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Corotating and irrotational binary black holes in quasicircular orbits
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A complete formalism for constructing initial data representing black-hole binaries in quasi-equilibrium is
developed. Radiation reaction prohibits, in general, true equilibrium binary configurations. However, when the
time scale for orbital decay is much longer than the orbital period, a binary can be considered to be in
quasiequilibrium. If each black hole is assumed to be in quasiequilibrium, then a complete set of boundary
conditions for all initial data variables can be developed. These boundary conditions are applied on the
apparent horizon of each black hole, and in fact force a specified surface to be an apparent horizon. A global
assumption of quasiequilibrium is also used to fix some of the freely specifiable pieces of the initial data and
to uniquely fix the asymptotic boundary conditions. This formalism should allow for the construction of
completely general quasiequilibrium black hole binary initial data.
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I. INTRODUCTION

The problem of calculating the gravitational waveform
produced during the final plunge and coalescence of a pa
black holes currently is receiving considerable attention. T
attention is motivated by the imminent deployment of t
Laser Interferometric Gravitational Wave Observato
~LIGO! and other, similar, detectors. It is further motivat
by the fact that black-hole binaries are expected to be str
sources of gravitational waves and are considered one o
most likely candidates for early detection. The detection a
interpretation of black hole mergers will be greatly facilitat
by theoretical predictions for the gravitational waveform
produced by these events. However, in the absence of
dictions for the full waveforms, even information about t
behavior of the orbits will be helpful. In particular, informa
tion about the properties of the so-called last stable orbit
innermost stable circular orbit~ISCO!, is of interest.

Currently, large scale numerical simulations are the o
known approach for computing the gravitational wavefor
produced during the final plunge and coalescence of bla
hole binaries. Any dynamical simulation must start w
some initial data, and the results of such a simulation
entirely dependent on how well the given initial data cor
spond to the desired physical situation. Thus, astrophysic
realistic initial data are required if we are going to simula
the gravitational waveforms of astrophysical black-hole
naries. Because radiation damping tends to circularize bin
orbits, orbits that are nearly circular are of greatest inter
Of course, energy loss by gravitational radiation also me
that no truly circular orbits can exist for black-hole bina
systems. To keep this fact in mind, we will always refer
such orbits as being quasicircular.

The usefulness of current numerical simulations of g
eral black-hole binary systems is limited by two importa
facts. First, the simulations themselves are only beginnin
reach the stage where they can produce useful informa
Furthermore, the accuracy of this information is still que
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tionable. Second, the initial data currently being used
these simulations is rather crude. Initial data for binary bla
hole systems have been available for some time now@1,2#.
The approaches for generating these initial data can prod
rather arbitrary configurations and a way of picking whi
data sets represent binaries in quasicircular orbits
needed. An approximation scheme for locating quasicircu
orbits was developed@3#. Based on an effective-potentia
method, this scheme was first applied to non-spinning, eq
mass binaries using the inversion-symmetric data of Ref.@1#.
Later, this approach was applied to non-spinning, equal-m
binaries based on puncture data@4# and to spinning, equal-
mass black holes@5#.

Unfortunately, there are problems with these data s
Because the schemes used to generate these data assu
metric to be conformally flat, they cannot produce ast
physically accurate data for spinning holes@5#. Furthermore,
the estimates for the location of the ISCO produced by th
schemes do not agree well with results based on var
post-Newtonian approximation methods@6,7#. There is some
speculation that this discrepancy is rooted in the approxim
tion of conformal flatness. While the conformal flatness a
proximation certainly introduces some error, I suspect t
the most important sources of error come from a failure
accurately approximate the masses of the black holes as
approach the ISCO and the choice of the extrinsic curvat

Initial-data schemes relying on the conformal flatness
proximation have been popular because they are relati
simple and inexpensive from a computational point of vie
When maximal slicing is used, an analytic solution of t
momentum constraints exists@8,9#. This means that only the
Hamiltonian constraint, a single quasilinear elliptic part
differential equation~PDE!, need be solved. Recently, effor
have been made to move beyond the approximation of c
formal flatness~cf. Refs.@10,11#!. Unfortunately, these data
have not yet been used to estimate the location of the IS

For the case of neutron-star binaries, a very different
proach has been used to construct initial data represen
neutron stars in quasicircular orbits and to locate
ISCO. At the core of this approach is the assumption t
the spacetime admits an approximate Killing vect
©2002 The American Physical Society03-1
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lW[(]/]t)1V(]/]f). This approach was first tested for th
case of a single spinning neutron star@12#. Subsequently,
variations of this method were used to study neutron-
binaries in quasicircular orbits@13–20#. This approach for
generating initial data for neutron-star binaries in quasicir
lar orbits is particularly attractive when compared to the
fective potential method used for black-hole binaries. Firs
the neutron-star matter is to be in hydrostatic equilibriu
then the 4-velocity of the matter must be proportional to

approximate Killing vector,lW. The assumption thatlW is a
Killing vector ultimately yields a relativistic Bernoulli equa
tion that governs the behavior of the matter and, most imp
tantly, yields a unique value of the angular velocity,V, of the
binary system in a circular orbit at a given separation. T
presence of matter also sets a natural length scale for
problem and conservation of baryon number makes
straightforward to connect initial-data solutions at differe
radii to produce meaningful evolutionary sequences.

Recently, Gourgoulhon, Grandcle´ment and Bonazzola
@21,22# ~GGB1 and GGB2 respectively! have attempted to
adapt the approach used to construct neutron-star binary
tial data to the case of black-hole binaries. Their initial
sults are very encouraging, showing much better agreem
with post-Newtonian techniques for locating the ISC
However, there seem to be problems with their solutions
seems likely that their initial data represent a much be
approximation to astrophysically realistic black-hole binar
in quasicircular orbit than the data produced using the ef
tive potential technique. However, these new solutions
not represent valid general relativistic initial data beca
they do not satisfy the constraint equations everywhere.
thermore, as I will justify later, I do not believe that th
particular problem being solved in GGB1,2 admits a so
tion. Interestingly, this author had attempted to solve vir
ally the identical problem@23# but was unable to obtain con
vergence for the coupled system of equations. As the aut
point out in GGB2, they mustregularize their solution for
the shift in order to obtain an extrinsic curvature that do
not diverge at the throats of the black holes. It is this re
larization technique that prohibits their solutions from sa
fying the constraints everywhere. Although I have conce
regarding the validity of the particular solutions found
GGB2, I believe that the authors of GGB1 may have mad
significant contribution to the effort to construct astrophy
cally realistic black-hole binary initial data. This contributio
is rooted in their approach for determining the orbital angu
velocity, V.

The problem with the approach taken in GGB1 is that i
not directly applicable outside the restrictions of conform
flatness and maximal slicing, and it seems that a solu
within these limits does not exist. The limitations in th
GGB1 method are rooted in the boundary conditions po
on the inner boundaries of their solution domain, that is,
black-hole boundaries. In GGB1 the authors choose to
pose a particular isometry condition on the spatial hypers
face. This isometry condition naturally yields boundary co
ditions on the throats of the black holes, however, t
isometry condition and the boundary conditions derived fr
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it have no direct connection to the desired quasiequilibri
state of the solution. Interestingly, the authors of GG
choose to mix the isometry-derived boundary conditio
with a Killing-horizon condition that is essentially an equ
librium condition on the black hole horizon. However, th
mixed set of boundary conditions is not consistent with
isometry condition unless the artificial regularization of t
shift is performed. Again, this regularization prohibits th
solutions from satisfying the constraints everywhere.

