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Polarized Dirac fermions in de Sitter spacetime
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The tetrad gauge invariant theory of the free Dirac field in two moving frames of de Sitter spacetime is
investigated, pointing out the operators that commute with the Dirac one. These are the generators of the
symmetry transformations corresponding to isometries that give rise to conserved quantities according to the
Noether theorem. With their help the plane wave spinor solutions of the Dirac equation with given momentum
and helicity are derived and the final form of the quantum Dirac field is established. It is shown that the
canonical quantization leads to a correct physical interpretation of the massive or massless fermion quantum
fields.
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. INTRODUCTION in static central chartdts, s}, and the Cartesian tetrad gauge
o o ) where the Dirac field transforms manifestly covariantly un-
The recent astrophysical investigations showing that thgyer time translations, generated by the Hamiltonian operator

expansion of th_e UNIverse 1S accc_alerat[r:lg may increase ig,, and the rotations of the Cartesian space coordinates
interest in de Sitter spacetime which could represent the far''s
future limit of the actual universe. On the other hand, thel8]- Recently, we found that these solutions are energy eigen-
Dirac fermions('eptons and quarkﬁre the principa' com- Spinors whose integration constants are C0mp|ete|y deter-
ponents of matter because their gauge symmetries determifieined by the usual quantum numbers of the total angular
the main features of the physical picture. For these reasonglomentum[6]. Unfortunately, because the energy spectrum
we believe that study of the tetrad gauge invariant theory ofs continuous and the solutions are too complicated, these
a free Dirac field in a de Sitter background may be importantannot be normalized in the energy scale. Thus, actually we
for understanding the influence of an external gravitationablo not have yet a complete system of particular solutions that
field minimally coupled with the fermion fields. may be used for writing the general form of the quantum
In general, the Dirac equation is studied in the so calledirac field in de Sitter spacetime.
diagonal tetrad gaud@] which is preferred by many authors  We continue these investigations here, looking for a set of
[3] since it gives simple equations and allows one to writenormalized particular solutions of the free Dirac field in the
those from central backgrounds directly in spherical coordichart with the line elemerl). Our aim is to write down the
nates. However, the Cartesian gauge mentiong¢@Jiseems  plane wave solutions suggested &, derived now as com-
to be more productive but less used up to now. The Diragnon eigenspinors of a complete set of commuting observ-
equation in de Sitter spacetinief radiusR=1/w=3/A;,  ables whose eigenvalues should determine the constants aris-
produced by the cosmological constay) has been studied ing from the separation of variables. The main purpose of the
in moving or static local chart§.e., natural framessuitable  present article is to show that these solutions are suitable for
for separation of variables, leading to significant analyticalexpressing the canonically quantizZe& Dirac field in terms
solutions [4—6]. The first spinor solutions on this back- of creation and annihilation operators of fermions with well-
ground were obtained in a static central chart using the diagdefined physical properties.
onal tetrad gauge in spherical coordinatd$ A few years To this end we exploit the results of our previously con-
later, with a new methofl7], spherical wave solutions of the structed theory of external symmefri0] which explains the
Dirac equation were derived in the moving local chartrelations among the geometric symmetries and the operators
{t,r,0,¢} associated with the Cartesian 0{1@2} with the  commuting with the Dirac one that were written with the
line element help of the Killing vectors some time ada1]. In fact these
operators are nothing other than the generators of the spinor
ds?=dt?—e?°ldx?, ) representation of the universal covering group of the isom-
etry group[10] and, therefore, they represent the main physi-
where a Cartesian tetrad gauge was consides¢édMore-  cal observables among which we can choose different sets of
over, in[5] possible plane wave solutions in Cartesian coor-commuting operators defining quantum modes. This method
dinates were mentioned without writing them down explic-is efficient especially in the case of de Sitter spacetime where
itly. Since in these moving charts the operatey is no  the high symmetry given by the $Q1) isometry group
longer a Killing vector field, the quantum modes correspond{12,13 offers the opportunity for a rich algebra of operators
ing to all these particular solutions have no well-determinecdable to receive a physical meaning.
energies. Obviously, this is not an impediment but, in addi- Our basic idea is that the significance of these observables
tion, there are some integration constants whose physicé independent of the choice of the local chart and tetrad
meaning remains obscuf®]. An alternative might be the gauge, even though their form is strongly dependent on both
particular solutions resulting from the separation of variableghese elements. Therefore, we interpret the generators of the

0556-2821/2002/68)/0840089)/$20.00 65 084008-1 ©2002 The American Physical Society



