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Brane world cosmology with Gauss-Bonnet interaction
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We study a Randall-Sundrum model modified by a Gauss-Bonnet interaction term. We consider, in particu-
lar, a Friedmann-Robertson-Walker metric on the brane and analyze the resulting cosmological scenario. It is
shown that the usual Friedmann equations are recovered on the brane. The equation of state relating the energy
density and the pressure is uniquely determined by the matching conditions. A cosmological solution with
negative pressure is found.
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[. INTRODUCTION and lead to Gauss-Bonnet combinations after compactifica-
tion down to five dimensions. In the eleven-dimensional
The possibility that our universe is a four-dimensionalbulk, on the other hand, the corrections are quartic in the
brane embedded in a higher-dimensional spacetime has beé#rvature and might not yield Gauss-Bonnet terms after
extensively discussed recently. The most popular model i§ompactification. This is why we would like to characterize
this context is the one proposed by Randall and Sundfm  OUr model as a string inspired theory and not a string derived

This scenario is based on the metric one. . .
It turns out that generic higher curvature terms lead, in
d?=A2(y) 7 dxXidx + dy? (1.1) general, to a delocalization of gravity from the brgag,18.
ij ' '

A combination of these terms in a Gauss-Bonnet form yields,
however, the desired Randall-Sundrum behavior of the zero
modes of the perturbations. We should mention that the

. . . analyses of Ref§17,18 is carried out with a brane possess-
Perturbations of this metric reproduce the expected\Biv- ing gflat metric of the form given in Ed1.1). In thig con-

tonian potential on the brariehe observed universeThis is oyt "yarious other issues were also treated using higher cur-
due to the fact that the zero modes of the perturbation propgsaiyre  terms [19-28. Furthermore, the Gauss-Bonnet
gate on the brane onlithey tend rapidly to zero in the fifth  compination in five dimensions is the only nonlinear term in
dimension. The other modegthe massive Kaluza-Klein the curvature which yields second order field equations. It is

mode$ merely give a correction in 47 to this potential. essentially this feature which favors the inclusion of such
One of the first developments of this model was the genterms.

eralization of the Randall-Sundrum ansatz to include a wider |n this paper, we deal with a Randall-Sundrum model
class of metric$2—19]. Different geometries were treated by complemented by a Gauss-Bonnet density where the five-
considering solutions to the Randall-Sundrum model withdimensional metric is of the form in Eq1.2). We start by
metrics which, up to a nonconstant conformal factor, can beonsidering a metric on the brane with spherical symmetry. It
written as is shown that the only possible solution in this case is a de
o Sitter or anti—de Sitter spacetime for the brane. This is in
ds*=A%(y)gij(x,y)dx'dx +dy>. (1.2 contrast to the case without a Gauss-Bonnet term where
black hole geometries are allow¢d]. Our bulk metric in-
The requirement that the zero modes of the perturbationgolves a warp factor that presents an oscillatory regime
around these metrics be localized on the brane imposes fuamong other possibilities.
ther constraints on this class of geometiigs A second study consists in taking a Friedmann-Robertson-
Since the Randall-Sundrum model is a string inspired pic\Nalker metric on the brane. We recover the equations of
ture [16], one would like to understand the implications of ordinary cosmology on the brane. This is to be compared to
higher curvature terms in such a brane world universe. Thesgrevious brane world cosmology mod€l289-51 where,
terms naturally arise in the string effective action beyondamong other things, the square of the Hubble parameter is
first order in the string tension’. The inclusion of these found to be proportional to the square of the energy density.
terms is also of relevance to cosmology and inflation. WeHere, the matching conditions are so restrictive that they
should stress that in the setting of REE6], @’ corrections  determine the equation of state relating the energy density to
(higher curvature termsarise on the ten-dimensional brane the pressure. Various inflationary solutions with a cosmologi-
cal constant on the brane are determined. Another solution
with a time-dependent energy density and pressure is also
*Permanent address: Laboratoire de Physiqueoiitpee, Centre  found. However, the pressure for this matter is negative and
Universitaire Mustapha Stambouli, 29000 Mascara, Algeria. Emaicannot describe ordinary dust. On the other hand, a scalar
address: boucif@celfi.phys.univ-tours.fr field is found whose energy-momentum tensor could de-
TEmail address: nouri@celfi.phys.univ-tours.fr scribe this behavior.

