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Critical gravitational collapse of a perfect fluid: Nonspherical perturbations
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Continuously self-simila(CS9S solutions for the gravitational collapse of a spherically symmetric perfect
fluid, with the equation of statp= «p, with 0<«<1 a constant, are constructed numerically and their linear
perturbations, both spherical and nonspherical, are investigated=Thexial perturbations admit an analyti-
cal treatment. All others are studied numerically. For intermediate equations of state, witk 249, the
CSS solution has one spherical growing mode, but no nonspherical growing modes. That suggests that it is a
critical solution even ir{slightly) nonspherical collapse. For this rangexofve predict the critical exponent for
the black hole angular momentum to be 5(3«)/3(1+ «) times the critical exponent for the black hole mass.
For k= 1/3 this gives an angular momentum critical exponent.ef0.898, correcting a previous result. For
stiff equations of state, 0.49x<1, the CSS solution has one spherical and several nonspherical growing
modes. For soft equations of states @< 1/9, the CSS solution hast13 growing modes: a spherical one, and
anl=1 axial mode(with m=-1,0,1).
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[. INTRODUCTION diate attractor. This funneling process explains both univer-
sality and the self-similar nature of the intermediate attractor
An isolated system in general relativity ends up in one ofexplains scaling. The critical exponent in the power-law scal-
three stable final states: a black hole, a star, or completi@g of the black hole mass can be shown to be the inverse of
dispersion. The phase space of isolated systems in geneifie Lyapunov exponent of the critical solution’s one growing
relativity is therefore divided into basins of attraction: eachperturbation mod¢3].
initial data set must end up in one of the stable end states. Here we concentrate on one class of matter models
The study of the boundaries between the basins of attractiogoupled to general relativity, perfect fluids with the linear
in particular of the boundary between the black hole anddaryotropic equation of stafe= «xp, wherep is the pressure,
dispersion end states, began with the pioneering work op is the total energy density measured in the rest frame, and
Choptuik[1], and is now an active field in classical general « is a constant in the range<Ok<<1. The spherically sym-
relativity. metric fluid with k=1/3, corresponding to an ultrarelativistic
Initial data near the black hole or dispersion thresholdgas, was one of the first systems in which critical phenomena
evolve through a universal intermediate state before dispersvere found[4]. These results were later extended to the
ing or forming a black hole. This intermediate attractor hagrange 0<«<1 [5-7]. We now ask what happens when we
higher symmetry, as a spacetime, than the generic solutiomllow small deviations from spherical symmetry.
Often it is self-similar. Close to the threshold, but on the For a sample of values of in the range 8x<1, we
collapse side, the mass of the final black hole then scales aonstruct a regular, continuously self-simil&@€SS, and
a universal power of the distance of the initial data to thespherically symmetric solution, and then investigate its linear
black hole threshold. Universality, self-similarity and the perturbations to see how many growing perturbation modes
critical exponent for the black hole mass have given rise tdt has. It is already known, from both perturbati\&6] and
the name(type 1I) “critical phenomena in gravitational col- non-perturbative[7] calculations that these solutions have
lapse.” For a review sef2]. exactly one growing mode among their spherically symmet-
Critical phenomena of this type are explained by the ex+ic perturbations, which makes them critical solutions in
istence of a solution that is self-similar, regular, and has exspherical symmetry. Here we examine their nonspherical per-
actly one growing perturbation mode, such that for one sigriurbations. In a previous Rapid Communicati@] we ex-
of the growing mode the solution veers towards black holeamined the particular case=1/3. Here we generalize this
formation, and for the other towards collapse. Such a soluinvestigation to all values ok in the range 8 «x<1. We
tion is called a(type Il) critical solution. From a dynamical also describe our numerical methods and results in much
systems point of view, a critical solution is an attractor more detail. Finally, we correct two incorrect assumptions in
within the black hole threshold, which is a hypersurface of(8], namely that thé =1 axial perturbations obey the same
codimension one. Within the complete phase space, it isype of equation as the=2 ones, and that the=1 polar
therefore an attractor of codimension one. All solutions thaperturbations are pure gauge. As it happens, correcting these
start near the black hole threshold, but not necessarily nearrors does not affect the overall conclusion of R,
the critical solution itself, are funneled through this interme-namely that the critical solution fox=1/3 has no growing
nonspherical perturbation modes.
As the background is spherically symmetric, the perturba-
*Current address. tions can be separated into spherical harmonics labeldd by
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andm, and can be split further into axial and polar parts. Thespherical harmonic angular dependencies, for differemd
perturbation equations we use are those derivefPjnre- m. The equations of motions are the same for all values of
stricted here to a CSS background and the particular equationl <m=<I, for given|=0. The case$=0, |=1 (polar and
of statep= kp. Surprisingly, the nonspherical perturbation axial), andl=2 (polar and axiglare all qualitatively differ-
equations are much harder to solve numerically than in thent and need to be treated separately. Tensdv including
equivalent problem for the massless scalar fidlfll. One the perturbations, are written as products of tensoréfn
difficulty is that we are dealing with a one-parameter familywith tensors inS?. All necessary tensors i& are built from
of background solutions, whose limiis=0 andx=1 are the scalar spherical harmonid§,, on S?, their covariant
not regular members of the family. The other difficulty is that (with respect toy,;,) derivatives, and the covariantly con-
in the =2 perturbations both light cones and sound conestant antisymmetric tensat,,. The final equations for the
play a dynamical role, while they coincide for the scalarperturbations are again covariant equations for tensors on
field. This gives rise to weak solutiori® the sense of hy- M2, Their angular dependence comes in through terms such
perbolic equationsthat we need to discard. Because of theseas|/r and|(l+1)/r?.
problems, our final choice of numerical approach is to dis- In the next step, linear combinations of the perturbations
cretize the perturbation evolution equations in space but naire found that do not change to linear order under infinitesi-
in time. We then look directly for eigenvectors and eigenval-mal coordinate transformations, in eithdr or S%. The per-
ues(modes of the finite difference equations. turbation equations can be rewritten in terms of these gauge-
The plan of the paper is this: in Sec. Il we discuss theinvariant perturbations alone.
general perturbation framework of Rg®], and the CSS In a further step, all perturbation tensorsM? are split
background solutions. Section Il discusses thel axial into frame components with respect to the orthonormal
perturbations. Their spectrum can be calculated in close¢tlame U”*,n*). This “scalarization” replaces covariant de-
form. Based on this, we correct the value of the angularivatives of tensors with partial derivatives of scalars. These
momentum critical exponent stated in Ref1]. All other  derivatives are also decomposed into their frame components
perturbations require a numerical treatment and are discussed. UAF » andf’=n*f ,. The perturbation equations are now

in Sec. IV. Details of the numerical difficulties and numerical g¢5|5r equations written without reference to a particular co-

methods, however, are given in the Appendixes. Section Y qinate system. In this sense they are covariant, as well as

summarizes our results. linearly gauge-invariant. Note that the frame derivatives are
not partial derivatives, and do not commute. The advantage

Il. BACKGROUND SOLUTION of using these derivatives is thdt-cf’ are derivatives

A. Perturbations of a spherically symmetric perfect fluid along radial matter characteristics, aficf’ derivatives
along the radial light rays. On the other hand, some
yconstraint—type perturbation equations ferO andl=1 are
@ost naturally written using the derivatii@=r ¢f/Jr along
olar slices.

In a final step, we rescale the perturbation variables by
ependent powers af so that they are eithed(1) at the

We shall examine the linear perturbations of a sphericall
symmetric and continuously self-similé€S9 perfect fluid
spacetime. For this purpose we use the restriction to a CS
background of a general framework for the perturbations of
time-dependent spherically symmetric perfect fluid solutionsi_d

that was presented if®]. In this formalism, the spacetime = .~ .
manifold ig written asi?%e produdt = M2x S? whe?esz i orgin and even functions af, or elseO(r) and odd. The

the 2-sphere andd? is a 2-dimensional manifold, the * equations are brought into first-order form by treating first
rt-plane,” with a boundary =0. The coordinates iM,Z are derivatives such af andf’ as independent variables where
denoted by*, and the coordinates i& by x®. Coordinates N€cessary. _ _ _ _
in all of M are collectively denoted by*. The general In the remainder of this section, we introduce coordinates
spherically symmetric metric becomes, in this notation, ~ that are adapted to a CSS background, and review how the

background solution is defined, and constructed numerically.

gqudiaquBvrz‘Yab)! (1)
B. Continuously self-similar background solution

wherer? is a scalar function oM?, and v, is the unit
metric onS?. The spherically symmetric perfect fluid stress-
energy tensor can be written in the same notation as

Although our perturbation variables are linearly gauge-
invariant, we have to choose a coordinate system on the
background. A standard choice of coordinatésis to user
. 9 as a coordinatéradial gaugg and make the second coordi-
Ty =diagp Ualg+ P NaNg,P I 7ap), 2) natet orthogonal to it(polar slicing. Then g,g takes the

form
wherep andp are the(total) energy density and pressure in

the fluid rest framep*=(u*,0) is the fluid 4-velocity, and gu=—a?, gy=a% gu=0, 3
n” is the outward pointing unit vector normal té* in M2,

The field equations in this framework are covariantMf.  with « and a functions ofr and t. Radial light rays are
The two extra dimensions i8? appear through the scalar ~ governed by the combinatiog=a/«. There is a remaining
The perturbations of a spherically symmetric backgroundyauge freedom—t’(t), and we fix it by settingr=1 atr

decompose naturally into polar and axial parity, and into=0 for all t.
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Based on radial-polar coordinates, we now introduce co- One boundary condition at=1 is the gauge condition
ordinates that are adapted to self-similarity, while retainingD (1)= 0, which makexx= 1 the sound cone. This condition
polar slicing. We define new coordinatesand = by determines the value of the constanfhe regularity condi-

tion (iv) at the sound cone is

r=sxe’, t=-e 7, (4)
with s>0 a constant. We have assumed thab, and have \/;81(1)—52(1), ®)
chosen signs so thatincreases as increases. Note that S o ] . )
_, ast—0_ . Partial derivatives transform as which is the vanishing of the term in the equations that is
divided byD (see Appendix A
f=e(f +xf,), f'rzs_leffvx_ (5) Once we have solved the boundary value problem in 0
<x=1, we can analytically continue the solution through
The metricgag in these coordinates becomes =1 (which is a regular singular point of the equatipasd
then continue the solution by evolving the ODEs to larger
g.,=e 2"(—a?+s°x%a%), gn=e 27s%a? (In numerical terms, analytic continuation is implemented by
polynomial extrapolation.We go to the light cone and a
g.x=—e 27s’xa?. (6) little beyond. The light cone is at a valuexthat depends on
k. The ODEs are regular there.
The spacetime is continuously self-similavith homothetic Our numerical method for imposing analyticity & 1

vector —d/d7) if and only if « anda depend only oxbut  andx=0 is to just impose the algebraic boundary conditions
not on 7. 7 has two different interpretations. On the one there, and to use centered differences everywhere else, with-
hand, it is a time coordinate in the sense that its level surout using an explicit power-law expansion about the singular
faces are spacelike. But 7 is also the logarithm of space- points. The first(numerica) derivative of the fluid density
time scale, in the sense that proper distances are proportionahd velocity profiles obtained with this method has a small
to intervalsAx andA 7 times a factor ok~ ". In a self-similar  discontinuity atx=1 that first appears ak=0.7 and in-
spacetime, larger therefore means structure on a smallercreases withc. Results fork=0.7 therefore have a source of
scale. The point=0, t=0, or 7=, is by construction a numerical error over and above the one arising in the nu-
curvature singularity, unless the spacetime is flat. merical evolution of the perturbations.

