PHYSICAL REVIEW D, VOLUME 65, 084001

Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes

Michael J. Pfenning and Eric Poisson
Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2wW1
(Received 15 December 2000; revised manuscript received 12 September 2001; published 8 March 2002

We calculate the self-force experienced by a point scalar clip@@oint electric charge, and a point mass
m moving in a weakly curved spacetime characterized by a time-independent Newtonian paebentie
assume that the matter distribution responsible for this potential is bounded, s®thatM/r at large
distances from the matter, whose total masshis otherwise, the Newtonian potential is left unspecifigtle
use units in whickG=c=1.) The self-forces are calculated by first computing the retarded Green'’s functions
for scalar, electromagnetic, ariinearized gravitational fields in the weakly curved spacetime, and then
evaluating an integral over the particle’s past world line. The self-force typically contains both a conservative
and a nonconservativeadiation-reactionpart. For the scalar charge, the conservative part of the self-force is
equal to %sz?/r3, where¢ is a dimensionless constant measuring the coupling of the scalar field to the
spacetime curvature, amds a unit vector pointing in the radial direction. For the electric charge, the conser-
vative part of the self-force is2Mr/r3. For the massive particle, the conservative force vanishes. For the scalar
charge, the radiation-reaction force%iqzdg/dt, whereg= — V& is the Newtonian gravitational field. For the
electric charge, the radiation-reaction force%'e;’-dg/dt. For the massive patrticle, the radiation-reaction force
is — ¥m2dg/dt. Our result for the gravitational self-force is disturbing: a radiation-reaction force should not
appear in the equations of motion at this level of approximation, and it should certainly not give rise to
radiation antidamping. In the last section of the paper we prove that while a massive particle in a vacuum
spacetime is subjected only to its self-force, it is also subjected to a matter-mediated force when it moves in a
spacetime that contains matter; this force originates from the changes in the matter distribution that are induced
by the presence of the particle. We show that the matter-mediated force contains a radiation-damping term that
precisely cancels out the antidamping contribution from the gravitational self-force. When both forces are
combined, the equations of motion are conservative, and they agree with the appropriate limit of the standard
post-Newtonian equations of motion.
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I. INTRODUCTION AND SUMMARY emitted by the moving particle; this is effected by an appro-
priate radiation-reaction force. Another important effect is a
conservative correction to the equations of motion, which
The problem of determining the motion bfbodies sub-  disappears whem—0. Schematically, therefore, the equa-
jected to their mutual gravitational interactions has been &ons of motion will take the form
centerpiece of general relativity from its inception. Work on
this started shortly after the introduction of the theory, and in mu“;Buﬁz foeis (1.9
1938, a firm formulation of the equations of motion was
given by Einstein, Infeld, and Hoffmani], who provided whereu® is the particle’s four-velocity in the background of
post-Newtonian corrections to the Newtonian equations ofhe massive black holey®. su” its acceleratiorithe semico-
motion. Higher-order corrections were later adfi2d5], and  lon denotes covariant differentiation in the black-hole met-
work continues today, with Damour, Jaranowski and $aha ric), andfg,; is the self-force. This contains both a conserva-
[6,7], de Andrade, Blanchet and Faj&9], and Pati and Will  tive and a dissipativéradiation-reactioncomponent, and it
[10] currently computing corrections of third post- scales asn? in the small-mass limit(Throughout the paper
Newtonian order. A technical review of this field of research,we work in relativistic units, withG andc both set equal to
as of 1987, can be found in Réfl1]; the early history was unity.)
described by Havagl2]. A useful way to look at Eq(1.1) is to imagine that the
While the equations of motion for slowly moving bodies motion is actually geodesic in a spacetime that is not the
in a weak gravitational field are now very well understood,background spacetime of the massive black hole, but the
the same cannot be said of the fast motion of a massive bodyerturbed spacetime that contains the particle as well. The
in a strong gravitational field. The prototypical problem heregeodesic motion in the perturbed spacetime can be expressed
is to determine the motion of a structureless particle of masas a forced motion in the background spacetime, and this
m in the gravitational field of a much more massive blackgives rise to Eq(1.1). The implementation of this idea, how-
hole. While it is known that the motion is geodesic in the ever, presents some difficulty: If the particle is pointlike, the
limit m— 0, the issue is to determine the corrections to geoperturbation diverges at the position of the particle, and the
desic motion that appear whemin nonvanishing. An impor- geodesic equation is not defined on the world line. The per-
tant effect that must be introduced is the loss of orbital enturbation must then be decomposed into a part that is singu-
ergy and angular momentum to the gravitational radiatiorlar but does not influence the motion of the particle, and a
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smooth remainder that is entirely responsible for the selfparticle’s location but does not affect its motion, and a part
force[13]. This decomposition requires great care. that is well-behaved and governs the motion. Their expres-
In simple situations, the orbital evolution of a particle sion for the self-force was then reproduced by Quinn and
emitting gravitational waves can be determined without thewald [27], on the basis of a different approach involving a
involvement of a self-force. If the black hole is nonrotating, comparison between self-forces acting in two different
the orbital evolution is determined by energy and angularspacetimes. Both teams found the following equations of
momentum balancgl4,15: The rate at which the radiation motion:
carries energy and angular momentum both to infinity and
across the event horizon matches the rate at which orbital
energy and angular momentum is lost by the particle. This
information alone is sufficient to solve for the motion, at
least when the time scale for orbital evolution is long com-Here, u® is the particle’s four-velocity in the background
pared with the orbital period. If the black hole is rotating, thespacetimefg,, is an external force acting on the particle, and
statement continues to be true provided that the orbit is eithesin overdot indicates differentiation with respect to proper
equatorial or circulaf16—21. When dealing with generic time 7. The gravitational self-force is given by
orbits around a rotating black hole, however, the loss of or-

a B a 11 a a £8 a
mu‘. gu =fext—§m(5 pTuUR) fe et fony,. (1.2

bital energy and angular momentum no longer constitutes 7 .

S ; . fo =—2m?| (2G%, ,.,—G% ..,
sufficient information—the rate of change of the “Carter grav . Bu'v'iy Byp'v
constant”[22] must also be determined, and this requires the
involvement of a self-forc¢20]. + u“GBWV/;,su&)uﬁuyu“'u”'dr’. (1.3

Sources of gravitational waves for LISA The four-index objectG“ﬁy,(g/(x,x’) appearing inside the

integral is the retarded gravitational Green’s funct|@8g],
Svhose precise definition is given by E(R.25 below (our
"hormalization differs from the conventional choice by a fac-
“tor of 4); the unprimed indices refer to the field poirt
(which is identified in the integral with the current position
of the particle, while the primed indices refer to the source

There is a practical necessity for the computation of th
gravitational self-force. Solar-mass compact objects i
highly eccentric, nonequatorial orbits around rapidly rotat
ing, massive black hole@n the range between i@nd 16
solar massgsmit gravitational waves that will be measured

by eventual spaceborne interferometric detedt?83, which point x' (identified with the particle’s past positipnThe

operate in the low-frequency barieh the range between j.oqral extends over the past world line of the particle, from
10 * and 1 H2. One such detector, the Laser Interferometer_, g P P '

7' = —o to (almos} the current timegs' =7 =7—¢, where
?pace Antenn(aL!SA) [2,,4].’ has b:aen _selected as one of threee is very small and positiv27]. The integration is cut short
Cornerstone missions” in the “Horizon 2000 program

fthe E S A A ible invol ¢ bto avoid the singular behavior of the Green’s functiorxas
of theé turopean Space Agency. A possibie involvemen %pproachex; it involves only the smooth part of the Green'’s

the National Aeronautics and Space Adm|n|strat|0n—nowfunction' which is often referred to as its “tail parf29]. In

appearing likely after the publication of the Taylor-McKee a situation in which the R - -
) ) L . particle is subjected only to its self-
decadal surveyf25], in which LISA is listed as a high- force, the equations of motion reduce mua;ﬂuﬁzfgrav-

priority, moderate-size mission—would increase the ”ke"'Because the self-force scales lik&. we recover geodesic
hood that this detector will be deployed in the not-too-distant ’ 9

> o ) . tion in the limitm—0.
future. A realistic projection places the launch in the nelgh-mo e . : .
borhood of 2010. The difficulty of evaluating Eq.(1.3) resides with the

The detailed modeling of these sources of gravitationapompUtatlon of the gravitational Green's _funct|on, Wh'Ch
would be very hard to carry out for an arbitrary spacetime.

waves for LISA, to the extent that templates could be pro-_l_here is hope for proaress. however. if the spacetime pos-
vided for data analysis, will require a detailed computation pe for prog ’ o pe P
sesses symmetries, such as staticity and spherical symmetry

of the orbital evolution. This, in turn, requires that Eg.1) : . . g
be evaluated and solved for generic orbits around a ke the case of a Schwarzschild black hole, or stationarity and

black hole. For this we need a practical way of computingiggssémrgel;gbl'g r;heeth((:)?jsgf ?:)r?] E?;;i(?r!av(\:/lgurllglgé Ig]a:ggr:m
the gravitational self-force. ,ap P

a separation-of-variables approach, and thedesof the
Green’s function could be obtained fairly easjl§0]. But
this approach is not free of difficulties: While the individual
This issue was taken up recently by Mino, Sasaki, andnodes of the Green'’s function stay finite and continuous as
Tanaka[ 26], who calculated the self-force acting on a point approachex’ (though they are discontinuous in their first
particle of massn moving in an arbitrary background space- derivative$, the sum over modes does not converge. Essen-
time with metricg,z; they assume that the metric satisfiestially, this is because the modes do not distinguish between
the Einstein field equations in vacuum. Their calculation isthe singular and smooth parts of the Green’s function; they
based on a careful analysis of the perturbation field in thecontribute to both, and the singular behavior of the Green’s
vicinity of the particle, the(gravitationa) perturbation being function gives rise to a divergent sum. Recently, Ori, Burko,
created by the particle itself. It involves a careful decompo-and Barack[31-37 have devised a way to regularize the
sition of the perturbation into a part that is singular at themode sums, so as to extract from them a meaningful expres-

Gravitational self-force
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sion for the self-force. They have applied their technique to a 1 g? .

number of simple situations involving scalar, electromag- mUa;ﬁUB:fgxﬁgE(fSaﬁ u®ug)

netic, and gravitational radiation. Similar regularization

methods were proposed by Loug®8], as well as Nakano, 1,

Mino, and Sasakj39,40. It appears likely that in the near +ga(R* pUPH U R UPUY) + o
future, this method will be used successfully to solve more

complicated problems, including the prototypical problem (1.7

mentioned previously. . .
P 4 where the self-force is now given by

Electromagnetic self-force fo = qz(gaﬁ+u“uﬁ)ffGﬁdT'. (1.9
The derivation of Eqs(1.2) and(1.3) by Mino et al.[26], o
and Quinn and Wald27], is based on methods previously . . , . .
introduced by DeWitt and Brehmgtl]. These authors cal- 'n.Wh'Ch the retarded Green’s functidh(x,x’) is a scalar;
culated the self-force acting on athectrically chargedpar- this is defined by Eq(3.1_0) below. 'T‘ the absencg ofﬁan
ticle moving in an arbitrary spacetime with metdg,;. As external force, the equations of motion reducenta®, su

corrected by Hobbg42], the equations of motion of a =f§ca|_ar, and this is the simpl_est realizgtion of the_class of
charged particle are equations that govern the orbital evolution of a particle mov-

ing in a strong gravitational field. The computation of the
. scalar, electromagnetic, or gravitational self-force involves
mu® guf=fg .+ 3m st uug)f& solving for a retarded Green’s function, and then performing
an integration over the particle’s past world line. Because
there is only one component to the scalar Green’s function
(as opposed to 16 for the electromagnetic function, or 100
for the gravitational caseEq. (1.8) captures the essence of
the problem and avoids many technical complications. For

wheree is the particle’s electric chargég,, an external force this reason, it has been the starting point of many recent

acting on the particleR,, 5 the spacetime’s Ricci tensor, and investigationg 32—37,39,40,4J

2

em?

1 2ipa B @ B a
+§e (R¥gUP+U"Rg UPUY) + f (1.4

Weak-field limit

fgm:_e2fT (G“V,.B—G;“M,)uﬁuy'dr’ (1.5 The_ pomputation pf the various Green'’s fl_Jnctions is a

—o ’ very difficult undertaking even when the spacetime possesses
many symmetries. This is, however, a very tractable task
when the spacetime is only weakly curved. In such a situa-

is the electromagnetic self-force. The two-index objecttion, the metric itself can be calculated perturbatively as an

G“ B,(x,x’) is the retarded electromagnetic Green’s functionexpansion about flat spacetime, and the same technique can

[41], whose precise definition is given by E®.16) below. be employed to find the Green’s functions and compute the

In the absence of an external force, and in a region of spaceelf-forces. Our purpose with this paper is to do just that. We

time empty of matter, the equations of motion reduce towill consider spacetimes for which the metric can be ex-

mu;“Buﬁ=fgm. In flat spacetime, on the other harf¢, =0  pressed as

because the Green’s function contains only a singular part;

the smooth, or tail, part vanishes. In flat spacetime, therefore, ds’= —(1+2®)dt*+ (1~ 2®)(dx*+dy*+dz), 9

we recover the Abrahams-Lorentz-Dirac equafié8—45, (1.9

in which ®(x,y,z)<1 is a generic Newtonian potential sat-

5 @2 isfying Poisson’s equatiot°® =41p, wherep is the mass
mu® .Buﬁ:fgxt_F e ﬁ+uau,3)fgxt- (1.6) density. We will _ke_epfb unspecified throughout the paper,
’ 3m but assume that it is small everywhere. We shall also assume

that the mass distribution is bounded, so tfhabehaves as

) ] ) —M/r at large distances from the center of massiyi
The practical computation of the electromagnetic self-force_ [pd3x is the total mass, and®=x2+y?+z2. Various as-

presents the same technical difficulties as in the gravitationaBeC»[S of those spacetimes are discussed in Sec. II. In Secs. Il

case. and IV we calculate the scalar, electromagnetic, and gravita-
tional Green’s functions to first order th. In Sec. V we use
Scalar self-force the Green’s _functions to calculate the scalar, electromagnetic,
and gravitational self-forces.
The self-force acting on a particle witkcalar chargeq Our motivation for carrying out such(ong) computation
was recently calculated by Quid6]. In this case, the equa- is to provide a useful check on the formalism, especially in
tions of motion are its gravitational formulation. Admittedly, the weak-field limit
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is not by itself very interesting, but understanding this limit no external force and the equations of motion m’e";ﬁuﬁ
may well be a necessary step toward understanding thef¢ - in the weak-field, slow-motion limit, we also recover
Strong'ﬁeld behaViOI’ Of the graVitational Self'force. So Wh||ethe usua' resu|t_ Th|s agreement is necessary on physica|
we cannot hope to learn anything new from such a weakyrounds, but it could hardly have been anticipated on the
field computation, we can use our knowledge of the posthasis of a quick inspection of EL.5); the calculations re-
Newtonian equations of motiof8—5,1] to produce a non- quired to produce Eq1.10 are very involved.
trivial check of the self-force method; the results found here | their papef48], DeWitt and DeWitt gave the following
should of course match the results from the literature. As w hysical picture for the self-force of EGL.10). This picture
shall see, we have been successful at producing this checiglies heavily on their expression for the Newtonian poten-
the method works. tial, ®=—M/r, which corresponds to a point mabs lo-
cated at the origin of the coordinate system.

