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We study the thermodynamic properties and phase structures of topological black holes in Einstein theory
with a Gauss-Bonnet term and a negative cosmological constant. The event horizon of these topological black
holes can be a hypersurface with positive, zero, or negative constant curvature. When the horizon is a zero
curvature hypersurface, the thermodynamic properties of black holes are completely the same as those of black
holes without the Gauss-Bonnet term, although the two black hole solutions are quite different. When the
horizon is a negative constant curvature hypersurface, the thermodynamic properties of the Gauss-Bonnet
black holes are qualitatively similar to those of black holes without the Gauss-Bonnet term. When the event
horizon is a hypersurface with positive constant curvature, we find that the thermodynamic properties and
phase structures of black holes drastically depend on the spacetime dimdreimhthe coefficient of the
Gauss-Bonnet term: whet= 6, the properties of black holes are also qualitatively similar to the case without
the Gauss-Bonnet term, but whér 5, a new phase of locally stable small blacks holes occurs under a critical
value of the Gauss-Bonnet coefficient, and beyond the critical value, the black holes are always thermody-
namically stable. However, the locally stable small black hole is not globally preferred; instead a thermal
anti—de Sitter space is globally preferred. We find that there is a minimal horizon radius, below which the
Hawking-Page phase transition will not occur since for these black holes the thermal anti—de Sitter space is
always globally preferred.
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[. INTRODUCTION theory in the AdS-CFT correspondence. However, it is inter-

esting to note that if the event horizon of AdS black holes is
In recent years black holes in anti—de SittadS) spaces @ hypersurface with zero or negative constant curvature, the
have attracted a great deal of attention. There are at least tWiack hole is always stable and the corresponding CFT is
reasons responsible for this. First, in the spirit of AdS con-2/ways dominated by the black hole. That is, there does not
formal field theory(CFT) correspondenciL—3, it has been exist the Hawking-Page phase transition for AdS black holes

convincingly argued by Wittefd] that the thermodynamics With @ Ricci flat or hyperbolic horizofl].
of black hoies in AdS spacéAdS black holescan be iden- Higher derivative curvature terms occur in many occa-

o ) . X . sions, such as in the semiclassically quantum gravity and in
t_|f|e_d W'.th thf’?‘ of a certain dual CFT in the h'gh tempe_ratl_Jre he effective low-energy action of superstring theories. In the
limit. With this correspondence, one can gain some insigh

) : . tter case, according to the AdS-CFT correspondence, these
into the thermodynarmc properties and .phase structures Qbrms can be viewed as the corrections of la¥xgexpansion
strong 't Hooft coupling CFTs by studying the thermody- of houndary CFTs in the strong coupling limit. Due to the

namics of AdS black holes. _ _ nonlinearity of Einstein equations, however, it is very diffi-
Second, although the “topological censorship theorem”cyt to find nontrivial exact analytical solutions of the Ein-
[5] still holds in asymptotically AdS spac¢], it has been  stein equations with these higher derivative terms. In most
found that except for the spherically symmetric black holescases, one has to adopt some approximation methods or find
whose event horizon is a sphere surface, black holes alssplutions numerically.
exist with the event horizon being a zero or negative constant Among the gravity theories with higher derivative curva-
curvature hypersurface. These black holes are referred to asre terms, the so-called Lovelock gravi81] has some spe-
topological black holes in the literature. Because of the dif-cial features in some sense. For example, the resulting field
ferent horizon structures, these black holes behave in margquations contain no more than second derivatives of the
aspects quite differently from the spherically symmetricmetric and have been proven to be free of ghosts when ex-
black holeq7-19. panding about the flat space, evading any problems with uni-
It is by now known that the AdS Schwarzschild black holetarity. The Lagrangian of Lovelock theory is the sum of di-
is thermodynamically unstable when the horizon radius isnensionally extended Euler densities
small, while it is stable for a large radius; there is a phase n
transition, named Hawking-Page phase transifid@|, be- =S cr, 1.1)
tween the large stable black hole and a thermal AdS space. T '
This phase transition is explained by Witt¢d] as the
confinement-deconfinement transition of the Yang-Mills
The gravity theory with a Gauss-Bonnet term was originally pro-
posed by Lanczd2] and independently rediscovered by Lovelock
*Email address: cairg@itp.ac.cn [21]. See also discussions @3] and[24].
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wherec; is an arbitrary constant ang}, is the Euler density 1 (d—1)(d—2) 1 N
of a 2i-dimensional manifold, Ruv=59uR= Tgﬂﬁ | 59uu(RyaraR7
—4R,sR"+R?)—-2RR,,+4R,,R?,
—i by---aib; d d:
Li=27100 1 Sy R Ry (1.2