In this paper, I will develop a formalism for constructin
completely general quasiequilibrium black hole binary init
data. This formalism is also based on a generalization of
approach used for constructing neutron-star binary ini
data. The key to this formalism is a set of boundary con
tions that are based on the approximation that the black h
are in quasiequilibrium. Boundary conditions forall of the
quantities required to construct quasiequilibrium data can
found based on the quasiequilibrium assumption. Th
boundary conditions are completely general. In particu
they do not depend on the often-used assumptions of con
mal flatness and maximal slicing. This formalism is com
pleted by using the approach developed by GGB1 to de
mine the orbital angular velocityV of the system, an
approach that is also rooted in the assumption of quasie
librium.

In the following sections, I will derive and describe th
new formalism. Where appropriate, I include compariso
with related methods in order to clarify the advantages of
new formalism. In Sec. II, I begin with a general discussi
of the decomposition of Einstein’s equations and how
initial-data equations are posed. In Sec. III, I discuss t
particular decompositions of the constraint equations. In S
IV, I discuss the strengths and weaknesses of the appro
used in GGB1,2 and derive the boundary conditions requ
for the new formalism. In Sec. V, I work through the remai
ing issues involved in constructing quasiequilibrium initi
data, and summarize the equations and boundary condit
of the new formalism. Finally, in Sec. VI, I conclude wit
discussion that focuses on the impact of possible choices
the conformal 3-geometry and slicing condition.

II. THE INITIAL-DATA EQUATIONS

In this work, we will use the standard 311 decomposi-
tion with the interval written as

ds252a2dt21g i j ~dxi1b idt!~dxj1b jdt!, ~1!

whereg i j is the 3-metric induced on at5const spatial hy-
persurface,a is the lapse function, andb i the shift vector.
The extrinsic curvature of the spatial slice,Ki j , is defined
by1

1In this paper, latin indices denote 3-dimensional spatial indic
Greek indices are 4-dimensional. In Sec. IV C, latin indices can
replaced with indices varying over the two dimensions of the s
face whenever only 2-dimensional tensors are involved in the
pression.
3-2
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COROTATING AND IRROTATIONAL BINARY BLACK . . . PHYSICAL REVIEW D 65 084003
Ki j [2 1
2 Lng i j , ~2!

whereLn denotes the Lie derivative along the unit normal
the spatial slice,nm. Einstein’s equations,Gmn58pTmn ,
then reduce to four sets of equations. Two are evolut
equations for the spatial metric and extrinsic curvature:

] tg i j 522aKi j 1¹̄ib j1¹̄jb i ~3!

and

] tKi j 5a@R̄i j 22Kil K j
l 1KKi j 28pSi j 14pg i j ~S2r!#

2¹̄i¹̄ja1b l¹̄lKi j 1Kil ¹̄jb
l1K jl ¹̄ib

l . ~4!

The remaining two are the constraint equations

R̄1K22Ki j K
i j 516pr ~5!

and

¹̄j~Ki j 2g i j K !58p j i . ~6!

Here,¹̄i , R̄i j , andR̄ are, respectively, the covariant deriv
tive, Ricci tensor, and Ricci scalar associated with the spa
metric g i j . K[Ki

i , Si j is the matter stress tensor,S[Si
i , r

is the matter energy density, andj i is the matter momentum
density. These matter terms are related to the stress-en
tensor via

Smn[gm
agn

bTab , ~7!

j m[2gm
n naTna , ~8!

r[nmnnTmn , ~9!

Tmn5Smn12n(m j n)1nmnnr. ~10!

Initial data for a Cauchy evolution via Einstein’s equ
tions consist of specifyingg i j andKi j on an initial hypersur-
face. The Hamiltonian constraint~5! and the momentum con
straints ~6! constitute the initial-data equations of gene
relativity, and the initial data must satisfy these equatio
Equations~5! and ~6! constrain four of the 12 degrees o
freedom found in the initial data,g i j andKi j . The covariant
nature of Einstein’s equations allows us fourgaugedegrees
of freedom. The remaining four degrees of freedom are
dynamicaldegrees of freedom and are split two apiece
tween the metric and extrinsic curvature.

The task of constructing initial data for a Cauchy evo
tion via Einstein’s equations can be broken down into a f
fundamental task shared by any approach.

~1! A decomposition of the constraints must be chosen
specifies how the constrained, gauge, and dynamical
grees of freedom are associated with the initial data.

~2! Boundary conditions must be chosen for the constrai
degrees of freedom such that~a! the constraint equation
08400
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reduce to a well-posed set of elliptic PDEs and~b! they
are compatible with the desired physical content of
initial data.

~3! A choice for the spatial and temporal gauge must
made that is compatible with the desired physical co
tent of the initial data.

~4! The dynamical degrees of freedom must be specified
as to yield the desired physical content in the initial da
Once these steps have been completed, all that rem
are the technical aspects of solving the coupled se
elliptic PDEs. Thephysicslies entirely in the four enu-
merated steps given above.

III. DECOMPOSITIONS OF THE CONSTRAINTS

In the weak field limit where Einstein’s equations can
linearized, there are clear ways to determine which com
nents of the initial data are dynamic, which are constrain
and which are gauge. However, in the full nonlinear theo
there is no unique way to perform the decomposition. P
haps the most widely used class of constraint decomposit
are the York-Lichnerowicz conformal decompositions whi
are based on a conformal decomposition of the metric
various other quantities@24–26#.

The metric is decomposed into a conformal factor,c,
multiplying a conformal metric:

g i j [c4g̃ i j . ~11!

Using Eq.~11!, the Hamiltonian constraint~5! can be written
as

¹̃2c2 1
8 cR̃2 1

8 c5K21 1
8 c5Ki j K

i j 522pc5r, ~12!

where¹̃2[¹̃ i¹̃i , and ¹̃i and R̃ are the covariant derivative
and Ricci scalar associated withg̃ i j . With this conformal
decomposition, the conformal metric,g̃ i j is considered to
encode the dynamical degrees of freedom of the metricand
the initial gauge choices for the three spatial coordinates.
conformal factor,c, is the constrained portion of the metri

Most decompositions of the extrinsic curvature begin
splitting it into its trace,K and tracefree parts,Ai j ,

Ki j [Ai j 1
1
3 g i j K. ~13!

The decomposition proceeds by using the fact that we
covariantly split any symmetric tracefree tensor,S i j , as fol-
lows @27#:

S i j [~LX! i j 1T i j . ~14!

Here, T i j is a symmetric, transverse-traceless tensor~i.e.,
¹jT i j 50 andT i

i50) and, in three dimensions,

~LX! i j [¹ iXj1¹ jXi2 2
3 g i j ¹lX

l . ~15!

At this point, the decomposition can proceed in several d
ferent directions, and we will consider two of them belo
However, in all cases,K is considered to encode the initia
3-3
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GREGORY B. COOK PHYSICAL REVIEW D 65 084003
temporal gauge choice,T i j encodes the two dynamical de
grees of freedom, andXi are the three constrained degrees
freedom.

