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Polarized Dirac fermions in de Sitter spacetime
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The tetrad gauge invariant theory of the free Dirac field in two moving frames of de Sitter spacetime is
investigated, pointing out the operators that commute with the Dirac one. These are the generators of the
symmetry transformations corresponding to isometries that give rise to conserved quantities according to the
Noether theorem. With their help the plane wave spinor solutions of the Dirac equation with given momentum
and helicity are derived and the final form of the quantum Dirac field is established. It is shown that the
canonical quantization leads to a correct physical interpretation of the massive or massless fermion quantum
fields.
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I. INTRODUCTION

The recent astrophysical investigations showing that
expansion of the universe is accelerating@1# may increase
interest in de Sitter spacetime which could represent the
future limit of the actual universe. On the other hand,
Dirac fermions~leptons and quarks! are the principal com-
ponents of matter because their gauge symmetries deter
the main features of the physical picture. For these reas
we believe that study of the tetrad gauge invariant theory
a free Dirac field in a de Sitter background may be import
for understanding the influence of an external gravitatio
field minimally coupled with the fermion fields.

In general, the Dirac equation is studied in the so cal
diagonal tetrad gauge@2# which is preferred by many author
@3# since it gives simple equations and allows one to w
those from central backgrounds directly in spherical coo
nates. However, the Cartesian gauge mentioned in@2# seems
to be more productive but less used up to now. The Di
equation in de Sitter spacetime~of radiusR51/v5A3/Lc,
produced by the cosmological constantLc) has been studied
in moving or static local charts~i.e., natural frames! suitable
for separation of variables, leading to significant analyti
solutions @4–6#. The first spinor solutions on this back
ground were obtained in a static central chart using the d
onal tetrad gauge in spherical coordinates@4#. A few years
later, with a new method@7#, spherical wave solutions of th
Dirac equation were derived in the moving local ch

$t,r ,u,f% associated with the Cartesian one$t,xW% with the
line element

ds25dt22e2vtdxW2, ~1!

where a Cartesian tetrad gauge was considered@5#. More-
over, in @5# possible plane wave solutions in Cartesian co
dinates were mentioned without writing them down expl
itly. Since in these moving charts the operatori ] t is no
longer a Killing vector field, the quantum modes correspo
ing to all these particular solutions have no well-determin
energies. Obviously, this is not an impediment but, in ad
tion, there are some integration constants whose phys
meaning remains obscure@5#. An alternative might be the
particular solutions resulting from the separation of variab
0556-2821/2002/65~8!/084008~9!/$20.00 65 0840
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in static central charts$ts ,xW s%, and the Cartesian tetrad gaug
where the Dirac field transforms manifestly covariantly u
der time translations, generated by the Hamiltonian oper

i ] ts
, and the rotations of the Cartesian space coordinatexW s

@8#. Recently, we found that these solutions are energy eig
spinors whose integration constants are completely de
mined by the usual quantum numbers of the total angu
momentum@6#. Unfortunately, because the energy spectr
is continuous and the solutions are too complicated, th
cannot be normalized in the energy scale. Thus, actually
do not have yet a complete system of particular solutions
may be used for writing the general form of the quantu
Dirac field in de Sitter spacetime.

We continue these investigations here, looking for a se
normalized particular solutions of the free Dirac field in t
chart with the line element~1!. Our aim is to write down the
plane wave solutions suggested in@5#, derived now as com-
mon eigenspinors of a complete set of commuting obse
ables whose eigenvalues should determine the constants
ing from the separation of variables. The main purpose of
present article is to show that these solutions are suitable
expressing the canonically quantized@9# Dirac field in terms
of creation and annihilation operators of fermions with we
defined physical properties.

To this end we exploit the results of our previously co
structed theory of external symmetry@10# which explains the
relations among the geometric symmetries and the opera
commuting with the Dirac one that were written with th
help of the Killing vectors some time ago@11#. In fact these
operators are nothing other than the generators of the sp
representation of the universal covering group of the iso
etry group@10# and, therefore, they represent the main phy
cal observables among which we can choose different se
commuting operators defining quantum modes. This met
is efficient especially in the case of de Sitter spacetime wh
the high symmetry given by the SO~4,1! isometry group
@12,13# offers the opportunity for a rich algebra of operato
able to receive a physical meaning.

Our basic idea is that the significance of these observa
is independent of the choice of the local chart and tet
gauge, even though their form is strongly dependent on b
these elements. Therefore, we interpret the generators o
©2002 The American Physical Society08-1
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ION I. COTĂESCU PHYSICAL REVIEW D 65 084008
subgroup E(3),SO(4,1) as the three-dimensional mome
tum and ~orbital! angular momentum operators@14#. Then
the corresponding generators of the spinor representation
the momentum and the total angular momentum operat
From this algebra we select the momentum components
in addition, we construct a one-component Pauli-Luban
~or helicity! operator@15#, thus obtaining the set of commu
ing observables that defines quantum modes with given
mentum and helicity. We show that the common eigenspin
of these operators are the desired plane wave solutions o
Dirac equation which can be easily normalized in the m
mentum scale. Moreover, we demonstrate that the syste
these solutions is complete~in a generalized sense!.