+4R sR7,°,— ZRM,;)\RVV‘”‘) . (2.2

Here £Lo=1 and hence is just the cosmological constant.
L4 gives us the usual Einstein-Hilbert term add is the
Gauss-Bonnet term. A spherically symmetric static solution o

of Eq. (1.1) has been found in the sense that the metric func- ds’=—e®dt*+e*dr?+r?h;;dxdx, 2.3
tion is determined by solving for the real roots of a polyno-
mial equation[25]. Since the Lagrangiar{l.l) includes ) : :
many arbitrary coefficients; , it is difficult to extract physi-  SENtS the line element of @ ¢ 2)-dimensional hypersurface
cal information from the solution. In Ref§26,27, by re-  With constant curvatured-2)(d—3)k and volumeX,.
stricting these coefficients to a special set so that the metrifithout loss of the generality, one may take 1, —1, or 0.
function can be readily determined by solving the polyno--ollowing Ref.[28] and substituting the ansa2.3) into the
mial equation, some exact, spherically symmetric black hol@ction(2.1), we obtain

solutions have been found. Black hole solutions with non-

We assume the metric to be of the following form:

wherev and\ are functions of only, andhijdx‘dxj repre-

trivial topology in this theory have been also studied in Refs. (d—2)3, ~ d-17"
[17,19. S= WJ dtdre”™* rd71¢(1+a¢)+—2 ,

In this paper we will analyze black hole solutions in Ein- i |
stein theory with a Gauss-Bonnet term and a negative cos- 2.4

mological constant, in which the Gauss-Bonnet coefficient is . o . ~
not fixed. In this theory a static, spherically symmetric blackWhere & prime denote_sé derlv:i\tque with respectte:=a(d
hole solution was first discovered by Boulware and Desef 3)(d—4), ande=r “(k—e ). From the action2.4),
[28]. However, the thermodynamic properties of the solution®"® can find the solution
were not discussed there. Here we will first generalize this

solution to the case in which the horizon of black holes can e'th=1,

be a positive, negative or zero constant curvature hypersur-

face, and then discuss thermodynamic properties and phase

structures of black holes. Because of this Gauss-Bonnet ~ 1 167GM
term, some nontrivial and interesting features will occur. e(1tap)t |_2_(d_2)2krdfl’

(2.5

from which we obtain the exact solutibn
Il. TOPOLOGICAL GAUSS-BONNET BLACK HOLES

The Einstein-Hilbert action with a Gauss-Bonnet term and 2 641G aM Ao
a negative cosmological constart=—(d—1)(d—2)/212, e?’=e 2 =k+ —=|1F¥\/1+ a1 2|
in d dimensions can be written down E28J? 2a (d=2)Zyr ! 2.6
whereM is the gravitational mass of the solutidfhe solu-
1 § (d—1)(d—2) tion with k=1 and spherical symmetry was first found by
S= RJ d x\/—_g R+ |—2 Boulware and Desef28]. Here we extend this solution to
include the casek=0 and— 1. Note that the solutioi2.6)

has two branches with a—=" or “ +" sign. Moreover, there
, (2.1 is a potential singularity at the place where the square root

