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Gauss-Bonnet black holes in AdS spaces
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We study the thermodynamic properties and phase structures of topological black holes in Einstein theory
with a Gauss-Bonnet term and a negative cosmological constant. The event horizon of these topological black
holes can be a hypersurface with positive, zero, or negative constant curvature. When the horizon is a zero
curvature hypersurface, the thermodynamic properties of black holes are completely the same as those of black
holes without the Gauss-Bonnet term, although the two black hole solutions are quite different. When the
horizon is a negative constant curvature hypersurface, the thermodynamic properties of the Gauss-Bonnet
black holes are qualitatively similar to those of black holes without the Gauss-Bonnet term. When the event
horizon is a hypersurface with positive constant curvature, we find that the thermodynamic properties and
phase structures of black holes drastically depend on the spacetime dimensiond and the coefficient of the
Gauss-Bonnet term: whend>6, the properties of black holes are also qualitatively similar to the case without
the Gauss-Bonnet term, but whend55, a new phase of locally stable small blacks holes occurs under a critical
value of the Gauss-Bonnet coefficient, and beyond the critical value, the black holes are always thermody-
namically stable. However, the locally stable small black hole is not globally preferred; instead a thermal
anti–de Sitter space is globally preferred. We find that there is a minimal horizon radius, below which the
Hawking-Page phase transition will not occur since for these black holes the thermal anti–de Sitter space is
always globally preferred.

DOI: 10.1103/PhysRevD.65.084014 PACS number~s!: 04.20.Jb, 04.20.Gz, 97.60.Lf
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I. INTRODUCTION

In recent years black holes in anti–de Sitter~AdS! spaces
have attracted a great deal of attention. There are at leas
reasons responsible for this. First, in the spirit of AdS co
formal field theory~CFT! correspondence@1–3#, it has been
convincingly argued by Witten@4# that the thermodynamic
of black holes in AdS spaces~AdS black holes! can be iden-
tified with that of a certain dual CFT in the high temperatu
limit. With this correspondence, one can gain some insi
into the thermodynamic properties and phase structure
strong ’t Hooft coupling CFTs by studying the thermod
namics of AdS black holes.

Second, although the ‘‘topological censorship theore
@5# still holds in asymptotically AdS spaces@6#, it has been
found that except for the spherically symmetric black ho
whose event horizon is a sphere surface, black holes
exist with the event horizon being a zero or negative cons
curvature hypersurface. These black holes are referred t
topological black holes in the literature. Because of the d
ferent horizon structures, these black holes behave in m
aspects quite differently from the spherically symmet
black holes@7–19#.

It is by now known that the AdS Schwarzschild black ho
is thermodynamically unstable when the horizon radius
small, while it is stable for a large radius; there is a pha
transition, named Hawking-Page phase transition@20#, be-
tween the large stable black hole and a thermal AdS sp
This phase transition is explained by Witten@4# as the
confinement-deconfinement transition of the Yang-M
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theory in the AdS-CFT correspondence. However, it is int
esting to note that if the event horizon of AdS black holes
a hypersurface with zero or negative constant curvature,
black hole is always stable and the corresponding CFT
always dominated by the black hole. That is, there does
exist the Hawking-Page phase transition for AdS black ho
with a Ricci flat or hyperbolic horizon@16#.

Higher derivative curvature terms occur in many occ
sions, such as in the semiclassically quantum gravity an
the effective low-energy action of superstring theories. In
latter case, according to the AdS-CFT correspondence, t
terms can be viewed as the corrections of largeN expansion
of boundary CFTs in the strong coupling limit. Due to th
nonlinearity of Einstein equations, however, it is very dif
cult to find nontrivial exact analytical solutions of the Ein
stein equations with these higher derivative terms. In m
cases, one has to adopt some approximation methods or
solutions numerically.

Among the gravity theories with higher derivative curv
ture terms, the so-called Lovelock gravity@21# has some spe
cial features in some sense. For example, the resulting
equations contain no more than second derivatives of
metric and have been proven to be free of ghosts when
panding about the flat space, evading any problems with
tarity. The Lagrangian of Lovelock theory is the sum of d
mensionally extended Euler densities1

L5(
i

n

ciLi , ~1.1!

1The gravity theory with a Gauss-Bonnet term was originally p
posed by Lanczos@22# and independently rediscovered by Lovelo
@21#. See also discussions in@23# and @24#.
©2002 The American Physical Society14-1
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RONG-GEN CAI PHYSICAL REVIEW D 65 084014
whereci is an arbitrary constant andLi is the Euler density
of a 2i -dimensional manifold,

Li522 idc1d1•••cidi

a1b1•••aibiRa1b1

c1d1
•••Raibi

cidi . ~1.2!