A. Conformal transverse-traceless decomposition

Historically, the most widely used decomposition e
presses the extrinsic curvature as

Ki j [c210@~ L̃X! i j 1Q̃i j #1 1
3 g i j K. ~16!

In this case, the transverse-traceless decomposition t
place with respect to the conformal metric. It will also b
convenient to define a conformal trace-free extrinsic cur
ture, Ãi j , by

Ãi j [c10Ai j 5~ L̃X! i j 1Q̃i j . ~17!

Using Eq.~16! in the momentum constraint~6! yields

D̃LXi5 2
3 c6¹̃ iK18pc10j i , ~18!

where

D̃LXi[¹̃j~ L̃X! i j

5¹̃2Xi1 1
3 ¹̃ i~¹̃jX

j !1R̃j
i Xj , ~19!

and R̃j
i is the Ricci tensor associated withg̃ i j . In terms of

Eq. ~17!, the Hamiltonian constraint~12! becomes

¹̃2c2 1
8 cR̃2 1

12 c5K21 1
8 c27Ãi j Ã

i j 522pc5r. ~20!

Together, Eqs.~11! and ~16!–~20! constitute the full confor-
mal transverse-traceless decomposition of the constraints
solve this set of equations, one must specifyg̃ i j , Q̃i j , andK
in addition to the matter termsr and j i .

The reason that this decomposition has been so wid
used stems from the simplifications that occur when
freely specifiable data are chosen so that the initial data
persurface is maximal,K50, conformally flat so thatg̃ i j is a
flat metric, andQ̃i j is chosen to vanish. Then, for vacuu
spacetimes, the constraints reduce to

¹̃2c1 1
8 c27Ãi j Ã

i j 50, ~21!

and

¹̃2Xi1 1
3 ¹̃ i~¹̃jX

j !50, ~22!

and ¹̃i is, in this case, the usual flat space covariant der
tive operator. What is remarkable about this simplified s
tem of equations is that Eq.~22! decouples completely from
Eq. ~21! and has analytic solutions that represent a sin
black hole with any desired value of linear and angular m
mentum @8,28#. Furthermore, since Eq.~22! is linear, any
number of these solutions may be superposed to repre
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multiple black holes. All that is required to construct com
plete initial data is to solve the single quasilinear ellip
PDE in Eq.~21!.

All of the work to date that has used the effective pote
tial method to locate quasicircular orbits in black-hole bina
systems@3–5# has used initial data computed by this syste
The only difference between the data used in Refs.@3,5#, and
in Ref. @4# is in the topology of the initial data hypersurface

B. Conformal thin-sandwich decomposition

An alternative decomposition recently proposed by Yo
@29# is a generalization of an approach used first by Wils
@30# and later by others@12,13,31# for the study of neutron-
star binaries. Furthermore, aside from some trivial diff
ences in conformal scalings, it also subsumes the appro
outlined in GGB1. This decomposition differs from the co
formal transverse-traceless decomposition significantly
philosophy, but is very similar in form. The difference
found in the decomposition of the extrinsic curvature. In t
conformal thin-sandwich decomposition,Ki j is decomposed
as

Ki j 5
c210

2ã
„~ L̃b! i j 2ũi j

…1 1
3 g i j K, ~23!

or

Ãi j 5
1

2ã
„~ L̃b! i j 2ũi j

…. ~24!

Here, ũi j takes the place ofQ̃i j in representing the freely
specifiable dynamical portion of the extrinsic curvatu
However, owing to the nature of the thin sandwich deco
position, it also has a more physical meaning as we shall
in a moment. Notice that in Eq.~24!, it is not the conformal
trace-free extrinsic curvature that is decomposed, but ra
2ãÃi j . The new scalar,ã, is the conformal lapse defined b

a[c6ã. ~25!

Also notice that, in the transverse-traceless decomposit
the vectorXi has been replaced by theshift vector, b i .

Using the thin-sandwich decomposition~23! in the mo-
mentum constraint~6! yields

D̃Lb
i2~ L̃b! i j ¹̃j ln ã5 4

3 ãc6¹̃ iK1ã¹̃j S 1

ã
ũi j D

116pãc10j i . ~26!

Taken together, Eqs.~11!, ~23!, ~24!, ~26!, ~19!, and ~20!
constitute the full thin-sandwich decomposition of the co
straints. To solve this set of equations, one must specifyg̃ i j ,
ũi j , K, and ã in addition to the matter termsr and j i .

The thin-sandwich decomposition differs from mo
initial-data decompositions in that its derivation uses a s
ond spatial hypersurface that is infinitesimally separa
3-4
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COROTATING AND IRROTATIONAL BINARY BLACK . . . PHYSICAL REVIEW D 65 084003
from the primary spatial hypersurface. The time and spa
coordinates in these two hypersurfaces are connected b
kinematical variables,a andb i , and this connection allows
us to obtain a physical interpretation forũi j , the freely speci-
fiable dynamical portion of the extrinsic curvature. The res
is that ũi j is a symmetric, tracefree tensor with the physic
interpretation that

ũi j [] tg̃ i j , ~27!

and t is the time coordinate associated with the time-li
vector tm that connects points in the two adjacent hypers
faces that carry the same spatial coordinate labels, i.e.

tm[anm1bm, ~28!

and nm is the timelike unit normal to the primary spati
hypersurface.

This decomposition has proven useful for construct
quasiequilibrium initial data sets because, in the frame wh
the configuration is assumed to be time-independent~the
corotating frame!, it is a natural approximation to setũi j
50. To my knowledge, all of the work so far~including
Refs. @12,13,16,30,31#, and GGB1,2! use the same set o
assumptions to fix the freely specifiable data in the th
sandwich decomposition. In particular, they all choose
initial data hypersurface to be maximal,K50, conformally
flat so thatg i j is a flat metric,ũi j is chosen to be zero, an
they all fix the lapse by demanding that] tK50. The final
assumption is a reasonable one since a quasiequilibrium
lution was the goal of each of these works and the ti
vector~28! is the one corresponding to the corotating fram

This conformal thin-sandwich decomposition will form
the foundation of the initial-data formalism being develope
However, unlike previous works, we will only make the r
striction that ũi j 50. In particular, we willnot restrict the
formalism to conformally flat maximal slices of the fu
spacetime, and wewill require that all boundary condition
and any further restrictions apply~at least in principle! to
general slicings and conformal 3-geometries.

IV. BOUNDARY CONDITIONS FOR THE CONSTRAINT
EQUATIONS

A. The GGB approach

We now return to the specific problem of using the th
sandwich decomposition to construct initial data for a pair
black holes in quasicircular orbits. In addition to the stand
assumptions outlined at the end of Sec. III B, GGB1 a
makes the assumption that the initial-data hypersurfac
inversion symmetric. That is, the initial data hypersurface
taken to consist of two asymptotically flat hypersurfaces t
are joined together at the throats of each black hole, and
isometric to each other with each throat being a fixed po
set of the isometry condition. The isometry condition th
imposes a set of boundary conditions at the throats on
quantities on the manifold. There are actually two choices
the boundary conditions, and GGB1 make the choice
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requires the lapse to vanish on the throats. For the shift v
tor, the isometry imposes the following boundary condition

b r uS50, ~29!

