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Brane world cosmology with Gauss-Bonnet interaction
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We study a Randall-Sundrum model modified by a Gauss-Bonnet interaction term. We consider, in particu-
lar, a Friedmann-Robertson-Walker metric on the brane and analyze the resulting cosmological scenario. It is
shown that the usual Friedmann equations are recovered on the brane. The equation of state relating the energy
density and the pressure is uniquely determined by the matching conditions. A cosmological solution with
negative pressure is found.
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I. INTRODUCTION

The possibility that our universe is a four-dimension
brane embedded in a higher-dimensional spacetime has
extensively discussed recently. The most popular mode
this context is the one proposed by Randall and Sundrum@1#.
This scenario is based on the metric

ds25A2~y!h i j dxidxj1dy2, ~1.1!

whereh i j is a flat Minkowski four-dimensional metric on th
brane andA2(y) is the warp factor depending only onuyu.
Perturbations of this metric reproduce the expected 1/r New-
tonian potential on the brane~the observed universe!. This is
due to the fact that the zero modes of the perturbation pro
gate on the brane only~they tend rapidly to zero in the fifth
dimension!. The other modes~the massive Kaluza-Klein
modes! merely give a correction in 1/r 3 to this potential.

One of the first developments of this model was the g
eralization of the Randall-Sundrum ansatz to include a wi
class of metrics@2–15#. Different geometries were treated b
considering solutions to the Randall-Sundrum model w
metrics which, up to a nonconstant conformal factor, can
written as

ds25A2~y!gi j ~x,y!dxidxj1dy2. ~1.2!

The requirement that the zero modes of the perturbat
around these metrics be localized on the brane imposes
ther constraints on this class of geometries@3#.

Since the Randall-Sundrum model is a string inspired p
ture @16#, one would like to understand the implications
higher curvature terms in such a brane world universe. Th
terms naturally arise in the string effective action beyo
first order in the string tensiona8. The inclusion of these
terms is also of relevance to cosmology and inflation.
should stress that in the setting of Ref.@16#, a8 corrections
~higher curvature terms! arise on the ten-dimensional bran
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and lead to Gauss-Bonnet combinations after compactifi
tion down to five dimensions. In the eleven-dimension
bulk, on the other hand, the corrections are quartic in
curvature and might not yield Gauss-Bonnet terms a
compactification. This is why we would like to characteri
our model as a string inspired theory and not a string deri
one.

It turns out that generic higher curvature terms lead,
general, to a delocalization of gravity from the brane@17,18#.
A combination of these terms in a Gauss-Bonnet form yiel
however, the desired Randall-Sundrum behavior of the z
modes of the perturbations. We should mention that
analyses of Refs.@17,18# is carried out with a brane posses
ing a flat metric of the form given in Eq.~1.1!. In this con-
text, various other issues were also treated using higher
vature terms @19–28#. Furthermore, the Gauss-Bonn
combination in five dimensions is the only nonlinear term
the curvature which yields second order field equations. I
essentially this feature which favors the inclusion of su
terms.

In this paper, we deal with a Randall-Sundrum mod
complemented by a Gauss-Bonnet density where the fi
dimensional metric is of the form in Eq.~1.2!. We start by
considering a metric on the brane with spherical symmetry
is shown that the only possible solution in this case is a
Sitter or anti–de Sitter spacetime for the brane. This is
contrast to the case without a Gauss-Bonnet term wh
black hole geometries are allowed@3#. Our bulk metric in-
volves a warp factor that presents an oscillatory regi
among other possibilities.

