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Corotating and irrotational binary black holes in quasicircular orbits
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A complete formalism for constructing initial data representing black-hole binaries in quasi-equilibrium is
developed. Radiation reaction prohibits, in general, true equilibrium binary configurations. However, when the
time scale for orbital decay is much longer than the orbital period, a binary can be considered to be in
quasiequilibrium. If each black hole is assumed to be in quasiequilibrium, then a complete set of boundary
conditions forall initial data variables can be developed. These boundary conditions are applied on the
apparent horizon of each black hole, and in fact force a specified surface to be an apparent horizon. A global
assumption of quasiequilibrium is also used to fix some of the freely specifiable pieces of the initial data and
to uniquely fix the asymptotic boundary conditions. This formalism should allow for the construction of
completely general quasiequilibrium black hole binary initial data.
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[. INTRODUCTION tionable. Second, the initial data currently being used for
these simulations is rather crude. Initial data for binary black
The problem of calculating the gravitational waveformshole systems have been available for some time hb@.
produced during the final plunge and coalescence of a pair dfhe approaches for generating these initial data can produce
black holes currently is receiving considerable attention. Thisather arbitrary configurations and a way of picking which
attention is motivated by the imminent deployment of thedata sets represent binaries in quasicircular orbits was
Laser Interferometric Gravitational Wave Observatoryneeded. An approximation scheme for locating quasicircular
(LIGO) and other, similar, detectors. It is further motivated orbits was developedl3]. Based on an effective-potential
by the fact that black-hole binaries are expected to be strongethod, this scheme was first applied to non-spinning, equal-
sources of gravitational waves and are considered one of thaass binaries using the inversion-symmetric data of Féf.
most likely candidates for early detection. The detection and.ater, this approach was applied to non-spinning, equal-mass
interpretation of black hole mergers will be greatly facilitated binaries based on puncture dgf§ and to spinning, equal-
by theoretical predictions for the gravitational waveformsmass black holegs].
produced by these events. However, in the absence of pre- Unfortunately, there are problems with these data sets.
dictions for the full waveforms, even information about the Because the schemes used to generate these data assume the
behavior of the orbits will be helpful. In particular, informa- metric to be conformally flat, they cannot produce astro-
tion about the properties of the so-called last stable orbit, ophysically accurate data for spinning ho[&$. Furthermore,
innermost stable circular orb{tSCO), is of interest. the estimates for the location of the ISCO produced by these
Currently, large scale numerical simulations are the onlyschemes do not agree well with results based on various
known approach for computing the gravitational waveformspost-Newtonian approximation methdds7]. There is some
produced during the final plunge and coalescence of blackspeculation that this discrepancy is rooted in the approxima-
hole binaries. Any dynamical simulation must start withtion of conformal flatness. While the conformal flatness ap-
some initial data, and the results of such a simulation ar@roximation certainly introduces some error, | suspect that
entirely dependent on how well the given initial data corre-the most important sources of error come from a failure to
spond to the desired physical situation. Thus, astrophysicallgiccurately approximate the masses of the black holes as they
realistic initial data are required if we are going to simulateapproach the ISCO and the choice of the extrinsic curvature.
the gravitational waveforms of astrophysical black-hole bi- Initial-data schemes relying on the conformal flatness ap-
naries. Because radiation damping tends to circularize binargroximation have been popular because they are relatively
orbits, orbits that are nearly circular are of greatest interessimple and inexpensive from a computational point of view.
Of course, energy loss by gravitational radiation also meangvhen maximal slicing is used, an analytic solution of the
that no truly circular orbits can exist for black-hole binary momentum constraints exidi8,9]. This means that only the
systems. To keep this fact in mind, we will always refer to Hamiltonian constraint, a single quasilinear elliptic partial
such orbits as being quasicircular. differential equatioPDE), need be solved. Recently, efforts
The usefulness of current numerical simulations of genhave been made to move beyond the approximation of con-
eral black-hole binary systems is limited by two importantformal flatnesgcf. Refs.[10,11])). Unfortunately, these data
facts. First, the simulations themselves are only beginning thave not yet been used to estimate the location of the ISCO.
reach the stage where they can produce useful information. For the case of neutron-star binaries, a very different ap-
Furthermore, the accuracy of this information is still ques-proach has been used to construct initial data representing
neutron stars in quasicircular orbits and to locate the
ISCO. At the core of this approach is the assumption that
*Electronic address: cookgbh@wfu.edu the spacetime admits an approximate Killing vector,
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I'=(alat)+Q(aldp). This approach was first tested for the it have no direct connection to the desired quasiequilibrium
case of a single spinning neutron sfd2]. Subsequently, State of the solution. Interestingly, the authors of GGB1
variations of this method were used to study neutron-staf00se to mix the isometry-derived boundary conditions
binaries in quasicircular orbitil3—24. This approach for \{Vlth a K|II|ng'-'hor|zon condition that is gssentlally an equi-

generating initial data for neutron-star binaries in quasicircullPriUm condition on the black hole horizon. However, this
lar orbits is particularly attractive when compared to the ef.Mixed set of boundary conditions is not consistent with the

fective potential method used for black-hole binaries. First, ”jso_mgtry condition unlegs thg artificial _reg.ularizatio_n. of the
the neutron-star matter is to be in hydrostatic equ"ibrium'22:Eti§n§?rr;?:1rr]sz?iéf©?nalrl[httahé;sc)rcgtgr;:i?szgtl/grr] VF\)IL%T:'B the
then the 4-velocity of the mfltter must be proportioﬁnal to the In this paper, | wil dgvelop a formalism fo?constr.ucting
approximate Killing vector,. The assumption thak is a  completely general quasiequilibrium black hole binary initial
Killing vector ultimately yields a relativistic Bernoulli equa- data. This formalism is also based on a generalization of the
tion that governs the behavior of the matter and, most imporapproach used for constructing neutron-star binary initial
tantly, yields a unique value of the angular velocidy, of the  data. The key to this formalism is a set of boundary condi-
binary system in a circular orbit at a given separation. Theions that are based on the approximation that the black holes
presence of matter also sets a natural length scale for thare in quasiequilibrium. Boundary conditions falt of the
problem and conservation of baryon number makes ifjuantities required to construct quasiequilibrium data can be
straightforward to connect initial-data solutions at differentfound based on the quasiequilibrium assumption. These
radii to produce meaningful evolutionary sequences. boundary conditions are completely general. In particular,
Recently, Gourgoulhon, Grandohent and Bonazzola they do notdepend on the often-used assumptions of confor-
[21,27 (GGB1 and GGB2 respectiveljhave attempted to Mal flatness and maximal slicing. This formalism is com-
adapt the approach used to construct neutron-star binary in/éted by using the approach developed by GGBL to deter-
tial data to the case of black-hole binaries. Their initial re-Mine the orbital angular velocity) of the system, an
sults are very encouraging, showing much better agreemeﬁPProaCh that is also rooted in the assumption of quasiequi-
with post-Newtonian techniques for locating the 1SCO. librium. _ _ _ _ _ _
However, there seem to be problems with their solutions. It !N the following sections, I will derive and describe this
seems likely that their initial data represent a much betteP€W formalism. Where appropriate, | include comparisons
approximation to astrophysically realistic black-hole binariesWith related methods in order to clarify the advantages of the
in quasicircular orbit than the data produced using the effecfeW formalism. In Sec. Il, | begin with a general discussion
tive potential technique. However, these new solutions d§f the decomposition of Einstein’s equations and how the
not represent valid general relativistic initial data becausdnitial-data equations are posed. In Sec. Ill, | discuss two