In the solutions we consider here the matter is a perfect
fluid with densityp and pressur@= kp, with x a constant.
This equation of state is the only one compatible with exact
self-similarity. We impose CSS in the metric by making the
ansatza=a(x) and a=«a(x). Imposing self-similarity on A. Equation of motion
the spacetime, we find from the Einstein equations that In this section we discuss the axiat 1 perturbations of

amp= %ZTP(X) and V=u®r o/n®r g=V(x). Here n®= e continuously self-similar perfect fluid critical solution.
—€e"gu® is the outward-pointing qmt spacelike vectpr NOr- This leads us, from general arguments giver(id], to a
mal tou”. The constans that was introduced above is Now nregiction for the scaling of black hole angular momentum in
chosen so that the surfage- 1 is a matter characteristic. Itis critical collapse. Note that this section differs from the rest of
then the past sound cone of the singularity. . the paper in presenting purely analytical results.

The bac_kground solution thqt we 'want t_O use IS COM-  The axiall=1 perturbations contain a single matter de-
pletely defined by the assumptions 6f continuous self-  gree of freedom, and no gravitational waves. The gauge-

similarity, (ii) spherical symmetryjii) analyticity at the cen-  inyariant fluid velocity perturbationg, obeys the autono-
ter x=0, and(iv) analyticity at the past sound come=1.  moys equation of motion

The background equations resulting from the CSS ansatz are
given in Appendix A. The CSS ansatz reduces the two Ein- (,BrszA)|A=0. 9)
stein equations and two matter equations that are needed in
spherical symmetry to one algebraic equationdand three g js just a transport equation along the background fluid
ordinary differential equations ik for p, V.andg=ala. — fiow, All axial metric perturbations are encoded in a gauge-
There are two boundary conditions for a CSS solution a{.ariant scalarll. For =1, II is obtained fromB by
x=0. The gauge conditior(0)=1 becomesg(0)=1.  qadrature, and Eq9) describes the dynamics completely.
From regularlty of the matter velocity, CSS, and matter congg =2, TI obeys a wave equation with a source term pro-
servation one can derive that portional toB. (In [11], it was incorrectly assumed that this
Vv 5 is true also fol=1.)
m-—=— - 7) As we shall see now, the complete mode spectrung of
x-0S9Xx  3(1+k) can be obtained analytically for dll For| =1, we then have
the complete dynamics. Fbe2, the spectrum oB is also
Imposing this is the regularity conditiofiii) at the center. known analytically, but that of the homogenedismodes
Note that this limit would also hold for a CSS fluid in a flat must be calculated numerically. Here we obtain the modes of
spacetime. B for generall=1, and restrict td=1 at the end.

Ill. AXIAL =1 PERTURBATIONS—ANALYTICAL
TREATMENT
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The perturbed fluid velocity is regular at=0 if B is  Jarity condition(7). When we also take into account thats
O(r'*1) there. We therefore define a rescaled varigBle an even function ok and thatv is an odd function, we find
=r~(*13 that is even inx and generically nonzero a&  from Eq.(10) that
=0. The perturbed stress-energy tensor remains self-similar
if B depends onr as e " at constantx (for any 1). We 2(1-3x)—(1+3x)l

therefore  define a rescaled variable,Z%=e"TE

—ar —(1+1) o fi ; ;
e(sx A This final variable obeys the equation This analytic result is in perfect agreement with the late time

behavior of numerical evolutions of generic initial data for

o V o V J— °
ﬂvfdl- X+S— B,X+ _1+l% 2+ x+ S—)(mp)yx B.
9 K 9 We now show that the mode spectrum is discrete. To look

V) oe for modes, we make the ansatz

+(1+1)| 1+ —| B=0. (10)
gsx °
B(x,7)=e""f(x) (15)
This is of the form and obtain
B +XAX)B +B(x) =0, (11) df  A+B
’ ' Xd_X = _A (16)

whereA andB are regular, even, strictly positive functions of

X, so that A(x)=Ag+Ax>+0(x%), and similarly B(x) By expanding this equation in powers xaroundx=0 and
=Bg+Bx2+O(x%). We look for solutions°8 that are regu- comparing coefficients, we see thaf (0)# 0, andf is t(_) pe

lar even functions ok. a regular even function of, we must have. = —By. This is
precisely the mode that dominates the late-time behavior
(13), and we may call itfy(x). One obtains it as a power
series in a neighborhood &&= 0, and then by solution of the
Using the method of characteristics, the general solutio©DE (16). We normalizef, by settingfy(0)=1. We now

of Eq. (11) can be written as subtract a suitable multiple of this mode from the solun
XB(X) — By ) to obtain something that i©(x?) atx=0:

P (X'T)ZGB(’TGX"(‘JOW"X

xA(X) — Ag
X EX[{ - foWdX_AOT)

whereF(z) is a free function that is determined by the initia
data. Note that the two definite integrals exist and@¢e?).

B. Analytic calculation of the mode spectrum

BA(x,7)=B(x,7) — Foe Bo7fy(x) (17)

XF

, (12 where B(x,00=Fo+O(x? as before. By construction

B®(x,0)=0(x?). Expanding Eq(12) to the next order, we
have
|

. M(2) —e (Bot2ATE 4 24 —2Ag7) 12
For regular, even initial data, witB(x,0)=F,+0O(x?), we prxr)=e [F2+00x%)+0(e ) (18)

haveF (z) =Fq+O(Z?).

We can now read off that the late-time behavior of thewe then obtain a modé,(x) by solving Eq.(16) with A\ =
solution B(x,7) asr— is —(Bo+2A,). We normalize it asf,(x)=x2+0(x*). Con-
tinuing in this way, we can strip off a sequence of modes
decaying with\=—(Bg+2nA,) for n=0,1,2.... These

7 _ ~—Bor] 2 —2AgT
Bx, 1)=& " Fot O(x%) +0(e 7] (13 modes ar@(x2") at the origin, and so form a complete basis

for smooth functionsOG. Therefore the entire spectrum is dis-
crete.
From Eq.(10), using again Eq(7), we find

ast— oo, For generic regular initial dat&,, does not vanish,
and the solution decays as Bo™ at late times. One might
have expected that the growth exponent depends on details
of the background, but in fact it depends only on the back-

ground at the center. The physical reason for this is that the =
transport equation transmits information only from the center 3(1+«)

outwards. For example, we can see from EfR) that the

1+ 3k
(19

We can now write down the complete spectrum for all values

solution 3 for initial data that vanish in a neighborhood of of x andl, labeled by the index=0,1,2 . ... Itis
x=0 is strictly zero at any fixed at sufficiently larger.
Surprisingly again, we can evaluaBg in closed form, N(k,l,n)=—=By(k,l)—2nAg( k)
even though the background solution away from the center is
known only numerically. From matter conservation and the 22(1_3")_(1+3K)(| +2n) (20)
assumption of continuous self-similarity we have the regu- 3(1+«k)
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1 T T T 5(1+3K) 1
,LL(K) = m Y( K), §< xk=<0.49, (23

for the angular momentum exponemt given the mass ex-
ponenty.

This result corrects the value @f given in[11] for the
casex=1/3, based on an incorrect value Xf. The correct
value\ ;= —1/2 for k=1/3 gives a real critical exponept
=5v/2=0.898 for the black hole angular momentum. Note
that the incorrect value given ifl1] was complex, which
was expected to give rise to oscillations in the direction of
the black hole angular momentum as the black hole threshold
is approached. However, the correct value\gfis real, and
so the angular momentum scaling is a power law, like the

. mass scaling.
o 0.2 0.4 0.6 0.8 1
° . . . . . IV. ALL OTHER PERTURBATIONS—NUMERICAL
FIG. 1. TheB equation describes axial fluid velocity perturba- TREATMENT
tions. The plot shows the growth exponantwhich is real, against
x. We plot\(«,l,n) given in EQ.(20). The thick line is forl=1 A. General aspects of the perturbation equations
andn=0, whereg is the only perturbation(it is positive for « Before we discuss the perturbation equations of motion in

<1/9. Below, from top to bottont=2 . . . 5, for theleading mode,

N0 detall, it is useful to discuss the general form of the pertur-
with n=0.

bations of a spherically symmetric and CSS solution. As we

. have seen, we can choose dependent and independent vari-
From this formula we can read off that &2 modes decay gpjes for the background so that the background is given by
for all « in the range 6<«x<<1. All =1 modes also decay 5 pumber of functionsZ(x,7)=Z, (x) of a single self-

for x>1/9, but for k<<1/9 there is exactly one growing  gimilarity variablex. It follows that the equations of motion

=1 mode(the n=0 modg. \ for the dominant l(\_=0) | ~of the linear perturbations of this background, when written
=1 mode is relevant for angular momentum scaling. Itis i first-order form in suitable variables, are of the general
form
_ 1-9«
)\1——3(1+K)- (21) u,=A(X)u,+B(x)u, (24)
The dominant §=0) mode is plotted fof=1 ...5 inFig. U =C(x)u. (25

1.