A second study consists in taking a Friedmann-Roberts
Walker metric on the brane. We recover the equations
ordinary cosmology on the brane. This is to be compared
previous brane world cosmology models@29–51# where,
among other things, the square of the Hubble paramete
found to be proportional to the square of the energy dens
Here, the matching conditions are so restrictive that th
determine the equation of state relating the energy densit
the pressure. Various inflationary solutions with a cosmolo
cal constant on the brane are determined. Another solu
with a time-dependent energy density and pressure is
found. However, the pressure for this matter is negative
cannot describe ordinary dust. On the other hand, a sc
field is found whose energy-momentum tensor could
scribe this behavior.

il
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B. ABDESSELAM AND N. MOHAMMEDI PHYSICAL REVIEW D 65 084018
II. THE MODEL

We consider a five-dimensional spacetime with coor
nates (x0[t,x1,x2,x3,x4[y), where (t,x1,x2,x3) denotes
the usual four-dimensional spacetime andx4[y is the coor-
dinate of the fifth dimension, which is an orbifoldS1/Z2
where the Z2 action identifies y and 2y. The five-
dimensional indices are denoted byM ,N, . . . 50, . . . ,4 and
the four-dimensional brane world indices arei , j , . . .
50, . . . ,3. Wewill neglect the matter interaction and con
sider the five-dimensional gravitational action

S5E d5xA2G~aR1L1bLGB!, ~2.1!

where a and b are two coupling constants andL is the
five-dimensional cosmological constant. The Gauss-Bon
Lagrangian density is

LGB5RMNPQRMNPQ24RMNRMN1R2. ~2.2!

The equations of motion corresponding to our action are1

EMN[aS RMN2
1

2
gMNRD2

1

2
LgMN12bS RM

PQSRNPQS

12RPQRM PQN22RM PRN
P1RRMN2

1

4
gMNLGBD

50. ~2.3!

The most important property of these equations is that t
reproduce Einstein’s equations in four dimensions and c
tain, in five dimensions, derivatives of the metric of order
higher than 2. This latter fact is crucial in the context of t
brane world scenario as it avoids the problem of encoun
ing powers of a delta function.

In contrast to the case of Einstein’s equations, the se
equations~2.3! possesses, for a givenb and a givenL, two
~anti–!de Sitter solutions@52,53#. This can be seen by con
sidering the simple case of a maximally symmetric spa
time as expressed by

RMNPQ52s~GM PGNQ2GMQGNP!. ~2.4!

The various curvature terms in Eq.~2.3! are then easily com
puted in terms ofs andGMN and one obtains the equation

@L212s~a22bs!#GMN50. ~2.5!

Therefores takes two possible values as given by

s5
1

4b S a6Aa22
2

3
bL D . ~2.6!

This last equation can be inverted to get an expression foL

L512s~a22bs!. ~2.7!

1Our conventions are such thatRNPQ
M 5]PGNQ

M 1GPR
M GNQ

R

2(P↔Q) andRMN5RMQN
Q .
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This value ofL will be needed in the rest of the paper.
Since the aim of this paper is the study of the Rand

Sundrum model supplemented by a Gauss-Bonnet inte
tion term, it is natural to ask whether interesting solutio
such as Eq.~2.4!, still exist in the context of the brane worl
scenario. As a first step, a class of rich structures can
explored by considering spherically symmetric geometr
on the brane. In particular, one would like to know if blac
hole geometries are present. Furthermore, most of the e
tions encountered in the spherically symmetric case will
of use when investigating the cosmological solutions.
start, therefore, with a spherically symmetric line element
given by

ds25A2~y!@2N~r !dt21M ~r !dr21r 2~du21sin2udf2!#

1dy2 ~2.8!

and examine the equations of motion

H N
M[E N

M1TN
M50, ~2.9!

where the nonzero components of the energy-momen
tensorTN

M are

Tj
i 5d j

i ld~y! ~2.10!

with l denoting the cosmological constant on the brane.
obtain four different equations corresponding to the com
nentsH 0

0, H 1
1, H 2

25H 3
3, andH 4

4. SubtractingH 1
1 from H 0

0

leads to

M ~r !5
1

N~r !
. ~2.11!

