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Hyper-Kahler metrics from periodic monopoles
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Relative moduli spaces of periodic monopoles provide novel examples of asymptotically locally flat hyper-
Kahler manifolds. By considering the interactions between well-separated periodic monopoles, we infer the
asymptotic behavior of their metrics. When the monopole moduli space is four dimensional, this construction
yields interesting examples of metrics with a self-dual curvatgravitational instantons We discuss their
topology and complex geometry. An alternative construction of these gravitational instantons using moduli
spaces of Hitchin equations is also described.
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[. INTRODUCTION more detailed analysis of the long-range interactions of mov-
ing monopoles yields the precise metric in the asymptotic
One of the most powerful methods for obtaining hyper-regime[3,4], which turns out to be asymptotically locally
Kahler manifolds is the hyper-Kder quotient(HKQ) con-  flat.
struction[1]. Most known hyper-Khler manifolds are hyper- It is customary to quotient the moduli space by the trans-
Kahler quotients of affine hyper-Kéer spaces by a suitable lations of R® and the diagonal oT¥, or equivalently to fix
subgroup of triholomorphic isometries. For example, all asthe center-of-mass coordinates of the monopoles and the sum
ymptotically locally Euclidean (ALE) four-dimensional of their internal degrees of freedofphases The resulting
hyper-Kanler manifolds(in other words, ALE gravitational 4 (k— 1)-dimensional manifold is again hyper-War and is
instantong have been constructed in this wig8]. The affine  called the relativgor centeregl moduli space. The relative
hyper-Kanler space is finite dimensional in this case. moduli space of two monopoles is known as the Atiyah-
More general hyper-Kaer manifolds are obtained if one Hitchin manifold[5]. At infinity it looks like a circle of fixed
starts with an infinite-dimensional affine hyperier space radius fibered oveR®/Z,, and the asymptotic metric has the
and quotients by an infinite-dimensional subgroup of isomeTaub-NUT (Newman-Unti-Tamburinpform.
tries. Well-known examples of this sort are moduli spaces of One can generalize this example somewhat and consider
instantons onR* and moduli spaces of monopoles &A. SU(2) monopoles moving in a background ofpointlike
The affine space is the space of connections on a vectddirac monopoles sitting at fixed locatiop8]. If the number
bundle onR* in the first instance, and the space of pairsof SU(2) monopoles is one, then tiencentered moduli
(connection, Higgs fieldin the second instance. The quoti- space is the multi-Taub-NUT spad€,6]. It is a four-
enting group is the group of gauge transformations in bottdimensional ALF manifold with a triholomorphidJ(1)
instances. isometry isomorphic as a complex variety to a blow up of
The monopole example is particularly nice, as one cart?/Z,. At infinity it looks like a circle of fixed radius fibered
determine the asymptotic behavior of the metric from simpleover R, and theU (1) action is fiberwisé.|f the number of
physical considerationg3,4]. In the asymptotic region the SU(2) monopoles is two, then thelative moduli space is
monopoles are well separated, and can be regarded as pofour dimensional and ALF, but does not have a triholomor-
particles interacting via long-range scalar and electromagphic U(1) isometry. As a complex variety the moduli space
netic fields. Each particle has an internal degree of freedoris isomorphic to a blow up of?/T", wherel is a binary
living on a circle, which when excited gives the monopole andihedral groud 6]. The asymptotic metric has the Taub-NUT
electric chargdi.e. makes it into a dyon In the asymptotic  form and looks at infinity like a circle of fixed radius fibered
region the radius of this circle is a fixed number determinedbver R3/Z,. In particular the asymptotic metric has a tri-
by the vacuum expectation value of the Higgs field at infin-holomorphicu(l) isometry which acts fiberwise.
ity. It follows that asymptotically the moduli space &f ALE gravitational instantons also have an asymptotic tri-
SU(2) monopoles looks like ¥ fibration over ®*)*/S,,  holomorphicU(1) isometry, but the circumference of the
where we divided by the symmetric groudR to take into  orbits grows linearly as a function of the “radius.” Finite-
account the indistinguishability of monopoles. Since thedimensional HKQ construction suffices to construct all such
electric charges are conserved, the fiberwise actio*of manifolds. In the cases when the circumference of the orbits
must be an isometrgin fact, a tri-holomorphic isometjy A

