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Constraints on spatial distributions of negative energy
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This paper initiates a program which seeks to study the allowed spatial distributions of negative energy
density in quantum field theory. Here we deal with free fields in Minkowski spacetime. Known restrictions on
time integrals of the energy density along geodesics, the averaged weak energy condition and quantum in-
equalities are reviewed. These restrictions are then used to discuss some possible constraints on the allowable
spatial distributions of negative energy. We show how some geometric configurations can either be ruled out or
else constrained. We also construct some explicit examples of allowed distributions. Several issues related to
the allowable spatial distributions are also discussed. These include spacetime averaged quantum inequalities
in two-dimensional spacetime, the failure of generalizations of the averaged weak energy condition to piece-
wise geodesics, and the issue of when the local energy density is negative in the frame of all observers.
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[. INTRODUCTION density over all space, the Hamiltonian, is bounded below.
Other constraints involve integrals over the world line of an
The energy density of all observed forms of classical matobserver, a construction first introduced by Tiglét]. One
ter is non-negative. However, quantum field theory has thesuch constraint is the averaged weak energy condition
remarkable property that the local energy density can béAWEC), which states that the integral of the energy density
negative. This violates the weak energy conditi®EC) seen by a geodesic observer is non-negative:
which postulates that the local energy density is non-negative

for all observers. Its formal statement is that a stress tensor Jm T u*u’dr=0 )
. . . /‘LV = .
T,, satisfies the WEC provided that —w
T,,uku"=0, (1) Hereu* and r are the observer’s four-velocity and proper

time, respectively. This condition has been proven to hold for
a variety of free quantum field theories in boundary-free
Minkowski spacetime. It does not always hold inside of a

b e cavity in flat spacetime because the Casimir energy density
v5ers7able vv_ormhfolei[B(,f]_ an? _fasst%r-thag-llghfc d travel ‘ can be negative. However, even in this case, observers at rest
[5-7], creation of naked singulariti¢8,9], and avoidance o with respect to the cavity walls will see a modified version of

singularities in gravitational collapse. However, in the caseEq. (2) satisfied. This is the “difference AWEC” in which
of inflationary cosmology it has recently been found that is replaced by the difference between the expectation

violations of the WEC do not allow one to avoid initial sin value of the stress tensor in an arbitrary quantum state and

for all timelike vectorsu”. Negative energy densities raise
the possibility of a variety of exotic phenomena, including
violations of the second law of thermodynamids2], tra-

gularities[10]. that in the vacuum stafd2,13. The physical content of this
_ _ N statement is that although the local energy density can be
A. Brief review of averaged weak energy conditions made more negative than in the vacuum, the time-integrated

and quantum inequalities energy density cannot. A related averaged energy condition is

The interest attached to the effects of negative energy hd§€ averaged null energy conditidANEC), in which the
stimulated the study of constraints on the magnitude anéntegration is along a null geodesic. It also holds in
extent of WEC violations. Although the energy density at aboundary-free Minkowski spacetimgl4]. The extent to
point can be arbitrarily negative, there are several integraivhich the AWEC and ANEC hold for quantum field theories
constraints which we will briefly review for the case of flat in curved spacetime is less cldd5—-17.

spacetime. One constraint is that the integral of the energy Although the AWEC imposes a significant constraint on
negative energy, even stronger constraints are available in

the form of “quantum inequalities”(Qls) [1,12,18—22
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The lower boundp,;,, depends upon the sampling function B. The program

and upon the spacetime. For the massless scalar field in two- The purpose of this paper is to initiate an exploration of

the optimal bound: worldline Qls summarized in the previous subsection pro-
1 (= g'(1)? vide one tool for this investigation. Clearly, for massless

Prnin= — = 9 dt. (4) fields, the temporal _separation of a pair of pglses as seen by

247 ) . g(t) an inertial observer is also a measure of their spatial separa-

tion. However, a more detailed picture is desirable. Several
For the massless scalar field in four-dimensional Minkowskiapproaches can be pursued in the search for a description of
spacetime, Fewster and Evesf2l] have given a similar the allowed spatial €) energy distributions. One is to seek
(but not necessarily optimabound: generalizations of the QIs which involve averaging over
space as well as time. Another approach is to use the AWEC
(= s and QlIs to place constraints upon the allowed spacetime dis-
1677sz(9 (1)~ ®)  tributions. This approach seeks to extract as much informa-
tion as possible from the requirement that the AWEC and Qls
be satisfied along all timelike geodesics. A third approach is
to examine the nature of distributions which are definitely
allowed and can be explicitly constructed. All three ap-
proaches will be illustrated in this paper.

Pmin= —

If the sampling function has a characteristic witlththen
the lower bounds are of the form

- C

Pmin~—

(6)

t(? ’ C. Outline of this paper

. : . . . This paper will deal entirely with {) energy distribu-
whereD is the dimensionality of spacetime. The AWEC can tions in flat spacetime. In Sec. Il A, we review and discuss

be der!ved fro_m the QIs as the I|m|t_ in whidg—eo. The two results which suggest that arbitrarily large amounts of
essential physical content of the Qls is that the larger a pulsta_) energy can be concentrated in a given region of space.

of negative () energy is, the closer in time it must be to a As a counterpoint, we show in Sec. Il B that in two space-

compensatlng pulse of positiver( energy. Consider for ex- time dimensions, there are both spatial and spacetime aver-
ample 6—func_t|or) pulses of {) ’and ) energy where the aged versions of the quantum inequalities. We next turn in
energy density in an observer's frame is given by Sec. Ill to a discussion of several modet ) energy distri-
butions which the AWEC and Qls either forbi8ec. Ill A),
or else quantitatively constraifBec. Il B). Section IV is
devoted to the explicit construction of some informative ex-
amples of allowed distributions. In particular, the energy dis-
tribution of a massive scalar field in a single wavepacket
mode squeezed state is used to illustrate the convoluted way
in which (=) and (+) energy can be entwined. As part of

K this discussion, it is useful to distinguish between WEC vio-
T< _2' (8) lations in which the local energy density is negative for all

|AE| observerq“strong” violations), and those in which its sign

depends upon the observéweak” violations). The techni-

p()=B[— () +(1+e)s(t—T)]. (@)

HereT is the temporal separation of the pulses 8rid either
the magnitudeAE| of the (—) pulse in two dimensions, or
the magnitude of its energy per unit arg®E|/A in four
dimensions. It may be shown from the Q&3] that

in two dimensions and cal details of this distinction are elaborated in the Appendix.
s Section V explores the limits of the AWEC, and shows that it
T<K (i) 9 would not hold if one were to integrate along a piecewise

4 1AE|] geodesic path. Similarly, the “difference AWEC” need not

hold for the quantum field stress tensor in a cavity in the case
in four dimensions, where the dimensionless const&its of an observer who passes through the cavity. This section
and K, are typically less than unity. Thus as the strengthalso uses the cavity example to illustrate strong and weak
|AE| of the (—) pulse increases, its separation in time fromWEC violations. Finally, our results are summarized and dis-
the compensating#) pulse must decrease as an inversecussed in Sec. VI. Units in which=c=1 and a spacelike

power of|AE]|. metric convention are used in this paper.
In Ref. [23] it is further shown that the Qls imply the
phenomenon ofjuantum interestAs the temporal separation Il. DIFFICULTIES WITH SPATIAL BOUNDS?