DeWitt and DeWitt Because the fundamental expression for the self-force,
Eq. (1.9), involves only the smooth, or tail, part of the elec-
tromagnetic Green’s function, there is a priori logal con-
tribution to this force coming from the world-line integral.
Indeed, DeWitt and DeWitt found that the quantity inside
this integral vanishes in the immediate past of the event

the special cas®(x) = —M/r, wherer =|x|, but noted that £ %) which corr nds to th ficle’s current position. In
their results generalize to arbitrary potentials by superposi( ’ )’. ch corresponds 1o the partic ,es current position.
fact, it vanishes until the time delaty-t’, becomes equal to

tion. (We use a bold-faced symbol to denote a three-

, .
dimensional vector living in flat spageThey found that to r.+r, , the d|stanc§_between the central- mhikand the par- .
leading order in a weak-field, slow-motion approximation,t'des current positiorx, added to the distance to the parti-

the spatial components of the self-force are cle’s old positionx’. At t—t'=r+r’, the electromagnetic
Green’s function undergoes an abrupt change of behavior,

and the self-force is entirely due to this sudden transition.
(1.10 (We expand our discussion of this point in Appendix Bhe
physical effect responsible for the force, in DeWitt and De-
R Witt's view [48], is a signal that originates from the particle
wherer=x/r and g(x)=—V® is the Newtonian gravita- at an earlier time’, propagates toward the central masst
tional field. In this limit, the equations of motiom u“;BuB the speed of light, bounces off the central mass, and comes

We are not the first to perform such a check on the for
malism. In 1964, DeWitt and DeWitf48] calculated the
electromagnetic self-force, as given by HG.5), for the
weakly curved spacetime of E¢L.9). They considered only

dg

M. 2
=2 14 2>
fer(X)=€ r3r+3e at’

=fgn become back to the particle at the current tinheAlthough the self-
force is nonlocal, Eq(1.10 involves the conditions at the
d2z current time only. This is because the time delay in not no-
mﬁzmg(z)Jrfe,ﬁ(z), (1.1) ticeable at the level of approximation maintained in the cal-

culation. To leading order in a weak-field, slow-motion ap-

) ) ) _proximation, the electromagnetic self-force appears to be
wherez(t) is the trajectory of the charged particle. The first entirely local.
term on the right-hand side of EL.10) is a repulsive cor- The physical picture described in the preceding paragraph
rection to the local force of gravity; it agrees with the weak-gppeared to us to be slightly suspicious. The sudden change
field limit of a result by Smith and Will49], who calculated i the behavior of the electromagnetic Green’s function at
the force required to hold a charged particle in place in the_;/— 4 1/ is dictated by the presence of the point mis
(exacy field of a Schwarzschild black hole. The second termy;y — o \which mediates the interaction between the charged
is the usual expression for the radiation-reaction force exp&sarticle and its earlier self. The region of spacetime near the
rienced by a charged particle subjected to an external forCggniral mass is therefore seen to have an important effect on
mg [43,44. , , the Green's function, and it is this effect—the sudden
_ The result of Eq.(1.10 is remarkable because this en- change_which apparently gives rise to the self-force. But
tirely local expression for the self-force derives from a non-g, — /¢ cannot be considered to be small in this region of
local formulation involving the entire past history of the g,cetime, and the perturbative method of calculation of the
charged particle; in the weak-field limit, any trace of nonlo- 5reen’s function must come into question. While there is
cality is lost. The result is remarkable also because while thitje reason to doubt the validity of Eq1.10), it appeared to

expression for the radiation-reaction component of the selff;s that its derivation by DeWitt and DeWiit8] left room
force is the expectede®dg/dt, it is very hard to see how for improvement.

such a simple result could ever follow from such a compli-

cated expression as E(L.5. We notice that this result for

the radiation-reaction force can be obtained from two very This paper

different approaches. In a flat-spacetime point of view, the  part of this paper is concerned with providing a derivation
equations of motion for a charged particle arer,suf  of Eq. (1.10 that is free of this criticism. Throughout the
=fout %(ezlm)(5“3+ u“uB)fgxt; in the slow-motion limit, paper we assume thd(x) is everywhere much smaller than
the external force isng, and we recover the usual result. In unity, and reduces te- M/r only far away from the mass
a curved-spacetime point of view, on the other hand, there idistribution. Building upon DeWitt and DeWitt's wor8],
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we introduce(in Secs. Il and IV techniques that allow us to with a Newtonian potential that isverywheresmall. In fact,
compute the electromagnetic Green’s function for such gethe perturbative calculation of the Green’s function requires
neric Newtonian potentials. In Sec. V we recalculate thethat the deviations of the metrig,; with respect to the
electromagnetic self-force for these potentials, and we repraMinkowski valuesz,z; be everywhere small. To accommo-
duce Eg.(1.10. While our result is compatible with the date this requirement, it is necessary that the spacetime con-
physical picture suggested by DeWitt and DeWitt, our deri-tain matter: all vacuum solutions to the Einstein field equa-
vation shows very clearly that the result is largely indepentions representing an isolated massive object necessarily
dent of the conditions near the mass distribution. We conpossess regions of strong curvature. Such strong-field re-
sider this improvement on the original derivation to be agions would affect the Green’s function in a way that cannot
significant contribution to this field. Our derivation is also be predicted by a perturbative calculation; the entire method
more transparent, in the sense that the computational labevould fail, even if the Green’s function were to be evaluated
involved is much reduced compared with the original calcu-only in the weak-field region of the spacetime. Thus, the
lations of DeWitt and DeWitt. global character of the Green’s function, together with the
The techniques introduced in Secs. Il and IV allow us toweak-field limitations of our calculational methods, dictate
calculate all three types of Green’s functions—scalar, electhat we work with spacetimes that contain matter.
tromagnetic, and gravitational. Those are used in Sec. V to The problem resides with the fact that the equations of
calculate the respective self-forces. Part of the paper is therenotion for a massive particle, as given by E¢$.2) and
fore devoted to the calculation of the scalar and gravitationall.3), are restricted teacuumspacetimes. The Mino-Sasaki-
self-forces in the weakly curved spacetimes of Eg9). To  Tanaka-Quinn-Wald equations of moti¢26,27] are there-
the best of our knowledge, such calculations have not yefiore not directly suited to a weak-field calculation. An exten-

been presented in the literature. sion to spacetimes containing matter must be produced. We
do this in Sec. VI, proceeding in two steps.
Scalar self-force First, we incorporate the modifications to the gravitational

Green'’s function that come from the presence of Ricci-tensor
Herms in Green’s equation. These modifications affect the
gravitational self-force, but they do not alter E@.3) if the
M. 1 _dg particle is restricted to move in a vacuum region of the
fscala™ 260° —T+ = % —, (1.12  spacetime. Second, we consider how the presence of matter
r3 37 dt modifies the equations of motion. Because the background
stress-energy tensdr*? depends on the metric, it necessar-
where ¢ is a constant measuring the coupling of the scalatly suffers a perturbation when the massive particle is in-
field to the spacetime curvature; a precise definition is giverserted in the spacetime. Physically, this corresponds to the
by Eq. (2.7) below. The equations of motion for the scalar fact that while the object of mas§l—the star—is at rest
chargeq are identical to Eq(1.11), but with the scalar self- When the particle is absent, it must move in the presence of
force replacing the electromagnetic self-force. For minimaithe particle: both objects move around a fixed center of mass
coupling (¢=0), the self-force is entirely dissipative, and we [50]. This perturbative motion of the star produces an addi-
recover the expected resultg®dg/dt; this is the radiation- tional metric perturbation, over and above the perturbation
reaction force experienced by a scalar charge subjected to &lifectly associated with the particle’s own stress-energy ten-
external force’ng_ For minimal coup"ng, the self-force act- SOr. This must be accounted for, and we shall see that its
ing on a stationary charge vanishes; this agrees with Wisegffect is to modify the right-hand side of E€1.2) by a term
man’s result[47] for the force required to hold a scalar fym Which we call the “matter-mediated” force. While the
charge in place in the exact field of a Schwarzschild blackself-force can be thought of as a direct action of the particle
hole. If £>0, the conservative part of the self-force is repul-0on itself, this additional force can be thought of as an indirect
sive. If £<0, it is attractive. This result for the scalar self- action mediated by the presence of matter: the particle acts
force is very similar to Eq(1.10, and we notice that the on the star, and the star acts back on the particle.
highly nonlocal expression of E¢1.8) has managed to pro- The gravitational self-force is computed in Sec. V, and
duce the expected local result. Once more the dual point ghis calculation incorporates the effects of the matter on the
view holds: We can adopt a flat-spacetime point of view, setetarded Green’s function. We obtain
fecalarto Zero in Eq(1.7), and get the correct result by equat- 11 d
ing the external force tang; or we can adopt a curved- fgrav=— _mz_g, (1.13
spacetime point of view, sét,, to zero in Eq(1.7), and get 3 dt

the correct result by evaluating the world-line integral of Eq.
(1.8). and according to the naive equations of motimmfz/dt?

=mg+fgy,y, the gravitational self-force does work on the

particle at an average ratB\V/dt=+ ¥ m?|g|?; it therefore

gives rise to radiatiomntidamping/51]. Notice that the self-
The computations required for the gravitational self-forceforce represents a correction of &n6(post-Newtoniaj or-

are the most involved, but here we also face a serious techiler to the Newtonian equations of motifB2]. Notice also

nical problem. We have stressed the importance of workinghat the dual point of view seems at work also here: our

The computations are simplest for the case of a scal
charge, and we obtain

Gravitational self-force and matter-mediated force

084001-5



MICHAEL J. PFENNING AND ERIC POISSON PHYSICAL REVIEW [B5 084001

expression for the “radiation-reaction force” could be calcu-them we would need to go beyond the weak-field approxi-

lated on the basis of Eq1.2) by adopting a “flat-spacetime mation considered in this paper. Within these limitations,

point of view” in which fg.,, would be set to zero and the however, we have complete agreement between the calcula-

“external force” equated tang. tions presented in this paper and the standard post-
The remarkable conspiracy that makes the tail integraNewtonian treatment of the two-body problem.

reproduce the external-force term in the equations of motion

is seen to be at play in all three cases. While the agreement Organization

between the flat-spacetime and curved-spacetime points of

view is quite necessary in the case of the scalar and electr%-e;qg dt?qu]cr;]Icszl‘opr?gf?;];h;gt??;eéfbég_lg)s I;ngzcdgrwzlat-h a
magnetic self-forces, it is decidedly disturbing in the gravi-t. ! f thl u II lect ' . d ' itai IIV
tational case. How can we understand this result? lon of the Scaiar, electromagnelic, and gravitational wave

The answer obviously comes from the matter-mediate(?quations for the weakly curved spacetimes described by this

force, which we define and compute in Sec. VI. For this Wemetric. In Sec. Il we introduce the two-point functions
' A(x,x") andB(x,x"), and show how the scalar, electromag-

obtain netic, and gravitational Green’s functions can be obtained
11 _dg from them by acting with differential operators. In Sec. IV
fnm=maog+ 1PN+ Emza, (1.19 we introduce methods to compute the two-point functions,

and evaluate them in interesting limiting caqés.Appendix

where the first term represents the change in the star’s New@é’veriéfdinisugxdllfggi%?nn ﬁg):i,(;(n);)??r?e":v'\;“(?-pi?r?tl):‘uic-
tonian gravitational field associated with its motion around.. P p P P

the fixed center of mass, the second term is a post—Newtoniatthns fqr the special casé = — M/,r 1n S.ec. V we use our
correction to the Newtonian foraeg, and the third term is a preceding results for the Green’s functions to compute the

radiation-damping term that precisely cancels out the arm_scalar, electromagnetic, and gravitational self-forces for the

damping force of Eq(1.13. (Such a cancellation was no- spacetimes of Eq(1.9); our re;ults were ql_Joted in Egs.
ticedpa ?ong time ag?cg by3)Cérde!53] N the context of a (1.12, (1.10, and(1.13), respectively. Finally, in Sec. VI we

very different formulation of the equations of motipn. introduce and compute the gravitational matter-mediated

A precise expression for the matter-mediated force can bfeorce’ and show that it cancels out the antidamping force

found in Eq.(6.54 below. When it is substituted, together calculated in Sec. V.
with the self-force, into the equations of motion, we find that

they take the form Il. WEAKLY CURVED SPACETIME
A. The spacetime and its geometric quantities
dz M 5m : . o .
—=——||1+v?———4v-V|p The spacetimes considered in this paper have a metric
datz  p? P given by

ds’=—(1+2®)dt?+ (1—2d)(dx?>+dy*+dZ),

—p-(4v—3V)v+4(p-v)V 2.1

+0(2PN,m?,M?),

(1.15 in which ®(x) is a Newtonian potential, a function of the

. . . . spatial coordinatex satisfying Poisson’s equation,
which contains no trace of a radiation-reaction force. Here, P fying q

Z(t) gives the position of the particle, amqt) =dz/dt is its V2p=4mp 2.2)
velocity; the star moves on a trajectafyt) with a velocity ’ '

