated with the subgrou
consisting of matrices of the form

T5S A B

0 A21D
correspond to either a constant shift or a rescaling of
scalar fields. That is why, without loss of generality, we m
restrict ourselves to the matrices
08402
e

e
y

O~b!5S cos~b/2! sin~b/2!

2sin~b/2! cos~b/2!
D PSO~2!. ~32!

C. A„w…Ècosh„AzKzw… theory

Here we consider the scalar-tensor theories withA(w)
5V cosh(AuKuw), V.0. Introducing the complex field

z5exp~VAuKus!S tanh~AuKuw!1
i

cosh~ uKuw! D ~33!

the metric can be written in the Klein form,

dl252
4

uKu
dzdz̄

~z2 z̄ !2
. ~34!

The case under consideration is analogous to the Bran-D
case and we directly present the final results, omitting
intermediate details:

Proposition. Let(gmn ,s0) be a solution to the EMCSF

equations with a cosmological termL. Then (g̃mn ,F,s) form
a solution to the equations of theA(w)5V cosh(AuKuw)
theory with a MCSF and a cosmological potenti

U(F)52LF2 if s, F, and g̃mn are given by

e2VAuKus5
11~ACeAuKus01BDe2AuKus0!2

~C2eAuKus01D2e2AuKus0!2
, ~35!

F21~s0!5V2@11~ACeAuKus01BDe2AuKus0!2#,
~36!

g̃mn5F21~s0!gmn . ~37!

It is not difficult to rewrite this proposition for the case o
a stiff perfect fluid. The fluid energy density is given by

r̃5V2~AD1BC!2F3~s0!r0 . ~38!

D. Theory with a flat dilaton-matter sector

As we have seen, the theory with a flat dilaton-mat
sector is described byA(w)511aw. Let us introduce the
complex field

§5~11aw!eis. ~39!

The dilaton-matter sector metric then takes the standard
form

dl25d§d§̄. ~40!

The metric is invariant under the group Iso(R2) i.e., under
the transformations

§→§85eiq§1h ~41!

whereh5A1 iBPC.
Let us take as a seed solution§0511as0. It is not diffi-

cult to see that two of the parameters of the group Iso(R2)
3-5
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can be absorbed as constant shiftss→s1const, and only
one essential parameter remains. Performing a transla
with h5 iB we obtain a new solution§ with

~11aw!5A~11as0!21B2, ~42!

s5
1

a
arcsinF B

A~11as0!21B2G . ~43!

So we have the following proposition.
Proposition. Let(gmn ,s0) be a solution to the EMCSF

equations with a cosmological termL. Then (g̃mn ,F,s)
form a solution to the equations of theA(w)511aw theory
with a MCSF and a cosmological potential U(F)52LF2 if
s is given by Eq. (43) and

F21~s0!5~11as0!21B2, ~44!

g̃mn5F21~s0!gmn . ~45!

In the case of a stiff perfect fluid we obtain

r̃5B2F3~s0!r0 . ~46!

E. Other theories

When the metric~9! has nontrivial isometries we can us
them to generate new solutions from known ones. In
general case, however, the metric~9! has only trivial sym-
metry s→s1const. That is why the solution generatin
procedure considered above fails. Nevertheless, when
dilaton-matter sector does not possess nontrivial symme
we can still generate scalar-tensor solutions starting with
lutions to the EMCSF equations. For this purpose we c
sider the geodesics of the metric~9!. It is not difficult to see
that if „w(t),s(t)… is an affinely parametrized geodesic a
(gmn ,s0) is a solution to the EMCSF equations with a co
mological termL, then„gmn ,w(t)ut5s0

,s(t)ut5s0
… is a so-

lution to the scalar-tensor MCSF equations with a cosm
logical termL.