of the (—) and (+) pulses increases, within the limits set by
Egs. (8) and (9), the degree of overcompensation must in-
crease. Thus the parametermust be a monotonically in- There are two disturbing results which might be construed
creasing function off. A discussion of quantum interest for as casting doubt upon the existence of constraints on the
more general pulses was given by Preto[R#4] and by Few-  spatial distribution of negative energy. The first is an unpub-
ster and Ted25]. lished result of Garfinkld26], who showed that the total

A. Two disturbing results
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energy contained within an imaginary box in Minkowski t
spacetime is unbounded below. Let us first give a more pre-
cise statement of this result. Consider a quantum fielich

boundary-free Minkowski spacetime. By boundary-free, we -
mean that there are no physical boundaries upon which
must satisfy boundary conditions. Lgi=:T,: be the +
normal-ordered energy density operator for on at
=constant hypersurface. Now consider a volwhe.g., the Box
interior of an arbitrary rectangular box, and let

E= f (¢lpl)d®* (10
\

FIG. 1. The Garfinkle box is illustrated. A-function pulse of

be the energy inside this box in quantum statg. This box  (+) energy has already passed through the box beforettinge At
is “imaginary” in the sense that there are no physical bound-ime t=0, a §-function pulse of ¢) energy is inside the box. The
aries at the walls of the box. The Garfinkle result is thaé  magnitude of this € ) pulse is inversely related to the distance to
unbounded below. That is, there exist stdig)s for which E the (+) pulse at a fixed time. However, we can always arrange for
is arbitrarily negative. Note that this would not happen if thethe (+) pulse to be just outside the box, and for the)(pulse to be
box were a physical box on whose walls must satisfy just inside. Thus there can be an arbitrary amount-ej €nergy
Dirichlet or Neumann boundary conditions. In this cagés  inside the box at=0.
the Hamiltonian fore within this cavity, and is bounded
below by the Casimir energy of the cavity. ing an even larger amount of positive energy which may be

A second disturbing result was given by Helféi7], who  just outside of the box at time This situation is illustrated in
showed that the integral of the energy density over a spacesig. 1.
like hypersurface can be unbounded below. Although this 1po nboundedness of Helfeisis harder to understand,

result applies to curved, as well as flat spacetime, let us foCUghough in particular cases one can give intuitive explana-
on the case of Minkowski spacetime. L&t be a timelike  iqng similar to that in the Garfinkle box case. Let the hyper-
vector field on Minkowski spacetime, and [Btbe a space- g ifaces be asymptotically null, as illustrated in Fig. 2. In
like hypersurface to whiclg is orthogonal. Further let this case, it is possible for the integral of the energy density
over 3 to include the contribution of an arbitrarily large

- negative energy pulse, but to omit that of an even larger

H(f’z):f (YITH"E,.8, ) tdo. (11 positive pulse which preceded the negative pulse. Once we
include the effects of the test functidnit is not necessary
Heredv is the volume element i, andf is a test function z:r(])?]tsztaa?t 2325;025?;%2 lg][’tlrt]g%rglrﬁ;ﬁi %lfjtsigdpggfgf acha
with compact support. The quantity(§,%) is an energy These considerations might suggest that the Garfinkle and
operator(generalized Hamiltonignobtained by integrating Helfer results arise by methods of spatial averaging which
the energy density in statey) (times the test functiof)  manage to capture large amounts ef)(energy while ignor-
over 3. Helfer has shown that in generd(¢,X) is un-  ing larger amounts of-{) energy which are really very close
bounded below. Note that in the limit th&t~1 everywhere by. However, the general result of Helfer is not so easily

and ¢~ is the timelike Killing vector,A(&,3) becomes the explained. Even 8 is a constant surface,H need not be
usual Hamiltonian, which has the lower bound of zero, atbounded below in general in four-dimensional spacetime. In
tained in the Minkowski vacuum state. Note also that thethis case, we are dealing with the generalization of the
Helfer result includes the Garfinkle result as the special case
in which 2 is a constant (Minkowski time) surface and
approaches a step function which is 1 inside the box and O
outside of it.

Both of these results might lead one to conclude that there
can be no bounds on the spatial distribution of negative en-
ergy which would be analogous to the temporal bounds
given by the quantum inequalities. Thus it is desirable to
understand the physical basis of these results in more detail.

Consider first the Garfinkle box. We can understand the

unboundedness of the total eneryin this box as arising FIG. 2. Here is a spacelike hypersurface which is asymptotic
from two factors:(1) The energy is measured at a preciseto a null surface, the dashed line. This allols to catch a
instant in time, and2) the walls of the box are sharply s-function pulse of ) energy, while also avoiding the compen-
defined. This allows an arbitrary amount of negative energyating 5-function pulse of ¢) energy. In this way, the integrated
to have entered the box by tintewhile at this time exclud- energy ove® may be made arbitrarily negative.
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Garfinkle result where the walls of the box cease to be Let us explicitly evaluate the bound for some particular
sharply defined. This seems to suggest that spatial averagirsgmpling functions. First consider Lorentzian functions in
without time averaging may not be sufficient to yield quan-both space and time, with widthg>0 andt,>0, respec-
tities which are bounded below. tively:

B. Spacetime averaged quantum inequalities in two X to
dimensions gs(x)= —7T(X2+Xg) o gr(H)= —w(t2+tg) : (18
We now turn to the question of whether one can derive
generalizations of the quantum inequalities which involveThese choices lead to
averaging over both space and time. In two-dimensional
spacetime, this can indeed be done. This was first done by Xo+to
one of us[28] using a method analogous to those used in g1(u)= o (19
Ref. [18] to first prove worldline quantum inequalities. 7 (XoF o) "+ u7]
Flanagan 20] later noted that his method may also be used _ .
to generate two-dimensional spacetime averaged quantu%]nd 92(0)_9.1(0)' The bound on the spacefime averaged
: o . . . energy density now becomes
inequalities. Leto(u,v) be a spacetime sampling function,
whereu=t—x and v=t+x are null coordinates. We will

assume that this function can be expressed as a product of p=— 1 _ (20)
sampling functions in space and time separately in some 487 (Xy+10)?
frame of reference:
o(u,0)=g7(t)gsg(X). (120  Asecond possible choice of sampling function is a Gaussian
in both space and time:
The sampled energy density is
p fT t)gs(x) dt d gs0= —— e grty-— e i (21
p=| Tugr(t)gs(x) dtdx s = v 97 Vot -
1 In thi fi
ZEJ [Tuu(W)+Typ(v)]o(U,0) du do. n this case, we find
(13 1 212,12
91(U) === e V00", (22)
Let V(Xo+to)
1
_ = and the bound becomes
91(u) Zf o(u,) dv (14
and 0 ! (23
=
1 P 12 (X3+t3)
gz(v)=§f o(u,v)du. (15