The multi-Taub-NUT metric can also be obtained by a finite-
*E-mail address: cherkis@physics.ucla.edu dimensional HKQ constructiorfl] or by using the Gibbons-
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stays fixed at infinity, one needs to resort to the infinite-Witten [12,13. Our results provide information about the
dimensional HKQ construction, in general. same theories oR%x St. The asymptotic form of the metric
An obvious generalization is to consider ALF gravita- on the Coulomb branch has been computefilif-16. The
tional instantons which asymptotically have a triholomorphicresult agrees with the asymptotics of the metric on the
T2 action. We will call such gravitational instanto®d.G ~ moduli space of periodic monopoles computed below. How-
manifolds Such manifolds previously arose in the physicsever, if one wants the complete metric, the gauge theory
literature as quantum moduli spaces 4 N=2 gauge realization is not very useful since the metric is corrected by
theories compactified on a circfsee below. No “classical”  gauge theory instantons. Such non-perturbative effects lead
construction of such manifolds has been known previouslyto exponentially small corrections to the metric which are
In this paper we will produce examples of ALG manifolds quite hard to compute. On the other hand, we realized the
using an infinite-dimensional HKQ construction. More gen-same manifolds as classical objects, namely as moduli spaces
erally, we will show how to construct ALF hyper-kiger  of Bogomolny or Hitchin equations. We hope that the corre-
manifolds of dimension 4— 1) which asymptotically have sponding hyperkaler metrics can be computed in a closed
a triholomorphicT?®~1) isometry. To this end we will con- form using twistor methods.
siderk SU(2) monopoles oit2x St with a flat metric. Such
“periodic” monopoles have been studied in Ref9,10]. It Il. ASYMPTOTIC METRIC ON THE MONOPOLE
was shown there that although each periodic monopole has a MODULI| SPACES
logarithmically divergent mass, the relative moduli space has
a well-defined hyper-Kaler metric. We expect that this met-
ric is smooth and geodesically complete. The asymptotic be- We will use the conventions of Reff9,10]. We identify
havior of this metric will be determined along the lines of R2x S with Cx St and use a complex affine coordinaten
Refs.[3,4]. We will also consider a more general problem of C and a real coordinatg on S* with an identificationy~ x
periodic SU(2) monopoles moving in a background of +27. For monopoles located at pointa; =(z; ,x;).j
point-like Dirac monopoles. =1,...k, the field configuration at a distant point
In the casek=2 the moduli space is four dimensional, =(z,y) is given in a suitable gauge by
and we will describe its geometry in some detail using the

A. Generalities

results of Refs[9,10]. In fact, since the number of Dirac K

singularitiesn can vary from 0 to 4, in this way we obtain (x)=v+ 2’1 ¢ (z2-z), @
five topologically distinct four-dimensional hyper-Klar :

manifolds. We show that they are ALG manifolds. Moreover, K

we will see tha} the moduli spaces have.a_dis_tingqished com- A,=0, A =b+ Z Al (z—2). )
plex structure in which they look like elliptic fibrations over X =1 X !

C. The volume of the elliptic fiber is constant in the
asymptotic region of the moduli space. The asymptdic =~ When all the distance&i—z” are large, we interpret these
isometry acts on the fibers in a natural manner. The numbdields as a superposition of the background fields, given by
and type of singular fibers depends on the parameters of th@nstantd andv, and individual fields of the monopoles
metric. We will discuss which kinds of singular fibers occur, and Al.
compute the Betti numbers of the moduli spaces, and in When all monopoles are well separated, it is natural to
some cases the intersection pairing on the second homologyink of their dynamics in terms of motion and interaction of
We will see that the most general ALG gravitational instan-particles on?x St. The moduli space coordinates are under-
ton one can get in this way has an intersection form which istood as parametrizing the positions of th&sparticles as
the affine Cartan matrix of typB,. All other gravitational ~well as their internal degrees of freedom valued Sh
instantons we construct can be regarded as its degeneratiotigshases A particle whose phase is changing with time
Finally, we explain an alternative construction of our ALG aquires an electric charge proportional to the rate of the
manifolds using moduli spaces of Hitchin equatiph] ona  phase chang8]. This is consistent with charge conservation
cylinder. The two constructions are related by a version obecause the rate of phase change is an integral of motion.

Nahm transforni9,10]. Motion on the moduli space is thus interpreted as motion of
As discussed in Refg9,10], moduli spaces of periodic k dyons onR?x St.
monopoles are closely related to certdlr-2, d=4 quan- So far the discussion parallels that for monopolesidn

tum gauge theories. For example, the moduli space of [3]. But unlike for monopoles oi*, there is a subtlety here
SU(2) monopoles moving in a backgroundroDirac mono-  related to the fact that a single periodic monopole has infinite
poles is isomorphic to the quantum Coulomb branch ofmass, because the integral of the energy density logarithmi-
SU(k) gauge theory withn fundamental hypermultiplets cally diverges at long distancé9,10]. One might conclude
compactified on a circle. ThHe, gravitational instanton men- that the kinetic energy associated with the motion on the
tioned above corresponds to tl8d4J(2) gauge theory with moduli space is infinite as well. If this were the case, the
four hypermultiplets, while its degenerations correspond tanetric on the moduli space would be ill-definétivergen,

the SU(2) gauge theory with three or fewer hypermultiplets. and the positions of the particles would be parameters rather
The quantum Coulomb branch of these theoriesRbrhas  than moduli. In fact, only the coordinates of the center of
been determined in two celebrated papers by Seiberg andass and the total phase are parameters. The kinetic energy
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of the relative motion is finite, and therefore there is a finite  Next we introduce an electric chargg for each mono-
metric on the relative moduli spa¢&0]. To deal with this pole. The resulting dyons acquire new interactions. The La-
subtlety, we use the following procedure. In terms of thegrangian of thek th dyon is

universal covering space 6 xS!, each periodic monopole

is an array of infinitely many 't Hooft-Polyakov monopoles. | — _ 47497+ g2\/1- V2+ 47qV,- A— 47q A,

