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Critical gravitational collapse of a perfect fluid: Nonspherical perturbations
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Continuously self-similar~CSS! solutions for the gravitational collapse of a spherically symmetric perfect
fluid, with the equation of statep5kr, with 0,k,1 a constant, are constructed numerically and their linear
perturbations, both spherical and nonspherical, are investigated. Thel 51 axial perturbations admit an analyti-
cal treatment. All others are studied numerically. For intermediate equations of state, with 1/9,k&0.49, the
CSS solution has one spherical growing mode, but no nonspherical growing modes. That suggests that it is a
critical solution even in~slightly! nonspherical collapse. For this range ofk we predict the critical exponent for
the black hole angular momentum to be 5(113k)/3(11k) times the critical exponent for the black hole mass.
For k51/3 this gives an angular momentum critical exponent ofm.0.898, correcting a previous result. For
stiff equations of state, 0.49&k,1, the CSS solution has one spherical and several nonspherical growing
modes. For soft equations of state, 0,k,1/9, the CSS solution has 113 growing modes: a spherical one, and
an l 51 axial mode~with m521,0,1).

DOI: 10.1103/PhysRevD.65.084021 PACS number~s!: 04.40.Nr, 04.25.Dm, 04.70.Bw, 05.70.Jk
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I. INTRODUCTION

An isolated system in general relativity ends up in one
three stable final states: a black hole, a star, or comp
dispersion. The phase space of isolated systems in ge
relativity is therefore divided into basins of attraction: ea
initial data set must end up in one of the stable end sta
The study of the boundaries between the basins of attrac
in particular of the boundary between the black hole a
dispersion end states, began with the pioneering work
Choptuik @1#, and is now an active field in classical gene
relativity.

Initial data near the black hole or dispersion thresh
evolve through a universal intermediate state before disp
ing or forming a black hole. This intermediate attractor h
higher symmetry, as a spacetime, than the generic solu
Often it is self-similar. Close to the threshold, but on t
collapse side, the mass of the final black hole then scale
a universal power of the distance of the initial data to
black hole threshold. Universality, self-similarity and th
critical exponent for the black hole mass have given rise
the name~type II! ‘‘critical phenomena in gravitational col
lapse.’’ For a review see@2#.

Critical phenomena of this type are explained by the
istence of a solution that is self-similar, regular, and has
actly one growing perturbation mode, such that for one s
of the growing mode the solution veers towards black h
formation, and for the other towards collapse. Such a s
tion is called a~type II! critical solution. From a dynamica
systems point of view, a critical solution is an attract
within the black hole threshold, which is a hypersurface
codimension one. Within the complete phase space, i
therefore an attractor of codimension one. All solutions t
start near the black hole threshold, but not necessarily n
the critical solution itself, are funneled through this interm
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diate attractor. This funneling process explains both univ
sality and the self-similar nature of the intermediate attrac
explains scaling. The critical exponent in the power-law sc
ing of the black hole mass can be shown to be the invers
the Lyapunov exponent of the critical solution’s one growi
perturbation mode@3#.

Here we concentrate on one class of matter mod
coupled to general relativity, perfect fluids with the line
baryotropic equation of statep5kr, wherep is the pressure,
r is the total energy density measured in the rest frame,
k is a constant in the range 0,k,1. The spherically sym-
metric fluid withk51/3, corresponding to an ultrarelativisti
gas, was one of the first systems in which critical phenom
were found @4#. These results were later extended to t
range 0,k,1 @5–7#. We now ask what happens when w
allow small deviations from spherical symmetry.

For a sample of values ofk in the range 0,k,1, we
construct a regular, continuously self-similar~CSS!, and
spherically symmetric solution, and then investigate its lin
perturbations to see how many growing perturbation mo
it has. It is already known, from both perturbative@5,6# and
non-perturbative@7# calculations that these solutions ha
exactly one growing mode among their spherically symm
ric perturbations, which makes them critical solutions
spherical symmetry. Here we examine their nonspherical
turbations. In a previous Rapid Communication@8# we ex-
amined the particular casek51/3. Here we generalize thi
investigation to all values ofk in the range 0,k,1. We
also describe our numerical methods and results in m
more detail. Finally, we correct two incorrect assumptions
@8#, namely that thel 51 axial perturbations obey the sam
type of equation as thel>2 ones, and that thel 51 polar
perturbations are pure gauge. As it happens, correcting t
errors does not affect the overall conclusion of Ref.@8#,
namely that the critical solution fork51/3 has no growing
nonspherical perturbation modes.

As the background is spherically symmetric, the pertur
tions can be separated into spherical harmonics labeledl
©2002 The American Physical Society21-1
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CARSTEN GUNDLACH PHYSICAL REVIEW D65 084021
andm, and can be split further into axial and polar parts. T
perturbation equations we use are those derived in@9#, re-
stricted here to a CSS background and the particular equa
of statep5kr. Surprisingly, the nonspherical perturbatio
equations are much harder to solve numerically than in
equivalent problem for the massless scalar field@10#. One
difficulty is that we are dealing with a one-parameter fam
of background solutions, whose limitsk50 and k51 are
not regular members of the family. The other difficulty is th
in the l>2 perturbations both light cones and sound co
play a dynamical role, while they coincide for the sca
field. This gives rise to weak solutions~in the sense of hy-
perbolic equations! that we need to discard. Because of the
problems, our final choice of numerical approach is to d
cretize the perturbation evolution equations in space but
in time. We then look directly for eigenvectors and eigenv
ues~modes! of the finite difference equations.

The plan of the paper is this: in Sec. II we discuss
general perturbation framework of Ref.@9#, and the CSS
background solutions. Section III discusses thel 51 axial
perturbations. Their spectrum can be calculated in clo
form. Based on this, we correct the value of the angu
momentum critical exponent stated in Ref.@11#. All other
perturbations require a numerical treatment and are discu
in Sec. IV. Details of the numerical difficulties and numeric
methods, however, are given in the Appendixes. Sectio
summarizes our results.

II. BACKGROUND SOLUTION

A. Perturbations of a spherically symmetric perfect fluid

We shall examine the linear perturbations of a spheric
symmetric and continuously self-similar~CSS! perfect fluid
spacetime. For this purpose we use the restriction to a C
background of a general framework for the perturbations
time-dependent spherically symmetric perfect fluid solutio
that was presented in@9#. In this formalism, the spacetim
manifold is written as the productM5M23S2, whereS2 is
the 2-sphere andM2 is a 2-dimensional manifold, the ‘
rt -plane,’’ with a boundaryr 50. The coordinates inM2 are
denoted byxA, and the coordinates inS2 by xa. Coordinates
in all of M are collectively denoted byxm. The general
spherically symmetric metric becomes, in this notation,

gmn[diag~gAB ,r 2gab!, ~1!

where r 2 is a scalar function onM2, and gab is the unit
metric onS2. The spherically symmetric perfect fluid stres
energy tensor can be written in the same notation as

Tmn[diag~r uAuB1p nAnB ,p r2gab!, ~2!

wherer andp are the~total! energy density and pressure
the fluid rest frame,um5(uA,0) is the fluid 4-velocity, and
nA is the outward pointing unit vector normal touA in M2.
The field equations in this framework are covariant inM2.
The two extra dimensions inS2 appear through the scalarr.

The perturbations of a spherically symmetric backgrou
decompose naturally into polar and axial parity, and in
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spherical harmonic angular dependencies, for differentl and
m. The equations of motions are the same for all values
2 l<m< l , for given l>0. The casesl 50, l 51 ~polar and
axial!, and l>2 ~polar and axial! are all qualitatively differ-
ent and need to be treated separately. Tensors inM, including
the perturbations, are written as products of tensors inM2

with tensors inS2. All necessary tensors inS2 are built from
the scalar spherical harmonicsYlm on S2, their covariant
~with respect togab) derivatives, and the covariantly con
stant antisymmetric tensoreab . The final equations for the
perturbations are again covariant equations for tensors
M2. Their angular dependence comes in through terms s
as l /r and l ( l 11)/r 2.

In the next step, linear combinations of the perturbatio
are found that do not change to linear order under infinite
mal coordinate transformations, in eitherM2 or S2. The per-
turbation equations can be rewritten in terms of these gau
invariant perturbations alone.

In a further step, all perturbation tensors inM2 are split
into frame components with respect to the orthonorm
frame (uA,nA). This ‘‘scalarization’’ replaces covariant de
rivatives of tensors with partial derivatives of scalars. The
derivatives are also decomposed into their frame compon
ḟ [uAf ,A and f 8[nAf ,A . The perturbation equations are no
scalar equations written without reference to a particular
ordinate system. In this sense they are covariant, as we
linearly gauge-invariant. Note that the frame derivatives
not partial derivatives, and do not commute. The advant
of using these derivatives is thatḟ 6csf 8 are derivatives
along radial matter characteristics, andḟ 6 f 8 derivatives
along the radial light rays. On the other hand, so
constraint-type perturbation equations forl 50 andl 51 are
most naturally written using the derivativeD[r ] f /]r along
polar slices.

In a final step, we rescale the perturbation variables
l-dependent powers ofr so that they are eitherO(1) at the
origin and even functions ofr, or elseO(r ) and odd. The
equations are brought into first-order form by treating fi
derivatives such asḟ and f 8 as independent variables whe
necessary.

In the remainder of this section, we introduce coordina
that are adapted to a CSS background, and review how
background solution is defined, and constructed numerica

B. Continuously self-similar background solution

Although our perturbation variables are linearly gaug
invariant, we have to choose a coordinate system on
background. A standard choice of coordinatesxA is to user
as a coordinate~radial gauge!, and make the second coord
nate t orthogonal to it~polar slicing!. Then gAB takes the
form

gtt52a2, grr 5a2, grt50, ~3!

with a and a functions of r and t. Radial light rays are
governed by the combinationg[a/a. There is a remaining
gauge freedomt→t8(t), and we fix it by settinga51 at r
50 for all t.
1-2
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CRITICAL GRAVITATIONAL COLLAPSE OF A . . . PHYSICAL REVIEW D65 084021
Based on radial-polar coordinates, we now introduce
ordinates that are adapted to self-similarity, while retain
polar slicing. We define new coordinatesx andt by

r[sxe2t, t[2e2t, ~4!

with s.0 a constant. We have assumed thatt,0, and have
chosen signs so thatt increases ast increases. Note thatt
→` as t→02 . Partial derivatives transform as

f ,t5et~ f ,t1x f ,x!, f ,r5s21et f ,x . ~5!

The metricgAB in these coordinates becomes

gtt5e22t~2a21s2x2a2!, gxx5e22ts2a2,

gtx52e22ts2xa2. ~6!

The spacetime is continuously self-similar~with homothetic
vector2]/]t) if and only if a anda depend only onx but
not on t. t has two different interpretations. On the on
hand, it is a time coordinate in the sense that its level s
faces are spacelike. But2t is also the logarithm of space
time scale, in the sense that proper distances are proport
to intervalsDx andDt times a factor ofe2t. In a self-similar
spacetime, largert therefore means structure on a smal
scale. The pointr 50, t50, or t5`, is by construction a
curvature singularity, unless the spacetime is flat.