Substituting forM (r ) and subtractingH 2
2 from H 0

0 yields

N~r !511mr 21
n

r
, ~2.12!

wherem andn are two constants of integration.
After substituting forN(r ), the equation corresponding t

H 4
450 can be cast in the form

12~m1A82!@aA222b~m1A82!#2LA45
12n2b

r 6 .

~2.13!

Our notation is explained in the footnote below.2 Since the
left-hand side of this equation is independent ofr, it is clear
that one must haven50. This condition, however, is no
needed ifb50 ~see, for example, Ref.@3#!. With n50, the
last equation takes then the simple form

2SinceA is a function ofuyu we havedA/dy5A8(duyu/dy) where
A8 denotes the derivative ofA with respect to its argumentuyu and
duyu/dy52Q(y)21 whereQ(y) is the Heaviside function. Notice
that (duyu/dy)251 and we have (dA/dy)25A82. On the other hand
d2A/dy25A912A8d(y) whereA9 denotes the second derivative o
A with respect to its argumentuyu.
8-2



s

in
e

-

y

th
e
ss
e
f
e
to

tw

-
ti

th
an
c

ica
on

t-
ll-

tric

ge
rd
ric
e,

lu-
e on
tric

at
le.
he
net
ve

ten-

we
the

till
a-

BRANE WORLD COSMOLOGY WITH GAUSS-BONNET . . . PHYSICAL REVIEW D 65 084018
m1A825sA2, ~2.14!

where s is as previously defined. The solution to our la
differential equation is

A~y!5
m

4gs
exp~6Asuyu!1g exp~7Asuyu!. ~2.15!

Hereg is an integration constant. It is worth recalling thatm
is the curvature on the four-dimensional brane.

We are left with one equation to solve, namely,H 0
0

6aA~m1A82!16@aA224b~m1A82!#
d2A

dy22LA3

12lA3d~y!50. ~2.16!

This equation involves second derivatives ofA(y) which
generate delta functions as explained in the footnote. Us
Eq. ~2.14! in H 0

0 and matching the delta functions yields th
fine tuning conditions

l526~a24bs!
A8~0!

A~0!
. ~2.17!

Substituting then forA(y) in Eq. ~2.16!, fixes the five-
dimensional cosmological constantL to its original value
L512s(a22bs).

Notice that the warp factorA(y) can present various be
haviors depending on the values ofs andm. Let us start by
discussing the case when the curvature on the branem van-
ishes ands is positive. The warp factor is then given b
A(y)5g exp(7Asuyu). If we require now thatA(y) decays
to zero away from the position of the brane then only
negative sign in the exponential is retained. This requirem
is essential for the stability of the solution when the Gau
Bonnet term is not present@3#. It is possible that the sam
requirement holds here too. However, a complete proo
much more involved and beyond the scope of the pres
study. The second case in this discussion corresponds
nonvanishingm and a positives. Here both factors in the
expression ofA(y) are present and one has to choose the
constantsm andg in such a way thatA(y) tends to zero as
y approaches infinity. Finally, ifs is negative then an oscil
latory regime is obtained. It would be interesting to inves
gate the stability of this last case.

III. COSMOLOGICAL SOLUTIONS

One of the first questions that have been asked in
context of the Randall-Sundrum model is whether signific
modifications are brought to the standard cosmological s
nario. In the search for interesting brane world cosmolog
solutions, most of the studies have so far been based
line element of the form~see, for example, Refs.@30,31#!

ds252n2~ t,y!dt21S2~ t,y!gab~x!dxadxb1b2~ t,y!dy2,
~3.1!
08401
t

g

e
nt
-

is
nt

a

o

-

e
t
e-
l
a

wheregab is a maximally symmetric three-dimensional me
ric. Notice that this metric, in contrast to the Randa
Sundrum solution, contains three warp factors~thoughb can
be consistently set to 1). Furthermore, the brane me
~found by settingy50) is not explicitly in a standard
Friedmann-Robertson-Walker form. It is only after a chan
of the time coordinatet that it can be brought to the standa
form. It is also worth mentioning that by choosing a met
having one warp factor@this can be achieved, for exampl
by choosingn(t,y)5A(y), S(t,y)5A(y)h(t) and b(t,y)
51# then the only possible solution is a cosmological so
tion having constant energy density and constant pressur
the brane. The cosmological implication of the above me
will be highlighted below.