where7;; is a flat Minkowski four-dimensional metric on the
brane andA?(y) is the warp factor depending only d|.
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Il. THE MODEL This value of A will be needed in the rest of the paper.
Since the aim of this paper is the study of the Randall-
We consider a five-dimensional spacetime with coordi-Sundrum model supplemented by a Gauss-Bonnet interac-
nates K°=t,x%x? x3,x*=y), where ¢,x',x?x3) denotes tion term, it is natural to ask whether interesting solutions,
the usual four-dimensional spacetime atfeey is the coor-  such as Eq(2.4), still exist in the context of the brane world
dinate of the fifth dimension, which is an orbifole/Z,  scenario. As a first step, a class of rich structures can be
where the Z, action identifiesy and —y. The five- explored by considering spherically symmetric geometries

dimensional indices are denoted blyN, ...=0,...,4and on the brane. In particular, one would like to know if black
the four-dimensional brane world indices aigj, ... hole geometries are present. Furthermore, most of the equa-
=0, ...,3. Wewill neglect the matter interaction and con- tions encountered in the spherically symmetric case will be
sider the five-dimensional gravitational action of use when investigating the cosmological solutions. We
start, therefore, with a spherically symmetric line element as
s=f A= G(aR+ A+ BlLgg), (2. gvenby

ds?=A?(y)[ = N(r)dt?+M(r)dr?+r?(d#?+sirfd ¢?) ]
where o and B are two coupling constants antl is the dv2 28
five-dimensional cosmological constant. The Gauss-Bonnet +dy (2.8

Lagrangian density is and examine the equations of motion

I—GB: RMNPQRMNPQ_4RMNRMN+ RZ_ (22) HME(C/‘M_I_TM:O’ (29)

The equations of motion corresponding to our actiort are
where the nonzero components of the energy-momentum

1 1 tensorTy are
EMn=a RMN_EgMNR)_EAgMN+ZIB R Rupas o
Ti=68\6(y) (2.10
+2RPCR,, pon— 2Ry pREJrRRMN— %gMNLGB) with A denoting the cosmological constant on the brane. We
obtain four different equations corresponding to the compo-
-0. (2.3 nentsHg, Hy, H5=H3, andH 3. Subtractingt; from
leads to
The most important property of these equations is that they
reproduce Einstein’s equations in four dimensions and con- 1
tain, in five dimensions, derivatives of the metric of order no M(r)= N(r)" 219

higher than 2. This latter fact is crucial in the context of the
brane world scenario as it avoids the problem of encounterSubstituting forM (r) and subtractingig from H8 yields
ing powers of a delta function.

In contrast to the case of Einstein’s equations, the set of
equationg2.3) possesses, for a givghand a givenA, two
(anti-)de Sitter solution$52,53. This can be seen by con-
sidering the simple case of a maximally symmetric spacewhereu andv are two constants of integration.

14
N(r)=1+pur?+ . (2.12

time as expressed by After substituting forN(r), the equation corresponding to
H4=0 can be cast in the form
Runpo= —0(GupGng— GumgGnp)- 2.9 ,
The various curvature terms in E@Q.3) are then easily com- 12(pu+A'2)[aA?—2B(u+A'?)]— AA*= ﬂ—ﬁ
puted in terms obr and G,y and one obtains the equation ' 2.13
[A=120(a=2p0)]Gun=0. 29 our notation is explained in the footnote beldwgince the
Thereforeo takes two possible values as given by left-hand side of this equation is independent oit is clear
that one must have=0. This condition, however, is not
1 , 2 needed if3=0 (see, for example, Ref3]). With v=0, the
Ly at\fa "~z BA | (2.6)  last equation takes then the simple form