In the solutions we consider here the matter is a per
fluid with densityr and pressurep5kr, with k a constant.
This equation of state is the only one compatible with ex
self-similarity. We impose CSS in the metric by making t
ansatza5a(x) and a5a(x). Imposing self-similarity on
the spacetime, we find from the Einstein equations t
4pr5e2tr̄(x) and V[uAr ,A /nBr ,B5V(x). Here nA[
2eA

BuB is the outward-pointing unit spacelike vector no
mal to uA. The constants that was introduced above is no
chosen so that the surfacex51 is a matter characteristic. It i
then the past sound cone of the singularity.

The background solution that we want to use is co
pletely defined by the assumptions of~i! continuous self-
similarity, ~ii ! spherical symmetry,~iii ! analyticity at the cen-
ter x50, and~iv! analyticity at the past sound conex51.
The background equations resulting from the CSS ansatz
given in Appendix A. The CSS ansatz reduces the two E
stein equations and two matter equations that are neede
spherical symmetry to one algebraic equation fora and three
ordinary differential equations inx for r, V andg[a/a.

There are two boundary conditions for a CSS solution
x50. The gauge conditiona(0)51 becomesg(0)51.
From regularity of the matter velocity, CSS, and matter c
servation one can derive that

lim
x→0

V

sgx
52

2

3~11k!
. ~7!

Imposing this is the regularity condition~iii ! at the center.
Note that this limit would also hold for a CSS fluid in a fl
spacetime.
08402
-
g

r-

nal

r

ct

t

t

-

re
-
in

t

-

One boundary condition atx51 is the gauge condition
D(1)50, which makesx51 the sound cone. This conditio
determines the value of the constants. The regularity condi-
tion ~iv! at the sound cone is

AkS1~1!5S2~1!, ~8!

which is the vanishing of the term in the equations that
divided byD ~see Appendix A!.

Once we have solved the boundary value problem in
<x<1, we can analytically continue the solution throughx
51 ~which is a regular singular point of the equations! and
then continue the solution by evolving the ODEs to largerx.
~In numerical terms, analytic continuation is implemented
polynomial extrapolation.! We go to the light cone and a
little beyond. The light cone is at a value ofx that depends on
k. The ODEs are regular there.

Our numerical method for imposing analyticity atx51
andx50 is to just impose the algebraic boundary conditio
there, and to use centered differences everywhere else, w
out using an explicit power-law expansion about the singu
points. The first~numerical! derivative of the fluid density
and velocity profiles obtained with this method has a sm
discontinuity atx51 that first appears atk.0.7 and in-
creases withk. Results fork*0.7 therefore have a source o
numerical error over and above the one arising in the
merical evolution of the perturbations.

III. AXIAL lÄ1 PERTURBATIONS—ANALYTICAL
TREATMENT

A. Equation of motion

In this section we discuss the axiall 51 perturbations of
the continuously self-similar perfect fluid critical solution
This leads us, from general arguments given in@11#, to a
prediction for the scaling of black hole angular momentum
critical collapse. Note that this section differs from the rest
the paper in presenting purely analytical results.

The axial l 51 perturbations contain a single matter d
gree of freedom, and no gravitational waves. The gau
invariant fluid velocity perturbation,b, obeys the autono-
mous equation of motion

~br 2ruA! uA50. ~9!

This is just a transport equation along the background fl
flow. All axial metric perturbations are encoded in a gaug
invariant scalarP. For l 51, P is obtained fromb by
quadrature, and Eq.~9! describes the dynamics completel
For l>2, P obeys a wave equation with a source term p
portional tob. ~In @11#, it was incorrectly assumed that th
is true also forl 51.!

As we shall see now, the complete mode spectrum ob
can be obtained analytically for alll. For l 51, we then have
the complete dynamics. Forl>2, the spectrum ofb is also
known analytically, but that of the homogeneousP modes
must be calculated numerically. Here we obtain the mode
b for generall>1, and restrict tol 51 at the end.
1-3
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CARSTEN GUNDLACH PHYSICAL REVIEW D65 084021
The perturbed fluid velocity is regular atr 50 if b is
O(r l 11) there. We therefore define a rescaled variableb̄
5r 2( l 11)b that is even inx and generically nonzero atx
50. The perturbed stress-energy tensor remains self-sim
if b depends ont as e2t at constantx ~for any l ). We

therefore define a rescaled variableb° 5e2 l tb̄
5et(sx)2( l 11)b. This final variable obeys the equation

b° ,t1S x1
V

sgDb° ,x1H 211
k

11kF21S x1
V

sgD ~ lnr̄ ! ,xG
1~ l 11!S 11

V

gsxD J b° 50. ~10!

This is of the form

b° ,t1xA~x!b° ,x1B~x!b° 50, ~11!

whereA andB are regular, even, strictly positive functions
x, so that A(x)5A01A2x21O(x4), and similarly B(x)

5B01B2x21O(x4). We look for solutionsb° that are regu-
lar even functions ofx.

B. Analytic calculation of the mode spectrum

Using the method of characteristics, the general solu
of Eq. ~11! can be written as

b° ~x,t!5e2B0t expS 2E
0

xB~x!2B0

xA~x!
dxD

3FFx expS 2E
0

xA~x!2A0

xA~x!
dx2A0t D G , ~12!

whereF(z) is a free function that is determined by the initi
data. Note that the two definite integrals exist and areO(x2).

For regular, even initial data, withb° (x,0)5F01O(x2), we
haveF(z)5F01O(z2).

We can now read off that the late-time behavior of t

solutionb° (x,t) ast→` is

b° ~x,t!5e2B0t@F01O~x2!1O~e22A0t!# ~13!

ast→`. For generic regular initial data,F0 does not vanish,
and the solution decays ase2B0t at late times. One migh
have expected that the growth exponent depends on de
of the background, but in fact it depends only on the ba
ground at the center. The physical reason for this is that
transport equation transmits information only from the cen
outwards. For example, we can see from Eq.~12! that the

solution b° for initial data that vanish in a neighborhood
x50 is strictly zero at any fixedx at sufficiently larget.

Surprisingly again, we can evaluateB0 in closed form,
even though the background solution away from the cente
known only numerically. From matter conservation and
assumption of continuous self-similarity we have the re
08402
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larity condition~7!. When we also take into account thatr̄ is
an even function ofx and thatv is an odd function, we find
from Eq. ~10! that

l52B05
2~123k!2~113k!l

3~11k!
. ~14!

This analytic result is in perfect agreement with the late ti
behavior of numerical evolutions of generic initial data f

b° .
We now show that the mode spectrum is discrete. To lo

for modes, we make the ansatz

b° ~x,t!5elt f ~x! ~15!

and obtain

x
d f

dx
52

l1B

A
f . ~16!

By expanding this equation in powers ofx aroundx50 and
comparing coefficients, we see that iff (0)Þ0, andf is to be
a regular even function ofx, we must havel52B0. This is
precisely the mode that dominates the late-time beha
~13!, and we may call itf 0(x). One obtains it as a powe
series in a neighborhood ofx50, and then by solution of the
ODE ~16!. We normalizef 0 by setting f 0(0)51. We now

subtract a suitable multiple of this mode from the solutionb°

to obtain something that isO(x2) at x50:

b° (2)~x,t![b° ~x,t!2F0e2B0t f 0~x! ~17!

where b° (x,0)5F01O(x2) as before. By construction

b° (2)(x,0)5O(x2). Expanding Eq.~12! to the next order, we
have

b° (2)~x,t!5e2(B012A0)t@F21O~x2!1O~e22A0t!#x2.
~18!

We then obtain a modef 2(x) by solving Eq.~16! with l5
2(B012A0). We normalize it asf 2(x)5x21O(x4). Con-
tinuing in this way, we can strip off a sequence of mod
decaying withl52(B012nA0) for n50,1,2, . . . . These
modes areO(x2n) at the origin, and so form a complete bas

for smooth functionsb° . Therefore the entire spectrum is di
crete.

From Eq.~10!, using again Eq.~7!, we find

A05
113k

3~11k!
. ~19!

We can now write down the complete spectrum for all valu
of k and l, labeled by the indexn50,1,2, . . . . It is

l~k,l ,n!52B0~k,l !22nA0~k!

5
2~123k!2~113k!~ l 12n!

3~11k!
. ~20!
1-4
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CRITICAL GRAVITATIONAL COLLAPSE OF A . . . PHYSICAL REVIEW D65 084021
From this formula we can read off that alll>2 modes decay
for all k in the range 0,k,1. All l 51 modes also deca
for k.1/9, but for k,1/9 there is exactly one growingl
51 mode ~the n50 mode!. l for the dominant (n50) l
51 mode is relevant for angular momentum scaling. It is

l15
129k

3~11k!
. ~21!

The dominant (n50) mode is plotted forl 51 . . . 5 inFig.
1.

C. Angular momentum scaling

In @11# we derived a general formula for the critical e
ponentm governing black hole angular momentum in critic
collapse, namely

m5
22l1

l0
5~22l1!g. ~22!

@This formula corrects a misprint in Eq.~11! of Ref. @11#.#
Here l0 is the Lyapunov exponent for the spherical mod
which is real and positive, andl1[l(k,1,0) is the
Lyapunov exponent for thel 51 axial perturbations, which
are real.g51/l0 is the critical exponent for the black hol
mass. The derivation of this formula assumes that the crit
solution has precisely one growing perturbation mode, wh
is spherically symmetric, while all nonspherical perturbati
modes decay. The analytical result in this section and
numerical results in the following sections show that t
assumption holds in the range 1/9,k&0.49.

For this range of equations of state, putting the res
~21! and ~22! together, we obtain the analytical prediction

FIG. 1. Theb° equation describes axial fluid velocity perturb
tions. The plot shows the growth exponentl, which is real, against
k. We plot l(k,l ,n) given in Eq.~20!. The thick line is forl 51

and n50, whereb° is the only perturbation.~It is positive for k
,1/9.! Below, from top to bottoml 52 . . . 5, for theleading mode,
with n50.
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1

9
,k&0.49, ~23!

for the angular momentum exponentm, given the mass ex-
ponentg.

This result corrects the value ofm given in @11# for the
casek51/3, based on an incorrect value ofl1. The correct
valuel1521/2 for k51/3 gives a real critical exponentm
55g/2.0.898 for the black hole angular momentum. No
that the incorrect value given in@11# was complex, which
was expected to give rise to oscillations in the direction
the black hole angular momentum as the black hole thresh
is approached. However, the correct value ofl1 is real, and
so the angular momentum scaling is a power law, like
mass scaling.

IV. ALL OTHER PERTURBATIONS—NUMERICAL
TREATMENT

A. General aspects of the perturbation equations

Before we discuss the perturbation equations of motion
detail, it is useful to discuss the general form of the pert
bations of a spherically symmetric and CSS solution. As
have seen, we can choose dependent and independent
ables for the background so that the background is given
a number of functionsZ(x,t)5Z* (x) of a single self-
similarity variablex. It follows that the equations of motion
of the linear perturbations of this background, when writt
in first-order form in suitable variables, are of the gene
form

u,t5A~x!u,x1B~x!u, ~24!

u,x5C~x!u. ~25!