In this way we obtain the following proposition.
Proposition. Let„w(t),s(t)… be an affinely parametrized

geodesic of the metric (9) and(gmn ,s0) a solution to the
EMCSF equations with a cosmological termL. Then

(g̃mn ,F,s) form a solution to the scalar-tensor equation
with a MCSF and a cosmological potential U(F)
52LF2(F) where

s5s~t!ut5s0
, ~47!

F21
„F~s0!…5A 2

„w~t!…ut5s0
, ~48!

g̃mn5F21
„F~s0!…gmn . ~49!

The geodesic equations for the metric~9! can be formally
solved and we obtain
08402
on
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E dw

A12C2/A 2~w!
5C16t,

s5C21CE dt

A 2
„w~t!…

~50!

whereC, C1, andC2 are constants. The constantsC1 andC2
are unimportant and we shall omit them.

As a concrete example we consider the theory w
F(F)5F and Z(F)5 1

2 (F223F13)/F(F21) corre-
sponding toA 2(w)51/(11w2). Solving the geodesic equa
tions for the metricdl25dw21ds2/(11w2) we obtain

w5
1

C
A12C2sin~Cs0!, ~51!

s5
11C2

2C
s02

12C2

4C2 sin~2Cs0!

~52!

where 0,C2,1.
Therefore, if (gmn ,s0) is a solution to the EMCSF equa

tions with a cosmological termL, then (g̃mn ,F,s) is a so-
lution to the equations ofA 2(w)51/(11w2) theory with a
MCSF and a cosmological potentialU(F)52LF2 wheres
is given by Eq.~52! and

F~s0!511
12C2

C2 sin2~Cs0!,

g̃mn5F21~s0!gmn . ~53!

In the case of a stiff perfect fluid this solution correspon
to the energy density

r̃5C2F3~s0!r0 . ~54!

III. EXAMPLES OF EXACT SOLUTIONS

As an illustration of the general techniques we consi
some particular examples of exact solutions. Here we seL
50.

A. Homogeneous cosmological solutions

Our first examples are homogeneous isotropic cosmol
cal solutions with an irrotational stiff perfect fluid. Consid
the metric

ds0
252dt21t2/3~dx21dy21dz2!. ~55!

This is a flat Friedmann-Robertson-Walker metric for a s
perfect fluid. The fluid energy density is 8pG* r051/3t2 and
the four-velocity isum52]mt. The fluid velocity potential is
s052(1/A3)ln(t).

Since our seed solution is fixed the generated soluti
will be completely determined only by the explicit form o
3-6
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F(s0). That is why, for brevity, we shall present only th
explicit form of F(s0) and the energy density.

1. Barker’s theory

Using the solution generating procedure for Barke
theory we obtain

F21~ t !512sin2~b!cos2S 1

A3
ln~ t !D ,

8pG* r̃5
cos2~b!

3t2 F3~ t !. ~56!

2. Brans-Dicke theory

In the case of Brans-Dicke theory the transformations~31!
yield the following solution:

F21/2~ t !5C2ta/A31D2t2a/A3,

r̃5
4C2D2

3t2 F3~ t !. ~57!

3. A 2
„w…Ä1Õ„1¿w2

… theory

The solution generating formulas~53! and ~54! give

F~ t !511
12C2

C2 sin2S C

A3
ln~ t !D ,

8pG* r̃5
C2

3t2 F3~ t !. ~58!

The solution~57! ~presented in coordinates different fro
those used here! was derived by Gurevichet al. @48# and by
Mimoso and Wands@14# using a completely differen
method. Although the solutions~56! and ~58! can also be
derived by the methods developed in Refs.@13,14#, they
have not been presented so far in an explicit form. It is wo
noting that the methods used here to derive the homogen
cosmological solutions are much more elegant and powe
than the methods developed in the previous work on
subject.

B. Inhomogeneous cosmological solutions

Our next examples are much more interesting. We pre
new inhomogeneous stiff perfect fluid cosmological so
tions with everywhere regular curvature invariants. T
gravitational scalar and the energy density are everywh
regular, too.

