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Hyper-Kähler metrics from periodic monopoles
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Relative moduli spaces of periodic monopoles provide novel examples of asymptotically locally flat hyper-
Kähler manifolds. By considering the interactions between well-separated periodic monopoles, we infer the
asymptotic behavior of their metrics. When the monopole moduli space is four dimensional, this construction
yields interesting examples of metrics with a self-dual curvature~gravitational instantons!. We discuss their
topology and complex geometry. An alternative construction of these gravitational instantons using moduli
spaces of Hitchin equations is also described.
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I. INTRODUCTION

One of the most powerful methods for obtaining hyp
Kähler manifolds is the hyper-Ka¨hler quotient~HKQ! con-
struction@1#. Most known hyper-Ka¨hler manifolds are hyper
Kähler quotients of affine hyper-Ka¨hler spaces by a suitabl
subgroup of triholomorphic isometries. For example, all
ymptotically locally Euclidean ~ALE! four-dimensional
hyper-Kähler manifolds~in other words, ALE gravitationa
instantons! have been constructed in this way@2#. The affine
hyper-Kähler space is finite dimensional in this case.

More general hyper-Ka¨hler manifolds are obtained if on
starts with an infinite-dimensional affine hyper-Ka¨hler space
and quotients by an infinite-dimensional subgroup of isom
tries. Well-known examples of this sort are moduli spaces
instantons onR4 and moduli spaces of monopoles onR3.
The affine space is the space of connections on a ve
bundle onR4 in the first instance, and the space of pa
~connection, Higgs field! in the second instance. The quo
enting group is the group of gauge transformations in b
instances.

The monopole example is particularly nice, as one c
determine the asymptotic behavior of the metric from sim
physical considerations@3,4#. In the asymptotic region the
monopoles are well separated, and can be regarded as
particles interacting via long-range scalar and electrom
netic fields. Each particle has an internal degree of freed
living on a circle, which when excited gives the monopole
electric charge~i.e. makes it into a dyon!. In the asymptotic
region the radius of this circle is a fixed number determin
by the vacuum expectation value of the Higgs field at infi
ity. It follows that asymptotically the moduli space ofk
SU(2) monopoles looks like aTk fibration over (R3)k/Sk ,
where we divided by the symmetric groupSk to take into
account the indistinguishability of monopoles. Since t
electric charges are conserved, the fiberwise action ofTk

must be an isometry~in fact, a tri-holomorphic isometry!. A
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more detailed analysis of the long-range interactions of m
ing monopoles yields the precise metric in the asympto
regime @3,4#, which turns out to be asymptotically locall
flat.

It is customary to quotient the moduli space by the tra
lations of R3 and the diagonal ofTk, or equivalently to fix
the center-of-mass coordinates of the monopoles and the
of their internal degrees of freedom~phases!. The resulting
4(k21)-dimensional manifold is again hyper-Ka¨hler and is
called the relative~or centered! moduli space. The relative
moduli space of two monopoles is known as the Atiya
Hitchin manifold@5#. At infinity it looks like a circle of fixed
radius fibered overR3/Z2, and the asymptotic metric has th
Taub-NUT~Newman-Unti-Tamburino! form.

One can generalize this example somewhat and cons
SU(2) monopoles moving in a background ofn pointlike
Dirac monopoles sitting at fixed locations@6#. If the number
of SU(2) monopoles is one, then the~uncentered! moduli
space is the multi-Taub-NUT space@7,6#. It is a four-
dimensional ALF manifold with a triholomorphicU(1)
isometry isomorphic as a complex variety to a blow up
C2/Zn . At infinity it looks like a circle of fixed radius fibered
overR3, and theU(1) action is fiberwise.1 If the number of
SU(2) monopoles is two, then therelative moduli space is
four dimensional and ALF, but does not have a triholom
phic U(1) isometry. As a complex variety the moduli spa
is isomorphic to a blow up ofC2/G, whereG is a binary
dihedral group@6#. The asymptotic metric has the Taub-NU
form and looks at infinity like a circle of fixed radius fibere
over R3/Z2. In particular the asymptotic metric has a tr
holomorphicU(1) isometry which acts fiberwise.

ALE gravitational instantons also have an asymptotic
holomorphicU(1) isometry, but the circumference of th
orbits grows linearly as a function of the ‘‘radius.’’ Finite
dimensional HKQ construction suffices to construct all su
manifolds. In the cases when the circumference of the or

1The multi-Taub-NUT metric can also be obtained by a fini
dimensional HKQ construction@1# or by using the Gibbons-
Hawking ansatz@8#.
©2002 The American Physical Society15-1
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SERGEY A. CHERKIS AND ANTON KAPUSTIN PHYSICAL REVIEW D65 084015
stays fixed at infinity, one needs to resort to the infini
dimensional HKQ construction, in general.

An obvious generalization is to consider ALF gravit
tional instantons which asymptotically have a triholomorp
T2 action. We will call such gravitational instantonsALG
manifolds. Such manifolds previously arose in the phys
literature as quantum moduli spaces ofd54 N52 gauge
theories compactified on a circle~see below!. No ‘‘classical’’
construction of such manifolds has been known previou
In this paper we will produce examples of ALG manifold
using an infinite-dimensional HKQ construction. More ge
erally, we will show how to construct ALF hyper-Ka¨hler
manifolds of dimension 4(k21) which asymptotically have
a triholomorphicT2(k21) isometry. To this end we will con-
siderk SU(2) monopoles onR23S1 with a flat metric. Such
‘‘periodic’’ monopoles have been studied in Refs.@9,10#. It
was shown there that although each periodic monopole h
logarithmically divergent mass, the relative moduli space
a well-defined hyper-Ka¨hler metric. We expect that this me
ric is smooth and geodesically complete. The asymptotic
havior of this metric will be determined along the lines
Refs.@3,4#. We will also consider a more general problem
periodic SU(2) monopoles moving in a background
point-like Dirac monopoles.