This set is used for expanding the free Dirac field in ter
of creation and annihilation operators of fermions charac
ized by momentum and helicity, pointing out that the cano
cal quantization requires us to adopt the standard antic
mutation rules in the momentum representation. In this w
the conserved quantities predicted by the Noether theo
become the one-particle operators of the quantum fi
theory; among these the diagonal ones are the momen
helicity, and charge operators. All the other one-particle
erators corresponding to the remaining SO~4,1! generators,
including the Hamiltonian operator, are not diagonal in t
basis since they do not commute with the momentum co
ponents. The conclusion is that in our approach the sec
quantization can be done in a canonical manner obtain
new results specific to the de Sitter geometry. However,
free fermions on this background have some properties s
lar to those in Minkowski spacetime such as, for examp
the well-known law of neutrino polarization@9#.

We start in the second section with a brief review of t
main results of our theory of external symmetry, present
the form of the symmetry generators and the conserva
laws due to the Noether theorem. The moving charts we
here are introduced in Sec. III where, in addition, we defi
a suitable basis of the SO~4,1! generators helping us to iden
tify the momentum, angular momentum, and Hamilton
operators. The plane wave solutions of the Dirac equa
with fixed momentum and helicity are written in the ne
section, while Sec. V is devoted to the canonical quantiza
of the Dirac field. After we present our concluding remar
in the Appendixes we give the form of the isometries in t
parametrization used here and a few other useful formul

We specify that the definition of the physical observab
in Sec. III, the form of the normalized plane wave solutio
of the Dirac equation, as well as all the other results of Se
IV and V are original. These are presented in natural u
with \5c51.

II. GAUGE AND EXTERNAL SYMMETRY

In a curved spacetimeM the choice of the local charts$x%
of coordinatesxm (m,n, . . . 50,1,2,3) is important from the
observer point of view. In addition, the tetrad gauge cova
ant theory of fields with spin requires one to explicitly u
the tetrad fieldsem̂(x) andêm̂(x), fixing the local frames and
the corresponding coframes. These are labeled by the l
indicesm̂,n̂, . . . 50,1,2,3, and have the orthonormalizatio
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propertiesem̂•en̂5hm̂n̂ , êm̂
•ên̂5hm̂n̂, and êm̂

•en̂5dn̂
m̂ , with

respect to the Minkowski metrich5diag(1,21,21,21).

The one-formsdx̂m̂5ên
m̂ dxn allow one to write the line ele-

ment

ds25hm̂n̂ dx̂m̂ dx̂n̂5gmn~x!dxm dxn, ~2!

defining the metric tensorgmn ~which raises or lowers the
greek indices while for the hated greek ones we have to
the Minkowski metric!. The derivatives in local frames ar
the vector fields]̂ n̂5en̂

m
]m which satisfy the commutation

rules @ ]̂ m̂ ,]̂ n̂#5Cm̂n̂•
••ŝ

]̂ ŝ , giving the Cartan coefficients tha
help us to write the connection components in local fram

Let c be a Dirac free field of massm, defined on the
space domainD, andc5c1g0 its Dirac adjoint. The tetrad
gauge invariant action of the Dirac field minimally couple
with the gravitational field is

S@e,c#5E d4xAgH i

2
@cgâD âc2~D âc!gâc#2mccJ

~3!

where g5udet(gmn)u and the Dirac matricesgâ satisfy

$gâ, gb̂%52hâb̂. The covariant derivatives in local frame

D â5eâ
m
Dm5 ]̂ â1Ĝ â , are expressed in terms of the sp

connections

Ĝm̂5Ĝm̂n̂l̂Sn̂ l̂5
i

4
~Cm̂n̂l̂2Cm̂l̂n̂2Cn̂ l̂m̂!Sn̂ l̂ ~4!

given by the basis generators in covariant parametriza
Sâb̂5 i @gâ,gb̂#/4 of the usual spinor representationr
;(1/2,0)% (0,1/2) of the SL(2,C) group @15,16# ~i.e., the
universal covering group of the Lorentz groupL1

↑ , which is
the gauge group of the metrich). The Dirac operator of the
equationEDc5mc derived from the action~3! readsED

5 igâD â . In other respects, from conservation of the elect
charge one deduces that whenei

050 (i , j , . . . 51,2,3) the
time-independent relativistic scalar product of two spino
@17#,

^c,c8&5E
D

d3x m~x!c~x!g0c8~x!, ~5!

has the weight functionm5Ag e0
0.

The action~3! is gauge invariant in the sense that it r
mains unchanged when one performs a gauge transforma

c~x!→c8~x!5r@A~x!#c~x! ~6!

eâ~x!→eâ
8 ~x!5Lâ •

• b̂
@A~x!#eb̂~x! ~7!

produced byA(x)PSL(2,C) and L@A(x)#PL1
↑ . Based on

this symmetry, we have defined the group of external sy
metry S(M ) corresponding to the isometry group I(M ).
The transformations of S(M ) are isometries of I(M ),
8-2
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POLARIZED DIRAC FERMIONS IN de SITTER SPACETIME PHYSICAL REVIEW D65 084008
x→x85fj(x) ~depending on the parametersja, a
51,2, . . . ,n), combined with appropriate gauge transform
tions in such a manner as to preserve the tetrad gauge.
fixed gauge, one associates with each isometryfj the sec-
tion Aj(x)PSL(2,C) defined by

L
• b̂
â •

@Aj~x!#5êm
â@fj~x!#

]fj
m~x!