HereL051 and hencec0 is just the cosmological constan
L1 gives us the usual Einstein-Hilbert term andL2 is the
Gauss-Bonnet term. A spherically symmetric static solut
of Eq. ~1.1! has been found in the sense that the metric fu
tion is determined by solving for the real roots of a polyn
mial equation @25#. Since the Lagrangian~1.1! includes
many arbitrary coefficientsci , it is difficult to extract physi-
cal information from the solution. In Refs.@26,27#, by re-
stricting these coefficients to a special set so that the me
function can be readily determined by solving the polyn
mial equation, some exact, spherically symmetric black h
solutions have been found. Black hole solutions with no
trivial topology in this theory have been also studied in Re
@17,19#.

In this paper we will analyze black hole solutions in Ei
stein theory with a Gauss-Bonnet term and a negative
mological constant, in which the Gauss-Bonnet coefficien
not fixed. In this theory a static, spherically symmetric bla
hole solution was first discovered by Boulware and De
@28#. However, the thermodynamic properties of the solut
were not discussed there. Here we will first generalize
solution to the case in which the horizon of black holes c
be a positive, negative or zero constant curvature hyper
face, and then discuss thermodynamic properties and p
structures of black holes. Because of this Gauss-Bon
term, some nontrivial and interesting features will occur.

II. TOPOLOGICAL GAUSS-BONNET BLACK HOLES

The Einstein-Hilbert action with a Gauss-Bonnet term a
a negative cosmological constant,L52(d21)(d22)/2l 2,
in d dimensions can be written down as@28#2

S5
1

16pGE ddxA2gS R1
~d21!~d22!

l 2

1a~RmngdRmngd24RmnRmn1R2!D , ~2.1!

where a is the Gauss-Bonnet coefficient with dimensi
( length)2 and is positive in the heterotic string theory@28#.
So we restrict ourselves to the casea>0.3 Varying the action
yields the equations of gravitational field

2The Gauss-Bonnet term is a topological invariant in four dim
sions, sod>5 is assumed in this paper.

3We will make a simple discussion for the casea,0 in Sec. III.
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Rmn2
1

2
gmnR5

~d21!~d22!

2l 2
gmn1aS 1

2
gmn~RgdlsRgdls

24RgdRgd1R2!22RRmn14RmgR n
g

14RgdRg
m

d
n22RmgdlRn

gdlD . ~2.2!

We assume the metric to be of the following form:

ds252e2ndt21e2ldr21r 2hi j dxidxj , ~2.3!

wheren andl are functions ofr only, andhi j dxidxj repre-
sents the line element of a (d22)-dimensional hypersurfac
with constant curvature (d22)(d23)k and volumeSk .
Without loss of the generality, one may takek51, 21, or 0.
Following Ref.@28# and substituting the ansatz~2.3! into the
action ~2.1!, we obtain

S5
~d22!Sk

16pG E dt dr en1lF r d21w~11ãw!1
r d21

l 2 G 8,
~2.4!

where a prime denotes derivative with respect tor, ã5a(d
23)(d24), andw5r 22(k2e22l). From the action~2.4!,
one can find the solution

en1l51,

w~11ãw!1
1

l 2
5

16pGM

~d22!Skr
d21

, ~2.5!

from which we obtain the exact solution4

e2n5e22l5k1
r 2

2ã
S 17A11

64pGãM

~d22!Skr
d21

2
4ã

l 2 D ,

~2.6!

whereM is the gravitational mass of the solution.5 The solu-
tion with k51 and spherical symmetry was first found b
Boulware and Deser@28#. Here we extend this solution to
include the casesk50 and21. Note that the solution~2.6!
has two branches with a ‘‘2 ’’ or ‘‘ 1 ’’ sign. Moreover, there
is a potential singularity at the place where the square r
vanishes in Eq.~2.6!, except for the singularity atr 50. Here

-

4It is not so obvious that the minisuperspace approach applies
nonspherically symmetric solutions in the gravity theory. Howev
it can be checked that the solution~2.6! indeed satisfies the equa
tions ~2.2! of motion. This is related to the fact that following@29#,
one can show that a Birkhoff-like theorem holds in the grav
theory ~2.1!.

5This gravitational mass can be obtained by substituting the s
tion ~2.6! into the action~2.4! and then using the boundary term
method. For this method, for example, see@27#.
4-2
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GAUSS-BONNET BLACK HOLES IN AdS SPACES PHYSICAL REVIEW D65 084014
we mention that the theory~2.1! with ã5 l 2/4 discussed in
Ref. @27# in five dimensions corresponds to the theory p
posed in@30#; the solution withã5 l 2/4 discussed in Refs
@26,27# in five dimensions was also included in Ref
@17,19#. If ã50, namely, without the Gauss-Bonnet term
the solution~2.6! reduces to the one in@16#, and the thermo-
dynamics of the latter was discussed there.