Here u(x,t) is a vector of perturbations, andA, B, C are
matrices that depend on the background. We shall call
coupled partial differential equations that conta
t-derivatives evolution equations, and the coupled ordin
differential equations inx constraints. Not all variablesu
need obey both types of equation—some variablesu obey
only an evolution equation, others only a constraint equat
and yet others both. For most of the perturbations, we s
be able to use a free evolution scheme in which the o
constraints are trivial ones of the formu1,x5u2 introduced
by writing a wave equation in first-order form. For th
spherical perturbations and the polarl 51 perturbations,
however, it is unavoidable to solve nontrivial constra
equations.

The perturbation equations~24!,~25! admit solutions of
the form

u~x,t!5eltul~x!. ~26!

Both l and ul(x) are in general complex, but because t
coefficientsA, B andC are real, the solutions form comple
conjugate pairs. Withl[L6 iv, the general real solution is
1-5
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CARSTEN GUNDLACH PHYSICAL REVIEW D65 084021
Re@Ceidu~x,t!#5CeLt@cos~vt1d!Reul~x!

2sin~vt1d!Im ul~x!#. ~27!

If the general solution can be written as a sum over s
modes is a subtle question, but here we ask mainly if th
are any growing modes withL.0. Furthermore, if we dis-
cretizeu(x,t) on a finite grid inx ~but not int), the general
solution of the discretized field equations is then clea
given by the sum over a finite number of modes, each
which is exactly exponential int.

In defining the variablesu that we evolve numerically, we
begin from all the variables with an overbar defined in@9#,
and their dot and dash derivatives where necessary. O
self-similar background, it is useful to further rescale the
variables by powers ofet so that the background plus pe
turbations is still self-similar if and only if the rescaled va
ables are independent oft. If this is done, the resulting equa
tions do not contain explicit powers ofet. The spacetime
perturbations grow in a physical sense towards the singu
ity if and only if the variablesu grow with t. Rescaled barred
variables will be denoted by a circle, their rescaled dot
rivatives by a tilde, and their rescaled prime derivatives b
hat.

In the following, we shall use ‘‘degree of freedom’’ t
denote a variable that can be freely specified as a functio
a radius at the initial moment of time. In this count, a wa
equation has two degrees of freedom, for each valuel andm.
In the l>2 perturbations there are eight physical degrees
freedom, corresponding to wave equations for the two po
izations of gravitational waves, the three components of
Euler equation, and the continuity equation. On a spheric
symmetric background, these generic eight degrees of f
dom split into three axial and five polar degrees of freedo
The number of first-order variables is larger~four and seven,
respectively! because in the first-order form of a wave equ
tion for a variablef, f itself andf ,x are separate variable
that are linked by a~trivial! constraint equation.

B. Numerical methods

In investigating the non-spherical perturbations nume
cally, we have to treat each value ofk and l separately.~The
equations do not depend onm.! In practice, we work with a
finite sample of values ofk in the range 0,k,1, and with
l<5. With increasingl, numerical difficulties at the center o
spherical symmetry become more pronounced, limiting
range ofl we can investigate. Fortunately the rangel<5 is
sufficient to see a trend, as we shall demonstrate in plot

We are looking for mode solutions of the form~26!, and
in particular for the dominant mode, the one with the low
value of L[Rel. This objective allows a number of ver
different numerical approaches. Three different ones com
mind, and we describe them first, and then summarize
experience with the last two of them. More details are giv
in the Appendixes.

~1! Making the ansatz~26!, and imposing suitable regu
larity conditions, one obtains a boundary value problem
an eigenvectorul(x) and eigenvaluel. For the l>2 axial
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perturbations, regularity conditions have to be imposed at
center and at the light cone. For thel 51 polar perturbations
regularity conditions have to be imposed at the center
the soundcone, and for thel>2 polar perturbations regular
ity conditions are required at the center and both the li
cone and the soundcone~which is in the interior of the nu-
merical domain!. Modes can then be found in two ways:

~a! From an initial guess forl andul(x), one can find the
correct values by shooting or relaxation. In practice, the
tial guess has to be quite good, and finding one solution d
not exclude the possibility that there is another solution w
largerL.

~b! For given l, the boundary~and possibly midpoint!
conditions can be solved in terms ofn free parameters. If the
boundary value problem is well-posed, the shooting pro
dure must match upn variables. The mismatch in thesen
variables is a linear function of then free parameters, and i
therefore described by ann3n matrix A that depends ana
lytically on l. If A(l) has a kernel, a solutionul can be
found for this l. One therefore looks for zeros of th
complex-analytic function detA(l). This can be done by
contour integrals@12#.

~2! One can also use the equations to evolve generic
tial datau(x) in t. At late times the solution will be domi-
nated by the dominant mode, and one can read offl from its
time dependence. One can also subtract the dominant m
one after another, in the Gram-Schmidt process, in orde
find subdominant modes. This is known as the Lyapun
method@6#.

~3! In a third approach, the evolution equations are fin
differenced inx but not int. The resulting finite difference-
differential equations can be used in two ways:

~a! With M degrees of freedom onN grid points inx, the
mapT:ui(xj )→ui ,t(xj ) with i 51 . . .M and j 51 . . .N is a
square matrix of size (MN)2. Its eigenvalues with the larges
real parts should be an approximation to the continuum
genvaluesl with largest real part.~The lower eigenvalues
will depend on the discretization scheme and are not
pected to correspond to continuum modes.!

~b! Alternatively, we can use a standard ordinary differe
tial equation~ODE! integration scheme to discretize in tim
Such a numerical method is called ‘‘semi-discrete’’ becau
with sufficiently small step sizeDt it is effectively discrete
only in x. The mapTD :u(0,x)→u(D,x) for a finite interval
D is again an (MN)2 matrix. The few eigenvalues with larg
est modulus should now be approximations to the larges
the numberseDt.

We first implemented the Lyapunov, method~2!. It is the
simplest method for obtaining the dominant mode. T
method worked well for thek51/3 fluid @8#, and also for the
nonspherical perturbations of the scalar field critical solut
@10#. However, in the polar perturbations for some values
k and l, the dominant mode is a numerical artifact~an insta-
bility ! in all finite differencing schemes that we have trie
~The nature of the instabilities will be discussed below!
Then one needs to look for sub-dominant modes of the fi
difference equations in order to find the dominant physi
mode. We have found that the Lyapunov method is
tremely inefficient for finding subdominant modes.
1-6
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CRITICAL GRAVITATIONAL COLLAPSE OF A . . . PHYSICAL REVIEW D65 084021
We then implemented both methods~3a! and ~3b!. In
method ~3b! we used first order, second order and fou
order Runge-Kutta integration~RK1, RK2, RK4!, and an im-
plicit second-order scheme~iterated Crank-Nicholson, o
ICN!. For small enough time steps, the differences betw
these methods are negligible, and we effectively reach
continuum limit in t. Furthermore, in this limit, the mode
and eigenvalues produced by methods~3a! and~3b! agree up
to roundoff error. Therefore, there is no advantage in met
~3b! over ~3a!, but a higher computational cost.

Within method~3!, many ways of finite differencing inx
are possible. We have used four finite differencing schem
in x. The differences between them remain important at
feasible values ofDx. Two of these schemes are upwin
schemes that explicitly use the eigenvalues of the matrixA.
Both are the linearized version of Godunov schemes. G
the scheme used before in@8#, is first-order accurate. GD2 i
a second-order accurate version. The other two schemes
centered differences and are second-order accurate.
uses the obvious centered differences. CD4 uses a w
known trick to deal with terms of the formf ,x1(2l /x)f,
which can give rise to numerical instabilities near the cen
x50. ~The 3 and 4 are just consecutive labels.! All four
schemes are defined in Appendix E.

Some of the numerical instabilities that we see are fam
iar: problems at the center, in particular for highl, and grid
modes in centered differencing. Another kind of instabil
was harder to understand. The continuum equations a
mode solutions~26! in which u,x is discontinuous at a char
acteristic that is also a line of constantx, that is, at the light
cone and/or the sound cone of the singularity. The evolu
equations are hyperbolic, and these solutions are called w
solutions. They are discussed in more detail in Appendix
While they are valid as a generalized type of solution, th
modes would not arise in a collapse situation, and so
need to exclude them. Unfortunately, for certain values ok
and l, they dominate the top smooth physical mode.

The weak modes were not seen in the investigation@10#
of the perturbations of the scalar field critical solution, b
cause there they could be discontinuous only at the l
cone of the singularity, but the numerical domain was tru
cated precisely there. The same can be done for the a
perturbations of the perfect fluid critical solution, becau
there are no axial sound waves. Similarly, the numerical
main can be truncated at the sound cone for the spherica
l 51 polar perturbations because they do not comprise gr
tational waves. Thel>2 polar perturbations, however, con
tain coupled sound and gravitational waves. Therefore
numerical domain cannot be truncated at smallerx than at
the light cone, and this leaves weak modes at the sound c

The finite differencing schemes we use are not desig
to represent weak solutions correctly, but they do of cou
have a counterpart in the modes of the finite difference s
tem. Sometimes the numerical counterpart resembles
continuum mode~in particular in GD1 and GD2!, but some-
times it cannot be distinguished by inspection from a smo
mode~in particular in CD3 and CD4!. The only certain cri-
terium is convergence. This makes it crucial that we ha
more than one finite differencing scheme, so that we
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carry out independent residual evaluations, as well as sim
convergence tests.

We have loosely referred to the numerical artifacts as
stabilities. However, the usual concept of the stability o
numerical method is at most exponential growth of nume
cal solutions. But here we are using semi-discrete meth
~discrete only inx) on a system of linear equations wit
t-independent coefficients. Therefore all solutions, b
physical and artificial, depend exactly exponentially ont.
Exponential growth, or its absence, can therefore not be u
to distinguish between physical and unphysical solutions.
unphysical mode may grow either more or less rapidly tha
physical mode. The only certain way of distinguishing the
is by convergence.~This will also rule out the weak modes
because the numerical methods were not designed to ha
them, and will therefore fail to converge on them.!

We have carried out two kinds of convergence tests. O
test is to check that the discretized eigenvectorsul(xj ) and
corresponding eigenvaluesl converge with increasing reso
lution in x at the expected rate~to first order or second order!
for each scheme, but also that all four schemes converg
the same solution. The other test is independent resid
evaluation. Writing the system of continuum equations f
mally asu,t(x)5Lu(x), whereL is a linear derivative op-
erator, letL1 and L2 be two different finite difference ap
proximations toL, and let (u1 ,l1) and (u2 ,l2) be modes
~eigenvectors and eigenvalues! of L1 and L2. If these are
approximations to a continuum mode, the normsul1u1
2L2u1u and ul2u22L1u2u should converge to zero with in
creasing resolution. Convergence should be to second o
in resolution if both methods are second-order accurate,
to first order in resolution if one or both methods are on
first-order accurate. For the normuu we choose thel 2 norm
divided by the numberN of grid points, which is an approxi-
mation to theL2 norm.

Imposing the constraints~25! poses no numerical diffi-
culty. During evolution, in methods~2! or ~3b!, one has the
choice of either imposing the constraints only on the init
data, from time to time, or at each time step. We find that t
hardly affects the results. Some care has to be taken w
calculating the mapT in the presence of constraints. This
discussed in Appendix G.