ION I. COTAESCU PHYSICAL REVIEW D 65 084008

subgroup E(3)SO(4,1) as the three-dimensional momen-propertiese; - €;= 7;;, et "= "7 andet . e;= 5/}, with
tum and (orbital) angular momentum operatof$4]. Then respect to the Minkowski metrioj=diag(1—1,—1,—1).

the corresponding generators of the spinor representation An A . .

the momeFr)ltum agng the total angularpmomer?tum operators. e one-formsix“=e, dx” allow one to write the line ele-
From this algebra we select the momentum components anment
in addition, we construct a one-component Pauli-Lubanski

(or helicity) operatof{ 15], thus obtaining the set of commut-
ing observables that defines quantum modes with given mo; . . . . .
mentum and helicity. We show that the common eigenspinorgmmlin.g dt_he mert](:c Fenfﬁg#ﬁ EWQ'Ch r?ses or Iovr\:ers tthe

of these operators are the desired plane wave solutions of tt rseMilr?kc;(\;vesSkinle;ri (; rThi daer?vag\rgz ir?rl]gsa\:vferan?l\éi :r(l;se
Dirac equation which can be easily normalized in the mo- i N " } ) )
mentum scale. Moreover, we demonstrate that the system §f€ Vvector fieldss;=e; d, which satisfy the commutation

these solutions is completen a generalized sengse rules[d;,9;1=C;d;, giving the Cartan coefficients that

This setis used for expanding the free Dirac field in terms,e|, ys 10 write the connection components in local frames.
of creation and annihilation operators of fermions character- | o 4 be a Dirac free field of mass, defined on the

Iczaeld by n:_omgntum and helicity, pglntlnghout tha(; thde Car?On"s_pace domaiD, and = ¢ 7° its Dirac adjoint. The tetrad
quantization requires us to adopt the standard antico auge invariant action of the Dirac field minimally coupled
mutation rules in the momentum representation. In this wa ith the gravitational field is
the conserved quantities predicted by the Noether theorem
become the one-particle operators of the quantum field P . . o
theory; among these the diagonal ones are the momentum,S[e, ¢]= d4X\/§{—[z//y“D;z¢—(D;(z//) yeUl—myyp
helicity, and charge operators. All the other one-particle op- 2 3)
erators corresponding to the remaining (8@ generators,
|bnclyd|n_g the Hamiltonian operator, are not diagonal in thlsWhere g=|det(g,,)| and the Dirac matricesy® satisfy
asis since they do not commute with the momentum com- o B B H i o -

ponents. The conclusion is that in our approach the second”: ¥ }:27{ - The covariant derivatives in local frames,
guantization can be done in a canonical manner obtainin@&=e§DM=a¢;+F&, are expressed in terms of the spin
new results specific to the de Sitter geometry. However, theonnections
free fermions on this background have some properties simi-
lar to those in Minkowski spacetime such as, for example, . e P o
the well-known law of neutrino polarizatig®]. [L=T5iS :Z(Cuvx_cuhv_cvw)s (4)

We start in the second section with a brief review of the
main results of our theory of external symmetry, presentingjiven by the basis generators in covariant parametrization
the form of the symmetry generators and the conservatiog&k:i[y&,yﬁ]m of the usual spinor representation

laws due to the Noether theorem. The moving charts we USE (1/2,0)®(0,1/2) of the SL(Z;) group[15,16 (i.e., the

here are introduced in Sec. Il where, in addition, we deﬁneuniversal covering group of the Lorentz groub which is

?suti:]able basistof the $41|1) generatois helpingj l;'S to_litder_w- the gauge group of the metrig). The Dirac operator of the
iy the momentum, angular momentum, and Hami On'anequa}tionEng:ml// derived from the action3) readsEp

operators. The plane wave solutions of the Dirac equation "~ _ i

with fixed momentum and helicity are written in the next —?"Da- In other respects, from conservation of the electric

section, while Sec. V is devoted to the canonical quantizatiogharge one deduces that ‘_’Vhe?‘zo (i,j,...=1,23) the

of the Dirac field. After we present our concluding remarks,time-independent relativistic scalar product of two spinors

in the Appendixes we give the form of the isometries in thel17].

parametrization used here and a few other useful formulas.

~ We specify that the definition of the physical observables (4, ‘!’,):f d3x w1 (X) P(x) YO’ (X), (5)

in Sec. lll, the form of the normalized plane wave solutions D

of the Dirac equation, as well as all the other results of Secs.