This last equation can be inverted to get an expression for
2SinceA is a function ofly| we haved A/dy=A’(d|y|/dy) where
A=120(a—2p0). (2.7 A’ denotes the derivative @ with respect to its argumety| and
dly|/dy=20(y)—1 where®(y) is the Heaviside function. Notice
that (d|y|/dy)?=1 and we havedA/dy)?=A’2. On the other hand
'Our conventions are such thaR\po=dpl'NotTRrl'Ng ~ d?A/dy?=A"+2A’ 5(y) whereA” denotes the second derivative of
—(P<Q) and RMN=R$,|QN. A with respect to its argumey|.
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wtHA2=gA? (2.14 wherey,p, is @ maximally symmetric three-dimensional met-
ric. Notice that this metric, in contrast to the Randall-
where o is as previously defined. The solution to our lastSundrum solution, contains three warp fact@roughb can
differential equation is be consistently set to 1). Furthermore, the brane metric
(found by settingy=0) is not explicitly in a standard
m Friedmann-Robertson-Walker form. It is only after a change
Aly) =4 —exp(= Voly)+yexpFValy]). (2159  of the time coordinaté that it can be brought to the standard
Y form. It is also worth mentioning that by choosing a metric
having one warp factofthis can be achieved, for example,
by choosingn(t,y)=A(y), S(t,y)=A(y)h(t) and b(t,y)
=1] then the only possible solution is a cosmological solu-
tion having constant energy density and constant pressure on
the brane. The cosmological implication of the above metric

Herey is an integration constant. It is worth recalling that
is the curvature on the four-dimensional brane.
We are left with one equation to solve, namé‘lyg

d?A , A
6aA(,u+A’2)+6[aA2—4B(,u,+A’2)]—2— AA3 will be hlghllghted below.
dy It is one of the aims of the present study to show that
1 2NA3S(y)=0 (2.16 cosmological solutions with one warp factor are possible.

This situation can be realized after a modification of the

Randall-Sundrum model by the addition of a Gauss-Bonnet

term in the bulk. The metric for this analysis is taken to have
e form

This equation involves second derivatives Afy) which
generate delta functions as explained in the footnote. Usin
Eq.(2.14 in Hg and matching the delta functions yields the
fine tuning conditions

2
dsz=A2(y)[ —dt?+a(t)? %2+r2(d02+ sin20d¢2)H
A’'(0)

\=—6(a=4B0) Lo (2.17) +dy?. 3.2

The nonvanishing components of the energy-momentum ten-

Substituting then forA(y) in Eq. (2.16), fixes the five- sorT™ are now given by

dimensional cosmological constant to its original value

A=120(a—2B0). = — 5(1) S
Notice that the warp factoA(y) can present various be- 0=~ p(DAW),
haviors depending on the values®fand n.. Let us start by Ti:ngng p(t)(y). 3.3

discussing the case when the curvature on the braman-

A(y)=yexp(Faly|). If we require now tha\(y) decays have already assumed that no matter escapes through the
to zero away from the position of the brane then only thefifth dimension.
negative sign in the exponential is retained. This requirement The equations of motion we would like to solve are still
is essential for the stability of the solution when the Gauss¢/M—=¢M1 TM=0. There are three different types of equa-
Bonnet term is not presef8]. It is possible that the same _tionng, Hi=H§=H§, andHﬁ. The first of thesé-[g is
requirement holds here too. However, a complete proof is
much more involved and beyond the scope of the present . d?A .
study. The second case in this discussion corresponds to a 6[a%(aA?—4BA'?)+4B(k+ 32)]F—6aA(k+ a’)
nonvanishingu and a positiveo. Here both factors in the y
expression of\(y) are present and one has to choose the two +6aa’AA’2— AA3a2—2pa’A3s(y)=0, (3.9
constantsu and vy in such a way tha#\(y) tends to zero as
y approaches infinity. Finally, i is negative then an oscil- wherea is the derivative of with respect tdt. Matching the
latory regime is obtained. It would be interesting to investi-delta functions in this last equation yields
gate the stability of this last case.

6A’(0)

lll. COSMOLOGICAL SOLUTIONS P= A0 (a*{alA(0))~4B[A"(0) % +4B(k+a%)).