C. Spherical perturbations

The spherical perturbations have already been inve
gated by several authors@5–7#, and we use them here as
test of our methods, and also to make sure that we are in
tigating the same background solution as these auth
Gauge-invariant perturbations do not exist forl 50. Equa-
tions of motion for the spherical perturbations are most e
ily obtained by linearizing the field equations in spheric
symmetry in the polar-radial gauge that is also used for
background. The perturbationsd(ln r) and dV obey evolu-
tion equations int andx, while the perturbationsda anddg
obey constraint equations inx only. We do not give the de-
tailed equations here.

We have used all four codes. In GD1, GD2 and CD3
top physical~growing! mode shows up as the top numeric
1-7
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CARSTEN GUNDLACH PHYSICAL REVIEW D65 084021
mode. In CD4 the growing physical mode is also present
must be identified by hand because it is dominated by g
modes.

Figure 2 demonstrates the convergence of GD1, GD2
CD3 with increasing resolution towards a common value
l(k) over the entire range ofk. GD1 converges approxi
mately to first order, and GD2 and CD3 approximately
second order, as expected. The finite differencing erro
approximately 1023 in both second-order schemes atDx
51/320 for intermediate values ofk. It rises towards the
high and the low end of thek range.

Figures 3 and 4 compare ourl(k) at Dx51/320 ~GD1,
GD2 and CD3! with that obtained by Maison@5#. The results
agree quite well for allk. Nevertheless, the figures show th
there is a systematic difference to Maison’s results tha
generally much larger than our finite difference error.
grows in all three codes ask→1. ~The exception is in GD1
at low k where the finite difference error becomes dom
nant.! We suspect that the systematic error is in our co
rather than Maison’s code, and specifically in the backgro
code: as we have discussed above, it is not well behave
the light cone ask→1, and at the center ask→0.

D. Axial lÐ2 perturbations

For l>2 the gauge-invariant velocity perturbationb
obeys an autonomous transport equation, just as forl 51. For
l>2, there is also a gauge-invariant metric perturbationP,
which obeys a wave equation withb as a source@9#. The

FIG. 2. This plot demonstrates thatl(k) in GD1, GD2 and CD3
converges with increasing resolution to a common value and a
expected order. The resolutions areDx51/10,1/20, . . . 1/320. The
three plots, from top to bottom, show the error in GD1, GD2 a
CD3. A reference value forl(k) was obtained by Richardson inte
polation on CD3 at the highest three resolutions. This refere
value was then subtracted from the result of all three codes a
resolutions to obtain a measure of error. To demonstrate power
convergence, this error was divided by a factor of 4 for each fa
of 2 in Dx ~for CD3 and GD2!, or by a factor of 2~for GD1!. The
error at the highest resolution was not rescaled. Note the rise o
error at lowk in all three methods. Although the different graphs
each plot do not lie on top of each other perfectly, they are sim
indicating approximate power-law scaling at the expected orde
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evolution of b is still autonomous. This means that thel
spectrum of the coupledP andb system is the sum of two
parts: modes in whichb vanishes, so that they are solution
of theP equation without a source term, and modes that
driven byb, so that their value ofl is set by the evolution of
b.

As shown above in Sec. III, the spectrum of ofb modes
can be calculated analytically for alll including l>2. As a
check we have implemented theb equation on its own, and
the numerical results agree with the analytical ones, show
the top two of the analytically calculated modes. That is
much as one can expect, because then-th mode behaves a
the center asx2n, and no finite differencing scheme is de
signed to represent such behavior correctly. In fact, unph
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FIG. 3. l(k) from Maison, and our codes GD1, GD2 and CD
at Dx51/320.~The four lines are not resolved in this plot.!

FIG. 4. Difference inl(k) between Maison and our codes
Dx51/320: circles are GD1, squares GD2 and diamonds CD3.
fact that GD2 and CD3 differ from Maison by approximately th
same value indicates that this difference is mainly systematic e
rather than finite differencing error. The fact that GD1 has a diff
ent deviation from Maison is explained by its larger finite differen
ing error, which increases at lowk—see top plot of Fig. 2.
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CRITICAL GRAVITATIONAL COLLAPSE OF A . . . PHYSICAL REVIEW D65 084021
cal modes that behave asxn with n odd also show up. They
are unphysical because the corresponding velocity pertu
tion is not regular at the center, but they are valid solutions
the equation.

The equations forP were derived in the fluid frame in
@9#, but they look simpler in the frame of constantr observ-
ers ~radial frame!. These are just different choices of firs
order variables for the same wave equation. As a test,
have implemented the equations in both frames, and the
sults converge as expected. In the fluid frame we have
implemented the coupling tob. As expected this simply add
extra modes driven byb modes to the spectrum. As we hav
analytical results for theb modes~they all decay!, we only
need the freeP modes.

For simplicity, we give here only the source-free equ
tions in the fluid frame. These equations are quite simila
the toy model wave equation of Appendix D. The variab
are

P° [e2 l tP̄, P̃[e2( l 11)ta21P ,t ,

P̂[e2( l 11)ta21P ,r . ~28!

P° andP̃ can be specified freely on the initial surface, wh
P̂ is constrained by

P̂5asP° ,x . ~29!

The P equation without source, in the radial frame, is th
equivalent to

P̃ ,t5A1P̃ ,x1B1P̂ ,x2S l 111
Ca

sgD P̃1
1

sgF2~ l 11!

x

1CaGP̂2~ l 12!
1

s2ag FCg

x
1~ l 21!

a221

x2 GP° ,

~30!

P̂ ,t5C1P̃ ,x1A1P̂ ,x1
Ca

sg
P̃2S l 111

Ca

sgD P̂,

~31!

P° ,t5
a

g
P̃2sxaP̂2 lP° . ~32!

This is of the formu,t5Au,x1Bu, where the coefficients o
the 232 matrix A are

A152x, B15
1

sg
, C15

1

sg
. ~33!

The matrixA has therefore the eigenvalues

l1652x6
1

sg
. ~34!

We have used GD1, GD2 and CD3. All three codes h
numerical modes that are not physical. Often it is clear t
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they are related to weak modes at the light cone, and t
can be discarded by inspection. Weak modes are particu
easy to spot in GD1, as it is the most causal code. In
other codes, the numerical counterparts of weak modes
appear quite smooth. In GD1 we can suppress weak mo
completely by rearranging the grid spacing so that the li
cone falls exactly on a grid point, and then truncating t
grid at that point. This code will be referred to as GD1LC.
the other codes we need to pick out the physical modes
the criterion of convergence both with resolution for a sing
code and between different codes. Figure 5 demonstr
convergence ofl for the casek51/3 and l 52. The best
values~either from GD2 or CD3! for the Lyapunov expo-
nents are plotted as a function ofk and l in Fig. 6. The l
52 leading mode is unstable for 0.58&k&0.87 ~see also
Fig. 7!.

Convergence tests fail to identify any mode as physica
the highest available resolution fork50.05 at l 54 andk
50.1 at l 55. However, all modes of all three codes dec
for these values ofk and l, so that we are fairly certain tha
there are no physical growing modes for these values ok
andl. Furthermore, for allk, Rel decreases with increasin
l ~see Fig. 6!. Therefore we conclude that alll>3 modes are
stable.

E. Polar lÄ1 perturbations

In this section, we discuss the equations of motion for
l 51 ~dipole! polar perturbations. There are no dipole gra
tational waves, and therefore the gravitational field has
degrees of freedom independently of the matter. There
three matter degrees of freedom. They are an azimuthal fl
velocity perturbationa, a radial fluid velocity perturbationg,
and a density perturbationv. ~For the equation of state w
use here, the pressure and density perturbations are re
by dp5kdr.! The metric perturbations are obtained fro

FIG. 5. Convergence ofl for the top physicall 52 axial (P
only! mode with resolution, atk51/3. The upper graph is Rel, and
the lower graph is Iml. From left to right N510,20, . . . 160.
Circles are GD1, squares are GD1LC, diamonds GD2 and trian
up CD3.
1-9
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the matter perturbations by constraints. For a general dis
sion we refer the reader to@9#. Here we only carry out the
reduction of the equations given there to a self-similar ba
ground solution.

We use the matter variables

a° [r 21a, g° [2~11k!g, v° [v. ~35!

The matter perturbations are regular at the center ifa° andg°

areO(1) and even in powers ofx, andv° is O(x) and odd.
The leading orders ofa andg are additionally constrained a

(11k)a° 1g° 5O(x2).

FIG. 6. Best value~using CD4! for the Lyapunov exponentl of
P, againstk and l. The upper graph shows Rel againstk, and the
lower graph Iml. Circles denotel 52, squaresl 53, diamondsl
54 and trianglesl 55. Points are linked by straight lines. Th
pointsk50.05,0.1,l 55 andk50.05, l 54 are missing becausel
could not be computed. The curves for Iml end at smallk where
the modes become real.

FIG. 7. Detail from Fig. 6 showing Rel for l 52 andl 53. The
l 52 leading mode is unstable for 0.58,k,0.87.
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The perturbation variables are not completely gau
invariant for l 51. We fix most of the gauge freedom b
setting the metric perturbationk50. In this ~partially fixed!
gauge the remaining metric perturbationsc, x and h are
determined by constraints. We introduce suitably resca
metric perturbation variables

x° [e23tr 23x, c° 5e22tr 22c, h° 5e2tr 21h.
~36!

The metric perturbations are regular at the center ifx° , h° and

c° are all O(1) and even inx. The perturbed spacetime i
CSS if and only if all perturbations are independent oft.

From Eqs.~99!, ~100! of @9#, the equations of motion o
the matter perturbations are

g° ˙2kv° 852S̄g ~37!

v° ˙2g° 852S̄v ~38!

a° ˙52r 21Sa2Ua° , ~39!

where the expressionsS̄g , S̄v and Sa are given by Eqs.
~A9!–~11! of @9#. The first two equations constitute a firs
order form of a wave equation whose characteristics h
velocity Ak with respect to the background fluids: they d

scribe sound waves. The third equation transportsa° along
the fluid. Solving the three matter equations for thet deriva-
tives, on a continuously self-similar background spacetim
one obtains the following system of evolution equations:

g° ,t5Akg° ,x1Bkv° ,x1S~g° !, ~40!

v° ,t5Ckg° ,x1Akv° ,x1S~v° !, ~41!

a° ,t5Fa° ,x1S~a° !. ~42!

The coefficients of the 333 matrix A in Eq. ~24! are

Ak52x2
~12k!V

~12kV2!sg
, Bk5

k~12V2!

~12kV2!sg
,

Ck5
~12V2!

~12kV2!sg
, F52x2

V

sg
. ~43!

Its eigenvalues, the characteristic speeds, are

lk652x2
~12k!V

~12kV2!sg
6

Ak~12V2!

~12kV2!sg
, l052x2

V

sg
.

~44!

The constraint equations for the metric perturbations are
given in @9#. The derivative operatorD becomes a simple
partial derivative in coordinatesx and t, namely rD
5x]/]x. We obtain a system of three ODEs inx, from now
on referred to as the constraints:
1-10



t

nd
s.

si

f

o

ug

s

u

t

n

f

9
e

D1
has
de.

nds

d

in
r

s,
lue.
ly

CRITICAL GRAVITATIONAL COLLAPSE OF A . . . PHYSICAL REVIEW D65 084021
xu,x5Mu1s, u5~x° ,h° ,c° !. ~45!