+a(R,,,sR*"7°— 4R, R +R?)
vanishes in Eq(2.6), except for the singularity at=0. Here

where « is the Gauss-Bonnet coefficient with dimension “It is not so obvious that the minisuperspace approach applies for

(length? and is positive in the heterog'c string thed38].  onspherically symmetric solutions in the gravity theory. However,
So we restrict ourselves to the case 0.” Varying the action  jt can be checked that the solutié2.6) indeed satisfies the equa-
yields the equations of gravitational field tions (2.2) of motion. This is related to the fact that followifig9],
one can show that a Birkhoff-like theorem holds in the gravity
theory (2.1).
>The Gauss-Bonnet term is a topological invariant in four dimen- °This gravitational mass can be obtained by substituting the solu-
sions, sod=5 is assumed in this paper. tion (2.6) into the action(2.4) and then using the boundary term
3We will make a simple discussion for the case 0 in Sec. III. method. For this method, for example, §e&].
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we mention that the theor{2.1) with a=1%/4 discussed in 1L,

Ref. [27] in five dimensions corresponds to the theory pro- T= E(e ) -

posed in[30]; the solution witha=1%/4 discussed in Refs. T

[26,27] in five dimensions was also included in Refs. - (d—1)r* +(d—3)kI?r2 +(d—5)ak?l?

[17,19. If =0, namely, without the Gauss-Bonnet term, 2.9
the solution(2.6) reduces to the one ii.6], and the thermo-
dynamics of the latter was discussed there.

WhenM =0, the vacuum solution in Eq2.6) is

471%r , (r2 +2ak)

Usually entropy of black holes satisfies the so-called area
formula. This is, the black hole entropy equals one-quarter of
the horizon area. In gravity theories with higher derivative
curvature terms, however, in general the entropy of black

r2 4% holes does not satisfy the area formula. To get the black hole
e =k+—=|1F - (2.7 entropy, in[17] we suggested a simple method according to
2a ' the fact that as a thermodynamic system, the entropy of the

black hole must obey the first law of black hole thermody-
~ _ namics:dM=T dS Integrating the first law, we have
Sincea>0, one can see from the above thaimust obey
4a/1?<1, beyond which this theory is undefined. Thus, the . IM
action(2.1) has two AdS solutions with effective cosmologi- S= f T ldM= f Tl(_) dr,, (2.10
0

cal constantsZ,= (12/2)(1+ \1—4al12). When 4w/I?=1, o+

these two solutions coincide with each other, resulting inWh re we have im d the phvsical mption that th
e 2 =k+2r%/12 and that the theory has a unique AdsNeré¢ We nave imposed the physical assumption that the

~ _ entropy vanishes when the horizon of black holes shrinks to
vacuum(26,27,. On the other hand, iv<0, the solution zero! Thus once given the temperature and mass of black
(2.7) is still an AdS space if one takes the-" sign, but ) 9 b

becomes a de Sitter space if one takes the’ Sian and k holes in terms of the horizon radius, one can readily get the
—1. Erom the vacuurE case, the soluti@@?) v?/ith both entropy of black holes and need not know in which gravita-
o ’ . tional theory the black hole solutions are. Substituting Egs.

signs seems reasonable, from which we cannot determi . :
which sign in Eq.(2.6) should be adopted. This problem Canngﬁsgr‘gcfrzlﬁgét IEECE?]'O%';%’ i;ve find the entropy of the
¢ .

be solved by considering the propagation of gravitons on th
background2.7). It has been shown by Boulware and Deser

[28] that the branch with the +” sign is unstable and the 3, rd72 (d—2) 2ak
graviton is a ghost, while the branch with the-" sign is S= G d=a) 1z | (2.11
stable and is free of ghosts. This can also be seen from the rs

caseM+#0. Whenk=1 and 1/2=0, just as observed by o .