WhenM50, the vacuum solution in Eq.~2.6! is

e22l5k1
r 2

2ã
S 17A12

4ã

l 2 D . ~2.7!

Since ã.0, one can see from the above thatã must obey
4ã/ l 2<1, beyond which this theory is undefined. Thus, t
action~2.1! has two AdS solutions with effective cosmolog

cal constantsl eff
2 5( l 2/2)(16A124ã/ l 2). When 4ã/ l 251,

these two solutions coincide with each other, resulting
e22l5k12r 2/ l 2 and that the theory has a unique Ad
vacuum @26,27#. On the other hand, ifã,0, the solution
~2.7! is still an AdS space if one takes the ‘‘2 ’’ sign, but
becomes a de Sitter space if one takes the ‘‘1 ’’ sign and k
51. From the vacuum case, the solution~2.7! with both
signs seems reasonable, from which we cannot determ
which sign in Eq.~2.6! should be adopted. This problem ca
be solved by considering the propagation of gravitons on
background~2.7!. It has been shown by Boulware and Des
@28# that the branch with the ‘‘1’’ sign is unstable and the
graviton is a ghost, while the branch with the ‘‘2 ’’ sign is
stable and is free of ghosts. This can also be seen from
caseM5” 0. When k51 and 1/l 250, just as observed by
Boulware and Deser@28#, the solution is asymptotically a
Schwarzschild solution if one takes the ‘‘2 ’’ sign, but is
asymptotically an AdS Schwarzschild solution with a neg
tive gravitational mass for the ‘‘1 ’’ sign, indicating the in-
stability. Therefore the branch with the ‘‘1 ’’ sign in Eq. ~2.6!
is of less physical interest.6 From now on, we will not con-
sider the branch with the ‘‘1 ’’ sign.

From Eq.~2.6!, the mass of black holes can be express
in terms of the horizon radiusr 1 ,

M5
~d22!Skr 1

d23

16pG S k1
ãk2

r 1
2

1
r 1

2

l 2 D . ~2.8!

The Hawking temperature of the black holes can be ea
obtained by requiring the absence of conical singularity
the horizon in the Euclidean sector of the black hole soluti
It is

6A detailed analysis of the solution~2.6! without the negative
cosmological constant, namely, 1/l 250, has been made in@32,33#.
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T5
1

4p
~e22l!8U

r 5r 1

5
~d21!r 1

4 1~d23!kl2r 1
2 1~d25!ãk2l 2

4p l 2r 1~r 1
2 12ãk!

. ~2.9!

Usually entropy of black holes satisfies the so-called a
formula. This is, the black hole entropy equals one-quarte
the horizon area. In gravity theories with higher derivati
curvature terms, however, in general the entropy of bla
holes does not satisfy the area formula. To get the black h
entropy, in@17# we suggested a simple method according
the fact that as a thermodynamic system, the entropy of
black hole must obey the first law of black hole thermod
namics:dM5T dS. Integrating the first law, we have

S5E T21 dM5E
0

r 1

T21S ]M

]r 1
Ddr1 , ~2.10!

where we have imposed the physical assumption that
entropy vanishes when the horizon of black holes shrinks
zero.7 Thus once given the temperature and mass of bl
holes in terms of the horizon radius, one can readily get
entropy of black holes and need not know in which gravi
tional theory the black hole solutions are. Substituting E
~2.8! and ~2.9! into Eq. ~2.10!, we find the entropy of the
Gauss-Bonnet black holes~2.6! is

S5
Skr 1

d22

4G S 11
~d22!

~d24!

2ãk

r 1
2 D . ~2.11!

Whenk51, it is in complete agreement with the one in@32#,
there the entropy of the Gauss-Bonnet black holes with
the cosmological constant is obtained by calculating the
clidean action of black holes. The heat capacity of bla
holes is

C5S ]M

]T D5S ]M

]r 1
D S ]r 1

]T D , ~2.12!

where

7Note that for thek521 black hole, there exists a minimal hor
zon radius. For these black holes, therefore the horizon ca
shrink to zero. However, it is known that the black hole entropy
a function of the horizon surface@31#. According to the second law
of black hole mechanics, the black hole entropy can be express
terms of a polynomial of horizon radiusr 1 with positive exponents.
As a result, although the black hole horizon cannot shrink to z
whenk521, this method seems applicable as well. The results

@17# and in this paper show this point. For example, whenã50, the
formula ~2.11! gives the entropy of AdS black holes in Einste
theory without the Gauss-Bonnet term. Obviously, in this case
resulting area formula~2.11! holds as well in the case ofk521.
4-3
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RONG-GEN CAI PHYSICAL REVIEW D 65 084014
]M

]r 1
5

~d22!Sk

4G
r 1

d25~r 1
2 12ãk!T,

]T

]r 1
5

1

4p l 2r 1
2 ~r 1

2 12ãk!2
@~d21!r 1

6

2~d23!kl2r 1
4

16~d21!kãr 1
4

12~d23!ãk2l 2r 1
2

23~d25!ãk2l 2r 1
2

22~d25!ã2k2l 2#. ~2.13!