they do not satisfy the constraint equations everywhere. FupRarticular decompositions of the constraint equations. In Sec.
thermore, as | will justify later, | do not believe that the IV, | discuss the strengths and weaknesses of the approach

particular problem being solved in GGB1,2 admits a soly-used in GGB1,2 and derive the boundary conditions requ'ired
tion. Interestingly, this author had attempted to solve virtu-for the new formalism. In Sec. V, I work through the remain-
ally the identical probleni23] but was unable to obtain con- INg issues mvolvegl in construc_tmg quasiequilibrium |n|t_|§1l
vergence for the coupled system of equations. As the authoftata, and summarize the equations and boundary conditions
point out in GGB2, they mustegularizetheir solution for ~ Of the new formalism. Finally, in Sec. VI, I conclude with
the shift in order to obtain an extrinsic curvature that doegliscussion that focuses on the impact of possible choices for
not diverge at the throats of the black holes. It is this reguihe conformal 3-geometry and slicing condition.
larization technique that prohibits their solutions from satis-
fying the constraints everywhere. Although | have concerns Il. THE INITIAL-DATA EQUATIONS
regarding the validity of the particular solutions found in ) ) )
GGB2, | believe that the authors of GGB1 may have made a In this work, we will use the standard+31 decomposi-
significant contribution to the effort to construct astrophysi-tion with the interval written as
cally realistic black-hole binary initial data. This contribution o o
is rooted in their approach for determining the orbital angular ds?=—a?dt?+ yij(dx' + g'dt) (dxX + g'dt), (&N
velocity, ().

The problem with the approach taken in GGB1 is that it iswhere v, is the 3-metric induced on &= const spatial hy-
not directly applicable outside the restrictions of conformalpersurface is the lapse function, ang' the shift vector.

flatness and maximal slicing, and it seems that a solutiolhe extrinsic curvature of the spatial slid¢;; , is defined
within these limits does not exist. The limitations in the py!

GGB1 method are rooted in the boundary conditions posed

on the inner boundaries of their solution domain, that is, the———

black-hole boundaries. In GGB1 the authors choose to im- 1 this paper, latin indices denote 3-dimensional spatial indices.
pose a particular isometry condition on the spatial hypersurereek indices are 4-dimensional. In Sec. IV C, latin indices can be
face. This isometry condition naturally yields boundary con-replaced with indices varying over the two dimensions of the sur-
ditions on the throats of the black holes, however, thistace whenever only 2-dimensional tensors are involved in the ex-
isometry condition and the boundary conditions derived frompression.
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) reduce to a well-posed set of elliptic PDEs &gl they
are compatible with the desired physical content of the

where£, denotes the Lie derivative along the unit normal o initial data.

Kij=—=2Lnvij,

the spatial slicen”. Einstein's equationsG,,=87T,,, (3) A choice fqr the spa}tial apd tempora_ll gauge must be
then reduce to four sets of equations. Two are evoluton Made that is compatible with the desired physical con-
equations for the spatial metric and extrinsic curvature: tent of the initial data.
(4) The dynamical degrees of freedom must be specified so
dryij=—2aK;; +€i,3j +€j18i 3 as to yield the desired physical content in the initial data.
Once these steps have been completed, all that remains
and are the technical aspects of solving the coupled set of
elliptic PDEs. Thephysicslies entirely in the four enu-
aKi; = a[Rij— 2K; K'j +KK;j; —87S;+47y;{(S—p)] merated steps given above.
—ViVat VK +K; V8 +K; V. 8. 4 Ill. DECOMPOSITIONS OF THE CONSTRAINTS
The remaining two are the constraint equations In the weak field limit where Einstein’s equations can be
linearized, there are clear ways to determine which compo-
R+K2—K; K =16mp (5)  nents of the initial data are dynamic, which are constrained,
) and which are gauge. However, in the full nonlinear theory,
and there is no unique way to perform the decomposition. Per-
haps the most widely used class of constraint decompositions
Vj(Kij — JIK)=87j'. © e the York-Lichnerowicz conformal decompositions which

are based on a conformal decomposition of the metric and

- — — ) . . various other quantitie24—-26.
Here,Vi, R;;, andR are, respectively, the covariant deriva- ~ the metric is decomposed into a conformal factgr,
tive, Ricci tensor, and Ricci scalar associated with the Spat'%ultiplying a conformal metric:
metric y;; . K=Kj, S;; is the matter stress tens@=S, p

is the matter energy density, afdis the matter momentum Yi EW%; _ (12)
density. These matter terms are related to the stress-energy
tensor via Using Eq.(11), the Hamiltonian constrair(6) can be written
 aB as
S/.LV= ’yM’yVTaﬁ ' (7)
V2y— 5yR— 597K+ 592K K =—2my®p, (12)
j,u.E - yznaTva il (8)

whereV2=VV,, andV, andR are the covariant derivative
p=n“n"T,,, (9 and Ricci scalar associated with; . With this conformal

decomposition, the conformal metri&ij is considered to

encode the dynamical degrees of freedom of the matrit

the initial gauge choices for the three spatial coordinates. The

conformal factor,p, is the constrained portion of the metric.
Most decompositions of the extrinsic curvature begin by