IV and V are original. These are presented in natural unit$as the weight functiom.= \/g €.

with A=c=1. The action(3) is gauge invariant in the sense that it re-
mains unchanged when one performs a gauge transformation

Pp(X)— " (X)= p[A(X) Jh(X) (6)

ds’= n;b;dgdl d§<;=gw(x)dx" dx”, 2

Il. GAUGE AND EXTERNAL SYMMETRY

In a curved spacetimil the choice of the local char{s} R

of coordinatex* (u,v, ...=0,1,2,3) is important from the e*(x)—>e1(x)=Alﬂ[A(x)]e‘(x) 7
. . .. . @ @ @ - B

observer point of view. In addition, the tetrad gauge covari-
ant theory _of fields with spin re_ql_Jlres one to explicitly use produced byA(x) e SL(2) and A[A(x)]eL]. . Based on
the tetrad fielde,(x) ande”(x), fixing the local frames and  this symmetry, we have defined the group of external sym-
the corresponding coframes. These are labeled by the Iocmetry SM) corresponding to the isometry groupM{.
indices 1,7, ...=0,1,2,3, and have the orthonormalization The transformations of ${) are isometries of K1),
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x—X'=¢,x) (depending on the parameter§®, a  which are antisymmetric if and only K, is a Killing vector.
=1,2,...n), combined with appropriate gauge transforma-Thus we see that the spin terms of the generaxgrgener-
tions in such a manner as to preserve the tetrad gauge. Inadly depend orx and, therefore, they do not commute with
fixed gauge, one associates with each isoméirythe sec- the orbital terms. Wheh, andS, commute between them-

tion Ag(x) e SL(2,C) defined by selves we say that the Dirac field transformanifestlyco-
variantly under the symmetry transformations parametrized
. 3 IPE(x) by &2.
A7 AL ]=elde(X)] T e;(%) (€S) Our theory of external symmetry offers us the framework

we need to calculate the conserved quantities predicted by
the Noether theorem. Starting with the infinitesimal transfor-
mations of the one-parameter subgroup oM$(generated

by X,, we find that there exists a conserved cur@rf X,]

with the supplementary conditioA,_q(x)=1e SL(2C).
Then the transformations of the group\®) are

X—X' = dy(X), that satisfie® “[ X,].,=0. For the action(3) this is
e(x)—e'(x")=e[dg(x)], I
(Axir Pxi): é(X)—>é’(x’)=é[¢§(x)] 9 G)M[Xa]:_T{kaa—’_Z(//{'y ’Sﬁy}dfeaﬂaﬁ; (19
PO — ' (<) = pL AdX) 1), where
In [10] we presented arguments that\§)( is the universal T%‘V:%[%&egw—(m) y&e’izp] (16)

covering group of IM) remarking that the representation
defined by the last of Eq%9) is not the usual linear one of
S(M). In fact this isinducedby the representatiop of the
group SL(2C) which, in general, differs from ${). For this
reason we say thaft transforms according to the spinor rep-
resentation of 9{1) induced byp. 1

The transformationg9) leave invariant the form of the J d3x\gO U X 1= [(,Xath) + Xath, )], (A7)
operatorEp in local frames. Consequently, each Killing vec- b 2
tor ka=(daad,)¢—o defines a basis generator of the spinor
representatioll1,10

is a notation for a part of the stress-energy tensor of the Dirac
field [12,17]. Finally, it is clear that the corresponding con-
served quantity is the real number

We note that it is premature to interpret this formula as an
expectation value or to speak about Hermitian conjugation of
1 . the operator¥, with respect to the scalar produ&), before
Xa=—ik{D ,+ Ekaﬂ;vegegsaﬁ, (10 specifying the boundary conditions & What is important
here is that this result is useful in quantization, giving di-

which commutesvith Ep (the notation., stands for the usual rectly the one-particle operators of quantum field theory.

covariant derivatives We must specify that this important

result was obtained for the Dirac field i1] without taking lll. OBSERVABLES IN de SITTER SPACETIME

intoaccount the symmetry transformations. ﬂiho]. we Let us now consideM to be the de Sitter spacetime,

showed that the generatafB0) satisfy the commutation re-  jefined as a hyperboloid of radiin the five-dimensional

lations flat spacetimeM® of coordinatesZ*(A, B, ...=0,1,2,3,5)
[Xa,Xo]=iCapcXe, ab,c=12,...n (1) ﬁﬂg gitggg;: diag(1;-1,~1,~1,~1) [12]. The hyperbo-

given by the structure constants of the isometry grouy)L(
On the other hand, each generator can be split into an orbital
and a spin part aX,=L,+S,, where the orbital terms

7asZ"Z%=~R? (18

defines M as the homogeneous space of the pseudo-
orthogonal group S@,1) which is at the same time the
gauge group of the metrig® and the isometry group M)

of the de Sitter spacetime. For this reason it is convenient to
use the covariant real parametef®®= — £ since in this
case the orbital basis generators of the representation of
SQ4,1), carried by the space of the scalar functions over
M5, have the standard form