]xn
eb̂

n
~x! ~8!

with the supplementary conditionAj50(x)51PSL(2,C).
Then the transformations of the group S(M ) are

~Axi,fxi!:

x→x85fj~x!,

e~x!→e8~x8!5e@fj~x!#,

ê~x!→ê8~x8!5ê@fj~x!#,

c~x!→c8~x8!5r@Aj~x!#c~x!.

~9!

In @10# we presented arguments that S(M ) is the universal
covering group of I(M ) remarking that the representatio
defined by the last of Eqs.~9! is not the usual linear one o
S(M ). In fact this isinducedby the representationr of the
group SL(2,C) which, in general, differs from S(M ). For this
reason we say thatc transforms according to the spinor re
resentation of S(M ) induced byr.

The transformations~9! leave invariant the form of the
operatorED in local frames. Consequently, each Killing ve
tor ka5(]jafj)j50 defines a basis generator of the spin
representation@11,10#

Xa52 ika
mDm1

1

2
ka m;neâ

m
eb̂

n
Sâb̂, ~10!

whichcommuteswith ED ~the notation;n stands for the usua
covariant derivatives!. We must specify that this importan
result was obtained for the Dirac field in@11# without taking
into account the symmetry transformations. In@10# we
showed that the generators~10! satisfy the commutation re
lations

@Xa ,Xb#5 icabcXc , a,b,c51,2, . . . ,n ~11!

given by the structure constants of the isometry group I(M ).
On the other hand, each generator can be split into an or
and a spin part asXa5La1Sa , where the orbital terms

La52 ika
m~x!]m ~12!

are the basis generators of the natural representation of IM )
carried by the space of the scalar functions overM. The spin
terms

Sa~x!5
1

2
Va

âb̂~x!Sâb̂ ~13!

are defined with the help of the functions

Va
âb̂5~ êm

â]nka
m1ka

m]mên
â!el̂

nhl̂b̂, ~14!
08400
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which are antisymmetric if and only ifka is a Killing vector.
Thus we see that the spin terms of the generatorsXa gener-
ally depend onx and, therefore, they do not commute wi
the orbital terms. WhenLa andSa commute between them
selves we say that the Dirac field transformsmanifestlyco-
variantly under the symmetry transformations parametri
by ja.

Our theory of external symmetry offers us the framewo
we need to calculate the conserved quantities predicted
the Noether theorem. Starting with the infinitesimal transf
mations of the one-parameter subgroup of S(M ) generated
by Xa , we find that there exists a conserved currentQm@Xa#
that satisfiesQm@Xa# ;m50. For the action~3! this is

Qm@Xa#52T̃
• n
m •ka

n1
1

4
c$gâ,Sb̂ĝ%ceâ

m
Vab̂ĝ ~15!

where

T̃
• n
m •5

i

2
@cgâeâ

m
]nc2~]nc!gâeâ

m
c# ~16!

is a notation for a part of the stress-energy tensor of the D
field @12,17#. Finally, it is clear that the corresponding co
served quantity is the real number

E
D

d3xAgQ0@Xa#5
1

2
@^c,Xac&1^Xac,c&#. ~17!

We note that it is premature to interpret this formula as
expectation value or to speak about Hermitian conjugation
the operatorsXa with respect to the scalar product~5!, before
specifying the boundary conditions onD. What is important
here is that this result is useful in quantization, giving d
rectly the one-particle operators of quantum field theory.

III. OBSERVABLES IN de SITTER SPACETIME

Let us now considerM to be the de Sitter spacetime
defined as a hyperboloid of radiusR in the five-dimensional
flat spacetimeM5 of coordinatesZA(A, B, . . . 50,1,2,3,5)
and metrich55diag(1,21,21,21,21) @12#. The hyperbo-
loid equation

hAB
5 ZAZB52R2 ~18!

defines M as the homogeneous space of the pseu
orthogonal group SO~4,1! which is at the same time th
gauge group of the metrich5 and the isometry group I(M )
of the de Sitter spacetime. For this reason it is convenien
use the covariant real parametersjAB52jBA since in this
case the orbital basis generators of the representatio
SO~4,1!, carried by the space of the scalar functions ov
M5, have the standard form

LAB
5 5 i @hAC

5 ZC]B2hBC
5 ZC]A#. ~19!

They will give us directly the orbital basis generatorsL (AB)
of the scalar representations of I(M ). Indeed, starting with
the functionsZA(x) that solve Eq.~18! in the chart$x%, one
8-3
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ION I. COTĂESCU PHYSICAL REVIEW D 65 084008
can write down the operators~19! in the form ~12!, thus
finding the generatorsL (AB) and implicitly the components
k(AB)

m (x) of the Killing vectors associated with the param
etersjAB @10#. Furthermore, one has to calculate the s
partsS(AB) , according to Eqs.~13! and ~14!, arriving at the
final form of the basis generatorsX(AB)5L (AB)1S(AB) of the
spinor representation of S(M ) induced byr.

