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Constraints on spatial distributions of negative energy
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This paper initiates a program which seeks to study the allowed spatial distributions of negative energy
density in quantum field theory. Here we deal with free fields in Minkowski spacetime. Known restrictions on
time integrals of the energy density along geodesics, the averaged weak energy condition and quantum in-
equalities are reviewed. These restrictions are then used to discuss some possible constraints on the allowable
spatial distributions of negative energy. We show how some geometric configurations can either be ruled out or
else constrained. We also construct some explicit examples of allowed distributions. Several issues related to
the allowable spatial distributions are also discussed. These include spacetime averaged quantum inequalities
in two-dimensional spacetime, the failure of generalizations of the averaged weak energy condition to piece-
wise geodesics, and the issue of when the local energy density is negative in the frame of all observers.

DOI: 10.1103/PhysRevD.65.084002 PACS number~s!: 04.62.1v, 03.70.1k, 04.20.Dw, 04.20.Gz
a
th
b

tiv
s

e
ng

s
a
-

h
an
t a
r

at
rg

ow.
an

tion
ity

er
for
ee
a

sity
t rest
of

tion
and

be
ted
n is

in

s

on
e in

en-

nc
0

I. INTRODUCTION

The energy density of all observed forms of classical m
ter is non-negative. However, quantum field theory has
remarkable property that the local energy density can
negative. This violates the weak energy condition~WEC!
which postulates that the local energy density is non-nega
for all observers. Its formal statement is that a stress ten
Tmn satisfies the WEC provided that

Tmnumun>0, ~1!

for all timelike vectorsum. Negative energy densities rais
the possibility of a variety of exotic phenomena, includi
violations of the second law of thermodynamics@1,2#, tra-
versable wormholes@3,4# and ‘‘faster-than-light’’ travel
@5–7#, creation of naked singularities@8,9#, and avoidance of
singularities in gravitational collapse. However, in the ca
of inflationary cosmology it has recently been found th
violations of the WEC do not allow one to avoid initial sin
gularities@10#.

A. Brief review of averaged weak energy conditions
and quantum inequalities

The interest attached to the effects of negative energy
stimulated the study of constraints on the magnitude
extent of WEC violations. Although the energy density a
point can be arbitrarily negative, there are several integ
constraints which we will briefly review for the case of fl
spacetime. One constraint is that the integral of the ene
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density over all space, the Hamiltonian, is bounded bel
Other constraints involve integrals over the world line of
observer, a construction first introduced by Tipler@11#. One
such constraint is the averaged weak energy condi
~AWEC!, which states that the integral of the energy dens
seen by a geodesic observer is non-negative:

E
2`

`

Tmnumundt>0. ~2!

Here um and t are the observer’s four-velocity and prop
time, respectively. This condition has been proven to hold
a variety of free quantum field theories in boundary-fr
Minkowski spacetime. It does not always hold inside of
cavity in flat spacetime because the Casimir energy den
can be negative. However, even in this case, observers a
with respect to the cavity walls will see a modified version
Eq. ~2! satisfied. This is the ‘‘difference AWEC’’ in which
Tmn is replaced by the difference between the expecta
value of the stress tensor in an arbitrary quantum state
that in the vacuum state@12,13#. The physical content of this
statement is that although the local energy density can
made more negative than in the vacuum, the time-integra
energy density cannot. A related averaged energy conditio
the averaged null energy condition~ANEC!, in which the
integration is along a null geodesic. It also holds
boundary-free Minkowski spacetime@14#. The extent to
which the AWEC and ANEC hold for quantum field theorie
in curved spacetime is less clear@15–17#.

Although the AWEC imposes a significant constraint
negative energy, even stronger constraints are availabl
the form of ‘‘quantum inequalities’’~QIs! @1,12,18–22#.
These are lower bounds on time integrals of the energy d
sity multiplied by a sampling function,g(t):

E
2`

`

Tmnumung~ t !dt>r̂min . ~3!

es,
.
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The lower bound,r̂min , depends upon the sampling functio
and upon the spacetime. For the massless scalar field in
dimensional Minkowski spacetime, Flanagan@20# has found
the optimal bound:

r̂min52
1

24pE2`

` g8~ t !2

g~ t !
dt. ~4!

For the massless scalar field in four-dimensional Minkow
spacetime, Fewster and Eveson@21# have given a similar
~but not necessarily optimal! bound:

r̂min52
1

16p2E2`

`

„g1/29~ t !…2. ~5!

If the sampling function has a characteristic widtht0, then
the lower bounds are of the form

r̂min5
C

t0
D

, ~6!

whereD is the dimensionality of spacetime. The AWEC c
be derived from the QIs as the limit in whicht0→`. The
essential physical content of the QIs is that the larger a p
of negative (2) energy is, the closer in time it must be to
compensating pulse of positive (1) energy. Consider for ex
ampled-function pulses of (1) and (2) energy where the
energy density in an observer’s frame is given by

r~ t !5B@2d~ t !1~11e!d~ t2T!#. ~7!

HereT is the temporal separation of the pulses andB is either
the magnitudeuDEu of the (2) pulse in two dimensions, o
the magnitude of its energy per unit areauDEu/A in four
dimensions. It may be shown from the QIs@23# that

T<
K2

uDEu
, ~8!

in two dimensions and

T<K4S A

uDEu D
1/3

, ~9!

in four dimensions, where the dimensionless constantsK2
and K4 are typically less than unity. Thus as the streng
uDEu of the (2) pulse increases, its separation in time fro
the compensating (1) pulse must decrease as an inve
power of uDEu.

In Ref. @23# it is further shown that the QIs imply th
phenomenon ofquantum interest. As the temporal separatio
of the (2) and (1) pulses increases, within the limits set b
Eqs. ~8! and ~9!, the degree of overcompensation must
crease. Thus the parametere must be a monotonically in
creasing function ofT. A discussion of quantum interest fo
more general pulses was given by Pretorius@24# and by Few-
ster and Teo@25#.
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B. The program

The purpose of this paper is to initiate an exploration
the limits on the spatial distribution of (2) energy. The
worldline QIs summarized in the previous subsection p
vide one tool for this investigation. Clearly, for massle
fields, the temporal separation of a pair of pulses as see
an inertial observer is also a measure of their spatial sep
tion. However, a more detailed picture is desirable. Seve
approaches can be pursued in the search for a descriptio
the allowed spatial (2) energy distributions. One is to see
generalizations of the QIs which involve averaging ov
space as well as time. Another approach is to use the AW
and QIs to place constraints upon the allowed spacetime
tributions. This approach seeks to extract as much inform
tion as possible from the requirement that the AWEC and
be satisfied along all timelike geodesics. A third approach
to examine the nature of distributions which are definite
allowed and can be explicitly constructed. All three a
proaches will be illustrated in this paper.