In the casek52 the moduli space is four dimensiona
and we will describe its geometry in some detail using
results of Refs.@9,10#. In fact, since the number of Dira
singularitiesn can vary from 0 to 4, in this way we obtai
five topologically distinct four-dimensional hyper-Ka¨hler
manifolds. We show that they are ALG manifolds. Moreov
we will see that the moduli spaces have a distinguished c
plex structure in which they look like elliptic fibrations ove
C. The volume of the elliptic fiber is constant in th
asymptotic region of the moduli space. The asymptoticT2

isometry acts on the fibers in a natural manner. The num
and type of singular fibers depends on the parameters o
metric. We will discuss which kinds of singular fibers occu
compute the Betti numbers of the moduli spaces, and
some cases the intersection pairing on the second homo
We will see that the most general ALG gravitational insta
ton one can get in this way has an intersection form whic
the affine Cartan matrix of typeD4. All other gravitational
instantons we construct can be regarded as its degenera

Finally, we explain an alternative construction of our AL
manifolds using moduli spaces of Hitchin equations@11# on a
cylinder. The two constructions are related by a version
Nahm transform@9,10#.

As discussed in Refs.@9,10#, moduli spaces of periodic
monopoles are closely related to certainN52, d54 quan-
tum gauge theories. For example, the moduli space ok
SU(2) monopoles moving in a background ofn Dirac mono-
poles is isomorphic to the quantum Coulomb branch
SU(k) gauge theory withn fundamental hypermultiplets
compactified on a circle. TheD4 gravitational instanton men
tioned above corresponds to theSU(2) gauge theory with
four hypermultiplets, while its degenerations correspond
theSU(2) gauge theory with three or fewer hypermultiple
The quantum Coulomb branch of these theories onR4 has
been determined in two celebrated papers by Seiberg
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Witten @12,13#. Our results provide information about th
same theories onR33S1. The asymptotic form of the metric
on the Coulomb branch has been computed in@14–16#. The
result agrees with the asymptotics of the metric on
moduli space of periodic monopoles computed below. Ho
ever, if one wants the complete metric, the gauge the
realization is not very useful since the metric is corrected
gauge theory instantons. Such non-perturbative effects
to exponentially small corrections to the metric which a
quite hard to compute. On the other hand, we realized
same manifolds as classical objects, namely as moduli sp
of Bogomolny or Hitchin equations. We hope that the cor
sponding hyperka¨hler metrics can be computed in a clos
form using twistor methods.

II. ASYMPTOTIC METRIC ON THE MONOPOLE
MODULI SPACES

A. Generalities

We will use the conventions of Refs.@9,10#. We identify
R23S1 with C3S1 and use a complex affine coordinatez on
C and a real coordinatex on S1 with an identificationx;x
12p. For monopoles located at pointsaj5(zj ,x j ), j
51, . . . ,k, the field configuration at a distant pointx
5(z,x) is given in a suitable gauge by

f~x!5v1(
j 51

k

f j~z2zj !, ~1!

Az50, Ax5b1(
j 51

k

Ax
j ~z2zj !. ~2!

When all the distancesuzi2zj u are large, we interpret thes
fields as a superposition of the background fields, given
constantsb andv, and individual fields of the monopolesf j

andAj .
When all monopoles are well separated, it is natural

think of their dynamics in terms of motion and interaction
particles onR23S1. The moduli space coordinates are und
stood as parametrizing the positions of thesek particles as
well as their internal degrees of freedom valued inS1

~phases!. A particle whose phase is changing with tim
aquires an electric charge proportional to the rate of
phase change@3#. This is consistent with charge conservatio
because the rate of phase change is an integral of mo
Motion on the moduli space is thus interpreted as motion
k dyons onR23S1.

So far the discussion parallels that for monopoles onR3

@3#. But unlike for monopoles onR3, there is a subtlety here
related to the fact that a single periodic monopole has infin
mass, because the integral of the energy density logarith
cally diverges at long distances@9,10#. One might conclude
that the kinetic energy associated with the motion on
moduli space is infinite as well. If this were the case, t
metric on the moduli space would be ill-defined~divergent!,
and the positions of the particles would be parameters ra
than moduli. In fact, only the coordinates of the center
mass and the total phase are parameters. The kinetic en
5-2
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HYPER-KÄHLER METRICS FROM PERIODIC MONOPOLES PHYSICAL REVIEW D65 084015
of the relative motion is finite, and therefore there is a fin
metric on the relative moduli space@10#. To deal with this
subtlety, we use the following procedure. In terms of t
universal covering space ofR23S1, each periodic monopole
is an array of infinitely many ’t Hooft-Polyakov monopole
Such an array has an infinite mass per unit length becaus
the divergence mentioned above. We regularize the prob
by replacing each infinite array by a finite array of 2N11
monopoles. This way all the masses and fields are finite
the end of the computation we will sendN to infinity. As a
result, we indeed recover a finite metric on the relat
moduli space and verify that the center of mass and t
phase of the configuration are parameters~the kinetic energy
associated with them diverges logarithmically asN→`).

