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Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes
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We calculate the self-force experienced by a point scalar chargeq, a point electric chargee, and a point mass
m moving in a weakly curved spacetime characterized by a time-independent Newtonian potentialF. We
assume that the matter distribution responsible for this potential is bounded, so thatF;2M /r at large
distancesr from the matter, whose total mass isM; otherwise, the Newtonian potential is left unspecified.~We
use units in whichG5c51.! The self-forces are calculated by first computing the retarded Green’s functions
for scalar, electromagnetic, and~linearized! gravitational fields in the weakly curved spacetime, and then
evaluating an integral over the particle’s past world line. The self-force typically contains both a conservative
and a nonconservative~radiation-reaction! part. For the scalar charge, the conservative part of the self-force is

equal to 2jq2M r̂/r 3, wherej is a dimensionless constant measuring the coupling of the scalar field to the

spacetime curvature, andr̂ is a unit vector pointing in the radial direction. For the electric charge, the conser-

vative part of the self-force ise2M r̂/r 3. For the massive particle, the conservative force vanishes. For the scalar
charge, the radiation-reaction force is1

3 q2dg/dt, whereg52“F is the Newtonian gravitational field. For the
electric charge, the radiation-reaction force is2

3 e2dg/dt. For the massive particle, the radiation-reaction force
is 2

11
3 m2dg/dt. Our result for the gravitational self-force is disturbing: a radiation-reaction force should not

appear in the equations of motion at this level of approximation, and it should certainly not give rise to
radiation antidamping. In the last section of the paper we prove that while a massive particle in a vacuum
spacetime is subjected only to its self-force, it is also subjected to a matter-mediated force when it moves in a
spacetime that contains matter; this force originates from the changes in the matter distribution that are induced
by the presence of the particle. We show that the matter-mediated force contains a radiation-damping term that
precisely cancels out the antidamping contribution from the gravitational self-force. When both forces are
combined, the equations of motion are conservative, and they agree with the appropriate limit of the standard
post-Newtonian equations of motion.

DOI: 10.1103/PhysRevD.65.084001 PACS number~s!: 04.40.2b
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I. INTRODUCTION AND SUMMARY

Motion of massive bodies in strong gravitational fields

The problem of determining the motion ofN bodies sub-
jected to their mutual gravitational interactions has bee
centerpiece of general relativity from its inception. Work
this started shortly after the introduction of the theory, and
1938, a firm formulation of the equations of motion w
given by Einstein, Infeld, and Hoffmann@1#, who provided
post-Newtonian corrections to the Newtonian equations
motion. Higher-order corrections were later added@2–5#, and
work continues today, with Damour, Jaranowski and Scha¨fer
@6,7#, de Andrade, Blanchet and Faye@8,9#, and Pati and Will
@10# currently computing corrections of third pos
Newtonian order. A technical review of this field of researc
as of 1987, can be found in Ref.@11#; the early history was
described by Havas@12#.

While the equations of motion for slowly moving bodie
in a weak gravitational field are now very well understoo
the same cannot be said of the fast motion of a massive b
in a strong gravitational field. The prototypical problem he
is to determine the motion of a structureless particle of m
m in the gravitational field of a much more massive bla
hole. While it is known that the motion is geodesic in t
limit m→0, the issue is to determine the corrections to g
desic motion that appear whenm in nonvanishing. An impor-
tant effect that must be introduced is the loss of orbital
ergy and angular momentum to the gravitational radiat
0556-2821/2002/65~8!/084001~30!/$20.00 65 0840
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emitted by the moving particle; this is effected by an app
priate radiation-reaction force. Another important effect is
conservative correction to the equations of motion, wh
disappears whenm→0. Schematically, therefore, the equ
tions of motion will take the form

mua
;bub5 f self

a , ~1.1!

whereua is the particle’s four-velocity in the background o
the massive black hole,ua

;bub its acceleration~the semico-
lon denotes covariant differentiation in the black-hole m
ric!, and f self

a is the self-force. This contains both a conserv
tive and a dissipative~radiation-reaction! component, and it
scales asm2 in the small-mass limit.~Throughout the pape
we work in relativistic units, withG andc both set equal to
unity.!

A useful way to look at Eq.~1.1! is to imagine that the
motion is actually geodesic in a spacetime that is not
background spacetime of the massive black hole, but
perturbed spacetime that contains the particle as well.
geodesic motion in the perturbed spacetime can be expre
as a forced motion in the background spacetime, and
gives rise to Eq.~1.1!. The implementation of this idea, how
ever, presents some difficulty: If the particle is pointlike, t
perturbation diverges at the position of the particle, and
geodesic equation is not defined on the world line. The p
turbation must then be decomposed into a part that is sin
lar but does not influence the motion of the particle, and
©2002 The American Physical Society01-1
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MICHAEL J. PFENNING AND ERIC POISSON PHYSICAL REVIEW D65 084001
smooth remainder that is entirely responsible for the s
force @13#. This decomposition requires great care.

In simple situations, the orbital evolution of a partic
emitting gravitational waves can be determined without
involvement of a self-force. If the black hole is nonrotatin
the orbital evolution is determined by energy and angu
momentum balance@14,15#: The rate at which the radiatio
carries energy and angular momentum both to infinity a
across the event horizon matches the rate at which or
energy and angular momentum is lost by the particle. T
information alone is sufficient to solve for the motion,
least when the time scale for orbital evolution is long co
pared with the orbital period. If the black hole is rotating, t
statement continues to be true provided that the orbit is ei
equatorial or circular@16–21#. When dealing with generic
orbits around a rotating black hole, however, the loss of
bital energy and angular momentum no longer constitu
sufficient information—the rate of change of the ‘‘Cart
constant’’@22# must also be determined, and this requires
involvement of a self-force@20#.

Sources of gravitational waves for LISA

There is a practical necessity for the computation of
gravitational self-force. Solar-mass compact objects
highly eccentric, nonequatorial orbits around rapidly rot
ing, massive black holes~in the range between 103 and 108

solar masses! emit gravitational waves that will be measure
by eventual spaceborne interferometric detectors@23#, which
operate in the low-frequency band~in the range between
1024 and 1 Hz!. One such detector, the Laser Interferome
Space Antenna~LISA! @24#, has been selected as one of thr
‘‘Cornerstone missions’’ in the ‘‘Horizon 20001’’ program
of the European Space Agency. A possible involvement
the National Aeronautics and Space Administration—n
appearing likely after the publication of the Taylor-McKe
decadal survey@25#, in which LISA is listed as a high-
priority, moderate-size mission—would increase the like
hood that this detector will be deployed in the not-too-dist
future. A realistic projection places the launch in the neig
borhood of 2010.

The detailed modeling of these sources of gravitatio
waves for LISA, to the extent that templates could be p
vided for data analysis, will require a detailed computat
of the orbital evolution. This, in turn, requires that Eq.~1.1!
be evaluated and solved for generic orbits around a K
black hole. For this we need a practical way of comput
the gravitational self-force.

Gravitational self-force

This issue was taken up recently by Mino, Sasaki, a
Tanaka@26#, who calculated the self-force acting on a po
particle of massm moving in an arbitrary background spac
time with metricgab ; they assume that the metric satisfi
the Einstein field equations in vacuum. Their calculation
based on a careful analysis of the perturbation field in
vicinity of the particle, the~gravitational! perturbation being
created by the particle itself. It involves a careful decomp
sition of the perturbation into a part that is singular at t
08400
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particle’s location but does not affect its motion, and a p
that is well-behaved and governs the motion. Their expr
sion for the self-force was then reproduced by Quinn a
Wald @27#, on the basis of a different approach involving
comparison between self-forces acting in two differe
spacetimes. Both teams found the following equations
motion:

mua
;bub5 f ext

a 2
11

3
m~da

b1uaub! ḟ ext
b 1 f grav

a . ~1.2!

Here, ua is the particle’s four-velocity in the backgroun
spacetime,f ext

a is an external force acting on the particle, a
an overdot indicates differentiation with respect to prop
time t. The gravitational self-force is given by

f grav
a 522m2E

2`

t2

~2Ga
bm8n8;g2G;a

bgm8n8

1uaGbgm8n8;dud!ubugum8un8dt8. ~1.3!

The four-index objectGab
g8d8(x,x8) appearing inside the

integral is the retarded gravitational Green’s function@28#,
whose precise definition is given by Eq.~3.25! below ~our
normalization differs from the conventional choice by a fa
tor of 4!; the unprimed indices refer to the field pointx
~which is identified in the integral with the current positio
of the particle!, while the primed indices refer to the sourc
point x8 ~identified with the particle’s past position!. The
integral extends over the past world line of the particle, fro
t852` to ~almost! the current time,t85t2[t2e, where
e is very small and positive@27#. The integration is cut shor
to avoid the singular behavior of the Green’s function asx8
approachesx; it involves only the smooth part of the Green
function, which is often referred to as its ‘‘tail part’’@29#. In
a situation in which the particle is subjected only to its se
force, the equations of motion reduce tomua

;bub5 f grav
a .

Because the self-force scales likem2, we recover geodesic
motion in the limitm→0.

The difficulty of evaluating Eq.~1.3! resides with the
computation of the gravitational Green’s function, whic
would be very hard to carry out for an arbitrary spacetim
There is hope for progress, however, if the spacetime p
sesses symmetries, such as staticity and spherical symm
in the case of a Schwarzschild black hole, or stationarity a
axial symmetry in the case of a Kerr black hole. In su
cases, a plausible method of computation would be base
a separation-of-variables approach, and themodesof the
Green’s function could be obtained fairly easily@30#. But
this approach is not free of difficulties: While the individu
modes of the Green’s function stay finite and continuous ax
approachesx8 ~though they are discontinuous in their fir
derivatives!, the sum over modes does not converge. Ess
tially, this is because the modes do not distinguish betw
the singular and smooth parts of the Green’s function; th
contribute to both, and the singular behavior of the Gree
function gives rise to a divergent sum. Recently, Ori, Burk
and Barack@31–37# have devised a way to regularize th
mode sums, so as to extract from them a meaningful exp
1-2
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sion for the self-force. They have applied their technique t
number of simple situations involving scalar, electroma
netic, and gravitational radiation. Similar regularizati
methods were proposed by Lousto@38#, as well as Nakano
Mino, and Sasaki@39,40#. It appears likely that in the nea
future, this method will be used successfully to solve m
complicated problems, including the prototypical proble
mentioned previously.

Electromagnetic self-force

The derivation of Eqs.~1.2! and~1.3! by Mino et al. @26#,
and Quinn and Wald@27#, is based on methods previous
introduced by DeWitt and Brehme@41#. These authors cal
culated the self-force acting on anelectrically chargedpar-
ticle moving in an arbitrary spacetime with metricgab . As
corrected by Hobbs@42#, the equations of motion of a
charged particle are

mua
;bub5 f ext

a 1
2

3

e2

m
~da

b1uaub! ḟ ext
b

1
1

3
e2~Ra

bub1uaRbgubug!1 f em
a , ~1.4!

wheree is the particle’s electric charge,f ext
a an external force

acting on the particle,Rab the spacetime’s Ricci tensor, an

f em
a 52e2E

2`

t2

~Ga
g8;b2G;a

bg8!u
bug8dt8 ~1.5!

is the electromagnetic self-force. The two-index obje
G b8

a (x,x8) is the retarded electromagnetic Green’s funct
@41#, whose precise definition is given by Eq.~3.16! below.
In the absence of an external force, and in a region of sp
time empty of matter, the equations of motion reduce
mu;b

a ub5 f em
a . In flat spacetime, on the other hand,f em

a 50
because the Green’s function contains only a singular p
the smooth, or tail, part vanishes. In flat spacetime, theref
we recover the Abrahams-Lorentz-Dirac equation@43–45#,

mu ;b
a ub5 f ext

a 1
2

3

e2

m
~d b

a 1uaub! ḟ ext
b . ~1.6!

The practical computation of the electromagnetic self-fo
presents the same technical difficulties as in the gravitatio
case.

Scalar self-force

The self-force acting on a particle withscalar chargeq
was recently calculated by Quinn@46#. In this case, the equa
tions of motion are
08400
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mua
;bub5 f ext

a 1
1

3

q2

m
~da

b1uaub! ḟ ext
b

1
1

6
q2~R b

a ub1uaRbgubug!1 f scalar
a ,

~1.7!

where the self-force is now given by

f scalar
a 5q2~gab1uaub!E

2`

t2

G,bdt8, ~1.8!

in which the retarded Green’s functionG(x,x8) is a scalar;
this is defined by Eq.~3.10! below. In the absence of a
external force, the equations of motion reduce tomua

;bub

5 f scalar
a , and this is the simplest realization of the class

equations that govern the orbital evolution of a particle mo
ing in a strong gravitational field. The computation of th
scalar, electromagnetic, or gravitational self-force involv
solving for a retarded Green’s function, and then perform
an integration over the particle’s past world line. Becau
there is only one component to the scalar Green’s func
~as opposed to 16 for the electromagnetic function, or 1
for the gravitational case!, Eq. ~1.8! captures the essence o
the problem and avoids many technical complications.
this reason, it has been the starting point of many rec
investigations@32–37,39,40,47#.

Weak-field limit

The computation of the various Green’s functions is
very difficult undertaking even when the spacetime posse
many symmetries. This is, however, a very tractable t
when the spacetime is only weakly curved. In such a sit
tion, the metric itself can be calculated perturbatively as
expansion about flat spacetime, and the same technique
be employed to find the Green’s functions and compute
self-forces. Our purpose with this paper is to do just that.
will consider spacetimes for which the metric can be e
pressed as

ds252~112F!dt21~122F!~dx21dy21dz2!,
~1.9!

in which F(x,y,z)!1 is a generic Newtonian potential sa
isfying Poisson’s equation,¹2F54pr, wherer is the mass
density. We will keepF unspecified throughout the pape
but assume that it is small everywhere. We shall also ass
that the mass distribution is bounded, so thatF behaves as
2M /r at large distancesr from the center of mass;M
5*rd3x is the total mass, andr 25x21y21z2. Various as-
pects of those spacetimes are discussed in Sec. II. In Sec
and IV we calculate the scalar, electromagnetic, and grav
tional Green’s functions to first order inF. In Sec. V we use
the Green’s functions to calculate the scalar, electromagn
and gravitational self-forces.

Our motivation for carrying out such a~long! computation
is to provide a useful check on the formalism, especially
its gravitational formulation. Admittedly, the weak-field lim
1-3
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is not by itself very interesting, but understanding this lim
may well be a necessary step toward understanding
strong-field behavior of the gravitational self-force. So wh
we cannot hope to learn anything new from such a we
field computation, we can use our knowledge of the po
Newtonian equations of motion@3–5,11# to produce a non-
trivial check of the self-force method; the results found h
should of course match the results from the literature. As
shall see, we have been successful at producing this ch
the method works.

DeWitt and DeWitt

We are not the first to perform such a check on the f
malism. In 1964, DeWitt and DeWitt@48# calculated the
electromagnetic self-force, as given by Eq.~1.5!, for the
weakly curved spacetime of Eq.~1.9!. They considered only
the special caseF(x)52M /r , wherer 5uxu, but noted that
their results generalize to arbitrary potentials by superp
tion. ~We use a bold-faced symbol to denote a thr
dimensional vector living in flat space.! They found that to
leading order in a weak-field, slow-motion approximatio
the spatial components of the self-force are

fem~x!5e2
M

r 3
r̂1

2

3
e2

dg

dt
, ~1.10!

where r̂5x/r and g(x)52“F is the Newtonian gravita-
tional field. In this limit, the equations of motionmua

;bub

5 f em
a become

m
d2z

dt2
5mg~z!1fem~z!, ~1.11!

wherez(t) is the trajectory of the charged particle. The fir
term on the right-hand side of Eq.~1.10! is a repulsive cor-
rection to the local force of gravity; it agrees with the wea
field limit of a result by Smith and Will@49#, who calculated
the force required to hold a charged particle in place in
~exact! field of a Schwarzschild black hole. The second te
is the usual expression for the radiation-reaction force ex
rienced by a charged particle subjected to an external fo
mg @43,44#.

The result of Eq.~1.10! is remarkable because this e
tirely local expression for the self-force derives from a no
local formulation involving the entire past history of th
charged particle; in the weak-field limit, any trace of non
cality is lost. The result is remarkable also because while
expression for the radiation-reaction component of the s
force is the expected23 e2dg/dt, it is very hard to see how
such a simple result could ever follow from such a comp
cated expression as Eq.~1.5!. We notice that this result fo
the radiation-reaction force can be obtained from two v
different approaches. In a flat-spacetime point of view,
equations of motion for a charged particle aremua

;bub

5 f ext
a 1 2

3 (e2/m)(da
b1uaub) ḟ ext

b ; in the slow-motion limit,
the external force ismg, and we recover the usual result.
a curved-spacetime point of view, on the other hand, ther
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no external force and the equations of motion aremua
;bub

5 f em
a ; in the weak-field, slow-motion limit, we also recove

the usual result. This agreement is necessary on phys
grounds, but it could hardly have been anticipated on
basis of a quick inspection of Eq.~1.5!; the calculations re-
quired to produce Eq.~1.10! are very involved.