C. Outline of this paper

This paper will deal entirely with (2) energy distribu-
tions in flat spacetime. In Sec. II A, we review and discu
two results which suggest that arbitrarily large amounts
(2) energy can be concentrated in a given region of spa
As a counterpoint, we show in Sec. II B that in two spac
time dimensions, there are both spatial and spacetime a
aged versions of the quantum inequalities. We next turn
Sec. III to a discussion of several model (2) energy distri-
butions which the AWEC and QIs either forbid~Sec. III A!,
or else quantitatively constrain~Sec. III B!. Section IV is
devoted to the explicit construction of some informative e
amples of allowed distributions. In particular, the energy d
tribution of a massive scalar field in a single wavepac
mode squeezed state is used to illustrate the convoluted
in which (2) and (1) energy can be entwined. As part o
this discussion, it is useful to distinguish between WEC v
lations in which the local energy density is negative for
observers~‘‘strong’’ violations!, and those in which its sign
depends upon the observer~‘‘weak’’ violations!. The techni-
cal details of this distinction are elaborated in the Append
Section V explores the limits of the AWEC, and shows tha
would not hold if one were to integrate along a piecew
geodesic path. Similarly, the ‘‘difference AWEC’’ need n
hold for the quantum field stress tensor in a cavity in the c
of an observer who passes through the cavity. This sec
also uses the cavity example to illustrate strong and w
WEC violations. Finally, our results are summarized and d
cussed in Sec. VI. Units in which\5c51 and a spacelike
metric convention are used in this paper.

II. DIFFICULTIES WITH SPATIAL BOUNDS?

A. Two disturbing results

There are two disturbing results which might be constru
as casting doubt upon the existence of constraints on
spatial distribution of negative energy. The first is an unpu
lished result of Garfinkle@26#, who showed that the tota
2-2
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CONSTRAINTS ON SPATIAL DISTRIBUTIONS OF . . . PHYSICAL REVIEW D 65 084002
energy contained within an imaginary box in Minkows
spacetime is unbounded below. Let us first give a more p
cise statement of this result. Consider a quantum fieldw in
boundary-free Minkowski spacetime. By boundary-free,
mean that there are no physical boundaries upon whicw
must satisfy boundary conditions. Letr5:Ttt : be the
normal-ordered energy density operator forw on a t
5constant hypersurface. Now consider a volumeV, e.g., the
interior of an arbitrary rectangular box, and let

E5E
V
^curuc&d3x ~10!

be the energy inside this box in quantum stateuc&. This box
is ‘‘imaginary’’ in the sense that there are no physical boun
aries at the walls of the box. The Garfinkle result is thatE is
unbounded below. That is, there exist statesuc& for which E
is arbitrarily negative. Note that this would not happen if t
box were a physical box on whose wallsw must satisfy
Dirichlet or Neumann boundary conditions. In this case,E is
the Hamiltonian forw within this cavity, and is bounded
below by the Casimir energy of the cavity.

A second disturbing result was given by Helfer@27#, who
showed that the integral of the energy density over a sp
like hypersurface can be unbounded below. Although t
result applies to curved, as well as flat spacetime, let us fo
on the case of Minkowski spacetime. Letjm be a timelike
vector field on Minkowski spacetime, and letS be a space-
like hypersurface to whichjm is orthogonal. Further let

Ĥ~j,S!5E ^cuTmnjmjnuc& f dv. ~11!

Heredv is the volume element inS, andf is a test function
with compact support. The quantityĤ(j,S) is an energy
operator~generalized Hamiltonian! obtained by integrating
the energy density in stateuc& ~times the test functionf )
over S. Helfer has shown that in general,Ĥ(j,S) is un-
bounded below. Note that in the limit thatf→1 everywhere
and jm is the timelike Killing vector,Ĥ(j,S) becomes the
usual Hamiltonian, which has the lower bound of zero,
tained in the Minkowski vacuum state. Note also that
Helfer result includes the Garfinkle result as the special c
in which S is a constantt ~Minkowski time! surface andf
approaches a step function which is 1 inside the box an
outside of it.

Both of these results might lead one to conclude that th
can be no bounds on the spatial distribution of negative
ergy which would be analogous to the temporal boun
given by the quantum inequalities. Thus it is desirable
understand the physical basis of these results in more de

Consider first the Garfinkle box. We can understand
unboundedness of the total energyE in this box as arising
from two factors:~1! The energy is measured at a prec
instant in time, and~2! the walls of the box are sharpl
defined. This allows an arbitrary amount of negative ene
to have entered the box by timet, while at this time exclud-
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ing an even larger amount of positive energy which may
just outside of the box at timet. This situation is illustrated in
Fig. 1.

The unboundedness of Helfer’sĤ is harder to understand
although in particular cases one can give intuitive expla
tions similar to that in the Garfinkle box case. Let the hyp
surfaceS be asymptotically null, as illustrated in Fig. 2. I
this case, it is possible for the integral of the energy den
over S to include the contribution of an arbitrarily larg
negative energy pulse, but to omit that of an even lar
positive pulse which preceded the negative pulse. Once
include the effects of the test functionf, it is not necessary
thatS be asymptotically null; it can level out and approach
constantt surface outside of the domain of support off.

These considerations might suggest that the Garfinkle
Helfer results arise by methods of spatial averaging wh
manage to capture large amounts of (2) energy while ignor-
ing larger amounts of (1) energy which are really very clos
by. However, the general result of Helfer is not so eas
explained. Even ifS is a constantt surface,Ĥ need not be
bounded below in general in four-dimensional spacetime
this case, we are dealing with the generalization of

FIG. 1. The Garfinkle box is illustrated. Ad-function pulse of
(1) energy has already passed through the box before timet50. At
time t50, ad-function pulse of (2) energy is inside the box. The
magnitude of this (2) pulse is inversely related to the distance
the (1) pulse at a fixed time. However, we can always arrange
the (1) pulse to be just outside the box, and for the (2) pulse to be
just inside. Thus there can be an arbitrary amount of (2) energy
inside the box att50.

FIG. 2. HereS is a spacelike hypersurface which is asympto
to a null surface, the dashed line. This allowsS to catch a
d-function pulse of (2) energy, while also avoiding the compen
satingd-function pulse of (1) energy. In this way, the integrate
energy overS may be made arbitrarily negative.
2-3
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Garfinkle result where the walls of the box cease to
sharply defined. This seems to suggest that spatial avera
without time averaging may not be sufficient to yield qua
tities which are bounded below.

B. Spacetime averaged quantum inequalities in two
dimensions

We now turn to the question of whether one can der
generalizations of the quantum inequalities which invo
averaging over both space and time. In two-dimensio
spacetime, this can indeed be done. This was first done
one of us@28# using a method analogous to those used
Ref. @18# to first prove worldline quantum inequalities
Flanagan@20# later noted that his method may also be us
to generate two-dimensional spacetime averaged quan
inequalities. Lets(u,v) be a spacetime sampling functio
where u5t2x and v5t1x are null coordinates. We wil
assume that this function can be expressed as a produ
sampling functions in space and time separately in so
frame of reference:

s~u,v !5gT~ t !gS~x!. ~12!

The sampled energy density is

r̂5E TttgT~ t !gS~x! dt dx

5
1

2E @Tuu~u!1Tvv~v !#s~u,v ! du dv.

~13!

Let

g1~u!5
1

2E s~u,v ! dv ~14!

and

g2~v !5
1

2E s~u,v ! du. ~15!

The various sampling functions are normalized so that

E gT~ t !gS~x!dtdx5
1

2E s~u,v ! du dv

5E g1~u!du5E g2~v ! dv

51. ~16!

We can now write the spacetime averaged quantum ineq
ity as

r̂5E Tuu~u!g1~u! du1E Tvv~v !g2~v ! dv

>2
1

48p F E
2`

`

du
~g18!2

g1
1E

2`

`

dv
~g28!2

g2
G .

~17!