With this remark in mind, the Higgs field produced by o
periodic monopole of chargeg located atz50 at distances
large compared to the size of the monopole is

f j~x!5 (
l 52N

N
2g

Auzu21~x22p l !2
. ~3!

We note for future use that for a ’t Hooft-Polyakov monopo
g51, and for a singular Dirac monopoleg521/2 @10#.
Since we are going to sendN to infinity, we may assume tha
uzu!N. In this region the expression forf j simplifies to

f j~x!5
g

p
loguzu2gCN1OS 1

uzu D . ~4!

HereCN is a positive constant diverging logarithmicaly wi
N; it will eventually be absorbed into the constant bac
ground v. From now on we shall omit terms decaying
1/uzu or faster when writing the monopole fields.

The connectionAj corresponding tof j (x) is given by

Ax
j 5

g

p
argz, Az

j ~x!50, ~5!

in a suitable gauge. To be precise, we should have adde
N-dependent constant toAx

j , but since it can be absorbe
into the constant backgroundb, we did not write it explicitly.

For convenience we define two auxiliary functions:

u~z!5
1

p
loguzu2CN , w~z!5

1

p
argz.

Note that the total fieldf(x) of Eq. ~1! is given for large
z by

f~x!5v2kgCN1
kg

p
loguzu. ~6!

Since we are interested in field configurations with fixed
ymptotics, it is natural to introduce

v ren5v2kgCN ~7!

and adjustv so thatv ren remains fixed whenN is sent to
infinity. Thus in the limitN→1` we havev→1`.
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Next we introduce an electric chargeqj for each mono-
pole. The resulting dyons acquire new interactions. The
grangian of thek th dyon is

Lk524pfAg21qk
2A12VW k

214pqkVW k•AW 24pqkA0

14pgVW k•ÃW 24pgÃ0 .

Here VW is the velocity 3-vector of thek th dyon with com-
ponents (Reż,Im ż,ẋ) ~dot denotes time derivative!. The
fields f,A, and Ã are superpositions of the fields produc
by other dyons evaluated at the location of thek th dyon and
the constant background. The magnetic chargeg couples to

the ‘‘magnetic’’ potentialsÃW ,Ã0 which are dual to the ‘‘elec-
tric’’ potentials AW ,A0 and are defined by

¹3ÃW [B̃W 52EW [¹A01
]

]t
AW ,

2¹Ã02
]

]t
ÃW [ẼW 5BW [¹3AW . ~8!

The fields produced by a dyon at rest located atz50 are

f j~x!5Ag21qj
2 u~z!, ~9!

Ax
j ~x!5gw~z!, A0

j ~x!52qju~z!, Az
j ~x!50,

Ãx
j ~x!52qjw~z!, Ã0

j ~x!52gu~z!, Ãz
j ~x!50.

~10!

The fields of a moving dyon are obtained by a Loren
boost. Keeping terms up to second order in velocities

f,A0 ,Ã0 and up to first order inAW ,ÃW , we get

f j~x!5Ag21qj
2u~z!A12VW j

2,

Ax
j ~x!52qju~z!Vj x1gw~z!,

Az
j ~x!52qju~z!Vjz ,

A0
j ~x!52qju~z!1gw~z!Vj x , ~11!

Ãx
j ~x!52gu~z!Vx2qjw~z!,

Ãz
j ~x!52gu~z!Vjz ,

Ã0
j ~x!52gu~z!2qjw~z!Vj x .

Following Ref.@4#, we omitted certain terms of second ord
in velocities inf,Ã0 by replacing 1/Ar 22(r3V)2 with 1/r
in the Liénard-Wiechert potentials. This is allowed becau
such second-order terms enter the kinetic energy with
5-3
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SERGEY A. CHERKIS AND ANTON KAPUSTIN PHYSICAL REVIEW D65 084015
same coefficients as 1/r terms enter the static energy. Sin
the static interactions cancel, so do the second-order term
this type.

B. Two-monopole interactions

Consider the Lagrangian of thek th dyon in the presence
of a dyon with j 51. Keeping terms up to second order
electric charges and velocities, we get

Lk52mk1
1

2
mkVW k

212pg2u~zk2z1!~VW k2VW 1!2

14pgw~zk2z1!~qk2q1!~Vkx2V1x!

22pu~zk2z1!~qk2q1!214pbqkVkx . ~12!

Here the dyon’s rest massmk is given by 4pvAg21qk
2. Ex-

pandingmk to second order inqk , omitting a constant term
24pgv, and symmetrizing with respect to the two particle
we obtain the total Lagrangian for the dyons withj 51 and
j 5k:

1

4p
L1k52

v
2g

q1
22

v
2g

qk
21

gv
2

VW 1
21

gv
2

VW k
21

g2

2
u~zk2z1!

3~VW k2VW 1!21S b

2
1gw~zk2z1! D ~qk2q1!

3~Vkx2V1x!2
1

2
u~zk2z1!~qk2q1!2

1
b

2
~q11qk!~V1x1Vkx!. ~13!

Hence the Lagrangian describing the relative motion
the two dyons is

1

4p
L rel5g2S v ren

4g
1

1

2p
loguzk2z1u D ~VW k2VW 1!2

1S b

2
1

g

p
arg~zk2z1! D ~qk2q1!~Vkx2V1x!

2S v ren

4g
1

1

2p
loguzk2z1u D ~qk2q1!2, ~14!

while the Lagrangian for the motion of the center of mass

1

4p
LCM5

vg

4
~VW 11VW k!