In de Sitter spacetime there are many static or mov
charts of physical interest. Among the moving ones a spe
role is played by the chart$tc ,xW% with the conformal timetc
and Cartesian spaces coordinatesxi defined by

Z052
1

2v2tc

@12v2~ tc
22r 2!#,

Z552
1

2v2tc

@11v2~ tc
22r 2!#, ~20!

Zi52
1

vtc
xi

with r 5uxW u. Even if this chart covers only one-half of th
manifold M, for tcP(2`, 0) andxWPD[R3, it has the ad-
vantage of a simple conformal flat line element@17#

ds25
1

v2tc
2 ~dtc

22dxW2!. ~21!

Moreover, the conformal timetc is related through

vtc52e2vt ~22!

to the proper timetP(2`,`) of an observer atxW50 in the
chart $t,xW% with the line element~1!. In what follows we
study the Dirac field in the chart$t,xW% using the conformal
time as a helpful auxiliary ingredient. The form of the lin
element ~21! allows one to choose the simple Cartesi
gauge with the nonvanishing tetrad components@5#

e0
052vtc , ej

i 52d j
i vtc , ê0

052
1

vtc
, êj

i 52d j
i 1

vtc
.

~23!

In this gauge the Dirac operator reads

ED52 ivtc~g0] tc
1g i] i !1

3iv

2
g0

5 ig0] t1 ie2vtg i] i1
3iv

2
g0 ~24!

and the weight function of the scalar product~5! is

m5~2vtc!
235e3vt. ~25!

The next step is to calculate the basis generatorsX(AB) of
the spinor representation of S(M ) in this gauge since thes
are the main operators that commute withED . The group
08400
g
al

SO~4,1! includes the subgroup E(3)5T(3)sSO(3) which
is just the isometry group of the three-dimensional Euclide
space of our moving charts$tc ,xW% and $t,xW% formed byR3

translationsxi→xi1ai and proper rotationsxi→R
• j
i •xj with

RPSO(3) @15#. Therefore, the basis generators of its univ
sal covering group E˜(3)5T(3)sSU(2),S(M ) can be in-
terpreted as the components of the momentumPW and total
angular momentumJW operators. The problem of the Hami
tonian operator seems to be more complicated, but we kn
that in the mentioned static central charts with the static ti
ts this isH5vX(05)5 i ] ts

@10#. Thus the Hamiltonian opera
tor and the components of the momentum and total ang
momentum operators (Pi andJi5« i jkJjk/2, respectively! can
be identified as being the following basis generators
S(M ):

H[vX(05)52 iv~ tc] tc
1xi] i !, ~26!

Pi[v~X(5i )2X(0i )!52 i ] i , ~27!

Ji j [X( i j )52 i ~xi] j2xj] i !1Si j , ~28!

after which one is left with the three basis generators

Ni[X(5i )1X(0i )5v~ tc
22r 2!Pi12xiH12v~Si0tc1Si j x

j !,
~29!

which do not have an immediate physical significance. T
SO~4,1! transformations corresponding to these basis gen
tors and the associated isometries of the chart$tc ,xW% are
briefly presented in Appendix A.

In the other local chart$t,xW%, we have the same operato
PW andJW5LW 1SW ~with LW 5xW3PW ) whose components are th
Ẽ(3) generators, while the Hamiltonian operator takes
form

H5 i ] t1vxW•PW , ~30!

where the second term, due to the external gravitational fi
leads to the commutation rules

@H, Pi #5 ivPi . ~31!

We observe that in this chart the operatorsKi[X(0i ) are the
analogue of the basis generators of the Lorentz boost
SL(2,C) since in the limit ofv→0, when Eq.~1! equals the
Minkowski line element, the operatorsH5P0, Pi , Ji , andKi

become the generators of the spinor representation of
group T(4)sSL(2,C) ~i.e., the universal covering group o
the Poincare´ group @15,16#!.

In both charts used here the generators~26!–~29! are self-
adjoint with respect to the scalar product~5! with the weight
function ~25! if we consider the usual boundary condition
on D[R3. Therefore, for any generatorX we have
^Xc,c8&5^c,Xc8& if ~and only if! c andc8 are solutions
of the Dirac equation that behave as tempered distributi
or square integrable spinors with respect to the scalar pro
~5!. Moreover, all these generators commute with the Di
8-4
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POLARIZED DIRAC FERMIONS IN de SITTER SPACETIME PHYSICAL REVIEW D65 084008
operatorED . If, in addition, we take into account the algeb
freely generated by them, then we get a large collection
observables among which we can choose suitable set
commuting operators defining the fermion quantum mode
the level of relativistic quantum mechanics.