These spacetime averaged quantum inequalities reduce to
the usual Qls along worldlines in the limit tha§=0. Note

The various sampling functions are normalized so that that in two dimensions one also has a nontrivial bound from

1 spatial averaging alone wheg=0. The extent to which the
J gT(t)gS(X)dth_EJ’ o(u,v) dudy type of results found here in two dimensions can be gener-
alized to four dimensions is unclear. It seems that there one
:f gl(U)lef g.(v) dv may need the temporal averaging to get a bound.
=1. (16) I1l. FORBIDDEN AND CONSTRAINED DISTRIBUTIONS
We can now write the spacetime averaged quantum inequal- e can rule out several spatial distributions ef)(and
ity as (=) energy by applying the AWEC and the Qls to their
possible evolutions. In all of the examples given below we
;):J Tuu(u)ga(u) dU+J T,,(v)g,(v) dv assume that the violations of the WEC are strong, i.e., if the
energy density is negative in one frame then it is negative in
'y - all frames.(See the Appendix for further detajlsThis as-
_ J“ du(gl) +J°C d (92) } sumption is necessary for the following discussion. In most
T 48w ). oy g, | of the cases we will be specifically considering null fluids,
(17 e,
In the last step, we used Flanagan’s result, @. T = pk#k”. (29
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4
Y
(t2:T0,Y52,)
(tbmo’ys%)
0]
FIG. 3. The world tube of the) energy region cannot “cap
the future light cone” of a pointQ, in the (—) energy region. A
. . (0,120,![0, \
For such stress tensors the violations of the WEC are strong, (t,y) plane ~
as can be easily shown. We will explicitly point out the situ- at (zg,z0) y

ations in which we do not assume this form for the stress

tensor. . .
FIG. 4. An illustration of the argument of Sec. Il A1l. The

] o timelike geodesicy from the origin gets to pointxy,y,zy) on the
A. Forbidden distributions (t,y) plane at &q,Yo), the shaded region, before the null geodesic

1. Separated regions of+) and (—) energy, with the(+) A gets to the same spatial point.
energy moving rigidly

Consider an initial state that consists of a compact regionfUnning away from the origin at the speed of light. We show

N, of (—) energy and a distinct compact regid, of (+)  that there is at least one geodesic that avoids intersecting the

energy. The compactness of the initiat Y energy distribu-  World tube.ofP in th_e future direction as vy(.all..We.cho.ose
tion (i.e., its finite spatial extehis crucial to the arguments our Cartesian coordinates so that the posigveirection is
that we present. We assume tiatloes not embrac&’in the  the direction of motion of the{) energy and we set things
sense that both regions can be contained in non-intersectirdp att=0 as follows: LetP=(0X,,Yo0,2p) be a point inP
rectangular boxes. with the property that no point i? has a largek-coordinate.
We consider situations in which thet+() energy moves The compactness dP guarantees that there will be such a
“rigidly” in that the null flow vector k* in the energy- point. This point will lie on an “edge” of in the x direc-
momentum tensor, Eq24), is constant in Cartesian coordi- tion. The choice ok is arbitrary. We could just as well make
nates. More general evolutions are discussed in Sec. Il Bhe argument we are about to make below by choosing a
The (=) energy may evolve in any way that it likes. point on the edge in thedirection. By the assumptions that
Let O be any point in\ and choose Cartesian coordinatesthe (+) energy does not embrace the X energy and that
with O at the origin. The time axis will be the straight line the (+) energy is moving towards the origin in the positive
that passes throug® in the time direction x=y=z=0). Y direction, we have/,<0.
Consider the world tube that represents the evolutio®,of  Since the world tube oP moves rigidly in they direction,
extended as far as possible in both future and past directiong/€ note that no point on this world tube can havexaro-
If this world tube never crosses the time axis, an observegrdinate larger thar,. Our strategy is to show that there are
sitting on the axis throughout will never encounter the)(  timelike geodesics that pass through the origin and escape to
energy and his worldline will violate the AWEC. a point withx coordinate equal t&, without intersecting the
Next, consider the case where the world tube crosses tHet) energy(i.e., the world tube of). Since thex coordinate
time axis in the future directior{The case when it crosses it 0n such a geodesic must continue to increase, it can never
in the past direction is covered by the time-reverse of thentersect the world tube dP if it has not already done so by
argument presented belgwl-his means that the positive en- this stage.
ergy flows across the future of the region where there was Let A be the null geodesic in the world tube #f that
negative energy, as shown in Fig. 3. Since the motion of th¢passes througR and points in the direction of the flow vec-
positive energy is rigid, its world tube does not expand intor k“. It will obey the equationg=y—y,, X=Xq, =2,
either time direction. Thus, although it will cross the future and so lies in theé-y plane located atx,zp), as depicted in
light cone of a point in the negative energy region, it cannotFig. 4. Now consider an arbitrary timelike geodesig,
entirely “cap” that light cone. Suitably chosen timelike geo- throughO. It will obey t?= a?(x?+y?+z?), wherea>1. If
desics that go through the negative energy can avoid intesuch ay can get to some spatial poinky,y,zg), with y
secting any positive energy at all. We prove this precisely>0, in thet-y plane of interest befork gets there, then, as
below. we have seeny can avoid intersecting any positive energy.
In the case where the crossing takes place in the future, nd/e show that it is possible foy to do this. Suppose that
timelike geodesic througl can intersect the world tube of gets to §&g,y,zg) at timet,; and\ gets there at timé,. The
P in the past, since in the past direction the world tube isconditiont,>t, for A to get to this spatial point aftey can
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be expressed ay € yo)?> a?(x3+y?+23), or we use a compactly supported sampling function which cuts
off rapidly near the edge of the~() energy region, we can
a®X3+ a?22< —y?(a®?—1)—2yyo+y3. (25)  get a bound on the size of the-§ energy region alone.

Assume the density;-|p|, is that measured in the frame

Sincey,<0 andy>0, the only negative term on the right is Of reference of an observe€rwho is at rest on the-axis. We
the first one. Choosing?= 1+(yS/2y2), we see thati) the fgrther assume that_the stress tensor has the null fluid form
first and third terms on the right combine to give a positivediven by Ed.(24), with p=—|p|. Takek*=(1,1,0,0). The
value, and(i) for largey, we havea? close to 1. By choos- Observer's four velocity is u#=(1,0,0,0). Therefore
ing y sufficiently large, then, we can make the right hand sidel .,4“u”= —|p|. The QI applied inO’s frame is
as big as we want while keeping the left hand side close to
X5+ zS. Therefore, irresp.ectivg of the valuesxgfandz,, we - Jx 9(t)[pldt=— E (26)
can find a value ofy (with «“ chosen as aboyeso as to —o g
satisfy inequality(25). Thus, we have shown that it is pos-
sible to find a timelike geodesic that outruns the positiveHere the Minkowski timet is the proper time alon@’s
energy to an edge of the spatial region that the positive enworldline andt, is the sampling time, which we set equal to
ergy can cover. This geodesic only passes through negatiitbe time O spends in the {) energy region. Let the
energy—a forbidden scenario. x-dimension of the box, as measured®ybel . Since the