Here u(x,7) is a vector of perturbations, and, B, C are
C. Angular momentum scaling matrices that depend on the background. We shall call the
coupled partial differential equations that contain
7-derivatives evolution equations, and the coupled ordinary
differential equations ix constraints. Not all variables
need obey both types of equation—some variabieshey
22—\, only an evolution equation, others only a constraint equation,
nw= T=(2—A1)y. (22 and yet others both. For most of the perturbations, we shall
0 be able to use a free evolution scheme in which the only
constraints are trivial ones of the form ,=u, introduced
by writing a wave equation in first-order form. For the
'spherical perturbations and the polb+1 perturbations,
however, it is unavoidable to solve nontrivial constraint

In [11] we derived a general formula for the critical ex-
ponentu governing black hole angular momentum in critical
collapse, namely

[This formula corrects a misprint in Eql1) of Ref.[11].]
Here A is the Lyapunov exponent for the spherical mode
which is real and positive, and\;=\(«,1,0) is the
Lyapunov exponent for the=1 axial perturbations, which equations.

are real.y=1/\q is the critical exponent for the black hole The perturbation equation®@4),(25) admit solutions of
mass. The derivation of this formula assumes that the critic%e form ’

solution has precisely one growing perturbation mode, which

is spherically symmetric, while all nonspherical perturbation

— AT
modes decay. The analytical result in this section and the u(x,7)=e"u(x). (26)
numerical results in the following sections show that this
assumption holds in the range ¥%=0.49. Both A andu,(x) are in general complex, but because the

For this range of equations of state, putting the resultsoefficientsA, B andC are real, the solutions form complex
(21) and (22) together, we obtain the analytical prediction conjugate pairs. With=A *iw, the general real solution is
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R Ceu(x,7)]=Ce *Tcod wr+ S)Reu, (x) perturbations, regularity conditions have to be imposed at the
) center and at the light cone. For the 1 polar perturbations
—sin(o7+8)Imuy(x)]. (27)  regularity conditions have to be imposed at the center and

the soundcone, and for the=2 polar perturbations regular-
If the general solution can be written as a sum over suclity conditions are required at the center and both the light
modes is a subtle question, but here we ask mainly if thereone and the soundcoriehich is in the interior of the nu-
are any growing modes with >0. Furthermore, if we dis- merical domaiin Modes can then be found in two ways:
cretizeu(x, 7) on a finite grid inx (but not in7), the general (@ From an initial guess fox andu, (x), one can find the
solution of the discretized field equations is then clearlycorrect values by shooting or relaxation. In practice, the ini-
given by the sum over a finite number of modes, each ofial guess has to be quite good, and finding one solution does

which is exactly exponential in. not exclude the possibility that there is another solution with
In defining the variables that we evolve numerically, we largerA.
begin from all the variables with an overbar defined 9, (b) For given\, the boundary(and possibly midpoint

and their dot and dash derivatives where necessary. On gonditions can be solved in termsmfree parameters. If the
self-similar background, it is useful to further rescale theséoundary value problem is well-posed, the shooting proce-
variables by powers of” so that the background plus per- dure must match um variables. The mismatch in these
turbations is still self-similar if and only if the rescaled vari- variables is a linear function of thefree parameters, and is
ables are independent of If this is done, the resulting equa- therefore described by amxn matrix A that depends ana-
tions do not contain explicit powers @&". The spacetime lytically on X. If A(\) has a kernel, a solution, can be
perturbations grow in a physical sense towards the singulafound for this . One therefore looks for zeros of the
ity if and only if the variablesi grow with 7. Rescaled barred complex-analytic function déf(\). This can be done by
variables will be denoted by a circle, their rescaled dot decontour integral$12].

rivatives by a tilde, and their rescaled prime derivatives by a (2) One can also use the equations to evolve generic ini-
hat. tial datau(x) in 7. At late times the solution will be domi-

In the following, we shall use “degree of freedom” to nated by the dominant mode, and one can read éfom its
denote a variable that can be freely specified as a function dfme dependence. One can also subtract the dominant modes
a radius at the initial moment of time. In this count, a waveone after another, in the Gram-Schmidt process, in order to
equation has two degrees of freedom, for each vearelm.  find subdominant modes. This is known as the Lyapunov
In the|=2 perturbations there are eight physical degrees ofnethod[6].
freedom, corresponding to wave equations for the two polar- (3) In a third approach, the evolution equations are finite
izations of gravitational waves, the three components of thelifferenced inx but not in+. The resulting finite difference-
Euler equation, and the continuity equation. On a sphericallglifferential equations can be used in two ways:
symmetric background, these generic eight degrees of free- (a) With M degrees of freedom oN grid points inx, the
dom split into three axial and five polar degrees of freedommapT:u;(X;) —Uu; (X;) withi=1...M andj=1...Nisa
The number of first-order variables is lardésur and seven, square matrix of sizeN|N)2. Its eigenvalues with the largest
respectively because in the first-order form of a wave equa-real parts should be an approximation to the continuum ei-
tion for a variableg, ¢ itself and¢ , are separate variables genvalues\ with largest real part(The lower eigenvalues
that are linked by dtrivial) constraint equation. will depend on the discretization scheme and are not ex-
pected to correspond to continuum mogles.

(b) Alternatively, we can use a standard ordinary differen-
tial equation(ODE) integration scheme to discretize in time.

In investigating the non-spherical perturbations numeri-Such a numerical method is called “semi-discrete” because
cally, we have to treat each value ofand| separately(The  with sufficiently small step sizA 7 it is effectively discrete
equations do not depend om) In practice, we work with a only in x. The mapT, :u(0x)—u(A,x) for a finite interval
finite sample of values of in the range 8<x<1, and with A is again an IN)? matrix. The few eigenvalues with larg-
<5. With increasind, numerical difficulties at the center of est modulus should now be approximations to the largest of
spherical symmetry become more pronounced, limiting thehe numbers?”.
range ofl we can investigate. Fortunately the rarge5 is We first implemented the Lyapunov, meth@]. It is the
sufficient to see a trend, as we shall demonstrate in plots. simplest method for obtaining the dominant mode. This

We are looking for mode solutions of the forf26), and  method worked well for th& = 1/3 fluid[8], and also for the
in particular for the dominant mode, the one with the lowestnonspherical perturbations of the scalar field critical solution
value of A=Re\. This objective allows a number of very [10]. However, in the polar perturbations for some values of
different numerical approaches. Three different ones come t@ andl, the dominant mode is a numerical artifgah insta-
mind, and we describe them first, and then summarize oupility) in all finite differencing schemes that we have tried.
experience with the last two of them. More details are givenNThe nature of the instabilities will be discussed bejow.
in the Appendixes. Then one needs to look for sub-dominant modes of the finite

(1) Making the ansat£26), and imposing suitable regu- difference equations in order to find the dominant physical
larity conditions, one obtains a boundary value problem formode. We have found that the Lyapunov method is ex-
an eigenvectou,(x) and eigenvalue.. For thel=2 axial  tremely inefficient for finding subdominant modes.

B. Numerical methods
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We then implemented both method3a and (3b). In  carry out independent residual evaluations, as well as simple
method (3b) we used first order, second order and fourthconvergence tests.
order Runge-Kutta integratidiRK1, RK2, RK4), and an im- We have loosely referred to the numerical artifacts as in-
plicit second-order scheméterated Crank-Nicholson, or stabilities. However, the usual concept of the stability of a
ICN). For small enough time steps, the differences betweenumerical method is at most exponential growth of numeri-
these methods are negligible, and we effectively reach theal solutions. But here we are using semi-discrete methods
continuum limit in 7. Furthermore, in this limit, the modes (discrete only inx) on a system of linear equations with
and eigenvalues produced by meth@8s and(3b) agree up  r-independent coefficients. Therefore all solutions, both
to roundoff error. Therefore, there is no advantage in methog@hysical and artificial, depend exactly exponentially an
(3b) over (3a), but a higher computational cost. Exponential growth, or its absence, can therefore not be used

Within method(3), many ways of finite differencing in o gistinguish between physical and unphysical solutions. An
are possmlg. We have used four finite dlffergn0|ng SChemeﬁnphysical mode may grow either more or less rapidly than a
in x.'The differences between them remain important qt a'bhysical mode. The only certain way of distinguishing them
feasible values ofAx. Two of these schemes are upwind js )y convergence(This will also rule out the weak modes,

schemes that explicitly use the eigenvalues of the m&rix pecayse the numerical methods were not designed to handle
Both are the linearized version of Godunov schemes. GDl,am and will therefore fail to converge on them.

the scheme used before[i8], is first-order accurate. GD2 is We have carried out two kinds of convergence tests. One
a second-order accurate version. The other two schemes uUsgg; is to check that the discretized eigenvectgrsc) and
H J

centered dlffe_rences and are second-order accurate. C%rresponding eigenvaluasconverge with increasing reso-
uses the obvious centered differences. CD4 uses a Welliion in x at the expected ratgo first order or second order
known trick to deal with terms of the formb ,+(21/X)#,  for each scheme, but also that all four schemes converge to
which can give rise to numerical instabilities near the centef,e same solution. The other test is independent residual
x=0. (The 3 and 4 are just consecutive labelsll four g\ auation. Writing the system of continuum equations for-
schemes are defined in Appendix E. _mally asu .(x)=Lu(x), whereL is a linear derivative op-

Some of the numerical instabilities that we see are famil 4oy Ieti_l andL, be two different finite difference ap-
iar: prot_)lems at the center, in particular for hlgraqd grld” proximations toL, and let (i;,\;) and (Uy,\,) be modes
modes in centered differencing. Another kind of instability (eigenvectors and eigenvalesf L, and L,. If these are
was harder to understand. The continuum equations admétpproximations to a continuum ?’node %ﬁe norfas u;
modeT s.olution's{26) in Which Uy is discontinupus ata (;har- —L,uy| and|\,u,—L,U,| should converge to zero with in-
acterlstlc(:j/thatr:s also 3 line of ?O;Sta.mth?t IS, "’};Er;[he I'glht_ creasing resolution. Convergence should be to second order
cone and/or the sound cone of the singularity. The evolution, g\ ytion if both methods are second-order accurate, and
equations are hyperbpllc, and these SOIUt'On.S are called _we% first order in resolution if one or both methods are only
solutions. They are discussed in more detail in Appendix Ffirst-order accurate. For the norfhwe choose thé, norm

While they are valid as a generalized type of solution, thes%livided by the numbeN of grid points, which is an approxi-
modes would not arise in a collapse situation, and so We ation to thel , norm '

need to exclude them. Unfortunately, for certain value of Imposing the constrainté25) poses no numerical diffi-

and|, they dominate the top smooth_physpal mode. culty. During evolution, in method&) or (3b), one has the

The weak ques were not seen n ‘h‘? llnvestlga[tllﬂ] choice of either imposing the constraints only on the initial
of the perturbations of the SC?"af f|_eld critical solution, l_)e'data, from time to time, or at each time step. We find that this
cause there Fhey C(?u'd be dlscontlngous only_ at the IIghﬁardly affects the results. Some care has to be taken when
cone of thg singularity, but the numerical domain was trun- Iculating the mag in the presence of constraints. This is
cated precisely there. The same can be done for the axi scussed in Appendix G.
perturbations of the perfect fluid critical solution, because
there are no axial sound waves. Similarly, the numerical do-
main can be truncated at the sound cone for the spherical and
| =1 polar perturbations because they do not comprise gravi- The spherical perturbations have already been investi-
tational waves. Thé=2 polar perturbations, however, con- gated by several authof§-7], and we use them here as a
tain coupled sound and gravitational waves. Therefore théest of our methods, and also to make sure that we are inves-
numerical domain cannot be truncated at smatléhan at tigating the same background solution as these authors.
the light cone, and this leaves weak modes at the sound con@auge-invariant perturbations do not exist fer0. Equa-