Boulware and Desef28], the solution is asymptotically a Whenk=1, itis in complete agreement with the one 2],
Schwarzschild solution if one takes the-* sign, but is there the entropy of the Gauss-Bonnet black holes without
asymptotically an AdS Schwarzschild solution with a negathe cosmological constant is obtained by calculating the Eu-
tive gravitational mass for the+” sign, indicating the in- clldear_1 action of black holes. The heat capacity of black
stability. Therefore the branch with the+ sign in Eq. (2.6  holes is

is of less physical intere§tFrom now on, we will not con-

sider the branch with the+" sign. oM oM\ ar
From Eqg.(2.6), the mass of black holes can be expressed Cz(ﬁ) = <8—> (ﬁ) (2.12
in terms of the horizon radius, , M+
where
(d=2)3,r973 ak? 2
T — Tt (2.9 "Note that for thek=—1 black hole, there exists a minimal hori-
167G r2 12

zon radius. For these black holes, therefore the horizon cannot
shrink to zero. However, it is known that the black hole entropy is
) _a function of the horizon surfad81]. According to the second law
The Hawking temperature of the black holes can be easilyf plack hole mechanics, the black hole entropy can be expressed in
obtained by requiring the absence of conical singularity aterms of a polynomial of horizon radius with positive exponents.
the horizon in the Euclidean sector of the black hole solutionas a result, although the black hole horizon cannot shrink to zero
It is whenk= —1, this method seems applicable as well. The results in
[17] and in this paper show this point. For example, when0, the
formula (2.11) gives the entropy of AdS black holes in Einstein
5A detailed analysis of the solutiof.6) without the negative theory without the Gauss-Bonnet term. Obviously, in this case the
cosmological constant, namely| 3+ 0, has been made [82,33. resulting area formulé2.11) holds as well in the case &= —1.
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beta

20 When'a#0, we see that those quantities drastically de-

pend on the parameter, horizon structuré and the space-
time dimensiond. Below we will discuss each case accord-
30} ing to the classification of horizon structurés; 0, k=—1,
andk=1, respectively.

20t
A. The case ofk=0
1ol In this case we have
T= (d_ 1)r +
0.5 1 1.5 2 2.5 3 radius 472
FIG. 1. The inverse temperature of topological black holes with- s
out the Gauss-Bonnet term. The three curves above from up to S= _kr'j:Z,
down correspond to the casks —1, 0, and 1, respectively. 4G
M_(@=D3 452 oo =T 20z,
ar . 4G + VeTeallh
S 1t
F=- , (2.15
i S [(d-1r® 16mG 2
Iy Aml?2(r? +2ak)?
- whererE’:1=167-rGI2M/(d—2)Ek. It is interesting to note
—(d=3)klry that these thermodynamic quantities are independent of the
+6(d—1)Kar* parametera. That is, these quantities have the completely
+ same expressions as thddé] for black holes without the
+2(d—3)ak?I2r2 Gauss-Bonnet term. We therefore conclude that in the case
* k=0, the black holes with and without the Gauss-Bonnet
—3(d—5)Ek2I2ri term have completely the same thermodynamic properties,
although the two solutions are quite different, which can be
—2(d—5)a?k??]. (2.13  seen from Eq(2.6). In particular, we note here that the en-
tropy of the Gauss-Bonnet black holes still satisfies the area
The free energy of black holes, definedfass M — TS, is formula in the cas&=0.
3, rde B. The case ofk=—1

_ _ 6 _ 2.4
[=(d=4ri+(d=akl"r As the casg¢16] without the Gauss-Bonnet term, there is

also the so-called “massless” black hole and “negative”
—6(d—2)kar? +(d—8)ak??r2 +2(d—2)a?kI?]. mass black hole in the Gauss-Bonnet black 1{2lé). When
M =0, the black hole has the horizon radius

F= =
167G(d—4)12(r% +2ak)

(2.19
. . L 12 A
Thus we give some thermodynamic quantities of Gauss- r%r:_ 1+ 1- —/|, (2.16
Bonnet black holes in AdS spaces. Wher 0, these ther- 2 '

modynamic quantities reduce to corresponding ones in Ref.