Such an array has an infinite mass per unit length because of

the dlvergence mer_1t|c_)n_ed above. We r_e_gularlze the problem +4wg\7k-i—47rg~Ao.

by replacing each infinite array by a finite array dil2 1

monopoles. This way all the masses and fields are finite. - . .
the end of the computation we will semdito infinity. As a Alt-|erev is the velocity 3-vectar of th& th dyon with com-

result, we indeed recover a finite metric on the relativePonents (Re,Imz,x) (dot denotes time derivatiye The

moduli space and verify that the center of mass and totdields ¢,A, andA are superpositions of the fields produced

phase of the configuration are parameténs kinetic energy by other dyons evaluated at the location of ki# dyon and

associated with them diverges logarithmicallyMs- «). the constant background. The magnetic chayg®uples to
With this remark in mind, the Higgs field produced by one the “magnetic” potentialsh, A, which are dual to the “elec-

periodic monopole of ch_argg located atz=0 gt distances tric” potentials,&,Ao and are defined by

large compared to the size of the monopole is

N =~ 2 > Jd .
A -9 VXA=B=-E=VA,+ —A
J(x)= : 3 T
V0= 2, 2

We note for future use that for a 't Hooft-Polyakov monopole —VA,— EKEE: B=VXA. @)
g=1, and for a singular Dirac monopolg=—1/2 [10]. ot
Since we are going to semdito infinity, we may assume that .
|z|<N. In this region the expression fe# simplifies to The fields produced by a dyon at rest located-a0 are

#(x)=\g’+q’ u(2), 9

A (x)=gw(z), ALX)=-qu(z), ALx)=0,

- (4)

j —g| L
¢ (X)—; 0glz|—gC\+O B

HereCy is a positive constant diverging logarithmicaly with
N; it will eventually be absorbed into the constant back- %] % %]
groundv. From now on we shall omit terms decaying as ~ Ax(X)=—0ajW(2), Ag(x)=—gu(z), Axx)=0.

1/|z| or faster when writing the monopole fields. (10

The connectiorAl corresponding tap!(x) is given b
! ponding tap'(x) is giv y The fields of a moving dyon are obtained by a Lorentz

boost. Keeping terms up to second order in velocities in

g . -
A;=;argz, ALX)=0, ) 4 A..A, and up to first order ik, A, we get
in a suitable gauge. To be precise, we should have added an HI(x)= /gz+qj2u(z)~/1—\7-2,

N-dependent constant tAi(, but since it can be absorbed
into the constant backgrourxl we did not write it explicitly. [ .
For convenience we define two auxiliary functions: AYX) == qu2)Vj, T o),
1 1 Al(x)=—q;u(2)V,,
u(z)=;|og|z|—CN, W(z)=;argz. A qUViz
AY(X)=—q;u(2) +gwW(2)V},, (1)
Note that the total fields(x) of Eq. (1) is given for large

zby Al (x)=—gu(2)V,—q;w(2),

kg
$(x)=v—kgCy+ —loglz. (6) Al(x)=—gu(2)V,,,

Since we are interested in field configurations with fixed as-

Al - —qa. )
ymptotics, it is natural to introduce Ao(X) =~ Qu(2) = aW(2)Vjy.
vre=0—kgCy 7) Following Ref.[4], we omitted certain terms of second order

in velocities in¢,A, by replacing 1{r%—(rxV)? with 1/r
and adjustv so thatv ., remains fixed wherN is sent to in the Lienard-Wiechert potentials. This is allowed because
infinity. Thus in the limitN— + oo we havey — + . such second-order terms enter the kinetic energy with the
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same coefficients asrlterms enter the static energy. Since monopoles are indistinguishable, we may assumetihate
the static interactions cancel, so do the second-order terms pEriodic variables with the same period. The coordinates on
this type. the relative moduli space of two monopoles arez,—z,,
X=Xk~ X1, andt=t,—t;. To read off the metric on the
B. Two-monopole interactions moduli space, we need to reintroduce the dependend@ on
into the Lagrangian. This is achieved by the Legendre trans-

Consider the Lagrangian of theth dyon in the presence .
form with respect taq=q,—q,;. We let

of a dyon withj=1. Keeping terms up to second order in
electric charges and velocities, we get
1 Lre=Lret4mgtq,
L= —M+ 5 MV +27g°u(z—20) (V= Vp)?