]bu

] r
U
S
50, ~30!

]bf

] r
U
S
50, ~31!

where we are assuming the throat is a coordinate sphere
uS denotes evaluation on the throat.

Since this version of inversion symmetry requires th
auS50, regularity of the extrinsic curvature at the throa
requires

~ L̃b! i j uS50. ~32!

As GGB1 point out, this condition is potentially problema
cal.

Given the choice for the isometry condition used
GGB1, it follows @32# that the throats are apparent horizon
GGB1 make the interesting choice of using this fact
change boundary conditions~30! and~31! on the shift. They
obtain new boundary conditions on the shift by demand
that]/] t be null on the throats so that the throats are Killi
horizons. For the case that the lapse vanishes on the thr
this condition yields

b i uS50. ~33!

Altering the boundary conditions on the shift in this wa
poses a problem. Using Eq.~33! to replace conditions~30!
and ~31! means that the solution is not guaranteed to
inversion-symmetric. This, in turn, means that the inn
boundaries are not guaranteed to be apparent horizons,
which it follows the Killing horizon boundary condition
may not be appropriate for the inner boundaries.

In GGB1, the authors go to great length to show th
inversion-symmetry, their Killing-horizon boundary cond
tions on the shift, and the required regularity condition~32!
can be compatible. However, satisfying the Killing-horizo
boundary conditions together withsomeof the inversion-
symmetry boundary conditions does not guarantee that
regularity condition~32! is satisfied, or that the resulting so
lution is inversion symmetric. If fact, as pointed out
GGB2, it seems that their solutions are not compatible w
this condition without some kind of artificial regularizatio
of their solution for the shift. This is not surprising. We ca
rewrite the evolution equation for the metric as

] tg i j 5ui j 1
2
3 g i j ~¹̄kb

k2aK !

5c4@ ũi j 1
2
3 g̃ i j ~¹̃kb

k16bk¹̃kln c2c6ãK !#, ~34!

with ui j [c4ũi j . Given the the Killing-horizon boundary
conditions and the choices of maximal slicing andũi j 50,
Eq. ~34! reduces to
3-5
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GREGORY B. COOK PHYSICAL REVIEW D 65 084003
] tg i j uS5 2
3 c4g̃ i j

]b r

] r
U
S

. ~35!

It is demonstrated in GGB1 that regularity requir
]b r /] r uS50 and the authors take Eq.~35! as establishing
regularity. However, the choiceũi j 50 is not equivalent to
] tg i j 50, but only fixes the time rate of change of the co
formal metric. The time rate of change of the conform
factor is not fixed by this condition and is only guaranteed
vanish if tW is a true Killing vector. Thus, for a quasiequilib
rium solution of the constraints, it seems reasonable
]b r /] r uS is small in some appropriate norm, but it is unlike
to vanish.

So, the approach outlined in GGB1 has two techni
problems: the boundary conditions being used do not g
antee that the solution is inversion symmetric or that
solution will be regular at the inner boundary. Both of the
problems are fixed in GGB2 by an artificial regularization
the shift solution. The unfortunate side effect of this regul
ization procedure is that the solutions no longer satisfy
constraint equations and, thus, cannot represent valid in
data. In fact, it seems that a regular, inversion-symme
solution for the extrinsic curvature is not possible~or is at
least extremely unlikely!, given the assumptions of GGB1.

B. Killing-horizon boundary conditions

Although the particular set of boundary conditions pr
posed in GGB1 does not seem to yield a well-posed sys
of elliptic equations, the idea of using some kind of bound
conditions on the apparent horizons of the black holes
promising. An alternate approach for obtaining bound
conditions on the shift is found by a slight generalization
the Killing-horizon conditions proposed in GGB1. As w
will see, this change in perspective will allow us to deri
boundary conditions on the shift that will yield corotatin
black holes, irrotational black holes, or black holes w
some arbitrary angular velocity. We begin by noting that
outward pointing null vector whose vanishing expansion
fines the apparent horizon can be written as

km}~nm1sm!. ~36!

Here, sm is the outward pointing unit vector normal to th
apparent horizon~see Sec. IV C for further details!. In terms
of components, this can be written as

km5@1,asi2b i #, ~37!

where I have chosen a normalization so thatkt[1. Note that
km is null by construction andkmkm50 for anychoice of the
shift vector.

If we assume rotation in thef direction, then the approxi
mate killing vector for a quasiequilibrium configuration
given by

lW[
]

]t
1V

]

]f
, ~38!
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where V is the orbital angular velocity of the binary, an
]/]f represent the asymptotic Killing vector for rotation
the f direction. In the corotating coordinate system,lW is the
time vector and it has componentsl m5@1,0,0,0#. If the indi-
vidual black holes are corotating with the system, then th
do not appear to be rotating in that coordinate system. In
case, the Killing-horizon condition implies thatl m should be
parallel tokm which immediately yields

b i uS5asi uS . ~39!

Notice that this condition reduces directly to Eq.~33! when
auS50.

We can also derive a boundary condition for black ho
that are not rotating with respect to observers at rest at in
ity, black holes that we might loosely refer to as being irr
tational. In this case, the outward pointing null vectors at
apparent horizon should be parallel totW, not to lW. In the
corotating coordinate system, the components oftW can be
written symbolically as

tm5@1,2V~]/]f! i #. ~40!

It follows immediately that the appropriate boundary con
tions for irrotational black holes are

b i uS5asi uS1VS ]

]f D iU
S

. ~41!

For both boundary conditions, corotation given by E
~39!, and irrotational given by Eq.~41!, the conditions are
given in terms of the corotating coordinate system. T
means that the appropriate asymptotic boundary condit
for the shift are that

b i ur→`;VS ]

]f D i

. ~42!

The corotation and irrotational conditions can be gene
ized to yield a boundary condition for an equilibrium blac
holes with arbitrary spin. Letx i denote a flat-space Killing
vector for rotation in an arbitrary direction, just as (]/]f) i

represents rotation about in thef direction. WithVx repre-
senting the angular velocity of rotation of the black holes
measured by observers at rest at infinity, we find that
components of the null vectors generating the horizon ar

@1,Vxx i2V~]/]f! i #, ~43!

when written in terms of the corotating coordinate syste
This immediately yields the boundary conditions for a qu
siequilibrium black hole with arbitrary spin:

b i uS5asi uS2Vxx i uS1VS ]

]f D iU
S

. ~44!

As we will see below, we will need to be a bit more caref
in defining the shift boundary condition for the irrotation
and general spin cases, but Eqs.~41! and~44! give us a good
starting point for these conditions.
3-6



o
e
re

us
he

b
or
s
e

u
s

e-

t

a
,

ur
s

-

s,

to
ner
to
an-

n
he
this

of
rdi-

ns

at

t-
ift

-

COROTATING AND IRROTATIONAL BINARY BLACK . . . PHYSICAL REVIEW D 65 084003
C. Quasiequilibrium boundary conditions

The choice of the particular inversion-symmetric class
black-hole initial data used in GGB1 was made becaus
guarantees that the inner boundary surfaces will be appa
horizons. If we are to give up inversion-symmetry, we m
find some other way of fixing boundary conditions at t
inner-boundary surfaces for all of the quantities needed
construct initial data. These boundary conditions can
found by forcing the inner boundary to be an apparent h
zon and by assuming that the associated black hole i
quasiequilibrium. Pieces of the resulting approach have b
worked out by Thornburg@33# and by Eardley@34#, but to
my knowledge have not been adapted for constructing q
siequilibrium initial data. Because there are several error
the derivations and results in Ref.@34#, and to provide a
uniform notation, I will rederive all of the equations here.