[16]. In Fig. 1 the inverse temperatu@= LT of the black with Hawking temperaturd =1/2zr , . Here there are two

holes versus the horizon radius is plotted. We can see clearh/rpaiscsrllzzsmbla(:k hole solutions, corresponding to two

different behaviors for the casés=1, 0, and—1: The in- maller horiz trr:er 3?'““8“%2'?' I?u'ihthe nbia(kgll( T)?len Vr\]"th
verse temperature always starts from infinity and monotoni® a_e 0 _0 radius belongs to the unstable branc "
cally decreases to zero in the cakes0 andk= — 1, while it Given a fixede, the smallest black hole has the horizon

starts from zero and reaches its maximum at a certain horf2dius
zon radius and then goes to zero monotonically wkerl.

This indicates that for the casks- —1 andk=0, the black 2 _ (d—3)I? \/ _(d=1)(d-5) ﬁ
holes are not only locally thermodynamiclly stable, but also min— 2(d—1) (d—3)2 12/
globally preferred, while in the case kf 1, the black hole (2.17)

is not locally thermodynamically stable for small radius, but
it is for large radius. Therefore, for tHe=1 case, there is a The black hole is an extremal one; it has vanishing Hawking
Hawking-Page phase transition. For details [se8. temperature and the most “negative” mass
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beta

0.5 1 1.5 2 2.5 3 radius

FIG. 3. The inverse temperature of tlhke=1 Gauss-Bonnet

black holes witha/I2=0.001. The three curves from up to down
correspond tal=5, 6, andd= 10, respectively.

FIG. 2. The inverse temperature of thee —1 Gauss-Bonnet

black holes ind=6 dimensions. the heat capacity is always positive. As a result, the thermo-
dynamic properties of the black holes with the Gauss-Bonnet
(d—z)(d—3)2k|2rﬁqi_n5( d—1 4% term are qualitatively similar to those of black holes without
oxt= — — the Gauss-Bonnet term: These black holes are always stable
16mG(d—1)? d=3 2 not only locally, but also globally.

= In addition, let us note that except for the singularity at
\/ _ (d-1)(d-5) 4_0‘) 2.18 r=0, the black hole solutiof2.6) has another singularity at

(d-3)2 12
When 4a/I?=1, the smallest radius igh,=1%/2 and My s Tl a2 2 (223
=0, independent of the spacetime dimensibrBut in this "
case, the Hawking temperature does not vanish. ITis whenM <M <0. But both singularities are shielded by the
=1/\/2#l. This is an exceptional case. event horizorr , .

From the solution(2.6), one can find that in order for the
solution to have a black hole horizon, the horizon radius C. The case ofk=1
must obey

gq  Aari® ( a ri)

This case is very interesting. From the temperat@ré)
rizza. (2.19 one can see that the cade=5 is quite different from the
other casesl=6. Whend=5, the temperature starts from
Thus the smallest radiu®.17) gives a constraint on the al- zero atr . =0 and goes to infinity as, —, while it starts
lowed value of the parametar: from infinity atr ., =0 asd=6. In F|g. 3 we show the in-
verse temperatures of black holes with 2= 0.001 in differ-
r2n=2a, (220  entdimensionsl=5, 6, andd= 10, respectively. The behav-
ior of the temperature of black holes with the Gauss-Bonnet
which leads to 4/I?<1. Since the theory is defined in the term ind=6 dimensions is similar to that of AdS black holes
region 4a/l?<1, the condition(2.20 is always satisfied. Without the Gauss-Bonnet term. But the casedefS (see