V(t)=dz/dt. We usep=z—Z to designate the separation \yherep(x) is the mass density. By virtue of E@.2) and the
between the two objects, ang=[z—Z|. The equations of fa¢¢ thatd><1 everywhere in the spacetime, the metric of
motion for the star are Eqg. (2.1) satisfies the linearized Einstein field equations.
5 Throughout the paper we will work consistently to first order
L op2— §(P_v) }p_ 3(p- v)v] in ®@. If the metric were representing the gravitational field of
2 a point masdM located at the origin of the coordinate sys-
tem, thenp=M §(x) and® = —M/r, wherer =|x|. We will
+0O(2PN,m?,mM). (1.16 not need to adopt this particular form for the Newtonian
potential(which would violate the condition thak be small
Our calculations cannot reproducal the terms in the everywherg and we shall work with generic potentials sat-
Einstein-Infeld-Hoffmann equations of motidl,54]: Eq. isfying Eq.(2.2). We will, however, assume thdt becomes
(1.15 omits terms that are quadratic inandM, while Eq.  equal to— M/r, with M= [ pd3x, far from the matter distri-
(1.16) neglects terms of orden? and mM. The formalism  bution. Notice that we do not allo to depend on time.
we use in this paper is based on linear perturbation theory, Introducingt®=dx“/dt as the timelike Killing vector of
and it would be incapable of producing corrections of orderthe spacetime, we write the metric tensor as
m?. On the other hand, the corrections of ordel andM?
are within the reach of the formalism, but in order to produce 9up=Nap— 2PXap,  Xap=Napt2lls, (2.3

d’z m{
dt2 p3
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wheren,z=diag(—1,1,1,1) is the Minkowski metric, which wherej* is a given current density. The wave equation in
was used to lower the index dfi. Throughout this section densitized form is
we will continue to lower and raise indices with the
Minkowski 'metric, unless it is otherwﬁsg indicated. N'otice E[A]l=—4m\/—-gj%, (2.11)
that x,z=diag(1,1,1,1). From Eq2.J) it is easy to derive
J=g=1-2d and g*=5*f+2d y*#. These results hold WwhereE“[A] stands for the left-hand side of E@.10 mul-
to first order in®d. tiplied by —g. A straightforward computation reveals that
The metric of Eq(2.3) comes with the following Christ- for the weakly curved spacetime of EQ.3),
offel symbols:
E‘[A]=0A+ 4Dt t"A” ,,—2(x“, P ,+ XD ,
I'* 6= = X"a® 5= X" 5P 0t Xas®P ™. 2.4
afl X" a B X B a Xaﬁ ( ) _XMVq)'a)A”’V_[XalL@,,U«V—'— ZXDIVD(I)

As a consequence of the relatich ,t*=0, they satisfy iy AV
n*T*,5=0. The Riemann tensor is given by XA (212

Here, [ acting on the vector fieldh* still stands for the

R¥apy= ~ X"y apT X 8P 0y~ XapP ™y Xay® ¥ p. scalar wave operator of flat spacetime.
(2.9 A gravitational perturbation on a background megig;
Contracting over the first and third indices gives the RiccilS described by a tensoy,,, and the full metric isg,z
tensor: =0.pt Yap- By linearizing the Einstein field equations

about the background, one obtains a wave equation for the
2.6 perturbation. This equation takes a simpler form if it is ex-

pressed in terms of a “trace-reversed” fielg,;=7v,z
wheredJ®=»*fd ,,. Becauseb does not depend on time, —z(9*"¥,,)dap, Which is then chosen to satisfy a Lorentz-
O®=V?p= 5" ,;, wherex® denotes the spatial coordi- gauge condition:y*” ;=0. (Here and below, indices on the
nates. The Ricci scalar B=201®, and the Einstein tensor perturbation field are raised and lowered with the back-
is G*#=2t*tP0®. Equation(2.2) follows from the Einstein  ground metric, and a semicolon designates covariant differ-
field equations withT*#= pt*t#; this represents a fluid of entiation on the backgroundwith these choices, the Ein-
mass density and negligible pressure at rest in the space-stein field equations take the form of a wave equation for

time. ;aﬁ [28]

Raﬁ:XaﬁDq)l

B. Wave equations v_a a Bopv a Bopv @
_ . q N g4y P 42RO Fyrr 4 S, Fytr=— 16m5TF,
The field equation for a massless scalar figlioh a curved (2.13

spacetime with metrig,s is ] o
wheresT“# is the perturbation in the stress-energy terfsor

9P 5~ ERY= — A, (2.7 that the full stress-energy tensor 184 =T*#+ 5T*#, with
the first term denoting the background’s stress-energy ten-
where the semicolon designates covariant differentiatiorson, R,z is the Riemann tensor of the background space-
compatible with the metric tensa,is an arbitrary constant time, andS,,,,, 5 is constructed from the background’s Ricci
measuring the coupling to curvature, gads a given source and Einstein tensors,
term. It will be convenient to work with a densitized form for

the field equation, Suars=2Ru(a98)— RuvGap—ROu(a9p)0—29,,Gup-
E[¢]=—4mV—-gu, (2.9 (2.14

whereE[ ¢] stands for the left-hand side of E.7) multi- The parentheses around tensor indices indicate symmetriza-

plied by \/—g. For the weakly curved spacetime of £8.3), tion with respect to these indices. Once E213 has been

we find that solved for the trace-reversed peEurbation, ihe metric is re-

covered from the relationy,;= yaﬁ—%gaﬁ'y, where?

E[¢]=0¢+40t Y 5= 260@) g, (29  =9%y,p.
The densitized wave equation is
where(d= naﬁﬁaéﬂ is the flat-spacetime wave operator and,
as was pointed out previousi]® = V2®=4mxp. E*B[ = — 167/ — 8T8 21
An electromagnetic field is represented by a vector poten- (7] G ' 219
tial A“ which is here assumed to satisfy the Lorentz-gauge, o e E“A[] stands for the left-hand side of E€.13

condition, A%;,=0. Its field equations are multiplied by v—g. A rather long but straightforward com-

" N ] putation reveals that in a weakly curved spacetime with met-
grAT.,,—RY AF=—4m|", (210 ric (2.3,
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E*[y]=0y*+ 40t " y*f - 4(x*,® ,+x'*, @

X DY 2, B = 20, P,

"

+xPD )y =00 (%, v+ 2y
+at Py, yM). (2.1

In the first term on the right-hand sidel= »*"d,4, is the
scalar wave operator.

Ill. GREEN'S FUNCTIONS

A. Generating two-point functions

The task before us in this section is the computation of}N
retarded Green’s functions for the wave equations considereéll

in Sec. II—EQgs.(2.9), (2.11, and (2.15. As we shall see,

these Green’s functions can be constructed by acting Witfi
differential operators on two generating two-point functions,

A(x,x") andB(x,x"), defined by

A(X X’): 1 f Gﬂat(x X/I)(D(X/I)Gﬂat(x// X/)d4xlr
1 2/”' 1 1
3.1

and
B(X,X’): f Gﬂat(X,X")p(X”)Gﬂat(X",X/)d4XH. (32)

Here, @ is the Newtonian potential of Eq2.1), p is the
mass density of Eq(2.2), and G™{(x,x’) is the retarded
Green’s function of the flat-spacetime wave operator,

S(t—t' —[x=x']) 33

Gﬂat(X,X/)Z | ,|
X—X

this satisfies 0G™(x,x')=—4m,(x—x'), where 4(x
—x") is a four-dimensional 5-function, equal to &(t
—1")83(x—x"). This method to calculate the Green’s func-
tion originated in the work of DeWitt and DeWi#8], who

PHYSICAL REVIEW [B5 084001

1
5= f GM(X,X")[ 9P (x") ]G (X", X" ) d*X"

2
=(d,+ 3, )A(X,X") (3.9
and
1
EJ Gﬂat(x,x//)[aa”ﬁ”q)(x//)]Gflat(x//,xl)dAX//
:(0-'&34' aa/ﬁ+aaﬁ/+5a/B1)A(X,X,). (35)

We use the notation, f=af/dx", d,e f=d?flax*axF,
etc., in which the tensor inddrithera, «’, or @”) indicates
ith respect to which variablébetweenx, x’, andx”) the
nction f is being differentiated.

Equations(3.4) and (3.5 are easy to establiskIn the
following we keep the notation simple and drop the factor of
/27 in front of the integrals First we write d,A
=[(9,G)PGdxX’, and use the fact thas"(x,x") depends
only on the difference betweenandx”. This allows us to
express the right-hand side asf(d,,G)®GdX’. Integrat-
ing by parts, we obtain +[G(d,P)GdX
+JGP(9,,G)dX". In the second term, the derivative opera-
tor can be switched te-d,,,, which can be taken outside the
integral. The second term becomes, A, and Eq.(3.4)
follows. To derive Eq.3.5 we differentiate Eq(3.4) with
respect tax?, and go through the same procedure.

Because the Newtonian potential does not depend on
time, Eq.(3.4) implies
A X") + 3y A(X,x")=0. (3.6
Another useful identity results from taking the trace of Eq.
(3.5. Using Poisson’s equationl®=V?®=47p and Eq.
(3.2), we obtain

E(D+D')A(x,x')+a“’aA(x,x')z B(x,x'), (3.7

where (l'=5*"3,,,d,,; summation overa’ and « in the
third term is understood. By virtue of E3.6), all time
derivatives drop out of Eq3.7), which can then be written

used it to compute the scalar and electromagnetic Green@s 3(V2+V'?)A(x,x')+d ,A(x,x')=B(x,x'). The left-

functions for the special case= —M/r. Here we generalize

hand side of Eq(3.7) can be simplified differently. The wave

their method to arbitrary potentials, and to the gravitationalperator acting oA can be taken inside the integral, where it

Green'’s function.

Inside the integrals of Eqg3.1) and (3.2), the function
G"(x,x") picks out the past light cone of the poitwhile
G™{(x",x") picks out the future light cone of the point.

(These light cones are those of the flat background space-
time.) The intersection of the two light cones defines a closed

two-surfaceS, and we see thak(x,x’) is the average of the
Newtonian potential ove§, while B(x,x") is the average of
the mass density. Both two-point functions are zerw énd

x" are spacelike related, because the surface of intersection

then disappears.

acts onG™. This returns as-function, and the integral can
be evaluated. This gives

OA(x,x")=—2d(x)GM(x,x"),
O'A(x,x")=—2d(x")G™(x,x"), (3.9

and these expressions can be substituted intqd Q.

B. Scalar Green'’s function

We are looking for a functios(x,x") that solveqd41]

Averages of derivatives of the Newtonian potential can be

obtained by differentiatind\(x,x’). For example,

E[G]=—478,(x—X") (3.9
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to first order in the Newtonian potentiab. Here, 6,(x  the pointx, while the primed indices refer %'. In terms of
—x") is the four-dimensionab-function, andE[G] stands this Green'’s function, the solution to E.11) is
for the left-hand side of Eq2.7) multiplied by \—g, with

G(x,x") taking the place of/(x). In terms of this Green’s a :f « N B I [T by
function, the solution to Eq2.9) is AT G (XD (XN =g dx". (318

We seek to determine the Green’s function to first order in
l//(X)If G(X,x" ) u(x")V—g'd*’, 310 4
For this purpose, we write
whereg’ is the metric determinant evaluatedxat
To find this Green'’s function, we write Gaﬁ,(x,x'):Gf'at(x,x’)aaﬁ,+G“B,(x,x’)+0(<l>2)
(3.1

o . . o and substitute into E¢3.15. Here,G™(x,x’) is the scalar

in which G aQ(,x’) is the flat-spacetime solution given by Green’s function of Eq(3.3), and G” ﬂ,(x,x’) is the first-
Eqg. (3.3, andG(x,x") is the first-order correctioflinear in  order correction to the electromagnetic Green’s function. We
the Newtonian potential[ The overdot notation suggests that fing that this must satisfy

G(x,x") should be viewed as a smooth function of a small-

G(x,x")=G™(x,x" )+ G(x,x") +O(P?), (3.1

ness parametet, anq that Eq(3;1]) gives_the first two terms DGaﬁ, — _4q)attGﬂat5aﬁ+ 2X“,® g+ XD,

of its Taylor expansion abowt=0.] By virtue of Eq.(2.9),

in which we substituts J®=4mp, we find thatG(x,x’) ~ Xpu® *) G+ Barp x G (3.18
satisfies

We have used the fact thdt does not depend on time, so
OG(x,x') = — 4D (x) d,G"(x,x") + 87&p(X)GM(x,x"). that, for examplex“#® ;= n**® ,,=®“g; such terms
(3.12 end up canceling out. We have also, on the right-hand side,
dropped the distinction betweghand B’; this distinction is
The solution is not necessary when dealing with a constant tensor such as
X“p-
BEquation(3.1& is solved by once again invoking the flat-

) 1
G(x,x")=—| GM{(x,x")D(X")dpnnG (X", x")d*X" . ; an’
06x7) wf 06X DX dyr ( ) spacetime Green’s function. The solution is

_ng Gﬂat(X,X”)p(X”)Gﬂat(X”’X’)d4X”' Gaﬁ’(X,X,)Z _ %f Gﬂat(X,X”)RHS(X”)d‘lXH,
(3.13 (3.19

In the first integral, the derivative operator can be switchedvhereRHY(x”) stands for the right-hand side of E®.19
to d,y because the flat-spacetime Green’s function dependsvaluated ak=x". The derivatives appearing in E(3.19
only onx”—x'. The derivatives can then be taken outside theare now taken with respect 1. Whend,,» (say) is acting on
integral. Using Eqs(3.1) and (3.2, we obtainG=24,,,A  G™{(x",x’), it can be replaced by-J,, and taken outside
—2¢B. Using Eq.(3.6), we express the final result as the integral. This leaves us with integrals involving
G"(x,x"), G"{(x",x"), as well as®(x") and its deriva-
G(X,X")= =23 A(X,X") — 2£B(X,X"). (3.14  tives. Those integrals can all be expressed in terms of the
two-point functionsA(x,x’) and B(x,x’) defined in Egs.
Equations(3.11) and(3.14 give the scalar Green’s function (3.1) and (3.2), thanks to the relationé3.4) and (3.5). The
to first order in®. As was claimed previousl¥z(x,x") can  results can then be simplified by using E¢3.6)—(3.9), as
be expressed in terms of the generating two-point functionsvell as Eq.(2.3) for Xap- The end result is
introduced in Sec. IIIA. For the special cage=0, our
Gree_n’s function agrees with the one obtained by DeWitt and 'Gaﬂ, = =29 A8 g+ (aa'ﬁ— " )A+2t%( 0y g— dgr) A
DeWitt [48].
+2t5(0% = 9% A+ X 4(ADG™-B),  (3.20
C. Electromagnetic Green’s function
whereAd=®(x) —P(x"). Equationg3.17) and(3.20 give
G“ ﬁ,(x,x’), the electromagnetic Green’s function, to first
order in®d.
E“/[Gl=—4md%g d4(Xx—X"), (3.15 Equation(3.20 is easier to deal with if we distinguish
between its temporal and spatial components. From it we
where E“5/[G] stands for the left-hand side of E.10 read off
multiplied by \'—g, with G%4/(x,x’) taking the place of .
A%(x). Here and below, the unprimed tensor indices refer to Gly=—A®PG"™—25,,A+B, (3.2)

The electromagnetic Green’s functi@f z (x,x") is a so-
lution to [41]
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G a'— (ﬁt’a_ ﬂta’)A:

G =(d" ,— ¥ DA,

G?y = (ADPG"—25,,,A—B)

+ (8% = ) A.

We notice that in Egs.3.20 and (3.21), the part of

' 5 (x,x") that involvesG"™{(x,x") has support only on the
past light cone of the point. The remaining part, that in-
volving the two-point function®A(x,x") andB(x,x"), have

support inside the light cone as well; this is the “tail part” of

the Green'’s functiof29]. Our electromagnetic Green'’s func-
tion agrees with DeWitt and DeWif48].