2 solve the algebraic equation of motion fgr and substitute

+4mgW(Z—21) (A= d1) (Viy— V1) back intoL,. The factor 4rg in front of t is introduced for
convenience. The result is

—27U(Z¢— 21) (Q—01)*+4b OV, - (12
Here the dyon’s rest mass, is given by 4rv \/g%+ qkz. Ex- 1 w2 ., -, . -
pandingm, to second order i, , omitting a constant term Ang? o2 (I2]*+ x5+ 27,(2) [t+ 7 (2)x]%,
—4mgv, and symmetrizing with respect to the two particles, (15)
we obtain the total Lagrangian for the dyons wjth 1 and
=k where
1 v o, U , Qu., Qu.-, g2
17Dk T 5g i 5tk S Vit S Vit Su(z—zy) b 1
9 = m1(2)= 5+ —arg2), (16)
b g 7
X(Vk—V1)2+(§+9W(Zk_21))(Qk_Q1)
Uren 1
Tz(Z)=E+ ;Iog|z|. 17

1
X (Vige= V1) = 5 U(Zx=20) (A=)

b From now on and to the end of this subsection we set
+§(ql+ i) (Vi + Vi) (13  g=1, as appropriate for non-Abelian monopoles.
From Eq.(15) we read off the asymptotic metric on the

Hence the Lagrangian describing the relative motion omedu“ space. Setting
the two dyons is _ _
. i ) [
1 JVen . 1 S T(Z)=T1(2)+IT2(Z):E(Uren—lb)-l-;bgz, (18)
2, L= (E+ z'09|2k—21|)(Vk—V1)
we can write the metric as follows:
J’_

b g

>t ;arqzk_ Zl)) (A= d1) (Vi,=V1y)
1

Uren i A

g 27TIoglzk—zll)(qk—ql)z, (14 4

1
ds?=1,(2)|dZ%+ %|dt+r(z)dx|2. (19

- . - . Equation(19) is a special form of the Gibbons-Hawking
while the Lagrangian for the motion of the center of mass is
grang ansatz8] which depends on a harmonic function BA. In

1 vg - -, U , b our case the harmonic.functionig(z). It is well known that
a7 tem=7 (Vait Vi) —E(Qﬁ )"+ 5 (A2+ 0w such a metric is hyper-Kder and has a triholomorphld(1)
isometry generated b/ dt. Since the harmonic function,

X (Vi + Vi) does not depend og, there is an additiondl (1) isometry

generated by the vector fielddy. It is easy to check that it
In the limit N—oe, v—o with v, andb fixed, the relative is also triholomorphic. Thus the asymptotic metric on the
Lagrangian stays finite, while the center-of-mass Lagrangiamoduli space has a triholomorpHié isometry, as promised.
diverges, as expected. Moreover, it looks like aT? fibration over thez plane, and
Now we have to extract frorh ¢ the effective metric on  the T? action is fiberwise. Moreover, there is a distinguished
the relative moduli space. As explained above, the electricomplex structure on thi$? fibration, defined up to a sign,
chargesq; are conserved momenta conjugate to phase dewith respect to which the projection map is holomorphic.
grees of freedont; associated to monopoles. Since theThis is the complex structure
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9 9 the exact metric on the relative moduli space of two periodic
E'_)_iﬁ’ monopoles is smooth and complete, just like the Atiyah-
Hitchin metric. However, the exact metric cannot have a tri-
holomorphicU(1) isometry. This can be seen, for example,

g il from the fact that in the limit o o, when periodic mono-
Jz 9z poles reduce to ordinary monopolEH)], the exact metric
(20) must reduce to the Atiyah-Hitchin metric, which does not
9 1 ( 9 9 have continuous triholomorphic isometries.
YL )
ot T\ 0x o C. Multi-monopole interactions
1/ 9 9 9 It is obvious how to extend this procedure to interactions
- a— 1(2) T ot of several dyons. The Lagrangian turns out to be
k
The nice thing about the distinguished complex structure is iL: > (_ qu2+ g_v\7_2+ bq;V, )
that it can be computed not only for well-separated mono- j=1
poles, but everywhere on the moduli spg@k The geometry 2
of the resulting elliptic fibration is discussed in detalil in the + > (g—U(Zi—ZJ)(Vi—Vj)Z
next section. 1<i<j=<k
The expressions Eq§19),(18) do not completely specify
the asymptotic metric on the moduli space because we have Wz =2)) (=) (Vi = Vi)
not fixed the period of. Let the period be 2/p, wherep
e (0,+=). To determinep, we note thatr(z) is a multival- - Eu(zi—z,-)(qi—qj)z).

ued function ofz. This is not so surprising if we realize that,

in the distinguished complex structuner(z) is the Teich-  ysjng an identity
muller parameter of thel? fiber at pointz, which is only
defined up to aPSL,(Z) transformation. It is not hard to

verify that the metric is well defined if and only if the mono- kE ajb; ( 2 aj) + > (a—a)(b—b),
dromy of pr(z) belongs toPSL,(Z). Here it is important to 1=i<]=k (21)
remember that, y,t are the relative coordinate of two mono-

poles, and thus the pointg,f,t) and (—z,— x,—t) mustbe we can rewritel as a sum of the center-of-mass Lagrangian
identified. Thereforer(z) and 7(—z) must be related by a

k

k
> b
=1

PSL,(Z) transformation. From Ed18) it follows that under 1 X 2y 2 pl&
z——z the monodromy is7— 7+1. This implies thatp pete 2k JZ " 29k le q | Ty 2 aj
e N.