In their paper@48#, DeWitt and DeWitt gave the following
physical picture for the self-force of Eq.~1.10!. This picture
relies heavily on their expression for the Newtonian pote
tial, F52M /r , which corresponds to a point massM lo-
cated at the origin of the coordinate system.

Because the fundamental expression for the self-fo
Eq. ~1.5!, involves only the smooth, or tail, part of the ele
tromagnetic Green’s function, there is a priori nolocal con-
tribution to this force coming from the world-line integra
Indeed, DeWitt and DeWitt found that the quantity insid
this integral vanishes in the immediate past of the ev
(t,x), which corresponds to the particle’s current position.
fact, it vanishes until the time delay,t2t8, becomes equal to
r 1r 8, the distance between the central massM and the par-
ticle’s current positionx, added to the distance to the par
cle’s old positionx8. At t2t85r 1r 8, the electromagnetic
Green’s function undergoes an abrupt change of behav
and the self-force is entirely due to this sudden transiti
~We expand our discussion of this point in Appendix B.! The
physical effect responsible for the force, in DeWitt and D
Witt’s view @48#, is a signal that originates from the partic
at an earlier timet8, propagates toward the central massM at
the speed of light, bounces off the central mass, and co
back to the particle at the current timet. Although the self-
force is nonlocal, Eq.~1.10! involves the conditions at the
current time only. This is because the time delay in not n
ticeable at the level of approximation maintained in the c
culation. To leading order in a weak-field, slow-motion a
proximation, the electromagnetic self-force appears to
entirely local.

The physical picture described in the preceding paragr
appeared to us to be slightly suspicious. The sudden cha
in the behavior of the electromagnetic Green’s function at
2t85r 1r 8 is dictated by the presence of the point massM
at x50, which mediates the interaction between the char
particle and its earlier self. The region of spacetime near
central mass is therefore seen to have an important effec
the Green’s function, and it is this effect—the sudd
change—which apparently gives rise to the self-force. B
F52M /r cannot be considered to be small in this region
spacetime, and the perturbative method of calculation of
Green’s function must come into question. While there
little reason to doubt the validity of Eq.~1.10!, it appeared to
us that its derivation by DeWitt and DeWitt@48# left room
for improvement.

This paper

Part of this paper is concerned with providing a derivati
of Eq. ~1.10! that is free of this criticism. Throughout th
paper we assume thatF(x) is everywhere much smaller tha
unity, and reduces to2M /r only far away from the mass
distribution. Building upon DeWitt and DeWitt’s work@48#,
1-4
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we introduce~in Secs. III and IV! techniques that allow us to
compute the electromagnetic Green’s function for such
neric Newtonian potentials. In Sec. V we recalculate
electromagnetic self-force for these potentials, and we re
duce Eq.~1.10!. While our result is compatible with the
physical picture suggested by DeWitt and DeWitt, our de
vation shows very clearly that the result is largely indep
dent of the conditions near the mass distribution. We c
sider this improvement on the original derivation to be
significant contribution to this field. Our derivation is als
more transparent, in the sense that the computational l
involved is much reduced compared with the original cal
lations of DeWitt and DeWitt.

The techniques introduced in Secs. III and IV allow us
calculate all three types of Green’s functions—scalar, e
tromagnetic, and gravitational. Those are used in Sec. V
calculate the respective self-forces. Part of the paper is th
fore devoted to the calculation of the scalar and gravitatio
self-forces in the weakly curved spacetimes of Eq.~1.9!. To
the best of our knowledge, such calculations have not
been presented in the literature.

Scalar self-force

The computations are simplest for the case of a sc
charge, and we obtain

fscalar52jq2
M

r 3
r̂1

1

3
q2

dg

dt
, ~1.12!

wherej is a constant measuring the coupling of the sca
field to the spacetime curvature; a precise definition is gi
by Eq. ~2.7! below. The equations of motion for the scal
chargeq are identical to Eq.~1.11!, but with the scalar self-
force replacing the electromagnetic self-force. For minim
coupling (j50), the self-force is entirely dissipative, and w
recover the expected result,1

3 q2dg/dt; this is the radiation-
reaction force experienced by a scalar charge subjected
external forcemg. For minimal coupling, the self-force ac
ing on a stationary charge vanishes; this agrees with W
man’s result@47# for the force required to hold a scala
charge in place in the exact field of a Schwarzschild bla
hole. If j.0, the conservative part of the self-force is rep
sive. If j,0, it is attractive. This result for the scalar se
force is very similar to Eq.~1.10!, and we notice that the
highly nonlocal expression of Eq.~1.8! has managed to pro
duce the expected local result. Once more the dual poin
view holds: We can adopt a flat-spacetime point of view,
f scalar

a to zero in Eq.~1.7!, and get the correct result by equa
ing the external force tomg; or we can adopt a curved
spacetime point of view, setf ext

a to zero in Eq.~1.7!, and get
the correct result by evaluating the world-line integral of E
~1.8!.

Gravitational self-force and matter-mediated force

The computations required for the gravitational self-for
are the most involved, but here we also face a serious t
nical problem. We have stressed the importance of work
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with a Newtonian potential that iseverywheresmall. In fact,
the perturbative calculation of the Green’s function requi
that the deviations of the metricgab with respect to the
Minkowski valueshab be everywhere small. To accommo
date this requirement, it is necessary that the spacetime
tain matter: all vacuum solutions to the Einstein field equ
tions representing an isolated massive object necess
possess regions of strong curvature. Such strong-field
gions would affect the Green’s function in a way that cann
be predicted by a perturbative calculation; the entire met
would fail, even if the Green’s function were to be evaluat
only in the weak-field region of the spacetime. Thus, t
global character of the Green’s function, together with t
weak-field limitations of our calculational methods, dicta
that we work with spacetimes that contain matter.

The problem resides with the fact that the equations
motion for a massive particle, as given by Eqs.~1.2! and
~1.3!, are restricted tovacuumspacetimes. The Mino-Sasak
Tanaka-Quinn-Wald equations of motion@26,27# are there-
fore not directly suited to a weak-field calculation. An exte
sion to spacetimes containing matter must be produced.
do this in Sec. VI, proceeding in two steps.

First, we incorporate the modifications to the gravitation
Green’s function that come from the presence of Ricci-ten
terms in Green’s equation. These modifications affect
gravitational self-force, but they do not alter Eq.~1.3! if the
particle is restricted to move in a vacuum region of t
spacetime. Second, we consider how the presence of m
modifies the equations of motion. Because the backgro
stress-energy tensorTab depends on the metric, it necessa
ily suffers a perturbation when the massive particle is
serted in the spacetime. Physically, this corresponds to
fact that while the object of massM—the star—is at rest
when the particle is absent, it must move in the presenc
the particle: both objects move around a fixed center of m
@50#. This perturbative motion of the star produces an ad
tional metric perturbation, over and above the perturbat
directly associated with the particle’s own stress-energy t
sor. This must be accounted for, and we shall see tha
effect is to modify the right-hand side of Eq.~1.2! by a term
f mm

a which we call the ‘‘matter-mediated’’ force. While th
self-force can be thought of as a direct action of the part
on itself, this additional force can be thought of as an indir
action mediated by the presence of matter: the particle
on the star, and the star acts back on the particle.

The gravitational self-force is computed in Sec. V, a
this calculation incorporates the effects of the matter on
retarded Green’s function. We obtain

fgrav52
11

3
m2

dg

dt
, ~1.13!

and according to the naive equations of motionmd2z/dt2

5mg1fgrav, the gravitational self-force does work on th
particle at an average ratedW/dt51 11

3 m2ugu2; it therefore
gives rise to radiationantidamping@51#. Notice that the self-
force represents a correction of 1.5PN ~post-Newtonian! or-
der to the Newtonian equations of motion@52#. Notice also
that the dual point of view seems at work also here: o
1-5
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expression for the ‘‘radiation-reaction force’’ could be calc
lated on the basis of Eq.~1.2! by adopting a ‘‘flat-spacetime
point of view’’ in which f grav

a would be set to zero and th
‘‘external force’’ equated tomg.

The remarkable conspiracy that makes the tail integ
reproduce the external-force term in the equations of mo
is seen to be at play in all three cases. While the agreem
between the flat-spacetime and curved-spacetime point
view is quite necessary in the case of the scalar and ele
magnetic self-forces, it is decidedly disturbing in the gra
tational case. How can we understand this result?

The answer obviously comes from the matter-media
force, which we define and compute in Sec. VI. For this
obtain

fmm5mdg11PN1
11

3
m2

dg

dt
, ~1.14!

where the first term represents the change in the star’s N
tonian gravitational field associated with its motion arou
the fixed center of mass, the second term is a post-Newto
correction to the Newtonian forcemg, and the third term is a
radiation-damping term that precisely cancels out the a
damping force of Eq.~1.13!. ~Such a cancellation was no
ticed a long time ago by Carmeli@53#, in the context of a
very different formulation of the equations of motion.!

A precise expression for the matter-mediated force can
found in Eq.~6.54! below. When it is substituted, togethe
with the self-force, into the equations of motion, we find th
they take the form

d2z

dt2
52

M

r3 F S 11v22
5m

r
24v•VDr

2r•~4v23V!v14~r•v !VG1O~2PN,m2,M2!,

~1.15!

which contains no trace of a radiation-reaction force. He
z(t) gives the position of the particle, andv(t)5dz/dt is its
velocity; the star moves on a trajectoryZ(t) with a velocity
V(t)5dZ/dt. We user5z2Z to designate the separatio
between the two objects, andr[uz2Zu. The equations of
motion for the star are

d2Z

dt2
5

m

r3 H F112v22
3

2 S r•v
r D 2Gr23~r•v !vJ

1O~2PN,m2,mM!. ~1.16!

Our calculations cannot reproduceall the terms in the
Einstein-Infeld-Hoffmann equations of motion@1,54#: Eq.
~1.15! omits terms that are quadratic inm andM, while Eq.
~1.16! neglects terms of orderm2 and mM. The formalism
we use in this paper is based on linear perturbation the
and it would be incapable of producing corrections of ord
m2. On the other hand, the corrections of ordermM andM2

are within the reach of the formalism, but in order to produ
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them we would need to go beyond the weak-field appro
mation considered in this paper. Within these limitation
however, we have complete agreement between the calc
tions presented in this paper and the standard p
Newtonian treatment of the two-body problem.

Organization

The technical part of the paper begins in Sec. II with
detailed discussion of the metric of Eq.~1.9!, and a deriva-
tion of the scalar, electromagnetic, and gravitational wa
equations for the weakly curved spacetimes described by
metric. In Sec. III we introduce the two-point function
A(x,x8) andB(x,x8), and show how the scalar, electroma
netic, and gravitational Green’s functions can be obtain
from them by acting with differential operators. In Sec. I
we introduce methods to compute the two-point functio
and evaluate them in interesting limiting cases.@In Appendix
A we expand our discussion ofA(x,x8), and in Appendix B
we provide an explicit computation of the two-point fun
tions for the special caseF52M /r .# In Sec. V we use our
preceding results for the Green’s functions to compute
scalar, electromagnetic, and gravitational self-forces for
spacetimes of Eq.~1.9!; our results were quoted in Eqs
~1.12!, ~1.10!, and~1.13!, respectively. Finally, in Sec. VI we
introduce and compute the gravitational matter-media
force, and show that it cancels out the antidamping fo
calculated in Sec. V.

II. WEAKLY CURVED SPACETIME

A. The spacetime and its geometric quantities

The spacetimes considered in this paper have a me
given by

ds252~112F!dt21~122F!~dx21dy21dz2!,
~2.1!

in which F(x) is a Newtonian potential, a function of th
spatial coordinatesx satisfying Poisson’s equation,

¹2F54pr, ~2.2!

wherer(x) is the mass density. By virtue of Eq.~2.2! and the
fact thatF!1 everywhere in the spacetime, the metric
Eq. ~2.1! satisfies the linearized Einstein field equation
Throughout the paper we will work consistently to first ord
in F. If the metric were representing the gravitational field
a point massM located at the origin of the coordinate sy
tem, thenr5Md(x) andF52M /r , wherer 5uxu. We will
not need to adopt this particular form for the Newtoni
potential~which would violate the condition thatF be small
everywhere!, and we shall work with generic potentials sa
isfying Eq. ~2.2!. We will, however, assume thatF becomes
equal to2M /r , with M5*rd3x, far from the matter distri-
bution. Notice that we do not allowF to depend on time.

Introducing ta5]xa/]t as the timelike Killing vector of
the spacetime, we write the metric tensor as

gab5hab22Fxab , xab[hab12tatb , ~2.3!
1-6
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wherehab5diag(21,1,1,1) is the Minkowski metric, which
was used to lower the index onta. Throughout this section
we will continue to lower and raise indices with th
Minkowski metric, unless it is otherwise indicated. Noti
that xab5diag(1,1,1,1). From Eq.~2.3! it is easy to derive
A2g5122F and gab5hab12Fxab. These results hold
to first order inF.

The metric of Eq.~2.3! comes with the following Christ-
offel symbols:

Gm
ab52xm

aF ,b2xm
bF ,a1xabF ,m. ~2.4!

As a consequence of the relationF ,ata50, they satisfy
habGm

ab50. The Riemann tensor is given by

Rm
abg52xm

gF ,ab1xm
bF ,ag2xabF ,m

g1xagF ,m
b .
~2.5!

Contracting over the first and third indices gives the Ri
tensor:

Rab5xabhF, ~2.6!

wherehF[habF ,ab . BecauseF does not depend on time
hF5¹2F[dabF ,ab , wherexa denotes the spatial coord
nates. The Ricci scalar isR52hF, and the Einstein tenso
is Gab52tatbhF. Equation~2.2! follows from the Einstein
field equations withTab5rtatb; this represents a fluid o
mass densityr and negligible pressure at rest in the spa
time.

B. Wave equations

The field equation for a massless scalar fieldc in a curved
spacetime with metricgab is

gabc ;ab2jRc524pm, ~2.7!

where the semicolon designates covariant differentia
compatible with the metric tensor,j is an arbitrary constan
measuring the coupling to curvature, andm is a given source
term. It will be convenient to work with a densitized form fo
the field equation,

E@c#524pA2gm, ~2.8!

whereE@c# stands for the left-hand side of Eq.~2.7! multi-
plied byA2g. For the weakly curved spacetime of Eq.~2.3!,
we find that

E@c#5hc14Ftatbc ,ab22j~hF!c, ~2.9!

whereh[hab]a]b is the flat-spacetime wave operator an
as was pointed out previously,hF5¹2F54pr.

An electromagnetic field is represented by a vector pot
tial Aa which is here assumed to satisfy the Lorentz-gau
condition,Aa

;a50. Its field equations are

gmnA ;mn
a 2R m

a Am524p j a, ~2.10!
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where j a is a given current density. The wave equation
densitized form is

Ea@A#524pA2g ja, ~2.11!

whereEa@A# stands for the left-hand side of Eq.~2.10! mul-
tiplied by A2g. A straightforward computation reveals th
for the weakly curved spacetime of Eq.~2.3!,

Ea@A#5hAa14FtmtnAa
,mn22~x m

a F ,n1x n
a F ,m

2xmnF ,a!Am,n2@xamF ,mn12xa
nhF

2xm
nF ,a

m#An. ~2.12!

Here, h acting on the vector fieldAa still stands for the
scalar wave operator of flat spacetime.

A gravitational perturbation on a background metricgab

is described by a tensorgab , and the full metric isĝab
5gab1gab . By linearizing the Einstein field equation
about the background, one obtains a wave equation for
perturbation. This equation takes a simpler form if it is e
pressed in terms of a ‘‘trace-reversed’’ fieldḡab[gab
2 1

2 (gmngmn)gab , which is then chosen to satisfy a Lorent
gauge condition:ḡ ;b

ab 50. ~Here and below, indices on th
perturbation field are raised and lowered with the ba
ground metric, and a semicolon designates covariant dif
entiation on the background.! With these choices, the Ein
stein field equations take the form of a wave equation
ḡab @28#:

gmnḡab
;mn12Rm

a
n

bḡmn1Sm
a

n
bḡmn5216pdTab,

~2.13!

wheredTab is the perturbation in the stress-energy tensor~so
that the full stress-energy tensor isT̂ab5Tab1dTab, with
the first term denoting the background’s stress-energy
sor!, Rmanb is the Riemann tensor of the background spa
time, andSmanb is constructed from the background’s Ric
and Einstein tensors,

Smanb52Rm(agb)n2Rmngab2Rgm(agb)n22gmnGab .

~2.14!

The parentheses around tensor indices indicate symmet
tion with respect to these indices. Once Eq.~2.13! has been
solved for the trace-reversed perturbation, the metric is
covered from the relationgab5ḡab2 1

2 gabḡ, where ḡ

5gabḡab .
The densitized wave equation is

Eab@ḡ#5216pA2gdTab, ~2.15!

where Eab@ḡ# stands for the left-hand side of Eq.~2.13!
multiplied by A2g. A rather long but straightforward com
putation reveals that in a weakly curved spacetime with m
ric ~2.3!,
1-7
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Eab@ḡ#5hḡab14Ftmtnḡab
mn24~x (a

mF ,n1x~a
nF ,m

2xmnF (,a!ḡb)m,n12~xmnF ,ab22x (a
mF ,b)

n

1xabF ,mn!ḡmn2hF~habxmnḡmn12ḡab

14tatbhmnḡmn!. ~2.16!