Our inner boundary surface,S, is assumed to be a spac
like 2-surface with topologyS2. BecauseS is closed, we can
define its unit normal via

si[l¹̄it, ~45!

wherel is a normalization constant fixed bysisi[1 andt is
a scalar function which has a level surfacet50 that defines
the surfaceS. The 4-dimensional generalization ofsi has
componentssm5@0,si # obtained from the condition tha
smnm50.

The metric,hi j , induced onS by g i j is given by

hi j [g i j 2sisj . ~46!

We also define the extrinsic curvature,Hi j , of S embedded
in the 3-dimensional spatial hypersurface as

Hi j [2hi
khj

l ¹̄(ksl )52 1
2 Lshi j . ~47!

Naturally associated withS are two sets of null vectors:
set of outgoing null rays,km, and a set if ingoing null rays
ḱm, defined by

km5
1

A2
~nm1sm! and ḱm5

1

A2
~nm2sm!. ~48!

Associated with each set of null rays is an extrinsic curvat
of S as embedded in the full 4-dimensional manifold. The
are defined as

Smn[2 1
2 hm

ahn
bLkgab , ~49!

Śmn[2 1
2 hm

ahn
bLḱgab . ~50!

To simplify the following, we will introduce various projec
tions of Ki j along and normal toS:

Ji j [hi
khj

l Kkl , ~51!

Ji[hi
kslKkl , ~52!

J[hi j Ji j 5hi j Ki j , ~53!
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Ki j 5Ji j 12s( iJj )1sisj~K2J!. ~54!

We can then simplify Eqs.~49! and ~50! to

S i j 5
1

A2
~Ji j 1Hi j ! and Śi j 5

1

A2
~Ji j 2Hi j !. ~55!

Now, we define the expansion of outgoing null rays,s, and
ingoing null rays,ś, via

s[hi j S i j 5
1

A2
~J1H !, ~56!

ś[hi j Śi j 5
1

A2
~J2H !. ~57!

Finally, we will define the shear of the outgoing null ray
s i j , and ingoing null rays,ś i j , via

s i j [S i j 2
1
2 hi j s and ś i j [Śi j 2

1
2 hi j ś. ~58!

In order to generate boundary conditions, we need
make some assumptions. First, we will demand that our in
boundary,S, is an apparent horizon. This is equivalent
demanding that the expansion of the outgoing null rays v
ishes onS. Thus our first condition is that

s50. ~59!

If we are looking for quasiequilibrium configurations, the
we wantS to remain at the same coordinate location in t
3-dimensional hypersurface as time passes. To enforce
condition, it is necessary thatLtt5] tt50, where tW is the
approximate Killing vector associated with our demand
quasiequilibrium. However, there is no reason that coo
nates cannot be free to moveon S. In fact, this freedom is
necessary to allow for rotation of the black hole. This mea
that, in order to keepS at the same coordinate location,] tt

50 is too strong a condition. If we definezW as the part oftW
that is orthogonal toS, then it is necessary and sufficient th

Lzt50 and hi
j ¹̄jLzt5¹̂iLzt50, ~60!

where ¹̂i is the 2-dimensional covariant derivative compa
ible with hi j . If we define the normal component of the sh
as

b'[b isi , ~61!

then we can writezW as

zm[anm1b'sm, ~62!

We now need to consider how the expansions,s and ś,
evolve alongzW . For this calculation, a few identities are cru
cial:

hi j R̄i j 5
1
2 ~R̄2H21Hi j H

i j 1R̂!, ~63!
3-7
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sisj R̄i j 5
1
2 ~R̄1H22Hi j H

i j 2R̂!, ~64!

l@Lz ,¹̄m#t52nm@nn¹nb'1b'~K2J!#, ~65!

whereR̂ is the Ricci scalar associated withhi j and¹m is the
4-dimensional covariant derivative. The first two identiti
are obtained from various combinations and contractions
the Gauss-Codazzi-Ricci equations that govern the em
ding of S in the 3-dimensional hypersurface. The third ide
tity can be obtained by direct calculation.

As useful intermediate results, we obtain

LzJ5@ 1
2 ~J22H2!1 1

2 ~Ji j J
i j 1Hi j H

i j !2JiJ
i18pSi j s

isj

1 1
2 R̂2¹̂2#a1@Ji j H

i j 1JH2HK28p j is
i1¹̂iJ

i

12Ji¹̂i #b'1Hsi¹̄ia, ~66!

LzH5@Ji j H
i j 28p j is

i2¹̂iJ
i22Ji¹̂i #a1@ 1

2 ~J21H2!

1 1
2 ~Ji j J

i j 1Hi j H
i j !1JiJ

i2JK18pr2 1
2 R̂

1¹̂2#b'1Jsi¹̄ia. ~67!

These equations follow from the identities~63!–~65! and the
evolution and constraint equations~3!–~6!. Finally, we can
simplify these to the desired results:

Lzs5
1

A2
FsS s1

1

2
ś2

1

A2
K D 1EG ~b'1a!

1
1

A2
FsS 1

2
s2

1

2
ś2

1

A2
K D 1D18pTmnkmḱnG

3~b'2a!1ssi¹̄ia, ~68!

Lzś52
1

A2
F śS ś1

1

2
s2

1

A2
K D 1 ÉG ~b'2a!

2
1

A2
F śS 1

2
ś2

1

2
s2

1

A2
K D

1D́18pTmnkmḱnG ~b'1a!2śsi¹̄ia, ~69!

where

D[hi j ~¹̂i1Ji !~¹̂j1Jj !2 1
2 R̂, ~70!

D́[hi j ~¹̂i2Ji !~¹̂j2Jj !2 1
2 R̂, ~71!

E[s i j s
i j 18pTmnkmkn, ~72!

É[ś i j ś
i j 18pTmnḱmḱn. ~73!

We note thatE and É are both non-negative so long as t
matter satisfies either the weak or the strong energy co
08400
of
d-
-
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tion. The two equations for the evolution of the expansio
Eqs.~68! and ~69!, are not yet restricted by any assumptio
of quasiequilibrium. The only assumption in their derivatio
is that the surfaceS remain at a constant coordinate locatio
which is embodied in Eq.~60!.

If we now restrict Eqs.~68! and~69! to apply to apparent
horizons by enforcing condition~59! and also impose quasi
equilibrium on the evolution equations for the expansions

Lzs50 and Lzś50, ~74!

then we find

05D~b'2a!, ~75!

śsi¹̄ia52
1

A2
F śS ś2

1

A2
K D 1ś i j ś

i j G ~b'2a!

2
1

A2
F śS 1

2
ś2

1

A2
K D 1D́G ~b'1a!. ~76!