The argument covers any finite initial distribution of a box moves pasD along thex-axis at the speed of light, the
(+) energy null fluid, no matter how large, and any initial time for the box to pas® isty=L,. Using Eq.(26), and the
distribution of (—) energy, no matter how small, as long asfact that p is a constant and the sampling function is
the (+) energy moves rigidly in one direction. Thet| compactly-supported with unit norm, we obtain the bound
energy cannot fully “cap the future light cone” of a—() va
energy point, as illustrated in Fig. 3. Some timelike geode- 3
sics are guaranteed to escape without intersecting ary ( | p|)
energy. If we want the AWEC to hold along every timelike
geodesic, then even if there is a single point at which nega- Can we get a stronger bound using observers boosted in
tive energy exists we need an infinitely large distribution ofthex-direction? First consider an obser@f who is boosted
compensating positive energy. along thex-axis. His four velocity isu*=(y,vv,0,0), where

Our argument applies to any shape ef)(and (=) en-  y=1/J1-v?, and T, uku"=—|p|[(1—v)/(1+v). The QI
ergy distribution. In particular, it coversy) and (—) energy  applied inO'’s frame is
“pancakes.” These are distributions that are small in one

- f _9(7lpl

spatial direction compared to the other two.

Here 7 is O'’s proper time coordinate and the sampling time
7o IS the timeQ’ spends in the {) energy. The timer, for
the box to pas®’ is 7p=L,/vy. Using Eq.(28), we get the

If the (+) energy does not move rigidly, the configuration following bound onL,:

discussed in Sec. Il A1 cannot be ruled out, in general, on
the grounds that there will always be a timelike geodesic that c\Vv 1
intersects the{) energy but not the{). If the (+) energy in(ﬂ) A[ 3 1/41. (29
expands outward, for instance, no timelike geodesic through p (1=0)"(1+v)
(=) can outrun the world tube of theH) energy. Even in
this case, however, by choosing a timelike geodesic that i
close enough to a null one we can put off the encounter with
the positive energy as late as we like. If the distribution of 1/4
(+) energy is expanding, its density may then be dilute LX$0.877<—) , (30
enough so as to be insufficient to enforce the AWEC. This el
will happen in the case when the-{ energy expands out-
ward 3uniformly, so that its density goes down everywhere
as 1t°.

Lxs( (27

C
dr=— = (28
To

1-v
1+v
B. Constrained distributions

1. Separated regions of+) and (—) energy, with the(+)
energy moving arbitrarily

g’he righthand side has a minimum @&t — 1/2. The result-
g bound is

which is slightly stronger than Eq27).

Can we constrain the other dimensions of the box by ex-
amining observers who are boosted in directions transverse
to the box’s direction of motion? It would appear not. Con-
sider an observer shot through the box alongyais. The

Let us first consider a box-like region of-() energy  maximum time the observer can spend in the) (energy is
which moves in thex-direction at the speed of light. If the ultimately determined by how long the box takes to pass
box has a constant energy density of magnitlile how  him, which in turn depends only on its length along its di-
large can the box be? Presumably there is soig €nergy  rection of motion. The latter is bounded by E&O). Note
nearby, as required by the AWEC and the Qls. However, ithat the length of the-dimension of the box could be as

2. Pancakes
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0

(a) (b)

FIG. 5. In (a), the worldtube of a {) energy region is totally
surrounded by the worldtube of a-( energy region. Inb), the
(+) energy envelops all but the forward-moving edge of the (
energy region.

large as we like. How far the observer can travel in this

dlreﬁtloni Whll.(te ,[StL” re,malrgngkm tr:le{f)tﬁn%’gy’ tdeﬁ.?r;gs null shells of (+) and (—) energy, created in the past. The world-
on nhow fong It takes the back wall of the DoxX to Nt NIM. ;o ¢ jpserveO intersects the<) energy shell at timé=t;, and
Hence it appears that we can make the transverse dlmenS|0{pﬂ°é (—) energy shell a timd later. The vertices of the two light

of the box as Iarg_e as we like. . cones, although not shown, are assumed to lie along the same line,
The previous discussion leads naturally to a reconsideragich is parallel toO.
tion of “pancakes,” i.e., “boxes” which are much longer in
the transverse dimensions compared to their thickness in tl]%
direction of motion. We saw from our earlier discussion that
a configuration of two finite ) and (—) energy pancakes
was impossible. The ) pancake was required to be of
infinite extent in the transverse dimensions. There is a furth
constraint between the magnitudes of the relative ener
densitiedp . /p_|, and their separatiom, which is given by
the quantum interest effe¢23]. Consider a stationary ob-
server who gets hit first by the<) pancake followed by the
(+) one. From quantum interest we know that the)(en-
ergy density must overcompensate the)(energy density
by an amount which grows as the separatibincreases.

FIG. 6. Two spatially concentric, radially expandidgunction

re, for the null fluid case we can use the same argument to
place constraints on the magnitude of the)(energy density
in the interior region and the thickness in its direction of
motion. However, here theK) energy actually need envelop
e(ISnIy all but a line of tangency which is transverse to the
Wirection of motion, as depicted in Fig(l§. In this case as
well, there are no timelike observers who intersacly the
(=) energy. As an aside, we point out that the limiting case
is when the line of tangency is shrunk to a point which lies
along the direction of motion.

4. Expanding engulfed(—) energy shells

3. Rigidly moving engulfed —) regions Consider two spatially concentric, radially expanding
S-function null shells of ¢) and (—) energy, which were

Consider a () energy region which is enveloped by afcreated at two different times in the past. A stationary ob-

surrounding () energy region. Assume that the shapes o N
the regions are time-independent and that they are null fluid erverQ is hitfirst by the +) s_hell at=t, and later by the
which move in one direction. If the energy distributions are -) sh_eII ‘?‘tt:ti+.T’ whereT IS the separation _between the
assumed to be continuous, the boundaries of the Worldtube%]e"S in time. This scenario is depicted in Fig. .6' Let the
of the (=) and (+) energy must be surfaces of zero energyenergy density of the{) shell, as measured l§y at timet; ,
density. Therefore the energy density in each worldtube carPe
not be constant. To satisfy our rigidity requirement, we must
have V, k*=0; to guarantee energy conservation we must a
haveT*” ,=0. These two criteria will be satisfied, with non- P+ :tié(t_ti)* (32)
constant energy densities, if the densities do not vary along !
the null propagation direction. That is, we assume that )
k“V,p=0. with a=const>0, and the energy density &t +T be

Any timelike observer who starts in the-( energy re-
gion will eventually encounter the+) energy[see Fig. b
5(a)], so this case appears to be allowed. However for mas- p-=—50t=(+T)), (32
sive fields, even this configuration is impossible, since the i
two energy regions would travel at speeds less than 1. Hence
it is always possible to find an observer who simply sits inwith b=const>0. The constanta andb are measures of the
the (=) energy region for an arbitrarily long time, which magnitudes of the energy densities, neglecting the effects of
violates the Qls. expansion. This scenario can be constrained using the Ql's

Topologically the energy region here is equivalent to thewith a compactly supported sampling function, following the
(—) energy “box” discussed earlier in this section. There- argument given in Sec. Il df23].