IV. POLARIZED PLANE WAVE SOLUTIONS

As suggested in@5#, the plane wave solutions of the Dira
equation withmÞ0 must be eigenspinors of the momentu
operatorsPi corresponding to the eigenvaluespi , with the
same time modulation as the spherical waves. Therefore
have to look for particular solutions in the chart$tc ,xW% in-
volving either positive or negative frequency plane wav
Bearing in mind that these must be related among themse
through charge conjugation, we assume that, in the stan
representation of the Dirac matrices~with diagonalg0 @16#!,
they have the form

cpW
(1)

5S f 1~ tc!a~pW !

g1~ tc!
sW •pW

p
a~pW !

D eipW •xW, ~32!

cpW
(2)

5S g2~ tc!
sW •pW

p
b~pW !

f 2~ tc!b~pW !
D e2 ipW •xW, ~33!

wherep5upW u ands i denotes the Pauli matrices whilea and
b are arbitrary Pauli spinors depending onpW . Replacing
these spinors in the Dirac equation given by Eq.~24! and
denotingk5m/v and n65 1

2 6 ik, we find equations of the
form ~B2! whose solutions can be written in terms of Hank
functions as

f 15~2 f 2!* 5Ctc
2epk/2Hn2

(1)~2ptc!, ~34!

g15~2g2!* 5Ctc
2e2pk/2Hn1

(1)~2ptc!.

~35!

The integration constantC will be calculated from the or-
thonormalization condition in the momentum scale.

The plane wave solutions are determined up to the sig
cance of the Pauli spinorsa and b. For pW Þ0 these can be
treated as in the flat case@9,16# since, in the tetrad gaug
~23!, the spaces of these spinors carry unitary linear rep
sentations of the E˜(3) group. Indeed, the transformation~9!

produced by (A,fA,aW)PẼ(3),S(M ) whereAPSU(2) and
aW PR3 involves the usual linear isometry of E~3!, xi

→x8 i5fA,aW
i (xW )[L

• j
i • (A)xj1ai with L(A)PSO(3), and

the global transformationc(t,xW )→c8(t,xW8)5r(A)c(t,xW ).
Consequently, the Pauli spinors transform according to
unitary ~linear! representation

a~pW !→e2 iaW •pWAa@L~A!21pW # ~36!
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~and similarly for b) which preserves orthogonality. Thi
means that any pair of orthogonal spinorsj̃s(pW ) with polar-
izationss561/2 ~obeyingj̃s

1j̃s85dss8) represents a good
basis in the space of Pauli spinors

a~pW !5(
s

j̃s~pW !a~pW ,s! ~37!

whose componentsa(pW ,s) are the particle wave functions i
the momentum representation. According to the standard
terpretation of the negative frequency terms@9,16#, the cor-
responding basis of the space ofb spinors is defined by

b~pW !5(
s

h̃s~pW !@b~pW ,s!#* , h̃s~pW !5 is2@ j̃s~pW !#*

~38!

whereb(pW ,s) are the antiparticle wave functions. It remain
to choose a specific basis, using supplementary physica
sumptions. Since it is not certain that the so called spin b
@9# can be correctly defined in de Sitter geometry, we pre
thehelicity basis. This is formed by orthogonal Pauli spino
of helicity l561/2 which satisfy

sW •pW j̃l~pW !52plj̃l~pW !, sW •pW h̃l~pW !522plh̃l~pW !.
~39!

The desired particular solutions of the Dirac equation w
mÞ0 result from our starting formulas~32! and ~33! where
we insert the functions~34! and~35! and the spinors~37! and
~38! written in the helicity basis~39!. It remains to calculate
the normalization constantC with respect to the scalar prod
uct ~5! with the weight function~25!. After a few manipula-
tions, in the chart$t,xW%, it turns out that the final form of the
fundamental spinor solutions of positive and negative f
quencies with momentumpW and helicityl is

UpW ,l~ t,xW !5 iNS 1

2
epk/2Hn2

(1)~qe2vt!j̃l~pW !

le2pk/2Hn1

(1)~qe2vt!j̃l~pW !
D eipW •xW22vt,

~40!

VpW ,l~ t,xW !5 iNS 2le2pk/2Hn2

(2)~qe2vt!h̃l~pW !

1

2
epk/2Hn1

(2)~qe2vt!h̃l~pW !
D e2 ipW •xW22vt,

~41!

where we introduced the new parameterq5p/v and

N5
1

~2p!3/2
Apq. ~42!

Using Eqs.~B1! and ~B3!, it is not hard to verify that these
spinors are charge conjugated to each other,

VpW ,l5~UpW ,l!c5C~UpW ,l!T, C5 ig2g0, ~43!
8-5
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satisfy the orthonormalization relations

^UpW ,l ,UpW 8,l8&5^VpW ,l ,VpW 8,l8&5dll8d
3~pW 2pW 8!, ~44!

^UpW ,l ,VpW 8,l8&5^VpW ,l ,UpW 8,l8&50, ~45!

and represent acompletesystem of solutions in the sense th

E d3p(
l

@UpW ,l~ t,xW !UpW ,l
1

~ t,xW8!1VpW ,l~ t,xW !VpW ,l
1

~ t,xW8!#

5e23vtd3~xW2xW8!. ~46!

Let us observe that the factore23vt is exactly the quantity
necessary to compensate the weight function~25!. Other im-
portant properties are

PiUpW ,l5piUpW ,l , PiVpW ,l52piVpW ,l , ~47!