In the last step, we used Flanagan’s result, Eq.~4!.
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Let us explicitly evaluate the bound for some particu
sampling functions. First consider Lorentzian functions
both space and time, with widthsx0.0 and t0.0, respec-
tively:

gS~x!5
x0

p~x21x0
2!

, gT~ t !5
t0

p~ t21t0
2!

. ~18!

These choices lead to

g1~u!5
x01t0

p@~x01t0!21u2#
, ~19!

and g2(v)5g1(v). The bound on the spacetime averag
energy density now becomes

r̂>2
1

48p~x01t0!2
. ~20!

A second possible choice of sampling function is a Gauss
in both space and time:

gS~x!5
1

Apx0

e2x2/x0
2
, gT~ t !5

1

Apt0

e2t2/t0
2
. ~21!

In this case, we find

g1~u!5
1

Ap~x0
21t0

2!
e2u2/(x0

2
1t0

2), ~22!

and the bound becomes

r̂>2
1

12p~x0
21t0

2!
. ~23!

These spacetime averaged quantum inequalities reduc
the usual QIs along worldlines in the limit thatx050. Note
that in two dimensions one also has a nontrivial bound fr
spatial averaging alone whent050. The extent to which the
type of results found here in two dimensions can be gen
alized to four dimensions is unclear. It seems that there
may need the temporal averaging to get a bound.

III. FORBIDDEN AND CONSTRAINED DISTRIBUTIONS

We can rule out several spatial distributions of (1) and
(2) energy by applying the AWEC and the QIs to the
possible evolutions. In all of the examples given below
assume that the violations of the WEC are strong, i.e., if
energy density is negative in one frame then it is negative
all frames.~See the Appendix for further details.! This as-
sumption is necessary for the following discussion. In m
of the cases we will be specifically considering null fluid
i.e.,

Tmn5rkmkn. ~24!
2-4
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For such stress tensors the violations of the WEC are str
as can be easily shown. We will explicitly point out the sit
ations in which we do not assume this form for the str
tensor.

A. Forbidden distributions

1. Separated regions of„¿… and „À… energy, with the„¿…

energy moving rigidly

Consider an initial state that consists of a compact reg
N, of (2) energy and a distinct compact region,P, of (1)
energy. The compactness of the initial (1) energy distribu-
tion ~i.e., its finite spatial extent! is crucial to the argument
that we present. We assume thatP does not embraceN in the
sense that both regions can be contained in non-interse
rectangular boxes.

We consider situations in which the (1) energy moves
‘‘rigidly’’ in that the null flow vector km in the energy-
momentum tensor, Eq.~24!, is constant in Cartesian coord
nates. More general evolutions are discussed in Sec. I
The (2) energy may evolve in any way that it likes.

Let O be any point inN and choose Cartesian coordinat
with O at the origin. The time axis will be the straight lin
that passes throughO in the time direction (x5y5z50).
Consider the world tube that represents the evolution ofP,
extended as far as possible in both future and past directi
If this world tube never crosses the time axis, an obser
sitting on the axis throughout will never encounter the (1)
energy and his worldline will violate the AWEC.

Next, consider the case where the world tube crosses
time axis in the future direction.~The case when it crosses
in the past direction is covered by the time-reverse of
argument presented below.! This means that the positive en
ergy flows across the future of the region where there w
negative energy, as shown in Fig. 3. Since the motion of
positive energy is rigid, its world tube does not expand
either time direction. Thus, although it will cross the futu
light cone of a point in the negative energy region, it can
entirely ‘‘cap’’ that light cone. Suitably chosen timelike ge
desics that go through the negative energy can avoid in
secting any positive energy at all. We prove this precis
below.

In the case where the crossing takes place in the future
timelike geodesic throughO can intersect the world tube o
P in the past, since in the past direction the world tube

FIG. 3. The world tube of the (1) energy region cannot ‘‘cap
the future light cone’’ of a point,O, in the (2) energy region.
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running away from the origin at the speed of light. We sho
that there is at least one geodesic that avoids intersecting
world tube ofP in the future direction as well. We choos
our Cartesian coordinates so that the positivey direction is
the direction of motion of the (1) energy and we set thing
up at t50 as follows: LetP5(0,x0 ,y0 ,z0) be a point inP
with the property that no point inP has a largerx-coordinate.
The compactness ofP guarantees that there will be such
point. This point will lie on an ‘‘edge’’ ofP in the x direc-
tion. The choice ofx is arbitrary. We could just as well mak
the argument we are about to make below by choosin
point on the edge in thez direction. By the assumptions tha
the (1) energy does not embrace the (2) energy and that
the (1) energy is moving towards the origin in the positiv
y direction, we havey0,0.

Since the world tube ofP moves rigidly in they direction,
we note that no point on this world tube can have anx co-
ordinate larger thanx0. Our strategy is to show that there a
timelike geodesics that pass through the origin and escap
a point withx coordinate equal tox0 without intersecting the
(1) energy~i.e., the world tube ofP). Since thex coordinate
on such a geodesic must continue to increase, it can n
intersect the world tube ofP if it has not already done so b
this stage.

Let l be the null geodesic in the world tube ofP that
passes throughP and points in the direction of the flow vec
tor km. It will obey the equationst5y2y0 , x5x0 , z5z0
and so lies in thet-y plane located at (x0 ,z0), as depicted in
Fig. 4. Now consider an arbitrary timelike geodesic,g,
throughO. It will obey t25a2(x21y21z2), wherea.1. If
such ag can get to some spatial point (x0 ,y,z0), with y
.0, in thet-y plane of interest beforel gets there, then, a
we have seen,g can avoid intersecting any positive energ
We show that it is possible forg to do this. Suppose thatg
gets to (x0 ,y,z0) at time t1 andl gets there at timet2. The
condition t2.t1 for l to get to this spatial point afterg can

FIG. 4. An illustration of the argument of Sec. III A 1. Th
timelike geodesicg from the origin gets to point (x0 ,y,z0) on the
(t,y) plane at (x0 ,y0), the shaded region, before the null geode
l gets to the same spatial point.
2-5
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be expressed as (y2y0)2.a2(x0
21y21z0

2), or

a2x0
21a2z0

2,2y2~a221!22yy01y0
2 . ~25!

Sincey0,0 andy.0, the only negative term on the right
the first one. Choosinga2511(y0

2/2y2), we see that~i! the
first and third terms on the right combine to give a posit
value, and~ii ! for largey, we havea2 close to 1. By choos-
ing y sufficiently large, then, we can make the right hand s
as big as we want while keeping the left hand side close
x0

21z0
2. Therefore, irrespective of the values ofx0 andz0, we

can find a value ofy ~with a2 chosen as above! so as to
satisfy inequality~25!. Thus, we have shown that it is po
sible to find a timelike geodesic that outruns the posit
energy to an edge of the spatial region that the positive
ergy can cover. This geodesic only passes through nega
energy—a forbidden scenario.

The argument covers any finite initial distribution of a
(1) energy null fluid, no matter how large, and any initi
distribution of (2) energy, no matter how small, as long
the (1) energy moves rigidly in one direction. The (1)
energy cannot fully ‘‘cap the future light cone’’ of a (2)
energy point, as illustrated in Fig. 3. Some timelike geo
sics are guaranteed to escape without intersecting any1)
energy. If we want the AWEC to hold along every timelik
geodesic, then even if there is a single point at which ne
tive energy exists we need an infinitely large distribution
compensating positive energy.