22
v

4g
~q11qkt !

21
b

2
~q11qk!

3~V1x1Vkx!.

In the limit N→`, v→` with v ren andb fixed, the relative
Lagrangian stays finite, while the center-of-mass Lagrang
diverges, as expected.

Now we have to extract fromL rel the effective metric on
the relative moduli space. As explained above, the elec
chargesqj are conserved momenta conjugate to phase
grees of freedomt j associated to monopoles. Since t
08401
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monopoles are indistinguishable, we may assume thatt j are
periodic variables with the same period. The coordinates
the relative moduli space of two monopoles arez5zk2z1 ,
x5xk2x1, and t5tk2t1. To read off the metric on the
moduli space, we need to reintroduce the dependence oṫ j
into the Lagrangian. This is achieved by the Legendre tra
form with respect toq5qk2q1. We let

L rel8 5L rel14pg ṫq,

solve the algebraic equation of motion forq, and substitute
back intoL rel8 . The factor 4pg in front of ṫ is introduced for
convenience. The result is

1

4pg2
L rel8 5

t2~z!

2
~ użu21ẋ2!1

1

2t2~z!
@ ṫ1t1~z!ẋ#2,

~15!

where

t1~z!5
b

2g
1

1

p
arg~z!, ~16!

t2~z!5
v ren

2g
1

1

p
loguzu. ~17!

From now on and to the end of this subsection we
g51, as appropriate for non-Abelian monopoles.

From Eq.~15! we read off the asymptotic metric on th
moduli space. Setting

t~z!5t1~z!1 i t2~z!5
i

2
~v ren2 ib !1

i

p
log z̄, ~18!

we can write the metric as follows:

1

4p
ds25t2~z!udzu21

1

t2~z!
udt1t~z!dxu2. ~19!

Equation~19! is a special form of the Gibbons-Hawkin
ansatz@8# which depends on a harmonic function onR3. In
our case the harmonic function ist2(z). It is well known that
such a metric is hyper-Ka¨hler and has a triholomorphicU(1)
isometry generated by]/]t. Since the harmonic functiont2
does not depend onx, there is an additionalU(1) isometry
generated by the vector field]/]x. It is easy to check that it
is also triholomorphic. Thus the asymptotic metric on t
moduli space has a triholomorphicT2 isometry, as promised
Moreover, it looks like aT2 fibration over thez plane, and
theT2 action is fiberwise. Moreover, there is a distinguish
complex structure on thisT2 fibration, defined up to a sign
with respect to which the projection map is holomorph
This is the complex structure
5-4
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]

]z
°2 i

]

]z
,

]

] z̄
° i

]

] z̄
,

~20!
]

]t
°

1

t2
S ]

]x
2t1~z!

]

]t D ,

1

t2
S ]

]x
2t1~z!

]

]t D°2
]

]t
.

The nice thing about the distinguished complex structure
that it can be computed not only for well-separated mo
poles, but everywhere on the moduli space@9#. The geometry
of the resulting elliptic fibration is discussed in detail in t
next section.

The expressions Eqs.~19!,~18! do not completely specify
the asymptotic metric on the moduli space because we h
not fixed the period oft. Let the period be 2p/p, wherep
P(0,1`). To determinep, we note thatt(z) is a multival-
ued function ofz. This is not so surprising if we realize tha
in the distinguished complex structure,pt(z) is the Teich-
müller parameter of theT2 fiber at pointz, which is only
defined up to aPSL2(Z) transformation. It is not hard to
verify that the metric is well defined if and only if the mono
dromy of pt(z) belongs toPSL2(Z). Here it is important to
remember thatz,x,t are the relative coordinate of two mono
poles, and thus the points (z,x,t) and (2z,2x,2t) must be
identified. Thereforet(z) and t(2z) must be related by a
PSL2(Z) transformation. From Eq.~18! it follows that under
z→2z the monodromy ist→t11. This implies thatp
PN.

The precise value forp depends on the choice of the to
pology of the gauge group. One can equally well work w
an SU(2) or anSO(3)5SU(2)/Z2 gauge group. This am
biguity has the following consequence. The coordinatet on
the moduli space parametrizes ‘‘large’’ gauge transform
tions which leave invariant the Higgs field at infinity. Suc
transformations form aU(1) subgroup of the gauge group
When one passes from anSU(2) gauge group to itsZ2 quo-
tient, the period oft reduces by a factor 2, and therefore t
value of p increases by a factor 2. We will see in the ne
section that when the gauge group is taken to beSO(3), one
hasp54. Therefore if the gauge group is taken to beSU(2)
~the more standard choice for non-Abelian monopoles!, we
havep52, andt has periodp.

The metric~19!,~18! is applicable for largeuzu. If we try
to continue it formally to smalluzu, we encounter a singular
ity at the hypersurfacet2(z)50. This singularity is at a finite
distance, so the metric~19!,~18! is geodesically incomplete
This is completely analogous to the case of ordinary mo
poles onR3: the exact metric on the relative moduli space
two monopoles~the Atiyah-Hitchin metric! asymptotically
looks like a Taub-NUT metric with a ‘‘wrong’’ sign of the
Taub-NUT parameter, so that the naive continuation of
asymptotic metric is geodesically incomplete. We expect t
08401
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the exact metric on the relative moduli space of two perio
monopoles is smooth and complete, just like the Atiya
Hitchin metric. However, the exact metric cannot have a
holomorphicU(1) isometry. This can be seen, for examp
from the fact that in the limitv ren→`, when periodic mono-
poles reduce to ordinary monopoles@10#, the exact metric
must reduce to the Atiyah-Hitchin metric, which does n
have continuous triholomorphic isometries.