Due to the existence of the smallest black ha247, we  Fig- 4 is quite different from the corresponding one without

see from Eq.(2.9) that except for the caseadl?=1, the
temperature of the black hole always starts from zero at the
smallest radii, corresponding to the extremal black holes anc
monotonically goes to infinity as, —. In the case &/12 0.25
=1, the temperature starts from\E=l at r2=12/2. This
can also be verified by looking at the behavior of the heat
capacity(2.12. After considering the fact that. =2a and

4al1?<1, itis easy to show that the heat capacity is always

positive. In Fig. 2 we plot the inverse temperature of black0-15

holes in six dimensions versus the parameté and the

horizon radius /1. radius
Among the smaller black hol€®.17), the smallest one is 0.5 ! 1.5 2

r? =12/2 when 4/|>=1; its free energy is zero. Therefore  FIG. 4. The inverse temperature of the=1 Gauss-Bonnet

the free energy is always negative for other black holes sincklack holes ind=5 dimensions withx/I2=0.0056.

eta

0.2
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beta F
1.5 0.2

1.25
0.1

1

0.75 0.2 . . BN\ N 1 pradius
0.5 o
0.25L\/
-0.
radius

0.5 1 1.5 2 2.5 3

[y

N

FIG. 7. The free energy of the=1 Gauss-Bonnet black holes
in d=5 dimensions. The curves counting up to down onRleis
correspond to the case4l2=0.070, 0.036, 1/36, 0.020, 0.010, and
0, respectively.

FIG. 5. The inverse temperature of tlke=1 Gauss-Bonnet
black holes ind=5 dimensions. The three curves from up to down
correspond to the cases with the supcritiaal?=0.20, critical
1/36~0.0278, and subcritical 0.005, respectively.

the Gauss-Bonnet teriisee Fig. 1. Comparing Fig. 4 with (2 :E _ @
Fig. 1, we see that a new phase of stably small black hole L2 g |2
occurs in the Gauss-Bonnet black holes.
Whend=5, we have from Eq(2.8) the black hole hori- 16 195\ 2
zon X| 1= 1-— | 1— . (2.249
12 12
, I 4(m-a) . RN
ri=—= -1+ \/ 1+ ———-]|, (2.22  with the assumption 3&1“<1. In branches 1 and 3, the heat
2 12 ity is positive, while it i ve i :
capacity is positive, while it is negative in branch 2. There

fore the black holes are locally stable in branches 1 and 3,
wherem=167GM/3%,. Therefore, in this case there is a and unstable in branch 2. At the joint points of branches,
mass gapM o= 33 a/(167G): all black holes have a mass Namely,r.=r,,, the heat capacity diverges. Comparing
M=M,. Using the horizon radius, from Fig. 4 we can seeWith the case without the Gauss-Bonnet term, one can see
that the black holes can be classified to three branches: ~that branch 1 is new. 5

When« increases to the valuey/|2=1/36, we find that

branch 1: G<r, <r,, C>0, branch 2 with negative heat capacity disappears. Beyond this

value, the heat capacity is always positive and the Gauss-
Bonnet black holes are always locally stable. In Fig. 5, we
show the inverse temperatures of the Gauss-Bonnet black

hole with the parametet/I?, subcritical value 0.001, critical

branch2: r;<r,<r,, C<0,

branch 3: r,<r,<«, C>0, (223  value 1/36, and supercritical value 0.20, respectively. In Fig.
6, the continuous evolution of the inverse temperature is
where plotted with the parameten/I? from zero to 0.25, from
alpha
0.35
0.3
0.25
0.2
0.15
0.1
0.05
radius