Our argument applies to any shape of (1) and (2) en-
ergy distribution. In particular, it covers (1) and (2) energy
‘‘pancakes.’’ These are distributions that are small in o
spatial direction compared to the other two.

B. Constrained distributions

1. Separated regions of„¿… and „À… energy, with the„¿…

energy moving arbitrarily

If the (1) energy does not move rigidly, the configuratio
discussed in Sec. III A 1 cannot be ruled out, in general,
the grounds that there will always be a timelike geodesic
intersects the (2) energy but not the (1). If the (1) energy
expands outward, for instance, no timelike geodesic thro
(2) can outrun the world tube of the (1) energy. Even in
this case, however, by choosing a timelike geodesic tha
close enough to a null one we can put off the encounter w
the positive energy as late as we like. If the distribution
(1) energy is expanding, its density may then be dilu
enough so as to be insufficient to enforce the AWEC. T
will happen in the case when the (1) energy expands out
ward uniformly, so that its densityr goes down everywhere
as 1/t3.

2. Pancakes

Let us first consider a box-like region of (2) energy
which moves in thex-direction at the speed of light. If the
box has a constant energy density of magnitudeuru, how
large can the box be? Presumably there is some (1) energy
nearby, as required by the AWEC and the QIs. However
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we use a compactly supported sampling function which c
off rapidly near the edge of the (2) energy region, we can
get a bound on the size of the (2) energy region alone.

Assume the density,2uru, is that measured in the fram
of reference of an observerO who is at rest on thex-axis. We
further assume that the stress tensor has the null fluid f
given by Eq.~24!, with r52uru. Take km5(1,1,0,0). The
observer’s four velocity is um5(1,0,0,0). Therefore
Tmnumun52uru. The QI applied inO’s frame is

2E
2`

`

g~ t !urudt>2
C

t0
4

. ~26!

Here the Minkowski timet is the proper time alongO’s
worldline andt0 is the sampling time, which we set equal
the time O spends in the (2) energy region. Let the
x-dimension of the box, as measured byO, beLx . Since the
box moves pastO along thex-axis at the speed of light, the
time for the box to passO is t05Lx . Using Eq.~26!, and the
fact that r is a constant and the sampling function
compactly-supported with unit norm, we obtain the boun

Lx<S C

uru D
1/4

. ~27!

Can we get a stronger bound using observers booste
thex-direction? First consider an observerO8 who is boosted
along thex-axis. His four velocity isum5(g,vg,0,0), where
g51/A12v2, and Tmnumun52uru(12v)/(11v). The QI
applied inO8’s frame is

2E
2`

`

g~t!uruS 12v
11v Ddt>2

C

t0
4

. ~28!

Heret is O8’s proper time coordinate and the sampling tim
t0 is the timeO8 spends in the (2) energy. The timet0 for
the box to passO8 is t05Lx /g. Using Eq.~28!, we get the
following bound onLx :

Lx<S C

uru D
1/4F 1

~12v !3/4~11v !1/4G . ~29!

The righthand side has a minimum atv521/2. The result-
ing bound is

Lx<0.877S C

uru D
1/4

, ~30!

which is slightly stronger than Eq.~27!.
Can we constrain the other dimensions of the box by

amining observers who are boosted in directions transv
to the box’s direction of motion? It would appear not. Co
sider an observer shot through the box along they-axis. The
maximum time the observer can spend in the (2) energy is
ultimately determined by how long the box takes to pa
him, which in turn depends only on its length along its d
rection of motion. The latter is bounded by Eq.~30!. Note
that the length of they-dimension of the box could be a
2-6
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CONSTRAINTS ON SPATIAL DISTRIBUTIONS OF . . . PHYSICAL REVIEW D 65 084002
large as we like. How far the observer can travel in t
direction, while still remaining in the (2) energy, depends
on how long it takes the back wall of the box to hit him
Hence it appears that we can make the transverse dimen
of the box as large as we like.

The previous discussion leads naturally to a reconsid
tion of ‘‘pancakes,’’ i.e., ‘‘boxes’’ which are much longer i
the transverse dimensions compared to their thickness in
direction of motion. We saw from our earlier discussion th
a configuration of two finite (1) and (2) energy pancakes
was impossible. The (1) pancake was required to be o
infinite extent in the transverse dimensions. There is a fur
constraint between the magnitudes of the relative ene
densities,ur1 /r2u, and their separation,d, which is given by
the quantum interest effect@23#. Consider a stationary ob
server who gets hit first by the (2) pancake followed by the
(1) one. From quantum interest we know that the (1) en-
ergy density must overcompensate the (2) energy density
by an amount which grows as the separationd increases.

3. Rigidly moving engulfed„À… regions

Consider a (2) energy region which is enveloped by
surrounding (1) energy region. Assume that the shapes
the regions are time-independent and that they are null fl
which move in one direction. If the energy distributions a
assumed to be continuous, the boundaries of the worldtu
of the (2) and (1) energy must be surfaces of zero ener
density. Therefore the energy density in each worldtube c
not be constant. To satisfy our rigidity requirement, we m
have ¹mkm50; to guarantee energy conservation we m
haveTmn

,n50. These two criteria will be satisfied, with non
constant energy densities, if the densities do not vary al
the null propagation direction. That is, we assume t
km¹mr50.

Any timelike observer who starts in the (2) energy re-
gion will eventually encounter the (1) energy @see Fig.
5~a!#, so this case appears to be allowed. However for m
sive fields, even this configuration is impossible, since
two energy regions would travel at speeds less than 1. He
it is always possible to find an observer who simply sits
the (2) energy region for an arbitrarily long time, whic
violates the QIs.

Topologically the energy region here is equivalent to
(2) energy ‘‘box’’ discussed earlier in this section. Ther

FIG. 5. In ~a!, the worldtube of a (2) energy region is totally
surrounded by the worldtube of a (1) energy region. In~b!, the
(1) energy envelops all but the forward-moving edge of the (2)
energy region.
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fore, for the null fluid case we can use the same argumen
place constraints on the magnitude of the (2) energy density
in the interior region and the thickness in its direction
motion. However, here the (1) energy actually need envelo
only all but a line of tangency which is transverse to t
direction of motion, as depicted in Fig. 5~b!. In this case as
well, there are no timelike observers who intersectonly the
(2) energy. As an aside, we point out that the limiting ca
is when the line of tangency is shrunk to a point which li
along the direction of motion.

4. Expanding engulfed„À… energy shells

Consider two spatially concentric, radially expandin
d-function null shells of (1) and (2) energy, which were
created at two different times in the past. A stationary o
serverO is hit first by the (1) shell att5t i , and later by the
(2) shell att5t i1T, whereT is the separation between th
shells in time. This scenario is depicted in Fig. 6. Let t
energy density of the (1) shell, as measured byO at timet i ,
be

r15
a

ti
2
d~ t2t i !, ~31!

with a5const.0, and the energy density att5t i1T be

r252
b

ti
2
d„t2~ t i1T!…, ~32!

with b5const.0. The constantsa andb are measures of the
magnitudes of the energy densities, neglecting the effect
expansion. This scenario can be constrained using the
with a compactly supported sampling function, following th
argument given in Sec. III of@23#.