La=—ik&(X)d,, (12)

are the basis generators of the natural representatiotof I(
carried by the space of the scalar functions dvefThe spin
terms

1 ~n
Sa(x) = 5 Q22%(x) S (13
2 L2e=i[ 7acZ s~ n3cZC0a]. (19
are defined with the help of the functions They will give us directly the orbital basis generattugg,
P v of the scalar representations oM{. Indeed, starting with
Q" =(e,0,ky +kad,e)en”, (14 the functionszA(x) that solve Eq(18) in the chart{x}, one
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can write down the operatord9) in the form (12), thus
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SQ(4,1) includes the subgroup E(3)T(3)®S0O(3) which

finding the generator ag and implicitly the components s just the isometry group of the three-dimensional Euclidean
k{ag)(x) of the Killing vectors associated with the param- space of our moving chartg.,x} and{t,x} formed byR3

eters ¢* [10]. Furthermore, one has to calculate the Spingansiationsd—sxi +a' and

partsSiag , according to Eqs(13) and(14), arriving at the
final form of the basis generato¥§ag) =L (ag)+ S(ap) Of the
spinor representation of B() induced byp.

In de Sitter spacetime there are many static or movin

proper rotationg'— R ;x] with
Re SO(3)[15]. Therefore, the basis generators of its univer-
sal covering group B)=T(3)®SU(2)CS(M) can be in-

derpreted as the components of the momentirand total

charts of physical interest. Among the moving ones a specigingular momentund operators. The problem of the Hamil-

role is played by the chaft,x} with the conformal timei,
and Cartesian spaces coordinateslefined by

20=— 1— w3(t?=r?)],
2w2tc[ (te—r9)]

Z5=— 1+ 0?(t2—r?)], (20)
2w2tc[ (te—r9)]

i T

4 wtcx

with r=|x|. Even if this chart covers only one-half of the

manifold M, for t.e (—, 0) andxe D=R3, it has the ad-
vantage of a simple conformal flat line elem¢gh7]

1 -
ds?=——(dtZ—dx?). (22)
ot
Moreover, the conformal timg, is related through
ot,=—e ! (22

to the proper timé e (—o0,») of an observer at=0 in the
chart {t,x} with the line element1). In what follows we
study the Dirac field in the chaft,x} using the conformal

time as a helpful auxiliary ingredient. The form of the line
element (21) allows one to choose the simple Cartesian

gauge with the nonvanishing tetrad componégbis

0__ i i ~0_ 1 Al i 1
€= —owt., ej——6jwtc, eo——a, ej——ﬁja.
c c
(23

In this gauge the Dirac operator reads

) ) 3iw
Ep=—iot(y°0, +¥'a)+—»°
) 3iw
=iyoﬁt+ie*‘”t '(9i+7’yo (29
and the weight function of the scalar prodysj is
p=(—ot;) =" (25

The next step is to calculate the basis generatexsg, of

the spinor representation of () in this gauge since these

are the main operators that commute wiEg. The group

tonian operator seems to be more complicated, but we know
that in the mentioned static central charts with the static time
ts this isH= wXgs5)=id;_[10]. Thus the Hamiltonian opera-
tor and the components of the momentum and total angular
momentum operatorsX andJ' = &;, Jj/2, respectivelycan

be identified as being the following basis generators of
S(M):

H= wX05)= —iw(tcdy +X'd), (26)
P'=w(X(si)— Xoiy) =~ 1, (27)
JijEX(ij)z_i(Xiaj—Xj(Qi)‘FSij, (28)

after which one is left with the three basis generators

N'=X 5i)+ X(iy = @(tZ— 1) P!+ 2x'H + 20 (S ot + 31-)21),
29)

which do not have an immediate physical significance. The
SQ4,)) transformations corresponding to these basis genera-
tors and the associated isometries of the chtrtx} are
briefly presented in Appendix A.

In the other local chart,x}, we have the same operators
P andJ=L+S (with L=xx P) whose components are the
E(3) generators, while the Hamiltonian operator takes the
form

H=id,+ wx-P, (30)
where the second term, due to the external gravitational field,
leads to the commutation rules

[H, P']=iwP". (3D
We observe that in this chart the operatKr‘%X(Oi) are the
analogue of the basis generators of the Lorentz boosts of
SL(2/C) since in the limit ofw— 0, when Eq.(1) equals the
Minkowski line element, the operators=P°, P', J', andK'
become the generators of the spinor representation of the
group T(4)9SL(2,) (i.e., the universal covering group of
the Poincaregroup[15,16)).