splitting it into its trace K and tracefree partgy;;,

T,=S,,F2n(,j,»)+Nn,N,p. (10

Initial data for a Cauchy evolution via Einstein’s equa-
tions consist of specifying;; andK;; on an initial hypersur-
face. The Hamiltonian constraitfi) and the momentum con-
straints (6) constitute the initial-data equations of general
relativity, and the initial data must satisfy these equations. Ki=A;+ Ly, K (13)
Equations(5) and (6) constrainfour of the 12 degrees of WeTAE T S AT
freedom found in the initial datay; andK;; . The covariant  The decomposition proceeds by using the fact that we can

nature of Einstein’s equations allows us faaugedegrees covariantly split any symmetric tracefree tenssi, as fol-
of freedom. The remaining four degrees of freedom are theyys [27):

dynamicaldegrees of freedom and are split two apiece be-

tween the metric and extrinsic curvature. S=(LX)1+71, (14)
The task of constructing initial data for a Cauchy evolu- -

tion via Einstein’s equations can be broken down into a fewHere, 7" is a symmetric, transverse-traceless ten§er.,

fundamental task shared by any approach. V,7"=0 and7;=0) and, in three dimensions,

1) A deppmposmon of the cqnstralnts must be chosgn that (Lx)ijEVin+VJXi_%,yijlel_ (15)
specifies how the constrained, gauge, and dynamical de-
grees of freedom are associated with the initial data. At this point, the decomposition can proceed in several dif-
(2) Boundary conditions must be chosen for the constrainederent directions, and we will consider two of them below.
degrees of freedom such tHaj the constraint equations However, in all caseK is considered to encode the initial
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temporal gauge choicg! encodes the two dynamical de- multiple black holes. All that is required to construct com-
grees of freedom, and' are the three constrained degrees ofplete initial data is to solve the single quasilinear elliptic

freedom. PDE in Eq.(21).

All of the work to date that has used the effective poten-
tial method to locate quasicircular orbits in black-hole binary
systemg3-5] has used initial data computed by this system.

Historically, the most widely used decomposition ex- The only difference between the data used in R&], and
presses the extrinsic curvature as in Ref.[4] is in the topology of the initial data hypersurfaces.

A. Conformal transverse-traceless decomposition

ij— ., =100 (T ii 1+ A 1 _ij
Ki=y 0[(LX) +Q1+ 3 7K. (16) B. Conformal thin-sandwich decomposition
In this case, the transverse-traceless decomposition takes An alternative decomposition recently proposed by York
place with respect to the conformal metric. It will also be [29] is @ generalization of an approach used first by Wilson

convenient to define a conformal trace-free extrinsic curval30] and later by other§12,13,3] for the study of neutron-
ture, Ail, by star binaries. Furthermore, aside from some trivial differ-

ences in conformal scalings, it also subsumes the approach
outlined in GGB1. This decomposition differs from the con-
formal transverse-traceless decomposition significantly in
philosophy, but is very similar in form. The difference is
found in the decomposition of the extrinsic curvature. In the
conformal thin-sandwich decompositio;; is decomposed

Rl = Ao = (T + Q. it

Using Eq.(16) in the momentum constraiti6) yields

A XI=3y VK +8myY, (18 s
where g 10 o )
e KI="=— (L) ~uN)+ 37K, (23
R Xi=%,(Tx)l o
U or
=V2X'+3VI(VX) + Ry X, (19
| ~ R T
andR! is the Ricci tensor associated wif; . In terms of Al :Z((L'B)” —u'). (24)

Eq. (17), the Hamiltonian constrain(tl2) becomes

Here, U takes the place o' in representing the freely
specifiable dynamical portion of the extrinsic curvature.

, However, owing to the nature of the thin sandwich decom-
Together, Egs(11) and(16)—(20) constitute the full confor-  sition, it also has a more physical meaning as we shall see
mal transverse-traceless decomposition of the constraints. ]% a moment. Notice that in Eq24), it is not the conformal

solve this set of equations, one must Speaiﬁy, Q, andK  trace-free extrinsic curvature that is decomposed, but rather

V2= 5yR—Hy°K?+ 597 "AGA = =27y, (20)
]

in addition to the matter terms andj'. ~ 2aAl. The new scalarg, is the conformal lapse defined by
The reason that this decomposition has been so widely
used stems from the simplifications that occur when the a=ySa. (25)

freely specifiable data are chosen so that the initial data hy-
persurface is maximak =0, conformally flat so tha"';}ij isa  Also notice that, in the transverse-traceless decomposition,

flat metric, andQ" is chosen to vanish. Then, for vacuum the vectorX' has been replaced by tistift vector g'.
spacetimes, the constraints reduce to Using the thin-sandwich decompositid@3) in the mo-
mentum constraint6) yields
1.
=u"
|

V2X'+3VI(Vx) =0, (22 +16ma gt (26)

V2t 597 TAAT=0, (21

- KB - (BT na= {ayFK+aF,

andV is, in this case, the usual flat space covariant derival aken together, Eqdll), (23), (24), (26), (19), and (20)

tive operator. What is remarkable about this simplified sysConstitute the full thin-sandwich decomposition of the con-
tem of equations is that E422) decouples completely from Straints. To solve this set of equations, one must spegjfy

Eg. (21) and has analytic solutions that represent a singlel”, K, and « in addition to the matter terms andj'.

black hole with any desired value of linear and angular mo- The thin-sandwich decomposition differs from most

mentum[8,28]. Furthermore, since Eq22) is linear, any initial-data decompositions in that its derivation uses a sec-

number of these solutions may be superposed to represeomd spatial hypersurface that is infinitesimally separated
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from the primary spatial hypersurface. The time and spatiatequires the lapse to vanish on the throats. For the shift vec-
coordinates in these two hypersurfaces are connected by tler, the isometry imposes the following boundary conditions:
kinematical variablesq and g', and this connection allows

us to obtain a physical interpretation fa?, the freely speci- B'ls=0, (29
fiable dynamical portion of the extrinsic curvature. The result 9B
is thatu'l is a symmetric, tracefree tensor with the physical 3 =0, (30
interpretation that rls
~ ~ 9 ¢
Uij=dyij » (27) A =0, (31
or S

andt is the time coordinate associated with the time-like _ . _
vectort# that connects points in the two adjacent hypersurWwhere we are assuming the throat is a coordinate sphere and

faces that carry the same spatial coordinate labels, i.e.  |s denotes evaluation on the throat.
Since this version of inversion symmetry requires that
th=an*+ BH, (28) a|s=0, regularity of the extrinsic curvature at the throats
requires
and n* is the timelike unit normal to the primary spatial o
hypersurface. (LB)|s=0. (32)