The precise value fop depends on the choice of the to- K
pology of the gauge group. One can equally well work with 2 |X), (22
an SU(2) or anSQ(3)=SU(2)/Z, gauge group. This am-
biguity has the following consequence. The coordirtad®  anq the Lagrangian describing the relative motion
the moduli space parametrizes “large” gauge transforma-
tions which leave invariant the Higgs field at infinity. Such 1 [(gvren g°

transformations form & (1) subgroup of the gauge group. EL'e':ls;jsk 2k + E|09|Zi_zj|)(vi_vj)2

When one passes from &1J(2) gauge group to it&, quo-
tient, the period of reduces by a factor 2, and therefore the
value of p increases by a factor 2. We will see in the next +
section that when the gauge group is taken t&k¥3), one
hasp=4. Therefore if the gauge group is taken to%eg(2) Uren
(the more standard choice for non-Abelian monopplee ng 20
havep=2, andt has periodr.

The metric(19),(18) is applicable for largéz|. If we try  In the limit N—o,v—c with v, andb fixed, the relative
to continue it formally to smallz|, we encounter a singular- Lagrangian stays finite, while the center-of-mass Lagrangian
ity at the hypersurface,(z) =0. This singularity is at a finite  diverges.
distance, so the metrid9),(18) is geodesically incomplete. The relative moduli space & monopoles oiR?x St has
This is completely analogous to the case of ordinary monothe geometry of a 2(—1)-dimensional torus fibered over
poles onR?: the exact metric on the relative moduli space of R?¥~2. The torus is parametrized by monopoles’ relative po-
two monopoles(the Atiyah-Hitchin metrig asymptotically ~ sitions alongS® and their relative phases, while the coordi-
looks like a Taub-NUT metric with a “wrong” sign of the nates on the base are given by the monopoles’ relative posi-
Taub-NUT parameter, so that the naive continuation of thaions onR2. The general form of the metric is given by the
asymptotic metric is geodesically incomplete. We expect thaéxpression

b g
o ;arg(zi—zj) (Ai—9)(Viy=Viy)

|09|Z| zj| (Qi_qj)z]- (23
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1 - - This metric is very similar to the one found by Gibbons
d52=§9ij(d21d21+dZide)+gijdXide+hij[dti+Wikka and Manton for monopoles oR®. They are both special
cases of a common ansdtzgs. (23),(28),(29) of Ref. [4]]

+Re(zikd7k)][dtj+Wj|dX|+Re(zjle)], (24)  which is the most general & 1)-dimensional hyper-
Kahler metric with a triholomorphicU (1)<~ ! isometry
restricted to the submanifold;z;=u, =;x;=a and 2t [1,17]. In our case all the metric coefficients are independent

= for some constantg, «, and,B These restrictions are of tj,x;j, and therefore we have R{-1) commuting Killing

imposed to fix the position of the center of mass and the totavector fields

phase. The variables, x; are periodic withj-independent

periods. g 4 g d
To determine the metric coefficients, we note that the Ay O Axje1 X

asymptotic metric must hawg(1)*~* isometry acting fiber-

wise. Without loss of generality, we may assume that thdt is easy to check that they are triholomorphic. Thus the

j=1,...k—1. (25

corresponding Killing vector fields are given by asymptotic metric on the relative moduli space admits a tri-
holomorphicT2&~1) isometry.
g d _— k-1 It remains to fix the periodicity of the variables.
dtjq oy’ J= 5 ' —t;. For the metric given by Ed24) to be well defined, the

period must be z/p, with pe N. When two of the mono-
Then all metric coefficients must be independent;ofThe  poles are far from the rest, the metric must agree with that
corresponding integrals of motion must be identified withfound in Sec. 1IB This implies thap is equal to 2 or 4
g;. Thus we may compute the reduced Lagrangian which iglepending on whether the gauge groufsls(2) or SO(3).
independent of; by performing the Legendre transform on  The multimonopole metric is valid when the separations
t;. We then compare with E¢24) and obtain the following |2j—2z)| between all the monopoles are large. If we try to
answer: continue the metric to small separation; ceases to be
invertible on the submanifold of interest. The resulting sin-
1 1. k—=1 ¢? gularities indicate that the asymptotic metric is not geodesi-
7-9i= 7 -9i=QUren—, —+ — 2 log|z,— cally complete. The exact metric is expected to be smooth
4 4 k T {Zi
and complete.

1 _ 1. __gUren_ gzl _ . DT | ith si lariti
279 %= e ogzi—z| (i#])), . Two monopoles with singularities
It is straightforward to derive the moduli space metric in
k=1 1 X the presence of Dirac-type singularities BAX St. We will

Wi=b——+= > arg’zi—z) write it down only for the cas&=2 (two periodic mono-
gk = 7 =T poles. This case is of particular interest because the relative
i-1 moduli space is four dimensional, and therefore one obtains
+=> argz;— z), new examples of gravitational instantons. As explained in