These equations are based on the approximation that
shear of the outgoing null rays on the apparent horizon v
ishes, which is true for the case of a stationary black ho
and on the requirements thatTmnkmkn5Tmnḱmḱn5Tmnkmḱn

50 on the apparent horizon if the black hole is in quasieq
librium. Finally, I reemphasize that the conditions for qua
equilibrium on the two expansions are given by Eq.~74!, not
by ] ts5] tś50, so that the location of the horizon is fixe
but the black hole is allowed to rotate inS.

On inspection, Eq.~75! yields the solution

b'5a, ~77!

which is compatible with the Killing horizon boundary con
dition obtained in the case of corotation~39!. The Killing
horizon boundary conditions for irrotation and general ro
tion, Eqs.~41! and ~44!, are not compatible with Eq.~77!
unless we restrict the rotational terms to actin the surfaceS.
Thus, the correct boundary condition on the shift for an
rotational black hole should be

b i uS5asi uS1Vhj
i S ]

]f D jU
S

, ~78!

and the condition for general rotation should be

b i uS5asi uS2hj
i FVxx j2VS ]

]f D j G
S

. ~79!

Notice that our assumption of quasiequilibrium has led
one condition on the shift, and yet Eqs.~39!, ~78! and ~79!
specify three conditions on the shift. This is appropriate sin
we have made specific choices for the rotation of the bl
hole, namely corotation, irrotation, or some general rotat
specified byVx andx i .

The condition thatS be an apparent horizon, Eq.~59!,
also yields a useful boundary condition if we work in th
3-8
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conformal space. The conformal transformation ong i j ~11!
induces a natural conformal weighting forhi j and for the unit
normal toS,

hi j [c4h̃i j , ~80!

si[c22s̃i . ~81!

We find that Eq.~59! reduces to

s̃k¹̃kln cuS52 1
4 ~ h̃i j ¹̃i s̃j2c2J!uS , ~82!

which is a non-linear boundary condition that incorpora
both c and its normal derivative. While this boundary co
ditions looks somewhat complicated, it reduces to the of
used minimal surface boundary condition wheneverJuS50,
and it has previously been used successfully to construc
initial-data sets@33#.

We can now further simplify the remaining conditio
given in Eq.~76!. From Eqs.~56!, ~57!, and~59!, we obtain

ś5A2J. ~83!

Together with Eqs.~77!, ~80!, and~81!, this reduces Eq.~76!
to

Js̃i¹̃iauS52c2~J22JK1D̃!auS , ~84!

with

D̃[c24@ h̃i j ~¹̆i2Ji !~¹̆j2Jj !2 1
2 R̆12¹̆2ln c#. ~85!

Here,¹̆i and R̆ are the covariant derivative and Ricci sca
associated with the conformal metrich̃i j . Equation~84! rep-
resents a complicated mixed condition on the lapse that
volves an elliptic operator acting over the closed surfaceS.
There is no guarantee that Eq.~85! is invertible, however, if
it is, then Eq.~84! represents a viable boundary condition

V. QUASICIRCULAR ORBITS FOR BLACK-HOLE
BINARIES

The primary goal of this paper is to fully define a forma
ism for constructing initial data sets representing astroph
cally realistic black-hole binaries in quasicircular orbits. A
was shown in Sec. III B, the thin-sandwich decomposition
the constraint equations appears to be a natural choice to
for this purpose. In particular, the simple choice ofũi j 50 is
required by the assumption of quasiequilibrium. In S
IV C, boundary conditions compatible with quasiequilibriu
were developed. However, there are still several freely sp
fiable quantities that we have not considered within the c
text of quasiequilibrium. In particular, we must consider ho
the initial temporal gauge choice evolves off of the init
slice viaã. We must decide what value to use for the orbi
angular velocity,V, in setting the outer-boundary condition
08400
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~42!. And finally, we must choose the conformal 3-geomet
g̃ i j , and the initial temporal gauge viaK.

A. The temporal gauge choice

In all previous work on quasiequilibrium data for eith
neutron stars or black holes, maximal slicing has been u
With this choice,K50, and it is natural to use the ‘‘maxima
slicing equation’’ to fix the lapse. The maximal slicing equ
tion has been used extensively in numerical evolutions an
simply a linear second-order elliptic equation for the lap
derived from the evolution equation forK by setting] tK
50 ~cf. Ref. @35#!. For a quasiequilibrium situation, it is
natural to use the condition] tK50, but to generalize it to
any arbitrary value forK. In this case, the equation that re
sults

¹̃2~ac!2a@ 1
8 cR̃1 5

12 c5K21 7
8 c27Ãi j Ã

i j

12pc5K~r12S!] 5c5b i¹̃iK, ~86!

is often called the ‘‘constant trace-K equation’’~constant re-
fers to the fact that K is constant in time, not constant
space!.

For a quasiequilibrium situation, we would like to hav
] tg i j 50 and] tKi j 50. However, this will only be obtainable
in true equilibrium situations where we have exact Killin
vectors. We can decompose these conditions to get] tg̃ i j

50, ] tc50, ] tÃi j 50 and] tK50 as the possible quasiequ
librium conditions that we might apply. Of these, on
] tg̃ i j 5ũi j is part of the freely specifiable data of the thi
sandwich decomposition. Given that we must fixg̃ i j and that
we chooseũi j 50 as a quasiequilibrium condition, it is no
reasonable to assume that we can also find] tÃi j 50 except
in true equilibrium conditions. In addition to two dynamic
degrees of freedom,g̃ i j also encodes the initial spatial gaug
choice. Similarly, K encodes the initial temporal gaug
choice and parity with the spatial gauge suggests that
should let quasiequilibrium fix] tK50 and that it is not rea-
sonable to also expect] tc50 except in true equilibrium
conditions.

We can examine the condition] tc50 even further. From
Eq. ~34! we find that this condition is equivalent to

¹̃kb
k16bk¹̃kln c2c6ãK50. ~87!

We might consider using Eq.~87! to fix K instead of choos-
ing it freely. However, if we use Eq.~87! to replaceK in
either Eq.~26! or ~18! we find that the resulting elliptic op
erator is non-invertible. One might then hope that an iterat
scheme could be used to fixK so that] tc50 is satisfied.
However, numerical experiments with this approach ha
shown it to be unstable@36#.

Given that the thin-sandwich decomposition requires t
ã be fixed, it is fortunate that the condition of quasiequili
rium provides an elliptic equation and boundary conditio
3-9
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GREGORY B. COOK PHYSICAL REVIEW D 65 084003
that fix this quantity, just as the condition of quasiequilibriu
provides the means of constructing boundary conditions
the constraints.

B. The equations and boundary conditions of quasiequilibrium

Nearly everything needed to construct quasiequilibri
black hole initial-data sets is now clear. We should solve
thin-sandwich equations~20! and ~26! in conjunction with
the constant trace-K equation~86!. If we assume vacuum an
the quasiequilibrium conditionũi j 50, these equations are

¹̃2c2 1
8 cR̃2 1

12 c5K21 1
8 c27Ãi j Ã

i j 50, ~88!

D̃Lb
i2~ L̃b! i j ¹̃j ln ac265 4

3 a¹̃ iK, ~89!