It is one of the aims of the present study to show th
cosmological solutions with one warp factor are possib
This situation can be realized after a modification of t
Randall-Sundrum model by the addition of a Gauss-Bon
term in the bulk. The metric for this analysis is taken to ha
the form

ds25A2~y!H 2dt21a~ t !2F dr2

12kr2 1r 2~du21sin2udf2!G J
1dy2. ~3.2!

The nonvanishing components of the energy-momentum
sor TN

M are now given by

T0
052r~ t !d~y!,

T1
15T2

25T3
35p~ t !d~y!. ~3.3!

By choosing an energy-momentum tensor in this form,
have already assumed that no matter escapes through
fifth dimension.

The equations of motion we would like to solve are s
H N

M5E N
M1TN

M50. There are three different types of equ
tions H 0

0 , H 1
15H 2

25H 3
3, andH 4

4. The first of theseH 0
0 is

6@a2~aA224bA82!14b~k1ȧ2!#
d2A

dy226aA~k1ȧ2!

16aa2AA822LA3a222ra2A3d~y!50, ~3.4!

whereȧ is the derivative ofa with respect tot. Matching the
delta functions in this last equation yields

r5
6A8~0!

a2@A~0!#3
„a2$a@A~0!#224b@A8~0!#2%14b~k1ȧ2!….

~3.5!

The second equationH 1
1 is given by the expression

2@3a2~aA224bA82!18baä14b~k1ȧ2!#
d2A

dy222aA~k

1ȧ2!16aa2AA822La2A324aaäA12pa2A3d~y!

50. ~3.6!
8-3
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B. ABDESSELAM AND N. MOHAMMEDI PHYSICAL REVIEW D 65 084018
Again, matching the delta functions coming fromd2A/dy2

and those coming from the energy-momentum tensor giv

p52
2A8~0!

a2@A~0!#3
„3a2$a@A~0!#224b@A8~0!#2%18baä

14b~k1ȧ2!…. ~3.7!

Using the expression ofr we deduce the following expres
sion for the Hubble parameter:

H2[S ȧ

a
D 2

5
@A~0!#3

24bA8~0!
r2

k

a2 1S 2
a@A~0!#2

4b

1@A8~0!#2D . ~3.8!

This is the first Friedmann relation of ordinary cosmolog
Similarly, combining the expression ofr with that corre-
sponding top, yields the second Friedmann equation

ä52
@A~0!#3

48bA8~0!
~3p1r!a1S 2

a@A~0!#2

4b
1@A8~0!#2Da.

~3.9!

Differentiating H2 and using the expression ofä results in
the usual conservation equations

ṙa13~p1r!ȧ50. ~3.10!

This conservation equation can be easily understood in te
of Bianchi identities. Indeed, a little algebra involving th
use of the Bianchi identities of the Riemann tensor sho
that ¹MEMN50. Since we are dealing with the equatio
EMN1TMN50, we deduce that¹MTN

M50. Due to the fact
that our energy-momentum tensor is such thatT4

450, the
above conservation relation on the brane is reached.
means that there is no flow of matter along the fifth dime
sion. In conclusion, our gravitational theory with the Gau
Bonnet term leads to ordinary Friedmann equations.