D. Gravitational Green’s function

The trace-reversed gravitational Green’s

G* 5 (x,x') satisfies the equatiof28]
E“®, 5 [Gl=—4ms 6P, 8,x—x"), (322

whereE*# » [ G] stands for the left-hand side of EQ.13
multiplied by \—g, but with G*?,5(x,x") replacing

¥*A(x). In terms of this Green’s function, the solution to Eq.

(2.195 is

7“B(x)=4f G 5 (xx) 8T (x')[=g'd*x’
(3.23

function

PHYSICAL REVIEW [B5 084001

where G™{(x,x") is the flat-spacetime scalar Green’s func-

tion, and'gaﬁyw(x,x’) the correction of ordefP. By sub-
stituting Eq.(3.26 into Eq. (3.22, we find that this must
satisfy

G, 5= — 4D 9, G5l 5P s+ 45 (xP 5@ ,
+ D 5 X", = x5, D) G — 2y, ;P
—2x (vq)yﬁ)ﬁ)"'x Bq),yr?)Gﬂat"'AfW(’]aBXya
+26%,0° s+ 4t°tP ., 5) pG", (3.27

where we have gone through the same simplification steps as
in the electromagnetic case. The remaining steps are also
similar: We integrate Eq.(3.27 with the flat-spacetime
Green’s function, and we simplify the resulting integrals as
was described in the paragraph preceding (BQ0. After a
rather long computation, we obtain

gaﬁyfﬁf == Z&tt'Ag(ayéﬁ)ﬁ
+280 [P 5= 9P 519+ 2tP) (0 5300 — D ry1)

— 2ty (P — 7)) 1A

+xys(8%+ 3% ) (P + 0P )A

= 2X" (P + FD) (05t 1)) A

+ X0, +9,)(95+ D5 ) A+ 2x1 P  AD G

+(2X("y5ﬂ)5)_ ﬂaﬁXy5_25(ay5ﬁ)5

(3.28

Our goal here is again to calculate the Green’s function to

- 4tatﬁ7775) B,

first order in the Newtonian potential. The steps are virtually

identical to what was done for the scalar and eIectromagnetM’hereA‘D ®(x) —P(x'). Equationg3.26 and(3.28 give

cases. The only difference is that the expressions are longéf.*, s (X,x'), the trace-reversed gravitational Green's func-
At the end of the calculation we will have to “trace- tion, to first order in®.

reverse” the trace-reversed Green's function to obtain From Eq.(3.28 we extract the following components:

G“ﬁy,y(x,x’), the Green’s function directly associated with .

the metric perturbatiory, ;. This is given by Gy =—2ADG™— 24, A+B,

Gaﬁ,},rar(x,xr)zga’B,yrgl(X,X’)

gttt'a':(at’a_ata')Av
1
_ g8 wr . .
297 (X8 (XG5 (X7 Gty = (Fat 00 ) (3 + Gy )A—366B,
(3.24) _ ,
G = (0% —d* YA,
In terms of this, the metric perturbation is recovered by in-
tegrating _ 1 , ,
Gy =— 0% (dy A+ B)+ z(aab+ 20% 4% p)A,

yaﬁ(x)=4f G5 (x,x) 8T % (x')\[—g"d*x’.
(3.25

To find the trace-reversed Green’s function, we write

(3.29

G er = 8 deyr — deryn) A,

G = (2+ 32 ) (dP+ ") A— 520B,

G5 (%X ) =G (x,x") 5, 8L, + G, 5 (x,x")

+0(d?), (3.26 G20, = 8@ (a7 — P A,
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G g =28@. ADGH— 5, A)
+ 8%0(9o+ der) g+ dgr)A
b b) b")
—28@ (P +20%)+ 3 gy A

+ 8eg( 37+ 07 ) (3P + P ) A— 5705, B.

PHYSICAL REVIEW D 65 084001

Here we use the notatiof®)=®(x)+®d(x"), as well as
AP =P (x)—P(x’). It should be noted that in Eq3.32),

the part ofG“ﬁy,g,(x,x’) that involvesG™(x,x’) has sup-
port only on the past light cone of the potThe remaining,

tail part has support inside the light cone as well. We believe
that these results for the gravitational Green’s function are
new.

To “trace-reverse” the Green'’s function according to Eq.
(3.24) is a straightforward operation, but it is important to
keep in mind that the metric involved in this computation is

IV. EVALUATION OF TWO-POINT FUNCTIONS

not 74, but »*#+2d y*#. We find that the gravitational
Green'’s function is given by

1
G 5 (xx')=| 8,6% = 50,5 | GMHxX)

+G 5 (xx')+0(P)?, (3.30

where

~ Q. ’ 1 SV ’
G 5 (xX) =G, 5 (xX') = 5 7P, G 5 (XX

- Z(tatﬁﬂyrtgr - ﬂaﬁtyrtlsr)

X ®(x)G™(x,x"). (3.31
The complete listing of components is
Gnt't' == (ADG™+ gy A),
Gtt _
tfaf_(at’a_ata’)Aa
G" =~ 6.pl(P)G"4 5 A+ 2B]
+ (a7t dar)(Ipt dpr)A,
G, = (0% — DA,
Gtat/b/: - 6ab((9ttrA+ B)
1 o
+§(a bt 29%+ 37, A, (3.32

'Gtab,C, = §a(b(ac)t’ - &C’)t)A!
G, = ()G 5y AL+ (07 + 2" ) (3 + Gy A,

G™, .= 8@ (", - " DA,
G, =(25@ 87 ;= 525, (ADG™ - 5, A)

+ 8229+ dgr) (g + dg ) A

—28@ (0 gy +28" 4y + " A+ Bog( P

+ ) (P + P YA— 25205 4B.

The scalar, electromagnetic, and gravitational Green’s
functions can all be expressed in terms Afx,x’) and
B(x,x"), the two-point functions introduced in Sec. Il A.
Our task in this section is to evaluate these two-point func-
tions. We will keep®(x) completely generic, demanding
only that far from the matter distribution, it becomes equal to
—M/r, wherer=|x| and M is the total mass. This distin-
guishes our work from the earlier work of DeWitt and De-
Witt [48], who considered only the special cabe= —M/r.

A consequence of keeping§ generic is that we will obtain
only partial information regarding the two-point functions.
This, however, will be sufficient for the computation of the
self-forces presented in Sec. V. The results specifically re-
quired for this computation are derived in this section. Addi-
tional results are presented in Appendix A, which gives an
extended discussion of the two-point functigh(x,x’).
Complete expressions for the two-point functions are derived
in Appendix B for the special case= —M/r; these repro-
duce the earlier results of DeWitt and DeWitt.

A. Ellipsoidal coordinates

When Eq.(3.9) is substituted into Eq$3.1) and(3.2), we
find that thedt” integration can be carried out immediately,
and we obtain

AP S 3

2T |X_XH||XH_X/|

X S(At—|x=x"|=[x"=x"|)d3x"  (4.1)
and
XU
B(X,X’)ZJL)
|X_X//||XII_X/|
X S(At=[x=x"|=|xX"=x')d>", (4.2

whereAt=t—t’. These are the integrals we will attempt to
evaluate. The method of calculation presented below comes
from DeWitt and DeWitf{48], but this particular implemen-
tation was suggested to us by Alan Wisenj&h].

The §-function in Egs.(4.1) and(4.2) enforces the condi-
tion |x—x"|+|x"—x'|=At, which defines the closed, two-
dimensional surfacé formed by the intersection of's past
light cone with x"’s future light cone. This surface is an
ellipsoid of revolution centered at,=3(x+x’), of semi-

084001-11



MICHAEL J. PFENNING AND ERIC POISSON PHYSICAL REVIEW [B5 084001

major axis:At and ellipticity 2|x—x'|. To integrate Egs. B. A(x,x") near coincidence
(4.1) and(4.2), we will adopt ellipsoidal coordinates adapted  The integral of Eq(4.6) can readily be evaluated, for an
to this geometry. arbitrary Newtonian potentiap, if the pointsx andx’ are
We first summarize our notation: close together in spacetime. This is the near-coincidence ap-

proximation. Because these points must be timelike related
for A(x,x") to be nonvanishing, we are looking at evaluating
Eqg. (4.6) in a limit whereR and At are both small, but the
ratio At/R is maintained larger than unity. In this limit, the
R 1 vector n( 6, ¢) defined in Eq.(4.5 is small, and® can be
R=|x—x'|, n= R e= ER_ (4.3 expanded in Taylor series about the poigtthis is the basis

for our approximation. For concreteness, we will assume that

Xg lies outside the matter distribution, so thsixy) =0.

The diagram of Fig. 1 illustrates the situation. Expanding® in powers ofz in Eq. (4.6) gives
For convenience we orient our coordinate axes such that

the unit vectorn points in the same direction as the or
third, axis; there is no loss of generality involved in this
choice. We then represent the veckérin terms of ellipsoi-

1
At=t—t’, Xp=z(x+x"), R=x—x',
)

477A=q>(xo)f dn+¢,a(x0)f 72dQ

. - T 1
dal coordinatesq, 6, ¢). The coordinate transformation is + ECD,ab(XO)f PrPdQ+ - - - 4.9
X'=Xo+ 1(S, 6, $), (4.9
0 The first integral, with a factor of (#)~! in front, gives
where unity. The average of,* on the sphere is zero, and the av-
erage of»27° is the tensor?P=%(s?—e?) 82+ Le?nan®,
pi=SZ—e2sinfcosp, nP=\—esindsing, wheres= 1At ande=3}R. The part ofg®" that is propor-

tional to 6*° multiplies ® ,,(Xo) and returns something pro-
portional toV?® evaluated ak,; because this point is out-

3_
7°=$C0S#. 4.9 side the matter, this is zero. We are left with

The parametee= ;R is the ellipticity of the new coordinate 1 o
system. It is easy to check that in these coordinapes, A=d(xg)+ 271R2<D'ab(x0)nanb+~--. 4.9
—X"|=s—ecosf and|x"—x’| =s+ e cosd. The Jacobian of
the transformatiori4.4) is (s>— e? co<6)sin 6.

With these results, we find that E@4.1) reduces to
A(X,x")=(2m) [ ®(xo+ ) S(At—2s) dsd), where dQ
=sinfddode is the element of solid angle. The integration
over s is immediate, and we obtain

Notice that the right-hand side of this equation no longer
depends onAt: the two-point functionA(x,x’) is time-
independent near coincidence.

It is convenient to shift the reference point frog to x.
To orderR?, this means re-expressimg(x,) as

1
A(x,x")= EJ’ D (Xg+ 7(6,¢))dQ, (4.6) (I)(X_%Rﬁ):q)(x)_%Rq)’a(x)ﬁa_F%RZq)’ab(x)ﬁaﬁb

where the vectow( 6, ¢) is now given by Eq(4.5) with s set +eee (4.10
equal to3At. Thus,A(x,x’) is the average of> over the o o .

ellipsoid s= 3 At, which is just the two-surfacé introduced ~ Substituting this into Eq(4.9), we arrive at

previously. Similarly,

. AX,X) =D (X) — %cb,a(x) R+ %@,ab(x)RaRb+ O(R?).
B =5 [ poarmoad0 @7 @12

. o o This is our final expression for the two-point function in the
to remember that in Eqs4.5~(4.7), the third coordinate In the sequel we will need expressions for various deriva-
axis has been aligned with the vectex—x". tives of A(x,x’) evaluated at coincidences=x’. It is

It should be noted thah(x,x") andB(x,x") are nonzero  strajghtforward to differentiate Eq4.11) with respect to ei-
if and only if x is in the causal future ok’. To properly  therx or x’, to obtain

reflect this, the integrals of Eq$4.6) and (4.7) should be

multiplied by the step functio@(At—R). To keep the nota- lim ;A= lim ¢,A=0 (4.12
tion simple, however, we choose to leave this factor implicit

in our expressions; for the rest of this sectiaxt, will be
understood to always be larger then and

x"—x x"—x
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X

FIG. 1. The diagram shows the matter distribution located nea

the origin of the Cartesian coordinate system, the points’, and
Xg, to which the ellipsoidal coordinates,@, ¢) are attached. The
diagram also shows one representative ellipsoid of constamd a
point X"=xq+ #(s, 6, ®) lying on this ellipsoid.

1
=P

||m (9abA:2 I|m aab/A: ||m 5a,b/A= 3

x"—x

,ab(X)-
(4.13

These results hold for arbitrary Newtonian potentials, pro
vided that the poink, lies outside the matter distribution.

x' —x x' —x

C. A(x,x") for long delays

We can also evaluat&(x,x") for arbitrary potentials if
we assume that andx’ are widely separated in spacetime.
More precisely, we now takat to be extremely large, and in
particular, much larger thaiR=|x—x'|, r=|x|, and r’
=|x’|. This is the long-delay approximation. In this lim,
is much larger than e and
=(ssinfcosg,ssindsin ¢,scosd). Becauses is very large,
we will neglectx, in front of # in Eq. (4.6), so thatA
=(4m) " fd(n)dQ. Since » is located well outside the

PHYSICAL REVIEW D 65 084001

calculation it is easier to go back to E@.2), in which we
assume that=|x| andr’'=|x'| are both very largel/A more
precise criterion will be given beloyThese conditions will
allow us to develop a multipole expansion for this two-point
function.

Equations(4.2) and(4.7) indicate thatB(x,x’) is the av-
erage of the mass densipyover the ellipsoids=3At. The
diagram of Fig. 1 makes it clear that unless falls within
the appropriate interval, the ellipsoid will fail to intersect the
matter distribution. ThusB(x,x’) is nonzero only whert
lies within this interval, which we might call the intersection
window. Whenr andr’ are both large, the ellipsoid is also
very large, and the intersection window becomes compara-
tively short. In this limit,B(x,x") is “on” for a very short
time, and its behavior suggests that ofédunction. This
expectation is borne out by an explicit calculation.

In the denominator of Eq4.2), we approximatex— x"|
by r and|x”"—x’| by r’, taking|x”| to be much smaller than
bothr andr’. In the §-function we go to the next order of
approximation and writgx—x"|=r—x-x"/r and |x"—x/|

r .
=r’'—x"-x"/r’. If we introduce the vector

(4.15

then thes-function becomes(u+m-x"), whereu=At—r
—r'. This we expand in powers of’ and express as(u)

+ 8" (u)(m-x")+38"(u)(m-x")2+ - - -, where a prime de-
notes differentiation with respect to the argument. Substitut-
ing all this inside the integral of Eq4.2), we obtain

1

B

, 5(u)jp(x”)d3x”+ 5’(u)maj p(X")x" d3x”
rr

(4.1

1 n "
+ Eé”(u)mambf p(X)xE X d3x"+ . - - |,

The first integral gives the total mabk The second integral
gives the dipole moment of the mass distribution; this van-
ishes if, as we assume, the origin of the coordinate system is
attached to the center of mass. The third integr&)3§, the
quadrupole moment of the mass distribution. We have there-
fore obtained

matter distribution, we can approximate the Newtonian po-

tential by —M/|#|, its first term in a multipole expansion.
(Here, M= [pd>x is the total mass of the matter distribu-
tion.) Becausd #|=s=3At in the long-delay limit, we ar-
rive at

A(X,x")= NS

(4.19

We recall that At=t—t’. Equation (4.14 shows that
A(x,x") and all its derivatives vanish in the limit— —oo.