In both charts used here the generat@®—(29) are self-
adjoint with respect to the scalar prodyj with the weight
function (25) if we consider the usual boundary conditions
on D=R3. Therefore, for any generatoX we have
(Xip,p"y={p,X¢y") if (and only if) ¢ and ¢’ are solutions
of the Dirac equation that behave as tempered distributions
or square integrable spinors with respect to the scalar product
(5). Moreover, all these generators commute with the Dirac
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operatorEp . If, in addition, we take into account the algebra (and similarly for 8) which preserves orthogonality. This

freely generated by them, then we get a large collection ofheans that any pair of orthogonal spingggp) with polar-

observables among which we can choose suitable sets of .« _ +q/o (obeyingZ!E, = 5,,) represents a good
commuting operators defining the fermion quantum modes Aasis in the_space of Pauligsp?norsw

the level of relativistic quantum mechanics.

IV. POLARIZED PLANE WAVE SOLUTIONS a(p):%‘f ¢.(p)a(p,o) (37

As suggested ih5], the plane wave solutions of the Dirac - ) ) )
equation withm=0 must be eigenspinors of the momentum Whose componen@(p, o) are the particle wave functions in
operatorsP' corresponding to the eigenvalups with the the momentum representation. According to the standard in-
same time modulation as the spherical waves. Therefore, V\;grpretecljt_lon kc))f the r;eﬁatlve freqlgency terf@glffi]_, tf(\jebcor—
have to look for particular solutions in the chdtt,x} in- responding basis of the space@ispinors Is defined by

volving either positive or negative frequency plane waves.

Bearing in mind that these must be related among themselves B(p)= >, 7,(P)[b(p,a)]*, 7.(p)=ic[E,(p)]*
through charge conjugation, we assume that, in the standard v

representation of the Dirac matricasith diagonaly® [16]), (38)

they have the form - N . .
whereb(p, o) are the antiparticle wave functions. It remains

to choose a specific basis, using supplementary physical as-

N -
f(to)e(p) . sumptions. Since it is not certain that the so called spin basis
ll/(,;+)= op . |€F% (320  [9] can be correctly defined in de Sitter geometry, we prefer
9" (t)——a(p) the helicity basis. This is formed by orthogonal Pauli spinors
P of helicity A =+ 1/2 which satisfy
TP G- BE(P)=2P\E(B), o B7n(F)=— 2P\ (P).
1/1(67)2 g (tc) p ﬁ(p) e_ip.x, (33) (39)
f~(t.) B(P) The desired particular solutions of the Dirac equation with

) m+# 0 result from our starting formula@2) and (33) where
wherep=|p| ando; denotes the Pauli matrices whileand ~ we insert the function&34) and(35) and the spinor¢37) and
B are arbitrary Pauli spinors depending gn Replacing (38) written in the helicity basi$39). It remains to calculate
these spinors in the Dirac equation given by E2d) and the normalization constai@ with respect to the scalar prod-
denotingk=m/w and . =1+ik, we find equations of the uct (5) with the weiqht function(25). After a few manipula-
form (B2) whose solutions can be written in terms of Hankeltions, in the charft,x}, it turns out that the final form of the
functions as fundamental spinor solutions of positive and negative fre-

guencies with momenturp and helicity\ is

f*=(—f7)*=CtZe™?H(~pty), (34)
1 ~
kI2y (1) oy o ot >
B, 5e™H (ge” ) E(p) | - .
gf=(—-g)* =Ct§e7”k’2HE,l+)(— pte). Upa(t,x)=iN 2 - gip X 20t
(35) e ™2HB(ge ), (p)
40
The integration constan® will be calculated from the or- (40
thonormalization condition in the momentum scale. k2 (2) e T
The plane wave solutions are determined up to the signifi- . re H,Z(ae *)m(p) o
- - . —ip-X—2wt
cance of the Pauli spinorg and 8. For p#0 these can be Vpa(t:X)=iN A2 (D) oty (2 e PreEel,
treated as in the flat cag®,16] since, in the tetrad gauge P Hy (ae”*) m(p)
(23), the spaces~of these spinors carry unitary linear repre- (41)
sentations of the 8) group. Indeed, the transformati¢®) )
produced by A, ¢, 3) e E(3)CS(M) whereAe SU(2) and where we introduced the new parameder p/ » and
aeR® involves the usual linear isometry of (&, X! 1
—x"T=¢, (x)=A|(A)xI+a' with A(A)eSO(3), and Nz(z—)w\/wq. (42
! o

the global transformations(t,x)— ' (t,X")=p(A)¥(t,X).
Consequently, the Pauli spinors transform according to thejsing Eqs.(B1) and (B3), it is not hard to verify that these

unitary (linean representation spinors are charge conjugated to each other,

a(p)—e 12 PAa[A(A) 'p] (36) Voa=(Usa)=C(Us )T, C=i7%y", (43
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satisfy the orthonormalization relations 1—9°