FIG. 8. The curvesr, (the upper oneanda; (the lower ong
for the Gauss-Bonnet black holesds=5 dimensions. They join at
FIG. 6. The inverse temperature of tte=1 Gauss-Bonnet r. /I=0.3043 ancu/I?=0.0360. In the region between, anda;
black holes ind=5 dimensions. black holes have a negative free energy and are globally perferred.
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alpha globally preferred. We see that there is a smallest horizon
radiusr , /1 =0.3043: there will not exist the Hawking-Page
I 0.04 phase transition when the black hole horizon is smaller than
the valuer . /1=0.3043. When black holes cross the curves
0.035 a, and @, a Hawking-Page phase transition happens.
0.03 The region in which black holes are locally stable is de-
termined by the curve,
0.025

radius ~ |2ri—2rﬁ_
0.3 0.4 0.5 .6 0.7\0.8 0.9 = - 7 (2.27
[£7)) > 2 - .
212+ 122

FIG. 9. The curvesy,, a;, and «, (the lowest ongfor the
Gauss-Bgnnet black holes oh=5 dimgnsions. The region~above In Fig. 9 the curven, is plotted(the lowest ong the region
the cErveao is Iocgllyzs;table. The curve, touches th.e curveg at s |ocally stable above this curve, naT&y?ao, and locally
ry/1=0.4082 andy/I°=0.0278. The separated one is the cume | hstaple below this curve. This curvg, touches the curve

, ata=1/36~0.0278 and . /| =0.4082. Unfortunately, in

which one can see clearly that the black holes evolve fronfig. 9 most of the curve; is outside the plot. In Fig. 9 one
two branches to one branch via three branches. can see that there is a large region where black holes are

However, inspecting the free energ9.14 reveals that locally stable, but not globally preferred.

these stably small black holes are not globally preferred: The Whend=6, unlike the casel=5, there is no mass gap.

free energy always starts from some positive valug at The properties of Gauss-Bonnet black holes are qualitatively
=0 and then goes to negative infinity as—o. In Fig. 7  similar to those of black holes without the Gauss-Bonnet

the free energy of black holes with different paramatg? ~ [€M- This can be seen from the behavior of the Hawking

is plotted. We see that all curves cross the horizontal axifemperature of black holes in Fig. 3. This implies that the

(horizon radius one time only, wherés=0. In Fig. 8 we eduationdT/dr,=0 has only one positive real roat,

plot the region where the free energy is negative. The regiorF Fo(d,a/1%). Using Eq.(2.13, one can obtain the positive

is real root. But its expression is complicated, so we do not
present it here. Given a spacetime dimengioand a fixed

a<a<ay, (2.25  parameter/I?, when a black hole has a horizon>r, the
black hole is locally stable. Otherwise, it is unstable.

where The free energy2.14) always starts from zero in the case
5 4 5 7 5 d=6, reaches a positive maximum at some, and then
- :r_++3r_++r_+ 9r_++1]f_+_i (2.06  90€s to negative infinity as,—o. This behavior is the
2174 " 9272 |4 312 12 ' same as the case without the Gauss-Bonnet fses the

5 curve ofa=0 in Fig. 7). The region where the black hole is
The joint point of the two curves is ai/I?=0.0360 and globally preferred is restricted by a relation like H8.25),
r,. /1=0.3043. Beyond this region, the thermal AdS space idut with

- r2

“217 4 (d—2)12

[6(d—2)r2 —(d—8)I1%= \/36(d—2)%r* —4(d—2)(d—16)12r2 +d(32— 7d)I*]. (2.28

And as in the case al=5, these two curves connect at  in the w—r, plane. Therefore the phase structure of black
holes ind=6 dimensions is similar to the one @5 di-
|2 mensiongFig. 8).
ra ~18d—2) (d— 16+ (d—16)?+9d(7d—32)), Finally let us mention that the temperature behavieg.
8d-2) 4) of d=5 Gauss-Bonnet black holes is quite similar to the
one of the Reissner-Nordstro (RN) black holes in AdS

(2 spaces in the canonical ensempB,35. There under the
a= —*Z(G(d_z)ri —(d—8)1?) (2.29  critical value of charge, the phase of stably small black holes
4(d—-2)l occurs as well. However, there is a big difference between
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two cases: For the RN black holes, the small black hole isvhich is always shielded by the event horizan.

not only locally stable, but also globally preferred, while the \whenk=—1, the situation is similar to the case>0;

small Gauss-Bonnet black hole is only locally stable and nohothing special appears. In this case, the smallest radius is
globally preferred, instead a thermal AdS space is preferred.