D. B(x,x") at large distances

We will evaluateB(x,x") in the case wherg andx’ are
both located well outside the matter distribution. For this

1 1
B(X,x')=— M5(u)+§Qabmamb5”(u)+-~ ,
rr’
(4.1

where, we recallu=At—r—r’. This equation displays the

first two terms in the multipole expansion of the two-point

function B(x,x"). Notice that this expansion is analogous to

a multipole expansion of a radiative field in the wave zone;

this is not a near-zone expansion of a quasi-stationary field.
In the sequel we will approximatB(x,x’) by

B(x,x’)=r|\r/|—,6(At—r—r’), (4.18
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its leading term in the multipole expansion. In this approxi- There is no difficulty, however, in extending Quinn’s result
mation,B(x,x’) is nonzero only whet=r+r’. The time to arbitrary couplings to curvature. So long as the particle
delay corresponds to a signal propagating at the speed ofioves in a region of spacetime in which the Ricci scalar is
light from x' to the center of the mass distribution, and thenzero, his results carry over directly. The only effect théias

on to x. The approximation has made the intersection win-on the motion is through the Green’s function, which is sen-

dow infinitely short. sitive to a nonzero Ricci scalaomewherén spacetime.

To estimate the error involved in going from E4.17) to We will calculatef® to first order in the Newtonian po-
Eqg. (4.18), we integrateB(x,x’) over a smooth test function tential ® in a weak-field approximation; the particle there-
f(t). Settingt’ =0 for simplicity, Eq.(4.17) gives fore moves in the weakly curved spacetime of Sec. Il. We

assume that the particle is gravitationally bound to the matter

distribution, and infer from the virial theorem that, the
, (419  square of the particle’s velocity, is of the same order of mag-
nitude as®. We therefore add a slow-motion assumption to
our weak-field assumption. Accordingly, we will neglect in
all expressions terms involving?, ®v?, andv*. Within this
approximation, we have that the spatial components of the
self-force are given by

Qf//
1+ gt

M
f Bf(t)dt=—Ff(r+r’)
rr

whereQ=1Q,,m?mP. The factor in front the large brackets
is what would be returned by the approximation of Eg.
(4.18. We wish to show that in typical situations, the second
term inside the brackets is much smaller than unity. |Ltet
the characteristic size of the matter distribution, andrlee ‘
the characteristic time over which the functibft) changes. fa—= qu (G a+va('3 odt’, (5.2)
Then Q/M is of orderl?, and f"/f is of order 1#2. The - ’

correction term is therefore of ordel/ §)2. In a typical situ-

ation, 7 would be associated with the orbital time scale of anwhere v =dz(t)/dt is the current velocity of the particle,
object located ax or x’. Assuming for concreteness thals ~ which does not depend ari; the past velocity will be de-
the shortest distance, we have~r3/M. With this, we find  notedv’=dz(t’)/dt’, and this does depend ah We have
that the correction term in Eq4.19 is of the order of madet’ the new variable of integration, and neglected all
(1/r)?(M/r). So long ag andr’ are both much larger thdn  O(v?,vv’,v'?) terms inside the integral, which through the

andM, Eq. (4.18 makes an excellent approximation. Green’s function is already linear in the Newtonian potential.
This fact allows us to freely alter the position of all latin
V. SELE-FORCES indices, implicitly usingd,,, the metric of flat space. And
since we will substitute only the tail part of the Green'’s func-
A. Scalar self-force tion inside the integral, we have madehe upper limit of
In the absence of an external force, a point particle withintegration(instead of the redundaft- ).
scalar Chargq experiences a Self-ford:@_G] From Eq(314) we find that the talil part of the scalar

Green’s function is given by
() =g+ u (] |7 6 y(nr)0r
(5.2

G(x,2")=—20,A(X,2' ) —2EB(X,2). (5.3

) ) ) ) Herez'=(t',z(t")), andA(x,z’),B(x,z") are the two-point
so that its equations of motion areu” ;u”=1<. The parti-  fynctions introduced in Sec. Il A and computed in Sec. IV;
cle’s world line is represented by the relatiarf§ ), where e will setx=z=(t,z(t)) after taking the derivatives. Sub-
T IS proper time, andu“(r)=dz*/dr. The self-force is stituting Eq.(5.3) into Eq. (5.2) gives f2=f2,+ 2, where
evaluated at the current position of the particle, and it in-
volves an integration over its past history. Inside the integral, ;
the retarded Green’s function is first written @$x,z(7')), fa= _quJ' (A pratvPA ) dt! (5.4
in terms of an arbitrary field point and the past position -
z(7") of the particle. The Green’s function is then differen-
tiated with respect tox?, and the result is evaluated at and
=2z(7), the particle’s current position. This is what we have
denoted byG 4(7,7') in Eq. (5.1). The upper limit of inte- t
gration isT-=7— €, wheree is a small, positive number that fg=— 2§q2f (B atv®B)dt'. (5.9
is taken to zero at the end of the calculation. The purpose of o
this cutoff is to remove the singulad-function part of the o
Green’s function which has support on the past light cone ofVe Will first work on f3, and then move on t63.
the pointz( 7). What survives is the “tail part” of the Green’s ~ The first term inside the integral of E¢5.4) can be ex-
function, which has support inside the light cone. pressed as?t,A,ta=dAyta/dt’—Aytab,vb', allowing part of

This expression for the self-force was derived by Quinnthe integration to be carried out. Similarly, we write the sec-

[46], who assumed that the scalar field was minimallyond term inside the integral as®dy A =v3dA/dt’
coupled to curvature—he considered the special éase@.  +O(vv'), and Eq.(5.4) becomes
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A ) it , [ b after differentiation. It is important to keep in mind that in
fa=—20TAatv Al . +2q f_xA,tab’U dt’. Eq. (5.10, r’ depends ort’. We will use the notatiorn/
(56) :dr,/dt’.

We first show that in Eq(5.5), the integral involving the

We now use Eq.3.6) and replaceA ., by —duA,,  time derivative ofB(x,z) is negligible. According to Eq.
= —dA,, /dt’'+O(v'). After integrating by parts, we ob- (510, B=M&'(u)/(rr"), where a prime indicates differ-
tain entiation with respect to. Changing the variable of integra-
tion from t’ to u, usingdu=—(1+v/)dt’, we have that
fa= —207[A a+0?A (+A 0 T fB,tdt’_z_(M/r_)f(r’)’_1[1_+O(v’)]5’(u)du. Here the
' ' ‘ lower limit of integration is—(r+r"), the upper limit isx,
> [t b’ ey and we neglect terms of ordef because the integral comes
+29 LwA,ab’a dt’, (5.7 with a factor ofv?® in front. Integration yieldsMov'/(rr'2)
evaluated au=0. We conclude that the second term of Eq.

wherea’ =dv'/dt’ is the past acceleration of the particle. (5.5 is of order @/r)*(M/r)v? and therefore negligible.
Because the particle is not subjected to any force except for Differentiation of Eq.(5.10 with respect to the spatial
gravity, its acceleration is linear in the Newtonian potentialvariablesx® yields
(08 SinceA(é,z’) is already linear inD, the integral of Eq. Mr
(5.7) is O(®~) and it can be neglected. The first part of the __a ,
self-force can therefore be computed without having to Ba= r2r [otw+rat(wl, .13
evaluate a single integral! And E¢b.7) shows that the self-
force depends on the conditions at the current time, and iwhere a prime still indicates differentiation with respectito
the infinite past. At this stage, the nonlocal character of th€Changing variables of integration from to u, we find that
force has(almos) disappeared. the first integral of Eq(5.5 becomes

In Sec. IVC we learned that a4’ approaches
—o,  A(x,z') behaves as K/t’. This shows that in Eq. t ) Mr 5 [ S(u)+ré'(u)
(5.7), there are actually no contributions from the infinite J' xB,adt :__2J_(r+r,)mdu
past. Any nonvanishing contribution must therefore come '
from the current timef’=t, at which the pointz(t’) and Mr

r

1 d 1

‘U=O

Z(t) are coincident. Equatiod.12 tells us that the time = e
O o o - r2 [r'(1+v!) dur/(1+o0))
derivative of A(x,z’) is zero at coincidence. Setting r r
=P, we find that the sole surviving contribution f§ is M
—2q2Avab,vb, in which the derivatives of the two-point =— r’a[l_(1+r/rf)vr'+o(vf2,af)] ,
function must be evaluated at coincidence. This was worked rer’ u—o
out in Eq.(4.13, and we arrive at (5.12
fa— _ quq) L (5.9 where, as indicated, we neglect terms that are of the second
3 ' order in the velocity, and terms that involve the particle’s
acceleration.
We may express this in the alternative form To evaluate the right-hand side of .12 is made dif-
ficult by the fact that the relation=t—t'—r—r’(t") cannot
~1 ,dg be inverted forit’, because the function' (t") is not known.
fA_§q dat’ (5.9 For the purposes of this calculation, however, it is sufficient

to give an approximate inversion. We let the radial part of the

where g=—V® is the Newtonian gravitational field. In particle’s trajectory be described by the relationR(t), so
components, the right-hand side of E¢.9 involves thatr’=R(t")=R(t—At). This we approximate byR(t)
dg?/dt=—d® ,/dt=—® ,,v°, where we have used the —R(t)At+2R(t)At>+ ..., where overdots indicate differ-
fact that the Newtonian potential does not explicitly dependentiation with respect td. Neglecting the acceleration term,
on time. we haver’ =r —v,At+0(a), wherev,=R(t). Similarly, we
We now turn to the second part of the self-force, given by

. _ . ’ obtainv,=R(t")=v,+0(a). Whenu=0, we find thatAt

E\quSE) m(ie;r;st%fiéhii two-point functioB(x,z"). Accord- —2r/(140,)+O(a)=2r(1-v,)+ O(v?a), giving r'

g fo £q.(%.29, =r(1-2v,)+0O(v?,a). Substituting this into Eq5.12), we
find

M
B(x,z')= ”—,5(u), (5.10

t Mr 5
J_ B dt’'=— r3’ [1+0(v3a)]. (5.13

whereu=t—t'—r—r’, r=|x|, andr’=|z(t")|. As before,
the field pointx=(t,x) will be identified with z=(t,z(t)) Finally, going back to Eq(5.5), we arrive at
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M. and
fB=2§q2r—3r, (5.14 t
f§=—ezj (B,—Bw?)dt'. (5.19
wherer=x/r is a unit vector pointing in the radial direction; :
its components are equal ¥3/r =r ,. The evaluation offg proceeds as in Sec. V A, using Eq.
The total self-force acting on a point particle with scalar(5.13 and the fact that the second term does not contribute
chargeq is given by the sum of Eq¢5.9) and(5.14). Thisis  to the force at this level of approximation. The result§s
=e2(M/r3)rya. The evaluation of, also involves familiar
} 2@ (5.1 steps, which we now describe.
3% ar ' The first group of terms inside the integral of H§.18
are expressed as
where, we recallg=—V® is the Newtonian gravitational
field. The equations of motion for the particle are then b
d?z/dt?>=g+f/m, wherem is its mass. The first term on the at'(A,ta_A,ta’):E(A,ta_A,ta’)_(A,tab’_A,ta’b’)v :
right-hand side of Eq(5.15 is a conservative correction to (5.20
the local gravity. This is a repulsive force§t>0, an attrac-
tive force if £<0, and this part of the self-force disappearsThe first term is immediately integrated, and by virtue of Eq.
altogether if the scalar field is minimally coupled to curva- (4.12), this gives no contribution to the self-force. The re-
ture. The second term is nonconservative; this is the wellmaining terms are absorbed into the third group of terms in

known expression for the radiation-reaction force experiq, (5.18), those which are proportional t&'. In the second

enced by a scalar charge moving under the influence of agyoyp of terms, the quantity in front of is expressed as
external forcemg.

M.
f=2§q2—3r+
r

B. Electromagnetic self-force — (A ap— Ay )=— @(A,a'b_A,ab’) +0(v').

The steps required to calculate the electromagnetic self- (5.2
force are very similar to those presented in the preceding _ _ . _
subsection. Our discussion here will therefore be brief. Welhis is also immediately integrated. Equatith13 shows
employ the same notation, and work within the same set ofhat this also gives no contribution to the self-force. We are
approximations. therefore left with the group of terms proportional 8.
Our starting point is the DeWitt-Brehme expression forThjs takes the form ofdC,,/dt’)v®’, where
the self-force experienced by a point particle with an electric
chargee [41]: Cab=208apA = A b= A+ A ap—Agp . (522

fo— —eszi(G e ’ia)uBu'y'dT/ (5.16 The time derivative is then transferred 48’ by integration
o VB TRy ’ by parts. This produces an integral that can be neglected, and
boundary terms at’' =t (the boundary terms dt = —co all

where G“E,(r, 7') is the retarded Green’s function of the vanish. Those giveC,v®? evaluated at coincidence. Using
electromagnetic fieldu*=dz*(7)/dr is the current four- Egs.(4.12 and (4.13 we find that Eq.(5.18 becomesfa
velocity of the charged patrticle, anm“'zdz“(r’)/dr’ its = —%EZ(D,abvb-
past four-velocity. With the approximations introduced in We have found that the self-force acting on a point par-
Sec. VA, we find that the spatial components of the selfticle with electric charge is given by
force are given by

t f=e?—r+ -e?—, (5.23
) ] ) ) 3
fa:_92J7 [(Gat’,t_Gtt’,a)+(Gat’,b_th’,a)Ub r 8 dt

- - b’ 1. wherer=x/r andg=—V® is the Newtonian gravitational
+(Gap 1= Gy 2)v” 1T (519 field. The first term on the right-hand side of E§.23 rep-

only the tail part of the Green’s function appears under theresents a repulsive, conservative force. The second term

integral. Using Eq.(3.21), we find that the self-force can gives the well-known expression for the radiation-reaction

again be written as a sum of two parts: f+f5, where force experienced by an electric charge moving under the
influence of an external foramg [43,44].