=1 Ref.[10], the number of Dirac singularities cannot exceed

2k=4, therefore we obtain five gravitational instantons cor-
. responding ton=0,1,...,4. We denote themD,, n
Wij=— gk ;arg(zi—zj) (i<j), =0, ...,4. Thereason for this nomenclature is the follow-
ing. Gravitational instanton of typB,, is isomorphic to the
1 Coulomb branch ofN=2 supersymmetricSU(2) gauge
Wij=— gk~ Zardz—z) (=), theory with n hypermultiplets onR3x St [10]. The latter
theory hassSQ(2n) global flavor symmetry in the ultraviolet.
At long distances the fields created byingularities and
the two non-Abelian monopoles are inugl) Cartan subal-
ke 1 gebra of thesu(2) gauge algebrd.This u(1) subalgebra is
—+ = log|z,— defined locally by the condition that it leaves invariant the
k 77 j#i Higgs field] Each of the singularities has magnetic charge
gj=— 1/2[10], while each 't Hooft—Polyakov monopole has
Uren o magnetic charge [110]. Since the singularities are stationary
gk ;'09|Zi —z| (i#)). and have no electric charge, their only effect is to replace the
constant background fieldsv,, and b with v,
Note that the matrixh~? is not invertible. However, it is +E}‘Zlgju(zl,2— m;) and b+2}‘:1gjw(21,2— m;), respec-
invertible on the subspace defined Bydt;==;dx;=0, and tively. Herem;, j=1,...n, are thez coordinates of the
that is all we need. Similarly, the matrig;; has a one- singularities and, , are respective positions of the 't Hooft-
dimensional kernel, but on the submanifold of interest it isPolyakov monopoles.
positive-definite if all|z,—z| are large. The Lagrangian is given by

4mg*(h™h); :F

4mg?(h™ 1) =—
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does not gain anything by considering non-zeroThe re-
sulting asymptotic metric has the form E(L9) with the
function r(z) given by

en

[ ven—ib
7(z)=Ii 5

1 1 — 1
+—log(z)—5— ;1 Iog( m?— Zz2) )
(26)

In particular, forn=4 7(z) has a trivial monodromy around
z=o0, This metric is valid when non-Abelian monopoles are
far from each other and the Dirac monopoles, i.e. wign
and|z+2my|, i ..h are all large.

Unlike in the previous cases, there is no ambiguity in the
choice of gauge group here. Recall that the magnetic charge
of the Dirac singularity is—1/2. The geometric meaning of
this non-integral magnetic charge is that the monopole
bundle onRk?x S' is anSQ(3) bundle which cannot be lifted
to an SU(2) bundle[10]. The obstruction is the second
Stiefel-Whitney class evaluated on a sphere centered at the
Dirac singularity. Thus ony5O(3) is a consistent choice of
the gauge group.

The monodromy of- around the pointg= = 2m; is given
by 7— 7+ 1/4. On the other hand, if the period bfs 27/p,
then the monodromy opr must be inPSLy(7Z). This im-

To get the Lagrangian describing the relative motion, we seplies thatp/4e N. The minimal value forp is 4, in which

V,+V,=0 andq;+qg,=0, and obtain

n

1 1 1
_Lrel 4 2u(zl 22) 16 E [u(zl mj)

41

§+W(21_22)

+u(z2—mj>])<\71—\72>2+

1
32 [u(zl—mj>+u<z2—m,~>])(ql—qz>

L1 1

X (Vl)(_ VZ)()

n

Xgl [u(zl_mj)+u(22_mj)]) (a1~ 02)%

caset has periods/2. In the next section we will show that

in the presence of Dirac singularities the minimal chagice
=4 is the right one. This is also the right value foin the
absence of singularities, provided that the gauge group is
taken to beSO(3).

IIl. GEOMETRY OF NEW GRAVITATIONAL INSTANTONS

In the previous section we have constructed five gravita-
tional instantons@,, n=0, .. . ,4) andshowed that they are
ALG manifolds. In this section we discuss their topology and
geometry.

The basic observation is that the distinguished complex
structure on the moduli spaces of periodic monopoles is easy
to compute using the monopole spectral curve defined in
Refs.[9,10]. Let us specialize the results of Ref8,10] to
the present case. To each solution of th€) Bogomolny
equations(possibly with singularitiesone can associate an
algebraic curve inCXC*. If the number of non-Abelian

From this expression we immediately see that the divermonopoles is 2, and thecoordinates of the singularities are

gent constanCy in the functionu(z) can be absorbed into a given bym;,i=1, ...

renormalization of:

4—n
TCN'

Uren=VU—

,4,then the curve has the form

(y—my)(y—mp)w?+a(y?—u)w+b(y—mg)(y—m,)=0.
HereyeC, we C* are the coordinates ifix C*, and the
parametersa,be C* can be expressed in terms of the
asymptotic behavior of the monopole fields, see R&f).