One of the first questions that have been asked in the (3.9
context of the Randall-Sundrum model is whether significan UL TR :
modifications are brought to the standard cosmological sc;[he second equatioft; is given by the expression
nario. In the search for interesting brane world cosmological ) d2A
solutions, most of the studies have so far been based on &[3a%(aA%2—4BA’?)+8Baa+4B(k+ az)]F—ZaA(k
line element of the fornisee, for example, Ref§30,31)) y
+a?%) +6aa’AA'?— Aa’A®—daaaA+2pa’Ass
45P= ~%(1,) 0+ S2(1,) yap )P+ (1Y) dy? )t oa aaah+ 2parATaly)

(3. =0. (3.6
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Again, matching the delta functions coming fraiA/dy*>  made by choosing,=0 and assuming that=p,+ p, with
and those coming from the energy-momentum tensor gives,, much smaller than the constant energy density30,31].
By neglecting terms involvingo§ and carrying out some
fine-tuning procedures, one can obtain a standard
Friedmann-type equation. However, neither the artificial
splitting of p nor the fine-tuning is justified.

+4B(k+a?)). (3.7 After this digression, let us return now to our set of equa-

tions. Once the matching is carried out, we can deal with the

Using the expression gf we deduce the following expres- two equationSH} andH8 away fromy=0. Subtracting’ﬁ

p=— M(3a2{a[A(0)]2—4B[A’(0)]2}+Sﬁaé
a’[A(0)]®

sion for the Hubble parameter: from HJ then gives
2\ 2 3 2 : .
2 E) _ [AO)] o k[ alA0)] (k+a2—ad)(aA—4BA")=0. (3.12
al 24pA’(0)" @ 4B o
If the first factor k+a2—aa) vanishes then an interesting
+[A’(0)]2). (3.9 solution is given by
k
This is the first Friedmann relation of ordinary cosmology. a(t)= g 2 exXpE7t)+ k exp(+ 7t), (3.13
Similarly, combining the expression ¢f with that corre-
sponding top, yields the second Friedmann equation wherer and « are two integration constants.
Upon substituting fom(t) in H4, we obtain
é—_M(:; + )a+(—M+[A’(O)]Z a '
aggA'(0) PP 48 : 12AA2— 2)[aA2—28(A'2— )] — AA*=0. (3.14
3.9
39 This equation is exactly the one found in E8.13 with v
. _ . 2 .
Differentiating H? and using the expression afresults in =0 and whereu is replaced by- 7°. The solutionA(y) to
the usual conservation equations j[hls eqbuat|or12|s therefore as given in E8.15 upon replac-
ing u by —7°.
pa+3(p+p)a=0. (3.10 Putting the expression af(t) in 3 leads to the differ-

ential equation
This conservation equation can be easily understood in terms
of Bianchi identities. Indeed, a litle algebra involving the ~ B@A(A'?—7%)+6[aA’—4B(A’?— %) ]JA"— AA®=0.
use of the Bianchi identities of the Riemann tensor shows (3.19

M — . . . .
t;atf_r EMZOO\'NGS Igzzu\g: tﬁ;ev d-?n? Ilzng VS;Z ttfcl)etheeql;:gton Again, this equation is that found in E.16 away from
MN T TMN MINT the position of the brane and whegeis replaced by— 72.

that our energy-momentum tensor is SUCh.mét:O’ the Therefore, replacing foA(y) in this last differential equa-
above conservation relation on the brane is reached. Thlﬁon fixes the bulk cosmological constant to he=120(a
means that there is no flow of matter along the fifth dimen-_ 280). We should mention that this solution leads to the
sion. In conclusion, our gravitational theory with the Gauss- iy . .
Bonnet term leads to ordinary Friedmann equations. following relation between the energy densityand the pres

At this point let us summarize the main result obtained>"" P

with the metric (3.1) and without a Gauss-Bonnet term p=—p=\ (3.16
[30,31]. In this case, the Hubble parameter takes the form ' ’

T\ 2 o whereN is as given in Eq(2.17). The Hubble parameter for

a ) > = 9

(_ —C,p%+ I —§+C4A, (3.1 this solution is given by
a a4 a
Ho= — 42 (3.17)

where C; and C, are related to the square of the five- aZ ' '

dimensional gravitational constari; is proportional to the
curvature of the three-dimensional metsig,, whileC, isan  with a(t) as given in Eq(3.13. Similarly, we find that
integration constant. The radius of the univeeg¢) is de-

fined by a(t)=S(t,y=0). Furthermore, one has the usual

conservation equatiopa+3(p+p)a=0 which is a conse-
guence of the Bianchi identities.