. y -
o ng(tc,x)=l|n:)TV5v)\(tc,x)
(Upa Upran=(Vpn Ve a)=8n8%(p—p'), (44 -
_ 32 (1 - ~ .
(U,}m,V5,'X,>=<Vﬁy)\,U,;,N)=O, (45) :<2Ltc) (2+)\)77)‘(p)>eiptc—ip-xy
™ 0
and represent eompletesystem of solutions in the sense that (52
5 I, I are nonvanishing only for positive frequency axne —1/2
f d p; [Upa(t)U 5 (6.X7) + Vg (5X) V) (6X7) ] or negative frequency and=1/2, as in Minkowski space-
time. Obviously, these solutions have similar properties to
:e—3wté\3()—€_ )Z/) (46) Eq3(43)—(48)
Let us observe that the facter 3! is exactly the quantity V. QUANTIZATION

necessary to compensate the weight functs). Other im-

portant properties are The quantization can be done by considering that the

wave functions in momentum representatim{ﬁ,)\) and
b(p,\), become field operatorso thatb* —b') [9]. Then
piuﬁmzpiuﬁw PiVﬁ,x:_inﬁ,m (47  the quantum fieldﬁthat satisfies the Dirac equation with
#0 in the char{t,x} reads

WUp =pAUg,\,  WV5,=—PAVpy, 48 (1, %)= (%) + L)(1,X)
where = f d*p> [Usa(x)a(p,))
A
W=J.P=S.P 49 B,
“9 +Vp,(x)bT(p,N)]. (53

is the helicity operator, which is analogous to the timelike ) + o N
component of the four-component Pauli-Lubanski operatoVVe @ssume that the particle,(@’) and antiparticle §, b")

of the Poincarealgebra[15]. Thus, we arrive at the conclu- operators must satisfy the standard anticommutation rela-
sion that the fundamental solutiorid0) and (41) form a tions in the momentum representation, from which the non-
complete system of common eigenspinors of the operdors Vanishing ones are

and W. Since the spin was fixed priori by choosing the - N T e
representatiom, we consider that the complete set of com- {a(p.n).al(p’, A )p={b(p.A),b'(p".A")}

muting operators that determines separately each of the sets =5, 8(p—p’) (54)

of the particle or antiparticle eigenspinors is w PR,

{Ep, S Ws}. Finally, we note that these solutions can besince then the equal-time anticommutator takesctrenical
redefined at any time with other momentum-dependent phagerm
factors as

{(t,%), P(t,x")}=e 3083 (x—x"), (55)

Upa—eXPug, vy —e Xy, x(p) eR, as follows from Eq(46). In general, the partial anticommu-
(50) tator functions

without affecting the above properties. §(i)(t,t’,i—)?’)=i{zp(i)(t,>2),a,_b(i)(t’,i’)} (56)

In the casan=0 (whenk=0) it is convenient to consider
the chiral representation of the Dirac matri¢esth diagonal  and the total on&=S(")+3S(") are rather complicated since
¥° [9]) and the char{tc,i}. We find that the fundamental for t#t’ we no longer have identities like EGB3) which
solutions in the helicity basis of the left-handed masslessvould simplify their time-dependent parts. In any event,

Dirac field, these are solutions of the Dirac equation in both their sets of
coordinates and help one to write the Green functions in
5 usual manner. For example, from the standard definition of
0 2 >
Um(tc ’X):,ilmOTU’i”(tc’x) the Feynman propagat@@],

Se(t,t' x—=x") =i{0|T[¥(x) (x')]|0)

>

)eiptcﬂﬁ»{ =0(t—t)SH(t,t’ , x—x")—O(t' —t)

_( —wtc)3’2 (3-NE&D)
T\ 27 0
(51) XSt x—x"), (57)
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we find that R
Upa(t,x) (64

HU ;A (t,X) = —iw( p'api+ g
[Ep(X)—m]Se(t,t’ , x—x")=—e 35 x—x"). (58

Another argument for this quantization procedure is thaf’de the similar one fol/;, , leading to

the one-particle operators given by the Noether theorem have : .