In the first term on the right-hand side,h5hmn]m]n is the
scalar wave operator.

III. GREEN’S FUNCTIONS

A. Generating two-point functions

The task before us in this section is the computation
retarded Green’s functions for the wave equations consid
in Sec. II—Eqs.~2.8!, ~2.11!, and ~2.15!. As we shall see,
these Green’s functions can be constructed by acting w
differential operators on two generating two-point function
A(x,x8) andB(x,x8), defined by

A~x,x8!5
1

2pE Gflat~x,x9!F~x9!Gflat~x9,x8!d4x9

~3.1!

and

B~x,x8!5E Gflat~x,x9!r~x9!Gflat~x9,x8!d4x9. ~3.2!

Here, F is the Newtonian potential of Eq.~2.1!, r is the
mass density of Eq.~2.2!, and Gflat(x,x8) is the retarded
Green’s function of the flat-spacetime wave operator,

Gflat~x,x8!5
d~ t2t82ux2x8u!

ux2x8u
; ~3.3!

this satisfies hGflat(x,x8)524pd4(x2x8), where d4(x
2x8) is a four-dimensionald-function, equal to d(t
2t8)d3(x2x8). This method to calculate the Green’s fun
tion originated in the work of DeWitt and DeWitt@48#, who
used it to compute the scalar and electromagnetic Gre
functions for the special caseF52M /r . Here we generalize
their method to arbitrary potentials, and to the gravitatio
Green’s function.

Inside the integrals of Eqs.~3.1! and ~3.2!, the function
Gflat(x,x9) picks out the past light cone of the pointx, while
Gflat(x9,x8) picks out the future light cone of the pointx8.
~These light cones are those of the flat background sp
time.! The intersection of the two light cones defines a clos
two-surfaceS, and we see thatA(x,x8) is the average of the
Newtonian potential overS, while B(x,x8) is the average of
the mass density. Both two-point functions are zero ifx and
x8 are spacelike related, because the surface of interse
then disappears.

Averages of derivatives of the Newtonian potential can
obtained by differentiatingA(x,x8). For example,
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2pE Gflat~x,x9!@]a9F~x9!#Gflat~x9,x8!d4x9

5~]a1]a8!A~x,x8! ~3.4!

and

1

2pE Gflat~x,x9!@]a9b9F~x9!#Gflat~x9,x8!d4x9

5~]ab1]a8b1]ab81]a8b8!A~x,x8!. ~3.5!

We use the notation]a8 f 5] f /]xa8, ]ab8 f 5]2f /]xa]xb8,
etc., in which the tensor index~eithera, a8, or a9) indicates
with respect to which variable~betweenx, x8, and x9) the
function f is being differentiated.

Equations~3.4! and ~3.5! are easy to establish.~In the
following we keep the notation simple and drop the factor
1/2p in front of the integrals!. First we write ]aA
5*(]aG)FGdx9, and use the fact thatGflat(x,x9) depends
only on the difference betweenx and x9. This allows us to
express the right-hand side as2*(]a9G)FGdx9. Integrat-
ing by parts, we obtain 1*G(]a9F)Gdx9
1*GF(]a9G)dx9. In the second term, the derivative oper
tor can be switched to2]a8 , which can be taken outside th
integral. The second term becomes2]a8A, and Eq.~3.4!
follows. To derive Eq.~3.5! we differentiate Eq.~3.4! with
respect toxb, and go through the same procedure.

Because the Newtonian potential does not depend
time, Eq.~3.4! implies

] tA~x,x8!1] t8A~x,x8!50. ~3.6!

Another useful identity results from taking the trace of E
~3.5!. Using Poisson’s equationhF5¹2F54pr and Eq.
~3.2!, we obtain

1

2
~h1h8!A~x,x8!1] a

a8 A~x,x8!5B~x,x8!, ~3.7!

where h8[hmn]m8]n8 ; summation overa8 and a in the
third term is understood. By virtue of Eq.~3.6!, all time
derivatives drop out of Eq.~3.7!, which can then be written
as 1

2 (¹21¹82)A(x,x8)1]a8
aA(x,x8)5B(x,x8). The left-

hand side of Eq.~3.7! can be simplified differently. The wave
operator acting onA can be taken inside the integral, where
acts onGflat. This returns ad-function, and the integral can
be evaluated. This gives

hA~x,x8!522F~x!Gflat~x,x8!,

h8A~x,x8!522F~x8!Gflat~x,x8!, ~3.8!

and these expressions can be substituted into Eq.~3.7!.

B. Scalar Green’s function

We are looking for a functionG(x,x8) that solves@41#

E@G#524pd4~x2x8! ~3.9!
1-8
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to first order in the Newtonian potentialF. Here, d4(x
2x8) is the four-dimensionald-function, andE@G# stands
for the left-hand side of Eq.~2.7! multiplied by A2g, with
G(x,x8) taking the place ofc(x). In terms of this Green’s
function, the solution to Eq.~2.8! is

c~x!5E G~x,x8!m~x8!A2g8d4x8, ~3.10!

whereg8 is the metric determinant evaluated atx8.
To find this Green’s function, we write

G~x,x8!5Gflat~x,x8!1Ġ~x,x8!1O~F2!, ~3.11!

in which Gflat(x,x8) is the flat-spacetime solution given b
Eq. ~3.3!, andĠ(x,x8) is the first-order correction~linear in
the Newtonian potential!. @The overdot notation suggests th
G(x,x8) should be viewed as a smooth function of a sma
ness parametere, and that Eq.~3.11! gives the first two terms
of its Taylor expansion aboute50.# By virtue of Eq.~2.9!,
in which we substitutehF54pr, we find that Ġ(x,x8)
satisfies

hĠ~x,x8!524F~x!] ttG
flat~x,x8!18pjr~x!Gflat~x,x8!.

~3.12!

The solution is

Ġ~x,x8!5
1

pE Gflat~x,x9!F~x9!] t9t9G
flat~x9,x8!d4x9

22jE Gflat~x,x9!r~x9!Gflat~x9,x8!d4x9.

~3.13!

In the first integral, the derivative operator can be switch
to ] t8t8 because the flat-spacetime Green’s function depe
only onx92x8. The derivatives can then be taken outside
integral. Using Eqs.~3.1! and ~3.2!, we obtainĠ52] t8t8A
22jB. Using Eq.~3.6!, we express the final result as

Ġ~x,x8!522] tt8A~x,x8!22jB~x,x8!. ~3.14!

Equations~3.11! and ~3.14! give the scalar Green’s functio
to first order inF. As was claimed previously,G(x,x8) can
be expressed in terms of the generating two-point functi
introduced in Sec. III A. For the special casej50, our
Green’s function agrees with the one obtained by DeWitt a
DeWitt @48#.

C. Electromagnetic Green’s function

The electromagnetic Green’s functionGa
b8(x,x8) is a so-

lution to @41#

Ea
b8@G#524pda

b8d4~x2x8!, ~3.15!

where Ea
b8@G# stands for the left-hand side of Eq.~2.10!

multiplied by A2g, with Ga
b8(x,x8) taking the place of

Aa(x). Here and below, the unprimed tensor indices refe
08400
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the pointx, while the primed indices refer tox8. In terms of
this Green’s function, the solution to Eq.~2.11! is

Aa~x!5E Ga
b8~x,x8! j b8~x8!A2g8d4x8. ~3.16!

We seek to determine the Green’s function to first order
F.

For this purpose, we write

Ga
b8~x,x8!5Gflat~x,x8!da

b81Ġa
b8~x,x8!1O~F2!

~3.17!

and substitute into Eq.~3.15!. Here,Gflat(x,x8) is the scalar
Green’s function of Eq.~3.3!, and Ġ b8

a (x,x8) is the first-
order correction to the electromagnetic Green’s function.
find that this must satisfy

hĠa
b8524F] ttG

flatda
b12~xa

mF ,b1xa
bF ,m

2xbmF ,a!Gflat,m18prxa
bGflat. ~3.18!

We have used the fact thatF does not depend on time, s
that, for example,xamF ,mb5hamF ,mb5F ,a

b ; such terms
end up canceling out. We have also, on the right-hand s
dropped the distinction betweenb andb8; this distinction is
not necessary when dealing with a constant tensor suc
xa

b .
Equation~3.18! is solved by once again invoking the fla

spacetime Green’s function. The solution is

Ġa
b8~x,x8!52

1

4pE Gflat~x,x9!RHS~x9!d4x9,

~3.19!

whereRHS(x9) stands for the right-hand side of Eq.~3.18!
evaluated atx5x9. The derivatives appearing in Eq.~3.18!
are now taken with respect tox9. When]m9 ~say! is acting on
Gflat(x9,x8), it can be replaced by2]m8 and taken outside
the integral. This leaves us with integrals involvin
Gflat(x,x9), Gflat(x9,x8), as well asF(x9) and its deriva-
tives. Those integrals can all be expressed in terms of
two-point functionsA(x,x8) and B(x,x8) defined in Eqs.
~3.1! and ~3.2!, thanks to the relations~3.4! and ~3.5!. The
results can then be simplified by using Eqs.~3.6!–~3.8!, as
well as Eq.~2.3! for xab . The end result is

Ġa
b8522] tt8Ada

b1~]a8
b2]a

b8!A12ta~] t8b2] tb8!A

12tb~]a8
t2]a

t8!A1xa
b~DFGflat2B!, ~3.20!

whereDF[F(x)2F(x8). Equations~3.17! and~3.20! give
G b8

a (x,x8), the electromagnetic Green’s function, to fir
order inF.

Equation ~3.20! is easier to deal with if we distinguish
between its temporal and spatial components. From it
read off

Ġt
t852DFGflat22] tt8A1B, ~3.21!
1-9
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Ġt
a85~] t8a2] ta8!A,

Ġa
t85~] t8

a
2] t

a8 !A,

2Ġa
b85da

b~DFGflat22] tt8A2B!

1~]a8
b2]a

b8!A.

We notice that in Eqs.~3.20! and ~3.21!, the part of
Ġ b8

a (x,x8) that involvesGflat(x,x8) has support only on the
past light cone of the pointx. The remaining part, that in
volving the two-point functionsA(x,x8) andB(x,x8), have
support inside the light cone as well; this is the ‘‘tail part’’ o
the Green’s function@29#. Our electromagnetic Green’s func
tion agrees with DeWitt and DeWitt@48#.

D. Gravitational Green’s function

The trace-reversed gravitational Green’s functi
G ab

g8d8(x,x8) satisfies the equation@28#

Eab
g8d8@G#524pd (a

g8d d8
b) d4~x2x8!, ~3.22!

whereEab
g8d8@G# stands for the left-hand side of Eq.~2.13!

multiplied by A2g, but with G ab
g8d8(x,x8) replacing

ḡab(x). In terms of this Green’s function, the solution to E
~2.15! is

ḡab~x!54E G g8d8
ab

~x,x8!dTg8d8~x8!A2g8d4x8.

~3.23!

Our goal here is again to calculate the Green’s function
first order in the Newtonian potential. The steps are virtua
identical to what was done for the scalar and electromagn
cases. The only difference is that the expressions are lon

At the end of the calculation we will have to ‘‘trace
reverse’’ the trace-reversed Green’s function to obt
Gab

g8d8(x,x8), the Green’s function directly associated wi
the metric perturbationgab . This is given by

Gab
g8d8~x,x8!5G ab

g8d8~x,x8!

2
1

2
gab~x!gmn~x!G mn

g8d8~x,x8!.

~3.24!

In terms of this, the metric perturbation is recovered by
tegrating

gab~x!54E Gab
g8d8~x,x8!dTg8d8~x8!A2g8d4x8.

~3.25!

To find the trace-reversed Green’s function, we write

G ab
g8d8~x,x8!5Gflat~x,x8!d (a

g8d d8
b)

1Ġab
g8d8~x,x8!

1O~F2!, ~3.26!
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whereGflat(x,x8) is the flat-spacetime scalar Green’s fun
tion, andĠab

g8d8(x,x8) the correction of orderF. By sub-
stituting Eq. ~3.26! into Eq. ~3.22!, we find that this must
satisfy

hĠab
g8d8524F] ttG

flatd (a
gdb)

d14d (a
(g~xb)

d)F ,m

1F ,d)x m
b) 2xd)mF ,b)!Gflat,m22~xgdF ,ab

22x (a
(gF ,b)

d)1xabF ,gd!Gflat14p~habxgd

12da
gdb)

d14tatbhgd!rGflat, ~3.27!

where we have gone through the same simplification step
in the electromagnetic case. The remaining steps are
similar: We integrate Eq.~3.27! with the flat-spacetime
Green’s function, and we simplify the resulting integrals
was described in the paragraph preceding Eq.~3.20!. After a
rather long computation, we obtain

Ġab
g8d8522] tt8Ad (a

gdb)
d

12d (a
(g@]b8)

d)2]b)
d8)12tb)~]d)t82]d8)t!

22td)~]b)
t82] t

b8)!#A

1xgd~]a1]a8!~]b1]b8!A

22x (a
(g~]b)1]b8)!~]d)1]d8)!A

1xab~]g1]g8!~]d1]d8!A12x (g
(a d d)

b) DFGflat

1~2x (a
gdb)

d)2habxgd22d (a
gdb)

d

24tatbhgd!B, ~3.28!

whereDF5F(x)2F(x8). Equations~3.26! and~3.28! give
G ab

g8d8(x,x8), the trace-reversed gravitational Green’s fun
tion, to first order inF.

From Eq.~3.28! we extract the following components:

Ġtt
t8t8522DFGflat22] tt8A1B,

Ġtt
t8a85~] t8a2] ta8!A,

Ġtt
a8b85~]a1]a8!~]b1]b8!A23dabB,

Ġta
t8t85~]a

t82]a8
t!A,

Ġta
t8b852da

b~] tt8A1B!1
1

2
~]a

b12]a8
b1]a8

b8!A,

~3.29!

Ġta
b8c85da

(b~]c)t82]c8)t!A,

Ġab
t8t85~]a1]a8!~]b1]b8!A2dabB,

Ġab
t8c85d (a

c~]b)
t82]b8)

t!A,
1-10
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Ġab
c8d852d (a

cd
b)

d~DFGflat2] tt8A!

1dab~]c1]c8!~]d1]d8!A

22d (a
(c~] d)

b) 12] d8)
b)

1] d8)
b8)

!A

1dcd~]a1]a8!~]b1]b8!A2dabdcdB.

To ‘‘trace-reverse’’ the Green’s function according to E
~3.24! is a straightforward operation, but it is important
keep in mind that the metric involved in this computation
not hab, but hab12Fxab. We find that the gravitationa
Green’s function is given by

G g8d8
ab

~x,x8!5S d g8
(a d d8

b)
2

1

2
habhg8d8DGflat~x,x8!

1Ġ g8d8
ab

~x,x8!1O~F!2, ~3.30!

where

Ġ g8d8
ab

~x,x8!5Ġ g8d8
ab

~x,x8!2
1

2
habhmnĠ g8d8

mn
~x,x8!

22~ tatbhg8d82habtg8td8!

3F~x!Gflat~x,x8!. ~3.31!

The complete listing of components is

Ġ t8t8
tt

52~DFGflat1] tt8A!,

Ġ t8a8
tt

5~] t8a2] ta8!A,

Ġ a8b8
tt

52dab@^F&Gflat1] tt8A12B#

1~]a1]a8!~]b1]b8!A,

Ġ t8t8
ta

5~] t8
a

2] t
a8!A,

Ġ t8b8
ta

52d b
a ~] tt8A1B!

1
1

2
~] b

a 12] b
a81] b8

a8 !A, ~3.32!

Ġ b8c8
ta

5d (b
a ~]c)t82]c8)t!A,

Ġ t8t8
ab

5dab@^F&Gflat2] tt8A#1~]a1]a8!~]b1]b8!A,

Ġ t8c8
ab

5d c
(a ~] t8

b)
2] t

b8)!A,

Ġ c8d8
ab

5~2d c
(a d d

b) 2dabdcd!~DFGflat2] tt8A!

1dab~]c1]c8!~]d1]d8!A

22d (c
(a ~] d)

b) 12] d8)
b)

1] d8)
b8)

!A1dcd~]a

1]a8!~]b1]b8!A22dabdcdB.
08400
.

Here we use the notation̂F&[F(x)1F(x8), as well as
DF5F(x)2F(x8). It should be noted that in Eq.~3.32!,
the part ofĠ g8d8

ab (x,x8) that involvesGflat(x,x8) has sup-
port only on the past light cone of the pointx. The remaining,
tail part has support inside the light cone as well. We belie
that these results for the gravitational Green’s function
new.