084002-7



ARVIND BORDE, L. H. FORD, AND THOMAS A. ROMAN PHYSICAL REVIEW D65 084002

o + worldline of O crosses the {) energy shell for a second
time at timet=t;>0, and crosses theH) energy shell for
the second time at time=t;+d. Note that the diagram is
time-symmetric around=0.

The following argument uses only the AWEC to constrain
this scenario. As before, let the magnitudes of the energy
. W densities(neglecting the effects of contraction and expan-

d |\ sion) be “a” for the (+) energy shell and B” for the
(=) energy shell, witha,b chosen to be positive constants.
If we apply the AWEC toO’s worldline, and use the time-
symmetry of the diagram, we obtain

2a 2b 0 (35
——=0.
(t;+d)?  t?

+ - f T, ufudt=

FIG. 7. Two contracting shells of¥) and (—) energy reach
their maximum densities at=0, and subsequently re-expand. The The factors of 2 reflect the fact th@ gets hit by each shell
regions of maximum density are separated by distahdestation-  twice. If we letf=a/b, we can rewrite this as
ary observelO intersects the {) energy shell at=t;.
ft?=(t;+d)2. (36)
Choose a compactly supported sampling function with a . . i
single maximum centered dr=t;+ T [i.e., on the ) en- The quantitied, t;, andd are all positive, so we obtain

ergy shell, with a widtht,. Substituting Eqs(31) and(32)
into the QI, we get d<(Vi-1)t;. (37)

o This implies thatf >1, and thatf must increase as/d de-
;?=f g(t)p(t)dt creases. In the limit; /d>1, we simply getf =1, which is a
- fairly weak bound.
The bound Eq(37) becomes more and more stringent as

t; decreases. However, it is more realistic to suppose that the

shells have a finite thicknegs. This can be viewed as either
(33) the thickness in space at a fixed time, or else the duration in

time alongO'’s worldline. Then the above analysis holds so
If we now choose the width of the sampling function to belong ast;>A, and the best bound, obtained whgr-A,
to=2T, then g(t;)=0. For a sampling function with one implies that
maximum at g(t;+T), o(t;+T)x1llt,, so let g(t;+T)

a b C
= Eg(ti)_ Eg(tﬁT)Z— wE

=Cy/tg=Cy/2T, whereCy is a constant whose value de- . (d+4)? 39
pends only on the form of the chosen sampling functlout A2
not on the spacetime dimension, unlikd. Therefore we
obtain When d>A, this requiresf>1, which is a version of the
13 quantum interest phenomenon.
Cc
Ts( ) t,23, (34)
8bCo IV. EXPLICIT CONSTRUCTION OF ALLOWED

. o . DISTRIBUTIONS
We see that for fixed;, T decreases with increasirg as

expected. Wherb is fixed and for 6<t;<<T, we see thall A. Plane wave modes
must decrease as decreaseg.To avoid singularities in the In the previous section, we discussed)( energy distri-

energy densities we do not want to aI_Idw—>0, _Wh'Ch IS~ putions which were either ruled out or constrained by the
why only the Igte_r stages of the e\{olunon are illustrated INAWEC and the Qls. We now give some examples of distri-
Fig. 6) In the limit whent;>T, for fixed b, the bound Eq. 1, ,tions which can be explicitly constructed from allowed
(34) becomes very weak. states in quantum field theory, and analyze some of their
properties. The class of examples which we will focus on are
squeezed vacuum states, which are discussed extensively in

Consider two null fluidé-function shells of separated quantum optics and which can now be constructed in the
(+) and (=) energy which contract and re-expand. Thelaboratory[29]. Our discussion is restricted here to quantized
shells reach maximum density at time 0. The spatial lo- massless and massive minimally coupled scalar fields in flat
cations where the densities become maximum are separategacetime, but it could be easily generalized to include the
by a distanced. (We ignore any interactions when the shells electromagnetic field as well, which is also known to obey
cross each otherThe evolution of the shells is depicted in the Qls and the AWE(19,30. The stress tensor for the
Fig. 7. A static observe, gets hit by each shell twice. The minimally coupled scalar field is

5. Separated expanding shells ¢f+) and (—) energy
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1 a 2 42 p
T}LV: ¢,M¢,V— 577#11(¢,a¢’ +m ¢ ) (39) 2
1.5
The field operator may be expanded in terms of creation and 0; /\ /\
annihilation operators as ) x

-o5F 02 0466 08 )
-1

¢:§k: (afitafy). (40) -15
-2

For simplicity, we will consider only a single mode state  F|G. 8. The energy density in a single plane wave mode
with t andx dependence only, i.efy=f=f(t,x). The renor-  squeezed vacuum state, at constant timé, as a function of po-
malized expectation values of the energy density, pressureition, x. Herer =0.2, =10, andm=8.

and flux are then given by

k
Too=Re(aa)(f f + 1% ) +(a®)(f3+13) Tor=— gsinhr[sinhr —coshr cos 2kx—wt)]. (50
+m?((a'a)f* f+(a%)f?)], (41) . . y o
The energy density as a function of position at fixed time is
T =R (ata)(f*f .+ f*f )+ (a2\(f2 + 2 plotted in Fig. 8. One obtains a similar graph of energy den-
1= RE@ (A 0+ @ AT sity as a function of time at fixed position. The energy den-
—m2((a'a)f*f+(a?)f?)], (42)  sity oscillates between+() and (—) values, with the ¢)
energy always overcompensating the)(energy.
Tor=Re(a’a)(f4f ,+5f ) +2(a)(ff )], For the massive field case it might seem that an observer

(43 could ride along with the-{) energy in violation of the Qls.
However, since the Qls hold fall quantum states in flat

respectively. spacetime, we know this cannot be possible. How is this
Here the mode function will be taken to be a plane waveapparent paradox resolved? The energy density as a function
mode of the form of t and x is plotted in Fig. 9. The {) energy density is

concentrated along spacelike regions. So an observer cannot
o o ot) ride along Wit-h it. It might appear from this gxampl_e that_the
- \/ﬁe ' (44) (=) energy is “propagating” along spacelike trajectories.
However, a relativistic quantum field theory incorporates
causality in its construction. So what is going on? One must
remember that these are rather special states which have cor-
relations built into them. These built-in correlations cause the
energy density to vary in a manner that looks like acausal
propagation. At each point, the energy density is moving in
such a way as to create the effect of peaks and troughs of
energy that are constant along spacelike lines. This is illus-
trated in Fig. 10. A useful analogy is the following. Imagine
a system of light bulbs with triggering mechanisms and

with o= VkZ+m?Z, and wherek=kx, and a periodicity of
lengthL has been imposed in the spatial direction, so kat
takes on discrete values. We choose the quantum |gkate
be a squeezed vacuum state:

1£)=5(£)]0), (49)

where S(¢) is the “squeeze operator,” ang=re'’ is an
arbitrary complex number. In this state,