M ands are given in Appendix B.
We now return to the issue of the gauge freedom tha

left after one has setk50. The change ofk under an arbi-

trary gauge transformation parametrized by the variablej° is

k°→k°1L1j° ~see@9# for details!. L1 is a differential operator
~roughly speaking a secondx derivative!, whose kernel is
parametrized by one free function oft. The remaining gauge
freedom can therefore be fixed by imposing a gauge co
tion worth one function oft. There are two natural choice

In ‘‘ h gauge’’ we seth° 5O(x2) at the center. In ‘‘a gauge’’

we seta° 5O(x2), and therefore alsog° 5O(x2). Numerically
it is not easy to enforce that any variable behaves asO(x2) at
the center. Therefore we impose the two sub-gauges u
variables rescaled by suitable powers ofx. This is discussed
in Appendix B.

Although by function counting eithera gauge orh gauge
should fix the residual gauge freedom ink50, a single gauge

mode does in fact survive in each gauge. The change oh°

under a gauge transformation ish° →h° 1L2j° . Any residualj°

must now obey bothL1j°50, from the gauge conditionk

50, andL2j°5O(x2), from the gauge conditionh° 5O(x2),
whereL2 is another differential operator~roughly speaking
the wave operator!. A careful calculation shows that the tw

joint equations still have one non-zero solution, which isj°0
5elt f (x) for

l5
1

2
6 iAS k1

1

3D r̄~0!2
1

4
. ~46!

That means that in theh5O(x2) sub-gauge of thek50
gauge we have a single complex conjugate pair of ga
modes left.

The situation is similar ina gauge: The change ofa°

under a gauge transformation isa° →a° 1L3j° for some opera-
tor L3, roughly speaking a firstt derivative. The joint kernel

of L1j°50 andL3j°5O(x2) is not empty either but contain
a single real gauge mode with

l5
113k

3~11k!
. ~47!

Both gauge modes are in fact found numerically, and give
a check on the numerical precision for each value ofk. Fig-
ure 8 demonstrates this for both gauges.

We have used GD1, GD2 and CD4. Fork*0.15, the
numerical results are straightforward. Both ina gauge and in
h gauge, we find the expected gauge mode. We find thaa
gauge, in the specialized variables described in Appendix
has the best numerical behavior at the center. As an estim
of numerical error in the code, Fig. 9 shows the exact a
numerical value ofl for the gauge mode ina gauge. Figure
10 shows the best value ofl in this system as a function o
k.
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For k&0.15, our code does not work well. Figure
shows that with decreasingk, the error in locating the gaug
mode increases rapidly. Fork50.1 andk50.05, all three
codes fail to find the real gauge mode. Nevertheless, G
and GD2 have precisely one growing mode, and CD4
precisely one growing mode that is not clearly a grid mo
All these modes are complex, but they obeyuReu(x)u
@uIm u(x)u for all x, by a factor of;100: the mode is al-

FIG. 8. Convergence ofl for the single gauge mode in thel
51 polar perturbations, fork51/3. From left to right N
510,20, . . . 160. Circles are GD1, squares are GD2, and diamo
CD4. The top two graphs were obtained inh gauge, using the
variables of Appendix A, and show Rel and Iml for the gauge
mode. The value ofl for this mode computed from the backgroun
solution and Eq.~46! is l.1/212.384i for k51/3. The bottom
graph was obtained ina gauge, using the variables described
Appendix B. The exact value ofl for this gauge mode is 1/2 fo
k51/3.

FIG. 9. l for the single gauge mode in thel 51 polar perturba-
tions in a gauge as a function ofk. Circles are measured value
connected by straight lines. The smooth curve is the exact va
The points atk50.1 andk50.05 represent the real part of the on
growing mode present, which is complex.
1-11
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CARSTEN GUNDLACH PHYSICAL REVIEW D65 084021
most real, modulated by a cosvt factor. It is also clear tha
there is a finite differencing problem at the center that affe
all three codes: the functionsu(x) are not well-behaved eve
or odd functions. The origin of this instability is uncertain.
plausible explanation is that the numerical background s
tion itself is not sufficiently well-behaved at the center f
small k. Some of the coefficients in thel 51 ~and alsol
>2) polar perturbation equations are very large and sha
peaked at the center. Furthermore, some of these coeffic
must be obtained as numerical derivatives of the backgro
solution. These numerical derivatives are not smooth at
center, and we had to artificially extrapolate them to the c
ter in order to smoothe them.

Because all three codes agree on a single growing m
that is almost real in the sense just defined, we identify
mode with the gauge mode, even though the agreementl
is poor. This leaves no other growing modes in any of
codes for anyk ~except for obvious grid modes in CD4 th
can be ruled out by inspection.! We therefore conjecture tha
there are no growing physical modes, even though we ca
identify the top physical mode.

F. Polar lÐ2 perturbations

As discussed in detail in@9#, the l>2 polar perturbations
of a spherical perfect fluid admit a free evolution formu
tion. The dynamical variables that can be specified freely
the metric perturbationsx, k andc, and the time derivatives
ẋ and k̇. x and k obey wave equations, andc a transport
equation, all of which are coupled. There are three gau
invariant matter perturbations.a is an azimuthal velocity
perturbation,g is a radial velocity perturbation, andv is a
pressure and density perturbation. These matter perturba

FIG. 10. Best value~obtained with GD2! for the physical
Lyapunov exponentl of the l 51 polar perturbations. The uppe
graph shows Rel againstk, and the lower graph Iml. Points are
connected by straight lines. The measured values end atk50.15
because fork50.1 andk50.05 the top mode could not be ident
fied. The graph of Iml ends becausel is real fork,0.5. Clearly a
real mode and a complex mode pair have crossed betweenk50.5
andk50.6.
08402
ts

-

ly
nts
d
e
-

de
is

e

ot

re

e-

ion

variables are completely determined as algebraic express
in the seven first-order metric perturbation variables, as
cussed in detail in@9#. For the purpose of finding the late
time behavior of generic perturbations, we work with t
metric perturbations alone.

Solving for thet derivative of the seven variables, w
find that the matrixA in Eq. ~24! takes the following form:

A5S A1 B1 D

C1 A1 VD

Ak Bk E

Ck Ak VE

F

D , u5S x̃

x̂

k̃

k̂

c°

D .

~48!

The remaining two variablesx° andk° are evolved using only
source terms. The coefficients of the matrixA have already
been given in Eqs.~33! and ~43!, except for

D5
2~m̄2Ū !

s2gx
, E52

2kxŪ~12V2!

~12kV2!g
. ~49!

The five eigenvalues ofA arel16 , lk6 andl0, which have
already been given. (D andE do not influence the eigenval
ues.! Note thats has been chosen so thatlk1.0 for 0<x
,1. The pointx51 where it changes sign is the sound con
Similarly, the pointx5xlc.1 wherel11 changes sign is the
light cone. Clearlyxlc is 1 for k51 and diverges ask→0.
Note that the (x̃,x̂) submatrix ofA is the same as the entir
matrix A for the axialP perturbations, as both pairs of var
ables obey a wave equation at the speed of light. Simila
the (k̃,k̂) submatrix is equal to the entire matrix for thel
51 polar perturbations, which obey a wave equation at
speed of sound. ThereforeAk is equal toA1 for k51, when
the speed of sound is the speed of light.

We have used the three codes GD1, GD2 and CD3. Th
is good agreement and convergence between the three c
for 0.2&k&0.8. Figure 11 demonstrates convergence ol
for k51/3 andl 52. Figure 12 shows the best values ofl
for l 52 . . . 5. We findthat all modes for alll decay fork
&0.49. Fork*0.49, there is an unstablel 52 mode~see Fig.
13!. At still higher k, there is probably more than one un
stable mode, but it is difficult to identify subdominant mod
with certainty.

Fork*0.8, andk&0.2, the numerical precision decreas
quickly. In this region the numerical accuracy is poor forl
52, and forl 53,4,5 even the top physical mode cannot
identified clearly. The origin of these problems is differe
for high and lowk. At high k, all modes in all three code
show discontinuities at the sound cone. These are not du
the weak modes discussed above, but are due to unsm
behavior in the numerical background solution, through c
tain coefficients of the perturbation equations that must
obtained as numerical derivatives of the background so
tion. At low k, the origin of the low precision is not so clea
It may be that the background coefficients become incre
1-12
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CRITICAL GRAVITATIONAL COLLAPSE OF A . . . PHYSICAL REVIEW D65 084021
ingly large and sharply peaked inx near the center ask
→0. With the sound cone atx51, the value ofx at the light
cone also diverges as 1/Ak as the sound speed goes to ze
~Recall thatx is defined so that the sound cone is atx51.! In
a second source of error, some of the perturbation co
cients, as determined from the numerical background s
tion, must be smoothed at the center for smallk, and this
introduces additional error.~This is the same problem tha
affects thel 51 polar modes.!

In contrast to the inadequacy of the numerics at high
low k, the numerical precision is good in a large neighb
hood of the valuek.0.49. It is therefore certain that thel
52 polar perturbations are stable fork&0.49 and unstable

FIG. 11. Convergence ofl for the top l 52 polar mode with
resolution atk51/3. From left to rightN520,40, . . . 160. Circles
are GD1, squares are GD2, and diamonds CD3. The upper gra
Rel, and the lower graph is Iml.

FIG. 12. l for the topl 52 . . . 5polar modes as a function ofk.
The upper graph is Rel, and the lower graph is Iml. Circles are
l 52, squaresl 53, diamondsl 54 and trianglesl 55. Note that
Rel decreases withl, while Iml increases. The curves forl
53,4,5 do not extend to the lowest and highestk because of large
numerical error.
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for k*0.49. As evidence that the instability is physical, F
14 demonstrates the convergence of independent res
evaluations between all three codes forl 52 and k50.6.
From convergence, we estimatel ~for this k and l ) as l
5(0.11260.003)1(1.96860.005)i . The real part ofl is
therefore much larger than the finite differencing error.

V. CONCLUSIONS

The threshold of gravitational collapse of a perfect flu
with p5kr in spherical symmetry shows ‘‘type II’’ critical

is

FIG. 13. Detail of Fig. 12. Rel is positive for l 52, k.0.49.
Rel is negative for allk for l .2.

FIG. 14. Log-log plot of independent residual evaluation b
tween three different codes for the dominant polarl 52 mode for
k50.6. Evaluating the mode produced by GD2 with CD3 sho
exact second-order convergence~triangles up, bottom curve!. The
opposite operation, checking on CD3 with GD2, shows seco
order convergence that breaks down at high resolution~triangles
down!. Checking on CD3 and GD2 with GD1 shows the expec
first-order convergence~triangles left and diamonds!. The opposite
check shows first-order convergence that breaks down at high r
lution ~squares and circles, top curves!. The resolutions shown are
Dx51/10 . . .1/160.
1-13
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CARSTEN GUNDLACH PHYSICAL REVIEW D65 084021
phenomena~including mass scaling with a critical exponen!
for the entire range 0,k,1 @4–7#. Is this true also when
one relaxes the assumption of spherical symmetry? We h
addressed this question by studying the nonspherical pe
bations of the critical solutions in spherical symmetry. W
have extended the results of@8# from k51/3 in the equation
of statep5kr to the entire physical range 0,k,1. Because
of the numerical difficulties, we have complemented t
single first-order scheme used in@8# with three different
second-order finite differencing schemes. We have com
mented convergence tests by independent residual ev
tion. This allows us to identify ‘‘weak modes,’’ numerica
artifacts related to weak solutions of the perturbation eq
tions. Finally, we have corrected errors in@8# concerning the
equations of motion for thel 51 axial and polar perturba
tions.