The finite differencing schemes we use are not designetions of motion for the spherical perturbations are most eas-
to represent weak solutions correctly, but they do of coursdly obtained by linearizing the field equations in spherical
have a counterpart in the modes of the finite difference syssymmetry in the polar-radial gauge that is also used for the
tem. Sometimes the numerical counterpart resembles thHeackground. The perturbatior¥In p) and 6V obey evolu-
continuum modé€in particular in GD1 and GD2 but some-  tion equations inr andx, while the perturbationga and g
times it cannot be distinguished by inspection from a smoottobey constraint equations only. We do not give the de-
mode(in particular in CD3 and CD¢ The only certain cri- tailed equations here.
terium is convergence. This makes it crucial that we have We have used all four codes. In GD1, GD2 and CD3 the
more than one finite differencing scheme, so that we camop physical(growing mode shows up as the top numerical

C. Spherical perturbations
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FIG. 2. This plot demonstrates thatx) in GD1, GD2 and CD3 0 0.2 0.4 0.6 0.8 1

converges with increasing resolution to a common value and at the
expected order. The resolutions ax&=1/10,1/20Q...1/320. The
three plots, from top to bottom, show the error in GD1, GD2 and

CD3. Areference value fax (k) was obtained by Richardson inter-

polation on CD3 at the highest three resolutions. This referencgvOIUtlon of 8 is still autonomous. Th|s'means that the
value was then subtracted from the result of all three codes at affPECtrum of the COL_JpleH a_nd,B system is the sum of two
resolutions to obtain a measure of error. To demonstrate power-laR@/ts: modes in whicl8 vanishes, so that they are solutions
convergence, this error was divided by a factor of 4 for each factoPf the I equation without a source term, and modes that are
of 2 in Ax (for CD3 and GD2, or by a factor of 2for GD1). The  driven by, so that their value of is set by the evolution of
error at the highest resolution was not rescaled. Note the rise of thg.
error at low in all three methods. Although the different graphsin ~ As shown above in Sec. lll, the spectrum of #fmodes
each plot do not lie on top of each other perfectly, they are similarcan be calculated analytically for dllincludingl=2. As a
indicating approximate power-law scaling at the expected order. check we have implemented tizequation on its own, and
the numerical results agree with the analytical ones, showing
mode. In CD4 the growing physical mode is also present buthe top two of the analytically calculated modes. That is as
must be identified by hand because it is dominated by gl‘idnuch as one can expect, becausertih mode behaves at
modes. the center ax®", and no finite differencing scheme is de-

Figure 2 demonstrates the convergence of GD1, GD2 angigned to represent such behavior correctly. In fact, unphysi-
CD3 with increasing resolution towards a common value of

N (k) over the entire range ok. GD1 converges approxi- 0.04
mately to first order, and GD2 and CD3 approximately to
second order, as expected. The finite differencing error is
approximately 10% in both second-order schemes A&k
=1/320 for intermediate values of. It rises towards the
high and the low end of the range. 0.02 |
Figures 3 and 4 compare odr(k) at Ax=1/320(GD1,
GD2 and CD3 with that obtained by Maisofb]. The results
agree quite well for alk. Nevertheless, the figures show that
there is a systematic difference to Maison’s results that is
generally much larger than our finite difference error. It 0r
grows in all three codes as— 1. (The exception is in GD1
at low « where the finite difference error becomes domi-
nant) We suspect that the systematic error is in our code,
rather than Maison’s code, and specifically in the background
code: as we have discussed above, it is not well behaved at-002 ;
the light cone akx—1, and at the center as—0.

FIG. 3. A(«) from Maison, and our codes GD1, GD2 and CD3
at Ax=1/320.(The four lines are not resolved in this pot.

FIG. 4. Difference in\(k) between Maison and our codes at
D. Axial 1=2 perturbations Ax=1/320: circles are GD1, squares GD2 and diamonds CD3. The
fact that GD2 and CD3 differ from Maison by approximately the
For 1=2 the gauge-invariant velocity perturbatigB  same value indicates that this difference is mainly systematic error,
obeys an autonomous transport equation, just als=fdr. For  rather than finite differencing error. The fact that GD1 has a differ-
=2, there is also a gauge-invariant metric perturbaiibn  ent deviation from Maison is explained by its larger finite differenc-
which obeys a wave equation wif as a sourcg9]. The ing error, which increases at lokv—see top plot of Fig. 2.
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cal modes that behave &8 with n odd also show up. They 0
are unphysical because the corresponding velocity perturba- _
tion is not regular at the center, but they are valid solutions of
the equation. b

The equations foll were derived in the fluid frame in
[9], but they look simpler in the frame of constanbbserv- -5}
ers (radial frame. These are just different choices of first-
order variables for the same wave equation. As a test, we
have implemented the equations in both frames, and the re-
sults converge as expected. In the fluid frame we have also
implemented the coupling {8. As expected this simply adds
extra modes driven b modes to the spectrum. As we have
analytical results for thg@ modes(they all decay, we only
need the fredl modes.

For simplicity, we give here only the source-free equa-

0.5

tions in the fluid frame. These equations are quite similar to %4 p 2 3 2
the toy model wave equation of Appendix D. The variables
are FIG. 5. Convergence of for the top physical =2 axial (II
only) mode with resolution, at=1/3. The upper graph is Re and
T — 7T M (1+1)r, —1 the lower graph is Im. From left to right N=10,2Q. ..160.
I1=e""1L I1=e @ H't’ Circles are GD1, squares are GD1LC, diamonds GD2 and triangles
N up CD3.
lM=e (*Y7a1 . (29 P

they are related to weak modes at the light cone, and they
. ) can be discarded by inspection. Weak modes are particularly
IT'is constrained by easy to spot in GD1, as it is the most causal code. In the
. o other codes, the numerical counterparts of weak modes can
IT=asll . (29 appear quite smooth. In GD1 we can suppress weak modes
, ) . ) ) completely by rearranging the grid spacing so that the light
The_H equation without source, in the radial frame, is thenggne falls exactly on a grid point, and then truncating the
equivalent to grid at that point. This code will be referred to as GD1LC. In
5 the other codes we need to pick out the physical modes by
(1+1) L . : _
the criterion of convergence both with resolution for a single
X code and between different codes. Figure 5 demonstrates
convergence oh for the casek=1/3 andl=2. The best
r°[, values (either from GD2 or CD3 for the Lyapunov expo-
nents are plotted as a function efandl in Fig. 6. Thel
(30 =2 leading mode is unstable for 05&=0.87 (see also
Fig. 7).
. ~ . Co~ Cal » Convergence tests fall to identify any mode as physical at
I =Cyll + Agll i+ s_gH_(|+1+ sg IT, the highest available resolution far=0.05 atl=4 and
(31  =0.1 atl=5. However, all modes of all three codes decay
for these values ok andl, so that we are fairly certain that
o a. . o there are no physical growing modes for these values of
.= aH—sxaH—IH. (32 andl. Furthermore, for alk, Re\ decreases with increasing
| (see Fig. & Therefore we conclude that a3 modes are
This is of the formu .= Au,+ Bu, where the coefficients of stable.
the 2X2 matrix A are

IT and T can be specified freely on the initial surface, while

- - . C.l- 1
H’T:A]_H’X"‘BJ_H’X_ |+1+_ H+

sg/  sg

a’-1

X2

R 1
H_(|+2)Szag

Cg
(-1

+C,

1 1 E. Polar |=1 perturbations
Ar1=—X, 51:@' Clzﬁ- 33 In this section, we discuss the equations of motion for the
=1 (dipole) polar perturbations. There are no dipole gravi-
The matrixA has therefore the eigenvalues tational waves, and therefore the gravitational field has no
degrees of freedom independently of the matter. There are
1 three matter degrees of freedom. They are an azimuthal fluid
S Xi@' (34) velocity perturbationy, a radial fluid velocity perturbatiofy,

and a density perturbation. (For the equation of state we
We have used GD1, GD2 and CD3. All three codes haveaise here, the pressure and density perturbations are related
numerical modes that are not physical. Often it is clear thaby dp=«dJp.) The metric perturbations are obtained from

084021-9



CARSTEN GUNDLACH PHYSICAL REVIEW D65 084021

2 . . The perturbation variables are not completely gauge-
invariant forI=1. We fix most of the gauge freedom by
setting the metric perturbatidk=0. In this (partially fixed
gauge the remaining metric perturbatiots y and » are
determined by constraints. We introduce suitably rescaled
metric perturbation variables

o o o
1 XEe_sTr_gXl lp:e—ZTr—Zw, 77=e_Tr_17].

(36)

The metric perturbations are regular at the centér, i% and

zoﬁ are allO(1) and even inx. The perturbed spacetime is
CSS if and only if all perturbations are independentrof

From Eqgs.(99), (100 of [9], the equations of motion of
the matter perturbations are

0

0 0.2 0.4 0.6 0.8 1

_ Y —ko'=-5, (37)

FIG. 6. Best valugusing CD4 for the Lyapunov exponenx of
II, againstx andl. The upper graph shows Reagainstk, and the o- o, —
lower graph Im\. Circles denotd =2, squared =3, diamonds w -y =-3, (39
=4 and triangled =5. Points are linked by straight lines. The
points k=0.05,0.1,l =5 and«=0.05, | =4 are missing because zy' = —rflsa— ng, (39
could not be computed. The curves for hrend at smallk where
the modes become real. where the expressionS,, S, and S, are given by Egs.

(A9)—(11) of [9]. The first two equations constitute a first-
the matter perturbations by constraints. For a general discusrder form of a wave equation whose characteristics have
sion we refer the reader {®]. Here we only carry out the velocity vk with respect to the background fluids: they de-
reduction of the equations given there to a self-similar back
ground solution.