WUpW ,l5plUpW ,l , WVpW ,l52plVpW ,l ,
~48!

where

W5JW•PW 5SW •PW ~49!

is the helicity operator, which is analogous to the timeli
component of the four-component Pauli-Lubanski opera
of the Poincare´ algebra@15#. Thus, we arrive at the conclu
sion that the fundamental solutions~40! and ~41! form a
complete system of common eigenspinors of the operatorPi

and W. Since the spin was fixeda priori by choosing the
representationr, we consider that the complete set of com
muting operators that determines separately each of the
of the particle or antiparticle eigenspinors

$ED , SW 2, Pi , W%. Finally, we note that these solutions can
redefined at any time with other momentum-dependent ph
factors as

UpW ,l→eix(pW )UpW ,l , VpW ,l→e2 ix(pW )VpW ,l , x~pW !PR,
~50!

without affecting the above properties.
In the casem50 ~whenk50) it is convenient to conside

the chiral representation of the Dirac matrices~with diagonal
g5 @9#! and the chart$tc ,xW%. We find that the fundamenta
solutions in the helicity basis of the left-handed massl
Dirac field,

UpW ,l
0

~ tc ,xW !5 lim
k→0

12g5

2
UpW ,l~ tc ,xW !

5S 2vtc

2p D 3/2S ~ 1
2 2l!j̃l~pW !

0
D e2 iptc1 ipW •xW,

~51!
08400
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VpW ,l
0

~ tc ,xW !5 lim
k→0

12g5

2
VpW ,l~ tc ,xW !

5S 2vtc

2p D 3/2S ~ 1
2 1l!h̃l~pW !

0
D eiptc2 ipW •xW,

~52!

are nonvanishing only for positive frequency andl521/2
or negative frequency andl51/2, as in Minkowski space-
time. Obviously, these solutions have similar properties
Eqs.~43!–~48!.

V. QUANTIZATION

The quantization can be done by considering that
wave functions in momentum representation,a(pW ,l) and
b(pW ,l), become field operators~so thatb* →b†) @9#. Then
the quantum field that satisfies the Dirac equation withm

Þ0 in the chart$t,xW% reads

c~ t,xW !5c (1)~ t,xW !1c (2)~ t,xW !

5E d3p(
l

@UpW ,l~x!a~pW ,l!

1VpW ,l~x!b†~pW ,l!#. ~53!

We assume that the particle (a, a†) and antiparticle (b, b†)
operators must satisfy the standard anticommutation r
tions in the momentum representation, from which the n
vanishing ones are

$a~pW ,l!,a†~pW 8,l8!%5$b~pW ,l!,b†~pW 8,l8!%

5dll8d
3~pW 2pW 8!, ~54!

since then the equal-time anticommutator takes thecanonical
form

$c~ t,xW !, c~ t,xW8!%5e23vtg0d3~xW2xW8!, ~55!

as follows from Eq.~46!. In general, the partial anticommu
tator functions

S̃(6)~ t,t8,xW2xW8!5 i $c (6)~ t,xW !, c (6)~ t8,xW8!% ~56!

and the total oneS̃5S̃(1)1S̃(2) are rather complicated sinc
for tÞt8 we no longer have identities like Eq.~B3! which
would simplify their time-dependent parts. In any eve
these are solutions of the Dirac equation in both their set
coordinates and help one to write the Green functions
usual manner. For example, from the standard definition
the Feynman propagator@9#,

S̃F~ t,t8,xW2xW8!5 i ^0uT@c~x!c~x8!#u0&

5u~ t2t8!S̃(1)~ t,t8,xW2xW8!2u~ t82t !

3S̃(2)~ t,t8,xW2xW8!, ~57!
8-6
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we find that

@ED~x!2m#S̃F~ t,t8,xW2xW8!52e23vtd4~x2x8!. ~58!

Another argument for this quantization procedure is t
the one-particle operators given by the Noether theorem h
similar structures and properties to those of the quan
theory of free fields in flat spacetime. Indeed, starting w
the form ~17! of the conserved quantities, we find that f
any self-adjoint generatorX of the spinor representation o
the group S(M ) there exists aconservedone-particle opera-
tor of quantum field theory, which can be calculated sim
as

X5:^c,Xc&:, ~59!

respecting the normal ordering of the operator products@9#.
Hereby we recover the standard algebraic properties

@X,c~x!#52Xc~x!, @X,X8#5:^c,@X,X8#c&: ~60!

because of the canonical quantization adopted here.
The diagonal one-particle operators result directly fro

the definition~59! and the properties~44!–~48!. In this way
we obtain the momentum components

Pi5:^c,Pic&:5E d3p pi(
l

@a†~pW ,l!a~pW ,l!

1b†~pW ,l!b~pW ,l!# ~61!

and the helicity~or Pauli-Lubanski! operator

W5:^c,Wc&:5E d3p(
l

pl@a†~pW ,l!a~pW ,l!

1b†~pW ,l!b~pW ,l!#. ~62!

The definition~59! holds for the generators of internal sym
metries too, including the particular case ofX51, when the
bracket

Q5:^c,c&:5E d3p(
l

@a†~pW ,l!a~pW ,l!