This decomposition has proven useful for constructing i _ o . )
quasiequilibrium initial data sets because, in the frame wher&S GGB1 point out, this condition is potentially problemati-
the configuration is assumed to be time-independéms cal.

corotating frame, it is a natural approximation to s@; Given the choice for the isometry condition used in
~ 9 ' PP . % GGB1, it follows[32] that the throats are apparent horizons.
=0. To my knowledge, all of the work so fgincluding

GGB1 make the interesting choice of using this fact to
e e e o Shange bondarycondiio$0) and(31) on e hil. They
p " y SpS obtain new boundary conditions on the shift by demanding
sandwich decomposition. In particular, they all choose th

initial data hvoersurface to be maximi=0. conformall hat g/ 3, be null on the throats so that the throats are Killing
yr_) o~ Y Y horizons. For the case that the lapse vanishes on the throats,
flat so thaty;; is a flat metric,u;; is chosen to be zero, and his condition yields

they all fix the lapse by demanding th&tK =0. The final

assumption is a reasonable one since a quasiequilibrium so- B'ls=0. (33

lution was the goal of each of these works and the time

vector(28) is the one corresponding to the corotating frame Altering the boundary conditions on the shift in this way
This conformal thin-sandwich decomposition will form poses a problem. Using E(33) to replace condition$30)

the foundation of the initial-data formalism being developed.and (31) means that the solution is not guaranteed to be

However, unlike previous works, we will only make the re- inversion-symmetric. This, in turn, means that the inner

striction thatu;;=0. In particular, we willnot restrict the boundaries are not guaranteed to be apparent horizons, from

formalism to conformally flat maximal slices of the full Which it follows the Killing horizon boundary conditions

spacetime, and weill require that all boundary conditions MaY not be appropriate for the inner boundaries.

and any further restrictions appliat least in principleto . N GGB1, the authors go to great length to show that

general slicings and conformal 3-geometries. inversion-symmetry, their Killing-horizon boundary condi-
tions on the shift, and the required regularity condit{82)

can be compatible. However, satisfying the Killing-horizon
IV. BOUNDARY CONDITIONS FOR THE CONSTRAINT boundary conditions together witbomeof the inversion-
EQUATIONS symmetry boundary conditions does not guarantee that the
A. The GGB approach regularity condition(32) is satisfied, or that the resulting so-
lution is inversion symmetric. If fact, as pointed out in

We now return to_the specific pmb.'e.”.‘ of using the th'n'GGBZ, it seems that their solutions are not compatible with
sandwich decomposition to construct initial data for a pair of his condition without some kind of artificial regularization

black hol_es in qu?sic(ijrcula[]orbitsa InfagditiolTl tg tféengind?r f their solution for the shift. This is not surprising. We can
assumptions outlined at the end of Sec. ' aSYewrite the evolution equation for the metric as

makes the assumption that the initial-data hypersurface is
inversion symmetric. That is, the initial data hypersurface is
taken to consist of two asymptotically flat hypersurfaces that
are joined together at the throats of each black hole, and are e~ 2~ e ok e o~
isometric to each other with each throat being a fixed point = Ui+ 37 (WB+ 6NN y—¢aK)],  (34)
set of the isometry condition. The isometry condition then _

i iti ith u;;=y*u;; . Given the the Killing-horizon boundar
imposes a set of boundary conditions at the throats on aW ij ij g i y
quantities on the manifold. There are actually two choices foconditions and the choices of maximal slicing amg=0,
the boundary conditions, and GGB1 make the choice thaEg. (34) reduces to

dyyi;= Ui+ %Vij(vkﬁk_ aK)
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where () is the orbital angular velocity of the binary, and
dl d¢ represent the asymptotic Killing vector for rotation in

the ¢ direction. In the corotating coordinate systelﬁis the
time vector and it has components=[1,0,0,d. If the indi-
vidual black holes are corotating with the system, then they
do not appear to be rotating in that coordinate system. In this
case, the Killing-horizon condition implies thit should be
parallel tok* which immediately yields

Y

f7t7ij|s:§¢47ija— . (39
rls

It is demonstrated in GGB1 that regularity requires
dB"1d,|s=0 and the authors take E35) as establishing

regularity. However, the choicEiJ:O is not equivalent to

dyi;=0, but only fixes the time rate of change of the con-
formal metric. The time rate of change of the conformal
factor is not fixed by this condition and is only guaranteed to

vanish ift is a true Killing vector. Thus, for a quasiequilib- . . . .
rium solution of the constraints, it seems reasonable thaiotice that this condition reduces directly to E§3) when

dB'19,|sis small in some appropriate norm, but it is unlikely ¢ s=0. . .
to vanish. We can also derive a boundary condition for black holes

So, the approach outlined in GGB1 has two technicathat are not rotating with respect to observers at rest at infin-

problems: the boundary conditions being used do not guafl, Plack holes that we might loosely refer to as being irro-

antee that the solution is inversion symmetric or that thd@tional. In this case, the outward pointing null vectors at the
solution will be regular at the inner boundary. Both of theseapparent horizon should be parallel tpnot to |. In the
problems are fixed in GGB2 by an artificial regularization of corotating coordinate system, the components afan be
the shift solution. The unfortunate side effect of this regular-written symbolically as

ization procedure is that the solutions no longer satisfy the
constraint equations and, thus, cannot represent valid initial
data. In fact, it seems that a regular, inversion-symmetri
solution for the extrinsic curvature is not possilite is at
least extremely unlikely given the assumptions of GGBL1.