¢ Equation(5.23 implies that the force required to keep an
i=e2f [(Ayrat A,tta')+(A,ta’b_A,tab')Ub electric charge static in the gravitational field of an isolated
o object of masdvl must be smaller thamg by e2M/r3. Our
, derivation indicates that this correction is caused by an inter-
_ _ b ’
T (20a0A 1= Agarpt 2A ap = Aap)v” Jdt action between the electromagnetic field and the matter dis-
(5.18 tribution; this interpretation is suggested by the fact that this
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contribution to the self-force can be traced back to the two{5.24), but we substitute in it the Green’s function computed
point functionB(x,x"), which is directly associated with, in Sec. lll D to account for the presence of matter. In Sec. VI
the mass density. While this is a valid interpretation, it iswe shall prove that this substitution is appropriate, and de-
interesting to note that the correction persists even in theive additional(matter-mediatedcorrections to the equations
total absence of matter, although this cannot be revealed in@ motion.

weak-field approach. The force required to hold an electric Under the weak-field, slow-motion approximation, we
charge in place in the exact field of a Schwarzschild blacKind that the spatial components of the self-force are given by
hole was calculated by Smith and Wi9]. In the weak-field

limit, these authors recover the conservative term in Eqg. t : : :

(5.23. In this case, clearly, the effect has nothing to do with fo= _Zmzjix[(ZGatt’t’,t_Gttt’t’,a)+(5abGttt’t’,t

the presence of matter. It must instead be attributed to an

interaction between the electromagnetic field and the hole’s  +2G,p ¢ (+2G a1 b= 2Gpirtr 2) 0+ 2(2G a1 ¢
event horizon. That the conservative self-force should be so ] )

insensitive to the source of the gravitational field is quite —anrt/ya)vb 1dt’. (5.25
interesting. This robustness, however, does not seem to apply

to scalar charges: The extra force required to keep a scaldl¥ith the tail part of the Green’s function extracted from Eq.
charge in place in a Schwarzschild spacetime is always zer¢3.32, we havef=f,+fg, where

irrespective of the coupling to curvatuf47,55-58. This is
quite different from what was obtained in Sec. V A, where
we found that in the presence of matter, there is a nonzero
self-force for nonminimal coupling.

t
fa=— zmzf,m[(ZA'“a’ —Arra) T(=30apA 1t 2A tap

+ 4A,ta’b+ 2A’ta/b/)Ub+ Z(ZBabA,tt’t_ 2A,ta’b

C. Gravitational self-force

: _ _ At + A ap )02 1dt (5.26
The self-force experienced by a point particle of mass
moving in a curved spacetime is given [86,27] and
a T a a t ’
f :_Zmzjioc(ze BM’V’;’}/_Gﬁ’}/IJ«’V’ fg:_SmZJ‘in,tva dt’ (5-27}
a 8 T’ ’
+U Gy U )UPWTUR U d T, (524 Referring back to the discussion preceding &gl1), we see

oB N o , . thatfg is of the order of (nM/r?)(m/r)v?, which is a cor-
where G, (7,7') is the gravitational Green/s function, rection of order®uv? relative to Newtonian gravity. This
u® the current four-velocity of the particle, andt its past gives a second post-Newtoni@2PN) correction[52] to the
four-velocity. This result was derived for the first time by Newtonian equations of motion, and according to our ap-
Mino, Sasaki, and Tanak&6], although an incomplete at- proximation rules, this must be neglected.
tempt was made earlier by Morette-DeWitt and G{ag)]. The evaluation of, is lengthier, but the steps are familiar.
The gravitational self-force was later recovered by QuinnThe first group of terms inside the integral of E§.26) are
and Wald[27], who gave a more transparent derivation.

Their expression is technically wrong, however, because it d

incorrectly putsg “B#, . » the trace-reversed Green’s function =0 (2Atar +Aa) = — E(ZA,ta/ +Ata)

(see Sec. Il D, in place ofG*” , , in Eq. (5.24; this slight

oversight hardly diminishes the value of their paper. +(2A'ta,b/+A,tab,)vb'. (5.28

Our expression for the gravitational self-force differs from
Mino et al. [26] in two ways. First, we use a different nor- The total derivatives contributes nothing to the self-force,
malization for the Green’s function, and E§.24) is valid in ~ and the remaining terms are absorbed into the third group. In
the normalization imposed by E¢B.25. Second, and more the second group, the quantity in front ot is
importantly, both Minoet al. and Quinn and Wald27] as-
sume that the background metiig,; is a solution to the d
Einstein field equationis vacuum a condition that is incom- ~ — = (= 38apA ' + 2A apT4A aip+2A 51) +O(v),
patible with the weak-field approximation adopted in this dt (5.29

paper.[Please refer back to the discussion presented in the
paragraphs before E¢L.13.] As we have already indicated, ; ; b g .
the extension of the Mino-Sasaki-Tanaka-Quinn-Wald equaﬁgﬁytr,][lhsegtrkﬁfdp gigzglt;l;tgsrnriq)i,sabv to the self-force. Fi

tions of motion to spacetimes that contain matter is not en-
tirely trivial. In this subsection we consider only the straight-

forward modifications to the Green’s function that come va'i 280A 1+ 2A p— EA o | +0(0'?),
from the presence of Ricci-tensor terms in Eg.13. In dat’ '\ abo2nha
other words, we still define the gravitational self-force by Eq. (5.30
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and after integrating by parts, we find that this contributes A. Background spacetime and test particle

1.2 b i i 1 . . .
—3M"® 4pv° 1o the self-force. Summing the contributions | ot ys consider the background spacetime first. We are

givesf,= 1??mz.q’,abvb- _ _ _ given a metricg,; that satisfies the Einstein field equations
The gravitational self-force acting on a point particle of iy the presence of matter. We assume that the matter distri-

massm is therefore bution is bounded and describes an isolated object of mass

M; throughout this section we will refer to this object as “the

star.” We write the field equations &8*#[g]=8nT*"[g],

and indicate explicitly that the stress-energy tensor is a func-

tional of the metric. For the moment we tagg,; to be an

whereg=—V®. This gives a correction of 155l order to ~ €Xactsolution to the field equations; the weak-field approxi-

the equations of motion, and appears to represent radiatigi@tion will be incorporated at a later stage. And for the

reaction. According to the naive equations of motionMomentwe avoid adopting a specific phenomenology for the

d%z/dt?=g+f/m, this term does work on the particle at an Siréss-energy tensor; the star can always be thought of as a

average ratelW/dt=+ %m? g|2. We see that the self-force ball of perfect fIl_Jld with a specmeql equation of state.

of Eq. (5.31) seems to bring energy to the particle. In this space_’ume we insert a point particle (_)f mens.sWe
There are two major problems of interpretation associate@SSume that this particle moves on a world laf¢7) in a

with Eq. (5.31. First, the self-force seems to give rise to '€gion of spacetime that is empty of matter; the parameter

radiation antidamping instead of radiation dampings1]. IS the particle’s proper time. We write the particle’s stress-

Second, radiation reaction seems to occur apN.6rder, ~€NErgy tensor as

while it is known that the effect should appear only atPR5

qrder ina ppst-Newtonian expansion of the relativistic equa- 79B(x) = mf urul(—g) Y25,(x—z(7)dr, (6.2

tions of motion[3-5,11). In the next section we shall see that

these problems disappear once we properly incorporate ad-

ditional (matter-mediated corrections to the equations of Whereu®(7)=dz*/dr is the four-velocity and thé-function
motion. is a four-dimensional distribution with support on the world

line. It is easy to show that conservation of the stress-energy
tensor in the background spacetime implies geodesic motion:

f=——>m"—, (5.3)

VI. MASSIVE PARTICLE IN A SPACETIME CONTAINING
MATTER

aB _ a Bl _ —-1/2 _
Our task in this section is to produce a proper extension of T8 mf U%gu"(—9) "4 (x—2(n))d7, (6.3

the Mino-Sasaki-Tanaka-Quinn-Wald equations of motion
[26,27 to spacetimes that contain matter. FifSecs. VIA o4 thatr*8.=0 leads tou® .uP=0. the geodesic equation.
and B, we establish that in this context, the gravitational B Y - ; g

J ' 9 Here, a semicolon indicates covariant differentiation in the

self-forcefsy is still given by Eq.(1.3), but that the retarded  packground metric. We will keep this notation below: a
Green's function must be a solution to E@.22, which  semjicolon will always refer to the metrig, z, which will
includes Ricci-tensor terms generated by the matter. That thig\yays be used to raise and lower Greek indices.

does indeed give the correct expression for the self-force was \ye see that the particle’s stress-energy tensor involves the
presented as an assumption in the preceding sections of thig ckground metric, through the definition of proper time and
paper. SecondSec. VIO, we derive the existence of an ihe factor g) Y2 If we think of expressing the metric as a

additional term in the equations of motion, which now takesgmal expansion in powers dfl, we can similarly expand
the form the particle’s stress-energy tensor as

mu®, guP = f gt Fim, (6.1 $=0(m)+O0(mMM)+O(mM?)+-... (6.4

where £, is the matter-mediated force alluded to previ- Tg keep track of the powers ofi andM appearing in various
ously. This force originates from the change in the backquantities will extremely important in the following discus-

ground metric associated with the motion of the mass  sjon. For the weak-field application considered here, we shall
around the system’s center of mass; this motion is caused kyuncate Eq(6.4) after the first two terms.

the gravitational action of the particle on the central mass.
Third (Secs. VID to H, we compute the matter-mediated
force, and show that it contains a radiation-damping term
that precisely cancels the antidamping term in the self-force. The picture described thus far is that ofest massnov-
Such a cancellation was noticed a long time ago by Carmeiing on a geodesic of the background spacetime: the particle
[53], but in the context of a very different formulation of the has not yet been allowed to alter the spacetime’s geometry.
equations of motion. We will se€Sec. VI that within the ~ We now incorporate this effect by inserting? on the right-
weak-field, slow-motion approximation considered here, Eghand side of the Einstein field equations. Working linearly in
(6.1) reduces to the appropriate limit of the standard postithe small massn, we find that this modifies the metric by a
Newtonian equations of motidi8-5,11. term y,g, So that the total metric is nog,z+ v,s. If we

B. Self-force
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impose the Lorentz-gauge condition an,, as we have is found to be given by Eq1.3), but it is now expressed in
done in Sec. IIB, we find that the metric perturbation isterms of a Green’s function that is sensitive to the presence

given by Eq.(3.25, of matter.
We conclude that in a spacetime that contains matter, the
@By — ap NN s SV gravitational self-force is given by its usual expressibr3),
Y 4J G M'V'(X’X )XV =g but that it now involves a Green’s function that incorporates

(6.5 information about the matter distribution; this information is
oB _ o _ encoded in the tens@,,,; defined by Eq(2.14.
where G, ,(x,x") is the gravitational Green's function  we note that the renormalization procedure removes the
whose “trace-reversed” counterpart is a solution to Eq.O(m) part of the self-acceleration, which now admits the
(3.22—Green’s equation for a spacetime containing matterexpansion
If we again think of expressing the metric as a formal expan-
sion in powers oMM, we can schematically write * o dM=0(mM)+O(mM?)+ - - .. (6.9

G“BM,V,ZO(1)+O(M)+O(M2)+ cee (6.6)  Using this together with Eq$6.3) and(6.8), we find that the
particle’s stress-energy tensor is no longer conserved in the
which corresponds to Eq3.30. Expanding Eq(6.5 in a  background spacetime. Instead,
similar way, using Eqs(6.4) and (6.6), we obtain
70 ;= 0(m?M) + O(M*M?) + - - - (6.10
=0(m)+O0(mM)+O(mM?)+- - .. 6.

Yap=O(M) ( ) ( ) (6.7 This is as it should be, because the motion is no longer
This expansion omits terms of order® (and highey that geodesic in the background spacetime. In a formal setiSe,
would come from the nonlinearities of the Einstein field is how conserved in a spacetime with megics+ y.z-
equations. We shall systematically omit such terms in future
expansions, and consistently work to first order in the small C. Matter-mediated force
ma'?ﬁ? ravitational self-force corresponds to the metric per The existence of additional terms on the right-hand side
turbatio?"n acting on the particle pIf this were the onFI)y of Eq. (6.8) follows directly f rom the fact th_at '_[he _stress-
metric pe?/tﬁbation to be considerea—and we will show be—energy tensoﬂ'“ﬁ[g]_ describing t_he matter d|str|bu_t|on _de-
low that it is not—this action could be described by thepends on the metric. Because inserting the particle in the

statement that the particle now moves on a geodesic of th%pacehme has the effect of shifting the metric fran to

. . ) ; . Japt Yap, there must be a corresponding shift in the stress-
pertLrbation. e i that e new equations. of mtion reac 19y ensor. Physical, his corresponds to th factshat
P ' q he particle raises a tide on the star and induces internal

1 motions within the fluid, andii) the particle sets the star in a
U U= = S (Yt Y pra— ¥ gt Uy 5, U7 ) UCUP, small motion around the system’s center of mass. Both ef-
’ 2 ' ' fects are incorporated in the shift in the stress-energy tensor;
(6.9 as we shall see, however, the bulk motion of the star is much

. _ . . more important for our purposes. We let
and the right-hand side can be identified with,/m, the

gravitational self-acceleration. Based on Eg}7), we would ST*B=T*F[g+ y]—T*[g] (6.11)
naively conclude thaf&/m=0(m)+O(mM)+O(mM?)
+... be the perturbation of the star’s stress-energy tensor created

Equation(6.8), however, is not valid as it stands. First, we by the presence of the particle. Below we will u'sféﬁ
have already indicated that we must insert a matter-mediategt T*?[ g+ y] to designate the perturbed stress-energy tensor
force on the right-hand side. Second, we know that is  of the moving star, an@*P=T*P[g] to represent the back-
singular on the particle’s world line, so that the right-handground values—the star at rest. Becau$&’=O0O(M)
side of Eq.(6.8) is only formally defined; this expression +O(M?)+--- and Yap Can be expanded as in E§.7), we
must be regularized and the divergences must be removebave that
This renormalization of the self-force was carefully per-
formed by Minoet al.[26] and Quinn and Wal@27] for the ST*3=0(mM)+0O(mM?)+ - - -. (6.12
case of vacuum spacetimes. Fortunately, the extension of
their work to nonvacuum spacetimes is trivial, and it leads to The perturbation in the star’'s stress-energy tensor must
an identical result. The reason is that the renormalizatiomppear, together with®?, on the right-hand side of the Ein-
procedure is based on a local analysis that is sensitive only tgiein field equations. It will contribute an additional metric
the immediate vicinity of the world line. So long as the par- perturbationsg, s, over and above the original perturbation
ticle moves in a region of spacetime that is empty of matteryy,z directly associated with the particle. Physically, the new
which we assume here, the structure of the divergent terms iperturbation represents the difference between the gravita-
Eq. (6.8) is the same whether or not matter is pressmne- tional field of the moving star and the background field of the
wherein the spacetime. After renormalization, the self-forcestar at rest. Because botfi? and §T*? are quantities of the
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first order inm, the (linean metric perturbations can simply 6T'*,; the corrections generated i#g,;, andC*,; those

be added; the full metric is therefotg, s+ 69,5+ Vap - generated byy, ;. For example,
Imposing the Lorentz-gauge condition separately on both