(a'a)=sinlr, (46) PO
and
(a?)=—sinhr coshr, (47
wherer>0 is the squeeze parameter, and where we have

chosen the phasé=0 [29]. If we substitute Eqs(44)—(47)
into Egs.(41)—(43), we obtain

k2

)
Too= Esinhr sinhr — —Zcoshr cos Akx—wt) |, (48
w
FIG. 9. A “top down” view of the energy density in a single
® r K2 plane wave mode squeezed vacuum state of a massive scalar field,
T,,= —sinhr| —sinhr — coshr cos Akx— wt) |, as a function ok andt. The energy density increases in the direc-
L _cu2 tion perpendicular to the page. The-) energy is concentrated

(49 along spacelike regions. Agair=0.2, =10, andm=8.
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To= —v ¥4 (Toot T1) — ¥ (1+0?) Ty (52

In the boosted frame described aboVg,=0. A short cal-
culation shows that this is the case whenak/w. It is easily
shown that this is the value of which givesk’=0. In this
frame

m2sinkr
T(;O:T =const>0, (53

so the observer simply sees a constah)) (energy density.
This is consistent with the fact that the WEC violations here
are weak. We can show this more generally using the results
of the Appendix, as follows.

For the massive scalar field in a plane wave squeezed
vacuum state, whef <0, what are the conditions that in a
boosted framélj,;<0 as well? Letk=kx— wt. Sincer>0
andw >k, we need {?/k?)tanhr<cos % for Tyu<0, which
in turn implies thafl ;<0 andTy,>0, from Eqs.(48)—(50).

FIG. 10. A “top down” view of the energy density; in a single ~ Therefore we may write
plane wave mode squeezed vacuum state of a massive scalar field,
as a function of positiorthorizontal axi$ and time(vertical axig. w
The energy density increases in the direction out of the page. Null Tyl =—Tu= Esinhzr
lines are at 45°. The-{) energy is concentrated along spacelike
regions. The arrows indicate the instantaneous direction of flow of
the energy. Agaim=0.2, =10, andm=8.

k2
cothr cos 2« — | (54)
w

k
|Tod =Tor= Esinhzr[cothr cos «—1]. (55)

clocks which are arranged in a line. An observer can pre- 5 o

program each bulb to be triggered at a certain time. This cafoté that cotir cos 2—(k/w?)>cothr cos Z—1>0, and

be done in such a way that another observer who later se¢/L)sintfr>(K/L)sintr, so we have thaTy;|>|Tq,| and

the succession of flashes, and interprets them as causallp1<0. Thus we have an example of case 1 of the Appendix,

generating one another, will think that the flashes are propad/here the necessary and sufficient condition for a strong

gating faster than light. The correlations of the flash times oMVEC violation is Eq.(A12),

the bulbs relative to one another have been causally pre- T2

programmed into the state of the system from the beginning. Too<i- (56)

Another analogy is an Einstein-Podolsky-Rosen state in T

which two photons are generated in an entangled state such N 2 -

that a measurement of the spin of one photon allows one tgmce T1,<<0, this implies TooT1,>Tos". Combining Egs.

determine the spin of the other photon even at spacelik&*®—(50), we find

s_epargtions. This process cannot be used for superluminal TocT11— Tol= — (M w2L2)coshr sinkr cos <0,

signaling because there is no way to know ahead of time (57)

what the spin of the first photon will be before it is measured,

which is what one would need to send Morse-code type messince if To,<0, then cos 2>0. Hence the condition, Eq.

sages. The two photons are in some sense two parts of onR&12), is violated and the WEC violation by the massive

single “object.” scalar field in the single plane wave mode squeezed vacuum
Another apparent paradox looms at this point. If the state is weak.

(—) energy is concentrated along spacelike lines, as shown For the massless scalar fielh=0 and hencew=|k|,

in the figures, then it would seem that a suitably boostedr ,=T,,=—T,,;, so this is an example of case 2.2 of the

observer could make one of these lines a constant time supppendix, for which the necessary and sufficient condition
face on which the energy density is everywhere negativetor strong WEC violation is Eq(A2),
However, these surfaces are perpendicular to the observer’s

timelike Killing vector (unlike the spacelike surfaces dis- [Tod=T11+2|Tod, (58)
cussed in Fig.  and so we know that the energy density ] o ]
integrated over all space must be positive. which is marginally satisfied in this case. Hence for the
In the boosted frame, massless scalar field the WEC violation is strong.
Too= ¥’ Toot 20 YT+ 02 y?Tay, (51) B. Wavepackets
We now analyze the distribution of{) and (=) energy
and in a wavepacket of the massive scalar field in two-
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FIG. 11. The energy density as a function ofx andt for a
massive scalar field in a wavepacket mode squeezed vacuum state.
The peak of the packet follows a timelike trajectory. The negative
energy is concentrated along the spacelike troughs. Her@.2,
ko=0.6, m=8 anda=20Kk3.

dimensional spacetime. In the mode expansion of the field
operator, given in Eq(40), we will take thef,’'s to be a
complete orthonormal set of wavepacket modes. Let only
one single wavepacket modepe excited, and take the form

of this mode to bg31] FIG. 12. An observer on a piecewise geodesic path moves
through separated regions of-§ and (—) energy. The observer
al o |\ moves through the {) energy on the patlx=—uvt. The lower
f(x,t)= PECT N 1+ daw, boundary of the ¢) energy region is the ling=t and its upper
0 boundary is the linx=t—At.
x gl (kox—wot) g— (x—ugt)2/4(a+mt), (59) .
opportunity to explore examples of both strong and weak
wherewg= \/Eé+_mz, violations of the WEC.
dw Ko A. A counterexample to the AWEC for piecewise geodesics
Vg™ (ﬁ) ) - w_o' (60) In this subsection we wish to show that the averaged weak
0

energy condition does not hold, even in Minkowski space-
time, if one integrates the energy density along a piecewise
geodesic path, as opposed to a true geodesic. Consider an
) ) energy distribution with the null fluid form for the stress
o= E(d_“’) _m 61) tensor, Eq.(24). Suppose that there are separated (@nd

2\ dk? 2w8' (=) energy regions, both moving to the right, as illustrated
ko in Fig. 12. For the purposes of our example, we may take the
energy density to be constant within each region, so phat
=p, inthe (+) energy region angd=p_ in the (=) energy

is the group velocity of the packet, and where

The packet is sharply peaked arouqgdin momentum space
with spread 1{(«, where we assume that>1. With these region. Further require that both pulses last for the same time

assumptions the wavepacket has unit Klein-Gordon norm. Ahterval At as measured in the laboratory frame. This means
before take the quantum state to be a squeezed vacuum stal®at we must have

and substitute Eq59) into Eq. (41). A tedious calculation
then yields a rather long expression fioyp which we do not p>|p_| (62)
reproduce here. A plot gf=Tgyg as a function ot andx is
shown in Fig. 11. Note that the peak of the wavepackein order that there be netH) energy.
moves along a timelike trajectory with the group velocity, Now consider an observer moving to the left with speed
dw/dk, whereas the individual components move with they, and hence with four-velocity*= y(1,—v,0,0), wherey
phase velocityw/k. As in the plane wave case for the mas- =1//1—v?2. The energy density in the frame of this observer
sive scalar field, the negative energy is concentrated along
spacelike regions.
T4u,u,=py*(1+0v)>2, (63
V. THE AWEC ALONG GEODESIC SEGMENTS Further suppose that this observer moves along the piecewise