Bls=as'|s. (39

th=[1,—Q(ald)']. (40)

(ft follows immediately that the appropriate boundary condi-
tions for irrotational black holes are

9 i

i
Although the particular set of boundary conditions pro-

posed in GGB1 does not seem to yield a well-posed system For both boundary conditions, corotation given by Eg.

of elliptic equations, the idea of using some kind of boundary(39), and irrotational given by Eq41), the conditions are

conditions on the apparent horizons of the black holes igiven in terms of the corotating coordinate system. This

promising. An alternate approach for obtaining boundarymeans that the appropriate asymptotic boundary conditions

B. Killing-horizon boundary conditions (41)

Bi|5=asi|5+ﬂ( .
S

conditions on the shift is found by a slight generalization offor the shift are that

the Killing-horizon conditions proposed in GGB1. As we
will see, this change in perspective will allow us to derive
boundary conditions on the shift that will yield corotating
black holes, irrotational black holes, or black holes with

some arbitrary angular velocity. We begin by noting that the - e Al b
ized to yield a boundary condition for an equilibrium black

outward pointing null vector whose vanishing expansion de

fines the apparent horizon can be written as
k#oc(n#+s*). (36)

Here, s* is the outward pointing unit vector normal to the
apparent horizoiisee Sec. IV C for further detajlsin terms

of components, this can be written as

kt=[1,as —A'], (37)

where | have chosen a normalization so tkfat 1. Note that

k* is null by construction ané*k,=0 for any choice of the

shift vector.
If we assume rotation in thé direction, then the approxi-

mate killing vector for a quasiequilibrium configuration is
given by

d
%'

>

d

+
ﬁtQ

(38)

. g\

The corotation and irrotational conditions can be general-

holes with arbitrary spin. Let' denote a flat-space Killing
vector for rotation in an arbitrary direction, just a&/{¢)'
represents rotation about in tledirection. With(}, repre-
senting the angular velocity of rotation of the black holes as
measured by observers at rest at infinity, we find that the
components of the null vectors generating the horizon are

[1Q,x' = Q(aldd)'], (43
when written in terms of the corotating coordinate system.
This immediately yields the boundary conditions for a qua-
siequilibrium black hole with arbitrary spin:

(44)

(9 |
%)
As we will see below, we will need to be a bit more careful
in defining the shift boundary condition for the irrotational

and general spin cases, but E@EL) and(44) give us a good
starting point for these conditions.

ﬂi|5:asi|s_QXXi|s+Q .
S
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C. Quasiequilibrium boundary conditions Kij :Jij + ZS(iJj)_f_SiSj(K_‘]). (54)

The choice of the particular inversion-symmetric class of
black-hole initial data used in GGB1 was made because I¥V€
guarantees that the inner boundary surfaces will be apparent
horizons. If we are to give_ up inversion—symmejry, we must Si=—(J;+H;) and ii_ :i
find some other way of fixing boundary conditions at the SEZ Y2
inner-boundary surfaces for all of the quantities needed to
construct initial data. These boundary conditions can bélow, we define the expansion of outgoing null rays,and
found by forcing the inner boundary to be an apparent horiingoing null rays,o, via
zon and by assuming that the associated black hole is in
guasiequilibrium. Pieces of the resulting approach have been iy 1
worked out by Thornburg33] and by Eardley34], but to o=h'%; _E(‘HH)' (56)
my knowledge have not been adapted for constructing qua-
siequilibrium initial data. Because there are several errors in 1
the derivations and results in RdB4], and to provide a &Ehiiiij:_(J_H). (57)
uniform notation, | will rederive all of the equations here. V2

Our inner boundary surfacé, is assumed to be a space- . . .
like 2-surface with topology?. Becauses is closed, we can Finally, we will define the shear of the outgoing null rays,

can then simplify Eq949) and (50) to

(Jij—Hij). (59

define its unit normal via oij, and ingoing null raysg; , via
S=\Vi7, (45 oj=3jj— zhjo and o=3;— zhjo. (58
where\ is a normalization constant fixed Isjs;=1 andr is In order to generate boundary conditions, we need to

a scalar function which has a level surface 0 that defines make some assumptions. First, we will demand that our inner
the surfaceS. The 4-dimensional generalization ef has boundar_y,S, is an apparenf[ horizon. This _is equivalent to
componentss*=[0,s'] obtained from the condition that demanding that the expansion of the outgoing null rays van-
s#n,=0. ishes onS. Thus our first condition is that
The metric,h;;, induced onS by v;; is given by
o=0. (59
hij=vij—sis;.- (46) . N _—
If we are looking for quasiequilibrium configurations, then
We also define the extrinsic curvatute;; , of S embedded we wantS to remain at the same coordinate location in the

in the 3-dimensional spatial hypersurface as 3-dimensional hypersurface as time passes. To enforce this
= . condition, it is necessary that,7=9,7=0, wheret is the
Hij=—hih;Visy=— 2 Lsh;; (470 approximate Killing vector associated with our demand of

quasiequilibrium. However, there is no reason that coordi-
Naturally associated witly are two sets of null vectors: a nates cannot be free to moea S. In fact, this freedom is
set of outgoing null raysk”, and a set if ingoing null rays, pecessary to allow for rotation of the black hole. This means
k¥, defined by that, in order to keefS at the same coordinate locatiof
=0 is too strong a condition. If we defingas the part of
kﬂziz(n,ursﬂ) and kﬂzi(nﬂ_su)' (48) that is orthogonal t&, then it is necessary and sufficient that

L£,7=0 and hiV,L,r=%L,7=0, (60)
Associated with each set of null rays is an extrinsic curvature
of S as_embedded in the full 4-dimensional manifold. TheSQNhere@i is the 2-dimensional covariant derivative compat-
are defined as ible with h; . If we define the normal component of the shift

b

pv— %hzhf‘ckgaﬁ ' (49)

, B.=p'si, (61)
3

pv— %hzhfﬁkgaﬁ (50) S
then we can write as

To simplify the following, we will introduce various projec-

tions of K;; along and normal tc: F=an®+ B, s, (62)
‘]ijzh:(h}Kkly (51 We now need to consider how the expansiansand o,
evolve anngZ. For this calculation, a few identities are cru-
Ji=hfs'Ky, (52 cial:
J=hlg;=hiK;, (53 hiR;j= 3(R—H2+H;HI +R), (63
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S'9R;= 3(R+H?—H;HI —R), (64)

N L. V,17=—n,[n"V,B, + B, (K-J)], (65)

whereR is the Ricci scalar associated withy andV,, is the

4-dimensional covariant derivative. The first two identities
are obtained from various combinations and contractions ol?

PHYSICAL REVIEW D 65 084003

tion. The two equations for the evolution of the expansions,
Eqgs.(68) and(69), are not yet restricted by any assumption
of quasiequilibrium. The only assumption in their derivation
is that the surfacé& remain at a constant coordinate location
which is embodied in Eq.60).