similar structures and properties to those of the quantum :_“’J' 34 i tin aln

theory of free fields in flat spacetime. Indeed, starting with H=73 dpp ; [a’(p.h) dpalp.h)

the form (17) of the conserved quantities, we find that for

any self-adjoint generatoX of the spinor representation of fox -

the group SiM) there exists aonservedne-particle opera- +b'(p,\) dpib(p,N) ] (65)
tor of quantum field theory, which can be calculated simply

as where the derivatives act &8 h=foh— (df)h. The result is

X= (¢, X)), (59)  the expected behavior ¢f under the space translations of
) ) E(3) that transform the operatossand b according to Eq.
respecting the normal ordering of the operator prod{@ls  (36). Moreover, it is worth pointing out that the change of the
Hereby we recover the standard algebraic properties phase factor$50) associated with the transformations

[X,(X)]= = Xep(x), [ X, X']=([X, X ]¢h): (60) a(p,\)—e XPa(p\), b(p,n)—e XPh(p )

because of the canonical quantization adopted here.

The diagonal one-particle operators result directly from
the definition(59) and the properties44)—(48). In this way
we obtain the momentum components

(66)

leaves invariant the operatorg Q, P', andW as well as
Egs.(54), but transforms the Hamiltonian operator

. N 3 i i - tn 3
Pi::<w,Pil//>::f dSp pl; [aT(ﬁ,)\)a(p’)\) H H+(1)f d p[pﬁpX(p)]; [a (pv)\)a(pa)\)

+b'(p,\)b(p,\)]. (67)

This remarkable property may be interpreted as a new type
of gauge transformation depending on momentum instead of

+b(p,N)b(p,\)] (61)

and the helicity(or Pauli-Lubanski operator

. . coordinates. Our preliminary calculations indicate that this

W=:<¢,Wz//):=f d3p2 pr[aT(p,M)a(p,\) gauge may be helpful for analyzing the behavior of the
» theory nearw~0.

+bT(p.A)b(p.N)]. 62) In the simpler case of a left-handed massless field with the

fundamental spinor solutior{81) and(52) we obtain similar

The definition(59) holds for the generators of internal sym- results, and we recover the standard rule of neutrino polar-
metries too, including the particular caseXf 1, when the ~ 1zation.

bracket
VI. CONCLUDING REMARKS
Q=:(4, ¢>1:f d®p> [a'(p,M)a(p,n) We have derived here a complete system of normalized
» plane wave solutions of the Dirac equation in the chart with
—bT(ﬁ,)\)b(ﬁ,)\)] 63) the line elemen{l) of de Sitter spacetime. These describe

the quantum modes of polarized free fermigas antifermi-

gives just the charge operator corresponding to the intern&in9, determined by the complete set of commuting operators
U(1) symmetry of the actior3) [16,17]. It is obvious that all {Ep, S?, P', W}. A crucial point was the choice of the Car-
these operators are self-adjoint and represent the generatdesian gaugé5] in which the Dirac field transforms mani-
of the external or internal Symmetry transformations of ttheSﬂy Covarianﬂy under thg(B) Subgroup' since in these
quantum field$9]. The conclusion is that, for fixed mass and conditions one can perform the second quantization in a ca-
spin, the helicity state vectors of the Fock space defined agonical way as in special relativity. We recall that in the

. i -
common eigenvectors pf the s, P ’\.N} form a cqmplete static central chart$tg,xs} there is another appropriate Car-
system of orthonormalized vectors in a generalized sensg

ie., the helicity basis esian gauge where the Dirac field transforms manifestly co-
o o7 ) . variantly under the subgroup T(d1®SU(2)CS(M) (in-

The Hamiltonian operatdd =:(,H): is conserved but i yh _ | g P Ty d( ) . (M) «
is not diagonal in this basis since it does not commute with/0Ving the time translations generated by=id;) [10].
P and W as follows from the commutation relatioidl)  Then the separation of variables can be done as in the central
and the propertie€50). Its form in momentum representation Problems of special relativity, leading to common eigens-
can be calculated using the identity pinors of the complete sdiEp,S?H,J%,J5,K} [6] which
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includes the usual spin-orbit operatkir[16]. This method e€rators with invariant commutation relations. For this reason

allowed us to obtain the solutions presentefiéhas well as We hope that our approach based on external symmetries will
the normalized energy eigenspinors of the Dirac field inb€ an argument for a general tetrad gauge covariant theory of
anti—de Sitter spacetin{d.8]. Thus we draw the conclusion quantum f|§lds with spin in which the second quantization
that one can reproduce similar conjectures as in th&hould be independent of the frames one uses.