C. Multi-monopole interactions

It is obvious how to extend this procedure to interactio
of several dyons. The Lagrangian turns out to be

1

4p
L5(

j 51

k S 2
v

2g
qj

21
gv
2

VW j
21bqjVj xD

1 (
1< i , j <k

S g2

2
u~zi2zj !~VW i2VW j !

2

1gw~zi2zj !~qi2qj !~Vix2Vj x!

2
1

2
u~zi2zj !~qi2qj !

2D .

Using an identity

k(
j 51

k

ajbj5S (
j 51

k

aj D S (
j 51

k

bj D 1 (
1< i , j <k

~ai2aj !~bi2bj !,

~21!

we can rewriteL as a sum of the center-of-mass Lagrang

1

4p
LCM5

vg

2k S (
j 51

k

VW j D 2

2
v

2gk S (
j 51

k

qj D 2

1
b

k S (
j 51

k

qj D
3S (

l 51

k

VlxD , ~22!

and the Lagrangian describing the relative motion

1

4p
L rel5 (

1< i , j <k
H S gv ren

2k
1

g2

2p
loguzi2zj u D ~VW i2VW j !

2

1S b

k
1

g

p
arg~zi2zj ! D ~qi2qj !~Vix2Vj x!

2S v ren

2gk
1

1

2p
loguzi2zj u D ~qi2qj !

2J . ~23!

In the limit N→`,v→` with v ren and b fixed, the relative
Lagrangian stays finite, while the center-of-mass Lagrang
diverges.

The relative moduli space ofk monopoles onR23S1 has
the geometry of a 2(k21)-dimensional torus fibered ove
R2k22. The torus is parametrized by monopoles’ relative p
sitions alongS1 and their relative phases, while the coord
nates on the base are given by the monopoles’ relative p
tions onR2. The general form of the metric is given by th
expression
5-5
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ds25
1

2
gi j ~dzidz̄j1dz̄idzj !1g̃i j dx idx j1hi j @dti1Wikdxk

1Re~Zikdz̄k!#@dtj1Wjl dx l1Re~Zjl dz̄l !#, ~24!

restricted to the submanifold( j zj5m, ( jx j5a and ( j t j
5b for some constantsm, a, andb. These restrictions are
imposed to fix the position of the center of mass and the t
phase. The variablest j ,x j are periodic withj-independent
periods.

To determine the metric coefficients, we note that
asymptotic metric must haveU(1)k21 isometry acting fiber-
wise. Without loss of generality, we may assume that
corresponding Killing vector fields are given by

]

]t j 11
2

]

]t j
, j 51, . . . ,k21.

Then all metric coefficients must be independent oft j . The
corresponding integrals of motion must be identified w
qj . Thus we may compute the reduced Lagrangian whic
independent ofṫ j by performing the Legendre transform o
ṫ j . We then compare with Eq.~24! and obtain the following
answer:

1

4p
gii 5

1

4p
g̃i i 5gv ren

k21

k
1

g2

p (
j Þ i

loguzi2zj u,

1

4p
gi j 5

1

4p
g̃i j 52

gv ren

k
2

g2

p
loguzi2zj u ~ iÞ j !,

Wii 5b
k21

gk
1

1

p (
j 5 i 11

k

arg~zi2zj !

1
1

p (
j 51

i 21

arg~zj2zi !,

Wi j 52
b

gk
2

1

p
arg~zi2zj ! ~ i , j !,

Wi j 52
b

gk
2

1

p
arg~zj2zi ! ~ i . j !,

Zi j 50,

4pg2~h21! i i 5
v ren

g

k21

k
1

1

p (
j Þ i

loguzi2zj u,

4pg2~h21! i j 52
v ren

gk
2

1

p
loguzi2zj u ~ iÞ j !.

Note that the matrixh21 is not invertible. However, it is
invertible on the subspace defined by( jdtj5( jdx j50, and
that is all we need. Similarly, the matrixgi j has a one-
dimensional kernel, but on the submanifold of interest it
positive-definite if alluzi2zj u are large.
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This metric is very similar to the one found by Gibbon
and Manton for monopoles onR3. They are both specia
cases of a common ansatz@Eqs. ~23!,~28!,~29! of Ref. @4##
which is the most general 4(k21)-dimensional hyper-
Kähler metric with a triholomorphicU(1)k21 isometry
@1,17#. In our case all the metric coefficients are independ
of t j ,x j , and therefore we have 2(k21) commuting Killing
vector fields

]

]t j 11
2

]

]t j
,

]

]x j 11
2

]

]x j
, j 51, . . . ,k21. ~25!

It is easy to check that they are triholomorphic. Thus t
asymptotic metric on the relative moduli space admits a
holomorphicT2(k21) isometry.

It remains to fix the periodicity of the variablest j 11
2t j . For the metric given by Eq.~24! to be well defined, the
period must be 2p/p, with pPN. When two of the mono-
poles are far from the rest, the metric must agree with t
found in Sec. II B This implies thatp is equal to 2 or 4
depending on whether the gauge group isSU(2) or SO(3).

The multimonopole metric is valid when the separatio
uzj2zj u between all the monopoles are large. If we try
continue the metric to small separations,gi j ceases to be
invertible on the submanifold of interest. The resulting s
gularities indicate that the asymptotic metric is not geode
cally complete. The exact metric is expected to be smo
and complete.