If we now restrict Eqs(68) and(69) to apply to apparent
orizons by enforcing conditio(69) and also impose quasi-

the Gauss-Codazzi-Ricci equations that govern the embeg_quilibrium on the evolution equations for the expansions,

ding of S in the 3-dimensional hypersurface. The third iden-

tity can be obtained by direct calculation.
As useful intermediate results, we obtain

EgJ:[%(JZ_H2)+ %(Jij\]ij +Hinij)—JiJi+87TSijsisj

+ 3R-V2]a+[J;HT+IH-HK—87j;s'+ VJ!

+2J'W]B, +HS' Ve, 66
LH=[IHT =8 s =3 = 20V Ja+[ 3 (I2+H?)

+ 533+ HyHT) + 3,0~ IK+8mp— 3R

+@2]’3L+Jsi€ia_ 67)

These equations follow from the identitié&3)—(65) and the
evolution and constraint equatio3)—(6). Finally, we can
simplify these to the desired results:

1 1, 1
Lo=— 0| o+ z0——=K|+E& +a
I4 \/E 2 \/E (BL )

Lol 2o-26- 2k |+ De8aT, ki
+E o EO-_EO-_E +D+8wl,,
X(,Bl—a)+a'si€ia, (68)

) 1., 1 1 .
£§U=—E o 0’+§O'—EK +E|(B—a)

11,(1, 1 1 K
— = 0| s O0—=0— —F—=

Ve[ \20 20 2
+D+8nT, k*k" (B, +a)— 5s'Va, (69)

where
D=h(V+I)(Vj+3) - 3R, (70
D=hi(%,-3) (V- ) - iR, (72)
E=0ijo"1 +87T , kMK, (72
éE(a'ljé'IJ+87TTMV|,(M|,(V (73)

We note thai€ and £ are both non-negative so long as the

then we find
0=D(B,~a), (75)
o'V, ——i’(’—iK +0;0" (B —a)
ogsVia= \/E ol o \/E gijo’ |(BL—~«a
1(,(1, 1 ,
—E g EU—EK +D|(B,+a). (76)

These equations are based on the approximation that the
shear of the outgoing null rays on the apparent horizon van-
ishes, which is true for the case of a stationary black hole,
and on the requirements thaf, k“k"=T, k*k"=T, k*k"
=0 on the apparent horizon if the black hole is in quasiequi-
librium. Finally, | reemphasize that the conditions for quasi-
equilibrium on the two expansions are given by E&l), not
by d,0=49,0=0, so that the location of the horizon is fixed
but the black hole is allowed to rotate &

On inspection, Eq(75) yields the solution

BL:av (77)

which is compatible with the Killing horizon boundary con-
dition obtained in the case of corotatig@9). The Killing
horizon boundary conditions for irrotation and general rota-
tion, Egs.(41) and (44), are not compatible with Eq77)
unless we restrict the rotational terms to exthe surfaceS.
Thus, the correct boundary condition on the shift for an ir-
rotational black hole should be

Bi|5=asi|5+ﬂh}<%)1 K (79
and the condition for general rotation should be
. . . . g\
,8'|5=as'|3—h} QXXI_Q(Q) B (79

Notice that our assumption of quasiequilibrium has led to
one condition on the shift, and yet Eq89), (78) and(79)
specify three conditions on the shift. This is appropriate since
we have made specific choices for the rotation of the black
hole, namely corotation, irrotation, or some general rotation
specified by}, and x'.

The condition thatS be an apparent horizon, E¢9),

matter satisfies either the weak or the strong energy condalso yields a useful boundary condition if we work in the
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conformal space. The conformal transformation g (11)
induces a natural conformal weighting fof and for the unit
normal toS,

hij= ¢4F‘ij ) (80)
si=y % (81)

We find that Eq(59) reduces to
$Vidn yls=— 3(hI¥s;— )]s, (82)

PHYSICAL REVIEW D 65 084003

(42). And finally, we must choose the conformal 3-geometry,
3/” , and the initial temporal gauge via

A. The temporal gauge choice

In all previous work on quasiequilibrium data for either
neutron stars or black holes, maximal slicing has been used.
With this choiceK=0, and it is natural to use the “maximal
slicing equation” to fix the lapse. The maximal slicing equa-
tion has been used extensively in numerical evolutions and is
simply a linear second-order elliptic equation for the lapse
derived from the evolution equation fd¢ by setting ¢;K
=0 (cf. Ref. [35]). For a quasiequilibrium situation, it is

which is a non-linear boundary condition that incorporateshatural to use the conditiosK =0, but to generalize it to

both ¢ and its normal derivative. While this boundary con-

any arbitrary value foK. In this case, the equation that re-

ditions looks somewhat complicated, it reduces to the ofterults

used minimal surface boundary condition wheneljge=0,

and it has previously been used successfully to construction

initial-data setg33].
We can now further simplify the remaining condition
given in Eq.(76). From Eqgs.(56), (57), and(59), we obtain

o=1/2J.

Together with Eqs(77), (80), and(81), this reduces E(.76)
to

(83

JsVals=—y?(I?—IK+D)als, (84)

with
D=y Y[ (V-3,)(V,-J;)— tR+2VZny]. (89

Hereﬁi andR are the covariant derivative and Ricci scalar

associated with the conformal metﬁg . Equation(84) rep-
resents a complicated mixed condition on the lapse that i
volves an elliptic operator acting over the closed surféce
There is no guarantee that E®5) is invertible, however, if
it is, then Eq.(84) represents a viable boundary condition.

V. QUASICIRCULAR ORBITS FOR BLACK-HOLE
BINARIES

The primary goal of this paper is to fully define a formal-
ism for constructing initial data sets representing astrophys
cally realistic black-hole binaries in quasicircular orbits. As

n-

Vo) - al§yR+ 50K+ g TAA

+2myPK(p+29)] =y°B VK, (86)
is often called the “constant trade€-equation”(constant re-
fers to the fact that K is constant in time, not constant in
space.

For a quasiequilibrium situation, we would like to have
dyyi;=0 anddK;;=0. However, this will only be obtainable
in true equilibrium situations where we have exact Killing

vectors. We can decompose these conditions to&g}al}
=0, d;%=0, ;A;;=0 andd,K=0 as the possible quasiequi-
librium conditions that we might apply. Of these, only
dyyij=U;; is part of the freely specifiable data of the thin-
sandwich decomposition. Given that we mustyjxand that
we chooseﬁij =0 as a quasiequilibrium condition, it is not

reasonable to assume that we can also ﬁfmj =0 except
in true equilibrium conditions. In addition to two dynamical

degrees of freedomy; j also encodes the initial spatial gauge
choice. Similarly, K encodes the initial temporal gauge
choice and parity with the spatial gauge suggests that we
should let quasiequilibrium fi¥;K=0 and that it is not rea-
sonable to also expect=0 except in true equilibrium
conditions.