After verifying that the CSS solution has exactly o
growing spherical perturbation for allk, we have found that
all nonspherical perturbations decay for allk with the fol-
lowing exceptions:

~1! For k,1/9, there is precisely one growingl 51 axial
mode. This result was obtained analytically, even though
background solution is known only numerically. Because
is l 51, this mode is three-fold degenerate.

~2! For k*0.49, there is a growingl 52 polar mode. We
cannot rule out that at largerk, there are several growin
modes. Because it isl 52, this mode is five-fold degenerat

~3! For 0.58&k&0.87, there is also a growingl 52 axial
mode.

The numerical evidence for this is not as good as o
would like. Because of numerical error, we cannot meas
l of the top physical mode of thel 51 polar perturbations
for k&0.15, nor of thel>3 polar perturbations fork&0.2
and k*0.8. However, in all these cases where physi
modes and numerical modes cannot be distinguished cle
all modes, including the physical modes, do in fact dec
Therefore we still argue that all physical modes, apart fr
those enumerated above, decay. One cause of the num
difficulty is the separate existence of light cones and so
cones, which gives rise to numerical artifacts related to w
solutions of the continuum equations. A second cause is
instead of a single smooth background solution we are d
ing with a one-parameter family of such solutions, which
ill-behaved at both endsk50 andk51. A third cause is that
several coefficients required in the perturbation equations
first and second derivatives of the background fields, wh
are not perfectly smooth at the center and the light cone

What is the significance of our results? Thel 51 axial
perturbations are naturally associated with infinitesimal~dif-
ferential! rotation. The presence of a growing rotation mo
at low k (,1/9) is not surprising, as one would expect
rotating dust configuration to be torn apart by centrifug
forces. For a sufficiently stiff fluid this intuition obviousl
fails. The significance of thel 51 axial perturbations is tha
they can survive into the final black hole formed in collap
~and turn a Schwarzschild black hole into a Kerr black ho!,
while all other non-spherical perturbations must be radia
during collapse. Their instability is expected to give rise
08402
ve
ur-

e

e-
a-

-

e
it

e
re

l
ly,

y.

ical
d
k
at
l-

re
h

l

d

interesting new phenomena in critical collapse that will
explored elsewhere@13#.

The existence of a small number of unstable polar mo
at highk (*0.49) is more puzzling. At face value it sugges
that the spherically symmetric CSS solution is a critical s
lution only when restricted to exact spherical symmetry.
place may be taken by another critical solution with le
symmetry, or there may not be a critical solution, and he
no universality, at the black hole threshold.

ACKNOWLEDGMENTS

I am grateful to Jose´ M. Martı́n-Garcı´a for pointing out
that I was using the wrong equations of motion forl 51
perturbations in@8#, and for help in correcting them. I would
like to thank Bob Wald for helpful conversations on thel
51 axial perturbation equation, and Miguel Alcubierre, Ma
Choptuik, Giampaolo D’Alessandro and David Garfinkle f
suggestions on numerical methods. This research was
ported in part by NSF grant PHY-95-14726 to the Univers
of Chicago, and by EPSRC grant GR/N10172.

APPENDIX A: BACKGROUND EQUATIONS

The relation between the fluid frame derivatives and
partial derivatives in CSS coordinates is

ḟ 5
etg

aA12V2 F f ,t1S x1
V

sgD f ,xG , ~A1!

f 85
etg

aA12V2 FV f ,t1S Vx1
1

sgD f ,xG , ~A2!

rD f 5x f ,x . ~A3!

The perturbation equations of@9# allow for a 2-parameter
equation of statep5p(r,s), wheres is the entropy per par-
ticle. When restricting to our simple baryotropic equation
state, we set both the fluid entropys and its gauge-invarian
perturbations to zero. We also setC[]p/]s to zero, and we
set the sound speed squaredcs

2[]p/]r equal to the constan
k.

The background equations that result from the CSS an
are

a22512
2s2x2r̄

12V2 F11kV21
~11k!V

sgx G ~A4!

d ln r̄

dx
5~11k!D21@~V1gsx!S12~11Vgsx!S2#,

~A5!

dV

dx
5~12V2!D21@2k~11Vgsx!S1

1~V1gsx!S2#, ~A6!
1-14
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x
d ln g

dx
512a21~12k!x2s2a2r̄, ~A7!

where

S1[2
V

x
1

2gs

11k
1VCa1Ca , ~A8!

S2[
2kVgs

11k
1Ca1VCa , ~A9!

D[k~11Vgsx!22~V1gsx!2, ~A10!

Ca[
ra ,t

xa
52xs2r̄a2~11k!

V

12V2

5O~x2!, ~A11!

Ca[
ra ,r

xa
5

a221

2x
1s2xr̄a2S 11k

12V2 21D
5O~x!. ~A12!

Here Eqs.~A5! and ~A6! are the fluid equations of motion
and Eqs.~A7! and ~A4! are two of the Einstein equations
The termsCa and Ca arise when metric derivatives in th
matter equations are eliminated using the Einstein equati
The expression fora incorporates the regularity conditio
~absence of a conical singularity! a51 at r 50.

The following background quantities are required as
efficients in the perturbation equations:

W̄[e2tW[e2tnAr ,A5~asx!21~12V2!21/25O~x21!,
08402
s.

-

Ū[e2tU[e2tuAr ,A5VW̄5O~1!, ~A13!

m̄[e2tm[e2tuA
uA5O~1!,

n̄[e2tn[e2tnA
uA5O~x!, ~A14!

r̄[e22t4pr5O~1!,

2m

r
[12r ,Ar ,A512r 2~W22U2!512a225O~x2!.

~A15!

In a CSS background all these quantities depend only ox,
and we have indicated their behavior at the origin.

APPENDIX B: lÄ1 POLAR PERTURBATION EQUATIONS

The source terms in Eq.~40! are obtained from the equa
tions of @9# in the form

S~g° !52e2taA12V2g~12kV2!~S̄g1kVS̄v!, ~B1!

S~v° !52e2taA12V2g~12kV2!~VS̄g1S̄v!,
~B2!

S~a° !52e2taA12V2g~r 21Sa1Ua° !, ~B3!

where the terms on the right-hand side are defined in R
@9#. Fully expanded in the variables adapted to se
similarity, they are
S~g° !5
aA12V2

g~12kV2!H @~k21!m̄14kŪ1~k21!Vn̄ #g° 22k~11k!VF2
1

sx
1~11k!sxr̄Ga°

1
1

2
~11k!2~m̄1Vn̄ !~sx!2c° 2~11k!@n̄2W̄1kV~m̄1U !#~sx!h° 1~11k!~ n̄1kVm̄ !~sx!3x° J ,

~B4!

S~v° !5
aA12V2

g~12kV2!H F ~k21!Vm̄12kVŪ1
k21

k
n̄12W̄Gg° 22~11k!F2

1

sx
1~11k!sxr̄Ga°

1
1

2
~11k!S 11k

k
n̄22W̄1~11k!Vm̄12kVŪD ~sx!2c° 2~11k!~m̄1Vn̄ !~sx!h° 1~11k!~m̄1Vn̄ !~sx!3x° J ,

~B5!

S~a° !5
aA12V2

g H 2
k

11k
~sx!21v° 1@km̄1~2k21!Ū#a° 2h° 1

1

2
~sx!2x° J . ~B6!

The coefficients in the constraint equations~45! are

M5S 211a2@221~12k!~sx!2r̄ # a2~4ŪW̄12m̄W̄22n̄Ū !~sx! 2a2~ n̄Ū2m̄W̄!~sx!3

22a2ŪW̄~sx!3 222a2@12Ū2~sx!21kr̄~sx!2# 2a2@W̄21Ū22~11k!r̄#~sx!4

2a2@Ū n̄2~m̄1Ū !W̄#~sx! 22a2Ū2 2322a2@11Ū2~sx!22~sx!2r̄ #

D ~B7!
1-15
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s5a2
„22r̄g° 14r̄~11k!W̄~sx!a° , ~12k!r̄~sx!v° 24~11k!r̄Ū~sx!2a° , 2r̄~sx!21v° 28~11k!r̄Ūa° ….

~B8!

In ‘‘ h gauge’’ we seth° 5O(x2) at the center. The constraint equations are then solved with the boundary condition

c° 52~11k!r̄a° , h° 50, x° 5
2

5
r̄~sx!21v° 1

32

15
r̄a° ~B9!

at the centerx50. The conditionh° 50 is our gauge condition, and the other two conditions follow fromMu1s50 (M has
rank 2 at the center!. An alternative way of imposingh gauge is to introduce the new variable

h̃5~sx!22h° , ~B10!

which is O(1) at the center in this gauge. The evolution equations are as before, with onlyh° replaced by (sx)2h̃ in Eqs.
~B4!–~B6!. The constraint equations become

xũ,x5M̃ ũ1 s̃, ũ5~x° ,h̃,c° !, ~B11!

with

M̃5S 211a2@221~12k!~sx!2r̄ # a2~4ŪW̄12m̄W̄22n̄Ū !~sx!3 2a2~ n̄Ū2m̄W̄!~sx!3

22a2ŪW̄sx 22a2@12Ū2~sx!21kr̄~sx!2# 2a2@W̄21Ū22~11k!r̄#~sx!2

~2a2@Ū n̄2~m̄1Ū !W̄#~sx! 22a2Ū2~sx!2 2322a2@11Ū2~sx!22~sx!2r̄ #

D
~B12!

s̃5a2
„22r̄g° 14r̄~11k!W̄sxa° , ~12k!r̄~sx!21v° 24~11k!r̄Ūa° , 2r̄~sx!21v° 28~11k!r̄Ūa° …. ~B13!
ar

y

,

The boundary conditions atx50 are

c° 52r̄~11k!a° , h̃52
1

5
r̄~sx!21v° 1

4

15
r̄a° ,

x° 5
2

5
r̄~sx!21v° 1

32

15
r̄a° , ~B14!

from Mu1s50 (M has rank 3 at the center!.

In ‘‘ a gauge’’ we seta° 5O(x2) @and therefore alsog°

5O(x2)#. The constraints are then solved with the bound
conditions

c° 5
4k

3~11k!2 ~sx!21v° , h° 52
k

11k
~sx!21v° ,

x° 5S 2

5
r̄1

8k

9~11k!3D ~sx!21v° . ~B15!

Here the boundary condition onh comes from consistenc

with the evolution equationa° ,t5O(x2). An alternative way
of imposinga gauge is to introduce new matter variables
08402
y

v̂[~sx!21v° , ĝ[k21~sx!21g° , ǎ[~sx!21a° 5sxâ.
~B16!

The evolution equations in these variables are

v̂ ,t5Akv̂ ,x1Bkĝ ,x1S~v̂ !, ~B17!

ĝ ,t5Ckv̂ ,x1Akĝ ,x1S~ ĝ !, ~B18!