D. Two monopoles with singularities

It is straightforward to derive the moduli space metric
the presence of Dirac-type singularities onR23S1. We will
write it down only for the casek52 ~two periodic mono-
poles!. This case is of particular interest because the rela
moduli space is four dimensional, and therefore one obta
new examples of gravitational instantons. As explained
Ref. @10#, the number of Dirac singularitiesn cannot exceed
2k54, therefore we obtain five gravitational instantons c
responding to n50,1, . . . ,4. We denote them Dn , n
50, . . . ,4. Thereason for this nomenclature is the follow
ing. Gravitational instanton of typeDn is isomorphic to the
Coulomb branch ofN52 supersymmetricSU(2) gauge
theory with n hypermultiplets onR33S1 @10#. The latter
theory hasSO(2n) global flavor symmetry in the ultraviolet

At long distances the fields created byn singularities and
the two non-Abelian monopoles are in au(1) Cartan subal-
gebra of thesu(2) gauge algebra.@This u(1) subalgebra is
defined locally by the condition that it leaves invariant t
Higgs field.# Each of the singularities has magnetic char
gj521/2 @10#, while each ’t Hooft–Polyakov monopole ha
magnetic charge 1@10#. Since the singularities are stationa
and have no electric charge, their only effect is to replace
constant background fieldsv ren and b with v ren

1( j 51
n gju(z1,22mj ) and b1( j 51

n gjw(z1,22mj ), respec-
tively. Here mj , j 51, . . . ,n, are thez coordinates of the
singularities andz1,2 are respective positions of the ’t Hoof
Polyakov monopoles.

The Lagrangian is given by
5-6
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1

4p
L5S v

2
2

1

4 (
j 51

n

u~z12mj !DVW 1
2

1S v
2

2
1

4 (
j 51

n

u~z22mj !DVW 2
2

1
1

2
u~z12z2!~VW 12VW 2!22S v

2
2

1

4

3(
j 51

n

u~z12mj !D q1
22S v

2
2

1

4 (
j 51

n

u~z22mj !D q2
2

2
1

2
u~z12z2!~q12q2!2

1S b2
1

2 (
j 51

n

w~z12mj !D q1V1x

1S b2
1

2 (
j 51

n

w~z22mj !D q2V2x

1w~z12z2!~q12q2!~V1x2V2x!.

To get the Lagrangian describing the relative motion, we
VW 11VW 250 andq11q250, and obtain

1

4p
Lrel5S v

4
1

1

2
u~z12z2!2

1

16 (
j 51

n

@u~z12mj !

1u~z22mj !# D ~VW 12VW 2!21S b

2
1w~z12z2!

2
1

8 (
j 51

n

@u~z12mj !1u~z22mj !# D ~q12q2!

3~V1x2V2x!2S v
4

1
1

2
u~z12z2!2

1

16

3(
j 51

n

@u~z12mj !1u~z22mj !# D ~q12q2!2.

From this expression we immediately see that the div
gent constantCN in the functionu(z) can be absorbed into
renormalization ofv:

v ren5v2
42n

2
CN .

This is precisely the same renormalization which makes
Higgs fieldf finite in the limit N→` with fixed v ren .

We can also read off the metric on the relative mod
space. As Sec. II B we introduce the relative coordinatez
5z12z2 ,x5x12x2 ,t5t12t2, and setz11z250. ~More
generally, we could setz11z25c for somecPC, but the
constantc can always be absorbed into a shift ofmi , so one
08401
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does not gain anything by considering non-zeroc.! The re-
sulting asymptotic metric has the form Eq.~19! with the
function t(z) given by

t~z!5 i S v ren2 ib

2
1

1

p
log~ z̄!2

1

8p (
j 51

n

logS m̄j
22

1

4
z̄2D D .

~26!

In particular, forn54 t(z) has a trivial monodromy around
z5`. This metric is valid when non-Abelian monopoles a
far from each other and the Dirac monopoles, i.e. whenuzu
and uz62mi u, i 51, . . . ,n are all large.

Unlike in the previous cases, there is no ambiguity in t
choice of gauge group here. Recall that the magnetic ch
of the Dirac singularity is21/2. The geometric meaning o
this non-integral magnetic charge is that the monop
bundle onR23S1 is anSO(3) bundle which cannot be lifted
to an SU(2) bundle @10#. The obstruction is the secon
Stiefel-Whitney class evaluated on a sphere centered a
Dirac singularity. Thus onlySO(3) is a consistent choice o
the gauge group.

The monodromy oft around the pointsz562mi is given
by t→t11/4. On the other hand, if the period oft is 2p/p,
then the monodromy ofpt must be inPSL2(Z). This im-
plies thatp/4PN. The minimal value forp is 4, in which
caset has periodp/2. In the next section we will show tha
in the presence of Dirac singularities the minimal choicep
54 is the right one. This is also the right value forp in the
absence of singularities, provided that the gauge grou
taken to beSO(3).

III. GEOMETRY OF NEW GRAVITATIONAL INSTANTONS

In the previous section we have constructed five grav
tional instantons (Dn , n50, . . . ,4) andshowed that they are
ALG manifolds. In this section we discuss their topology a
geometry.