We can examine the conditioRg=0 even further. From
Eq. (34) we find that this condition is equivalent to
|-

ViB<+68Vidn y— yfaK =0. (87)

was shown in Sec. lll B, the thin-sandwich decomposition of
the constraint equations appears to be a natural choice to Ugge might consider using E@87) to fix K instead of choos-

for this purpose. In particular, the simple choiceudf=0 is
required by the assumption of quasiequilibrium. In Sec
IV C, boundary conditions compatible with quasiequilibrium

ing it freely. However, if we use Eq@87) to replaceK in
either Eq.(26) or (18) we find that the resulting elliptic op-
erator is non-invertible. One might then hope that an iterative

were developed. However, there are still several freely specscheme could be used to fi so thatd; /=0 is satisfied.
fiable quantities that we have not considered within the conHowever, numerical experiments with this approach have
text of quasiequilibrium. In particular, we must consider howshown it to be unstablg36].

the initial temporal gauge choice evolves off of the initial

Given that the thin-sandwich decomposition requires that

slice viaa. We must decide what value to use for the orbitalw be fixed, it is fortunate that the condition of quasiequilib-
angular velocity(), in setting the outer-boundary conditions rium provides an elliptic equation and boundary conditions
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that fix this quantity, just as the condition of quasiequilibrium  As is pointed out in GGBL1, it is, in general, unreasonable
provides the means of constructing boundary conditions foto assume that the entire family of solutions will satisfy the
the constraints. physical condition of quasiequilibrium in which we are in-
terested. This situation is similar to that encountered in
B. The equations and boundary conditions of quasiequilibrium ~ Searching for quasicircular orbits via the effective potential
method[3]. In fact, the effective potential in that approach

:EZ;??;&f?;égi“%g%g&ggd I(fzv?e 'nggmgr:/(z?unur‘;\";hn d that effective potential was necessarily somewdthhoc In
anttrace-eq S _ my opinion, the most important contribution of GGB1 is
the quasiequilibrium condition' =0, these equations are  thejr more physically well-founded and covariant method for
. L= 1 ELo 17w determining which members of the family of solutions sat-
Vay— syR— 5K+ 547 "AjAT=0, (88)  isfy the condition of quasiequilibrium.
o . The condition for choosing appropriate valuedbfjiven
A —(Lp)IVinay °=3aVK, (89 in GGBL,2 is justified largely in terms of its relation to a
general relativistic version of the virial theoref@7]. The
V2ayp)— (ap)[ iR+ S y*K2+ %WS,Z\”,Z\H]: oBVK, condition is that(} is chosen so that the standard Arnowitt-
(90) Deser-Misier (ADM) mass, Expy, and the Komar(or
KVM) mass[38], My, agree. In my view, the justification
with All=(1/2a)(T,8). for this condition resonates most clearly when one considers
To solve these equations, we must first fix a conformathat, in generalExpyw# My . However, as was shown by
3—geometry}ij (not necessarily flat and fix K (not neces- Beig [39] (see also Ref[4Q]), these two mass measures
sarily a maximal slicg In order to incorporate black holes, 29'¢€ whe_n th_e spacetime is stationary. Since a qu_a5|eq_U|_I|b-
we next excises topologically spherical volumes from our UM solution is approximating a stationary spacetime, it is
solution domain. The closed 2-surfacs, of each excised natural to d_emand.thaEADle\'/lK, and in this case, we
volume will be the apparent horizon of that black hole. OnShould obtain quasicircular orbits.

each excised surface, we must apply the following boundary . SINCe. for a general gauge choiépy is not necessarily
given by the monopole piece of the conformal factor, we will

conditions: use a general definition of the ADM malg&l],
SKun gl 5= — 3 (h1¥;s;— ¢20) s, (9D 1 o
| . Enom=Tg- jg YIN(Gi-ofgd’s. (@7
as'|s corotation, =
Bs= i AN , - - -
as |5+th(£> irrotation, Here,Gij=v;;—fi;, fj; is the flat metric to whichy;; asymp-
N totes, and #S; is the covariant surface area element. We note
(92 that in Eq.(97), indices can be raised and lowered with either
e ~ yij or i, the traceg, can be obtained with either metric,
JsVals=—¢?(I?—IK+D)als, (93 =

and V; can be replaced with the flat covariant derivative.

where() is the angular velocity of the corotating frame. Fi- Slr_mlarly, a general definition of the Komar mass can be
written as[37]

nally, the requirement of corotation and the conditions of
asymptotic flatness yield boundary conditions at spatial in-

finity: 1 e ‘ )
Mk=7- ffw?"(via—ﬁ Ki)d<S;. (98)

=1, (94)

i _ ' In many cases3*K;, will fall off faster thanO(r ~2) and the
Ble=Q @ ' (99 second term in Eq(98) will not contribute. However, in

some gauges this term is important. An example is the
al,.=1. (96) PainleveGullstrand coordinate systetof. Ref.[42]).
C. Obtaining circular orbits D. Quasiequilibrium evolutionary sequences

Consider the system of equations and boundary condi- It is highly desirable to be able to construct evolutionary
tions outlined above. Assuming that the system is well-sequences of quasiequilibrium binary configurations. In par-
posed, solving it will result in two one-parameter families of ticular, this facilitates locating the ISCO. When one consid-
solutions, one for the corotation condition on the shift, anders neutron-star configurations, there is a natural way to con-
one for the irrotational condition. These families of solutionsnect neighboring solutions. Namely, the number of baryons
are parameterized by the orbital angular velodiy, contained in each star should not change as the star secularly
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evolves to smaller separation. With black holes, there is nintroducessomeerror. But, it is not clear that this is the most
such conserved quantity and one must fix some normalizingignificant source of error in these calculations. As stated
condition. earlier, | suspect that thad hoc normalization condition