At this point let us summarize the main result obtain
with the metric ~3.1! and without a Gauss-Bonnet ter
@30,31#. In this case, the Hubble parameter takes the form

S ȧ

a
D 2

5C 1r21
C2

a4
1

C 3

a2 1C4L, ~3.11!

where C1 and C4 are related to the square of the fiv
dimensional gravitational constant,C3 is proportional to the
curvature of the three-dimensional metricgab , while C2 is an
integration constant. The radius of the universea(t) is de-
fined by a(t)5S(t,y50). Furthermore, one has the usu
conservation equationṙa13(p1r)ȧ50 which is a conse-
quence of the Bianchi identities.

The most noticible feature of Eq.~3.11! is that the energy
density of the brane enters quadratically and the time ev
tion of the Hubble parameter depends on an effective ra
tion termC2 /a4. An attempt to obtain ordinary cosmology
08401
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made by choosingC250 and assuming thatr5r11r2 with
r2 much smaller than the constant energy densityr1 @30,31#.
By neglecting terms involvingr2

2 and carrying out some
fine-tuning procedures, one can obtain a stand
Friedmann-type equation. However, neither the artific
splitting of r nor the fine-tuning is justified.

After this digression, let us return now to our set of equ
tions. Once the matching is carried out, we can deal with
two equationsH 1

1 andH 0
0 away fromy50. SubtractingH 1

1

from H 0
0 then gives

~k1ȧ22aä!~aA24bA9!50. ~3.12!

If the first factor (k1ȧ22aä) vanishes then an interestin
solution is given by

a~ t !5
k

4kt2 exp~6tt !1k exp~7tt !, ~3.13!

wheret andk are two integration constants.
Upon substituting fora(t) in H 4

4, we obtain

12~A822t2!@aA222b~A822t2!#2LA450. ~3.14!

This equation is exactly the one found in Eq.~2.13! with n
50 and wherem is replaced by2t2. The solutionA(y) to
this equation is therefore as given in Eq.~2.15! upon replac-
ing m by 2t2.

Putting the expression ofa(t) in H 0
0 leads to the differ-

ential equation

6aA~A822t2!16@aA224b~A822t2!#A92LA350.
~3.15!

Again, this equation is that found in Eq.~2.16! away from
the position of the brane and wherem is replaced by2t2.
Therefore, replacing forA(y) in this last differential equa-
tion fixes the bulk cosmological constant to beL512s(a
22bs). We should mention that this solution leads to t
following relation between the energy densityr and the pres-
surep:

p52r5l, ~3.16!

wherel is as given in Eq.~2.17!. The Hubble parameter fo
this solution is given by

H252
k

a2 1t2, ~3.17!

with a(t) as given in Eq.~3.13!. Similarly, we find that

ä

a
5t2. ~3.18!

We distinguish, therefore, two cases. The first correspond
t2.0 and leads to an inflationary regime whenever one
the two exponentials ina(t) dominates. The second situatio
arises whent2,0. In this case the scale factor is given b
8-4
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BRANE WORLD COSMOLOGY WITH GAUSS-BONNET . . . PHYSICAL REVIEW D 65 084018
a~ t !5« cosSA2k

«
t1w D , ~3.19!

where« andw are two real integration constants. The cor
spondingA(y) is given by Eq.~2.15! wherem is replaced by
2k/«2. Of course, this solution is valid only whenk is nega-
tive and describes a repeatedly collapsing universe.
Hubble parameter in this case isH252k/a21k/«2.

The other solution to (k1ȧ22aä)50 is given by

a~ t !56A2kt1d ~3.20!

with d an integration constant. This solution is physical on
for k negative. Substituting this expression ofa(t) in H 4

4

leads to the differential equation

A825sA2, ~3.21!

wheres is as defined in Eq.~2.6!. ThereforeA(y) is given
by

A~y!5c exp~Asuyu! or A~y!5v exp~2Asuyu!
~3.22!

for two integration constantsc andv. The solution in Eqs.
~3.20! and ~3.22! automatically satisfiesH 0

0. Furthermore,
we have p52r5l and the Hubble parameter isH25
2k/a2.

Let us now return to the second possibility as allowed
Eq. ~3.12!, namely, when (aA24bA9)50. This case is of
course present only whenb is different from zero and we
have the solution