¹̃2~ac!2~ac!@ 1
8 R̃1 5

12 c4K21 7
8 c28Ãi j Ã

i j #5c5b i¹̃iK,
~90!

with Ãi j [(1/2ã)(L̃b) i j .
To solve these equations, we must first fix a conform

3-geometryg̃ i j ~not necessarily flat!, and fix K ~not neces-
sarily a maximal slice!. In order to incorporate black holes
we next excises topologically spherical volumes from o
solution domain. The closed 2-surface,S, of each excised
volume will be the apparent horizon of that black hole. O
each excised surface, we must apply the following bound
conditions:

s̃k¹̃kln cuS52 1
4 ~ h̃i j ¹̃i s̃j2c2J!uS , ~91!

b i uS5H asi uS corotation,

asi uS1Vhj
i S ]

]f D jU
S

irrotation,

~92!

Js̃i¹̃iauS52c2~J22JK1D̃!auS , ~93!

whereV is the angular velocity of the corotating frame. F
nally, the requirement of corotation and the conditions
asymptotic flatness yield boundary conditions at spatial
finity:

cur→`51, ~94!

b i ur→`5VS ]

]f D i

, ~95!

aur→`51. ~96!

C. Obtaining circular orbits

Consider the system of equations and boundary co
tions outlined above. Assuming that the system is w
posed, solving it will result in two one-parameter families
solutions, one for the corotation condition on the shift, a
one for the irrotational condition. These families of solutio
are parameterized by the orbital angular velocity,V.
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As is pointed out in GGB1, it is, in general, unreasona
to assume that the entire family of solutions will satisfy t
physical condition of quasiequilibrium in which we are in
terested. This situation is similar to that encountered
searching for quasicircular orbits via the effective poten
method@3#. In fact, the effective potential in that approac
was chosen on physical grounds to pick those soluti
which represented approximately circular orbits. Howev
that effective potential was necessarily somewhatad hoc. In
my opinion, the most important contribution of GGB1
their more physically well-founded and covariant method
determining which members of the family of solutions s
isfy the condition of quasiequilibrium.

The condition for choosing appropriate values ofV given
in GGB1,2 is justified largely in terms of its relation to
general relativistic version of the virial theorem@37#. The
condition is thatV is chosen so that the standard Arnowi
Deser-Mis̀ner ~ADM ! mass, EADM , and the Komar~or
KVM ! mass@38#, MK , agree. In my view, the justification
for this condition resonates most clearly when one consid
that, in general,EADMÞMK . However, as was shown b
Beig @39# ~see also Ref.@40#!, these two mass measure
agree when the spacetime is stationary. Since a quasiequ
rium solution is approximating a stationary spacetime, it
natural to demand thatEADM5MK , and in this case, we
should obtain quasicircular orbits.

Since, for a general gauge choice,EADM is not necessarily
given by the monopole piece of the conformal factor, we w
use a general definition of the ADM mass@41#,

EADM5
1

16p R̀ g i j ¹̄k~G i
k2d i

kG!d2Sj . ~97!

Here,Gi j [g i j 2 f i j , f i j is the flat metric to whichg i j asymp-
totes, and d2Si is the covariant surface area element. We n
that in Eq.~97!, indices can be raised and lowered with eith
g i j or f i j , the trace,G, can be obtained with either metric
and ¹̄i can be replaced with the flat covariant derivativ
Similarly, a general definition of the Komar mass can
written as@37#

MK5
1

4p R̀ g i j ~¹̄ia2bkKik!d2Sj . ~98!

In many cases,bkKik will fall off faster thanO(r 22) and the
second term in Eq.~98! will not contribute. However, in
some gauges this term is important. An example is
Painlevé-Gullstrand coordinate system~cf. Ref. @42#!.

D. Quasiequilibrium evolutionary sequences

It is highly desirable to be able to construct evolutiona
sequences of quasiequilibrium binary configurations. In p
ticular, this facilitates locating the ISCO. When one cons
ers neutron-star configurations, there is a natural way to c
nect neighboring solutions. Namely, the number of baryo
contained in each star should not change as the star secu
3-10
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evolves to smaller separation. With black holes, there is
such conserved quantity and one must fix some normaliz
condition.

In order to construct evolutionary sequences from q
sicircular orbits obtained by the effective-potential metho
both a normalizing condition and the orbital angular veloc
had to be determined by some means. One condition
should be applicable to evolutionary sequences of quasie
librium configurations@7,43,44# is

V5
dEADM

dJ
. ~99!

This relation has been shown to hold well for evolutiona
sequences of both corotating@14# and irrotational @20#
neutron-star binaries. Because the effective-potential me
cannot determine the orbital angular velocity of each c
figuration of holes in circular orbit, Eq.~99! must be used to
determineV. But, locating each circular-orbit configuration
as well as determiningV requires a normalizing condition
In work so far with the effective-potential method, this no
malization condition has been chosen to be anad hocdefi-
nition for the mass of an individual black hole in the bina
system, with the further assumption that this mass rem
constant as the black holes secularly evolve closer toge
While this definition had appropriate limiting behavior whe
the black holes have large separation, this normalization c
dition seems problematical in the strong-field limit.

However, because quasiequilibrium data constructed f
the combination of the thin-sandwich and constant traceK
equations naturally yields a value forV for each circular-
orbit configuration, GGB2 point out that Eq.~99! can be
used to set the normalization condition for constructing e
lutionary sequences. This appears to be a much more w
founded condition than thead hoc condition proposed in
Ref. @3# for the effective-potential method. Thatad hoccon-
dition is essentially rooted in the notion that the area of
apparent horizon, an estimate of the true irreducible mas
a black hole, should remain constant during secular ev
tion. Interestingly, the first results found in GGB2 sho
agreement with thead hocmethod to the level of numerica
error in the solutions. Given the problems with the solutio
obtained in GGB2, as outlined in Sec. IV A, it is too soon
make any conclusions regarding the validity of thead hoc
condition, but this point should be considered further.

VI. DISCUSSION

So far, we have not considered specific choices for
conformal 3-geometry,g̃ i j , and initial slicing as specified by
K. To date, only flat conformal 3-geometries and maxim
slicings~I will refer to these as the CFMS assumptions! have
been explored extensively. It has been pointed out that q
siequilibrium binary systems in circular orbits will not ex
hibit a conformally flat 3-geometry at second po
Newtonian order@45#. Some consider this approximation
be the major source of error in current numerical work
model quasiequilibrium binary configurations and in locati
the ISCO@7#. Certainly, the assumption of conformal flatne
08400
o
g

-
,

at
ui-

od
-

ns
er.

n-

m

-
ll-

e
of
u-

s

e

l

a-

introducessomeerror. But, it is not clear that this is the mo
significant source of error in these calculations. As sta
earlier, I suspect that thead hoc normalization condition
used to determineV and construct evolutionary sequence
and the choice of the extrinsic curvature itself, are the do
nant sources of error. It will be important to explore th
sensitivity of solutions to the choices forg̃ i j andK in order
to understand this issue better.