This is precisely the same renormalization which makes th&he complex parameteris the modulus of the curvé.e. it

Higgs field ¢ finite in the limit N— o with fixed v,,.

is not fixed by the boundary conditions on the monopole

We can also read off the metric on the relative modulifields). Thus there is a map from the monopole moduli space
space. As Sec. Il B we introduce the relative coordinates X to the complexu plane. As explained in the above-cited

:Zl_ZZ’X:Xl_X2’t:tl_t27 a.nd Set21+22=0. (More
generally, we could set;+z,=c for someceC, but the

constantc can always be absorbed into a shiftrof, so one

papers, this map is holomorphim the distinguished com-
plex structurg, and its fiber is the Jacobian of the curve.
Since the curve is elliptic in our case, the fiber coincides with
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the curve itself. It follows thaX is an elliptic fibration over L& 10,0 0,0 5,04, 00,111, IV,

C. The asymptotic coordinate of the previous section

should be identified with/u times a constant factor. We will \We have already discussed the physical meanintf afin-

see below that with our normalizations this constant factor igyularity. I,, singularity corresponds to the infrared behavior

unity. . L o ) of N=2 U(1) gauge theory witlm massless charge-1 hyper-
It is helpful to note that this elliptic fibration is precisely multiplets[13]. Singular fibers of typél , 111, andIV corre-

the Seiberg-Witten fibration for th&=2, d=4 gauge gnonq to nontrivial CFT$so-called Argyres-Douglas points
theory with gauge groupU(2) and four fundamental hyper- 11q) "1t is more convenient to use the notatieh ,H,, and
multiplets with masses, ,i=1, . .. ,42 This is trivial to see H,, respectively for these singularities e

if we use the form of the Seiberg-Witten fibration found in . -
; . Now let us discuss the geometry of the remaining ALG
Ref. [18]. Thus we can borrow the results in the phySICSmanifolds D, with 0=n<3). It is easy to see what happens

literature[12,13,19 on the geometry of this fibration. h d h ber of Di lbs tak
For generiam; there are six singular fibers, each of which V€N W€ deCrease the number oT irac monopaiby tak-
ing one or morem, to infinity. X is still elliptically fibered

is a rational curve with a nodé.e. a singular curvey? . : . ) )
—x2). In Kodaira’s classification of singularities of elliptic ©Ver G, but the number of singular fibers is now given by
fibrations[20], these are typé; singular fibers. The Euler N+ 2 for generiam; . Each of the singular fibers is of type.
characteristic of ah, fiber is 1, so the Euler characteristic of It follows that the Euler characteristic is+2, and the sec-

Xis 6. It is easy to see thag (X) =bz(X)=b,(X)=0, hence 0ond Betti number isn+1. By Zariski's lemma, the self-
b,(X)=5. intersection number of each singular fiber vanishes, and

When allm; are large, four out of six singularities occur therefore the rank of the intersection form is at mosin
nearu=m?, i.e. far out in the moduli space. In this region of particular, forn=0 the second homology is one dimensional
the moduli space the asymptotic formut20) for the dist- and the intersection form vanishes altogether.
nguished complex structure is valid and should agree with For n<4 it is impossible to tune the remaining; to
the results obtained from the spectral curve approach. Inbring alln+2 singular fibers togethgd9]. At most one can
deed, we see from E¢26) that 7(z) has four singularities at bringn+ 1 of them together, so that the elliptic fibration has
z=m;. Thus in the asymptotic region=z? as claimed. two singular fibers. It has been shown in R&9] that one of

Moreover, this comparison allows us to infer the precise pethem is anl, singularity, while the other one is of tygs,
riodicity of the coordinate left undetermined by the analysis H,(11), H,(I11), or Hs(IV), depending on whethen

of the previous section. There, we saw that if the periotl of =0 1,2, or 3. More generally, an elliptic fibration corre-
is 2m/p, then for large z| the Teichmiler parameter of the  sponding to the ALG manifold of typ®, may have from 2

elliptic fiber at pointz is p7(z), where(z) is given by Ed.  to n+2 singular fibers. The types of singular fibers that oc-
(26). The asymptotic metric is well definedpf4e N. From  cyr arel, andH,, 1<I<n.

Eq. (26) we see that the monodromy pfr(z) nearz=m is Note that the intersection form of a singular fiber of type
such that the singularity is of tydg,,. Therefore agreement | has rankn—1 (it is the affineA,_; Cartan matrix. Hence
with the spectral curve approach requiges 4. we may conclude that the rank of the intersection form on

If one sets allm; to zero, then all six singular fibers coa- H,(X) is eithern—1 orn. We saw above that fan=0 the
lesce into a single singular fiber at=0, and the invariant  intersection form vanishes identically, while for=4 it co-
of the curve becomes independent. The singularity a incides with the affine Cartan matrix of tyji,. It would be
=0 is of typel§ in Kodaira’s classification. This means that interesting to compute the intersection form for the remain-
the singular fiber is a union of five rational curves whoseing casesit=1,2,3).
intersection matrix is the affine Cartan matrix of typa.

Since by(X)=5, these rational curves spati,(X), and IV. REALIZATION VIA HITCHIN EQUATIONS
therefore the intersection form dd,(X) is the affineD,
Cartan matriX From the viewpoint of the quantur@U(2) In Refs.[9,10 we showed that Nahm transform estab-

gauge theory, thé% singularity corresponds to a non-trivial lishes a one-to-one correspondence between periodic mono-

conformal field theory(CFT) with global SO(8) symmetry poles with Dirac singularities and solutions of Hitchin equa-
[13]. tions on a cylinder with particular boundary conditions.