Minkowski flat spacetime if one exploits the manifest cova-

riance with respect to a suitable subgroup oM3( All our APPENDIX A: SO (4,1) TRANSFORMATIONS AND
exampleg10] indicate that for each local chart there exists a ISOMETRIES

specific subgroup of $() the spinor representation of The spacetimév® is pseudo-Euclidean with a metrig®

which can be brought into covariant form by an adequatgnat is invariant under the coordinate transformatidifs
tetrad gauge fixing. Obviously, this approach requires one to 5AAéZB where 5A e SO(4,1). Each coordinate transfor-

solve new problems, from purely mathematical ones up tnation gives rise to an isometry ® which can be calcu-

those regarding the physical interpretation. lated in the local chatt,,x} using Eqs(20). We remind the

In the de Sitter geometry, one has to look for an orbital der that the basi g ¢ the fund al
analysis analogous to the Wigner theory of the induced repr-ea er that the basis generaloisag Of the fundamenta

resentations of the Poincageoup[15,16. This is necessary “'“e?‘ﬂ representation of S@,1), carried byM®, have the
if we want to understand the meaning of the rest frafaés Matrix elements

the massive particlgsn de Sitter spacetime and to find the 5 C.-_is<C _<C

“booster” mechanisms changing the valuebr even giv- (®XaB) 'o=1(64 780~ 68 7AD)- (A1)
ing rise to waves of arbitrary momentum from those wgth The transformations of SO(&)S0O(4,1) are simple rota-
=0. We believe that this theory can be done starting with theions of Z' andx' which transform alike since this symmetry
orbital analysis inM® since this helps us to find $81)- s global. For the other transformations generatedHby',
covariant definitions for our basic operatorsinMore pre- andN' the linear transformations iM® and the isometries
cisely, for each momenturqug we can write a five- are different. Those due td,

dimensional momentum operatoP(q) of components
PA(0) = 7*°q®X(gcy while a generalized five-dimensional
Pauli-Lubanski operator iVl has to be defined by, s
= — LeapcoeXBOXPE [19]. Thus it is clear that for the e %" 75— —Z%sinha+Z%osha, (A2)
representative momentum= (w,0,0,0;- ») of the orbitqg?
=0, associated with the little group E(3)S0(4,1), we re-

cover our operator®(q)=(H,P,—H) and W=q*W, as  where a=wé,, produce the dilatations,—t.e* and x’
given by Eqs(26), (27), and(49), respectively. We hope that — x'e®, while the transformations

in this way one may construct generalized Wigner represen-
tations of the group 9{) in the spaces of spinors depending

on momentum.

Moreover, it is important to investigate the physical con-
sequences of the transformation laws of the main observables . .. .. 1
of this theory and to point out the role and significance of the€™ " "1 Z°—Z°~wép-Z— §w2§§(zo+ z°),
transformation$66) and(67). Of particular interest could be (A3)
the study of the influence of the de Sitter gravitational field
on the energy measurements since these are affected by the 77+ wéEh(Z0+2°)
uncertainty relationd HAP'= w|(P'}|/2 due to the commu-
tation relationg31). Of course, for very small values aof it give the space trans|atiomé_>xi+§ip at fixedt,. More in-
is less probable that these produce observable effects in locgdresting are the transformations
measurements, the spacetime appearing then as a flat one.

Other problems that could appear in further investigations
of the Dirac free field seem to be rather technical, e.g., the
properties of commutators and Green functions, calculation
of the action of more complicated conserved operators, - .. 1
evaluation of the inertial effects, etc. However, in our opin- € NN 75 75— ¢ .7+ Egﬁ(ZO—ZS), (A4)
ion, the next important step from the physical point of view
would be to construct a similar theory for the free electro-
magnetic field, thus completing the framework one needs for

7% 7%osha — Z5sinha,

ARy AN

O
2°—7%+ wép-Z+ szgﬁ,(Z% Z5),

I
Z0-Z0— by 2+ 5 6(2°-20),

Z'-Z'-6(2°-2%),

developing perturbe}tive QED in de Sitter spacetime. which lead to the isometries
The results obtained here show that, even though many
particular features of the quantum theory in curved space- t
times depend on the choice of the local chart and tetrad te— _— > , (A5)
gauge, there are covariance properties providing us with op- 1-2wéy- X~ &\ (te—1?)
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X+ wéy(t—r?)

= . A6
1-2wéy-X— 0?é (12-1?) (A0

x'—

We denoted heré2=(£p)? and £3=(£y)2.

APPENDIX B: SOME PROPERTIES OF HANKEL
FUNCTIONS

According to the general properties of the Hankel func-

tions [20], we deduce that those used hert!?)(z), with

v.=3~*ik andze R, are related among themselves through

PHYSICAL REVIEW B5 084008

[H:2(2) ] =HY2), (B1)

and satisfy the equations

o+ |22 = e M H(A() (B2)
and the identities
e ™ HM(2HP(2)+e" ™ HM(2)HP(2)= iz.
7 7 " e
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