A~y!5j expS 1

2
Aa

b
uyu D 1u expS 2

1

2
Aa

b
uyu D ,

~3.23!

wherej andu are two integration constants. Substituting th
solution inH 4

4 leads to

a3~3a222bL!H Fj expS 1

2
Aa

b
uyu D 1u expS 2

1

2

3Aa

b
uyu D G4

26j2u2J 248ä@b2~k1ȧ2!1abjua2#

26jua@8ab~k1ȧ2!1jua2~5a212bL!#

50. ~3.24!

It is clear, from the separation of variables, that one m
have

L5
3a2

2b
~3.25!

and the above differential equation reduces then to

@b~k1ȧ2!1ajua2#~bä1ajua!50. ~3.26!
08401
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Regardless of which factor vanishes first, the solution to t
last differential equation takes the form

a~ t !5z expSA2
aju

b
t D 1x expS 2A2

aju

b
t D ,

~3.27!

wherez andx are two integration constants and if the fir
factor of the differential equation vanishes then

bk14ajuzx50. ~3.28!

With L5(3a2)/(2b), the equation corresponding toH 0
0

yields

~aA24bA9!@a2~aA224bA82!14b~k1ȧ2!#50
~3.29!

and is therefore automatically satisfied~since we are exam
ining the case whenaA24bA950).

If the first factor in Eq.~3.26! vanishes then we have

p52r50. ~3.30!

The Hubble parameter for this case is

H252
k

a2 2
aju

b
. ~3.31!

On the other hand if the second factor in Eq.~3.26! vanishes
then we have the equation of state

p52
1

3
r528

A8~0!

@A~0!#3

1

a2 ~bk14ajuzx!, ~3.32!

whereA(y) is given by Eq.~3.23!. The corresponding ex
pression for the Hubble parameter is

H252
aju

b S 12
4zx

a2 D ~3.33!

with a(t) as given in Eq.~3.27!. In both cases we have

ä

a
52

aju

b
. ~3.34!

We notice that if2aju/b is positive then the universe i
accelerating; otherwisea(t) oscillates in time.

Let us examine in more detail the solution found here a
in particular the case when2aju/b is positive. If the first
factor in Eq.~3.27! vanishes, which requiresbk14ajuzx
50, then no matter is present on the brane~since p52r

50). Nevetheless, the universe is accelerating asä/a5
2aju/b. The question to be asked now is what causes
acceleration. The only source of acceleration is a combi
effect due to the bulk cosmological constant and the Gau
Bonnet correction term. This is because neitherL nor b can
be set to zero in our solution. The case corresponding to
vanishing of the second factor in Eq.~3.27! will be investi-
gated below.
8-5
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IV. DISCUSSION

Among the solutions found in this analysis, special att
tion should be paid to that described by a time-depend
energy density and pressure as in Eq.~3.32!. However, the
equations of statesp52r/3 cannot correspond to an ord
nary dust as the pressurep is negative. Let us suppose th
the only matter present on the brane is a self-interacting
lar field with energy-momentum tensor

Ti j 5F] if] jf2
1

2
gi j @]kf]kf1V~f!#Gd~y!, ~4.1!

where gi j is a Friedmann-Robertson-Walker metric on t
brane. If the fieldf depends only on time then one has

r52T0
05

1

2
@ḟ21V#d~y!,

p5T1
15T2

25T3
35

1

2
@ḟ22V#d~y!. ~4.2!

The fieldf is subject to the equations of motion

1

A2g
] i~A2g] if!2

1

2
V850 ~4.3!

with V8 being the derivative of the potentialV with respect
to f.

The equation of statep52r/3 leads to

ḟ25
1

2
V ⇒ V854f̈ ~4.4!

while the equation of motion of the scalar field yields

f̈13
ȧ

a
ḟ52

1

2
V8. ~4.5!

Combining these last two equations results in

f̈

ḟ
1

ȧ

a
50. ~4.6!