In this section, we will depart somewhat from the princi- geodesic worldline depicted in Fig. 12. The observer first
pal topic of this paper and discuss some of the limitations ofmoves at speed through (=) energy, and then is at rest
the AWEC. We illustrate why the AWEC integral must be when the () energy passes by. The path of the observer in
taken along a complete geodesic path. We will also have athe (—) energy can be taken to be givenky —uvt, and the
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boundaries of the{) energy to be the lines=t andx=t Here T#” is understood to be the difference in the expecta-
— At. The observer enters the-) energy at poinA, where tion values of the stress tensor operator in a given quantum
x=t=0. LetT be the coordinate time required to traverse thestate and in the Casimir vacuum. Let the quantum state be
(=) energy region. At poinB, we havex=—vT=T—At.  one in which a single mode, with mode functibris excited.
Hence the proper time which the observer spends in theThen the components df*” are given by the same expres-

(=) energy is sions that hold for the normal-ordered stress tensor in
Minkowski spacetime, namely Eq&tl), (42), and(43). We
T At may use these expressions to wites
T=—=—. (64)
y v(l+v) 1 1
p=2Rﬂ' ( Y= 5|t dXata) + (o Xa®) ]+ | v?y?+ 5
The integrated energy density along this observer’s worldline
is X[If JXa'a)+ (f %@ ]+ vy (Fif ,+ F5F )(a'a)
f T’LLDUMU,,dT:p+At+p_T’yz(1+v)2 +2f,tf,x<az>]]- (67)
We take the mode function to be that of a standing wave
At 1o 1+v which vanishes on the walls of the cavity and has no depen-
P+1P- 1-v/’ dence upon the transverse directions:
(65) .
f=f(t,x)=Asinwxe 't (68)

So long asp_ #0, we can find @ which makes this expres-
sion negative. The piecewise nature of the worldline allow
the (—) energy to be enhanced in magnitude by the Doppler -

shift factor (1+wv)/(1—v), while the (+) energy is un- 0= n=123.... (69)
changed.

é\lote that the standing wave modes must satisfy

We wish to examine the integrated energy density along
B. Violations of the difference AWEC this observer’s worldline. Here it is assumed that there are no
a particles outside of the cavity, so the difference in energy
densities is nonzero only inside of the cavity. The integrated
Wergy density difference then becomes

The AWEC in its simple form need not hold inside of
cavity, if there is negative Casimir energy density. In this
case, an observer can sit in constant negative energy dens
for an infinite amount of proper time. However, the differ- 1 [to+At
ence between the energy density in an arbitrary quantum g:f pdr= _f pdt, (70)
state and in the Casimir vacuum does satisfy the AWEC. Yo
More generally, this difference satisfies quantum inequalities, , ) ) )
as was discussed in Reffl2,13. These “difference in- whereAtzL/v is the coqrdmate tlme required to traverse
equalities” reduce to the “difference AWEC” in the limit of the cavity, and =t is the time at which the observer enters.
long sampling times. The latter is the statement that the ink-€t the quantum state be the single mode squeezed vacuum
tegral of the difference in energy densities is non-negativétate discussed in Sec. IV. We can now use &6, (68),
when integrated over the worldline of an observer at rest46). and(47) to write
within the cavity. However, just as it is possible to tempo- b,
rarily suppress the local energy density below zero in empty = Aw sinhr {coshr[ 2 sin2wtg) — (1+v)sin{2[(1+0v)
Minkowski spacetime, it is possible to find quantum states in 4\1—0? 0
which the local energy density is more negative than in the
Casimir vacuum state. The question which we wish to ad- X At+tg]e}—(1—v)sin{2[(1—v)At+ts]w}]
dress in this subsection is the following: Is it possible for a .
moving observer to pass through a cavity in such a way as to +4(1+v2),wAt sinhr}. (7D
see a net negative integrated energy from a quantum field L€t the excited mode be the lowest frequenoy: 1,
confined within the cavity? Here we are concerned only withMode. It is possible to arrange for the observer to see net
the stress tensor of the quantum field, and are ignoring anfjegative integrated energy for selected values of the param-
contributions from the walls of the cavity itself. etersr, v andt,. For example£ is plotted in Fig. 13 as a

Consider a massless scalar field confined between reflednction of t, for r=0.03 andv=0.9. The result can be
ing boundaries located at=0 and atx=L, and a geodesic €ither positive or negative. The cavity contains net positive

observer moving at speedin the positivex-direction. The ~ €nergy, but with oscillatory pockets of negative energy den-
four velocity of the observer ig“= y(1,0,0,0) and the en- Sity- An observer who enters the cavity at certain times dur-

ergy density in this observer’s rest frame is ing the cycle will manage to see net negative energy,
whereas one who enters at other times may see net positive
p=TH"u,u,. (66)  energy. Itis also of interest to look &tas a function ob for
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FIG. 13. &/ w?A? is plotted as a function of the entrance titge [ |
for the case that=0.03 andv=0.9. : : : :
. L. . . | a1 | —»-l
fixed r andtg. This is illustrated in Fig. 14, where=0.03 weak weak

andty=0. Note that for smaller values of, £>0, whereas

o e Chserr 1 e 1 020N e shoun. e enery denty an h paraniT -1

' o . . 'then=1 mode are plotted as functions of position in the cavity at
the energy oscillations cause the time-integrated energy to theme t—3/8. Here units in which.— 1 are used. and we have set
positive, but a speedier observer can manage to catch ngt andr¥0 2 '
negative energy. Again it is important to emphasize that this -
net negative energy represents only the contribution of the
guantum field in the cavity and not of the walls themselves.
For any realistic cavity, it is overwhelmingly likely that the ) . .
AWEC integral including the walls’ rest mass energy will be Let us suppose that we are at a point at which the WEC is
positive. violated, so Tpe<<O, or cos 2oxcos wt>tanhr. If [T

>|Toq, we are in case 1 of the Appendix, in which the
necessary and sufficient condition for a strong violation is
Eq. (A12). However, whenT,,=T;,<0, this condition al-
We have seen in Sec. IV that the scalar field in a singlavays holds if| T;,/>|T,,. On the other hand, suppose that
mode squeezed vacuum state can violate the WEC. For |d,|<|T,,|. Then we are in case 2.2 of the Appendix, and
travelling wave mode, it was shown that the violation is al-the necessary and sufficient condition for a strong violation
ways weak for the massive field and always strong for thds Eq.(A2). In summary, in the cavity all WEC violations are
massless field. The cavity discussed in the previous subsestrong if| T1;|=|To,| and weak if| T14| <|Tqq|. It is possible
tion allows us to give an example where both strong ando find both types of violation, as is illustrated in Fig. 15. In
weak violations occur simultaneously in different regions ofthis example, the WEC violation is strong in the middle of
space. Again take a massless scalar field in the cavity to be ifhe (—) energy region, and weak nearer to its edges.
a squeezed vacuum state for the mode given in(&R). The
energy density and pressure are equal and given by