IV. EVALUATION OF TWO-POINT FUNCTIONS

The scalar, electromagnetic, and gravitational Gree
functions can all be expressed in terms ofA(x,x8) and
B(x,x8), the two-point functions introduced in Sec. III A
Our task in this section is to evaluate these two-point fu
tions. We will keepF(x) completely generic, demandin
only that far from the matter distribution, it becomes equa
2M /r , where r 5uxu and M is the total mass. This distin
guishes our work from the earlier work of DeWitt and D
Witt @48#, who considered only the special caseF52M /r .
A consequence of keepingF generic is that we will obtain
only partial information regarding the two-point function
This, however, will be sufficient for the computation of th
self-forces presented in Sec. V. The results specifically
quired for this computation are derived in this section. Ad
tional results are presented in Appendix A, which gives
extended discussion of the two-point functionA(x,x8).
Complete expressions for the two-point functions are deri
in Appendix B for the special caseF52M /r ; these repro-
duce the earlier results of DeWitt and DeWitt.

A. Ellipsoidal coordinates

When Eq.~3.3! is substituted into Eqs.~3.1! and~3.2!, we
find that thedt9 integration can be carried out immediatel
and we obtain

A~x,x8!5
1

2pE F~x9!

ux2x9uux92x8u

3d~Dt2ux2x9u2ux92x8u!d3x9 ~4.1!

and

B~x,x8!5E r~x9!

ux2x9uux92x8u

3d~Dt2ux2x9u2ux92x8u!d3x9, ~4.2!

whereDt[t2t8. These are the integrals we will attempt
evaluate. The method of calculation presented below co
from DeWitt and DeWitt@48#, but this particular implemen-
tation was suggested to us by Alan Wiseman@55#.

Thed-function in Eqs.~4.1! and~4.2! enforces the condi-
tion ux2x9u1ux92x8u5Dt, which defines the closed, two
dimensional surfaceS formed by the intersection ofx’s past
light cone with x8’s future light cone. This surface is a
ellipsoid of revolution centered atx0[ 1

2 (x1x8), of semi-
1-11
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major axis 1
2 Dt and ellipticity 1

2 ux2x8u. To integrate Eqs.
~4.1! and~4.2!, we will adopt ellipsoidal coordinates adapte
to this geometry.

We first summarize our notation:

Dt5t2t8, x05
1

2
~x1x8!, R5x2x8,

R5ux2x8u, n̂5
R

R
, e5

1

2
R. ~4.3!

The diagram of Fig. 1 illustrates the situation.
For convenience we orient our coordinate axes such

the unit vectorn̂ points in the same direction as thez, or
third, axis; there is no loss of generality involved in th
choice. We then represent the vectorx9 in terms of ellipsoi-
dal coordinates (s,u,f). The coordinate transformation is

x95x01h~s,u,f!, ~4.4!

where

h15As22e2 sinu cosf, h25As22e2 sinu sinf,

h35s cosu. ~4.5!

The parametere[ 1
2 R is the ellipticity of the new coordinate

system. It is easy to check that in these coordinatesux
2x9u5s2e cosu andux92x8u5s1e cosu. The Jacobian of
the transformation~4.4! is (s22e2 cos2u)sinu.

With these results, we find that Eq.~4.1! reduces to
A(x,x8)5(2p)21*F(x01h)d(Dt22s) dsdV, where dV
5sinududf is the element of solid angle. The integratio
over s is immediate, and we obtain

A~x,x8!5
1

4pE F„x01h~u,f!…dV, ~4.6!

where the vectorh(u,f) is now given by Eq.~4.5! with s set
equal to 1

2 Dt. Thus,A(x,x8) is the average ofF over the
ellipsoids5 1

2 Dt, which is just the two-surfaceS introduced
previously. Similarly,

B~x,x8!5
1

2E r„x01h~u,f!…dV ~4.7!

is the average of 2pr over the same ellipsoid. It is importan
to remember that in Eqs.~4.5!–~4.7!, the third coordinate
axis has been aligned with the vectorR[x2x8.

It should be noted thatA(x,x8) andB(x,x8) are nonzero
if and only if x is in the causal future ofx8. To properly
reflect this, the integrals of Eqs.~4.6! and ~4.7! should be
multiplied by the step functionu(Dt2R). To keep the nota-
tion simple, however, we choose to leave this factor impl
in our expressions; for the rest of this section,Dt will be
understood to always be larger thanR.
08400
at

t

B. A„x,x8… near coincidence

The integral of Eq.~4.6! can readily be evaluated, for a
arbitrary Newtonian potentialF, if the pointsx and x8 are
close together in spacetime. This is the near-coincidence
proximation. Because these points must be timelike rela
for A(x,x8) to be nonvanishing, we are looking at evaluati
Eq. ~4.6! in a limit whereR andDt are both small, but the
ratio Dt/R is maintained larger than unity. In this limit, th
vector h(u,f) defined in Eq.~4.5! is small, andF can be
expanded in Taylor series about the pointx0; this is the basis
for our approximation. For concreteness, we will assume
x0 lies outside the matter distribution, so thatr(x0)50.

ExpandingF in powers ofh in Eq. ~4.6! gives

4pA5F~x0!E dV1F ,a~x0!E hadV

1
1

2
F ,ab~x0!E hahbdV1•••. ~4.8!

The first integral, with a factor of (4p)21 in front, gives
unity. The average ofha on the sphere is zero, and the a
erage ofhahb is the tensorqab5 1

3 (s22e2)dab1 1
3 e2n̂an̂b,

where s5 1
2 Dt and e5 1

2 R. The part ofqab that is propor-
tional to dab multiplies F ,ab(x0) and returns something pro
portional to¹2F evaluated atx0; because this point is out
side the matter, this is zero. We are left with

A5F~x0!1
1

24
R2F ,ab~x0!n̂an̂b1•••. ~4.9!

Notice that the right-hand side of this equation no long
depends onDt: the two-point functionA(x,x8) is time-
independent near coincidence.

It is convenient to shift the reference point fromx0 to x.
To orderR2, this means re-expressingF(x0) as

FS x2
1

2
Rn̂D5F~x!2

1

2
RF ,a~x!n̂a1

1

8
R2F ,ab~x!n̂an̂b

1•••. ~4.10!

Substituting this into Eq.~4.9!, we arrive at

A~x,x8!5F~x!2
1

2
F ,a~x!Ra1

1

6
F ,ab~x!RaRb1O~R3!.

~4.11!

This is our final expression for the two-point function in th
near-coincidence approximation. We recall thatR5x2x8.

In the sequel we will need expressions for various deri
tives of A(x,x8) evaluated at coincidence,x5x8. It is
straightforward to differentiate Eq.~4.11! with respect to ei-
ther x or x8, to obtain

lim
x8→x

] tA5 lim
x8→x

] t8A50 ~4.12!

and
1-12
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lim
x8→x

]abA52 lim
x8→x

]ab8A5 lim
x8→x

]a8b8A5
1

3
F ,ab~x!.

~4.13!

These results hold for arbitrary Newtonian potentials, p
vided that the pointx0 lies outside the matter distribution.

C. A„x,x8… for long delays

We can also evaluateA(x,x8) for arbitrary potentials if
we assume thatx andx8 are widely separated in spacetim
More precisely, we now takeDt to be extremely large, and in
particular, much larger thanR5ux2x8u, r 5uxu, and r 8
5ux8u. This is the long-delay approximation. In this limit,s
is much larger than e, and h
.(s sinu cosf,ssinu sinf,scosu). Becauses is very large,
we will neglect x0 in front of h in Eq. ~4.6!, so thatA
.(4p)21*F(h)dV. Since h is located well outside the
matter distribution, we can approximate the Newtonian
tential by 2M /uhu, its first term in a multipole expansion
~Here, M5*rd3x is the total mass of the matter distribu
tion.! Becauseuhu.s5 1

2 Dt in the long-delay limit, we ar-
rive at

A~x,x8!.2
2M

Dt
. ~4.14!

We recall that Dt5t2t8. Equation ~4.14! shows that
A(x,x8) and all its derivatives vanish in the limitt8→2`.

D. B„x,x8… at large distances

We will evaluateB(x,x8) in the case wherex andx8 are
both located well outside the matter distribution. For th

FIG. 1. The diagram shows the matter distribution located n
the origin of the Cartesian coordinate system, the pointsx, x8, and
x0, to which the ellipsoidal coordinates (s,u,f) are attached. The
diagram also shows one representative ellipsoid of constants, and a
point x95x01h(s,u,f) lying on this ellipsoid.
08400
-
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calculation it is easier to go back to Eq.~4.2!, in which we
assume thatr[uxu andr 8[ux8u are both very large.~A more
precise criterion will be given below.! These conditions will
allow us to develop a multipole expansion for this two-po
function.

Equations~4.2! and ~4.7! indicate thatB(x,x8) is the av-
erage of the mass densityr over the ellipsoids5 1

2 Dt. The
diagram of Fig. 1 makes it clear that unlessDt falls within
the appropriate interval, the ellipsoid will fail to intersect th
matter distribution. Thus,B(x,x8) is nonzero only whenDt
lies within this interval, which we might call the intersectio
window. Whenr and r 8 are both large, the ellipsoid is als
very large, and the intersection window becomes compa
tively short. In this limit,B(x,x8) is ‘‘on’’ for a very short
time, and its behavior suggests that of ad-function. This
expectation is borne out by an explicit calculation.

In the denominator of Eq.~4.2!, we approximateux2x9u
by r andux92x8u by r 8, taking ux9u to be much smaller than
both r and r 8. In the d-function we go to the next order o
approximation and writeux2x9u.r 2x•x9/r and ux92x8u
.r 82x8•x9/r 8. If we introduce the vector

m5
x

r
1

x8

r 8
, ~4.15!

then thed-function becomesd(u1m•x9), whereu[Dt2r
2r 8. This we expand in powers ofx9 and express asd(u)
1d8(u)(m•x9)1 1

2 d9(u)(m•x9)21•••, where a prime de-
notes differentiation with respect to the argument. Substi
ing all this inside the integral of Eq.~4.2!, we obtain

B.
1

rr 8
Fd~u!E r~x9!d3x91d8~u!maE r~x9!xa9d3x9

1
1

2
d9~u!mambE r~x9!xa9xb9d3x91•••G . ~4.16!

The first integral gives the total massM. The second integra
gives the dipole moment of the mass distribution; this va
ishes if, as we assume, the origin of the coordinate syste
attached to the center of mass. The third integral isQab, the
quadrupole moment of the mass distribution. We have the
fore obtained

B~x,x8!.
1

rr 8
FMd~u!1

1

2
Qabm

ambd9~u!1•••G ,
~4.17!

where, we recall,u5Dt2r 2r 8. This equation displays the
first two terms in the multipole expansion of the two-poi
function B(x,x8). Notice that this expansion is analogous
a multipole expansion of a radiative field in the wave zon
this is not a near-zone expansion of a quasi-stationary fi

In the sequel we will approximateB(x,x8) by

B~x,x8!5
M

rr 8
d~Dt2r 2r 8!, ~4.18!

r

1-13



xi

d
en
in

s
q
nd

an

it

in
ra

n-

ve

t
e

o

inn
lly

lt
cle
is

n-

-
e-

e
tter

ag-
to
in

the

,

all
e

ial.
in

c-

r

V;
-

c-

MICHAEL J. PFENNING AND ERIC POISSON PHYSICAL REVIEW D65 084001
its leading term in the multipole expansion. In this appro
mation,B(x,x8) is nonzero only whenDt5r 1r 8. The time
delay corresponds to a signal propagating at the spee
light from x8 to the center of the mass distribution, and th
on to x. The approximation has made the intersection w
dow infinitely short.

To estimate the error involved in going from Eq.~4.17! to
Eq. ~4.18!, we integrateB(x,x8) over a smooth test function
f (t). Settingt850 for simplicity, Eq.~4.17! gives

E B f~ t !dt.
M

rr 8
f ~r 1r 8!S 11

Q

M

f 9

f
1••• D , ~4.19!

whereQ[ 1
2 Qabm

amb. The factor in front the large bracket
is what would be returned by the approximation of E
~4.18!. We wish to show that in typical situations, the seco
term inside the brackets is much smaller than unity. Letl be
the characteristic size of the matter distribution, and lett be
the characteristic time over which the functionf (t) changes.
Then Q/M is of order l 2, and f 9/ f is of order 1/t2. The
correction term is therefore of order (l /t)2. In a typical situ-
ation,t would be associated with the orbital time scale of
object located atx or x8. Assuming for concreteness thatr is
the shortest distance, we havet2;r 3/M . With this, we find
that the correction term in Eq.~4.19! is of the order of
( l /r )2(M /r ). So long asr andr 8 are both much larger thanl
andM, Eq. ~4.18! makes an excellent approximation.

V. SELF-FORCES

A. Scalar self-force

In the absence of an external force, a point particle w
scalar chargeq experiences a self-force@46#

f a~t!5q2@gab1ua~t!ub~t!#E
2`

t2

G,b~t,t8!dt8,

~5.1!

so that its equations of motion aremu ;b
a ub5 f a. The parti-

cle’s world line is represented by the relationsza(t), where
t is proper time, andua(t)5dza/dt. The self-force is
evaluated at the current position of the particle, and it
volves an integration over its past history. Inside the integ
the retarded Green’s function is first written asG„x,z(t8)…,
in terms of an arbitrary field pointx and the past position
z(t8) of the particle. The Green’s function is then differe
tiated with respect toxb, and the result is evaluated atx
5z(t), the particle’s current position. This is what we ha
denoted byG,b(t,t8) in Eq. ~5.1!. The upper limit of inte-
gration ist2[t2e, wheree is a small, positive number tha
is taken to zero at the end of the calculation. The purpos
this cutoff is to remove the singular,d-function part of the
Green’s function which has support on the past light cone
the pointz(t). What survives is the ‘‘tail part’’ of the Green’s
function, which has support inside the light cone.

This expression for the self-force was derived by Qu
@46#, who assumed that the scalar field was minima
coupled to curvature—he considered the special casej50.
08400
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There is no difficulty, however, in extending Quinn’s resu
to arbitrary couplings to curvature. So long as the parti
moves in a region of spacetime in which the Ricci scalar
zero, his results carry over directly. The only effect thatj has
on the motion is through the Green’s function, which is se
sitive to a nonzero Ricci scalarsomewherein spacetime.

We will calculate f a to first order in the Newtonian po
tential F in a weak-field approximation; the particle ther
fore moves in the weakly curved spacetime of Sec. II. W
assume that the particle is gravitationally bound to the ma
distribution, and infer from the virial theorem thatv2, the
square of the particle’s velocity, is of the same order of m
nitude asF. We therefore add a slow-motion assumption
our weak-field assumption. Accordingly, we will neglect
all expressions terms involvingF2, Fv2, andv4. Within this
approximation, we have that the spatial components of
self-force are given by

f a5q2E
2`

t

~Ġ,a1vaĠ,t!dt8, ~5.2!

where v5dz(t)/dt is the current velocity of the particle
which does not depend ont8; the past velocity will be de-
notedv85dz(t8)/dt8, and this does depend ont8. We have
made t8 the new variable of integration, and neglected
O(v2,vv8,v82) terms inside the integral, which through th
Green’s function is already linear in the Newtonian potent
This fact allows us to freely alter the position of all lat
indices, implicitly usingdab , the metric of flat space. And
since we will substitute only the tail part of the Green’s fun
tion inside the integral, we have madet the upper limit of
integration~instead of the redundantt2e!.

From Eq. ~3.14! we find that the tail part of the scala
Green’s function is given by

Ġ~x,z8!522] tt8A~x,z8!22jB~x,z8!. ~5.3!

Herez8[„t8,z(t8)…, andA(x,z8),B(x,z8) are the two-point
functions introduced in Sec. III A and computed in Sec. I
we will set x5z[„t,z(t)… after taking the derivatives. Sub
stituting Eq.~5.3! into Eq. ~5.2! gives f a5 f A

a 1 f B
a , where

f A
a522q2E

2`

t

~A,tt8a1vaA,tt8t!dt8 ~5.4!

and

f B
a522jq2E

2`

t

~B,a1vaB,t!dt8. ~5.5!

We will first work on f A
a , and then move on tof B

a .
The first term inside the integral of Eq.~5.4! can be ex-

pressed as] t8A,ta5dA,ta /dt82A,tab8v
b8, allowing part of

the integration to be carried out. Similarly, we write the se
ond term inside the integral asva] t8A,tt5vadA,tt /dt8
1O(vv8), and Eq.~5.4! becomes
1-14
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f A
a522q2@A,ta1vaA,tt#2`

t 12q2E
2`

t

A,tab8v
b8dt8.

~5.6!

We now use Eq.~3.6! and replaceA,tab8 by 2] t8A,ab8
52dA,ab8 /dt81O(v8). After integrating by parts, we ob
tain

f A
a522q2@A,ta1vaA,tt1A,ab8v

b8#2`
t

12q2E
2`

t

A,ab8a
b8dt8, ~5.7!

wherea85dv8/dt8 is the past acceleration of the particl
Because the particle is not subjected to any force excep
gravity, its acceleration is linear in the Newtonian potent
F. SinceA(x,z8) is already linear inF, the integral of Eq.
~5.7! is O(F2) and it can be neglected. The first part of t
self-force can therefore be computed without having
evaluate a single integral! And Eq.~5.7! shows that the self-
force depends on the conditions at the current time, an
the infinite past. At this stage, the nonlocal character of
force has~almost! disappeared.