IIl. CONCLUSIONS AND DISCUSSIONS P2 (d-3) 12
min Z(d— 1)
We have presented exact topological black hole solutions
in Einstein theory with a Gauss-Bonnet term and a negative (d—5)(d—1) 4|’C}|
cosmological constant, generalizing the spherically symmet- X| 1+ \/1+ (d—3)? | (3.2

ric black hole solution found by Boulware and Def28] to
the case where the event horizon of black holes is a positive,

zero or negative constant curvature hypersurface. We havf, o smallest black hole has a vanishing Hawking tempera-

examined thermodynamic properties and analyzed phasgre |nside the event horizon there is an additional singular-
structures of these topological black holes. ;

When the even horizon is a zero curvature hypersurfacelt,y at
we find that thermodynamic properties of Gauss-Bonnet
black holes are completely the same as those without the ~a ) )
Gauss-Bonnet term, although the two black hole solutions d-1_ Aall® 4y _ I__ |al 3.3
are quite different. As a result, these=0 Gauss-Bonnet s 1+4|al/I? * r2 4 ) '
black holes are not only locally thermodynamically stable,
but also globally preferred. In particular, the entropy of these
black holes satisfies the area formula. Note that usually blackxcept for the one at=0. The black holes are also always
holes in gravity theories with higher derivative curvaturelocally stable and globally preferred.
terms do not obey the area formula. Whenk=1, there is also a smallest horizon radius

When the event horizon is a negative constant hypersur-
face, these black holes are qualitatively similar to those with-
out the Gauss-Bonnet term. Theke=—1 Gauss-Bonnet r2. =2[al, (3.4)
black holes are always locally stable and globally preferred. mn

When the event horizon is a positive constant hypersur-
face, however, some interesting features occur. Whe®,  but this smallest black hole has a divergent Hawking tem-
a new phase of thermodynamically stable small black holegerature. In this case the event horizon coincides with an
appears if the Gauss-Bonnet coefficient is under a criticajdditional singularity at?=2|«|. For larger black holes the
value. Beyond the critical value, the black holes are alwaygdditional singularity is located at
thermodynamically stable. Inspecting the free energy of
black holes reveals these stable small black holes are not
globally preferred, instead a thermal AdS space is preferred. ~ 2 5 1~ 2
The phase structures are plotted, from which we find that pd-1_ Aal® " I__ |all (3.5
there is a smallest black hole radius. Beyond this radius, the S 1+4aln® ” 2ot ) '
Hawking-Page phase transition will not happen. From the
phase diagram we see that there is a large region in which the
black hole is locally stable, but not globally preferred. Wheninside the black hole horizon. The inverse temperature of
d=6, however, the new phase of stable small black hole§lack holes starts from zero at the smallest radisg),
disappears. Once again, the thermodynamic properties of tHéaches its maximal at somme and goes to zero when,
black holes are qualitatively similar to those of black holes—. The thermodynamic properties of black holes are quali-
without the Gauss-Bonnet term. tatively similar to the case wite=0. As a result, the new

Now we discuss the case<0. The vacuum solution is phase, which appears in the cate5 and 0<a/I2<1/36,
still the one(2.7). So in this case there is no restriction on the yoes not occur in this case.

value of a; the solution(2.6) is still asymptotically AdS. Note addedPerturbative AdS black hole solution wiR?
Those expressions of thermodynamic quantit@§), (2.9),  curvature terms and its thermodynamic properties have been
(2.12), (2.13, and(2.14) are applicable as well. discussed recently i[86].

Whenk=0, since thermodynamic quantities are indepen-
dent of the parametes in this case, the conclusion is the
same as the case>0, but with a new singularity at ACKNOWLEDGMENTS
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