We consider the following solution to the Einstein equ
tions with an irrotational stiff perfect fluid@46,47#:

ds0
25cosh2(12b)~2mt!cosh4b(2b21)~mr!~2dt21dr2!

1cosh2(12b)~2mt!sinh2~mr!cosh2(122b)~mr!df2

1cosh2b~2mt!cosh4b~mr!dz2,
08402
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s0~ t !5Ab221arctan@sinh~2mt!#. ~59!

The energy density and the four-velocity are given by

8pG* r054m2~b221!cosh22(22b)~2mt!

3cosh24b(2b21)~mr!, ~60!

um
(0)5cosh12b~2mt!cosh2b(2b21)~mr!dm

0 .
~61!

Here,m andb (b2.1) are free parameters.
The solution is everywhere regular and satisfies the glo

hyperbolicity condition. The curvature invariants are regu
for the whole space-time. In addition, the space-time
scribed by this solution admits two commuting spacel
Killing vectors ]/]z and ]/]f which are mutually and hy-
persurface orthogonal.

1. Barker’s theory

Using as a seed solution Eq.~59! and applying the solu-
tion generating formulas~22! we obtain the following Barker
theory three-parametric solution:

F21~ t !512sin2~b!cos2$Ab221arctan@sinh~2mt!#%,

r̃5cos2~b!F3~ t !r0 . ~62!

When cos(b)50 the solution becomes a vacuum scal
tensor solution. That is why we shall focus our attention
the more interesting case cos(b)Þ0. In this case the gravita
tional scalar and energy density are everywhere regula
space-time. Moreover, we have calculated the curvature
variants

Ĩ 15C̃mnabC̃mnab, Ĩ 25R̃mnR̃mn, Ĩ 35R̃2

with respect to the metricg̃mn5F21(s0)gmn and found that
they are everywhere regular. In this sense the solution~62! is
nonsingular in the case cos(b)Þ0.

2. Brans-Dicke theory

In the case of Brans-Dicke theory, the solution generat
formulas~31! give

F21/2~ t !5cos2~b/2!exp$aAb221arctan@sinh~2mt!#%

1sin2~b/2!exp$2aAb221arctan@sinh~2mt!#%,

r̃5sin2~b!F3~ t !r0 . ~63!

In the solution~63! we have restricted ourselves to the su
group SO(2),SL(2,R).

The gravitational scalar and the energy density are ev
where regular in space-time. The curvature invariantsĨ 1 , Ĩ 2,
and Ĩ 3 are also everywhere regular. In this sense the spa
time described by the solution~63! is nonsingular.
3-7
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3. A 2
„w…Ä1Õ„1¿w2

… theory

The solution generating formulas~53! and~54! applied to
the seed solution~59! yield the following solution:

F~ t !511
12C2

C2 sin2$CAb221arctan@sinh~2mt!#%,

r̃5C2F3~ t !r0 .

The solution~64! is nonsingular. The gravitational scalar an
the energy density and the curvature invariantsĨ 1 , Ĩ 2 , Ĩ 3 are
regular everywhere.

Clearly the solution generating techniques developed
the present paper allow us to construct inhomogeneous
mological solutions with everywhere regular curvature
variants in many other scalar-tensor theories different fr
those considered above.

C. Static spherically symmetric solutions

Finally we present examples of new static, spherica
symmetric solutions.

As a seed solution we take the Janis-Newman-Winic
solution @49# to the EMCSF equations:

ds0
252 f 0

2ldt21 f 0
22ldr21 f 0

2(12l)r 2~du21sin2udf2!,

s05A12l2 ln~ f 0! ~64!

where f 0
25122M /r and 0<l<1.

When we have asymptotically flat seed backgrounds
natural to consider the solution generating transformati
preserving the asymptotic flatness of the field configurati
It is not difficult to see that the subgroup consisting of m
trices of the form

U5DS p

2 DO~b!D 21S p

2 D
@i.e., isomorphic to SO(2),SU(2)# preserves the asympto
ics in the case of Barker’s theory. In the case of Brans-Di
theory, the subgroup preserving the asymptotics
SO(2),SL(2,R) consisting of the matricesO(b).