In Sec. IV C we learned that ast8 approaches
2`, A(x,z8) behaves as 2M /t8. This shows that in Eq
~5.7!, there are actually no contributions from the infini
past. Any nonvanishing contribution must therefore co
from the current time,t85t, at which the pointsz(t8) and
z(t) are coincident. Equation~4.12! tells us that the time
derivative of A(x,z8) is zero at coincidence. Settingvb8

5vb, we find that the sole surviving contribution tof A
a is

22q2A,ab8v
b, in which the derivatives of the two-poin

function must be evaluated at coincidence. This was wor
out in Eq.~4.13!, and we arrive at

f A
a52

1

3
q2F ,abv

b. ~5.8!

We may express this in the alternative form

fA5
1

3
q2

dg

dt
, ~5.9!

where g52“F is the Newtonian gravitational field. In
components, the right-hand side of Eq.~5.9! involves
dga/dt52dF ,a /dt52F ,abv

b, where we have used th
fact that the Newtonian potential does not explicitly depe
on time.

We now turn to the second part of the self-force, given
Eq. ~5.5! in terms of the two-point functionB(x,z8). Accord-
ing to Eq.~4.18!, this is

B~x,z8!5
M

rr 8
d~u!, ~5.10!

whereu5t2t82r 2r 8, r 5uxu, and r 85uz(t8)u. As before,
the field pointx5(t,x) will be identified with z[„t,z(t)…
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after differentiation. It is important to keep in mind that
Eq. ~5.10!, r 8 depends ont8. We will use the notationv r8
5dr8/dt8.

We first show that in Eq.~5.5!, the integral involving the
time derivative ofB(x,z8) is negligible. According to Eq.
~5.10!, B,t5Md8(u)/(rr 8), where a prime indicates differ
entiation with respect tou. Changing the variable of integra
tion from t8 to u, using du52(11v r8)dt8, we have that
*B,tdt85(M /r )*(r 8)21@11O(v8)#d8(u)du. Here the
lower limit of integration is2(r 1r 8), the upper limit is̀ ,
and we neglect terms of orderv8 because the integral come
with a factor ofva in front. Integration yieldsMv r8/(rr 82)
evaluated atu50. We conclude that the second term of E
~5.5! is of order (q/r )2(M /r )v2 and therefore negligible.

Differentiation of Eq.~5.10! with respect to the spatia
variablesxa yields

B,a52
Mr ,a

r 2r 8
@d~u!1rd8~u!#, ~5.11!

where a prime still indicates differentiation with respect tou.
Changing variables of integration fromt8 to u, we find that
the first integral of Eq.~5.5! becomes

E
2`

t

B,adt852
Mr ,a

r 2 E
2(r 1r 8)

` d~u!1rd8~u!

r 8~11v r8!
du

52
Mr ,a

r 2 F 1

r 8~11v r8!
2r

d

du

1

r 8~11v r8!
GU

u50

52
Mr ,a

r 2r 8
@12~11r /r 8!v r81O~v82,a8!#U

u50

,

~5.12!

where, as indicated, we neglect terms that are of the sec
order in the velocity, and terms that involve the particle
acceleration.

To evaluate the right-hand side of Eq.~5.12! is made dif-
ficult by the fact that the relationu5t2t82r 2r 8(t8) cannot
be inverted fort8, because the functionr 8(t8) is not known.
For the purposes of this calculation, however, it is sufficie
to give an approximate inversion. We let the radial part of
particle’s trajectory be described by the relationr 5R(t), so
that r 85R(t8)5R(t2Dt). This we approximate byR(t)
2Ṙ(t)Dt1 1

2 R̈(t)Dt21•••, where overdots indicate differ
entiation with respect tot. Neglecting the acceleration term
we haver 85r 2v rDt1O(a), wherev r[Ṙ(t). Similarly, we
obtain v r8[Ṙ(t8)5v r1O(a). Whenu50, we find thatDt
52r /(11v r)1O(a)52r (12v r)1O(v2,a), giving r 8
5r (122v r)1O(v2,a). Substituting this into Eq.~5.12!, we
find

E
2`

t

B,adt852
Mr ,a

r 3
@11O~v2,a!#. ~5.13!

Finally, going back to Eq.~5.5!, we arrive at
1-15
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fB52jq2
M

r 3
r̂, ~5.14!

wherer̂5x/r is a unit vector pointing in the radial direction
its components are equal toxa/r 5r ,a .

The total self-force acting on a point particle with sca
chargeq is given by the sum of Eqs.~5.9! and~5.14!. This is

f52jq2
M

r 3
r̂1

1

3
q2

dg

dt
, ~5.15!

where, we recall,g52“F is the Newtonian gravitationa
field. The equations of motion for the particle are th
d2z/dt25g1f/m, wherem is its mass. The first term on th
right-hand side of Eq.~5.15! is a conservative correction t
the local gravity. This is a repulsive force ifj.0, an attrac-
tive force if j,0, and this part of the self-force disappea
altogether if the scalar field is minimally coupled to curv
ture. The second term is nonconservative; this is the w
known expression for the radiation-reaction force expe
enced by a scalar charge moving under the influence o
external forcemg.

B. Electromagnetic self-force

The steps required to calculate the electromagnetic s
force are very similar to those presented in the preced
subsection. Our discussion here will therefore be brief.
employ the same notation, and work within the same se
approximations.

Our starting point is the DeWitt-Brehme expression
the self-force experienced by a point particle with an elec
chargee @41#:

f a52e2E
2`

t2

~Gg8;b
a
2Gbg8

;a
!ubug8dt8, ~5.16!

where G b8
a (t,t8) is the retarded Green’s function of th

electromagnetic field,ua5dza(t)/dt is the current four-
velocity of the charged particle, andua85dza(t8)/dt8 its
past four-velocity. With the approximations introduced
Sec. V A, we find that the spatial components of the s
force are given by

f a52e2E
2`

t

@~Ġat8,t2Ġtt8,a!1~Ġat8,b2Ġbt8,a!vb

1~Ġab8,t2Ġtb8,a!vb8#dt8; ~5.17!

only the tail part of the Green’s function appears under
integral. Using Eq.~3.21!, we find that the self-force can
again be written as a sum of two parts,f5fA1fB , where

f A
a5e2E

2`

t

@~A,tt8a1A,tta8!1~A,ta8b2A,tab8!v
b

1~2dabA,tt8t2A,ta8b12A,tab82A,t8ab!v
b8#dt8

~5.18!
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f B
a52e2E

2`

t

~B,a2B,tv
a8!dt8. ~5.19!

The evaluation offB proceeds as in Sec. V A, using Eq
~5.13! and the fact that the second term does not contrib
to the force at this level of approximation. The result isf B

a

5e2(M /r 3)r ,a . The evaluation offA also involves familiar
steps, which we now describe.

The first group of terms inside the integral of Eq.~5.18!
are expressed as

] t8~A,ta2A,ta8!5
d

dt8
~A,ta2A,ta8!2~A,tab82A,ta8b8!v

b8.

~5.20!

The first term is immediately integrated, and by virtue of E
~4.12!, this gives no contribution to the self-force. The r
maining terms are absorbed into the third group of terms
Eq. ~5.18!, those which are proportional tovb8. In the second
group of terms, the quantity in front ofvb is expressed as

2] t8~A,a8b2A,ab8!52
d

dt8
~A,a8b2A,ab8!1O~v8!.

~5.21!

This is also immediately integrated. Equation~4.13! shows
that this also gives no contribution to the self-force. We a
therefore left with the group of terms proportional tovb8.
This takes the form of (dCab /dt8)vb8, where

Cab52dabA,tt2A,ab2A,ab81A,a8b2A,a8b8 . ~5.22!

The time derivative is then transferred tovb8 by integration
by parts. This produces an integral that can be neglected,
boundary terms att85t ~the boundary terms att852` all
vanish!. Those giveCabv

b evaluated at coincidence. Usin
Eqs. ~4.12! and ~4.13! we find that Eq.~5.18! becomesf A

a

52 2
3 e2F ,abv

b.
We have found that the self-force acting on a point p

ticle with electric chargee is given by

f5e2
M

r 3
r̂1

2

3
e2

dg

dt
, ~5.23!

where r̂5x/r and g52“F is the Newtonian gravitationa
field. The first term on the right-hand side of Eq.~5.23! rep-
resents a repulsive, conservative force. The second t
gives the well-known expression for the radiation-react
force experienced by an electric charge moving under
influence of an external forcemg @43,44#.

Equation~5.23! implies that the force required to keep a
electric charge static in the gravitational field of an isolat
object of massM must be smaller thanmg by e2M /r 3. Our
derivation indicates that this correction is caused by an in
action between the electromagnetic field and the matter
tribution; this interpretation is suggested by the fact that t
1-16
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contribution to the self-force can be traced back to the tw
point functionB(x,x8), which is directly associated withr,
the mass density. While this is a valid interpretation, it
interesting to note that the correction persists even in
total absence of matter, although this cannot be revealed
weak-field approach. The force required to hold an elec
charge in place in the exact field of a Schwarzschild bla
hole was calculated by Smith and Will@49#. In the weak-field
limit, these authors recover the conservative term in
~5.23!. In this case, clearly, the effect has nothing to do w
the presence of matter. It must instead be attributed to
interaction between the electromagnetic field and the ho
event horizon. That the conservative self-force should be
insensitive to the source of the gravitational field is qu
interesting. This robustness, however, does not seem to a
to scalar charges: The extra force required to keep a sc
charge in place in a Schwarzschild spacetime is always z
irrespective of the coupling to curvature@47,55–58#. This is
quite different from what was obtained in Sec. V A, whe
we found that in the presence of matter, there is a nonz
self-force for nonminimal coupling.

C. Gravitational self-force

The self-force experienced by a point particle of massm
moving in a curved spacetime is given by@26,27#

f a522m2E
2`

t2

~2G bm8n8;g
a

2Gbgm8n8
;a

1uaGbgm8n8;dud!ubugum8un8dt8, ~5.24!

where G m8n8
ab (t,t8) is the gravitational Green’s function

ua the current four-velocity of the particle, andum8 its past
four-velocity. This result was derived for the first time b
Mino, Sasaki, and Tanaka@26#, although an incomplete at
tempt was made earlier by Morette-DeWitt and Ging@59#.
The gravitational self-force was later recovered by Qu
and Wald @27#, who gave a more transparent derivatio
Their expression is technically wrong, however, becaus
incorrectly putsG m8n8

ab , the trace-reversed Green’s functio
~see Sec. III D!, in place ofG m8n8

ab in Eq. ~5.24!; this slight
oversight hardly diminishes the value of their paper.

Our expression for the gravitational self-force differs fro
Mino et al. @26# in two ways. First, we use a different no
malization for the Green’s function, and Eq.~5.24! is valid in
the normalization imposed by Eq.~3.25!. Second, and more
importantly, both Minoet al. and Quinn and Wald@27# as-
sume that the background metricgab is a solution to the
Einstein field equationsin vacuum, a condition that is incom-
patible with the weak-field approximation adopted in th
paper.@Please refer back to the discussion presented in
paragraphs before Eq.~1.13!.# As we have already indicated
the extension of the Mino-Sasaki-Tanaka-Quinn-Wald eq
tions of motion to spacetimes that contain matter is not
tirely trivial. In this subsection we consider only the straigh
forward modifications to the Green’s function that com
from the presence of Ricci-tensor terms in Eq.~2.13!. In
other words, we still define the gravitational self-force by E
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~5.24!, but we substitute in it the Green’s function comput
in Sec. III D to account for the presence of matter. In Sec.
we shall prove that this substitution is appropriate, and
rive additional~matter-mediated! corrections to the equation
of motion.

Under the weak-field, slow-motion approximation, w
find that the spatial components of the self-force are given

f a522m2E
2`

t

@~2Ġatt8t8,t2Ġttt8t8,a!1~dabĠttt8t8,t

12Ġabt8t8,t12Ġatt8t8,b22Ġbtt8t8,a!vb12~2Ġatb8t8,t

2Ġttb8t8,a!vb8#dt8. ~5.25!

With the tail part of the Green’s function extracted from E
~3.32!, we havef5fA1fB , where

f A
a522m2E

2`

t

@~2A,tta82A,tt8a!1~23dabA,tt8t12A,tab

14A,ta8b12A,ta8b8!v
b12~2dabA,tt8t22A,ta8b

2A,ta8b81A,tab8!v
b8#dt8 ~5.26!

and

f B
a528m2E

2`

t

B,tv
a8dt8. ~5.27!

Referring back to the discussion preceding Eq.~5.11!, we see
that fB is of the order of (mM/r 2)(m/r )v2, which is a cor-
rection of orderFv2 relative to Newtonian gravity. This
gives a second post-Newtonian~2PN! correction@52# to the
Newtonian equations of motion, and according to our a
proximation rules, this must be neglected.

The evaluation offA is lengthier, but the steps are familia
The first group of terms inside the integral of Eq.~5.26! are

2] t8~2A,ta81A,ta!52
d

dt8
~2A,ta81A,ta!

1~2A,ta8b81A,tab8!v
b8. ~5.28!

The total derivatives contributes nothing to the self-forc
and the remaining terms are absorbed into the third group
the second group, the quantity in front ofvb is

2
d

dt8
~23dabA,tt812A,ab14A,a8b12A,a8b8!1O~v8!,

~5.29!

and this group contributes 4m2F ,abv
b to the self-force. Fi-

nally, the third group of terms is

2vb8
d

dt8
S 2dabA,tt12A,a8b2

3

2
A,ab8D1O~v82!,

~5.30!
1-17
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and after integrating by parts, we find that this contribut
2 1

3 m2F ,abv
b to the self-force. Summing the contribution

gives f A
a 5 11

3 m2F ,abv
b.

The gravitational self-force acting on a point particle
massm is therefore

f52
11

3
m2

dg

dt
, ~5.31!

whereg52“F. This gives a correction of 1.5PN order to
the equations of motion, and appears to represent radia
reaction. According to the naive equations of moti
d2z/dt25g1f/m, this term does work on the particle at a
average ratedW/dt51 11

3 m2ugu2. We see that the self-forc
of Eq. ~5.31! seems to bring energy to the particle.

There are two major problems of interpretation associa
with Eq. ~5.31!. First, the self-force seems to give rise
radiation antidamping instead of radiation damping@51#.
Second, radiation reaction seems to occur at 1.5PN order,
while it is known that the effect should appear only at 2.5PN

order in a post-Newtonian expansion of the relativistic eq
tions of motion@3–5,11#. In the next section we shall see th
these problems disappear once we properly incorporate
ditional ~matter-mediated! corrections to the equations o
motion.

VI. MASSIVE PARTICLE IN A SPACETIME CONTAINING
MATTER

Our task in this section is to produce a proper extension
the Mino-Sasaki-Tanaka-Quinn-Wald equations of mot
@26,27# to spacetimes that contain matter. First~Secs. VI A
and B!, we establish that in this context, the gravitation
self-forcef self

a is still given by Eq.~1.3!, but that the retarded
Green’s function must be a solution to Eq.~3.22!, which
includes Ricci-tensor terms generated by the matter. That
does indeed give the correct expression for the self-force
presented as an assumption in the preceding sections o
paper. Second~Sec. VI C!, we derive the existence of a
additional term in the equations of motion, which now ta
the form

mu ;b
a ub5 f self

a 1 f mm
a , ~6.1!

where f mm
a is the matter-mediated force alluded to pre

ously. This force originates from the change in the ba
ground metric associated with the motion of the massM
around the system’s center of mass; this motion is cause
the gravitational action of the particle on the central ma
Third ~Secs. VI D to H!, we compute the matter-mediate
force, and show that it contains a radiation-damping te
that precisely cancels the antidamping term in the self-fo
Such a cancellation was noticed a long time ago by Carm
@53#, but in the context of a very different formulation of th
equations of motion. We will see~Sec. VI I! that within the
weak-field, slow-motion approximation considered here,
~6.1! reduces to the appropriate limit of the standard po
Newtonian equations of motion@3–5,11#.
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A. Background spacetime and test particle

Let us consider the background spacetime first. We
given a metricgab that satisfies the Einstein field equatio
in the presence of matter. We assume that the matter di
bution is bounded and describes an isolated object of m
M; throughout this section we will refer to this object as ‘‘th
star.’’ We write the field equations asGab@g#58pTab@g#,
and indicate explicitly that the stress-energy tensor is a fu
tional of the metric. For the moment we takegab to be an
exactsolution to the field equations; the weak-field appro
mation will be incorporated at a later stage. And for t
moment we avoid adopting a specific phenomenology for
stress-energy tensor; the star can always be thought of
ball of perfect fluid with a specified equation of state.