The most noticible feature of E3.11) is that the energy We distinguish, therefore, two cases. The first corresponds to
density of the brane enters quadratically and the time evolus?>0 and leads to an inflationary regime whenever one of
tion of the Hubble parameter depends on an effective radiahe two exponentials ia(t) dominates. The second situation
tion termC,/a*. An attempt to obtain ordinary cosmology is arises whenr><0. In this case the scale factor is given by

2_ 2 3.1
E—T. (&
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Regardless of which factor vanishes first, the solution to this

, (3.19 last differential equation takes the form
wheree and ¢ are two real integration constants. The corre- a(t)zgexr{ A= a_gat +XeXF< Y a_gat)
spondingA(y) is given by Eq(2.15 whereu is replaced by B B

—k/&2. Of course, this solution is valid only whésis nega- (327
tive and describes a repeatedly collapsing universe. Th
Hubble parameter in this caseh = —k/a®+k/&?.

The other solution to+a?—aa)=0 is given by

a(t)=*+\—kt+o (3.20
With A=(3a?)/(2B), the equation corresponding Wg
with & an integration constant. This solution is physical onlyyields
for k negative. Substituting this expression aft) in Hf{ ]
leads to the differential equation (aA—4BA")[a%(aA?—4BA'?) +4B(k+a?)]= (23 2

and is therefore automatically satisfiezince we are exam-
whereo is as defined in Eq(2.6). ThereforeA(y) is given  ining the case wheaA—4BA"=0).

-k
a(t)y=e coS{Ttﬂp

ﬁ/hereg and y are two integration constants and if the first
factor of the differential equation vanishes then

Bk+4agfrx=0. (3.29

A'%2=gA?, (3.21)

by If the first factor in Eq.(3.26) vanishes then we have
A(y)=vexp\aly) or A(y)=wexp(—oly|) p=-p=0. (3:30
(322 The Hubble parameter for this case is
for two integration constant¢ and w. The solution in Egs. K aif
(3.20 and (3.22 automatically satisfieg{ ). Furthermore, H?=——5— ——. (3.32
we havep=—p=\ and the Hubble parameter 4= a B
—k/a2.

On the other hand if the second factor in E8,.26) vanishes

Let us now return to the second possibility as allowed bythen we have the equation of state

Eqg. (3.12, namely, when §A—4BA")=0. This case is of
course present only whef is different from zero and we

1 A'(0) 1
have the solution p=—5p=-— 8L —(Bk+4a0ly), (3.32
3 [A(0)]® @
1 |« 1 Ja . .
A(y)=E&ex > ,EM + 0 ex ) Elyl ' where A(y) is given by Eq.(3.23. The corresponding ex-
(3.23 pression for the Hubble parameter is
whereé and 6 are two integration constants. Substituting this H2=— a_‘fa _ 4LZX (3.33
solution inH 5 leads to B a
1 [a 1 with a(t) as given in Eq(3.27). In both cases we have
a(3a?—2BA | exy{—\/: +¢9exp(—— .
( BA)| | Eexi 5\ 5l > 5 ato .
a~ B (3.34

4
X \/§|y|” —65202] —48a[ B%(k+a?) + aBEha’?]
B We notice that if—a&6/B is positive then the universe is
‘o 2 c 2 accelerating; otherwisa(t) oscillates in time.
—6s0a[8ap(kta’)+£0a%(5a”+2B0)] Let us eSamine in mc()r)e detail the solution found here and
=0. (3.29 in particular the case when a¢6/3 is positive. If the first
factor in Eq.(3.27) vanishes, which requireBk+4a &0 x
It is clear, from the separation of variables, that one must=0, then no matter is present on the brgemce p=—p
have =0). Nevetheless, the universe is acceleratingaés=
—a&bl B. The question to be asked now is what causes this