ǎ ,t5Fǎ ,x1S~ ǎ !. ~B19!

Note that the coefficients of thex derivatives are unchanged

but thatv̂ has taken the place ofg° andĝ has taken the place

of v° . Accordingly, ĝ is now odd andO(x) while v̂ is even
andO(1). Thesource terms are

S~ ĝ !5aA12V2kg~12kV2!H @~k21!m̄14kŪ1~k

21!Vn̄ #kĝ22k~11k!V@211~11k!~sx!2r̄ #

3~sx!21ǎ1
1

2
~11k!2~m̄1Vn̄ !sxc° 2~11k!
1-16
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3@ n̄2W̄1kV~m̄1U !#h° 1~11k!

3~ n̄1kVm̄ !~sx!2x° J
2F11

~12k!V

~12kV2!sgxG ĝ1
12V2

~12kV2!sgx
v̂, ~B20!

S~v̂ !5aA12V2g~12kV2!H F ~k21!Vm̄12kVŪ1
k21

k
n̄

12W̄Gkĝ22~11k!@211~11k!~sx!2r̄ #~sx!21ǎ

1
1

2
~11k!S 11k

k
n̄22W̄1~11k!Vm̄

12kVŪD sxc° 2~11k!~m̄1Vn̄ !h° 1~11k!~m̄

1Vn̄ !~sx!2x° J
2F11

~12k!V

~12kV2!sgxG v̂1
k~12V2!

~12kV2!sgx
ĝ, ~B21!

S~ ǎ !5aA12V2gH 2
k

11k
~sx!21v̂1@km̄1~2k

21!Ū#â2~sx!21h° 1
1

2
~sx!x° J 2S 11

V

sgxD ǎ.

~B22!

The variableǎ, which is odd andO(x), is much better be-

haved than the more obvious definitionâ[(sx)22a° . @The

combinationh° 1k/(11k)v̂ is O(x2) at the center. Numeri-
cally, it is easier to divide this bysx in S(ǎ) to obtain an
O(x) term than to divide by (sx)2.# The constraints are
solved with the matrixM given above and the source term

š5a2
„22r̄k~sx!ĝ14r̄~11k!W̄~sx!2ǎ,

~12k!r̄~sx!2v̂24~11k!r̄Ū~sx!3ǎ,

2r̄v̂28~11k!r̄Ū~sx!ǎ…. ~B23!

The boundary conditions are Eq.~B15! with (sx)21v° re-
placed byv̂.

APPENDIX C: lÐ2 POLAR PERTURBATION EQUATIONS

In order to work with variables that are regular andO(1)
at the origin for anyl, we redefine them asx5r l 12x̄, c

5r l 11c̄ andk5r l k̄, as in@9#. In order to obtain a first-orde
formulation, we introduce the frame derivatives of the bar
quantities with respect to the fluid frame. From Eqs.~87!–
~89! of @9#, the equations then take the form
08402
d

~ ẋ̄ !˙2~ x̄8!822~m2U !r 21c̄8

52r 2( l 12)Sx22~ l 12!U ẋ̄2~ l 12!@~ l 12!U21U̇#x̄

12~ l 12!Wx̄81~ l 12!@~ l 12!W21W8#x̄

12~m2U !r 21~ l 11!Wc̄[e( l 14)tS1 , ~C1!

~ x̄8!˙2~ ẋ̄ !85nẋ̄2mx̄8[e( l 14)tS2 , ~C2!

~ k̇̄!˙2k~ k̄8!812kUr c̄8

52r 2 lSk22lUk̇̄2 l ~ lU 21U̇ !k̄12k lWk̄8

1k l ~ lW21W8!k̄22kUr ~ l 11!Wc̄[e( l 12)tS3 ,

~C3!

~ k̄8!˙2~ k̇̄!85n k̇̄2m k̄8[e( l 12)tS4 ,
~C4!

~ c̄ !˙52r 2( l 11)Sc2~ l 11!Uc̄[e( l 12)tS5 , ~C5!

where the source termsSx , Sk and Sc are given in Eqs.
~A1!–~A3! of @9#. The second and fourth equations are ju
the commutation relations between the dot and prime der
tives. Here they serve as auxiliary evolution equations forx̄8

and k̄8. To these five equations we add the trivial evoluti

equations (x̄)˙5 ẋ̄ and (k̄)˙5 k̇̄.
For our particular application to a self-similar backgrou

we further rescale these first-order variables to obtain
final dynamical variables

x° 5e2( l 12)tx̄, x̃5e2( l 13)t~ x̄ !˙, x̂5e2( l 13)t~ x̄ !8,
~C6!

k°5e2 l tk̄, k̃5e2( l 11)t~ k̄!˙, k̂5e2( l 11)t~ k̄!8,

c° 5e2( l 11)tc̄. ~C7!

The variables with a circle or a tilde are even andO(1) at
the center, while the variables with a hat are odd andO(x).
The perturbed spacetime remains CSS if and only if all se
perturbation variables are independent oft. These seven
variables obey evolution equations without any constrain
except for the trivial ones that arise when one writes a w
equation in first-order form, given below in Eqs.~C15!,
~C16!. Applying the same rescaling to the source termsS1 to
S5, we obtain, in the notationBu[S(u), the source terms in

the evolution equations forx̃ to c° . To these we add two

evolution equationsx° andk° , which have only source terms
but nox derivatives. We obtain them by solving Eqs.~A1!,
~A2! for f ,t in terms of ḟ and f 8. Putting all seven source
terms together, we have
1-17
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S~ x̃ !5
aA12V2

g

S11VS212V~m̄2Ū !~sx!21S5

12V2

2~ l 13!x̃, ~C8!

S~ x̂ !5
aA12V2

g

VS11S212V2~m̄2Ū !~sx!21S5

12V2

2~ l 13!x̂, ~C9!

S~ k̃!5
aA12V2

g

S31kVS422VkŪsxS5

12kV2
2~ l 11!k̃

~C10!

S~ k̂!5
aA12V2

g

VS31S422V2kŪsxS5

12kV2
2~ l 11!k̂,

~C11!

S~c° !5
aA12V2

g
S52~ l 11!c° , ~C12!
08402
S~x° !5
as

A12V2 F S Vx1
1

sgD x̃2S x1
V

sgD x̂G2~ l 12!x° ,

~C13!

S~k° !5
as

A12V2 F S Vx1
1

sgD k̃2S x1
V

sgD k̂G2 lk° . ~C14!

Finally, solving Eqs.~A1!,~A2! for f ,x in terms of ḟ and f 8,
we obtain two constraint equations, that is, equations tha
not containt derivatives. They are

x° ,x5
as

A12V2
~ x̂2Vx̃ !, ~C15!

k° ,x5
as

A12V2
~ k̂2Vk̃!. ~C16!

The intermediate source termsSi are
S152@3m̄12~ l 12!Ū#x̃1@5n̄12~ l 11!W̄#x̂14~Ū2m̄ !~sx!22k̃12@~ l 21!~m̄2Ū !W̄12m̄n̄1e22t~m82 ṅ !#~sx!21c°

1F22lŪ 21~4l 18!n̄W̄2~2l 18!m̄Ū2~2l 214!~sx!22
m

r
1@2~12k!l 12k12#r̄14n̄2Gx°

14F n̄21S r̄23~sx!22
m

r D1~ l 11!~Ū2m̄ !ŪG~sx!22k° , ~C17!

S25 n̄ x̃2m̄x̂, ~C18!

S352~11k!Ū~sx!2x̃1~12k!W̄~sx!2x̂2@~412k12l !Ū1km̄# k̃1@ n̄12k~ l 11!W̄# k̂12@~12k!m̄W̄2~11k!n̄Ū

2~k l 12k11!ŪW̄#~sx!c° 1H 2@~11k!l 1214k#~sx!2Ū21@~12k!l 22k#~sx!2W̄21
12k

2
~ l 21 l 12!

24k~sx!2m̄Ū14k~sx!2r̄J x° 1H @2~12k!l 22~k13!l 2222k#Ū22@2k l 22~12k!l 24#~sx!22
m

r

24km̄Ū14kr̄J k° , ~C19!

S45 n̄ k̃2m̄ k̂, ~C20!

S552~sx!x̂2@~ l 11!Ū12m̄#c° 2@~ l 12!W̄12n̄ #~sx!x° 22n̄~sx!21k° . ~C21!
1-18
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We have used the background equations of motion, and h
introduced the new coefficiente22t(m82 ṅ), which is again
independent oft on a CSS background. Note that all coef
cients in the evolution equations are explicitly regular wh
one takes into account thatŪ2m̄5O(x2), r̄2(m/r )/(sx)2

5O(x2) and e22t(m82 ṅ)5O(x). The two terms 2(l
11)W̄x̂ and 2k( l 11)W̄k̂ are the equivalent of the term
2(l 11)f8/r of the toy model wave equation that we di
cussed above. They can be regularized in the same way

APPENDIX D: A TOY MODEL FOR THE EVOLUTION
EQUATIONS

We have tested various numerical methods on a
model, the scalar wave equation in flat spacetime. T
model is also useful as an illustration of the types of varia
and the methods we use.

Let F obey the free wave equation on the flat spaceti
ds252dt21dr21r 2dV2. We make the ansatz

F5(
l ,m

f lm~r ,t !Ylm~u,w!. ~D1!

We now consider a particular value ofl and m, and drop
these suffixes. Thenf lm obeys

2f ,tt1f ,rr 1
2

r
f ,r2

l ~ l 11!

r 2 f50. ~D2!

As in @9# we introduce the rescaled and first-order variab

f̄[r 2 lf, ḟ̄[f̄ ,t , f̄8[f̄ ,r . ~D3!

F(t,r ,u,w)5F(t,x,y,z) is analytic in Cartesian coordinate
at the origin if and only iff is analytic inr with only even

powers ofr. In this sensef̄ and ḟ̄ are even functions ofr,
and are generically finite and nonzero atr 50, andf̄8 is odd
and genericallyO(r ) at r 50.

We now go over to self-similarity coordinatesx and t
defined in Eq.~4! ~with s51). In order to mimic the fluid
perturbation equations, we rescale the first-order varia
once again as

f° [e2ntf̄, f̃[e2(n11)tḟ̄, f̂[e2(n11)tf̄8.
~D4!

The most natural choice ofn for the toy model isn50, but
for the fluid perturbations, it will be fixed by the requireme
that the perturbed spacetime remains self-similar if the p
turbation variables do not grow or decay witht. We there-
fore leave it free. We finally obtain the first-order system

f̃ ,t52xf̃ ,x1f̂ ,x12~ l 11!
f̂

x
2~n11!f̃, ~D5!

f̂ ,t5f̃ ,x2xf̂ ,x2~n11!f̂, ~D6!

f° ,t5f̃2xf̂2nf° . ~D7!
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There is also the trivial constraint

f° ,x5f̂ ~D8!

that follows from the definition of the first-order variablef̂.
One significant property that the toy model has in co

mon with the full perturbation equations is thatf° andf̃ are
even and generically nonzero atx50 while f̂ is odd and
genericallyO(x). All terms exceptf̂/x are explicitly regular,
and do not require special treatment at the origin. In parti
lar, there is no term of the typef/x2 left. Experience shows
that terms of the formf̂/x, wheref̂ is an odd function ofx
andO(x), can be regularized without giving rise to instabi
ties, while division byx2 is much more troublesome.