89,5 andy,z, we have that 1 .
S SN s Chog=5 (Vg t Vg Vu) (617
ap — apB ' N AN PN
697(x) 4f G M'V'(X'X )OTH T (X)V—g'dX’". By virtue of EQs.(6.7) and(6.14), we have
(6.13
_ , C*,s=0(m)+O0(mM)+O(mM?)+---  (6.18
Using the expansion$.6) and(6.12), we see that Eq6.13
implies and
89ap=0(MM)+O(MM?)+ - - -. (6.14 STH ;=0(MM)+O(mM?)+ - - -. (6.19

The matter-mediated force correspondsitn g acting onthe  \ye also havd ~0O(M)+0(M?)+- - - and we shall use
particle. In the absence of,z, this action can be described o expansionsagf Eq¢6.4) and (6.12.

by the statement that the particle must move on a geodesic ol? The conservation equations can be expressed as

the metricg’;ﬁzgaﬁ+ 69,4 - Physically, this means that the
particle is now subjected to the gravitational field of the Ta/’fﬁ+ T“B.B+ 5T“ﬁﬁ+ 2C(“MﬂTﬁ)“+ 2F(“#B5TB)M
moving star. Mathematically, the equations of motion would ’ ’ '

take the appearance of E(.8), but with 9,5 taking the +2C( ((STAL 7Pm)

place ofy,s. There is no need to renormalize this equation: (a 8 Y N
89, is smooth on the world line. +261°7 p(TPH+ STPR+ 77) =0. (6.20

Our conclusion at this stage is that in a spacetime tha“'he first term vanishes because the background stress-energy

conta'ins matter, the equgtions of motion (.)f amassive partiCI*E:“ensor is conserved in the background spacetime. The second
are given by Eq(6.1), with a self-force given by Eq1.39 term can be ignored, because by virtue of E10), it is of

and a matter-mediated force given by second order im. The third of fourth terms have the expan-
sionsO(mM) +O(mM?) + - - .. Among the remaining terms

m
fhin= = 5 (89”4, 5+ 89”5, 0= 09 g+ U 80, 0")UUF. we have (in schematic notation I'sT=0(mM?)+- -,
6.15 CoT=0(m?M)+---, Cr=0(m?)+O(m*M)+---, 6I'T
' =0(mM?)+..., T6T=0(m*M?)+--., and oI~
According to Eq.(6.14), =0(m?M)+ - - -. We simplify Eq.(6.20 by discarding all
terms that are second ordernm Incorporating at this stage
%o/ M=0(mM)+O(mM?)+ - - -, (6.16  our weak-field approximation, we also neglect terms that are
, ) i second order itM. The remaining terms are al(mM) and
which should be compared with E(6.9). We see thatin a e gbtain

weak-field approximation, both forces contribute terms of
orderO(mM) to the particle’s acceleration. 5Taﬁﬁ+ Caﬁ TBY+ CBB T=0(mM?). (6.21)

We have successfully extended the Mino-Sasaki-Tanaka- ' 7 7
Quinn-Wald equations of motion to spacetimes containingThis equatior(partially) determinessT*# in terms of known
matter. We emphasize that this extension does not rely oguantities. Because we have only four equations for ten un-
any weak-field assumption regarding the background spac&nowns, Eq.(6.21) cannot be used without first adopting a
time. In the following subsections we compute the matterspecific phenomenology for the matter distribution. We shall
mediated force of Eq(6.19); this discussion will rely on a come back to this point in Sec. VIF.

weak-field approximation. It is important to notice that because E.21) has been
truncated to ordemM, only the O(m) part of C*_; is in-
D. Determination of T*# volved in the determination o6T**—cf. Eq. (6.18. This

The matter-mediated force of E€6.15 involves the met-  ¢@n be obtained from th®(m) part of y,z—cf. Eq. (6.7).
fic perturbationsg,; which is computed fromsT*#, the ~ BY Virtue of Egs.(3.9), (3.30, and(6.9), this is given by
perturbation in the star’s stress-energy tensor; the conversion
is given by Eq.6.13. We have already introduced the nota- yaB(t X):4f
tion T¢P=T*F+ 5T for the stress-energy tensor of the flatt ™
moving star.

We now need to gather information abaift*#. Our main  where 7*f= r*f— %(WWT’W) 7*P is the particle’s “trace-
source will be the conservation equations for the full stressreversed” stress-energy tensor. The subscript “flat” indicates
energy tensoff “#+ §T*f+ 7f in a spacetime with metric that the metric perturbation is calculated as if the particle
Japt 09apT vap- This metric comes with a connection were moving in flat spacetiméon a Newtonian trajectory
#, g+ ol*,z+C*, 5, in which T'” ; are the Christoffel around the star the right-hand side of Eq6.22 involves

a3

symbols constructed from the background metggg, only theO(m) part of 7*f—cf. Eq. (6.4).

TB(t—|x—x'],x")

[x=x'|

d3x’,  (6.22
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Another consequence of truncating H§.21) is that it

T*P(tX)
can be re-expressed as YiBt,x)=4 8

Jd (—
— T d%%' —4— Ta'B(t,X’)d:gX’
[x—x| ot
T, s+CY% TPI+CPy T /=0(mM?),  (6.23 2
. | B ’ ' 1 d8y L
in terms of the star’s perturbed stress-energy ten%@f: +2(9t2f THEX) X=X dX - (6.27)
=T+ 5§T*B. Here we use the facts th@j T“ﬁﬁ is actually

ze for the weak-field spacetimes considezred in this paper— js now straightforward to substitute Eq.26) into Eq.
T%" 4 is nonzero but is a quantity of ordé“—and (i) the (g 27) and perform the integrations. For example,
difference betweerCT, andCT is of second order imm.
Equation(6.23 implies thatT%# is conserved in a spacetime 2

; s | ~particle_ flat 2 00 2mA IN J
with metricgps = 7451 Y45, UP to terms of ordemM=. Y= —2m—+m—\|x—2+---, (6.29
We will refer to this observation below. x=2 gt o

Let us now take stock. In order to compute the matter-

mediated force of Eq(6.15 we must first calculatedg, g wherex=1+32v2+0(v?). This result simplifies consider-
using Eq.(6.13. We therefore need to findT%#, the pertur-  ably: When the time derivative acts onit generates via Eq.
bation of the stress-energy tensor associated with the star(6.25 a term of orderg~M/|Z? that can be neglected, be-
motion around the center of mass. For this we shall use Eqcause we are interested only in t@€m) part of y,;. We
(6.21), after adopting a specific phenomenology for the mat-are therefore left with evaluating?|x— z/t2, which is a
ter distribution(Sec. VIB. But Eq.(6.2]) involves also the simple task. Subjecting the other components to similar ma-
connection coefficient€”, ; computed fromyf';';;. To calcu-  nipulations, we arrive at

late this is our next task.

1
00 _ 2_ T (h 2 4
E. Computation of y{g yf'at(t’x)_|x—z| 1+2v 2(n v)*+ 0% |+ 0(mM),
The stress-energy tensor of the particle is given by Eq.
(6.2). For the purpose of computing‘;'f,; we let the particle 0a _4mva 2
move in flat spacetime, so that the metric used in(Bc) to Yral(1.X) = Ix—7 [1+ O]+ 0(mM), (6.29
define proper timer and the determinarg is 7,4, the met-
ric of flat spacetime. After changing the variable of integra- om 1
tion to z° and integrating oves(t—z,), we obtain yﬁgt(t,x)zm{ 5"*'0[1— E(Hv)z +20%P+ O(v4)]
ap = a, B _
TP(t,x)=m(dt/d7)v*v” 55(X—2), (6.24 +o(mM),

in which z(t) represents the trajectory of the particle}

=(1p) with v(t)=dz/dt, anddt/d7=(1—v?) "2 We re- wheren= (x—2)/|x— 2.
call that although the calculation is carried out in flat space-
time, the partlcle is actually movw,]g on a_geodesmggg, F. Determination of T (continued)
its motion is governed by Newton’s equation, *
As we have remarked at the end of Sec. VID, the deter-

dv Vo 6.25 mination of T% via the conservation equatidf.23) is pos-
dt —9= ' ' sible only if we adopt a specific phenomenology for the mat-
ter distribution. We shall make the simplest choice, and

where the right-hand side is evaluatedkatz(t). describe the star as a particle of méssnoving on a trajec-

It will prove sufficient for our purposes to evaluat®® to  tory Z(t) with a velocity V(t) = dZ/dt. The pointlike nature
second order iw, the particle’s velocity. After trace reversal, of the moving star will not be a problem here: First, for the

we obtain 3 purposes of this calculation the star is not subjected to its
—o_ M own field because, as we have pointed out, it moves in a
0= = 1+—v2+O(04) 03(X—2), : : . particle_ P flat . :
2 2 spacetime with metrig,z = 7,5+ v,5; Second, the sin-

- ) gularity in 69,4 is far removed from the particle’s world line
T2=mv®1+0(v°)]53(x—2), (6.26  and is therefore not an obstacle in the calculation of the
matter-mediated force of E@6.15. Notice that in the fol-

Fab— Tl 52b/ 1 — Ev2+ O(v%) lowing developments we shall formally treat battandV as
2 2 quantities of the first order im.
Following the steps leading to E¢5.24), we find that the
+20%0[ 1+ O(vz)]} S3(X—2). stress-energy tensor of the moving star takes the form
. ) ) dt/dr
To be consistent we also Taylor-expand the right-hand side Tfﬁ(t,x)z M VeVESy(x—2),  (6.30
of Eqg. (6.22 about the current time This gives V™ Gparticle
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where Vo= (1V) and dt/dr= (_gzaumc'e\/#vv)*l’z. After  tational field of the moving star, and the action of the matter-
discarding terms of ordem?, this reduces tngoz Mé&y(x  mediated force of Eq(6.15 can be described by the state-

—2)+M (Y%~ 2 8ap772) 85(x), TP, =MV25,(x), and Ment that the particle must move on a geodesic of this
Tibzo(sz)_ The perturbatioT# can be obtained from metric. In the next subsection we will use this statement to

these results by removing the background valug®? produce the equations of motion of the particle under the
=M 85(x) and TO3=Tab=0, " sole action of the matter-mediated force. In this subsection

Substitution of our expressions f&T*# into Eq. (6.2) W€ calculatqgj;ﬁ. . .
leads to equations of motion for the star. The spatial compo- "€ metric of the moving star differs frogy,;, the met-

nents of the conservation equation imply ric of the star at rest, byg, sz, which can be computed from
Eq. (6.13. Keeping only theO(mM) part of this equation,
dvd 1 9 o, d which involves theO(1) part of the grqvitati_onal Green'’s
dt 2 @ Yiatt Zp Viat™ O(mM), (6.3)  function—cf. Egs.(3.3) and(3.30, we write this as
in which the right-hand side is evaluatedsat 0. We find 5gaﬁ(t,x):4f TP =XX) a4 ommd),
that the time component of the conservation equation holds Ix—x'|
as an identity, but this confirms the necessity of including (6.35

v~ Qpariicle IN OUr expression for the stress-energy tensor. o
It is a simple task to evaluate the partial derivatives of Eqwhere 5T*#= 6T*#~3(n,,6T*") n*#. At the same time,
(6.31 starting from the expressions listed in E§.29; in  we recall from Sec. Il A thag,s differs from 7, by a
this procedure we use E(6.29 to dismissdv/dt as a term  quantityh,z=—2® y,; that can expressed as
of orderM/|Z2. After evaluating the results at=0, we ob-
tain TaB(+_|v_ ! ’
T*B(t—|x—x],x )d3x’, 6.36

haﬁ(t,x):4f ,
dv. m [x—x']|

3.
DR 2_ _(7.1)2 4
at |Z|2 1+2v 2(Z v)°+0(v?)

z-3(z- v)v]
where T is the trace-reversed stress-energy tensor of the
+0(mM), (6.32 background spacetime. Adding Eq$.35 and (6.36), we
find that
wherez=27/|Z. The motion of the star is now determined to a
degree of accuracy sufficient for our remaining calculations. Uap=NaptNog, (6.37)
Equation(6.32 confirms thatV, and thereforeZ, are to be
treated as quantities of order. We note that in the present whereh} ;=h,z+ 69,4 is given by
context in which the star has become a point mass, the mo-
tion of the particle is still governed by E¢6.25), but that the

orthe par -G TeA(t—|x—x'[,x")
gravitational fieldg now takes the explicit form hjﬁ(t,x):4f | | d3x’ +O(mM?),
X—X’
M . (6.38
g=——z (6.33
|2

and where T¢#=T#—1(7,,T#")»** can be calculated
Equation (6.25 determines the vectorg(t) and v(t)  from Eq. (6.34. To first order inm, this givesT2’=$T%,
=dz/dt that appear in Eq6.32. ﬂa=TSa, and?:bzééabTSO_

The perturbed stress-energy tensor of the moving star is”\yi shall describe in some detail the computatiom¥,

now completely determined. Its final expression is obtaineqNe first Taylor-expand'oo(t—|x—x’| x') about the current
by substituting the potentials of E¢6.29 into the results . 00 . * ’
time t and expres$, - as

given before. This yields

mM 1. T%t,x’ 3
TO(t,x) =M 83(x—2Z) — —— 1—2v2——(z-v)2+0(v4)} hgozsz)d%—z— T2t,x")d3x’

|Z| 2 |X—X’| ot

X 83(X) +0O(mM?), 2 3
J 00, 3 14 00
+— | T. (t,x")|x—x'|d X'— 2 — | Te(tx)
T2(t,X)=MV285(x), (6.34 at 3 a
and T2= O (m2M) X|x=x"|2d3" + - - - + O(mM?). (6.39
a .

We will see that truncating the series after four terms gives
us sufficient accuracys; it is very important, however, to keep

The metricgy ;= gas+ 89, Was introduced in Sec. VIC, the last term involving three time derivatives. After substitu-
in the paragraph following Ed6.14). It represents the gravi- tion of Eq.(6.34), we obtain

G. Computation of gy
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2 1 (93 Oa 4 :
h%0= 2 +M ?|x—z| —3M $|x—z|2+ . h22(t,x) = W+4mga+0(1.5F>N,m|\/|2). (6.44
2mM \ d A 7?2\ Relative to the leading, “Newtonian” term ih(°, the first
TN H+2mME H_mMM 217 term on the right-hand side of E¢6.44) represents a 05
correction, while the second term is &NLcorrection. Be-
1 EXEY causehg’(a couples to the particle’s velocity?, these post-
+ gmM|X|2EH+ - +0(mM?), (6.40  Newtonian labels should actually be promoted tnBnd

1.5prN, respectively; the error term is themx2and hga has
been computed to a sufficient degree of accuracy.