1. Barker’s theory

The solution generating transformations that preserve
asymptotics yield the following solution:

F21~ f 0!512sin2~b!sin2@A12l2ln~ f 0!#,

s5arcsinF cos~b!sin@A12l2ln~ f 0!#

A12sin2~b!sin2@A12l2ln~ f 0!#
G . ~65!

2. Brans-Dicke theory

The scalar-tensor image of Eq.~64! in the case of Brans
Dicke theory is
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F21/2~ f 0!5cos2~b/2! f 0
aA12l2

1sin2~b/2! f 0
2aA12l2

,

s5
1

2a
sin~b!

3
f 0

aA12l2
2 f 0

2aA12l2

cos2~b/2! f 0
aA12l2

1sin2~b/2! f 0
2aA12l2

.

~66!

3. A 2
„w…Ä1Õ„1¿w2

… theory

The solution generating transformations for the case
der consideration yield the solution

F511
12C2

C2 sin2@CA12l2ln~ f 0!#,

s5
11C2

2C
A12l2ln~ f 0!

2
12C2

4C2 sin@2CA12l2ln~ f 0!#. ~67!

We recall that the Jordan frame metric in the above th
examples is given byg̃mn5F21( f 0)gmn where the explicit
form of F( f 0) depends on the particular scalar-tensor theo

In this section we have constructed different kinds of e
act scalar-tensor solutions in the presence of a stiff per
fluid or a minimally coupled scalar field. Using the solutio
generating methods developed in the present work we ca
course, generate many more and much more complic
scalar-tensor solutions taking as seed solutions the kn
solutions of the EMCSF equations~for example, see@30–
35#!. The physical properties of every generated class
scalar-tensor solutions, however, require a separate inv
gation.

IV. CONCLUSION

In this paper we have presented a general method
generating exact solutions in some scalar-tensor theorie
gravity with a MCSF or irrotational stiff perfect fluid an
with a potential term of a special kind for the gravitation
scalar. The method is based on the symmetries of the dila
matter sector in the Einstein frame. In the case of Barke
theory the dilaton-matter sector possess a group of symm
SU~2!. In the case of Brans-Dicke theory and the theory w
‘‘conformal coupling’’ the dilaton-matter sector is SL~2,R!
symmetric.

We have described an explicit algorithm for generati
exact scalar-tensor solutions starting from solutions to
EMCSF equations with a cosmological term by employi
the nonlinear action of the symmetry group of the dilato
matter sector.

We have also presented a general method for genera
scalar-tensor solutions with a MCSF from solutions
EMCSF equations using the geodesics of the Riemann
metric ~9! in the general case, when the metric~9! does not
3-8
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possess nontrivial symmetries.
As an illustration of the solution generating techniqu

explicit exact solutions have also been constructed. In
ticular, we have constructed inhomogeneous cosmolog
solutions with everywhere regular curvature invariants.

The solution generating method can be generalized
scalar-tensor Maxwell gravity. Taking into account that t
Maxwell action~in four dimensions! is conformally invariant
we can immediately write the scalar-tensor MCSF Maxw
action in the Einstein frame

S5
1

16pG*
E d4x@R22gmn]mw]nw22A2~w!gmn]ms]ns

2FmnFmn2L#.
s

v.

08402
s
r-
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As is seen the dilaton-scalar field sector possesses
same symmetries~when they exist! as in the case of the
absence of the Maxwell field, and they can be employed
generate new solutions with electromagnetic field fro
known ones. In the general case when the metric associ
with the dilaton MCSF sector may not possess nontriv
symmetries we can construct exact scalar-tensor solution
the presence of the electromagnetic field using the geode
of the dilaton-scalar field sector metric.
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