In this spacetime we insert a point particle of massm. We
assume that this particle moves on a world lineza(t) in a
region of spacetime that is empty of matter; the parametet
is the particle’s proper time. We write the particle’s stres
energy tensor as

tab~x!5mE uaub~2g!21/2d4„x2z~t!…dt, ~6.2!

whereua(t)5dza/dt is the four-velocity and thed-function
is a four-dimensional distribution with support on the wor
line. It is easy to show that conservation of the stress-ene
tensor in the background spacetime implies geodesic mot

t ;b
ab 5mE u ;b

a ub~2g!21/2d4„x2z~t!…dt, ~6.3!

so thatt ;b
ab 50 leads tou ;b

a ub50, the geodesic equation
Here, a semicolon indicates covariant differentiation in t
background metric. We will keep this notation below:
semicolon will always refer to the metricgab , which will
always be used to raise and lower Greek indices.

We see that the particle’s stress-energy tensor involves
background metric, through the definition of proper time a
the factor (2g)21/2. If we think of expressing the metric as
formal expansion in powers ofM, we can similarly expand
the particle’s stress-energy tensor as

tab5O~m!1O~mM!1O~mM2!1•••. ~6.4!

To keep track of the powers ofm andM appearing in various
quantities will extremely important in the following discus
sion. For the weak-field application considered here, we s
truncate Eq.~6.4! after the first two terms.

B. Self-force

The picture described thus far is that of atest massmov-
ing on a geodesic of the background spacetime: the par
has not yet been allowed to alter the spacetime’s geome
We now incorporate this effect by insertingtab on the right-
hand side of the Einstein field equations. Working linearly
the small massm, we find that this modifies the metric by
term gab , so that the total metric is nowgab1gab . If we
1-18
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impose the Lorentz-gauge condition ongab , as we have
done in Sec. II B, we find that the metric perturbation
given by Eq.~3.25!,

gab~x!54E G m8n8
ab

~x,x8!tm8n8~x8!A2g8d4x8,

~6.5!

where G m8n8
ab (x,x8) is the gravitational Green’s functio

whose ‘‘trace-reversed’’ counterpart is a solution to E
~3.22!—Green’s equation for a spacetime containing mat
If we again think of expressing the metric as a formal exp
sion in powers ofM, we can schematically write

G m8n8
ab

5O~1!1O~M !1O~M2!1•••, ~6.6!

which corresponds to Eq.~3.30!. Expanding Eq.~6.5! in a
similar way, using Eqs.~6.4! and ~6.6!, we obtain

gab5O~m!1O~mM!1O~mM2!1•••. ~6.7!

This expansion omits terms of orderm2 ~and higher! that
would come from the nonlinearities of the Einstein fie
equations. We shall systematically omit such terms in fut
expansions, and consistently work to first order in the sm
massm.

The gravitational self-force corresponds to the metric p
turbation gab acting on the particle. If this were the onl
metric perturbation to be considered—and we will show
low that it is not—this action could be described by t
statement that the particle now moves on a geodesic of
full metric gab1gab . Working again to linear order in the
perturbation, we find that the new equations of motion re

u ;n
m un52

1

2
~g a;b

m 1g b;a
m 2g ab

;m 1umgab;gug!uaub,

~6.8!

and the right-hand side can be identified withf self
m /m, the

gravitational self-acceleration. Based on Eq.~6.7!, we would
naively conclude thatf self

a /m5O(m)1O(mM)1O(mM2)
1•••.

Equation~6.8!, however, is not valid as it stands. First, w
have already indicated that we must insert a matter-medi
force on the right-hand side. Second, we know thatgab is
singular on the particle’s world line, so that the right-ha
side of Eq.~6.8! is only formally defined; this expressio
must be regularized and the divergences must be remo
This renormalization of the self-force was carefully pe
formed by Minoet al. @26# and Quinn and Wald@27# for the
case of vacuum spacetimes. Fortunately, the extensio
their work to nonvacuum spacetimes is trivial, and it leads
an identical result. The reason is that the renormaliza
procedure is based on a local analysis that is sensitive on
the immediate vicinity of the world line. So long as the pa
ticle moves in a region of spacetime that is empty of mat
which we assume here, the structure of the divergent term
Eq. ~6.8! is the same whether or not matter is presentsome-
wherein the spacetime. After renormalization, the self-for
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is found to be given by Eq.~1.3!, but it is now expressed in
terms of a Green’s function that is sensitive to the prese
of matter.

We conclude that in a spacetime that contains matter,
gravitational self-force is given by its usual expression~1.3!,
but that it now involves a Green’s function that incorpora
information about the matter distribution; this information
encoded in the tensorSmanb defined by Eq.~2.14!.

We note that the renormalization procedure removes
O(m) part of the self-acceleration, which now admits t
expansion

f self
a /m5O~mM!1O~mM2!1•••. ~6.9!

Using this together with Eqs.~6.3! and~6.8!, we find that the
particle’s stress-energy tensor is no longer conserved in
background spacetime. Instead,

t ;b
ab 5O~m2M !1O~m2M2!1•••. ~6.10!

This is as it should be, because the motion is no lon
geodesic in the background spacetime. In a formal sense,tab

is now conserved in a spacetime with metricgab1gab .

C. Matter-mediated force

The existence of additional terms on the right-hand s
of Eq. ~6.8! follows directly from the fact that the stress
energy tensorTab@g# describing the matter distribution de
pends on the metric. Because inserting the particle in
spacetime has the effect of shifting the metric fromgab to
gab1gab , there must be a corresponding shift in the stre
energy tensor. Physically, this corresponds to the facts tha~i!
the particle raises a tide on the star and induces inte
motions within the fluid, and~ii ! the particle sets the star in
small motion around the system’s center of mass. Both
fects are incorporated in the shift in the stress-energy ten
as we shall see, however, the bulk motion of the star is m
more important for our purposes. We let

dTab5Tab@g1g#2Tab@g# ~6.11!

be the perturbation of the star’s stress-energy tensor cre
by the presence of the particle. Below we will useT

*
ab

[Tab@g1g# to designate the perturbed stress-energy ten
of the moving star, andTab[Tab@g# to represent the back
ground values—the star at rest. BecauseTab5O(M )
1O(M2)1••• andgab can be expanded as in Eq.~6.7!, we
have that

dTab5O~mM!1O~mM2!1•••. ~6.12!

The perturbation in the star’s stress-energy tensor m
appear, together withtab, on the right-hand side of the Ein
stein field equations. It will contribute an additional metr
perturbationdgab , over and above the original perturbatio
gab directly associated with the particle. Physically, the n
perturbation represents the difference between the gra
tional field of the moving star and the background field of t
star at rest. Because bothtab anddTab are quantities of the
1-19
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first order inm, the ~linear! metric perturbations can simpl
be added; the full metric is thereforegab1dgab1gab .

Imposing the Lorentz-gauge condition separately on b
dgab andgab , we have that

dgab~x!54E G m8n8
ab

~x,x8!dTm8n8~x8!A2g8d4x8.

~6.13!

Using the expansions~6.6! and~6.12!, we see that Eq.~6.13!
implies

dgab5O~mM!1O~mM2!1•••. ~6.14!

The matter-mediated force corresponds todgab acting on the
particle. In the absence ofgab , this action can be describe
by the statement that the particle must move on a geodes
the metricgab* [gab1dgab . Physically, this means that th
particle is now subjected to the gravitational field of t
moving star. Mathematically, the equations of motion wou
take the appearance of Eq.~6.8!, but with dgab taking the
place ofgab . There is no need to renormalize this equatio
dgab is smooth on the world line.

Our conclusion at this stage is that in a spacetime
contains matter, the equations of motion of a massive par
are given by Eq.~6.1!, with a self-force given by Eq.~1.3!
and a matter-mediated force given by

f mm
m 52

m

2
~dg a;b

m 1dg b;a
m 2dg ab

;m 1umdgab;gug!uaub.

~6.15!

According to Eq.~6.14!,

f mm
a /m5O~mM!1O~mM2!1•••, ~6.16!

which should be compared with Eq.~6.9!. We see that in a
weak-field approximation, both forces contribute terms
orderO(mM) to the particle’s acceleration.

We have successfully extended the Mino-Sasaki-Tana
Quinn-Wald equations of motion to spacetimes contain
matter. We emphasize that this extension does not rely
any weak-field assumption regarding the background sp
time. In the following subsections we compute the matt
mediated force of Eq.~6.15!; this discussion will rely on a
weak-field approximation.

D. Determination of T
*

ab

The matter-mediated force of Eq.~6.15! involves the met-
ric perturbationdgab which is computed fromdTab, the
perturbation in the star’s stress-energy tensor; the conver
is given by Eq.~6.13!. We have already introduced the not
tion T

*
ab5Tab1dTab for the stress-energy tensor of th

moving star.
We now need to gather information aboutdTab. Our main

source will be the conservation equations for the full stre
energy tensorTab1dTab1tab in a spacetime with metric
gab1dgab1gab . This metric comes with a connectio
G ab

m 1dG ab
m 1C ab

m , in which G ab
m are the Christoffel

symbols constructed from the background metricgab ,
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dG ab
m the corrections generated bydgab , andC ab

m those
generated bygab . For example,

C ab
m 5

1

2
~g a;b

m 1g b;a
m 2g ab

;m !. ~6.17!

By virtue of Eqs.~6.7! and ~6.14!, we have

C ab
m 5O~m!1O~mM!1O~mM2!1••• ~6.18!

and

dG ab
m 5O~mM!1O~mM2!1•••. ~6.19!

We also haveG ab
m 5O(M )1O(M2)1••• and we shall use

the expansions of Eqs.~6.4! and ~6.12!.
The conservation equations can be expressed as

T ;b
ab 1t ;b

ab 1dT ,b
ab 12C mb

(a Tb)m12G mb
(a dTb)m

12C mb
(a ~dTb)m1tb)m!

12dG mb
(a ~Tb)m1dTb)m1tb)m!50. ~6.20!

The first term vanishes because the background stress-en
tensor is conserved in the background spacetime. The se
term can be ignored, because by virtue of Eq.~6.10!, it is of
second order inm. The third of fourth terms have the expan
sionsO(mM)1O(mM2)1•••. Among the remaining terms
we have ~in schematic notation! GdT5O(mM2)1•••,
CdT5O(m2M )1•••, Ct5O(m2)1O(m2M )1•••, dGT
5O(mM2)1•••, dGdT5O(m2M2)1•••, and dGt
5O(m2M )1•••. We simplify Eq. ~6.20! by discarding all
terms that are second order inm. Incorporating at this stage
our weak-field approximation, we also neglect terms that
second order inM. The remaining terms are allO(mM) and
we obtain

dT ,b
ab 1C bg

a Tbg1C bg
b Tag5O~mM2!. ~6.21!

This equation~partially! determinesdTab in terms of known
quantities. Because we have only four equations for ten
knowns, Eq.~6.21! cannot be used without first adopting
specific phenomenology for the matter distribution. We sh
come back to this point in Sec. VI F.

It is important to notice that because Eq.~6.21! has been
truncated to ordermM, only theO(m) part of C ab

m is in-
volved in the determination ofdTab—cf. Eq. ~6.18!. This
can be obtained from theO(m) part of gab—cf. Eq. ~6.7!.
By virtue of Eqs.~3.3!, ~3.30!, and~6.5!, this is given by

gflat
ab~ t,x!54E t̄ab~ t2ux2x8u,x8!

ux2x8u
d3x8, ~6.22!

where t̄ab[tab2 1
2 (hmntmn)hab is the particle’s ‘‘trace-

reversed’’ stress-energy tensor. The subscript ‘‘flat’’ indica
that the metric perturbation is calculated as if the parti
were moving in flat spacetime~on a Newtonian trajectory
around the star!; the right-hand side of Eq.~6.22! involves
only theO(m) part of tab—cf. Eq. ~6.4!.
1-20
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Another consequence of truncating Eq.~6.21! is that it
can be re-expressed as

T
* ,b

ab 1C bg
a T

*
bg 1C bg

b T
*

ag 5O~mM2!, ~6.23!

in terms of the star’s perturbed stress-energy tensor:T
*

ab

5Tab1dTab. Here we use the facts that~i! T ,b
ab is actually

zero for the weak-field spacetimes considered in this pape
T ;b

ab is nonzero but is a quantity of orderM2—and ~ii ! the
difference betweenCT* and CT is of second order inm.
Equation~6.23! implies thatT

*
ab is conserved in a spacetim

with metric gab
particle[hab1gab

flat , up to terms of ordermM2.
We will refer to this observation below.

Let us now take stock. In order to compute the matt
mediated force of Eq.~6.15! we must first calculatedgab
using Eq.~6.13!. We therefore need to finddTab, the pertur-
bation of the stress-energy tensor associated with the s
motion around the center of mass. For this we shall use
~6.21!, after adopting a specific phenomenology for the m
ter distribution~Sec. VI F!. But Eq. ~6.21! involves also the
connection coefficientsC ab

m computed fromgab
flat . To calcu-

late this is our next task.

E. Computation of gab
flat

The stress-energy tensor of the particle is given by
~6.2!. For the purpose of computinggab

flat we let the particle
move in flat spacetime, so that the metric used in Eq.~6.2! to
define proper timet and the determinantg is hab , the met-
ric of flat spacetime. After changing the variable of integ
tion to z0 and integrating overd(t2z0), we obtain

tab~ t,x!5m~dt/dt!vavbd3~x2z!, ~6.24!

in which z(t) represents the trajectory of the particle,va

5(1,v) with v(t)5dz/dt, anddt/dt5(12v2)21/2. We re-
call that although the calculation is carried out in flat spa
time, the particle is actually moving on a geodesic ofgab ;
its motion is governed by Newton’s equation,

dv
dt

5g52“F, ~6.25!

where the right-hand side is evaluated atx5z(t).
It will prove sufficient for our purposes to evaluatetab to

second order inv, the particle’s velocity. After trace reversa
we obtain

t̄005
m

2 F11
3

2
v21O~v4!Gd3~x2z!,

t̄0a5mva@11O~v2!#d3~x2z!, ~6.26!

t̄ab5
m

2 H dabF12
1

2
v21O~v4!G

12vavb@11O~v2!#J d3~x2z!.

To be consistent we also Taylor-expand the right-hand s
of Eq. ~6.22! about the current timet. This gives
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gflat
ab~ t,x!54E t̄ab~ t,x8!

ux2x8u
d3x824

]

]tE t̄ab~ t,x8!d3x8

12
]2

]t2E t̄ab~ t,x8!ux2x8ud3x81•••. ~6.27!

It is now straightforward to substitute Eqs.~6.26! into Eq.
~6.27! and perform the integrations. For example,

gflat
00 5

2ml

ux2zu
22m

]l

]t
1m

]2

]t2
lux2zu1•••, ~6.28!

where l511 3
2 v21O(v4). This result simplifies consider

ably: When the time derivative acts onv, it generates via Eq
~6.25! a term of orderg;M /uzu2 that can be neglected, be
cause we are interested only in theO(m) part of gab . We
are therefore left with evaluating]2ux2zu/]t2, which is a
simple task. Subjecting the other components to similar m
nipulations, we arrive at

gflat
00 ~ t,x!5

2m

ux2zu F112v22
1

2
~ n̂•v !21O~v4!G1O~mM!,

gflat
0a~ t,x!5

4mva

ux2zu @11O~v2!#1O~mM!, ~6.29!

gflat
ab~ t,x!5

2m

ux2zu H dabF12
1

2
~ n̂•v !2G12vavb1O~v4!J

1O~mM!,

wheren̂5(x2z)/ux2zu.

F. Determination of T
*
ab

„continued…

As we have remarked at the end of Sec. VI D, the de
mination ofT

*
ab via the conservation equation~6.23! is pos-

sible only if we adopt a specific phenomenology for the m
ter distribution. We shall make the simplest choice, a
describe the star as a particle of massM moving on a trajec-
tory Z(t) with a velocityV(t)5dZ/dt. The pointlike nature
of the moving star will not be a problem here: First, for th
purposes of this calculation the star is not subjected to
own field because, as we have pointed out, it moves i
spacetime with metricgab

particle5hab1gab
flat ; second, the sin-

gularity in dgab is far removed from the particle’s world line
and is therefore not an obstacle in the calculation of
matter-mediated force of Eq.~6.15!. Notice that in the fol-
lowing developments we shall formally treat bothZ andV as
quantities of the first order inm.

Following the steps leading to Eq.~6.24!, we find that the
stress-energy tensor of the moving star takes the form

T
*
ab~ t,x!5M

dt/dt

A2gparticle

VaVbd3~x2Z!, ~6.30!
1-21
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where Va5(1,V) and dt/dt5(2gmn
particleVmVn)21/2. After

discarding terms of orderm2, this reduces toT
*
005Md3(x

2Z)1M (g flat
00 2 1

2 dabg flat
ab )d3(x), T 5*

0a 5MVad3(x), and
T

*
ab5O(m2M ). The perturbationdTab can be obtained from

these results by removing the background values,T00

5Md3(x) andT0a5Tab50.
Substitution of our expressions fordTab into Eq. ~6.21!

leads to equations of motion for the star. The spatial com
nents of the conservation equation imply

dVa

dt
5

1

2

]

]xa
gflat

00 1
]

]t
gflat

0a1O~mM!, ~6.31!

in which the right-hand side is evaluated atx50. We find
that the time component of the conservation equation ho
as an identity, but this confirms the necessity of includ
A2gparticle in our expression for the stress-energy tensor.