The free energy of black holes, defined asF5M2TS, is

F5
Skr 1

d25

16pG~d24!l 2~r 1
2 12ãk!

@2~d24!r 1
6 1~d24!kl2r 1

4

26~d22!kãr 1
4 1~d28!ãk2l 2r 1

2 12~d22!ã2kl2#.

~2.14!

Thus we give some thermodynamic quantities of Gau
Bonnet black holes in AdS spaces. Whenã50, these ther-
modynamic quantities reduce to corresponding ones in R
@16#. In Fig. 1 the inverse temperatureb51/T of the black
holes versus the horizon radius is plotted. We can see cle
different behaviors for the casesk51, 0, and21: The in-
verse temperature always starts from infinity and monoto
cally decreases to zero in the casesk50 andk521, while it
starts from zero and reaches its maximum at a certain h
zon radius and then goes to zero monotonically whenk51.
This indicates that for the casesk521 andk50, the black
holes are not only locally thermodynamiclly stable, but a
globally preferred, while in the case ofk51, the black hole
is not locally thermodynamically stable for small radius, b
it is for large radius. Therefore, for thek51 case, there is a
Hawking-Page phase transition. For details see@16#.

FIG. 1. The inverse temperature of topological black holes w
out the Gauss-Bonnet term. The three curves above from u
down correspond to the casesk521, 0, and 1, respectively.
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When ã5” 0, we see that those quantities drastically d
pend on the parameterã, horizon structurek and the space-
time dimensiond. Below we will discuss each case accor
ing to the classification of horizon structures,k50, k521,
andk51, respectively.

A. The case ofkÄ0

In this case we have

T5
~d21!r 1

4p l 2
,

S5
Sk

4G
r 1

d22 ,

C5
~d22!Sk

4G
r 1

d22 ,

F52
Sk

16pG

r 1
d21

l 2
, ~2.15!

wherer 1
d21516pGl2M /(d22)Sk . It is interesting to note

that these thermodynamic quantities are independent of
parameterã. That is, these quantities have the complet
same expressions as those@16# for black holes without the
Gauss-Bonnet term. We therefore conclude that in the c
k50, the black holes with and without the Gauss-Bonn
term have completely the same thermodynamic propert
although the two solutions are quite different, which can
seen from Eq.~2.6!. In particular, we note here that the e
tropy of the Gauss-Bonnet black holes still satisfies the a
formula in the casek50.

B. The case ofkÄÀ1

As the case@16# without the Gauss-Bonnet term, there
also the so-called ‘‘massless’’ black hole and ‘‘negativ
mass black hole in the Gauss-Bonnet black hole~2.6!. When
M50, the black hole has the horizon radius

r 1
2 5

l 2

2 S 16A12
4ã

l 2 D , ~2.16!

with Hawking temperatureT51/2pr 1 . Here there are two
‘‘massless’’ black hole solutions, corresponding to tw
branches in the solution~2.6!. But the black hole with
smaller horizon radius belongs to the unstable branch.

Given a fixedã, the smallest black hole has the horizo
radius

r min
2 5

~d23!l 2

2~d21! S 11A12
~d21!~d25!

~d23!2

4ã

l 2 D .

~2.17!

The black hole is an extremal one; it has vanishing Hawk
temperature and the most ‘‘negative’’ mass

-
to
4-4
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GAUSS-BONNET BLACK HOLES IN AdS SPACES PHYSICAL REVIEW D65 084014
Mext52
~d22!~d23!Skl

2r min
d25

16pG~d21!2 S 12
d21

d23

4ã

l 2

1A12
~d21!~d25!

~d23!2

4ã

l 2 D . ~2.18!

When 4ã/ l 251, the smallest radius isr min
2 5 l 2/2 andMext

50, independent of the spacetime dimensiond. But in this
case, the Hawking temperature does not vanish. It isT
51/A2p l . This is an exceptional case.

From the solution~2.6!, one can find that in order for th
solution to have a black hole horizon, the horizon rad
must obey

r 1
2 >2ã. ~2.19!