FIG. 6. Two spatially concentric, radially expandingd-function
null shells of (1) and (2) energy, created in the past. The worl
line of observerO intersects the (1) energy shell at timet5t i , and
the (2) energy shell a timeT later. The vertices of the two ligh
cones, although not shown, are assumed to lie along the same
which is parallel toO.
2-7
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ARVIND BORDE, L. H. FORD, AND THOMAS A. ROMAN PHYSICAL REVIEW D65 084002
Choose a compactly supported sampling function wit
single maximum centered ont5t i1T @i.e., on the (2) en-
ergy shell#, with a width t0. Substituting Eqs.~31! and ~32!
into the QI, we get

r̂5E
2`

`

g~ t !r~ t !dt

5
a

ti
2

g~ t i !2
b

ti
2

g~ t i1T!>2
C

t0
4

.

~33!

If we now choose the width of the sampling function to
t052T, then g(t i)50. For a sampling function with one
maximum at g(t i1T), g(t i1T)}1/t0, so let g(t i1T)
5C0 /t05C0/2T, whereC0 is a constant whose value de
pends only on the form of the chosen sampling function~but
not on the spacetime dimension, unlikeC). Therefore we
obtain

T<S C

8bC0
D 1/3

t i
2/3. ~34!

We see that for fixedt i , T decreases with increasingb, as
expected. Whenb is fixed and for 0,t i!T, we see thatT
must decrease ast i decreases.~To avoid singularities in the
energy densities we do not want to allowt i→0, which is
why only the later stages of the evolution are illustrated
Fig. 6.! In the limit when t i@T, for fixed b, the bound Eq.
~34! becomes very weak.

5. Separated expanding shells of„¿… and „À… energy

Consider two null fluidd-function shells of separated
(1) and (2) energy which contract and re-expand. T
shells reach maximum density at timet50. The spatial lo-
cations where the densities become maximum are sepa
by a distance,d. ~We ignore any interactions when the she
cross each other.! The evolution of the shells is depicted
Fig. 7. A static observer,O, gets hit by each shell twice. Th

FIG. 7. Two contracting shells of (1) and (2) energy reach
their maximum densities att50, and subsequently re-expand. T
regions of maximum density are separated by distanced. A station-
ary observerO intersects the (2) energy shell att5t i .
08400
a

ted

worldline of O crosses the (2) energy shell for a second
time at timet5t i.0, and crosses the (1) energy shell for
the second time at timet5t i1d. Note that the diagram is
time-symmetric aroundt50.

The following argument uses only the AWEC to constra
this scenario. As before, let the magnitudes of the ene
densities~neglecting the effects of contraction and expa
sion! be ‘‘a’’ for the ( 1) energy shell and ‘‘b’’ for the
(2) energy shell, witha,b chosen to be positive constant
If we apply the AWEC toO’s worldline, and use the time
symmetry of the diagram, we obtain

E
2`

`

Tmnumundt5
2a

~ t i1d!2
2

2b

ti
2

>0. ~35!

The factors of 2 reflect the fact thatO gets hit by each shel
twice. If we let f 5a/b, we can rewrite this as

f t i
2>~ t i1d!2. ~36!

The quantitiesf, t i , andd are all positive, so we obtain

d<~Af 21!t i . ~37!

This implies thatf .1, and thatf must increase ast i /d de-
creases. In the limitt i /d@1, we simply getf *1, which is a
fairly weak bound.

The bound Eq.~37! becomes more and more stringent
t i decreases. However, it is more realistic to suppose tha
shells have a finite thicknessD. This can be viewed as eithe
the thickness in space at a fixed time, or else the duratio
time alongO’s worldline. Then the above analysis holds
long as t i.D, and the best bound, obtained whent i'D,
implies that

f *
~d1D!2

D2
. ~38!

When d@D, this requiresf @1, which is a version of the
quantum interest phenomenon.

IV. EXPLICIT CONSTRUCTION OF ALLOWED
DISTRIBUTIONS

A. Plane wave modes

In the previous section, we discussed (2) energy distri-
butions which were either ruled out or constrained by
AWEC and the QIs. We now give some examples of dis
butions which can be explicitly constructed from allowe
states in quantum field theory, and analyze some of th
properties. The class of examples which we will focus on
squeezed vacuum states, which are discussed extensive
quantum optics and which can now be constructed in
laboratory@29#. Our discussion is restricted here to quantiz
massless and massive minimally coupled scalar fields in
spacetime, but it could be easily generalized to include
electromagnetic field as well, which is also known to ob
the QIs and the AWEC@19,30#. The stress tensor for th
minimally coupled scalar field is
2-8
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Tmn5f ,mf ,n2
1

2
hmn~f ,af ,a1m2f2!. ~39!

The field operator may be expanded in terms of creation
annihilation operators as

f5(
k

~akf k1ak
†f k* !. ~40!

For simplicity, we will consider only a single mode sta
with t andx dependence only, i.e.,f k5 f 5 f (t,x). The renor-
malized expectation values of the energy density, press
and flux are then given by

T005Re@^a†a&~ f ,t* f ,t1 f ,x* f ,x!1^a2&~ f ,t
21 f ,x

2 !

1m2~^a†a& f * f 1^a2& f 2!#, ~41!

T115Re@^a†a&~ f ,x* f ,x1 f ,t* f ,t!1^a2&~ f ,x
2 1 f ,t

2 !

2m2~^a†a& f * f 1^a2& f 2!#, ~42!

T015Re@^a†a&~ f ,t* f ,x1 f ,x* f ,t!12^a2&~ f ,t f ,x!#,
~43!

respectively.
Here the mode function will be taken to be a plane wa

mode of the form

f 5
i

A2vL
ei (kx2vt), ~44!

with v5Ak21m2, and wherek5kx̂, and a periodicity of
lengthL has been imposed in the spatial direction, so thak
takes on discrete values. We choose the quantum stateuc& to
be a squeezed vacuum state:

uj&5S~j!u0&, ~45!

where S(j) is the ‘‘squeeze operator,’’ andj5reiu is an
arbitrary complex number. In this state,

^a†a&5sinh2r , ~46!

and

^a2&52sinhr coshr , ~47!

where r .0 is the squeeze parameter, and where we h
chosen the phaseu50 @29#. If we substitute Eqs.~44!–~47!
into Eqs.~41!–~43!, we obtain

T005
v

L
sinhr Fsinhr 2

k2

v2
coshr cos 2~kx2vt !G , ~48!

T115
v

L
sinhr F k2

v2
sinhr 2coshr cos 2~kx2vt !G ,

~49!
08400
d

re,

e

ve

T0152
k

L
sinhr @sinhr 2coshr cos 2~kx2vt !#. ~50!

The energy density as a function of position at fixed time
plotted in Fig. 8. One obtains a similar graph of energy d
sity as a function of time at fixed position. The energy de
sity oscillates between (1) and (2) values, with the (1)
energy always overcompensating the (2) energy.

For the massive field case it might seem that an obse
could ride along with the (2) energy in violation of the QIs.
However, since the QIs hold forall quantum states in fla
spacetime, we know this cannot be possible. How is t
apparent paradox resolved? The energy density as a fun
of t and x is plotted in Fig. 9. The (2) energy density is
concentrated along spacelike regions. So an observer ca
ride along with it. It might appear from this example that t
(2) energy is ‘‘propagating’’ along spacelike trajectorie
However, a relativistic quantum field theory incorporat
causality in its construction. So what is going on? One m
remember that these are rather special states which have
relations built into them. These built-in correlations cause
energy density to vary in a manner that looks like acau
propagation. At each point, the energy density is moving
such a way as to create the effect of peaks and trough
energy that are constant along spacelike lines. This is il
trated in Fig. 10. A useful analogy is the following. Imagin
a system of light bulbs with triggering mechanisms a

FIG. 8. The energy densityr in a single plane wave mode
squeezed vacuum state, at constant timet50, as a function of po-
sition, x. Herer 50.2, v510, andm58.