In general, the elliptic fibration corresponding to thg ~ Furthermore, we showed that the map between the corre-
ALG manifold can have 1, 3, 4, 5, or 6 singular fibers SPonding moduli spaces is bi-holomorphic if one uses the

[13,19. The types of singular fibers that can occur are giverflatural complex structures. Both moduli spaces are hyper-
by the following list: kahler manifolds, and analogy with the case of monopoles on

R® suggests that Nahm transform induces an isometry be-
tween them. If this is true, then we have an alternative con-
2As explained in Refg9,10], this coincidence follows from very struction of_ AL'G gravi'gational instantons using the moduli
general string-theoretic considerations. In fact Seiberg-Witten soluSPace of Hitchin equations. _
tions for many gauge theories can be derived by considering peri- L€t us focus on the case of ALG manifold of tyjie,,
odic monopoles for various gauge groups. when the boundary conditions for Hitchin equations are es-
3SinceX is non-compact, the intersection form need not be nonfecially simple. According to Ref.10], if the number of
degenerate. In the present case, the kernel of the intersection formdirac singularities is four and the number of non-Abelian
one dimensional. monopoles is two, then the Hitchin data consist dfl €2)
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connectionA and a Higgs field on a cylinderRx S! with ~ two punctures into &* with four punctures, withw being
two points removed. We will identifyax S with a strip 0 the coordinate on the North patch of tke. FlItChIn equa-
<Ims<1 in a complexs plane (this requires picking an tions are conformally invariant if we agree thatiransforms
orientation onRxS'). The two punctures are located &t as a 1-form, i.epds= ¢,,dw. Thendg,, has simple poles at
=s, ands=s,. Away from the punctured and¢ satisfy the ~ all four punctures, with residues which can be simulta-

Hitchin equationg11] neously diagonalized by a gauge transformation. Further-
, more,AW also has simple poles, and the residues can be
3;\$=0, f:s—+ '_[(‘l:,,(%f]zoy diagonalized simultaneously with the residuesgqf.
4 One can simplify this further by noting that the trace and

while near the punctures they have the following behavior: {raceless parts oA, , ¢, separately satisfy Hitchin equa-
tions. Hitchin equations for the trace part simply say that

Ri ~ Qi - Tr ¢, and Tr A,, are holomorphic 1-form and flat connec-
s—s; : tion on a punctured®?, and therefore are completely deter-

mined by their residues. Thus the moduli spacelUdR)
HereR; andQ; are rank-one matrices which can be simulta-Hitchin equations can be replaced by the moduli space of
neously diagonalized by a gauge transformation. Their eigens U(2) Hitchin equations. Using the results of REf0], one
values depend on the behavior of the monopole fields neafan easily compute the eigenvalues of the residues of the
z=, see Ref[10] for details. We should also specify the SU(2) Higgs field and connection in terms of locations of
behavior of&; and A at infinity. Let r=Res. Let m,eC,i the Dirac singularities and the asymptotic behavior of the
=1,...,4, be thez coordinates of the Dirac singularities, monopole fields. In the notation of R¢fL0J, the eigenvalues
andy; € R/(27Z) be their coordinates aft. For|r|—« the  of the residues of the Higgs field at the four punctures are
connection A becomes flat; the asymptotic holonomy is given by

given by
1 1 B Mo
diag e'x1,e'X2) +5(Mp=my), =5 (Mg—my), =77, ==,
for r——o and and the eigenvalues of the residues of the connection are
. S given by
diag e'¥3,e'X4)
f . . | | ial ia2
for r—+%. The eigenvalues of the Higgs field tend to iE(Xl_XZ)’iE(X?)_X‘l)’iE'ig-

my,m, for r— —o and toms,m, for r — +oo.

It is rather ObV.iOUS that the moduli space of Hitchin equa-The parameterﬁl,ﬂz and aq,a, can be expressed in terms
tions is a hyper-Kaler manifold. Indeed, Hitchin equations of the asymptotic behavior of the monopole fie[d§].
on a cylinder can be regarded as moment map equations for when the number of Dirac singularities is less than four,
an infinite-dimensional HKQ. The quotienting group is thethe Nahm transform is again given in terms of solutions of
group of gauge transformations, and it acts on the cotangeqy in equations o'l But the singularities of andA are
bundle of an infinite-dimensional affine hyperidar space, more complex in this .cas(ahey are not “tame.” in the ter-

the space obJ(2) connections on a cylinder. The residues of __. :
the Higgs field and the connection st,s, can be regarded minology of Ref.[21]). For more detalls, see RefL0].

as the level of the moment map.

Solutions of Hitchin equations of this kind have been ex-
tensively studied by Simpsd21] and others. To make ex- S. Ch. was supported in part by NSF grant PHY9819686.
plicit the connection with Simpson’s work, we make a con-A. K. was supported in part by DOE grants DE-FG02-90-
formal transformationv= 2™ which maps the cylinder with ER40542 and DE-FG03-92-ER40701.
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