We use the matter variables

scribe sound waves. The third equation transpértalong
the fluid. Solving the three matter equations for theeriva-
tives, on a continuously self-similar background spacetime,
one obtains the following system of evolution equations:

a=rta, y=—(1+K)y, o=w. (35
Y, =AY xtBwt+S(y), (40)
The matter perturbations are regular at the centéra?hdoy o R R R
areO(1) and even in powers of, ando is O(x) and odd. ©,7= Ce¥ T A it Slw), (41)
The leading orders of andy are additionally constrained as R o o
a,=Fa,+S(a). (42

(1+ k) a+ y=0(x3).
The coefficients of the 83 matrix A in Eq. (24) are

0.2 . : ;
A (1-x)V _ k(1-V?)
X A eDsgt of (1-wVD)sg’
01 |
c —2—(1_\/2) F 43
“ (1-kV?)sg’ T sg 43
or Its eigenvalues, the characteristic speeds, are
(1-x)V  Jk(1-V?) Y%
Nx=—X— et PN 0=—"X— .
041} (1-kV9)sg (1-«V?)sg sg
(44)
The constraint equations for the metric perturbations are also
0.2 . . . given in[9]. The derivative operatob becomes a simple
0.5 0.6 0.7 0.8 0.9 . R .
partial derivative in coordinatex and 7, namely rD
FIG. 7. Detail from Fig. 6 showing Refor =2 andl=3. The = =Xxd/dx. We obtain a system of three ODEs»3nfrom now
| =2 leading mode is unstable for 0.5&<0.87. on referred to as the constraints:

084021-10



CRITICAL GRAVITATIONAL COLLAPSE OF A . .. PHYSICAL REVIEW D65 084021

o o o 0.52 T T T
Xu,=Mu+s, u=(x,n¥). (45 051 ]
05 |
M ands are given in Appendix B. 0.49 B
We now return to the issue of the gauge freedom that is ¢4s |
left after one has sdt=0. The change ok under an arbi- 047 ¢
trary gauge transformation parametrized by the vari%b'he ggg &
k—k+ Llé (see[9] for details. L, is a differential operator 333 ¢
(roughly speaking a secorx derivative, whose kernel is 231§
parametrized by one free function of The remaining gauge 227}
freedom can therefore be fixed by imposing a gauge condi- 2°
tion worth one function ofr. There are two natural choices. %%
In “ » gauge” we set;7=O(x2) at the center. In & gauge” 051
we seta=0(x?), and therefore alsy=0(x2). Numerically 0.45
it is not easy to enforce that any variable behave®@€) at 04 , , ,
the center. Therefore we impose the two sub-gauges using  © 1 2 3 4
variables rescaled by suitable powers<of his is discussed FIG. 8. Convergence of for the single gauge mode in the
in Appendix B. =1 polar perturbations, fork=1/3. From left to right N

Although by function counting either gauge ory gauge  —192q . ..160. Circles are GD1, squares are GD2, and diamonds
should fix the residual gauge freedonkir 0, a single gauge cp4. The top two graphs were obtained in gauge, using the
mode does in fact survive in each gauge. The change of Variables of Appendix A, and show Reand Im for the gauge
mode. The value of for this mode computed from the background
o solution and Eq.(46) is A=1/2+2.384 for «=1/3. The bottom
must now obey both.;£=0, from the gauge conditiok  graph was obtained im gauge, using the variables described in
=0, andL2°§=O(x2), from the gauge conditior?yzO(xz), Appendix B. The exact value of for this gauge mode is 1/2 for

wherel, is another differential operatdroughly speaking K=113.
the wave operatorA careful calculation shows that the two

under a gauge transformation;ﬁa ;7+ L2°§. Any residualog

For «=0.15, our code does not work well. Figure 9
shows that with decreasing the error in locating the gauge
mode increases rapidly. Far=0.1 andx=0.05, all three

1 1 1 codes fail to find the real gauge mode. Nevertheless, GD1
AN=—=*i\/| k+ _)p(o)— _. (46) and GD2 have precisely one growing mode, and CD4 has
s 3 4 precisely one growing mode that is not clearly a grid mode.

All these modes are complex, but they obggeu(x)]
g“m u(x)| for all x, by a factor of~100: the mode is al-

joint equations still have one non-zero solution, Whict%ds
=eM"f(x) for

That means that in they=0(x?) sub-gauge of th&=0
gauge we have a single complex conjugate pair of gaug
modes left.

The situation is similar ine gauge: The change of

under a gauge transformationds— e+ L3§ for some opera-
tor L3, roughly speaking a first derivative. The joint kernel 0.6

of L1°§=0 andL3°§=O(x2) is not empty either but contains
a single real gauge mode with

0.7 T T T

0.5
1+3k
TR “7
0.4
Both gauge modes are in fact found numerically, and give us
a check on the numerical precision for each valua oFig-
ure 8 demonstrates this for both gauges. 03 | .
We have used GD1, GD2 and CD4. Fee0.15, the
numerical results are straightforward. Bothdrgauge and in
7 gauge, we find the expected gauge mode. We finddhat 2 Q
gauge, in the specialized variables described in Appendix B,
has the best numerical behavior at the center. As an estimate g, 9. \ for the single gauge mode in the=1 polar perturba-
of numerical error in the code, Fig. 9 shows the exact andions in « gauge as a function of. Circles are measured values,
numerical value ol for the gauge mode i gauge. Figure connected by straight lines. The smooth curve is the exact value.
10 shows the best value afin this system as a function of The points atc=0.1 andx=0.05 represent the real part of the only
K. growing mode present, which is complex.

0.2 0.4 0.6 0.8 1
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—01 [ ‘ ' ' ' o variables are completely determined as algebraic expressions
-03 | & P in the seven first-order metric perturbation variables, as dis-
-05 | : / 1 cussed in detail if9]. For the purpose of finding the late-
-07 - 1 time behavior of generic perturbations, we work with the
-09 N Z 1 metric perturbations alone.
-1 &\\C/ 1 Solving for the 7 derivative of the seven variables, we
-3¢ 1 find that the matrixA in Eq. (24) takes the following form:
-1s 02 04 06 08 1 ~
1.6 T T T T T T T T Al Bl D X
1.4 | U . Ci A VD 3(
12 | \ . A= Ac Be Bl u=]
N C. A, VE .
M \ F .
° ¥
08 . ‘ s s . . s .
0 01 02 03 04 05 06 07 08 09 1 (48)

FIG. 10. Best value(obtained with GDZ for the physical The remaining two variableg andk are evolved using onl
Lyapunov exponenh of the |=1 polar perturbations. The upper 9 8 g only

graph shows R againstk, and the lower graph Im. Points are source terms. The coefficients of the matfixhave already

connected by straight lines. The measured values end=41.15 been given in Eqs(33) and (43), except for
because fok=0.1 andx=0.05 the top mode could not be identi-

T U1 —\2
fied. The graph of Imx ends becausk is real forx<0.5. Clearly a D= M E—— M (49)
real mode and a complex mode pair have crossed betwedh5 s?gx ' (1—kV3)g '
and x=0.6.

The five eigenvalues dk are\ ;. , \ . and\g, which have

most real, modulated by a cas factor. It is also clear that already been given{ andE do not influence the eigenval-
there is a finite differencing problem at the center that affect$/€S) Note thats has been chosen so thet. >0 for 0=x

all three codes: the functiongx) are not well-behaved even <1 The poinx=1 where it changes sign is the sound cone.
or odd functions. The origin of this instability is uncertain. A Similarly, the poinx=x,.>1 where\, , changes sign is the
plausible explanation is that the numerical background solulight cone. Clearlyx is 1 for k=1 and diverges ag—0.

tion itself is not sufficiently well-behaved at the center for Note that the §,x) submatrix ofA is the same as the entire
small k. Some of the coefficients in the=1 (and alsol matrix A for the axialll perturbations, as both pairs of vari-
=2) polar perturbation equations are very large and sharplgbles obey a wave equation at the speed of light. Similarly,
peaked at the center. Furthermore, some of these coefficientse (k,k) submatrix is equal to the entire matrix for the
must be obtained as numerical derivatives of the backgrounet 1 polar perturbations, which obey a wave equation at the
solution. These numerical derivatives are not smooth at thgpeed of sound. Therefore, is equal toA; for k=1, when
center, and we had to artificially extrapolate them to the centhe speed of sound is the speed of light.

ter in order to smoothe them. . . We have used the three codes GD1, GD2 and CD3. There
Because all three codes agree on a single growing modg good agreement and convergence between the three codes

that is almost real in the sense just defined, we identify thigor 0.2<x=<0.8. Figure 11 demonstrates convergence of

mode with the gauge mode, even though the agreement in for =1/3 andl=2. Figure 12 shows the best values)of

is poor. This leaves no other growing modes in any of thefor |=2...5. We findthat all modes for all decay forx

codes for any« (except for obvious grid modes in CD4 that <0.49. Fork=0.49, there is an unstable 2 mode(see Fig.

can be ruled out by inspectigniVe therefore conjecture that 13). At still higher «, there is probably more than one un-

there are no growing physical modes, even though we cannegable mode, but it is difficult to identify subdominant modes

identify the top physical mode. with certainty.
For k=0.8, andk=0.2, the numerical precision decreases
F. Polar I=2 perturbations quickly. In this region the numerical accuracy is poor For

) ) o . =2, and forl =3,4,5 even the top physical mode cannot be

As discussed in detail iff], thel=2 polar perturbations jgentified clearly. The origin of these problems is different
of a spherical perfect fluid admit a free evolution formula- fq, high and lowx. At high , all modes in all three codes
tion. The dynamical variables that can be specified freely argnhow discontinuities at the sound cone. These are not due to
the metric perturbationg, k and¢, and the time derivatives the weak modes discussed above, but are due to unsmooth
x andk. y andk obey wave equations, angl a transport behavior in the numerical background solution, through cer-
equation, all of which are coupled. There are three gaugetain coefficients of the perturbation equations that must be
invariant matter perturbationsy is an azimuthal velocity obtained as numerical derivatives of the background solu-
perturbation,y is a radial velocity perturbation, and is a  tion. At low «, the origin of the low precision is not so clear.
pressure and density perturbation. These matter perturbatidhmay be that the background coefficients become increas-
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a3 ‘ ) -15 f I I I
>0 1 5 3 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 11. Convergence of for the topl=2 polar mode with F'_G 13. D_etail of Fig. 12. Ra s positive forl=2, x>0.49.
resolution atx=1/3. From left to rightN=20,4Q . . .160. Circles  R€\ is negative for all« for >2.

are GD1, squares are GD2, and diamonds CD3. The upper graph js . . e . .
Re\, and the lower graph is Im f8r ©=0.49. As evidence that the instability is physical, Fig.

14 demonstrates the convergence of independent residual

ingly large and sharply peaked i near the center as evaluations between all three codes fng and k=0.6.
—0. With the sound cone at=1, the value ok at the light ~From convergence, we estimake(for this « andl) as A
cone also diverges as i as the sound speed goes to zero.~ (0-112-0.003)+(1.968-0.005). The real part ofs is
(Recall thaix is defined so that the sound cone iscat1.) In therefore much larger than the finite differencing error.

a second source of error, some of the perturbation coeffi-

cients, as determined from the numerical background solu- V. CONCLUSIONS

tion, must be smoothed at the center for smalland this The threshold of gravitational collapse of a perfect fluid
introduces additional erro(This is the same problem that \ith p=kp in spherical symmetry shows “type II” critical
affects thel =1 polar modes.