In other, unimportant, aspects the toy model is simp
than the full perturbation equations. As there is no flu
frame in this toy model, we choose the dot and prime to
frame derivatives with respect to the constantr frame. As the
spacetime is flat, the dot and prime derivatives commu

Finally, in the toy modelf° does not couple back tof̂ andf̃,
and therefore plays only a passive role.

APPENDIX E: FINITE DIFFERENCING

For the evolution equations~24! at hand, the eigenvalue
and eigenvectors of the matrixA can be calculated in close
form. The eigenvalues ofA are dx/dt on characteristics of
the equations: fluid world lines, radial light rays, and rad
matter ~sound wave! characteristics. The characteristics a
symmetric around the linex50, but with increasingx they
tip over until at sufficiently largex all eigenvalues are nega
tive. This means that at largex information travels only from
smaller to largerx. The reason for this is of course that whi
x50 and lines of small constantx are timelike, lines of large
constantx are spacelike. The ‘‘outer boundary’’x5xmax of
our numerical domain 0<x<xmax is therefore a future
spacelike boundary, and so no boundary condition is requ
there.

In order to use it to obtain a free boundary condition, w
make the numerical method reflect the propagation of inf
mation, so that atx5xmax all x derivatives are calculated
using one-sided finite differences. Following@14#, we splitA
into a left and a right-moving part. LetV be the matrix of
~column! eigenvectors ofA. Let L be the diagonal matrix
composed of the corresponding eigenvalues. ThenA
5VLV21. Let L1 beL with zeros in the place of the nega
tive eigenvalues, and letL2 beL with zeros in the place of
the positive eigenvalues. Then defineA65VL6V21. It is
clear thatA5A11A2 . We now useA1 with left derivatives
andA2 with right derivatives

duj
n

dt
5~A1D1uj

n1A2D2uj
n1Buj

n!, ~E1!

with the one-sided derivatives

D1uj
n5

uj 11
n 2uj

n

Dx
, D2uj

n5
uj

n2uj 21
n

Dx
. ~E2!
1-19
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Here the coefficient matricesA6 , B andC are evaluated a
xj . After each time step, the constrained variablesw are
obtained attn11 from the un11. This scheme is first-orde
accurate inx. ~Note that we have not discretized int yet.!
Left differences atx50 are evaluated using ghost poin
based on the fact that all grid functionsu are either even or
odd in x. This scheme can be thought of as the Godun
method applied to a linear equation, and we shall refer t
as the first-order Godunov scheme, or GD1. To obtain a
ond independent finite differencing scheme, we have a
used the second-order one-sided derivatives

D1uj
n5

4uj 11
n 23uj

n2uj 12
n

2Dx
,

D2uj
n52

4uj 21
n 23uj

n2uj 22
n

2Dx
. ~E3!

We shall refer to this scheme as GD2. At the outer bound
x5xmax, no right derivatives are required, as there all info
mation travels from the left to the right. (A1 vanishes.! All
variablesu are either even or odd functions ofx. At the inner
boundaryx50, left derivatives are calculated using fictitiou
grid points at negativex that are obtained asu(2x)5
6u(x). By construction, the Godunov method has the
vantage that it does not require a special outer bound
conditions. Unexpectedly, it also has the advantage tha
handles terms of the formf̂/x term at the center without an
special treatment. It is also completely free from hig
frequency grid modes. This last property is less surpris
when one thinks of GD1 as centered differencing plus a
sipative term@14#.

We have also implemented a more standard finite dif
encing scheme based on centered differences inx, with a
~first or second order! one-sided derivative at the oute
boundaryx5xmax. The center is again handled by gho
points, usingu(2x)56u(x). Using naive centered differ
ences, the code is unstable at the center because of the s
term 2(l 11)f̂/x in the toy model, and similar terms in th
perturbation equations. A well-known remedy is to inclu
this source term into the transport terms in the way sugge
by the identity

f̂ ,x1
2~ l 11!

x
f̂5~2l 13!

]~x2l 12f̂ !

]~x2l 13!
. ~E4!

In the toy model wave equation this procedure slows do
the central instability enough so that it can be suppresse
numerical viscosity. We have added a centered differe
expression foru,t5cu,xx1•••, with c of the order of 1023.
However, numerical viscosity falsifies the results too mu
both in the toy model and in the actual problem, and h
therefore not been used in any of the results of this paper.
shall refer to centered differencing with Eq.~E4! as CD3,
and without as CD4.
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APPENDIX F: WEAK SOLUTIONS

We now discuss a problem that affects the fluid and me
perturbations that we want to investigate, but that is alre
present and more easily understood in the toy model.

The spacetime pointr 5t50 is singled out in the self-
similarity coordinatesx andt, but it is not preferred on the
flat background. A solution arising from genericC2 initial
data att5t0,0 has finitet andr derivatives att5r 50. The
coordinatesx andt, however, have been designed to ‘‘zoo
in’’ on this spacetime point: we are looking at a smoo
solution on ever smaller scales. Therefore, ast→`, a ge-
neric solution of the toy model wave equation should beh
at larget as

f° →f̄~0,0!e2nt, f̃→f̄ ,t~0,0!e2(n11)t,

f̂→ 1

2
f̄ ,rr ~0,0!e2(n12)t. ~F1!

In deriving this fall-off we have assumed thatf is at least
twice differentiable everywhere. But asx51 is a character-
istic of the wave equation,f and its derivatives are allowe
to be discontinuous there. In particular, data onx.1 do not
influence the solution onx<1. Therefore, solutions exist tha
vanish onx<1 for all t but not for x.1. In particular,
making a power-series ansatz for the regionx.1,

f̃~x,t!5elt@f̃1~x21!1f̃2~x21!21•••#,

f̂~x,t!5elt@f̂1~x21!1f̂2~x21!21•••#, ~F2!

we find a formal solution withl5 l 212n, which is slower
than the expected falloff byl. We believe that a correspond
ing weak solution of the wave equation exists that is analy
for x.1 ~and vanishes forx<1), but have not proved it. A
finite difference counterpart certainly does exist, and
GD1 and GD2 it falls off~or grows, depending onn and l )
with the calculated value ofl. It therefore dominates ove
the generic smooth solution at larget. We want to exclude it
in studies of critical collapse, as we are interested only in
time evolution of smooth perturbation initial data. Numeric
schemes, however, do not distinguish between smooth
unsmooth data, and this solution turns up in some of th
hiding the everywhereC2 solutions we are interested in. I
the future we shall refer to these as ‘‘weak solutions at
light cone’’ or simply ‘‘weak modes,’’ We should stress tha
depending on the finite differencing scheme, weak soluti
of the finite difference equations may or may not converge
weak solutions of the continuum equations, but they are
ways there.

We find that both Godunov schemes when applied to
toy model wave equations develop weak solutions that
continuous but not differentiable atx51. For GD1, the finite
difference mode corresponding to the weak solution can
analyzed easily.u,t at the first grid point withx.1 depends
only onu at that point, and on the next point to the left—b
1-20
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there all fields vanish in a weak solution. A calculation sho
thatu at the first grid point withx.1 depends exponentiall
on t. The exponent is eitherl5 l 212n1O(Dx), which is
the continuum weak solution, orl522/Dx1O(1), which
is a finite differencing artifact that decays quickly.

In GD1, the dominant weak solution is clearly not diffe
entiable atx51, and this also shows up in independent
sidual evaluation as a sharp peak. If the last grid poin
exactlyx51, the numerical domain can consistently be tru
cated there, and no weak modes can arise. Because o
wider stencil GD2 is not completely causal, and so part
the weak mode propagates tox,1. The numerical equiva
lent of the weak mode therefore appears differentiable ax
51, but there is still a peak there in independent resid
evaluation, although less sharp. If we attempt to trunc
GD2 at x51, we need to introduce an explicit bounda
condition there. Doing this by using a first-order right deriv
tive, or a centered derivative atx512Dx introduces spuri-
ous reflections at the boundary. Without truncation, we h
tried updating the grid pointx511Dx by interpolation from
the neighboring grid points. This does not suppress the w
mode. Updating the three pointsx51, x511Dx andx51
12Dx by interpolation results in a different spurious mod
This holds both for GD1 and GD2.

APPENDIX G: IMPOSING THE CONSTRAINTS

Some perturbation equations contain onlyx derivatives,
and so are constraints rather than evolution equations. E
the free wave equation has such a constraint when it is w
ten in first-order form. Constraints of the form~D8! are
solved by integration from the center out, using the trapez
rule,

f° i 115f° i1
Dx

2
~f̂ i 111f̂ i !, ~G1!

where the starting pointf° at the center is determined by th
evolution equation. This method is second-order accur
We also use the exact of these finite difference equation

obtain f̂ from f° by differentiation.
Time evolution commutes with the constraints in the co

tinuum limit, but in the discretized equations this is on
approximately true. In order to find the modes, we nee
matrix T that acts only on a set of functionsu that can be
freely specified in the initial data and is therefore of full ran
We start with a larger matrixT8 and have to reduce it usin
a numerical solution of the constraints. This reduction, ho
ever, is not unique, and although different reductions
equivalent in the continuum equations, they are not in
finite difference equations.

We discuss these issues in the toy model. The matrixT8

acts onf° , f̂ andf̃, so thatT8 is a (3N)2 matrix. There are
two natural choices for the free variables on whichT acts:
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either f° and f̃, or the functionsf̂ and f̃ plus the number

f° (0). Note thatf̂(0)50 by definition, so that in either cas
T is a (2N)2 matrix.

We denote the constraint solution scheme~G1! by I ~for
integration! and its numerical inverse byD ~for differentia-
tion!. In loose matrix notation we can then write the fir
possibility as

u5S f̃

f°
D , T1[S 1 0 0

0 0 1DT8S 1 0

0 D

0 1
D , ~G2!

and

u5S f̃

f̂
D , T2[S 1 0 0

0 1 0DT8S 1 0

0 1

0 I
D . ~G3!

We find thatT2 works much better thanT1, in having grid
modes. This is not surprising given that integration ha
smoothing property. An alternative toT1 is to re-impose the
constraints by integration after evolution,

u5S f̃

f°
D , T3[S 1 0 0

0 I 0DT8S 1 0

0 D

0 0
D . ~G4!

But the matrixT3 is similar to the matrixT2,

T25S 1 0

0 D DT3S 1 0

0 I D , ~G5!

and soT2 and T3 have the same eigenvalues, although
course not the same eigenvectors. This is borne out num
cally up to small rounding errors.

In the spherical and thel 51 polar perturbations, non
trivial constraint equations arise which are of the form

xu,x5M ~x!u1s, ~G6!

whereu stands for a subset of variables, and the source te
s are linear in the other variables, already known at this ti
level. The coefficient matrixM (x), an even function ofx, is
typically nonzero at the origin. The ODE is therefore sing
lar atx50. We look for solutionsu(x) that are even regula
functions of x. These obeyM (0)u(0)5s(0). From this
boundary condition, the ODEs are solved by the implic
second-order accurate scheme

yi 115~12eMi 11!21@~11eMi !yi1e~si1si 11!#,

e[~xi 112xi !/~xi 111xi !. ~G7!
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