2b†~pW ,l!b~pW ,l!# ~63!

gives just the charge operator corresponding to the inte
U~1! symmetry of the action~3! @16,17#. It is obvious that all
these operators are self-adjoint and represent the gener
of the external or internal symmetry transformations of
quantum fields@9#. The conclusion is that, for fixed mass an
spin, the helicity state vectors of the Fock space defined
common eigenvectors of the set$Q,Pi ,W% form a complete
system of orthonormalized vectors in a generalized se
i.e., the helicity basis.

The Hamiltonian operatorH5:^c,Hc&: is conserved but
is not diagonal in this basis since it does not commute w
Pi and W as follows from the commutation relations~31!
and the properties~60!. Its form in momentum representatio
can be calculated using the identity
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HUpW ,l~ t,xW !52 ivS pi]pi1
3

2DUpW ,l~ t,xW ! ~64!

and the similar one forVpW ,l , leading to

H5
iv

2 E d3p pi(
l

@a†~pW ,l! ]
↔

pia~pW ,l!

1b†~pW ,l! ]
↔

pib~pW ,l!# ~65!

where the derivatives act asf ]
↔

h5 f ]h2(] f )h. The result is
the expected behavior ofH under the space translations
Ẽ(3) that transform the operatorsa and b according to Eq.
~36!. Moreover, it is worth pointing out that the change of t
phase factors~50! associated with the transformations

a~pW ,l!→e2 ix(pW )a~pW ,l!, b~pW ,l!→e2 ix(pW )b~pW ,l!
~66!

leaves invariant the operatorsc, Q, Pi , and W as well as
Eqs.~54!, but transforms the Hamiltonian operator

H→H1vE d3p@pi]pix~pW !#(
l

@a†~pW ,l!a~pW ,l!

1b†~pW ,l!b~pW ,l!#. ~67!

This remarkable property may be interpreted as a new t
of gauge transformation depending on momentum instea
coordinates. Our preliminary calculations indicate that t
gauge may be helpful for analyzing the behavior of t
theory nearv;0.

In the simpler case of a left-handed massless field with
fundamental spinor solutions~51! and~52! we obtain similar
results, and we recover the standard rule of neutrino po
ization.

VI. CONCLUDING REMARKS

We have derived here a complete system of normali
plane wave solutions of the Dirac equation in the chart w
the line element~1! of de Sitter spacetime. These descri
the quantum modes of polarized free fermions~or antifermi-
ons!, determined by the complete set of commuting operat

$ED , SW 2, Pi , W%. A crucial point was the choice of the Ca
tesian gauge@5# in which the Dirac field transforms mani
festly covariantly under the E˜(3) subgroup, since in thes
conditions one can perform the second quantization in a
nonical way as in special relativity. We recall that in th
static central charts$ts ,xW s% there is another appropriate Ca
tesian gauge where the Dirac field transforms manifestly
variantly under the subgroup T(1)ts

^ SU(2),S(M ) ~in-

volving the time translations generated byH5 i ] ts
) @10#.

Then the separation of variables can be done as in the ce
problems of special relativity, leading to common eigen
pinors of the complete set$ED ,SW 2,H,JW2,J3 ,K% @6# which
8-7
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includes the usual spin-orbit operatorK @16#. This method
allowed us to obtain the solutions presented in@6# as well as
the normalized energy eigenspinors of the Dirac field
anti–de Sitter spacetime@18#. Thus we draw the conclusio
that one can reproduce similar conjectures as in
Minkowski flat spacetime if one exploits the manifest cov
riance with respect to a suitable subgroup of S(M ). All our
examples@10# indicate that for each local chart there exists
specific subgroup of S(M ) the spinor representation o
which can be brought into covariant form by an adequ
tetrad gauge fixing. Obviously, this approach requires on
solve new problems, from purely mathematical ones up
those regarding the physical interpretation.

In the de Sitter geometry, one has to look for an orb
analysis analogous to the Wigner theory of the induced r
resentations of the Poincare´ group@15,16#. This is necessary
if we want to understand the meaning of the rest frames~of
the massive particles! in de Sitter spacetime and to find th
‘‘booster’’ mechanisms changing the value ofp or even giv-
ing rise to waves of arbitrary momentum from those withpW
50. We believe that this theory can be done starting with
orbital analysis inM5 since this helps us to find SO~4,1!-
covariant definitions for our basic operators onM. More pre-
cisely, for each momentumqPMq

5 we can write a five-
dimensional momentum operatorP(q) of components
PA(q)5hACqBX(BC) while a generalized five-dimensiona
Pauli-Lubanski operator inM has to be defined byWA
52 1

8 «ABCDEX
(BC)X(DE) @19#. Thus it is clear that for the

representative momentumq̂5(v,0,0,0,2v) of the orbit q2

50, associated with the little group E(3),SO(4,1), we re-
cover our operatorsP(q̂)5(H,PW ,2H) and W5q̂AWA as
given by Eqs.~26!, ~27!, and~49!, respectively. We hope tha
in this way one may construct generalized Wigner repres
tations of the group S(M ) in the spaces of spinors dependin
on momentum.