In contrast to the inadequacy of the numerics at high and 1 T T T
low «, the numerical precision is good in a large neighbor-
hood of the valuex=0.49. It is therefore certain that the
=2 polar perturbations are stable fer<0.49 and unstable

2 ' ' ' 0
ot
2ot
4L

-6
0 . . . .
15 T T T T

10 e 0 1 1

0 1 2 3 4

FIG. 14. Log-log plot of independent residual evaluation be-
tween three different codes for the dominant pdkar2 mode for
x=0.6. Evaluating the mode produced by GD2 with CD3 shows
exact second-order convergen¢eangles up, bottom curyeThe
opposite operation, checking on CD3 with GD2, shows second-

FIG. 12.\ for the topl=2 .. . 5polar modes as a function af order convergence that breaks down at high resolutivangles
The upper graph is Re, and the lower graph is . Circles are  down). Checking on CD3 and GD2 with GD1 shows the expected
|=2, squared =3, diamondsl=4 and triangled =5. Note that first-order convergencériangles left and diamongsThe opposite
Re\ decreases witH, while Im\ increases. The curves fdr  check shows first-order convergence that breaks down at high reso-
=3,4,5 do not extend to the lowest and highedtecause of large Iution (squares and circles, top curye$he resolutions shown are
numerical error. Ax=1/10...1/160.
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phenomendincluding mass scaling with a critical expongnt interesting new phenomena in critical collapse that will be
for the entire range €k<1 [4-7]. Is this true also when explored elsewhergl3].

one relaxes the assumption of spherical symmetry? We have The existence of a small number of unstable polar modes
addressed this question by studying the nonspherical pertu@t high«x (=0.49) is more puzzling. At face value it suggests
bations of the critical solutions in spherical symmetry. Wethat the spherically symmetric CSS solution is a critical so-
have extended the results [@] from x=1/3 in the equation lution only when restricted to exact _s.pherical symmetry. Its
of statep=kp to the entire physical range<0k< 1. Because place may be taken by another crl_tlcal solgtlon with less
of the numerical difficulties, we have complemented theSYMMetry, or there may not be a critical solution, and hence
single first-order scheme used [B] with three different no universality, at the black hole threshold.

second-order finite differencing schemes. We have comple-

mented convergence tests by independent residual evalua- ACKNOWLEDGMENTS

tion. This allows us to identify “weak modes,” numerical
artifacts related to weak solutions of the perturbation equag,
tions. Finally, we have corrected errors[B] concerning the
equations of motion for thé=1 axial and polar perturba-

| am grateful to José. Martin-Garca for pointing out
at | was using the wrong equations of motion ferl
perturbations i8], and for help in correcting them. | would
g like to thank Bob Wald for helpful conversations on the
tions. o _ =1 axial perturbation equation, and Miguel Alcubierre, Matt
After verifying that the CSS solution has exactly one choptuik, Giampaolo D'Alessandro and David Garfinkle for
growing spherical perturbation for af, we have found that syggestions on numerical methods. This research was sup-
all nonspherical perturbations decay for &llwith the fol-  ported in part by NSF grant PHY-95-14726 to the University
lowing exceptions: of Chicago, and by EPSRC grant GR/N10172.
(1) For k<1/9, there is precisely one growig 1 axial
mode. This result was obtained analytically, even though the APPENDIX A: BACKGROUND EQUATIONS
background solution is known only numerically. Because it
is | =1, this mode is three-fold degenerate. The relation between the fluid frame derivatives and the
(2) For k=0.49, there is a growinb=2 polar mode. We Partial derivatives in CSS coordinates is
cannot rule out that at larget, there are several growing

modes. Because it is= 2, this mode is five-fold degenerate. A e’y ¢ il s Y, ¢ (A1)
(3) For 0.58< k=0.87, there is also a growirlg=2 axial PNV XTsgl )
mode. a
The numerical evidence for this is not as good as one .
. . eT
would like. Becau_se of numerical error, we cannot measure fr— g Vv — ||, (A2)
\ of the top physical mode of thie=1 polar perturbations aJi—VZ| sg/
for k=<0.15, nor of thel=3 polar perturbations fok=<0.2
and «=0.8. However, in all these cases where physical rDf =xf . (A3)

modes and numerical modes cannot be distinguished clearly,

all modes, including the physical modes, do in fact decay.l_he perturbation equations §8] allow for a 2-parameter

Therefore we still argue that all physical modes, apart from quation of stat@=p(p,s), wheres is the entropy per par-

those enumerated above, decay. One cause of the numerica - ) . )
cle. When restricting to our simple baryotropic equation of

difficulty is the separate existence of light cones and soun tate. we set both the fluid entroswand its gaude-invariant
cones, which gives rise to numerical artifacts related to weaR 2 Py gaug

solutions of the continuum equations. A second cause is th&)(etrttl:]rbanongto zercc;. We i'%s; SG%E&F)/&S |Kt) Z;ahro, and ;/vet
instead of a single smooth background solution we are deaf®! e Sound speed squa Jdp/dp equal to the constan

ing with a one-parameter family of such solutions, which is*- .
ill-behaved at both endg=0 andx=1. A third cause is that The background equations that result from the CSS ansatz

several coefficients required in the perturbation equations ard®

first and second derivatives of the background fields, which _

are not perfectly smooth at the center and the light cone. L, . 28%%p , (1+K)V
What is the significance of our results? Thel axial a =1~ 1—V2 LHwVeit SgXx

perturbations are naturally associated with infinitesitdéh

ferentia) rotation. The presence of a growing rotation mode dine

at low « (<1/9) is not surprising, as one would expect a p_ -1 _

rotating dust configuration to be torn apart by centrifugal dx =(1+)D T 1(VHgs0S,~(1+VgsxS,,

forces. For a sufficiently stiff fluid this intuition obviously (A5)

fails. The significance of the=1 axial perturbations is that

(A4)

they can survive into the final black hole formed in collapse \% S

(and turn a Schwarzschild black hole into a Kerr black hole ax- AV )D = k(1+VgsxS,

while all other non-spherical perturbations must be radiated

during collapse. Their instability is expected to give rise to +(V+gsxS,], (AB)
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din — U=e U=e YA =\VW=
« dxg:1—32+(1—K)X252612p, (A7) U=e "U=e ur ,=VW=0(1), (A13)
i =a T, =T A —
where u=e u=e u"a=0(1),
V  2gs v=e v=e N =0(x), (A14)
Sl=2;+ m+VC“+ Ca, (A8) B
p=e "4mrp=0(1),
_2VOS o Lve (A9)
T o1+« @ a 2m s 12 , )
TEl—r,Ar'A=l—r (W?=U?=1-a *=0(x?).
D=k(1+Vgsx*—(V+gsx?, (A10) (A15)
ra. — In a CSS background all these quantities depend only,on
C,= —=—x&pa’(1+ na g q p ¥,
& Xa pa(l+x) 1-V? and we have indicated their behavior at the origin.
=0(x%), (A11)
APPENDIX B: |=1 POLAR PERTURBATION EQUATIONS
2_
C,= fa,_a 1 +52x;a2 1+ "2 _ ) _ The source terms in Eq40) are obtained from the equa-
Xa  2X 1-V tions of[9] in the form
=0(X). (A12)

S(7)=—e "ay1-V2g(1- kV?)(S,+«VS,), (Bl
Here Eqs.(A5) and (A6) are the fluid equations of motion,
and Eqgs.(A7) and (A4) are two of the Einstein equations.

°N AT T N2A(1 — N2V S LS
The termsC, and C, arise when metric derivatives in the S(w)=—e "av1-Vog(1-«V)(VS,+S,),

matter equations are eliminated using the Einstein equations. (B2)
The expression foa incorporates the regularity condition R R
(absence of a conical singulanitg=1 atr=0. S(a)=—e""ay1-Vg(r 's,+Ua), (B3)
The following background quantities are required as co-
efficients in the perturbation equations: where the terms on the right-hand side are defined in Ref.
o [9]. Fully expanded in the variables adapted to self-
W=e "W=e n*r ,=(asx }(1-V?) 2=0(x71), similarity, they are
|
o a\/l—V _— —_— — 0 1 o
S(’y)—m([(K—l)M+4KU+(K—1)VV]’)/—2K(1+ K)V —;(‘i‘(l'f' K)SX#C(
1 — — o _— — — ) — — o
+ E(1+K)Z(;urvy)(sx)zlp—(1+K)[v—w+ kV(u+U)](sX) p+ (1+ k) (v+ Kvﬂ)(sx)%(],
(B4)
S(oy= 2=V DVt 26VU+ <500 oW 5= 2(1+ Lo+ ;
(w)—mz—) (k=1)Vu+2k PR Y21+ k)| — 5 T (1+K)sxp|a
1 1+k— — — — ° - o - °
+ §(1+ K) - v—2W+(1+ K)V,LL"‘ZKVU) (sX)2—(1+ k) (u+Vr)(sx) g+ (1+ K)(/,L+VV)(SX)3)(] ,
(B5)
o a l—V I 710 —_ — o o 1 20
S(@) =5 = T (ot lenct (2k=HUJa— 7+ 5(50°%K (B6)
The coefficients in the constraint equatidd$) are
—1+af—2+(1—k)(sx%p] a2(AUW+2uW—2vU)(sX) 2a(vU — uW)(sx)3
M= —2a2UW(sx)3 2-2a2[1-U2(sx)2+kp(sx?] —afW2+U2—(1+«k)p](sx)* (B7)
2a?[Uv—(pu+U)W](sX) —2a2u2 —3—2a1+U?(sx)2—(sx)%p]
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s=aX(—2py+ap(1l+K)W(sX)a, (1—k)p(sX)w—4(1+Kk)pU(s¥)2a, 2p(sX) lw—8(1+k)pUa).
(B8)

In “ » gauge” we set;;=0(x2) at the center. The constraint equations are then solved with the boundary conditions

o —0 o o 2— o 32—0
y=2(1+)pa, 7=0, x=gp(s¥ ‘ot g (B9)

at the centex=0. The condition;7=0 is our gauge condition, and the other two conditions follow fidma+s=0 (M has
rank 2 at the centgrAn alternative way of imposing; gauge is to introduce the new variable

7=(s%"27, (B10)

which is O(1) at the center in this gauge. The evolution equations are as before, witr‘;;cmlplaced by $x)?7 in Egs.
(B4)—(B6). The constraint equations become

XU,=MU+s, U=(x,7.9), (B11)
with
—1+a-2+(1—-x)(sX)?p] a2(AUW+2uW—2vU)(sx)3 2a%(vU— uW)(sx)®
M= —2a2UWsx —2a1-U2(sx)%+kp(s¥)?] —aW2+U2—(1+«k)p](sX)?
(2a2[Uv—(u+U)W](sX) —2a2U?(sx)? —3-2a%1+U?%(sx)2—(sx)?p]
(B12)
S=a(—2py+4p(1+K)Wsxa, (1—k)p(sX) lw—4(1+x)pUa, 2p(sX) lw—8(1+«)pUa). (B13)