The basic observation is that the distinguished comp
structure on the moduli spaces of periodic monopoles is e
to compute using the monopole spectral curve defined
Refs. @9,10#. Let us specialize the results of Refs.@9,10# to
the present case. To each solution of theU(2) Bogomolny
equations~possibly with singularities! one can associate a
algebraic curve inC3C* . If the number of non-Abelian
monopoles is 2, and thez coordinates of the singularities ar
given bymi ,i 51, . . . ,4,then the curve has the form

~y2m1!~y2m2!w21a~y22u!w1b~y2m3!~y2m4!50.

Here yPC, wPC* are the coordinates inC3C* , and the
parametersa,bPC* can be expressed in terms of th
asymptotic behavior of the monopole fields, see Ref.@10#.
The complex parameteru is the modulus of the curve~i.e. it
is not fixed by the boundary conditions on the monop
fields!. Thus there is a map from the monopole moduli spa
X to the complexu plane. As explained in the above-cite
papers, this map is holomorphic~in the distinguished com-
plex structure!, and its fiber is the Jacobian of the curv
Since the curve is elliptic in our case, the fiber coincides w
5-7
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the curve itself. It follows thatX is an elliptic fibration over
C. The asymptotic coordinatez of the previous section
should be identified withAu times a constant factor. We wil
see below that with our normalizations this constant facto
unity.

It is helpful to note that this elliptic fibration is precise
the Seiberg-Witten fibration for theN52, d54 gauge
theory with gauge groupSU(2) and four fundamental hyper
multiplets with massesmi ,i 51, . . . ,4.2 This is trivial to see
if we use the form of the Seiberg-Witten fibration found
Ref. @18#. Thus we can borrow the results in the phys
literature@12,13,19# on the geometry of this fibration.

For genericmi there are six singular fibers, each of whic
is a rational curve with a node~i.e. a singular curvey2

5x2). In Kodaira’s classification of singularities of ellipti
fibrations @20#, these are type-I 1 singular fibers. The Eule
characteristic of anI 1 fiber is 1, so the Euler characteristic o
X is 6. It is easy to see thatb1(X)5b3(X)5b4(X)50, hence
b2(X)55.

When allmi are large, four out of six singularities occu
nearu5mi

2 , i.e. far out in the moduli space. In this region
the moduli space the asymptotic formula~20! for the dist-
nguished complex structure is valid and should agree w
the results obtained from the spectral curve approach.
deed, we see from Eq.~26! thatt(z) has four singularities a
z5mi . Thus in the asymptotic regionu.z2, as claimed.
Moreover, this comparison allows us to infer the precise
riodicity of the coordinatet left undetermined by the analys
of the previous section. There, we saw that if the periodt
is 2p/p, then for largeuzu the Teichmu¨ller parameter of the
elliptic fiber at pointz is pt(z), wheret(z) is given by Eq.
~26!. The asymptotic metric is well defined ifp/4PN. From
Eq. ~26! we see that the monodromy ofpt(z) nearz5mi is
such that the singularity is of typeI p/4 . Therefore agreemen
with the spectral curve approach requiresp54.

If one sets allmi to zero, then all six singular fibers coa
lesce into a single singular fiber atu50, and thej invariant
of the curve becomesu independent. The singularity atu
50 is of typeI 0* in Kodaira’s classification. This means th
the singular fiber is a union of five rational curves who
intersection matrix is the affine Cartan matrix of typeD4.
Since b2(X)55, these rational curves spanH2(X), and
therefore the intersection form onH2(X) is the affineD4
Cartan matrix.3 From the viewpoint of the quantumSU(2)
gauge theory, theI 0* singularity corresponds to a non-trivia
conformal field theory~CFT! with global SO(8) symmetry
@13#.

In general, the elliptic fibration corresponding to theD4
ALG manifold can have 1, 3, 4, 5, or 6 singular fibe
@13,19#. The types of singular fibers that can occur are giv
by the following list:

2As explained in Refs.@9,10#, this coincidence follows from very
general string-theoretic considerations. In fact Seiberg-Witten s
tions for many gauge theories can be derived by considering p
odic monopoles for various gauge groups.

3SinceX is non-compact, the intersection form need not be n
degenerate. In the present case, the kernel of the intersection fo
one dimensional.
08401
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I 0* ,I 1 ,I 2 ,I 3 ,I 4 ,II ,III ,IV.

We have already discussed the physical meaning ofI 0* sin-
gularity. I n singularity corresponds to the infrared behav
of N52 U(1) gauge theory withn massless charge-1 hype
multiplets@13#. Singular fibers of typeII , III , andIV corre-
spond to nontrivial CFTs~so-called Argyres-Douglas points!
@19#. It is more convenient to use the notationH1 ,H2, and
H3, respectively for these singularities.

Now let us discuss the geometry of the remaining AL
manifolds (Dn with 0<n<3). It is easy to see what happen
when we decrease the number of Dirac monopolesn by tak-
ing one or moremi to infinity. X is still elliptically fibered
over C, but the number of singular fibers is now given b
n12 for genericmi . Each of the singular fibers is of typeI 1.
It follows that the Euler characteristic isn12, and the sec-
ond Betti number isn11. By Zariski’s lemma, the self-
intersection number of each singular fiber vanishes,
therefore the rank of the intersection form is at mostn. In
particular, forn50 the second homology is one dimension
and the intersection form vanishes altogether.