Thus the smallest radius~2.17! gives a constraint on the a
lowed value of the parameterã:

r min
2 >2ã, ~2.20!

which leads to 4ã/ l 2<1. Since the theory is defined in th
region 4ã/ l 2<1, the condition~2.20! is always satisfied.
Due to the existence of the smallest black holes~2.17!, we
see from Eq.~2.9! that except for the case 4ã/ l 251, the
temperature of the black hole always starts from zero at
smallest radii, corresponding to the extremal black holes
monotonically goes to infinity asr 1→`. In the case 4ã/ l 2

51, the temperature starts from 1/A2p l at r 1
2 5 l 2/2. This

can also be verified by looking at the behavior of the h
capacity~2.12!. After considering the fact thatr 1

2 >2ã and

4ã/ l 2<1, it is easy to show that the heat capacity is alwa
positive. In Fig. 2 we plot the inverse temperature of bla
holes in six dimensions versus the parameterã/ l 2 and the
horizon radiusr 1 / l .

Among the smaller black holes~2.17!, the smallest one is
r 1

2 5 l 2/2 when 4ã/ l 251; its free energy is zero. Therefor
the free energy is always negative for other black holes s

FIG. 2. The inverse temperature of thek521 Gauss-Bonnet
black holes ind56 dimensions.
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the heat capacity is always positive. As a result, the therm
dynamic properties of the black holes with the Gauss-Bon
term are qualitatively similar to those of black holes witho
the Gauss-Bonnet term: These black holes are always s
not only locally, but also globally.

In addition, let us note that except for the singularity
r 50, the black hole solution~2.6! has another singularity a

r s
d215

4ãr 1
d23

124ã/ l 2 S 12
ã

r 1
2

2
r 1

2

l 2 D , ~2.21!

whenMext,M,0. But both singularities are shielded by th
event horizonr 1 .

C. The case ofkÄ1

This case is very interesting. From the temperature~2.9!
one can see that the cased55 is quite different from the
other casesd>6. Whend55, the temperature starts from
zero atr 150 and goes to infinity asr 1→`, while it starts
from infinity at r 150 asd>6. In Fig. 3 we show the in-
verse temperatures of black holes withã/ l 250.001 in differ-
ent dimensionsd55, 6, andd510, respectively. The behav
ior of the temperature of black holes with the Gauss-Bon
term ind>6 dimensions is similar to that of AdS black hole
without the Gauss-Bonnet term. But the case ofd55 ~see
Fig. 4! is quite different from the corresponding one witho

FIG. 3. The inverse temperature of thek51 Gauss-Bonnet

black holes withã/ l 250.001. The three curves from up to dow
correspond tod55, 6, andd510, respectively.

FIG. 4. The inverse temperature of thek51 Gauss-Bonnet

black holes ind55 dimensions withã/ l 250.0056.
4-5
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RONG-GEN CAI PHYSICAL REVIEW D 65 084014
the Gauss-Bonnet term~see Fig. 1!. Comparing Fig. 4 with
Fig. 1, we see that a new phase of stably small black h
occurs in the Gauss-Bonnet black holes.

Whend55, we have from Eq.~2.8! the black hole hori-
zon

r 1
2 5

l 2

2 S 211A11
4~m2ã !

l 2 D , ~2.22!

wherem516pGM/3Sk . Therefore, in this case there is
mass gapM053Skã/(16pG): all black holes have a mas
M>M0. Using the horizon radius, from Fig. 4 we can s
that the black holes can be classified to three branches:

branch 1: 0,r 1,r 1 , C.0,

branch 2: r 1,r 1,r 2 , C,0,

branch 3: r 2,r 1,`, C.0, ~2.23!

where

FIG. 5. The inverse temperature of thek51 Gauss-Bonnet
black holes ind55 dimensions. The three curves from up to dow

correspond to the cases with the supcriticalã/ l 250.20, critical
1/36'0.0278, and subcritical 0.005, respectively.

FIG. 6. The inverse temperature of thek51 Gauss-Bonnet
black holes ind55 dimensions.
08401
le
r 1,2

2 5
l 2

4 S 12
12ã

l 2 D
3S 17A12

16ã

l 2 S 12
12ã

l 2 D 22D , ~2.24!

with the assumption 36ã/ l 2,1. In branches 1 and 3, the he
capacity is positive, while it is negative in branch 2. The
fore the black holes are locally stable in branches 1 and
and unstable in branch 2. At the joint points of branch
namely, r 15r 1,2, the heat capacity diverges. Comparin
with the case without the Gauss-Bonnet term, one can
that branch 1 is new.