The boundary conditions at=0 are 1

a=sxa.
(B16)

w=(sX) "o, y=«k s ly, a=(sx)"

° — o ~ 1— o 4 __,
= = — — -1 —_
y=2p(lt e, = 5 p(sX) "ot 15P% The evolution equations in these variables are

o 2 . 32, ® =A0 T Byt (), (B17)
X=gp(sX) ot ppa, (B14)
Y= Ceoxt Ay x+S(y), (B19)
from Mu+s=0 (M has rank 3 at the cenper . . .
a,=Fa,+S(a). (B19)

In “a gauge” we set&zO(xz) [and therefore als&
=0(x%)]. The constraints are then solved with the boundanote that the coefficients of thederivatives are unchanged,
conditions N ° N

but thatw has taken the place gf andy has taken the place

4k of . Accordingly, v is now odd andd(x) while @ is even

o _ _10 o _ _10
V=317 K)Z(SX) @ = S0 e, andO(1). Thesource terms are
o g;Jr 9(18:@3 (5019, (B15 S(y)=ayv1—-VZkg(1—kVA){[(k—1)p+4xU+ (k

C1NWolkay— _ 27
Here the boundary condition on comes from consistency DVr]ey=2x(1+ )V =1+ (1+ ) (sX)p]

with the evolution equatioﬁzjz O(x?). An alternative way

.1 —
-1 - 2 _
of imposinga gauge is to introduce new matter variables X(s¥) a+2(1+ )+ V)sxy=(1+)
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X[v—W+ V(i +U) ]9+ (1+ k)

X (v+ Kv;)(sx)z}]

L (1-x)V . 1-v2 820
T A evDsgx YT (1- evDsg (820

Kk—1—
v

(k—1)Vu+2xVU+

S(&))=a\/1—V2g(1—KV2){

K

+2W |k y—2(1+ k)[ = 1+ (1+ k) (sX%p](sX) e

+ Kk—

1 _ _
p v—2W+(1+k)Vu

+11+
5(1+5)

+2KVU)SX¢Z—(1+K)(;+V7)§7+(1+K)(E

+V7)(SX)2§<]
(1-x)V . k(1—V?)
B 1+(1—KV2)Sng (1— kV2)sgx”’ (B21)
S(a)=aI-Vig —ﬁ(sx)‘1&)+[;<;+(2x
-_ A _10 1 o V ~
—1)U]Ja—(sx) 7]+§(SX)X - 1+S_gX a.
(B22)

The variablea, which is odd andO(x), is much better be-
haved than the more obvious definitidrE(sx)*ZZz. [The

combination;7+ Kkl (1+ K)&) is O(x?) at the center. Numeri-
cally, it is easier to divide this bgx in S(a) to obtain an

O(x) term than to divide by €x)2.] The constraints are
solved with the matrixM given above and the source terms

s=a%(—2pk(sX) y+4p(1+ K)W(sx)2a,
(1- k) p(s¥)2w—4(1+ k)pU(sx)3a,
2pw—8(1+ k) pU(sX) a). (B23)

The boundary conditions are E15) with (sX) lo re-
placed byw.
APPENDIX C: 1=2 POLAR PERTURBATION EQUATIONS

In order to work with variables that are regular eg(jl)
at the origin for anyl, we redefine them ag=r'"2y, ¢

PHYSICAL REVIEW D65 084021

(0 —(X') —2(u=U)r 1y’
=025 —2(1+2)Ux—(I+2)[(1+2)U%+ U]y

+2(1+2)Wy' +(1+2)[ (1 +2)W2+W' ]y

+2(p—U)r Y+ 1)Wy=el 473 (C1)
(X') =0 =vx—px' =el*97s,, (C2)
(k) — (k') +2kUry’
= —r 'S~ 21Uk —1(1U2+ U)k+ 2kl WK’
+ kl (IW2+ W' )k—2kUr (I +1)Wy=el +27s, |
(C3
(K) =)' =vk—uk’ =el*27s,,
(C4)
() =—r ("5, —(1+1)Uy=el*27s;,  (CH

where the source termS,, S, and S, are given in Egs.
(A1)—(A3) of [9]. The second and fourth equations are just
the commutation relations between the dot and prime deriva-
tives. Here they serve as auxiliary evolution equations?’or
andk’. To these five equations we add the trivial evolution
equations §) =y and k) =k.

For our particular application to a self-similar background

we further rescale these first-order variables to obtain the
final dynamical variables

e Foe I, fme G
(C6)

&:eflrz 'R:e,(|+1)r(?)', R:e7(|+l)7(?)/,

;},: e7(| +1)TE. (C7)

The variables with a circle or a tilde are even anl) at

the center, while the variables with a hat are odd &{d).

The perturbed spacetime remains CSS if and only if all seven
perturbation variables are independent 7of These seven
variables obey evolution equations without any constraints,
except for the trivial ones that arise when one writes a wave
equation in first-order form, given below in Eq&C15),
(C16). Applying the same rescaling to the source teBn$o

S5, we obtain, in the notatioBu=S(u), the source terms in

the evolution equations fox to ;Z To these we add two

=r'*1y andk=r'k, as in[9]. In order to obtain a first-order €volution equationé} andk, which have only source terms,
formulation, we introduce the frame derivatives of the barred?Ut nox derivatives. We obtain them by solving Eq&1),

quantities with respect to the fluid frame. From E&7)—
(89) of [9], the equations then take the form

(A2) for f . in terms off and f’. Putting all seven source
terms together, we have
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) av1-VZS +VS,+2V(u—U)(sx) 1S
%)=

g 1-V?
—(1+3)Y, (C8)
~ aV1-V2VS§+S,+2V3(u—U)(sx) 'S5
S(x)= g \?
—(1+3)x, (C9)
—_\/2 _ oY
S(T():a\/l V2S;+ VS, 2v,<quss_(|+1)~k
g 1—kV?
(C10
_ _ 2,1
S(R):a\/l VZVS3+S4 2V KUSXSS_(|+1)R,
g 1—kV?
(C1)
o avl— o
S(¢) = 9 Ss—(1+1)¢, (C12

PHYSICAL REVIEW D65 084021

o as 1)~ ( V)A o
S(X)_—W VX+§ X | XF 5g)X —(1+2)x,
(C13
o as ~ ( V>A o
S(k) = -y Vx+ —|k— X-|—§J k|—1k. (C19

Finally, solving Eqs(Al),(A2) for f , in terms off andf’,

we obtain two constraint equations, that is, equations that do

not containr derivatives. They are

° as ~ ~

= ——=(x—Vx), c1
Xx= =0 (X VX) (C15
K= (k= V) (16
1= V2 '

The intermediate source terrgs are

S = —[3u+2(1+2)UTx+[5v+2(1 + W] x+4(U— ) (sX) " K+ 2[ (1= 1) (n— U)W+ 2mv+e 27 (u' — v)](sX) L

+

+4] 2+

m
r

p—3(sx) 2

S,=vxX— uX,

+(1+1) (U= @)U | (sx) "2k,

— _ JE— m — — o
—2|U2+(4|+8)VW—(2|+8),u.U—(2|2+4)(SX)_2T+[—(1—K)|+2K+2]p+4V2 %

(C17

(C19

S3=— (1 + K)U(sX) 2+ (1— k)W(sX) 2y —[(4+ 2k + 22U+ ku Jk+ [ v+ 2k(1 + L)W]k+ 2[ (1 — k) uW— (1 + k) vU

—(kl+ 2K+ 1)UW](sX) g+

_ — 11—«
—[(1+ k) +2+4k](sX)2U2+[(1— k)l — 2k](SX)2W?+ T(|2+|+2)

—4K(sx)2M_u+4K(sx)ﬂ§(+{[—(1—K)|2—(K+ 3) —2—2k|U%—[2kI%2—(1— k)l —4](sx)—2rT

—4KM—U+4Kﬂ K,

Ss=— (s x—[(1+1)U+2u]d—[(1+2)W+2](sX) y— 21(sX) " 1k.

(C19

(C20

(C21)
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We have used the background equations of motion, and havehere is also the trivial constraint

introduced the new coefficiert 2"(u’ — v), which is again
independent of- on a CSS background. Note that all coeffi-

by= (D8)

cients in the evolution equations are explicitly regular when

one takes into account thet— u=0(x2), p— (M/r)/(sX)?
=0(x? and e ?(u'—v)=0(x). The two terms 2(
+1)Wy and 2«(I+1)Wk are the equivalent of the term
2(1+1)¢'Ir of the toy model wave equation that we dis-
cussed above. They can be regularized in the same way.

APPENDIX D: ATOY MODEL FOR THE EVOLUTION
EQUATIONS

that follows from the definition of the first-order variatfie
One significant property that the toy model has in com-

mon with the full perturbation equations is th%tand?ﬁ are

even and generically nonzero a0 while ¢ is odd and

genericallyO(x). All terms excepip/x are explicitly regular,
and do not require special treatment at the origin. In particu-
lar, there is no term of the typg/x? left. Experience shows

that terms of the formp/x, whereg is an odd function ok
andO(x), can be regularized without giving rise to instabili-

We have tested various numerical methods on a tofjes, while division byx? is much more troublesome.

model, the scalar wave equation in flat spacetime. Th
model is also useful as an illustration of the types of variabl
and the methods we use.

Let & obey the free wave equation on the flat spacetim
ds?=—dt?+dr?+r2dQ2. We make the ansatz

<I>=§n (1Y im(6,0). (D1)

We now consider a particular value bfand m, and drop
these suffixes. Them,,, obeys

2

I(1+1)
- ¢,tt+ d’,rr + F¢,r_

r2

»=0. (D2)

As in [9] we introduce the rescaled and first-order variable

$5r7|¢! gzg,ti grzg,r . (D3)
d(t,r,0,0)=>P(t,X,y,2) is analytic in Cartesian coordinates
at the origin if and only if¢ is analytic inr with only even
powers ofr. In this sensep and ¢ are even functions o,
and are generically finite and nonzera at0, and¢’ is odd
and genericallyO(r) atr=0.

We now go over to self-similarity coordinatesand 7
defined in Eq.(4) (with s=1). In order to mimic the fluid

IS In other, unimportant, aspects the toy model is simpler
&han the full perturbation equations. As there is no fluid
frame in this toy model, we choose the dot and prime to be
Srame derivatives with respect to the constafriame. As the

spacetime is flat, the dot and prime derivatives commute.

Finally, in the toy modekoﬁ does not couple back t@b and,
and therefore plays only a passive role.

APPENDIX E: FINITE DIFFERENCING

For the evolution equation®4) at hand, the eigenvalues
and eigenvectors of the matrixcan be calculated in closed
form. The eigenvalues oA aredx/dr on characteristics of
the equations: fluid world lines, radial light rays, and radial
Smatter(sound wave characteristics. The characteristics are
symmetric around the ling=0, but with increasing they
tip over until at sufficiently large all eigenvalues are nega-
tive. This means that at largeinformation travels only from
smaller to largex. The reason for this is of course that while
x=0 and lines of small constartare timelike, lines of large
constantx are spacelike. The “outer boundarX= Xy Of
our numerical domain €xX<Xxpy IS therefore a future
spacelike boundary, and so no boundary condition is required
there.