For n,4 it is impossible to tune the remainingmi to
bring all n12 singular fibers together@19#. At most one can
bring n11 of them together, so that the elliptic fibration h
two singular fibers. It has been shown in Ref.@19# that one of
them is anI 1 singularity, while the other one is of typeI 1 ,
H1(II ), H2(III ), or H3(IV), depending on whethern
50,1,2, or 3. More generally, an elliptic fibration corre
sponding to the ALG manifold of typeDn may have from 2
to n12 singular fibers. The types of singular fibers that o
cur areI l andHl , 1< l<n.

Note that the intersection form of a singular fiber of ty
I n has rankn21 ~it is the affineAn21 Cartan matrix!. Hence
we may conclude that the rank of the intersection form
H2(X) is eithern21 or n. We saw above that forn50 the
intersection form vanishes identically, while forn54 it co-
incides with the affine Cartan matrix of typeD4. It would be
interesting to compute the intersection form for the rema
ing cases (n51,2,3).

IV. REALIZATION VIA HITCHIN EQUATIONS

In Refs. @9,10# we showed that Nahm transform esta
lishes a one-to-one correspondence between periodic m
poles with Dirac singularities and solutions of Hitchin equ
tions on a cylinder with particular boundary condition
Furthermore, we showed that the map between the co
sponding moduli spaces is bi-holomorphic if one uses
natural complex structures. Both moduli spaces are hy
kähler manifolds, and analogy with the case of monopoles
R3 suggests that Nahm transform induces an isometry
tween them. If this is true, then we have an alternative c
struction of ALG gravitational instantons using the mod
space of Hitchin equations.

Let us focus on the case of ALG manifold of typeD4,
when the boundary conditions for Hitchin equations are
pecially simple. According to Ref.@10#, if the number of
Dirac singularities is four and the number of non-Abeli
monopoles is two, then the Hitchin data consist of aU(2)

u-
ri-

-
is
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connectionÂ and a Higgs fieldf̂ on a cylinderR3S1 with
two points removed. We will identifyR3S1 with a strip 0
<Im s,1 in a complexs plane ~this requires picking an
orientation onR3S1). The two punctures are located ats

5s1 ands5s2. Away from the puncturesÂ andf̂ satisfy the
Hitchin equations@11#

]̄ Âf̂50, F̂ss̄1
i

4
@f̂,f̂†#50,

while near the punctures they have the following behavio

f̂~s!;
Ri

s2si
, Âs;

Qi

s2si
, i 51,2.

HereRi andQi are rank-one matrices which can be simul
neously diagonalized by a gauge transformation. Their eig
values depend on the behavior of the monopole fields n
z5`, see Ref.@10# for details. We should also specify th
behavior of f̂ and Â at infinity. Let r 5Res. Let miPC,i
51, . . . ,4, be thez coordinates of the Dirac singularities
andx iPR/(2pZ) be their coordinates onS1. For ur u→` the
connection A becomes flat; the asymptotic holonomy
given by

diag~eix1,eix2!

for r→2` and

diag~eix3,eix4!

for r→1`. The eigenvalues of the Higgs field tend
m1 ,m2 for r→2` and tom3 ,m4 for r→1`.

It is rather obvious that the moduli space of Hitchin equ
tions is a hyper-Ka¨hler manifold. Indeed, Hitchin equation
on a cylinder can be regarded as moment map equation
an infinite-dimensional HKQ. The quotienting group is t
group of gauge transformations, and it acts on the cotan
bundle of an infinite-dimensional affine hyper-Ka¨hler space,
the space ofU(2) connections on a cylinder. The residues
the Higgs field and the connection ats1 ,s2 can be regarded
as the level of the moment map.

Solutions of Hitchin equations of this kind have been e
tensively studied by Simpson@21# and others. To make ex
plicit the connection with Simpson’s work, we make a co
formal transformationw5e2ps which maps the cylinder with
f
n,

08401
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two punctures into aP1 with four punctures, withw being
the coordinate on the North patch of theP1. Hitchin equa-
tions are conformally invariant if we agree thatf̂ transforms
as a 1-form, i.e.f̂sds5f̂wdw. Thenf̂w has simple poles a
all four punctures, with residues which can be simul
neously diagonalized by a gauge transformation. Furth
more, Âw also has simple poles, and the residues can
diagonalized simultaneously with the residues off̂w .

One can simplify this further by noting that the trace a
traceless parts ofÂw ,f̂w separately satisfy Hitchin equa
tions. Hitchin equations for the trace part simply say th
Tr f̂w and Tr Âw are holomorphic 1-form and flat connec
tion on a puncturedP1, and therefore are completely dete
mined by their residues. Thus the moduli space ofU(2)
Hitchin equations can be replaced by the moduli space
SU(2) Hitchin equations. Using the results of Ref.@10#, one
can easily compute the eigenvalues of the residues of
SU(2) Higgs field and connection in terms of locations
the Dirac singularities and the asymptotic behavior of
monopole fields. In the notation of Ref.@10#, the eigenvalues
of the residues of the Higgs field at the four punctures
given by

6
1

2
~m12m2!,6

1

2
~m32m4!,6

m1

2
,6

m2

2
,

and the eigenvalues of the residues of the connection
given by

6
i

2
~x12x2!,6

i

2
~x32x4!,6

ia1

8p
,6

ia2

8p
.

The parametersm1 ,m2 anda1 ,a2 can be expressed in term
of the asymptotic behavior of the monopole fields@10#.

When the number of Dirac singularities is less than fo
the Nahm transform is again given in terms of solutions
Hitchin equations onP1. But the singularities off̂ andÂ are
more complex in this case~they are not ‘‘tame,’’ in the ter-
minology of Ref.@21#!. For more details, see Ref.@10#.
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