It is a simple task to evaluate the partial derivatives of E
~6.31! starting from the expressions listed in Eq.~6.29!; in
this procedure we use Eq.~6.25! to dismissdv/dt as a term
of orderM /uzu2. After evaluating the results atx50, we ob-
tain

dV

dt
5

m

uzu2
H F112v22

3

2
~ ẑ•v !21O~v4!G ẑ23~ ẑ•v !vJ

1O~mM!, ~6.32!

whereẑ5z/uzu. The motion of the star is now determined to
degree of accuracy sufficient for our remaining calculatio
Equation~6.32! confirms thatV, and thereforeZ, are to be
treated as quantities of orderm. We note that in the presen
context in which the star has become a point mass, the
tion of the particle is still governed by Eq.~6.25!, but that the
gravitational fieldg now takes the explicit form

g52
M

uzu2
ẑ. ~6.33!

Equation ~6.25! determines the vectorsz(t) and v(t)
5dz/dt that appear in Eq.~6.32!.

The perturbed stress-energy tensor of the moving sta
now completely determined. Its final expression is obtain
by substituting the potentials of Eq.~6.29! into the results
given before. This yields

T
*
00~ t,x!5Md3~x2Z!2

mM

uzu F122v22
1

2
~ ẑ•v !21O~v4!G

3d3~x!1O~mM2!,

T
*
0a~ t,x!5MVad3~x!, ~6.34!

andT
*
ab5O(m2M ).

G. Computation of gab*

The metricgab* 5gab1dgab was introduced in Sec. VI C
in the paragraph following Eq.~6.14!. It represents the gravi
08400
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tational field of the moving star, and the action of the matt
mediated force of Eq.~6.15! can be described by the stat
ment that the particle must move on a geodesic of t
metric. In the next subsection we will use this statemen
produce the equations of motion of the particle under
sole action of the matter-mediated force. In this subsec
we calculategab* .

The metric of the moving star differs fromgab , the met-
ric of the star at rest, bydgab , which can be computed from
Eq. ~6.13!. Keeping only theO(mM) part of this equation,
which involves theO(1) part of the gravitational Green’
function—cf. Eqs.~3.3! and ~3.30!, we write this as

dgab~ t,x!54E dT̄ab~ t2ux2x8u,x8!

ux2x8u
d3x81O~mM2!,

~6.35!

where dT̄ab5dTab2 1
2 (hmndTmn)hab. At the same time,

we recall from Sec. II A thatgab differs from hab by a
quantityhab[22Fxab that can expressed as

hab~ t,x!54E T̄ab~ t2ux2x8u,x8!

ux2x8u
d3x8, ~6.36!

where T̄ab is the trace-reversed stress-energy tensor of
background spacetime. Adding Eqs.~6.35! and ~6.36!, we
find that

gab* 5hab1hab* , ~6.37!

wherehab* [hab1dgab is given by

h
*
ab~ t,x!54E T̄

*
ab~ t2ux2x8u,x8!

ux2x8u
d3x81O~mM2!,

~6.38!

and where T̄
*
ab[T

*
ab2 1

2 (hmnT
*
mn)hab can be calculated

from Eq. ~6.34!. To first order inm, this givesT̄
*
005 1

2 T
*
00,

T̄
*
0a5T

*
0a , andT̄

*
ab5 1

2 dabT
*
00.

We shall describe in some detail the computation ofh
*
00.

We first Taylor-expandT
*
00(t2ux2x8u,x8) about the current

time t and expressh
*
00 as

h
*
0052E T

*
00~ t,x8!

ux2x8u
d3x822

]

]tE T
*
00~ t,x8!d3x8

1
]2

]t2E T
*
00~ t,x8!ux2x8ud3x82

1

3

]3

]t3E T
*
00~ t,x8!

3ux2x8u2d3x81•••1O~mM2!. ~6.39!

We will see that truncating the series after four terms giv
us sufficient accuracy; it is very important, however, to ke
the last term involving three time derivatives. After substit
tion of Eq. ~6.34!, we obtain
1-22
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h
*
005

2M

ux2Zu
1M

]2

]t2
ux2Zu2

1

3
M

]3

]t3
ux2Zu21•••

2
2mM

uxu
l

uzu
12mM

]

]t

l

uzu
2mMuxu

]2

]t2

l

uzu

1
1

3
mMuxu2

]3

]t3

l

uzu
1•••1O~mM2!, ~6.40!

wherel5122v22 1
2 ( ẑ•v)21O(v4). It is a straightforward

task to evaluate the time derivatives contained in Eq.~6.40!;
for this we involve Eq.~6.32! and we make sure to discar
all terms that are not first-order in bothm andM. For the first
line ~FL! on the right-hand side of Eq.~6.40! we obtain

FL5
2M

ux2Zu
2mM

x•z

uxuuzu3
@11O~v2!#

2
2

3
mMx•

dg

dt
@11O~v2!#1O~mM2!, ~6.41!

whereg is defined by Eq.~6.33!. In Eq.~6.40!, the first set of
‘‘ ••• ’’ terms represent a correction of orderv4 to the second
term of Eq. ~6.41!; these can be safely ignored. The la
member of Eq.~6.41! comes from the third-derivative term
in Eq. ~6.40!; this will be seen to give rise to a radiation
damping term in the matter-mediated force. For the sec
line ~SL! on the right-hand side of Eq.~6.40! we find

SL52
2mM

uxuuzu @11O~v2!#22mM
z•v

uzu3
@11O~v2!#

1O~mM2!. ~6.42!

Here the third-derivative term in Eq.~6.40! is seen to give
rise to theO(v2) correction in the second member of E
~6.42!, and the ‘‘••• ’’ terms are responsible forO(v4) cor-
rections in the first member.

Gathering the results, we arrive at

h
*
00~ t,x!5

2M

ux2Zu
2

mM

uxuuzu S 21
x•z

uzu2
D 2

2

3
mx•

dg

dt

22mM
z•v

uzu3
1O~2PN,mM2!, ~6.43!

in which O(2PN) regroups all theO(v2) correction terms
displayed in Eqs.~6.41! and ~6.42!. We note that on the
right-hand side of Eq.~6.43!, the first member is of orderF
and is therefore designated as ‘‘Newtonian.’’ The seco
member is of orderm/uzu relative toF, and it represents a
post-Newtonian~1PN! correction@52#. Because they involve
an additional power ofv, the last two members are 1.5PN

corrections.
The calculation ofh

*
0a involves similar steps, but the com

putations are substantially simpler. We simply quote the
sult:
08400
t

d

d

-

h
*
0a~ t,x!5

4MVa

uxu
14mga1O~1.5PN,mM2!. ~6.44!

Relative to the leading, ‘‘Newtonian’’ term inh
*
00, the first

term on the right-hand side of Eq.~6.44! represents a 0.5PN

correction, while the second term is a 1PN correction. Be-
causeh

*
0a couples to the particle’s velocityva, these post-

Newtonian labels should actually be promoted to 1PN and
1.5PN, respectively; the error term is then 2PN and h

*
0a has

been computed to a sufficient degree of accuracy.
The metric of the moving star is now completely dete

mined. We have, from Eq.~6.37!,

g00* 52~12h
*
00!1O~mM2!,

g0a* 52h
*
0a1O~mM2!,

gab* 5dab~11h
*
00!1O~mM2!, ~6.45!

with h
*
00 and h

*
0a given by Eqs.~6.43! and ~6.44!, respec-

tively. In those expressions,z(t) represents the Newtonia
motion of the particle around the fixed star,v(t)5dz/dt, and
dv/dt5g52Mz/uzu3. On the other hand,Z(t) represents
the order-m motion of the star in the gravitational field of th
particle, V(t)5dZ/dt, and dV/dt is determined by Eq.
~6.32!.

H. Motion of the particle under the matter-mediated force

In this subsection we calculate the motion of the parti
under the sole action of the matter-mediated force; we
glect for now the action of the self-force, which will be in
corporated later. In this subsection, therefore, we shall w
the equations of motion asu ;b

a ub5 f mm
a . The force could be

calculated directly from Eq.~6.15! by substitutingdgab ob-
tained from Eq.~6.45!. It is easier, however, to proceed in th
following way. First, we recognize that the equations of m
tion are equivalent to the statement that the particle mo
on a geodesic of the metricgab* 5gab1dgab . Second, we
generate the equations of motion by constructing a suita
Lagrangian functionL(x,ẋ) which we then substitute into
the Euler-Lagrange equations. The practical advantage
this method is that it allows us to straightforwardly switc
from a world line parameterized byt, the particle’s proper
time on the background spacetime, to one parameterize
t, the time coordinate. In the following we will denote th
updated trajectory of the particle byx(t) and its updated
velocity by ẋ(t)5dx/dt. The Newtonian values will still be
denotedz(t) and v(t). Because the matter-mediated for
provides a correction of orderm to the Newtonian motion,
we havex(t)5z(t)1O(m) and ẋ(t)5v(t)1O(m). In the
next subsection we will abolish this distinction of notatio
and usez andv to refer to the updated trajectory.

We take the Lagrangian function to be

L~x,ẋ!512A2gab* ẋaẋb, ~6.46!
1-23
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whereẋa5(1,ẋ); as we have indicated, we uset as a param-
eter on the world line. We substitute the metric of Eq.~6.45!
into Eq.~6.46!, and to simplify we expand the square root
second post-Newtonian~2PN! order; in this procedure we
also discard terms that are second order inM. The result is

L5
1

2
ẋ21

1

2
h
*
001

1

8
ẋ42h

*
0aẋa1

3

4
h
*
00ẋ21O~2PN,M2!.

~6.47!

After substitution of Eqs.~6.43! and ~6.44!, we notice that
the Lagrangian contains a term2mMz•v/uzu3. This is a
function of time only which does not affect the equations
motion; we therefore remove it from the Lagrangian. T
Lagrangian also contains a term24mẋ•g. This differs from
4mx•dg/dt by a total derivative24md(x•g)/dt that can
also be deleted from the Lagrangian. The final result is
effective Lagrangian

Leff5
1

2
ẋ21

M

ux2Zu S 11
3

2
ẋ2D1

1

8
ẋ42

mM

uxuuzu S 11
x•z

2uzu2
D

2
4M

uxu
ẋ•V1

11

3
mx•

dg

dt
1O~2PN,M2! ~6.48!

that is ready to be substituted into the Euler-Lagrange eq
tions.

The first member of the Euler-Lagrange equation is

d

dt

]Leff

] ẋa
5Lab

dẋb

dt
2

3M

ux2Zu ~x• ẋ!ẋa1
3M

uxu3
~x•V1 ẋ•Z!ẋa

2
4mM

uxuuzu3
za1

4M

uxu3
~x• ẋ!Va, ~6.49!

where Lab5(11 1
2 ẋ213M /ux2Zu)dab1 ẋaẋb. To obtain

this we have used Eq.~6.32!, appropriately truncated a
Newtonian order, to evaluatedVa/dt. The second member i

]Leff

]xa
52M

xa2Za

ux2Zu3 S 11
3

2
ẋ2D1

mM

uxu3uzu
S 11

x•z

2uzu2
D xa

2
mM

2uxuuzu3
za1

4M

uxu3
~ ẋ•V!xa1

11

3
m

dga

dt
. ~6.50!

The equations of motion are obtained by equating Eq.~6.49!
to Eq.~6.50! and solving fordẋa/dt. This requires the inver-
sion of Lab, which can be performed approximately to fir
post-Newtonian order. To simplify our expressions we
placeza by xa1O(m) in the terms proportional tomM, and
we also replacex by x2Z5x1O(m) in terms that are al-
ready linear inm. ~It is of course important that we mak
these substitutionsafter varying the Lagrangian, and not be
fore.!

The final result is
08400
f

n

a-

-

dẋa

dt
52

M

ux2Zu3 F S 11 ẋ22
5m

ux2Zu
24ẋ•VD ~xa2Za!

2~x2Z!•~4ẋ23V!ẋa14~x2Z!• ẋVaG1
11

3
m

dga

dt

1O~2PN,M2!. ~6.51!

We recall thatZ(t)5O(m) represents the trajectory of th
moving star, thatV(t)5dZ/dt is determined by Eq.~6.32!,
and thatg, given by Eq.~6.33!, is the Newtonian gravita-
tional field of the star at rest. Equation~6.51! governs the
motion of the particle under the sole action of the matt
mediated force. We see that the last term, which represen
1.5PN correction to the Newtonian equations of motion, giv
rise to radiation damping. This term, however, is precis
canceled out by the gravitational self-force of Eq.~5.31!. We
conclude that the motion of the particle, under the combin
action of the self-force and the matter-mediated force, is c
servative at this level of approximation.

I. Summary and comparison with post-Newtonian theory

This is the end of the line, and we better summarize
particle of massm moves in the gravitational field of a star o
massM. The particle’s trajectory is denotedz(t) and its ve-
locity is v(t)5dz/dt. The star is also moving, on a trajecto
Z(t) with a velocity V(t)5dZ/dt. We let r5z2Z be the
separation between the two objects, and we use the nota
r5uz2Zu. We let g52Mz/uzu3 be the Newtonian gravita
tional field of the star at rest,g* 52Mr/r3 is the gravita-
tional field of the moving star, anddg5g* 2g is the differ-
ence between the two. The spatial components of Eq.~6.1!
then give

dv
dt

2g5
fself

m
1

fmm

m
~6.52!

for the particle’s equations of motion. The gravitational se
force was computed in Sec. V C and is given by

fself

m
52

11

3
m

dg

dt
1O~2PN,M2!. ~6.53!

The matter-mediated force was computed in the preced
subsection and is given by

fmm

m
5dg1g* S v22

5m

r
24v•VD

1
M

r3
@r•~4v23V!v24~r•v !V#1

11

3
m

dg

dt

1O~2PN,M2!. ~6.54!

The final form of the equations of motion is obtained
combining Eqs.~6.52!–~6.54!. The result is
1-24
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dv
dt

52
M

r3 F S 11v22
5m

r
24v•VDr

2r•~4v23V!v14~r•v !VG1O~2PN,M2!,

~6.55!

and this contains no trace of a radiation-reaction force. T
motion of the star, on the other hand, is governed by
~6.32!, which we rewrite as

dV

dt
5

m

r3 H F112v22
3

2 S r•v
r D 2Gr23~r•v !vJ

1O~2PN,mM!. ~6.56!

In going from Eq.~6.32! to Eq. ~6.56! we have allowed for
the fact thatr[z2Z5z1O(m).

The reader familiar with post-Newtonian theory~as pre-
sented, for example, in Ref.@60#! will have undoubtedly no-
ticed a similarity between the calculations presented here
the standard post-Newtonian treatment of a system of p
masses. While similarities are surely present, the differen
are important. The most noticeable difference is concer
with self-field effects, which are sometimes swept under
rug in the post-Newtonian treatment—the mass of each b
is simply renormalized every time an infinite self-field a
pears in the equations. By contrast, the computations
sented in this section are completely free of infinities—tho
have been taken care of, once and for all, during the c
struction of the self-force.

Equations~6.55! and~6.56! should be compared with th
equations derived from a standard post-Newtonian treatm
— the Einstein-Infeld-Hoffmann equations of motion@1#.
These are@54#

dv
dt

52
M

r3 H F12
4M

r
2

5m

r
1v212V2

24v•V2
3

2 S r•V

r D 2Gr2r•~4v23V!~v2V!J
1O~2PN! ~6.57!

and

dV

dt
5

m

r3 H F12
4m

r
2

5M

r
1V212v224v•V2

3

2 S r•v
r D 2Gr

1r•~4V23v !~v2V!J 1O~2PN!. ~6.58!

If we eliminate all terms of orderm2 and M2 from Eq.
~6.57!, we recover Eq.~6.55!. If, on the other hand, we re
move all terms of orderm2 and mM from Eq. ~6.58!, we
recover Eq.~6.56!. Our results are therefore perfectly cons
tent with the standard post-Newtonian treatment.
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APPENDIX A: HADAMARD FORM OF THE SCALAR
GREEN’S FUNCTION

In this appendix we continue our discussion of the tw
point function A(x,x8). While the results derived here ar
not required for the computation of the self-forces, they
interesting in their own right. Our main objective is to sho
that the scalar Green’s function computed in Sec. III B can
cast in the Hadamard form@29#

G~x,x8!5u~x,x8!@u~x,x8!d~s!1v~x,x8!u~2s!#.
~A1!

Here,s(x,x8) is Synge’s world function@61#, equal to one-
half the squared geodesic distance betweenx and x8;
u(x,x8) andv(x,x8) are two-point functions that are smoo
at s50, andu(x,x8) is a time-ordering function, equal to
if x is in the causal future ofx8, and zero otherwise. The
calculations presented in this appendix rely on methods
troduced by Thorne and Kovacs@62#.