Moreover, it is important to investigate the physical co
sequences of the transformation laws of the main observa
of this theory and to point out the role and significance of
transformations~66! and~67!. Of particular interest could be
the study of the influence of the de Sitter gravitational fie
on the energy measurements since these are affected b
uncertainty relationsDHDPi>vu^Pi&u/2 due to the commu-
tation relations~31!. Of course, for very small values ofv it
is less probable that these produce observable effects in
measurements, the spacetime appearing then as a flat o

Other problems that could appear in further investigatio
of the Dirac free field seem to be rather technical, e.g.,
properties of commutators and Green functions, calcula
of the action of more complicated conserved operato
evaluation of the inertial effects, etc. However, in our op
ion, the next important step from the physical point of vie
would be to construct a similar theory for the free elect
magnetic field, thus completing the framework one needs
developing perturbative QED in de Sitter spacetime.

The results obtained here show that, even though m
particular features of the quantum theory in curved spa
times depend on the choice of the local chart and te
gauge, there are covariance properties providing us with
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erators with invariant commutation relations. For this reas
we hope that our approach based on external symmetries
be an argument for a general tetrad gauge covariant theo
quantum fields with spin in which the second quantizat
should be independent of the frames one uses.

APPENDIX A: SO„4,1… TRANSFORMATIONS AND
ISOMETRIES

The spacetimeM5 is pseudo-Euclidean with a metrich5

that is invariant under the coordinate transformationsZA

→5L
• B
A •ZB where 5LPSO(4,1). Each coordinate transfo

mation gives rise to an isometry ofM which can be calcu-
lated in the local chart$tc ,xW% using Eqs.~20!. We remind the
reader that the basis generators5XAB of the fundamental
~linear! representation of SO~4,1!, carried byM5, have the
matrix elements

~5XAB!
• D
C •5 i ~dA

ChBD2dB
ChAD!. ~A1!

The transformations of SO(3),SO(4,1) are simple rota
tions ofZi andxi which transform alike since this symmetr
is global. For the other transformations generated byH, Pi ,
and Ni the linear transformations inM5 and the isometries
are different. Those due toH,

Z0→Z0cosha2Z5sinha,

e2 i jH
5 H: Z5→2Z5sinha1Z0cosha, ~A2!

Zi→Zi ,

where a5vjH , produce the dilatationstc→tce
a and xi

→xiea, while the transformations

Z0→Z01vjW P•ZW 1
1

2
v2jP

2 ~Z01Z5!,

e2 i jW P•
5PW : Z5→Z52vjW P•ZW 2

1

2
v2jP

2 ~Z01Z5!,

~A3!

Zi→Zi1vjP
i ~Z01Z5!

give the space translationsxi→xi1jP
i at fixed tc . More in-

teresting are the transformations

Z0→Z02jWN•ZW 1
1

2
jN

2 ~Z02Z5!,

e2 i jWN•
5NW : Z5→Z52jWN•ZW 1

1

2
jN

2 ~Z02Z5!, ~A4!

Zi→Zi2jN
i ~Z02Z5!,

which lead to the isometries

tc→
tc

122vjWN•xW2v2jN
2 ~ tc

22r 2!
, ~A5!
8-8
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xi→
xi1vjN

i ~ tc
22r 2!

122vjWN•xW2v2jN
2 ~ tc

22r 2!
. ~A6!

We denoted herejP
2 5(jW P)2 andjN

2 5(jWN)2.

APPENDIX B: SOME PROPERTIES OF HANKEL
FUNCTIONS

According to the general properties of the Hankel fun
tions @20#, we deduce that those used here,Hn6

(1,2)(z), with

n65 1
2 6 ik andzPR, are related among themselves throu
ra
i-
J.

.

.

.

08400
-

@Hn6

(1,2)~z!#* 5Hn7

(2,1)~z!, ~B1!

and satisfy the equations

S d

dz
1

n6

z DHn6

(1,2)~z!5 ie6pkHn7

(1,2)~z! ~B2!

and the identities

e6pkHn7

(1)~z!Hn6

(2)~z!1e7pkHn6

(1)~z!Hn7

(2)~z!5
4

pz
.

~B3!
-

,
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@10# I.I. Cotăescu, J. Phys. A33, 9177~2000!.
@11# B. Carter and R.G. McLenaghan, Phys. Rev. D19, 1093

~1979!.
@12# S. Weinberg,Gravitation and Cosmology: Principles and Ap

plications of the General Theory of Relativity~Wiley, New
York, 1972!.

@13# R.M. Wald, General Relativity~University of Chicago Press
Chicago, 1984!.

@14# The Euclidean vacuum in the scalar theory is discussed in
Allen, Phys. Rev. D32, 3136~1985!.

@15# W.-K. Tung,Group Theory in Physics~World Scientific, Phila-
delphia, 1985!.

@16# B. Thaller, The Dirac Equation ~Springer-Verlag, Berlin,
1992!.

@17# N. D. Birrel and P. C. W. Davies,Quantum Fields in Curved
Space ~Cambridge University Press, Cambridge, Englan
1982!.
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