A= 3;"2 (3.25 acceleration. The only source of acceleration is a combined
2B effect due to the bulk cosmological constant and the Gauss-
Bonnet correction term. This is because neithenor 8 can
and the above differential equation reduces then to be set to zero in our solution. The case corresponding to the

_ ) vanishing of the second factor in E(.27) will be investi-
[B(k+a?)+ atba?®](Ba+ aéha)=0. (3.26  gated below.
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IV. DISCUSSION

Among the solutions found in this analysis, special atten-
tion should be paid to that described by a time-dependent

energy density and pressure as in E332. However, the

equations of statep= — p/3 cannot correspond to an ordi-

PHYSICAL REVIEW D 65 084018

exp( \/— %t) = \/% tar{%\/ — agzgx(qs—m)} .

4.9

nary dust as the pressupeis negative. Let us suppose that Since the potential is given by=2¢?=21%/a?, we find
the only matter present on the brane is a self-interacting scdhat

lar field with energy-momentum tensor

1
Tij=| oy — 595l pad+V()]|ay), (4.1

where gj; is a Friedmann-Robertson-Walker metric on the

brane. If the field$ depends only on time then one has

1.
p=—To=3[4*+VIa(y),

1.
p=Ti=T5=Ti=5[4*~VIa(y). (4.2
The field ¢ is subject to the equations of motion
L ("gdé)- V=0 4.3
fgﬂi( 99'¢)—5V'= (4.3

with V' being the derivative of the potenti®l with respect
to ¢.
The equation of statp= — p/3 leads to

'ZE

¢=2v = V'=4¢ (4.4

while the equation of motion of the scalar field yields

. Sa. B 1v' .
¢p+3 ¢=—5V" (4.5
Combining these last two equations results in
b a
i +—==0. (4.6)
¢ a

Therefore = v/a, for some integration constant Using
the expression of(t) as given in Eq(3.27), we find that

e \ o -5 |

————— arcta —eX - —+t

afflx X B
B

+ o, (4.7)

B(t)=

v2

V( (f)) = ESI

2 [ agblx
nzz ~— 3 ((;')—m')] 4.9

This potential has an infinite number of minima.

As it is known, cosmological scenarios with negative
pressure are used in explaining the current acceleration of
our universe(see, for example, Ref54]). The scalar field
providing this pressure is known as quintessdidg. Simi-
lar models are also constructed in the context of brane world
cosmology[56—62. It seems that we have found here an-
other model for quintessence where the scalar field is gov-
erned by a very simple potential. However, a word of caution
is needed here. Let us recall that in standard cosmology, the
equation which determines the acceleration of the universe at

later times is given bya/a=—(47G/3)(p+3p)-+\/6,
where\ is a cosmological constant. X is set to zera(or
equivalently absorbed into the definition@fndp) then the
universe is accelerating for an equation of statesp with
—1=<s<3. On the other hand, if the equation of state is such

that p=—3%p and A\=0 thena/a=0 and the universe is
uniformally evolving.

In our case, we havp= — %p, howevera/a= — a&6/ .
This situation can only be explained by a nonvanishing cos-
mological constank. Indeed, ifA #0 then the requirement
that the universe is accelerating amounts to demanding that
pP<\/247wG—p/3. When the equation of stage=—3p is
obeyed then the last inequality requires the cosmological

constani to be positive, and we haxa#a=\/6. In our case,
we have an equation of state for a perfect fluid, with
—1p, however with a nonvanishing cosmological equal to
A=—6at0lp.

Finally we would like to mention that if the cosmological
constant\ is equal to zero, then current data seem to favor
an equation of statp=sp with —1<s=<-0.7. However, no
limits on the possible values gfare known to us in the case
when the contribution of the cosmological constant is taken
into account. It remains as a challenge to decide whether the
model presented here could be taken as a serious proposal for
explaining the current acceleration of the universe.
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