In order to construct evolutionary sequences from quaused to determin€) and construct evolutionary sequences,
sicircular orbits obtained by the effective-potential method,and the choice of the extrinsic curvature itself, are the domi-
both a normalizing condition and the orbital angular velocitynant sources of error. It will be important to explore the

had to be determined by some means. One condition th&ensitivity of solutions to the choices fgf; andK in order
should be applicable to evolutionary sequences of quasiequjp understand this issue better.

librium configurationd 7,43,44 is Of course, it is possible that no regular quasiequilibrium
dE solutions exist when the CFMS assumptions are made. As

— —_ADM (99) discussed in Sec. IVA, a regular solution for the binary
dJ problem does not seem possible when inversion-symmetric

boundary conditions are chosen becaa$g=0. If we con-

This relation has been shown to hold well for evolutionarysider the case of a single black hole, we can easily find a
sequences of both corotatind4] and irrotational[20]  CFEMS solution of the quasiequilibrium equations and bound-
neutron-star binaries. Because the effective-potential methogky conditions specified in Sec. V B. This solution is simply
cannot determine the orbital angular velocity of each conthe Schwarzschild solution in isotropic coordinates. In this
figuration of holes in circular Orbit, qug) must be used to case, a|th0ug|m/:o on the apparent horizon, the solution is
determine(). But, locating each circular-orbit configuration, regular. This is possible because the spacetime admits a true
as well as determining) requires a normalizing condition. Killing vector. The direct generalization of this solution to a
In work so far with the effective-potential method, this nor- pinary system yields the problem attempted in GGB1,2 that
malization condition has been chosen to beadnhocdefi-  does not yield a regular solution. However, this does not
nition for the mass of an individual black hole in the binary mean that a quasiequilibrium solution is impossible given the
system, with the further assumption that this mass remaingFMS assumptions. The nonlinearity of the system of qua-
constant as the black holes secularly evolve closer togethesiequilibrium equations and boundary conditions allow for at
While this definition had appropriate limiting behavior when |east thepossibility of such solutions, even if it seems un-
the black holes have large separation, this normalization conikely.
dition seems problematical in the strong-field limit. The apparent problems with constructing a quasiequilib-

However, because quasiequilibrium data constructed frorfum, binary, CFMS solution should not be taken to suggest
the combination of the thin-sandwich and constant tiace- that conformally flat quasiequilibrium binary solutions are
equations naturally yields a value f6k for each circular-  unlikely. The problem with the CFMS assumptions is with
orbit configuration, GGB2 point out that E§99) can be  maximal slicing, not conformal flatness. Again, for the case
used to set the normalization condition for constructing evoof a single black hole, we can easily find solutions of the
lutionary sequences. This appears to be a much more welfuasiequilibrium equations and boundary conditions that are
founded condition than thed hoc condition proposed in conformally flat. One example is obtained from the
Ref.[3] for the effective-potential method. Thati hoccon-  Schwarzschild solution in Kerr-Schild coordinates, also re-
dition is essentially rooted in the notion that the area of theferred to as ingoing Eddington-Finkelstein coordinatefs

apparent horizon, an estimate of the true irreducible mass @ef. [42]). With the radial coordinate transformation
a black hole, should remain constant during secular evolu-

tion. Interestingly, the first results found in GGB2 show T 2M 2
agreement with thad hocmethod to the level of numerical r=7l 1\ 1+ = e2(I-V1+2MIn = (100
error in the solutions. Given the problems with the solutions r

obtained in GGB2, as outlined in Sec. IV A, it is too soon to 5
make any conclusions regarding the validity of th& hoc  wherer is the usual areal radial coordinate in Kerr-Schild

condition, but this point should be considered further. coordinates, the spatial metric on the Kerr-Schild slicing is
seen to be conformally flat. It is easy to verify that the qua-
V1. DISCUSSION siequilibrium boundary conditions are satisfied on the hori-

zon atr=2M. Of course, the slicing in this solution is not

So far, we have not considered specific choices for thenaximal, or even asymptotically maximal. A feature of this
conformal 3-geometryy;; , and initial slicing as specified by and other similar non-maximal single hole solutions is that
K. To date, only flat conformal 3-geometries and maximala#0 on the horizon. It seems likely that this feature will
slicings(I will refer to these as the CFMS assumptiphave  also hold for similar binary configurations, removing the
been explored extensively. It has been pointed out that quanost obvious obstacle confronting the construction of regu-
siequilibrium binary systems in circular orbits will not ex- lar quasiequilibrium solutions.
hibit a conformally flat 3-geometry at second post- Itis clear that we will want to explore configurations that
Newtonian ordef45]. Some consider this approximation to are not constructed on a maximal slice and we will want to
be the major source of error in current numerical work toconsider conformal 3-geometries that are not flat. This idea
model quasiequilibrium binary configurations and in locatinghas been explored in similar context0,11], but little has
the ISCO[7]. Certainly, the assumption of conformal flatnessbeen done other than to demonstrate that solutions can be
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found. The major limitation of these works is that the bound-a post-Newtonian metric is matched to two perturbed
ary conditions used were not well motivated. In the contextSchwarzschild metrics. However, it is unclear to me whether
of quasiequilibrium solutions, conformal 3-geometries andor not any of these solutions are immediately applicable. A
associated values &f should be constructed so that the ap-usable metric must be written in terms of a gauge where the
proximate black hole binaries are gdst in the corotating lapse and 3-metrismoothlycross the individual black-hole
coordinate system. By superposing two Schwarzschild holedorizons. In particular, the lapse should not vanish at these
one would approximate the 3-geometry of a pair of corotathorizons.

ing black holes. A superposition of two Kerr holes could Finally, we might consider the use of a slicing and
approximate the case of irrotational black holes, assumin@-metric obtained from a post-Newtonian solution where ra-
the spins are chosen correctly. Again, it will be interesting todiation reactionis included. In this case, we could also ob-
assess the sensitivity of corotating and irrotational solutionsgain a non-zero solution far'!. However, we should be cau-

o the.ch0|ce of the .conformall 3—g<iometry. tious in exploring solutions withi'l #0 since this violates
An improvement in the choice fog; andK would come  the principle of quasiequilibrium. In particular, the condition

from taking these data from post-Newtonian solutions forysed to determine the orbital angular velociy, will most

binaries in circular orbits. An appropriate metric could be|ikely not be applicable in this case.

constructed by omitting radiation damping terms. One possi-

bility would be to revert the effective one-body metric ob- ACKNOWLEDGMENTS

tained in Ref.[46] to an appropriate two-body coordinate
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