FIG. 9. A ‘‘top down’’ view of the energy density,r in a single
plane wave mode squeezed vacuum state of a massive scalar
as a function ofx and t. The energy density increases in the dire
tion perpendicular to the page. The (2) energy is concentrated
along spacelike regions. Againr 50.2, v510, andm58.
2-9
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ARVIND BORDE, L. H. FORD, AND THOMAS A. ROMAN PHYSICAL REVIEW D65 084002
clocks which are arranged in a line. An observer can p
program each bulb to be triggered at a certain time. This
be done in such a way that another observer who later
the succession of flashes, and interprets them as cau
generating one another, will think that the flashes are pro
gating faster than light. The correlations of the flash times
the bulbs relative to one another have been causally
programmed into the state of the system from the beginn
Another analogy is an Einstein-Podolsky-Rosen state
which two photons are generated in an entangled state
that a measurement of the spin of one photon allows on
determine the spin of the other photon even at space
separations. This process cannot be used for superlum
signaling because there is no way to know ahead of t
what the spin of the first photon will be before it is measur
which is what one would need to send Morse-code type m
sages. The two photons are in some sense two parts of
single ‘‘object.’’

Another apparent paradox looms at this point. If th
(2) energy is concentrated along spacelike lines, as sh
in the figures, then it would seem that a suitably boos
observer could make one of these lines a constant time
face on which the energy density is everywhere negat
However, these surfaces are perpendicular to the obser
timelike Killing vector ~unlike the spacelike surfaces di
cussed in Fig. 2!, and so we know that the energy dens
integrated over all space must be positive.

In the boosted frame,

T008 5g2T0012vg2T011v2g2T11, ~51!

and

FIG. 10. A ‘‘top down’’ view of the energy density,r in a single
plane wave mode squeezed vacuum state of a massive scalar
as a function of position~horizontal axis! and time~vertical axis!.
The energy density increases in the direction out of the page.
lines are at 45°. The (2) energy is concentrated along spaceli
regions. The arrows indicate the instantaneous direction of flow
the energy. Againr 50.2, v510, andm58.
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T018 52vg2~T001T11!2g2~11v2!T01. ~52!

In the boosted frame described above,T018 50. A short cal-
culation shows that this is the case whenv5k/v. It is easily
shown that this is the value ofv which givesk850. In this
frame

T008 5
m2sinh2r

vL
5const.0, ~53!

so the observer simply sees a constant (1) energy density.
This is consistent with the fact that the WEC violations he
are weak. We can show this more generally using the res
of the Appendix, as follows.

For the massive scalar field in a plane wave squee
vacuum state, whenT00,0, what are the conditions that in
boosted frameT008 ,0 as well? Letk5kx2vt. Sincer .0
andv.k, we need (v2/k2)tanhr,cos 2k for T00,0, which
in turn implies thatT11,0 andT01.0, from Eqs.~48!–~50!.
Therefore we may write

uT11u52T115
v

L
sinh2r Fcothr cos 2k2

k2

v2G , ~54!

uT01u5T015
k

L
sinh2r @cothr cos 2k21#. ~55!

Note that cothr cos 2k2(k2/v2).cothr cos 2k21.0, and
(v/L)sinh2r.(k/L)sinh2r, so we have thatuT11u.uT01u and
T11,0. Thus we have an example of case 1 of the Appen
where the necessary and sufficient condition for a stro
WEC violation is Eq.~A12!,

T00,
T01

2

T11
. ~56!

Since T11,0, this implies T00T11.T01
2. Combining Eqs.

~48!–~50!, we find

T00T112T01
252~m2/v2L2!coshr sinh3r cos 2k,0,

~57!

since if T00,0, then cos 2k.0. Hence the condition, Eq
~A12!, is violated and the WEC violation by the massiv
scalar field in the single plane wave mode squeezed vac
state is weak.

For the massless scalar field,m50 and hencev5uku,
T005T1152T01, so this is an example of case 2.2 of th
Appendix, for which the necessary and sufficient conditi
for strong WEC violation is Eq.~A2!,

uT00u>T1112uT01u, ~58!

which is marginally satisfied in this case. Hence for t
massless scalar field the WEC violation is strong.

B. Wavepackets

We now analyze the distribution of (1) and (2) energy
in a wavepacket of the massive scalar field in tw

eld,

ll

f

2-10
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CONSTRAINTS ON SPATIAL DISTRIBUTIONS OF . . . PHYSICAL REVIEW D 65 084002
dimensional spacetime. In the mode expansion of the fi
operator, given in Eq.~40!, we will take the f k’s to be a
complete orthonormal set of wavepacket modes. Let o
one single wavepacket mode,f, be excited, and take the form
of this mode to be@31#

f ~x,t !5
a1/4

23/4p1/4Av0
S 11

s

4av0
D 21/2

3ei (k0x2v0t)e2(x2vgt)2/4(a1 ist), ~59!

wherev05Ak0
21m2,

vg5S dv

dk D
k0

5
k0

v0
, ~60!

is the group velocity of the packet, and where

s5
1

2 S d2v

dk2 D
k0

5
m2

2v0
3

. ~61!

The packet is sharply peaked aroundk0 in momentum space
with spread 1/Aa, where we assume thata@1. With these
assumptions the wavepacket has unit Klein-Gordon norm
before take the quantum state to be a squeezed vacuum
and substitute Eq.~59! into Eq. ~41!. A tedious calculation
then yields a rather long expression forT00 which we do not
reproduce here. A plot ofr5T00 as a function oft andx is
shown in Fig. 11. Note that the peak of the wavepac
moves along a timelike trajectory with the group veloci
dv/dk, whereas the individual components move with t
phase velocity,v/k. As in the plane wave case for the ma
sive scalar field, the negative energy is concentrated a
spacelike regions.

V. THE AWEC ALONG GEODESIC SEGMENTS

In this section, we will depart somewhat from the princ
pal topic of this paper and discuss some of the limitations
the AWEC. We illustrate why the AWEC integral must b
taken along a complete geodesic path. We will also have

FIG. 11. The energy densityr as a function ofx and t for a
massive scalar field in a wavepacket mode squeezed vacuum
The peak of the packet follows a timelike trajectory. The negat
energy is concentrated along the spacelike troughs. Herer 50.2,
k050.6, m58 anda520/k0

2.
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opportunity to explore examples of both strong and we
violations of the WEC.

A. A counterexample to the AWEC for piecewise geodesics

In this subsection we wish to show that the averaged w
energy condition does not hold, even in Minkowski spac
time, if one integrates the energy density along a piecew
geodesic path, as opposed to a true geodesic. Conside
energy distribution with the null fluid form for the stres
tensor, Eq.~24!. Suppose that there are separated (1) and
(2) energy regions, both moving to the right, as illustrat
in Fig. 12. For the purposes of our example, we may take
energy density to be constant within each region, so thar
5r1 in the (1) energy region andr5r2 in the (2) energy
region. Further require that both pulses last for the same t
intervalDt as measured in the laboratory frame. This mea
that we must have

r1.ur2u ~62!

in order that there be net (1) energy.
Now consider an observer moving to the left with spe

v, and hence with four-velocityum5g(1,2v,0,0), whereg
51/A12v2. The energy density in the frame of this observ
is

Tmnumun5rg2~11v !2. ~63!