When ã increases to the value,ã/ l 251/36, we find that
branch 2 with negative heat capacity disappears. Beyond
value, the heat capacity is always positive and the Gau
Bonnet black holes are always locally stable. In Fig. 5,
show the inverse temperatures of the Gauss-Bonnet b
hole with the parameterã/ l 2, subcritical value 0.001, critica
value 1/36, and supercritical value 0.20, respectively. In F
6, the continuous evolution of the inverse temperature
plotted with the parameterã/ l 2 from zero to 0.25, from

FIG. 7. The free energy of thek51 Gauss-Bonnet black hole
in d55 dimensions. The curves counting up to down on theF axis

correspond to the casesã/ l 250.070, 0.036, 1/36, 0.020, 0.010, an
0, respectively.

FIG. 8. The curvesã2 ~the upper one! and ã1 ~the lower one!
for the Gauss-Bonnet black holes ind55 dimensions. They join at

r 1 / l 50.3043 andã/ l 250.0360. In the region betweenã2 and ã1

black holes have a negative free energy and are globally perfe
4-6
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GAUSS-BONNET BLACK HOLES IN AdS SPACES PHYSICAL REVIEW D65 084014
which one can see clearly that the black holes evolve fr
two branches to one branch via three branches.

However, inspecting the free energy~2.14! reveals that
these stably small black holes are not globally preferred:
free energy always starts from some positive value atr 1

50 and then goes to negative infinity asr 1→`. In Fig. 7
the free energy of black holes with different parameterã/ l 2

is plotted. We see that all curves cross the horizontal a
~horizon radius! one time only, whereF50. In Fig. 8 we
plot the region where the free energy is negative. The reg
is

ã1,ã,ã2 , ~2.25!

where

ã2,15
r 1

2

4
1

3r 1
4

2l 2
6

r 1
2

2
A9r 1

4

l 4
1

11r 1
2

3l 2
2

5

12
. ~2.26!

The joint point of the two curves is atã/ l 250.0360 and
r 1 / l 50.3043. Beyond this region, the thermal AdS space

FIG. 9. The curvesã2 , ã1, and ã0 ~the lowest one! for the
Gauss-Bonnet black holes ind55 dimensions. The region abov

the curveã0 is locally stable. The curveã0 touches the curveã1 at

r 1 / l 50.4082 andã/ l 250.0278. The separated one is the curveã2.
08401
e

is

n

is

globally preferred. We see that there is a smallest hori
radiusr 1 / l 50.3043: there will not exist the Hawking-Pag
phase transition when the black hole horizon is smaller t
the valuer 1 / l 50.3043. When black holes cross the curv
ã2 and ã1, a Hawking-Page phase transition happens.

The region in which black holes are locally stable is d
termined by the curveã0,

ã05
l 2r 1

2 22r 1
4

2l 2112r 1
2

. ~2.27!

In Fig. 9 the curveã0 is plotted~the lowest one!: the region
is locally stable above this curve, namely,ã.ã0, and locally
unstable below this curve. This curveã0 touches the curve
ã1 at ã51/36'0.0278 andr 1 / l 50.4082. Unfortunately, in
Fig. 9 most of the curveã2 is outside the plot. In Fig. 9 one
can see that there is a large region where black holes
locally stable, but not globally preferred.

Whend>6, unlike the cased55, there is no mass gap
The properties of Gauss-Bonnet black holes are qualitativ
similar to those of black holes without the Gauss-Bon
term. This can be seen from the behavior of the Hawk
temperature of black holes in Fig. 3. This implies that t
equation ]T/]r 150 has only one positive real rootr 1

5r 0(d,ã/ l 2). Using Eq.~2.13!, one can obtain the positive
real root. But its expression is complicated, so we do
present it here. Given a spacetime dimensiond and a fixed
parameterã/ l 2, when a black hole has a horizonr 1.r 0, the
black hole is locally stable. Otherwise, it is unstable.

The free energy~2.14! always starts from zero in the cas
d>6, reaches a positive maximum at somer 1 , and then
goes to negative infinity asr 1→`. This behavior is the
same as the case without the Gauss-Bonnet term~see the
curve ofã50 in Fig. 7!. The region where the black hole i
globally preferred is restricted by a relation like Eq.~2.25!,
but with
ã2,15
r 1

2

4~d22!l 2
@6~d22!r 1

2 2~d28!l 26A36~d22!2r 1
4 24~d22!~d216!l 2r 1

2 1d~3227d!l 4#. ~2.28!
ck

he

les
en
And as in the case ofd55, these two curves connect at

r 1
2 5

l 2

18~d22!
„d2161A~d216!219d~7d232!…,

ã5
r 1

2

4~d22!l 2
„6~d22!r 1

2 2~d28!l 2
… ~2.29!
in the ã2r 1 plane. Therefore the phase structure of bla
holes ind>6 dimensions is similar to the one ind55 di-
mensions~Fig. 8!.