Of course, it is possible that no regular quasiequilibriu
solutions exist when the CFMS assumptions are made
discussed in Sec. IV A, a regular solution for the bina
problem does not seem possible when inversion-symme
boundary conditions are chosen becauseauS50. If we con-
sider the case of a single black hole, we can easily fin
CFMS solution of the quasiequilibrium equations and bou
ary conditions specified in Sec. V B. This solution is simp
the Schwarzschild solution in isotropic coordinates. In t
case, althougha50 on the apparent horizon, the solution
regular. This is possible because the spacetime admits a
Killing vector. The direct generalization of this solution to
binary system yields the problem attempted in GGB1,2 t
does not yield a regular solution. However, this does
mean that a quasiequilibrium solution is impossible given
CFMS assumptions. The nonlinearity of the system of q
siequilibrium equations and boundary conditions allow for
least thepossibility of such solutions, even if it seems un
likely.

The apparent problems with constructing a quasiequi
rium, binary, CFMS solution should not be taken to sugg
that conformally flat quasiequilibrium binary solutions a
unlikely. The problem with the CFMS assumptions is wi
maximal slicing, not conformal flatness. Again, for the ca
of a single black hole, we can easily find solutions of t
quasiequilibrium equations and boundary conditions that
conformally flat. One example is obtained from th
Schwarzschild solution in Kerr-Schild coordinates, also
ferred to as ingoing Eddington-Finkelstein coordinates~cf.
Ref. @42#!. With the radial coordinate transformation

r 5
r̃

4 S 11A11
2M

r̃
D 2

e2(12A112M / r̃ ), ~100!

where r̃ is the usual areal radial coordinate in Kerr-Sch
coordinates, the spatial metric on the Kerr-Schild slicing
seen to be conformally flat. It is easy to verify that the qu
siequilibrium boundary conditions are satisfied on the ho
zon at r̃ 52M . Of course, the slicing in this solution is no
maximal, or even asymptotically maximal. A feature of th
and other similar non-maximal single hole solutions is th
aÞ0 on the horizon. It seems likely that this feature w
also hold for similar binary configurations, removing th
most obvious obstacle confronting the construction of re
lar quasiequilibrium solutions.

It is clear that we will want to explore configurations th
are not constructed on a maximal slice and we will want
consider conformal 3-geometries that are not flat. This id
has been explored in similar contexts@10,11#, but little has
been done other than to demonstrate that solutions ca
3-11
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found. The major limitation of these works is that the boun
ary conditions used were not well motivated. In the cont
of quasiequilibrium solutions, conformal 3-geometries a
associated values ofK should be constructed so that the a
proximate black hole binaries are atrest in the corotating
coordinate system. By superposing two Schwarzschild ho
one would approximate the 3-geometry of a pair of coro
ing black holes. A superposition of two Kerr holes cou
approximate the case of irrotational black holes, assum
the spins are chosen correctly. Again, it will be interesting
assess the sensitivity of corotating and irrotational soluti
to the choice of the conformal 3-geometry.

An improvement in the choice forg̃ i j andK would come
from taking these data from post-Newtonian solutions
binaries in circular orbits. An appropriate metric could
constructed by omitting radiation damping terms. One po
bility would be to revert the effective one-body metric o
tained in Ref.@46# to an appropriate two-body coordina
system, assuming this can be done. A metric accurat
2.5PN order, including spin effects, has been given explic
in Ref. @47#. Another possibility is found in Ref.@48# where
.
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a post-Newtonian metric is matched to two perturb
Schwarzschild metrics. However, it is unclear to me whet
or not any of these solutions are immediately applicable
usable metric must be written in terms of a gauge where
lapse and 3-metricsmoothlycross the individual black-hole
horizons. In particular, the lapse should not vanish at th
horizons.

Finally, we might consider the use of a slicing an
3-metric obtained from a post-Newtonian solution where
diation reactionis included. In this case, we could also o
tain a non-zero solution forũi j . However, we should be cau
tious in exploring solutions withũi j Þ0 since this violates
the principle of quasiequilibrium. In particular, the conditio
used to determine the orbital angular velocity,V, will most
likely not be applicable in this case.
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@20# K. Uryū, M. Shibata, and Y. Eriguchi, Phys. Rev. D62, 104015

~2000!.
.

@21# E. Gourgoulhon, P. Grandcle´ment, and S. Bonazzola, Phy
Rev. D65, 044020~2002!.

@22# P. Grandcle´ment, E. Gourgoulhon, and S. Bonazzola, Ph
Rev. D65, 044021~2002!.

@23# G. B. Cook~unpublished notes!.
@24# A. Lichnerowicz, J. Math. Pures Appl.23, 37 ~1944!.
@25# J.W. York, Jr., Phys. Rev. Lett.26, 1656~1971!.
@26# J.W. York, Jr., Phys. Rev. Lett.28, 1082~1972!.
@27# J.W. York, Jr., J. Math. Phys.14, 456 ~1973!.
@28# J.M. Bowen, Gen. Relativ. Gravit.11, 227 ~1979!.
@29# J.W. York, Jr., Phys. Rev. Lett.82, 1350~1999!.
@30# J.R. Wilson and G.J. Mathews, inFrontiers in Numerical Rela-

tivity, edited by C.R. Evans, L.S. Finn, and D.W. Hobill~Cam-
bridge University Press, Cambridge, England, 1989!, pp. 306–
314.

@31# S. Bonazzola, E. Gourgoulhon, and J.-A. Marck, Phys. Rev
56, 7740~1997!.

@32# G.B. Cook and J.W. York, Jr., Phys. Rev. D41, 1077~1990!.
@33# J. Thornburg, Class. Quantum Grav.4, 1119~1987!.
@34# D.M. Eardley, Phys. Rev. D57, 2299~1998!.
@35# L. Smarr and J.W. York, Jr., Phys. Rev. D17, 1945~1978!.
@36# H. Pfeiffer ~private communication!.
@37# E. Gourgoulhon and S. Bonazzola, Class. Quantum Grav.11,

443 ~1994!.
@38# A. Komar, Phys. Rev.113, 934 ~1959!.
@39# R. Beig, Phys. Lett.69A, 153 ~1978!.
@40# A. Ashtekar and A. Magnon-Ashtekar, J. Math. Phys.20, 793

~1979!.
@41# J. W. York, Jr., inSources of Gravitational Radiation, edited by

L.L. Smarr~Cambridge University Press, Cambridge, Englan
1979!, pp. 83–126.

@42# L.E. Kidder, M.A. Scheel, S.A. Teukolsky, E.D. Carlson, an
G.B. Cook, Phys. Rev. D62, 084032~2000!.

@43# J.P. Ostriker and J.E. Gunn, Astrophys. J.157, 1395~1969!.
3-12



l
ti-
te
h-

COROTATING AND IRROTATIONAL BINARY BLACK . . . PHYSICAL REVIEW D 65 084003
@44# J.B. Hartle, Astrophys. J.161, 111 ~1970!.
@45# R. Rieth, inMathematics of Gravitation. Part II. Gravitationa

Wave Detection, proceedings of the Workshop on Mathema
cal Aspects of Theories of Gravitation, Warsaw, 1996, edi
by A. Królak ~Polish Academy of Sciences, Institute of Mat
08400
d

ematics, Warsaw, 1997!, pp. 71–74.
@46# A. Buonanno and T. Damour, Phys. Rev. D59, 084006~1999!.
@47# H. Tagoshi, A. Ohashi, and B.J. Owen, Phys. Rev. D63,

044006~2001!.
@48# K. Alvi, Phys. Rev. D61, 124013~2000!.
3-13