Further suppose that this observer moves along the piece
geodesic worldline depicted in Fig. 12. The observer fi
moves at speedv through (2) energy, and then is at res
when the (1) energy passes by. The path of the observe
the (2) energy can be taken to be given byx52vt, and the

ate.
e

FIG. 12. An observer on a piecewise geodesic path mo
through separated regions of (1) and (2) energy. The observe
moves through the (2) energy on the pathx52vt. The lower
boundary of the (2) energy region is the linex5t and its upper
boundary is the linex5t2Dt.
2-11
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ARVIND BORDE, L. H. FORD, AND THOMAS A. ROMAN PHYSICAL REVIEW D65 084002
boundaries of the (2) energy to be the linesx5t andx5t
2Dt. The observer enters the (2) energy at pointA, where
x5t50. LetT be the coordinate time required to traverse
(2) energy region. At pointB, we havex52vT5T2Dt.
Hence the proper time which the observer spends in t
(2) energy is

t5
T

g
5

Dt

g~11v !
. ~64!

The integrated energy density along this observer’s world
is

E Tmnumundt5r1Dt1r2tg2~11v !2

5DtS r12ur2uA11v
12v D .

~65!

So long asr2Þ0, we can find av which makes this expres
sion negative. The piecewise nature of the worldline allo
the (2) energy to be enhanced in magnitude by the Dopp
shift factor A(11v)/(12v), while the (1) energy is un-
changed.

B. Violations of the difference AWEC

The AWEC in its simple form need not hold inside of
cavity, if there is negative Casimir energy density. In th
case, an observer can sit in constant negative energy de
for an infinite amount of proper time. However, the diffe
ence between the energy density in an arbitrary quan
state and in the Casimir vacuum does satisfy the AWE
More generally, this difference satisfies quantum inequalit
as was discussed in Refs.@12,13#. These ‘‘difference in-
equalities’’ reduce to the ‘‘difference AWEC’’ in the limit o
long sampling times. The latter is the statement that the
tegral of the difference in energy densities is non-nega
when integrated over the worldline of an observer at r
within the cavity. However, just as it is possible to temp
rarily suppress the local energy density below zero in em
Minkowski spacetime, it is possible to find quantum states
which the local energy density is more negative than in
Casimir vacuum state. The question which we wish to
dress in this subsection is the following: Is it possible fo
moving observer to pass through a cavity in such a way a
see a net negative integrated energy from a quantum
confined within the cavity? Here we are concerned only w
the stress tensor of the quantum field, and are ignoring
contributions from the walls of the cavity itself.

Consider a massless scalar field confined between refl
ing boundaries located atx50 and atx5L, and a geodesic
observer moving at speedv in the positivex-direction. The
four velocity of the observer isum5g(1,v,0,0) and the en-
ergy density in this observer’s rest frame is

r5Tmnumun . ~66!
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HereTmn is understood to be the difference in the expec
tion values of the stress tensor operator in a given quan
state and in the Casimir vacuum. Let the quantum state
one in which a single mode, with mode functionf, is excited.
Then the components ofTmn are given by the same expre
sions that hold for the normal-ordered stress tensor
Minkowski spacetime, namely Eqs.~41!, ~42!, and~43!. We
may use these expressions to writer as

r52ReH S g22
1

2D @ u f ,tu2^a†a&1~ f ,t!
2^a2&#1S v2g21

1

2D
3@ u f ,xu2^a†a&1~ f ,x!

2^a2&#1vg2@~ f ,t* f ,x1 f ,x* f ,t!^a
†a&

12 f ,t f ,x^a
2&#J . ~67!

We take the mode function to be that of a standing wa
which vanishes on the walls of the cavity and has no dep
dence upon the transverse directions:

f 5 f ~ t,x!5A sinvxe2 ivt. ~68!

Note that the standing wave modes must satisfy

v5
pn

L
, n51,2,3, . . . . ~69!

We wish to examine the integrated energy density alo
this observer’s worldline. Here it is assumed that there are
particles outside of the cavity, so the difference in ene
densities is nonzero only inside of the cavity. The integra
energy density difference then becomes

E5E rdt5
1

gEt0

t01Dt

rdt, ~70!

where Dt5L/v is the coordinate time required to traver
the cavity, andt5t0 is the time at which the observer enter
Let the quantum state be the single mode squeezed vac
state discussed in Sec. IV. We can now use Eqs.~67!, ~68!,
~46!, and~47! to write

E5
A2v sinhr

4A12v2
$coshr @2 sin~2vt0!2~11v !sin$2@~11v !

3Dt1t0#v%2~12v !sin$2@~12v !Dt1t0#v%#

14~11v2!vDt sinhr %. ~71!

Let the excited mode be the lowest frequency,n51,
mode. It is possible to arrange for the observer to see
negative integrated energy for selected values of the par
etersr, v and t0. For example,E is plotted in Fig. 13 as a
function of t0 for r 50.03 andv50.9. The result can be
either positive or negative. The cavity contains net posit
energy, but with oscillatory pockets of negative energy d
sity. An observer who enters the cavity at certain times d
ing the cycle will manage to see net negative ener
whereas one who enters at other times may see net pos
energy. It is also of interest to look atE as a function ofv for
2-12
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fixed r and t0. This is illustrated in Fig. 14, wherer 50.03
and t050. Note that for smaller values ofv, E.0, whereas
larger values ofv allow the observer to see net negati
energy,E,0. If the observer spends too long in the cavi
the energy oscillations cause the time-integrated energy t
positive, but a speedier observer can manage to catch
negative energy. Again it is important to emphasize that
net negative energy represents only the contribution of
quantum field in the cavity and not of the walls themselv
For any realistic cavity, it is overwhelmingly likely that th
AWEC integral including the walls’ rest mass energy will b
positive.

C. Strong and weak violations of the WEC in a cavity

We have seen in Sec. IV that the scalar field in a sin
mode squeezed vacuum state can violate the WEC. F
travelling wave mode, it was shown that the violation is
ways weak for the massive field and always strong for
massless field. The cavity discussed in the previous sub
tion allows us to give an example where both strong a
weak violations occur simultaneously in different regions
space. Again take a massless scalar field in the cavity to b
a squeezed vacuum state for the mode given in Eq.~68!. The
energy density and pressure are equal and given by

T005T115A2v2 sinhr @sinhr 2cos 2vx cos 2vt coshr #.

~72!

The flux is given by

FIG. 13. E/v2A2 is plotted as a function of the entrance timet0

for the case thatr 50.03 andv50.9.

FIG. 14. E/v2A2 is plotted as a function of the observer’s spe
v for the case thatr 50.03 andt050.
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T015A2v2 sinhr coshr sin 2vx sin 2vt. ~73!