FIG. 15. The regions of strong and weak violation of the WEC

To1=AZw? sinhr coshr sin 2wx sin 2wt. (73

C. Strong and weak violations of the WEC in a cavity

VI. SUMMARY AND FUTURE DIRECTIONS

_ _ A2, .2 o H _ . . . .
Too=T11=A%w” sinhr[sinhr —cos 2wx cos 2wt coshr]. Let us summarize some of the results obtained in this

(72 paper, as well as some of the unanswered questions which
this investigation has raised. We have given some explicit
examples of spacetime averaged quantum inequalities in
two-dimensional spacetime. However, the problem of finding

The flux is given by

f 5 similar results in four-dimensional spacetime is unsolved. We
WA have used the AWEC and QIs to rule out or limit some par-
0.0125 ticular model distributions of €) energy. In particular, the
0.01 “cap the cone” argument given in Sec. lll A1 shows that
0.0075 one cannot have a piece of-{ energy separated from rig-
0.005 idly moving positive energy. We were able to give quantita-
0.0025 tive restrictions on other possible distributions. We also gave
0 Voy/ o 0.8 v some explicit examples of allowed distributions. However,
‘?(‘)0852 \_/ much more work needs to be done to narrow the gap be-

tween distributions which can be ruled out and those which
FIG. 14. £l w®A? is plotted as a function of the observer's speed are definitely allowed. As part of our investigation, we have
v for the case that=0.03 andt,=0. introduced the distinction between strong and weak viola-
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tions of the WEC, which is likely to prove useful in future —Too<(T11— €/2)+ 2(| Tos| — €/4). (A4)
work on this subject. We have also tested the limits of the
AWEC and provided counterexamples to the AWEC alongNow, there must exist someg >0 such that
piecewise geodesics and to the difference AWEC for observ-
ers who pass through a cavity. These types of counterex- v T >Ty—el2, V|v|>vy, (AS)
amples are useful for understanding more clearly just which
conditions can be used to constrain spatial distributions oft"d Some ;>0 such that
—) energy.
( I):uturegv>\//ork in this area will involve a search for more [l Tod > |Todl = €/4, V]u[>v,. (A6)
systematic ways to use information from worldline integralspumng these together, we see that
to reconstruct or constrain spatial and spacetime distributions '

of (—) energy. It will also involve the construction of addi- Tootv°T1ut2[v||Tol >0, V|v|>maxvy,vy).
tional explicit examples. It is especially interesting to see (A7)
how far one can go in four spacetime dimensions toward

having separated regions ©6f) and (—) energy. We choosey to be (+) or (—) depending on whethéry; is

(+) or (=). This gives us
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APPENDIX: STRONG AND WEAK VIOLATIONS Case 2.1T,,=0: Since|v|<1, we haveT,;=v*Ty; and
OF THE WEAK ENERGY CONDITION 2|T01| 22|U||T01| BZUTOJ_, with equallty h0|d|ng in each in-

stance only if both sides are zero. Since we are looking at
If an observer measures negative energy at a point, mugontrivial cases, at least one Bf; and T, is non-zero. Then
others measure it as negative too? If all observers measugdndition (A2) implies that
the energy at a point to be negative, we say that we have a
strong violation of the weak energy condition at that point. If —To=T1+ 2| Tl > 02T+ 20Ty, Vv. (A9)
only some do, we say that we have a weak violation. Sup-
pose that an observer measures negative energy;Tig., !N other words
<0 in the observer’s rest frame. What are the conditions on ) 5
the components of ,, so that there is a strong violation of Too=Toot v T11+20Ty<0,  Vo. (A10)
the weak energy condition? We consider the question in two-
dimensional flat spacetime.
Under a Lorentz transformation, we have

Case 2.2 T1;<0 and [Ty =|T44|: We must haveTy,
#0 here, otherwise we get the trivial case. Define the func-
tion f(v) by

a2 2
Too= ¥ (Toot 20Tyt v T19), (A1) f(0)=Toot 20Tt 0Ty, —1<v<1. (A1l
wherev andy are the usual boost and Lorentz factors, and
obeys—1<v<<1. Assuming thailo,<0, we want the nec-
essary and sufficient condition thB§,<0 as well, no matter
what the value of. This occurs trivially, for instance, if both
Top and T4, are zero. We call this the trivial case.

In nontrivial cases, the condition

The graph of this function, under the imposed conditions, is

a downward pointing parabola whose extremurg,=

—T40/T11 lies outside the domain. In order to havév)

<0 for all v, we need to ensure that the higherf¢l) and

f(—1) is nonpositive. Wheity;>0, the higher of the two is

f(1) and whenTy;<0, the higher point isf(—1). Now,

I Tool=T11+ 2| Todl (A2) condition (A2) reduces t_of(l)so wh_en To>0 and to
f(—1)=<0 whenTy;,<0, giving us precisely what we want.

is necessary fofj,<0, Yuv. In order to see this, suppose  Case 1 T;;<0 and [ Toal <[T14: Condition A2 is still
that the condition is violated. One @f,, or T;; cannot be ~N€cessary here, but it is not sufficient. If, for examplg

zero, so we must have =-0.0001,T;,=—4 andTo; =1, itis easy to check that the
condition holds. Yet, fov =1/200 we get a positive value for

—Too<T11+2|Toq. (A3)  Tgo. In order to derive the correct condition, consider the

function f(v) defined above. In this case, the extremum,

This implies that for sufficiently smak>0, we have Vex= — T10/T11, lies inside the domain of the function and
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the condition to impose i§(vey) <0. Therefore, the neces- is necessary but not sufficient f@,<0. The condition
sary and sufficient condition in this case is

T2
2 01
TO]_ T00<T_ (A14)
Too<7— (A12) 11
Tll
This is a stronger condition than E@A2), in that it implies 1S rgg)c:e:, Zﬂrﬁtigf s:;fézent 065<0
that condition but is not implied by it.
Th Its of thi i i in th
e results of this appendix may be summarized in the |Tod =T+ 2| Todl (A15)

following theorem:

Theorem Let T,,, be the stress energy tensor in a two-
dimensional flat spacetime. Suppose that at some [poing
have a negative energy density, i.€y<0. The conditions
that the energy densiffjy, in an arbitrary frame is also nega-
tive are as follows:

(1) If Tg;=0 andT,,=0, thenT;, is automatically nega-
tive.

(2) If T11<0 and|Tgq/<|T44, then

is necessary and sufficient fdi,,<0.

These results may theoretically be applied to the four-
dimensional case as well. Suppose that we have a violation
of the weak energy condition in the rest frame of an observer.

Does an observer boosted in a spatial direcomiso mea-

sure negative energy? We may rotate coordinates soxthat
points in the newx-direction (T, will be unaffected by the

transformatiol, then apply the conditions of this section to
the Tog, To1 @andT4; components in the rotated coordinates.

[Tool=T11+ 2| Tol (A13)
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