1. A„x,x8… on the light cone

We go back to Eq.~4.6! and seek to evaluateA(x,x8) in
the situation where the pointsx andx8 are linked by a null
geodesic of the flat-spacetime background. In this situa
Dt5R, or s5e. ~Recall thatDt5t2t8 and R5ux2x8u.!
This means thath1 andh2 are both zero, and that the vecto
of Eq. ~4.5! reduces toh5 1

2 cosuR. ~Recall that the third
axis is oriented alongR5x2x8.! Integrating overf, we find
that Eq.~4.6! becomesA(x,x8)5 1

2 *21
1 F(x01h)d cosu. Af-

ter changing the variable of integration tol5 1
2 (cosu11),

this becomes

Alc~x,x8!5E
0

1

F„j~l!…dl, ~A2!

where

j~l!5x81l~x2x8! ~A3!

is a vector that interpolates linearly betweenx8 ~when l
50) andx ~whenl51). In Eq.~A2! we have indicated with
the label ‘‘lc’’ that A(x,x8) is evaluated on the light cone. W
see thatAlc(x,x8) is the average of the Newtonian potenti
F over the straight line joiningx andx8.

Up to now, our view of the two-point functionAlc(x,x8)
has been that it is the restriction ofA(x,x8) on the light cone:
the pointsx andx8 must be related by a null geodesic of th
background Minkowski spacetime. The right-hand side
Eq. ~A2!, however, stays meaningful even for points that a
1-25
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not so related, and we take this opportunity to extend
definition of Alc(x,x8) to arbitrarily related points. This will
be our new point of view: The two-point functionAlc(x,x8)
shall be defined for arbitrary pointsx andx8 by Eq. ~A2!. In
the case wherex and x8 are null related, thenAlc(x,x8)
5A(x,x8).

We now show thatAlc(x,x8), as defined for arbitrary
points by Eq.~A2!, is intimately related to the world function
s(x,x8), defined by@62#

s~x,x8!5
1

2E0

1

gab~jm!
dja

dl

djb

dl
dl, ~A4!

where ja(l) describes the~unique! geodesic linking the
pointsx andx8; l is an affine parameter scaled in such a w
that ja(0)5xa8 andja(1)5xa. The world function is to be
calculated with the metric of Eq.~2.3!.

In Eq. ~A4!, the geodesicg differs from a straight line by
a quantity of orderF. Because Eq.~A4! is an action prin-
ciple for the geodesic equation, this error of the first orde
the specification of the curve produces an error of thesecond
order ins. To calculates to first order inF, it is sufficient
to takeg to be a straight line. The appropriate relations a
then ja(l)5xa81l(xa2xa8). Substituting alsogab5hab
22F(j)xab in Eq. ~A4!, we obtain

s~x,x8!5sflat~x,x8!2~Dt21R2!E
0

1

F„j~l!…dl,

~A5!

wheresflat(x,x8)5 1
2 (2Dt21R2).

Comparing Eqs.~A2! and ~A5!, we arrive at

s~x,x8!5sflat~x,x8!2~Dt21R2!Alc~x,x8!. ~A6!

We see that the two-point functionAlc(x,x8) determines by
how much the squared geodesic intervals differs from its
flat-spacetime value.

2. van Vleck determinant

The scalarized van Vleck determinant@41,63# plays a fun-
damental role in the theory of Green’s functions in curv
spacetime. This is defined by

D~x,x8!52
det@2]ab8s#

Ag~x!g~x8!
, ~A7!

wheres(x,x8) is the world function defined in Eq.~A4!, and
g(x) is the metric determinant evaluated atx. The general
theory predicts that in Eq.~A1!, u(x,x8) is the square root o
the van Vleck determinant. We will verify this result with ou
weak-curvature scalar Green’s function. In order to do so
must computeD(x,x8).

We rewrite Eq.~A6! in the forms5sflat2V, where

V~x,x8!5xmn~x2x8!m~x2x8!nAlc~x,x8!. ~A8!
08400
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A straightforward computation, usingA2g(x)5122F(x)
and]ab8s

flat52hab , reveals that to first order in the New
tonian potential, the van Vleck determinant is given by

D5112F~x!12F~x8!1hab]ab8V. ~A9!

The last term is evaluated from Eq.~A8!, and we obtain

hab]ab8V5~Dt21R2!dab]ab8Alc22~x2x8!a~]a2]a8!Alc

24Alc , ~A10!

where we have used the fact thatAlc(x,x8), as defined by
Eqs.~A2! and ~A3!, depends only on the spatial variablesx
and x8. Calculating the derivatives is easy, and we g
]aAlc5*lF ,adl, ]a8Alc5*(12l)F ,adl, and ]ab8Alc
5*l(12l)F ,abdl. Inside the integrals, the derivatives o
F are taken with respect toj, and the various factors involv
ing l come from differentiating this vector with respect
eitherx or x8. Substituting this into Eq.~A10!, we have

hab]ab8V5~Dt21R2!E
0

1

l~12l!¹2Fdl

22~x2x8!aE
0

1

~2l21!F ,adl24E
0

1

Fdl.

~A11!

In the first integral we replace¹2F by 4pr. In the second
integral we replaceF ,a(x2x8)a by dF/dl, which allows us
to integrate by parts. After simplification, we arrive at

hab]ab8V54p~Dt21R2!E
0

1

l~12l!rdl22F~x!

22F~x8!. ~A12!

Substituting this into Eq.~A9!, we obtain our final expres
sion for the van Vleck determinant:

D~x,x8!5114p~Dt21R2!E
0

1

l~12l!r„j~l!…dl.

~A13!

We see thatD(x,x8) differs from 1 if and only if the straight
line connecting the pointsx andx8 passes through the matte
distribution.

3. A„x,x8… near the light cone

We have previously evaluated the two-point functi
A(x,x8) in the case wherex andx8 are connected by a nul
geodesic of the background Minkowski spacetime. We n
improve on this result, by allowing the parameter

«[As22e25
1

2
ADt22R2 ~A14!

to be nonzero. We will, however, assume that«!1, and
evaluate Eq.~4.6! in this limit. This is the near-light-cone
approximation.
1-26
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To second order in«, the vectorh of Eq. ~4.5! readsh1

5« sinu cosf, h25« sinu sinf, and h35e@11 1
2 («/e)2

1O(«4)#cosu. We substitute this intoF(x01h), expand to
second order in«, and then integrate over the angles. Aft
re-introducing the parameterl5 1

2 (cosu11), we obtain

A5Alc14p«2E
0

1

l~12l!rdl1
«2

2eE0

1

~2l21!F ,an̂adl

2«2E
0

1

l~12l!F ,abn̂
an̂bdl1O~«4!. ~A15!

Here,Alc is the restriction ofA(x,x8) on the light cone, the
quantity given by Eq.~A2!, andn̂ is a unit vector pointing in
the direction ofx2x8. The quantities inside the integrals a
evaluated at the pointj(l) defined by Eq.~A3!, and the
derivatives ofF are taken with respect to this vector. To g
the first integral we have used Poisson’s equation,¹2F
54pr.

In the second and third integrals of Eq.~A15!, the deriva-
tives of F in the direction ofn̂ can be expressed as deriv
tives with respect tol: dF/dl52eF ,an̂a and d2F/dl2

5(2e)2F ,abn̂
an̂b. After substitution into Eq.~A15! and an

integration by parts on the last term, we find that these in
grals cancel out. Our final expression for the two-point fun
tion is therefore

A~x,x8!5Alc~x,x8!14p«2E
0

1

l~12l!r„j~l!…dl1O~«4!.

~A16!

We recognize here the same integral over the mass de
that appears in our previous expression for the van Vl
determinant, Eq.~A13!. This allows us to rewrite Eq.~A16!
as

A~x,x8!5Alc~x,x8!1
Dt22R2

8R2
@D~x,x8!21#1O~«4!.

~A17!

In this calculation we have used the fact that the factorDt2

1R2 appearing on the right-hand side of Eq.~A13! is equal
to 2R2@11O(«2)#.

Equations ~A16! and ~A17! indicate that unless the
straight line connectingx to x8 intersects the matter distribu
tion, Alc(x,x8) makes an excellent approximation
A(x,x8).

4. Scalar Green’s function

We now have the necessary tools to cast the sc
Green’s function calculated in Sec. III B into the Hadama
form @29# displayed in Eq.~A1!. Recall from Eq.~3.11! and
~3.14! that our expression for the Green’s function was

G~x,x!5Gflat~x,x8!22] tt8A~x,x8!22jB~x,x8!,
~A18!
08400
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where Gflat(x,x8) is the retarded Green’s function of fla
spacetime, given by Eq.~3.3!. This can be re-expressed as

Gflat~x,x8!5u~x,x8!d~sflat!, ~A19!

where u(x,x8) is the time ordering function introduced i
Eq. ~A1!, andsflat(x,x8)5 1

2 (2Dt21R2).
To calculate the Green’s function we need to take in

account the fact that bothA(x,x8) andB(x,x8) are zero ifx
and x8 are spacelike related~in the flat-spacetime back
ground!, and if x8 lies to the future ofx. We express this as

A~x,x8!5u~x,x8!u~2sflat!Â~x,x8!,

B~x,x8!5u~x,x8!u~2sflat!B̂~x,x8!, ~A20!

in which theu-functions explicitly enforce the vanishing o
the two-point functions except whenx8 is in the causal pas
of x. In what follows we will keep the time-ordering functio
implicit, and re-insert it at the end of the calculation.

Differentiation of Eq.~A20! gives

] tt8A5u~2sflat!] tt8Â2d~sflat!~112Dt] t!Â

1d8~sflat!Dt2Â, ~A21!

where the prime on thed-function indicates differentiation
with respect tosflat. To calculate the time derivative ofÂ in
the second term, we use Eq.~A16! which we copy asÂ
5Alc2sflatC1O(sflat2), where C52p*l(12l)r dl.
Dropping all terms proportional tosflat, we find that the co-
efficient of the d-function becomes2Alc2xC, where x
[Dt21R2. Working now on the third term, we find that th
coefficient of the differentiatedd-function is 1

2 xAlc2(Alc
1 1

2 xC)sflat1O(sflat2). The term that is linear insflat can be
transferred to the coefficient of thed-function with the help
of the distributional identitysd8(s)52d(s). The end re-
sult is

] tt8A5u~2sflat!] tt8Â2
1

2
xCd~sflat!1

1

2
xAlcd8~sflat!.

~A22!

We substitute this into Eq.~A18!. With the help of Eqs.
~A19! and ~A20!, we obtain

G5~11xC!d~sflat!2xAlcd8~sflat!1u~2sflat!

3@22] tt8Â22jB̂#. ~A23!

We can re-express the first three terms in the form
1xC)d(sflat2xAlc). From Eq.~A6! we recognize the new
argument of thed-function as the world functions(x,x8) of
the weakly curved spacetime. And we recognize the fac
11xC in front as the square root of the van Vleck determ
nant, calculated in Eq.~A13!. Finally, because the quantit
within the square brackets in Eq.~A23! is already of the first
order in the Newtonian potential, we can safely replacesflat

with s as the argument of theu-function. The only remain-
1-27
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ing task is to re-insert the time-ordering function that h
been left out of our expressions.

Our conclusion is that the scalar Green’s function of E
~A18! can indeed be cast in the form of Eq.~A1!, with u
5D1/2. For the weakly curved spacetimes considered in
paper, the world functions(x,x8) is worked out in Eq.~A6!,
the van Vleck determinantD(x,x8) in Eq. ~A13!, and

v~x,x8!522] tt8Â~x,x8!22jB̂~x,x8! ~A24!

is the tail part of the Green’s function. Here,Â(x,x8) and
B̂(x,x8) are the two-point functions introduced in Sec. III A

APPENDIX B: TWO-POINT FUNCTIONS FOR THE
POINT-MASS POTENTIAL

In this appendix we evaluate the two-point functio
A(x,x8) and B(x,x8) for the special caseF(x)52M /uxu.
The results derived here were first obtained by DeWitt a
DeWitt @48#; we include this discussion here for complet
ness.

We begin with Eq.~4.6!, which we rewrite as

A~x,x8!52
M

4pE 1

uh2h0u
dV, ~B1!

where h(s,u,f) is the vector of Eq.~4.5! with s5 1
2 Dt

[ 1
2 (t2t8), and h0[2x0[2 1

2 (x1x8). The point h0, at
which the central mass is located~in a coordinate system
centered ath50), will be represented by the ellipsoidal co
ordinates (s0 ,u0 ,f0). We recall thate5 1

2 R5 1
2 ux2x8u is the

ellipticity of the coordinate system.
To evaluate the integral of Eq.~B1! we invoke the addi-

tion theorem in ellipsoidal coordinates@64#,

1

uh2h0u
5

4p

e (
l 50

`

(
m52 l

l

~21!m
~ l 2m!!

~ l 1m!!
Pl

m~s, /e!

3Ql
m~s. /e!Ylm* ~u0 ,f0!Ylm~u,f!, ~B2!

wheres, (s.) is the lesser~greater! of s and s0, and Pl
m

andQl
m are associated Legendre polynomials@65#. Substitut-

ing this into Eq.~B1!, we find that the integration over th
spherical harmonicsYlm(u,f) is zero unlessl andm are both
zero, and we obtainA52(M /e)P0(s, /e)Q0(s. /e), or

A52
M

R
ln

2s.1R

2s.2R
, ~B3!

using the known forms for the Legendre functions of zer
order.

The hard part of the calculation resides with the com
tation of s0. Recalling thatx and x8 differ by a vectorR
pointing in thez direction, we writex5(x,y,z), x85(x,y,z
2R), and we haveh05(2x,2y,2z1 1

2 R). This and Eq.
~4.5! give us the equations

As0
22e2 sinu0 cosf052x,
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s

.

is

d

h

-

As0
22e2 sinu0 sinf052y, s0 cosu052z1e,

~B4!

which must be solved fors0. It is not hard to show that this
amounts to solving the quadratic

s0
42

1

2
~r 21r 82!s0

21
1

16
~r 22r 82!250, ~B5!

wherer 5uxu and r 85ux8u. This finally givess05 1
2 (r 1r 8).

Going back to Eq.~B3!, we see that we must distinguis
between the casesDt.r 1r 8, for which 2s.5Dt, and Dt
,r 1r 8, for which 2s.5r 1r 8. This gives

A~x,x8!52
M

R
u~Dt2R!Fu~r 1r 82Dt !ln

r 1r 81R

r 1r 82R

1u~Dt2r 2r 8!ln
Dt1R

Dt2RG , ~B6!

where, we recall,r 5uxu, r 85ux8u, R5ux2x8u, and Dt5t
2t8. For completeness we have re-inserted the step func
u(Dt2R) that was left implicit in Eqs.~4.6! and ~B1!. We
see that the two-point function undergoes a change of be
ior whenDt5r 1r 8. This time delay corresponds to a sign
propagating with the speed of light fromx to the center~at
which the Newtonian potential is singular! and then on tox8.
For shorter delays,A(x,x8) is time-independent; for longe
delays, A(x,x8) depends explicitly onDt. This sudden
change of behavior makes the two-point function sligh
suspicious: Although our calculations are based on the
sumption that the spacetime is weakly curved everywhe
the change of behavior is dictated by a region of spacetim
the center—in which the Newtonian potential is decided
not small.

The computation ofB(x,x8) is quite simple for the poten
tial F52M /r , for which the mass density isr(x)
5Md(x). Substituting this into Eq.~4.2! gives

B~x,x8!5
M

rr 8
d~Dt2r 2r 8!. ~B7!

Again we notice a suspicious dependence on the condit
at the center.

Despite the notes of caution, the results derived here
the special caseF52M /r are in complete agreement wit
our general results of Sec. IV. First, Eq.~B7! is identical to
Eq. ~4.18!, which was obtained as the leading term in a m
tipole expansion forB(x,x8). This indicates that in fact, ou
result for this two-point function is quite insensitive to th
conditions near the center. Second, Eq.~B6! implies that near
coincidence (R small and smaller thanDt), A(x,x8) can
be approximated by

A~x,x8!52
2M

r 1r 8
F11

1

3 S R

r 1r 8
D 2

1O~R4!G , ~B8!
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which could be recast in the form of Eq.~4.11!. In particular,
differentiation of Eq.~B8! with respect tox andx8 confirms
Eq. ~4.13!. In this case we haveF ,ab5(M /r 3)(dab
23r ,ar ,b), with r ,a5xa/r . Third, Eq. ~B6! implies that for
long delays (Dt large and larger thanR), we have the ap-
proximation

A~x,x8!52
2M

Dt F11
1

3 S R

Dt D
2

1O~Dt24!G , ~B9!
,

um

e,

e
s

-
the
o

t th
tz
tio
el

ka

08400
which is evidently compatible with Eq.~4.14!. This compari-
son between our general results of Sec. IV and those of
appendix shows that any aspect of the two-point functio
that might be sensitive to the strong-field portion of t
spacetime near the center will not be involved in the com
tation of the self-forces. This statement provides a furt
validation of the work of DeWitt and DeWitt@48#, which
was entirely based on the special caseF52M /r .
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