Let us suppose that we are at a point at which the WEC
violated, so T00,0, or cos 2vxcos 2vt.tanhr. If uT11u
.uT01u, we are in case 1 of the Appendix, in which th
necessary and sufficient condition for a strong violation
Eq. ~A12!. However, whenT005T11,0, this condition al-
ways holds ifuT11u.uT01u. On the other hand, suppose th
uT11u<uT01u. Then we are in case 2.2 of the Appendix, a
the necessary and sufficient condition for a strong violat
is Eq.~A2!. In summary, in the cavity all WEC violations ar
strong if uT11u>uT01u and weak ifuT11u,uT01u. It is possible
to find both types of violation, as is illustrated in Fig. 15.
this example, the WEC violation is strong in the middle
the (2) energy region, and weak nearer to its edges.

VI. SUMMARY AND FUTURE DIRECTIONS

Let us summarize some of the results obtained in t
paper, as well as some of the unanswered questions w
this investigation has raised. We have given some exp
examples of spacetime averaged quantum inequalities
two-dimensional spacetime. However, the problem of find
similar results in four-dimensional spacetime is unsolved.
have used the AWEC and QIs to rule out or limit some p
ticular model distributions of (2) energy. In particular, the
‘‘cap the cone’’ argument given in Sec. III A 1 shows th
one cannot have a piece of (2) energy separated from rig
idly moving positive energy. We were able to give quanti
tive restrictions on other possible distributions. We also ga
some explicit examples of allowed distributions. Howev
much more work needs to be done to narrow the gap
tween distributions which can be ruled out and those wh
are definitely allowed. As part of our investigation, we ha
introduced the distinction between strong and weak vio

FIG. 15. The regions of strong and weak violation of the WE
are shown. The energy density and the parameteruT11/T01u21 for
the n51 mode are plotted as functions of position in the cavity
time t53/8. Here units in whichL51 are used, and we have s
A51 andr 50.2.
2-13
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tions of the WEC, which is likely to prove useful in futur
work on this subject. We have also tested the limits of
AWEC and provided counterexamples to the AWEC alo
piecewise geodesics and to the difference AWEC for obs
ers who pass through a cavity. These types of counte
amples are useful for understanding more clearly just wh
conditions can be used to constrain spatial distributions
(2) energy.

Future work in this area will involve a search for mo
systematic ways to use information from worldline integr
to reconstruct or constrain spatial and spacetime distribut
of (2) energy. It will also involve the construction of add
tional explicit examples. It is especially interesting to s
how far one can go in four spacetime dimensions tow
having separated regions of~1! and (2) energy.
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APPENDIX: STRONG AND WEAK VIOLATIONS
OF THE WEAK ENERGY CONDITION

If an observer measures negative energy at a point, m
others measure it as negative too? If all observers mea
the energy at a point to be negative, we say that we ha
strong violation of the weak energy condition at that point
only some do, we say that we have a weak violation. S
pose that an observer measures negative energy; i.e.T00
,0 in the observer’s rest frame. What are the conditions
the components ofTmn so that there is a strong violation o
the weak energy condition? We consider the question in t
dimensional flat spacetime.

Under a Lorentz transformation, we have

T008 5g2~T0012vT011v2T11!, ~A1!

wherev andg are the usual boost and Lorentz factors, anv
obeys21,v,1. Assuming thatT00,0, we want the nec-
essary and sufficient condition thatT008 ,0 as well, no matter
what the value ofv. This occurs trivially, for instance, if both
T01 andT11 are zero. We call this the trivial case.

In nontrivial cases, the condition

uT00u>T1112uT01u ~A2!

is necessary forT008 ,0, ;v. In order to see this, suppos
that the condition is violated. One ofT01 or T11 cannot be
zero, so we must have

2T00,T1112uT01u. ~A3!

This implies that for sufficiently smalle.0, we have
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2T00,~T112e/2!12~ uT01u2e/4!. ~A4!

Now, there must exist somev1.0 such that

v2T11.T112e/2, ;uvu.v1 , ~A5!

and somev2.0 such that

uvuuT01u.uT01u2e/4, ;uvu.v2 . ~A6!

Putting these together, we see that

T001v2T1112uvuuT01u.0, ;uvu.max~v1 ,v2!.
~A7!

We choosev to be (1) or (2) depending on whetherT01 is
(1) or (2). This gives us

T008 5T001v2T1112vT01.0, for some v. ~A8!

In other words, we do not have a strong violation of the we
energy condition.

In order to discuss sufficient conditions, there are t
cases we need to consider:~1! T11,0 and uT01u,uT11u; ~2!
other.

We look at the second case first. In this case, condit
~A2! is sufficient as well. To see this, we need to look at tw
subcases:

Case 2.1, T11>0: Sinceuvu,1, we haveT11>v2T11 and
2uT01u>2uvuuT01u>2vT01, with equality holding in each in-
stance only if both sides are zero. Since we are looking
nontrivial cases, at least one ofT11 andT01 is non-zero. Then
condition ~A2! implies that

2T00>T1112uT01u.v2T1112vT01, ;v. ~A9!

In other words

T008 5T001v2T1112vT01,0, ;v. ~A10!

Case 2.2, T11,0 and uT01u>uT11u: We must haveT01
Þ0 here, otherwise we get the trivial case. Define the fu
tion f (v) by

f ~v ![T0012vT101v2T11, 21<v<1. ~A11!

The graph of this function, under the imposed conditions
a downward pointing parabola whose extremumvext5
2T10/T11 lies outside the domain. In order to havef (v)
,0 for all v, we need to ensure that the higher off (1) and
f (21) is nonpositive. WhenT01.0, the higher of the two is
f (1) and whenT01,0, the higher point isf (21). Now,
condition ~A2! reduces tof (1)<0 when T01.0 and to
f (21)<0 whenT01,0, giving us precisely what we want

Case 1, T11,0 and uT01u,uT11u: Condition A2 is still
necessary here, but it is not sufficient. If, for exampleT00
520.0001,T11524 andT0151, it is easy to check that the
condition holds. Yet, forv51/200 we get a positive value fo
T008 . In order to derive the correct condition, consider t
function f (v) defined above. In this case, the extremu
vext52T10/T11, lies inside the domain of the function an
2-14
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the condition to impose isf (vext),0. Therefore, the neces
sary and sufficient condition in this case is

T00,
T01

2

T11
. ~A12!

This is a stronger condition than Eq.~A2!, in that it implies
that condition but is not implied by it.

The results of this appendix may be summarized in
following theorem:

Theorem. Let Tmn be the stress energy tensor in a tw
dimensional flat spacetime. Suppose that at some pointP we
have a negative energy density, i.e.,T00,0. The conditions
that the energy densityT008 in an arbitrary frame is also nega
tive are as follows:

~1! If T0150 andT1150, thenT008 is automatically nega-
tive.

~2! If T11,0 anduT01u,uT11u, then

uT00u>T1112uT01u ~A13!
tt

08400
e

is necessary but not sufficient forT008 ,0. The condition

T00,
T01

2

T11
~A14!

is necessary and sufficient forT008 ,0.
~3! In all other cases

uT00u>T1112uT01u ~A15!

is necessary and sufficient forT008 ,0.
These results may theoretically be applied to the fo

dimensional case as well. Suppose that we have a viola
of the weak energy condition in the rest frame of an obser
Does an observer boosted in a spatial directionxW also mea-
sure negative energy? We may rotate coordinates so thxW
points in the newx-direction (T00 will be unaffected by the
transformation!, then apply the conditions of this section
the T00, T01 andT11 components in the rotated coordinate
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