Finally let us mention that the temperature behavior~Fig.
4! of d55 Gauss-Bonnet black holes is quite similar to t
one of the Reissner-Nordstro¨m ~RN! black holes in AdS
spaces in the canonical ensemble@34,35#. There under the
critical value of charge, the phase of stably small black ho
occurs as well. However, there is a big difference betwe
4-7
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two cases: For the RN black holes, the small black hole
not only locally stable, but also globally preferred, while t
small Gauss-Bonnet black hole is only locally stable and
globally preferred, instead a thermal AdS space is prefer

III. CONCLUSIONS AND DISCUSSIONS

We have presented exact topological black hole soluti
in Einstein theory with a Gauss-Bonnet term and a nega
cosmological constant, generalizing the spherically symm
ric black hole solution found by Boulware and Deser@28# to
the case where the event horizon of black holes is a posi
zero or negative constant curvature hypersurface. We h
examined thermodynamic properties and analyzed ph
structures of these topological black holes.

When the even horizon is a zero curvature hypersurfa
we find that thermodynamic properties of Gauss-Bon
black holes are completely the same as those without
Gauss-Bonnet term, although the two black hole soluti
are quite different. As a result, thesek50 Gauss-Bonne
black holes are not only locally thermodynamically stab
but also globally preferred. In particular, the entropy of the
black holes satisfies the area formula. Note that usually b
holes in gravity theories with higher derivative curvatu
terms do not obey the area formula.

When the event horizon is a negative constant hyper
face, these black holes are qualitatively similar to those w
out the Gauss-Bonnet term. Thesek521 Gauss-Bonne
black holes are always locally stable and globally preferr

When the event horizon is a positive constant hypers
face, however, some interesting features occur. Whend55,
a new phase of thermodynamically stable small black ho
appears if the Gauss-Bonnet coefficient is under a crit
value. Beyond the critical value, the black holes are alw
thermodynamically stable. Inspecting the free energy
black holes reveals these stable small black holes are
globally preferred, instead a thermal AdS space is prefer
The phase structures are plotted, from which we find t
there is a smallest black hole radius. Beyond this radius,
Hawking-Page phase transition will not happen. From
phase diagram we see that there is a large region in which
black hole is locally stable, but not globally preferred. Wh
d>6, however, the new phase of stable small black ho
disappears. Once again, the thermodynamic properties o
black holes are qualitatively similar to those of black ho
without the Gauss-Bonnet term.

Now we discuss the casea,0. The vacuum solution is
still the one~2.7!. So in this case there is no restriction on t
value of ã; the solution~2.6! is still asymptotically AdS.
Those expressions of thermodynamic quantities~2.8!, ~2.9!,
~2.11!, ~2.13!, and~2.14! are applicable as well.

Whenk50, since thermodynamic quantities are indepe
dent of the parameterã in this case, the conclusion is th
same as the caseã.0, but with a new singularity at

r s
d215

4uãu/ l 2

114uãu/ l 2
r 1

d21 , ~3.1!
08401
is
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which is always shielded by the event horizonr 1 .
When k521, the situation is similar to the caseã.0;

nothing special appears. In this case, the smallest radius

r min
2 5

~d23!

2~d21!
l 2

3S 11A11
~d25!~d21!

~d23!2

4uãu

l 2 D . ~3.2!

The smallest black hole has a vanishing Hawking tempe
ture. Inside the event horizon there is an additional singu
ity at

r s
d215

4uãu/ l 2

114uãu/ l 2
r 1

d21S 12
l 2

r 1
2

2
uãu l 2

r 1
4 D , ~3.3!

except for the one atr 50. The black holes are also alway
locally stable and globally preferred.

Whenk51, there is also a smallest horizon radius

r min
2 52uãu, ~3.4!

but this smallest black hole has a divergent Hawking te
perature. In this case the event horizon coincides with
additional singularity atr 252uãu. For larger black holes the
additional singularity is located at

r s
d215

4uãu/ l 2

114uãu/ l 2
r 1

d21S 11
l 2

r 1
2

2
uãu l 2

r 1
4 D , ~3.5!

inside the black hole horizon. The inverse temperature
black holes starts from zero at the smallest radius~3.4!,
reaches its maximal at somer 1 and goes to zero whenr 1

→`. The thermodynamic properties of black holes are qu
tatively similar to the case withã50. As a result, the new
phase, which appears in the cased55 and 0,ã/ l 2<1/36,
does not occur in this case.

Note added. Perturbative AdS black hole solution withR2

curvature terms and its thermodynamic properties have b
discussed recently in@36#.

ACKNOWLEDGMENTS

This work was supported in part by a grant from Chine
Academy of Sciences, and in part by the Japan Society
the Promotion of Science and Grants-in-Aid for Scienti
Research Nos. 99020, 12640270.
4-8



tt

tt.

.
.

s.

as

um

rs,

7.