Thereforeḟ5y/a, for some integration constanty. Using
the expression ofa(t) as given in Eq.~3.27!, we find that

f~ t !5
y

A2
ajuzx

b

arctanFAz

x
expSA2

aju

b
t D G

1Ã, ~4.7!

whereÃ is an integration constant. In order to be able
express the potentialV as a function off, it is convenient to
rewrite this last equation in the form
08401
-
nt

a-

expSA2
aju

b
t D 5Ax

z
tanF1

y
A2

ajuzx

b
~f2Ã!G .

~4.8!

Since the potential is given byV52ḟ252y2/a2, we find
that

V~f!5
y2

2zx
sin2F2

y
A2

ajuzx

b
~f2Ã!G . ~4.9!

This potential has an infinite number of minima.
As it is known, cosmological scenarios with negati

pressure are used in explaining the current acceleratio
our universe~see, for example, Ref.@54#!. The scalar field
providing this pressure is known as quintessence@55#. Simi-
lar models are also constructed in the context of brane w
cosmology@56–62#. It seems that we have found here a
other model for quintessence where the scalar field is g
erned by a very simple potential. However, a word of caut
is needed here. Let us recall that in standard cosmology,
equation which determines the acceleration of the univers
later times is given byä/a52(4pG/3)(r13p)1l/6,
wherel is a cosmological constant. Ifl is set to zero~or
equivalently absorbed into the definition ofr andp) then the
universe is accelerating for an equation of statep5sr with
21<s, 1

3 . On the other hand, if the equation of state is su
that p52 1

3 r and l50 then ä/a50 and the universe is
uniformally evolving.

In our case, we havep52 1
3 r, however,ä/a52aju/b.

This situation can only be explained by a nonvanishing c
mological constantl. Indeed, iflÞ0 then the requiremen
that the universe is accelerating amounts to demanding
p,l/24pG2r/3. When the equation of statep52 1

3 r is
obeyed then the last inequality requires the cosmolog
constantl to be positive, and we haveä/a5l/6. In our case,
we have an equation of state for a perfect fluid, withp5
2 1

3 r, however with a nonvanishing cosmological equal
l526aju/b.

Finally we would like to mention that if the cosmologica
constantl is equal to zero, then current data seem to fa
an equation of statep5sr with 21<s<20.7. However, no
limits on the possible values ofs are known to us in the cas
when the contribution of the cosmological constant is tak
into account. It remains as a challenge to decide whether
model presented here could be taken as a serious propos
explaining the current acceleration of the universe.
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gács for his kind invitation to the University of Tours wher
this work was carried out. He is also grateful to the memb
of the group for their kind hospitality. N.M. would like to
thank Claude Barrabes, Bruno Boisseau, Bernard Linet
Micheal Volkov for very useful discussions.
8-6



D

.

in

. B

h-

s.

B

tt.

ev.

ev.

v. D

v.

tum

s.

Lett.

BRANE WORLD COSMOLOGY WITH GAUSS-BONNET . . . PHYSICAL REVIEW D 65 084018
@1# L. Randall and R. Sundrum, Phys. Rev. Lett.83, 4690~1999!;
83, 3370~1999!.

@2# A. Chamblin, S.W. Hawking, and H.S. Reall, Phys. Rev. D61,
065007~2000!.

@3# T. Padmanabhan and S. Shankaranarayanan, Phys. Rev.63,
105021~2001!.

@4# I. Giannakis and Hai-cang Ren, Phys. Rev. D63, 125017
~2001!.

@5# R. Dick, Class. Quantum Grav.18, R1 ~2001!.
@6# D. Birmingham and M. Rinaldi, Mod. Phys. Lett. A16, 1887

~2001!.
@7# P. Kraus, J. High Energy Phys.12, 011 ~1999!.
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