In order to use it to obtain a free boundary condition, we
make the numerical method reflect the propagation of infor-

perturbation equations, we rescale the first-order variablegation, so that ak= X, all x derivatives are calculated

once again as

o

¢ efnr(ﬁ, azef(nJrl)TqS, &Eef(r‘wl)rd)r.

(D4)

The most natural choice aof for the toy model ism=0, but

for the fluid perturbations, it will be fixed by the requirement
that the perturbed spacetime remains self-similar if the pe

turbation variables do not grow or decay with We there-
fore leave it free. We finally obtain the first-order system

b= =X+ b x+ 2] +1>§—<n+1><7>. (D5)

b= b —xpx—(n+1), (D6)

b= d—xp-ng. (D7)
08402

using one-sided finite differences. Followifiy], we splitA
into a left and a right-moving part. L&f be the matrix of
(column eigenvectors ofA. Let A be the diagonal matrix
composed of the corresponding eigenvalues. Then
=VAV L LetA, beA with zeros in the place of the nega-
tive eigenvalues, and let _ be A with zeros in the place of
rt_he positive eigenvalues. Then defile =VA. V™1 It is
clear thatA=A, +A_ . We now uséA , with left derivatives
andA_ with right derivatives

dul
-afz(A+D+up+A_D_up+Buw, (E1)
with the one-sided derivatives
ut—uh ul—un
n_ i+l j n_"J j—1
D+uj——AX , U A (E2
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Here the coefficient matrices.. , B and C are evaluated at APPENDIX F: WEAK SOLUTIONS
X;. After each time step, the constrained variablesare
obtained atr""?! from the u""1. This scheme is first-order
accurate inx. (Note that we have not discretized mnyet,)
Left differences atx=0 are evaluated using ghost points

based on the fact that all grid functionsare either even or similarity coordinates< and 7, but it is not preferred on the

?ndeo,ihlg dXéThllise’z dsigzn?i?]ecgnebﬁatt?g#g;ﬁ dof/vzss;gell g?grutr:) 0?flat background. A solution arising from gene@? initial
P q ’ data at =t,<<0 has finitet andr derivatives at=r=0. The

as the first-order Godunov scheme, or GD1. To obtain a sec-

ond independent finite differencing scheme, we have aIsISn?,Og::ntahtiiS(Sagg;irzzwegﬁ]rt’_ hv?/\éeabrgelr; gkeii'gn:tdgoséggm
used the second-order one-sided derivatives : b pornt. 9
solution on ever smaller scales. Therefore,ras, a ge-

neric solution of the toy model wave equation should behave

We now discuss a problem that affects the fluid and metric
perturbations that we want to investigate, but that is already
present and more easily understood in the toy model.

The spacetime point=t=0 is singled out in the self-

b un_4u?+1—3u?_u?+2 at larger as
e 2AX ’
$—$(0,0e™", P (0,0 D7,
4ui_;—3uf—ui,
D_ul=- . (E3)

2AX 1

¢_’ §¢'rr(010)e*(n+2)7. (Fl)
We shall refer to this scheme as GD2. At the outer boundary

X=Xmax, NO right derivatives are required, as there all infor-In deriving this fall-off we have assumed thatis at least
mation travels from the left to the rightA(. vanishes.All twice differentiable everywhere. But as=1 is a character-
variablesu are either even or odd functionsxfAt the inner  istic of the wave equationp and its derivatives are allowed
boundaryx=0, left derivatives are calculated using fictitious to be discontinuous there. In particular, dataxonl do not
grid points at negativex that are obtained asi(—x)= influence the solution or<1. Therefore, solutions exist that
*u(x). By construction, the Godunov method has the adwvanish onx<1 for all = but not for x>1. In particular,
vantage that it does not require a special outer boundarshaking a power-series ansatz for the regionl,

conditions. Unexpectedly, it also has the advantage that it
handles terms of the formp/x term at the center without any
special treatment. It is also completely free from high-
frequency grid modes. This last property is less surprising

(X, )= hi(x— 1)+ dp(x—1)%+ - -],

when one thinks of GD1 as centered differencing plus a dis- gb(x,r):e”[fm(x— 1)+ <Ai>z(X—1)2+ 1, (F2)
sipative term14].
We have also implemented a more standard finite differwe find a formal solution witt\ =1 —1—n, which is slower

encing scheme based on centered differences, with a  than the expected falloff bly We believe that a correspond-
(first or second ordgrone-sided derivative at the outer ing weak solution of the wave equation exists that is analytic
boundaryx=Xqa. The center is again handled by ghostfor x>1 (and vanishes fork<1), but have not proved it. A
points, usingu(—x)= *=u(x). Using naive centered differ- finite difference counterpart certainly does exist, and for
ences, the code is unstable at the center because of the sou@B1 and GD2 it falls off(or grows, depending on andl)
term 2( +1)f;‘)/x in the toy model, and similar terms in the With the calculated value of. It therefore dominates over
perturbation equations. A well-known remedy is to includethe generic smooth solution at largeWe want to exclude it
this source term into the transport terms in the way suggesteél studies of critical collapse, as we are interested only in the
by the identity time evolution of smooth perturbation initial data. Numerical
schemes, however, do not distinguish between smooth and
unsmooth data, and this solution turns up in some of them,
. 2(1+1) . 3(X2l+2[p) hiding the everywher€? solutions we are interested in. In
wt =243 —— . (E4)  the future we shall refer to these as “weak solutions at the
Ix=T) light cone” or simply “weak modes,” We should stress that,
depending on the finite differencing scheme, weak solutions
In the toy model wave equation this procedure slows dowrof the finite difference equations may or may not converge to
the central instability enough so that it can be suppressed byeak solutions of the continuum equations, but they are al-
numerical viscosity. We have added a centered differencevays there.
expression fou .=cu + - - -, with ¢ of the order of 103 We find that both Godunov schemes when applied to the
However, numerical viscosity falsifies the results too muchtoy model wave equations develop weak solutions that are
both in the toy model and in the actual problem, and hagontinuous but not differentiable &t 1. For GD1, the finite
therefore not been used in any of the results of this paper. Weifference mode corresponding to the weak solution can be
shall refer to centered differencing with EGE4) as CD3, analyzed easilyu , at the first grid point witrx>1 depends
and without as CDA4. only onu at that point, and on the next point to the left—but
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there all fields vanish in a weak solution. A calculation Showseitheré& and 9, or the functionsp and 9 plus the number
thatu at the first grid point withk>1 depends exponentially o i B . .

on 7. The exponent is either=1—1—n-+ O(Ax), which is ¢(0). Notezthatcﬁ(O)—O by definition, so that in either case
Tis a (2N)° matrix.

the continuum weak solution, or=—2/Ax+O(1), which ) )
We denote the constraint solution sche(@d) by | (for

is a finite differencing artifact that decays quickly. ) . . L . )
In GD1, the dominant weak solution is clearly not differ- Intégration and its numerical inverse by (for differentia-
tion). In loose matrix notation we can then write the first

entiable atx=1, and this also shows up in independent re- o

sidual evaluation as a sharp peak. If the last grid point i0SSiPility as

exactlyx=1, the numerical domain can consistently be trun- 3 0

cated there, and no weak modes can arise. Because of its ((;S) (1 0 0)
u= , Ti= T

W)

wider stencil GD2 is not completely causal, and so part of 00 1 , (G2
the weak mode propagates xe<1. The numerical equiva-

lent of the weak mode therefore appears differentiable at

=1, but there is still a peak there in independent residuafnd
evaluation, although less sharp. If we attempt to truncate
GD2 atx=1, we need to introduce an explicit boundary

~ 0
condition there. Doing this by using a first-order right deriva- u—( d’) T.— ( 10 0) T
- . T,=

=

tive, or a centered derivative at=1— Ax introduces spuri- 0O 1 0 LI G3

ous reflections at the boundary. Without truncation, we have 0 1

tried updating the grid point=1+ Ax by interpolation from ) ) ) )

the neighboring grid points. This does not suppress the wea@/€ find thatT, works much better thaiiy, in having grid
mode. Updating the three points=1, x=1+Ax andx=1 modes. This is not surprising given that integration has a

+2Ax by interpolation results in a different spurious mode. SM00thing property. An alternative I, is to re-impose the

This holds both for GD1 and GD2. constraints by integration after evolution,
APPENDIX G: IMPOSING THE CONSTRAINTS '[l's 1 0 O 10
Some perturbation equations contain omlylerivatives, U= b ' T3E<O I O)T Y R

and so are constraints rather than evolution equations. Even 0 0

the free wave equation has such a constraint when it is writ- ) o )
ten in first-order form. Constraints of the foriD8) are  But the matrixT; is similar to the matrixT>,
solved by integration from the center out, using the trapezoid

rule, 1 .0\_(10
T2_ O D T3 0 | ’ (GS)
o, o, AX .. .
P Hl=0'+ 7((,5'+1+ d), (GY and soT, and T; have the same eigenvalues, although of

course not the same eigenvectors. This is borne out humeri-
. ) i ) cally up to small rounding errors.
where the starting poinp at the center is determined by the | the spherical and thé=1 polar perturbations, non-

evolution equation. This method is second-order accuraigyiyial constraint equations arise which are of the form
We also use the exact of these finite difference equations to

obtain ¢ from ¢ by differentiation. XUy=M(X)u+s, (G6)
Time evolution commutes with the constraints in the con-

tinuum limit, but in the discretized equations this is only whereu stands for a subset of variables, and the source terms

approximately true. In order to find the modes, we need & are linear in the other variables, already known at this time

matrix T that acts only on a set of functionsthat can be level. The coefficient matridM(x), an even function oX, is

freely specified in the initial data and is therefore of full rank. typically nonzero at the origin. The ODE is therefore singu-

We start with a larger matrit’ and have to reduce it using lar atx=0. We look for solutionsi(x) that are even regular

a numerical solution of the constraints. This reduction, howfunctions of x. These obeyM(0)u(0)=s(0). From this

ever, is not unique, and although different reductions aréoundary condition, the ODEs are solved by the implicit,

equivalent in the continuum equations, they are not in thesecond-order accurate scheme

finite difference equations.

We discuss these issues in the toy model. The mattix Vie1=(1—eM; ) Y (1+eM))y;+e(si+S:1)],
acts on:ﬁ, & and ', so thatT’ is a (3N)2 matrix. There are
two natural choices for the free variables on whiElacts: e=(Xj 11— X)) (X1 1t X). (G7)
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