GAUSS-BONNET BLACK HOLES IN AdS SPACES PHYSICAL REVIEW D65 084014
@1# J. Maldacena, Adv. Theor. Math. Phys.2, 231 ~1998!; Int. J.
Theor. Phys.38, 1113~1998!.

@2# S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Le
B 428, 105 ~1998!.

@3# E. Witten, Adv. Theor. Math. Phys.2, 253 ~1998!.
@4# E. Witten, Adv. Theor. Math. Phys.2, 505 ~1998!.
@5# J. L. Friedman, K. Schleich, and D. M. Witt, Phys. Rev. Le

71, 1486~1993!; 75, 1872~E! ~1993!.
@6# T. Jacobson and S. Venkataramani, Class. Quantum Grav12,

1055 ~1995!; G. J. Galloway, K. Schleich, D. M. Witt, and E
Woolgar, Phys. Rev. D60, 104039~1999!; E. Woolgar, Class.
Quantum Grav.16, 3005~1999!.

@7# J. P. Lemos, Class. Quantum Grav.12, 1081 ~1995!; Phys.
Lett. B 353, 46 ~1995!; J. P. Lemos and V. T. Zanchin, Phy
Rev. D54, 3840~1996!.

@8# C. Huang and C. Liang, Phys. Lett. A201, 27 ~1995!; C. G.
Huang, Acta Phys. Sin.4, 617 ~1995!.

@9# R. Cai and Y. Zhang, Phys. Rev. D54, 4891~1996!; R. Cai, J.
Ji, and K. Soh,ibid. 57, 6547 ~1998!; R. Cai, Nucl. Phys.
B524, 639 ~1998!.

@10# S. Aminneborg, I. Bengtsson, S. Holst, and P. Peldan, Cl
Quantum Grav.13, 2707~1996!.

@11# R. B. Mann, Class. Quantum Grav.14, L109 ~1997!; W. L.
Smith and R. B. Mann, Phys. Rev. D56, 4942 ~1997!; R. B.
Mann, Nucl. Phys.B516, 357 ~1998!.

@12# D. R. Brill, J. Louko, and P. Peldan, Phys. Rev. D56, 3600
~1997!.

@13# L. Vanzo, Phys. Rev. D56, 6475~1997!.
@14# M. Banados, A. Gomberoff, and C. Martinez, Class. Quant

Grav.15, 3575~1998!.
@15# D. Klemm, Class. Quantum Grav.15, 3195~1998!; D. Klemm,

V. Moretti, and L. Vanzo, Phys. Rev. D57, 6127 ~1998!; 60,
08401
.

s.

109902~E! ~1999!.
@16# D. Birmingham, Class. Quantum Grav.16, 1197~1999!.
@17# R. Cai and K. Soh, Phys. Rev. D59, 044013~1999!.
@18# R. Emparan, J. High Energy Phys.06, 036 ~1999!.
@19# R. Aros, R. Troncoso, and J. Zanelli, Phys. Rev. D63, 084015

~2001!.
@20# S. W. Hawking and D. N. Page, Commun. Math. Phys.87, 577

~1983!.
@21# D. Lovelock, J. Math. Phys.12, 498 ~1971!.
@22# C. Lanczos, Ann. Math.39, 842 ~1938!.
@23# B. Zumino, Phys. Rep.137, 109 ~1985!.
@24# B. Zwiebach, Phys. Lett.156B, 315 ~1985!.
@25# J. T. Wheeler, Nucl. Phys.B268, 737 ~1986!.
@26# M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. D49,

975 ~1994!.
@27# J. Crisostomo, R. Troncoso, and J. Zanelli, Phys. Rev. D62,

084013~2000!.
@28# D. G. Boulware and S. Deser, Phys. Rev. Lett.55, 2656

~1985!.
@29# D. L. Wiltshire, Phys. Lett.169B, 36 ~1986!.
@30# A. H. Chamseddine, Phys. Lett. B233, 291 ~1989!; Nucl.

Phys.B346, 213 ~1990!.
@31# R. M. Wald, Phys. Rev. D48, 3427~1993!.
@32# R. C. Myers and J. Z. Simon, Phys. Rev. D38, 2434~1988!.
@33# D. L. Wiltshire, Phys. Rev. D38, 2445~1988!.
@34# A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Mye

Phys. Rev. D60, 064018~1999!.
@35# M. Cvetic and S. S. Gubser, J. High Energy Phys.04, 024

~1999!.
@36# S. Nojiri and S. D. Odintsov, Phys. Lett. B521, 87 ~2001!; S.

Nojiri, S. D. Odintsov, and S. Ogushi, Phys. Rev. D65,
023521~2002!; Y. M. Cho and I. P. Neupane, hep-th/011222
4-9