The metric of the moving star is now completely deter-
mined. We have, from Eq6.37),

wherex =1-2v2%—}(z v)?+0O(v?. Itis a straightforward
task to evaluate the time derivatives contained in B0);
for this we involve Eq.6.32 and we make sure to discard
all terms that are not first-order in botlhandM. For the first

0
line (FL) on the right-hand side of E@6.40 we obtain (1—h*°)+O(mM2),

*
Y00~

2M X-Z ¥ =—h%+0(mMm?),
:lx Z|_mM| || |3[1+O(02)] gOa * ( )
- X||Z

FL
9%p= Sap(1+h2%)+0O(mM?), (6.49

- Em|\/|x- %[1+ O(v?)]+0(mM?),

3 dt (647

with h%° and h® given by Eqgs.(6.43 and (6.44), respec-
whereg is defined by Eq(6.33. In Eq. (6.40, the first set of tivel_y. In those e>_<pressionsz(t) re_presents the Newtonian
“..."terms represent a correction of ordef to the second motion of the particle around the fixed staft) =dz/dt, and
term of Eq.(6.41); these can be safely ignored. The lastdv/dt=g=—Mz2|Z°. On the other handZ(t) represents

member of Eq(6.41) comes from the third-derivative term the orderm motion of the star in the gravitational field of the
in Eq. (6.40; this will be seen to give rise to a radiation- Particle, V(t)=dZ/dt, and dVv/dt is determined by Eqg.

damping term in the matter-mediated force. For the seconép-32.

line (sL) on the right-hand side of E@6.40 we find

sL=— 2m—'v'[1+0( 2)]— 2mM [ 1+ 0(v?)]
FIE R ER
+0(mM?). (6.42

Here the third-derivative term in E@6.40 is seen to give
rise to theO(v?) correction in the second member of Eq.
(6.42), and the “ - -” terms are responsible foD(v*) cor-
rections in the first member.

Gathering the results, we arrive at

HO0 2™ mM 2Jrx-z 2 dg
SOOT L7 T W | 2 ) 3™
Z-v
—2mM— +O(2PN,mM?), (6.43

7°

in which O(2PN) regroups all theD(v?) correction terms
displayed in Egs(6.41) and (6.42. We note that on the
right-hand side of Eq(6.43), the first member is of ordeb
and is therefore designated as “Newtonian.
member is of ordem/|Z relative to®, and it represents a
post-Newtoniar(1PN) correction[52]. Because they involve
an additional power ob, the last two members are Bi%
corrections.

The calculation 0h%® involves similar steps, but the com-

putations are substantially simpler. We simply quote the re-

sult:

H. Motion of the particle under the matter-mediated force

In this subsection we calculate the motion of the particle
under the sole action of the matter-mediated force; we ne-
glect for now the action of the self-force, which will be in-
corporated later. In this subsection, therefore, we shall write
the equations of motion as® ;u=f . The force could be
calculated directly from Eq(6.15 by substitutingsg,,z ob-
tained from Eq(6.45. It is easier, however, to proceed in the
following way. First, we recognize that the equations of mo-
tion are equivalent to the statement that the particle moves
on a geodesic of the metr'g;‘,zﬁ:gaﬁwL 89,5 Second, we
generate the equations of motion by constructing a suitable

Lagrangian function_(x,x) which we then substitute into
the Euler-Lagrange equations. The practical advantage of
this method is that it allows us to straightforwardly switch
from a world line parameterized by, the particle’s proper
time on the background spacetime, to one parameterized by
t, the time coordinate. In the following we will denote the
updated trajectory of the particle by(t) and its updated

velocity by>'<(t)=dx/dt. The Newtonian values will still be

" The secondienotedz(t) andw(t). Because the matter-mediated force

provides a correction of orden to the Newtonian motion,
we havex(t)=2z(t)+0O(m) and x(t)=v(t) +O(m). In the
next subsection we will abolish this distinction of notation
and usez andv to refer to the updated trajectory.

We take the Lagrangian function to be

L(x,X)=1—\ =gk x*x?,

(6.46
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wherex®=(1x); as we have indicated, we usas a param-  dx@ M ., 5m .

eter on the world line. We substitute the metric of B8j45 7 =~ = 53| | 1HX — 77 —4x V| (X*=Z%)

. o t Ix—2Z| [x—2Z|

into Eq.(6.46), and to simplify we expand the square root to

second post-Newtoniaf2PN) order; in this procedure we dg

also discard terms that are second ordekinThe result is —(x—=2)- (4x 3V)xa+ A(Xx—2)- XV2| + dt
1., 1 1. 3 +0(2PN,M?). 6.5

L= x4 Sh2+ ox! =i+ 2hi%?+0(2PN,M?). ( ) (659

2 2 * 8
(6.47  We recall thatZ(t)=0(m) represents the trajectory of the
moving star, thav/(t)=dZ/dt is determined by Eq(6.32,

After substitution of Eqs(6.43 and (6.44), we notice that and thatg, given by Eq.(6.33, is the Newtonian gravita-
the Lagrangian contains a termmMz-v/|Z°. This is a tional field of the star at rest. Equatiq6.51) governs the
function of time only which does not affect the equations ofmotion of the particle under the sole action of the matter-
motion; we therefore remove it from the Lagrangian. Themediated force. We see that the last term, which represents a
Lagrangian also contains a termdmx- g. This differs from  1.5PN correction to the Newtonian equations of motion, gives
4mx-dg/dt by a total derivative—4md(x-g)/dt that can rise to radiation damping. This term, however, is precisely
also be deleted from the Lagrangian. The final result is aiganceled out by the gravitational self-force of E5.31). We

effective Lagrangian conclude that the motion of the particle, under the combined

action of the self-force and the matter-mediated force, is con-
1., 3. 1. mM X7 servative at this level of approximation.

Ler=5X ( 1+ x + =X == 1+—
eff 2 |x Z| 8" |4 2|72 : : :
I. Summary and comparison with post-Newtonian theory
_ ﬂ)'(_\H i1 ~%+O(2PN M?2) (6.48 This is the end of the line, and we better summarize. A
|| 3 d ' particle of massn moves in the gravitational field of a star of

massM. The particle’s trajectory is denoteait) and its ve-
that is ready to be substituted into the Euler-Lagrange equdecity is v(t) =dz/dt. The star is also moving, on a trajectory
tions. Z(t) with a velocity V(t)=dz/dt. We let p=z—Z be the
The first member of the Euler-Lagrange equation is separation between the two objects, and we use the notation
p=|z—2Z|. We letg=—MZ|Z*® be the Newtonian gravita-

d aLeff bdk 3M 3M tional field of the star at resg* = —Mplp? is the gravita-
dt : dt |x Z (X X)X+ e V+x-Z)x2 tional field of the moving star, andg=g* — g is the differ-
28 x| ence between the two. The spatial components of(&qd)
AmM AM then give
a a
FEERPE ©49 do _feer_ fom 652
dt T m T Tm :

where A= (1+3x?+3M/|x—Z|)5%°+x3x. To obtain
this we have used Eq(6.32, appropriately truncated at for the particle’s equations of motion. The gravitational self-
Newtonian order, to evaluativ®/dt. The second member is force was computed in Sec. VC and is given by

a a
Ihet _ X —2 ( +§>'<2) M X2 fer__ 1199 o 2pn,m2). (6.53
X3 |X—Z|3 2 |X|3|Z| 2|Z|2 m 3 dt
mM aM . 11 dg? The matter-mediated force was computed in the preceding
N 2|X||Z|3za+ |X|3(X V)X 3MG0 (6.50  supsection and is given by
The equations of motion are obtained by equating (Bct9 fom _ = 5g+g*| v2— 5_m_4v V)
to Eq.(6.50 and solving fordx?/dt. This requires the inver- m P
sion of A2", which can be performed approximately to first
: . - . . i M 11 dg
post-Newtonian order. To simplify our expressions we re +—[p-(dv—3V)v—4(p-v)V]+ —m—
placez? by x24+O(m) in the terms proportional tmM, and p® 3 dt
we also replace by x—Z=x+0O(m) in terms that are al- )
ready linear inm. (It is of course important that we make +0O(2PN,M?). (6.54
these substitutionafter varying the Lagrangian, and not be-
fore) The final form of the equations of motion is obtained by
The final result is combining Eqs(6.52—(6.54). The result is
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and this contains no trace of a radiation-reaction force. The

motion of the star, on the other hand, is governed by Eg.
(6.32, which we rewrite as

—p-(4v—3V)v+4(p-v)V|+0O(2PN,M?),

APPENDIX A: HADAMARD FORM OF THE SCALAR
GREEN'S FUNCTION

dv. m , 3[pv 2 In this appendix we continue our discussion of the two-
a8 1+2vt=3| =] |p=3(p-vv point function A(x,x'). While the results derived here are

not required for the computation of the self-forces, they are

+0(2PN,mM). (6.5 interesting in their own right. Our main objective is to show

that the scalar Green'’s function computed in Sec. Ill B can be

In going from Eq.(6.32 to Eq.(6.56 we have allowed for cast in the Hadamard forfi29]
the fact thatp=z—2Z=z+0O(m).

The reader familiar with post-Newtonian thedlas pre-

sented, for example, in R€i60]) will have undoubtedly no-

ticed a similarity between the calculations presented here anlqere o(x,x') is Synge's world functiori61], equal to one-
the standard post-Newtonian treatment of a system of poir}Iiahc ’the 'squared geodesic distance bétweemnd NG

masses. While similarities are surely present, the differenc (x,x') andu (x,x') are two-point functions that are smooth
are important. The most noticeable difference is concerne to=0, andd(x,x') is a time-ordering function, equal to 1

with self-field effects, which are sometimes swept under theif x is in the causal future ok’ and zero otherwise. The

rug in the post-NeV\_/tonlan ”ea‘me”t—‘he.mass of e_ach bOd?.(alculations presented in this appendix rely on methods in-
is simply renormalized every time an infinite self-field ap- troduced by Thorne and Kova¢2]

pears in the equations. By contrast, the computations pre-
sented in this section are completely free of infinities—those
have been taken care of, once and for all, during the con-

G(x,x")=0(x,x")[u(x,x")8(o)+v(X,x")6(—0o)].
(A1)

1. A(x,x") on the light cone

struction of the self-force.

We go back to Eq(4.6) and seek to evaluat&(x,x’) in

Equations(6.55 and(6.56 should be compared with the the situation where the pointsandx’ are linked by a null
equations derived from a standard post-Newtonian treatmenfeodesic of the flat-spacetime background. In this situation

— the Einstein-Infeld-Hoffmann equations of moti¢)].
These arg¢54]

4M  5m

dov M
—=— |1 —— —+v?+2V?
dt p° p P

3(p-V\?
—4v-V—§<T) p—p-(4v—3V)(v—V)]

+O(2PN) (6.57
and
dv_mff _4m 5M a4y 3(p-v)\?
dat 37 p o R AR
+p-(4V=3v)(v—V) [ +O(2PN). (6.58

If we eliminate all terms of ordem? and M? from Eq.

(6.57), we recover Eq(6.55. If, on the other hand, we re-

move all terms of ordem? and mM from Eq. (6.58, we

At=R, or s=e. (Recall thatAt=t—t’ and R=|x—x'|.)
This means tha! and »? are both zero, and that the vector
of Eq. (4.5 reduces ton= 3 cos#R. (Recall that the third
axis is oriented alon&=x—x'.) Integrating overp, we find
that Eq.(4.6) becomesA(x,x') =31, ®(xo+ 7)d cosé. Af-

ter changing the variable of integration o= (cosé+1),
this becomes

1
A|c(X,X')=JO<I>(§(?\))d?\, (A2)

where

EN)=X"+N(x=X") (A3)
is a vector that interpolates linearly betwerh (when A
=0) andx (when\=1). In Eq.(A2) we have indicated with
the label “Ic” that A(x,x") is evaluated on the light cone. We
see thatA.(x,x") is the average of the Newtonian potential
® over the straight line joining andx’.

Up to now, our view of the two-point functioA.(x,x")
has been that it is the restriction A{x,x") on the light cone:
the pointsx andx’ must be related by a null geodesic of the

recover Eq(6.56). Our results are therefore perfectly consis- background Minkowski spacetime. The right-hand side of

tent with the standard post-Newtonian treatment.

Eqg. (A2), however, stays meaningful even for points that are
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not so related, and we take this opportunity to extend the\ straightforward computation, using—g(x)=1—2®(x)
definition of Ai(x,x") to arbitrarily related points. This will - andd,z o™= — 7,4, reveals that to first order in the New-
be our new point of view: The two-point functiof (x,x") tonian potential, the van Vleck determinant is given by
shall be defined for arbitrary pointsandx’ by Eq.(A2). In
the case wherex and x’ are null related, themA(x,x’) A=1+2D(x)+20(X')+ 7P, Q. (A9)
=A(x,x").

We now show thatA(x,x’), as defined for arbitrary
points by Eq(A2), is intimately related to the world function e85 0 =(At2+R2) %9, A — 2(x—X"V(J.— J-,
o(xx'). defined by[62] 7P 005 Q= (A°+R?) 60 Aic— 2(X—X")*(da— dar) A

The last term is evaluated from E@A8), and we obtain

—4A, (A10)
de” §B , :
o(x,x')== f Jup(€* )d)\ an d\, (A4)  where we have used the fact tha(x,x"), as defined by
Eqs.(AZ) and (A3), depends only on the spatial variables
and x’. Calculating the derivatives is easy, and we get
where £%(\) describes the(unique geodesic linking the WA= IND AN, duA=[(1-N)D dN, and dapAg
pointsx andx’; )\ is an affine parameter scaled in such a way— IA(1— A)(I) and\. Inside the mtegrals the derivatives of
that £4(0)=x* "and £%(1)=x*. The world function is to be & are taken with respect ) and the various factors involv-
calculated with the metric of Eq2.3). ing A come from differentiating this vector with respect to
In Eq. (A4), the geodesig differs from a straight line by  eitherx or x’. Substituting this into Eq(A10), we have
a quantity of orderd. Because Eq(A4) is an action prin-
ciple for the geodesic equation, this error of the first order in
the specification of the curve produces an error ofstheond
order ino. To calculateo to first order in®, it is sufficient
to takey to be a straight line. The appropriate relations are
then £%(\) =x® +\(x*—x*"). Substituting als@,s= 7.4
—2®(& xap In Eg. (A4), we obtain (A11)

1
7P, Q= (A2 + Rz)f A1—\)V2Dd)
0

1 1
—2(x—x’)afo (2N — 1)c1>,adx—4f0 PdA.

In the first integral we replac€?® by 4mp. In the second
integral we replac® ,(x—x")® by d®/d\, which allows us
(A5)  tointegrate by parts. After simplification, we arrive at

a(x,x")=c"(x,x")— (A t2+R2)f D(&N))dN,

1
whereo™(x,x") =3(— At?*+R?). _ 70 5 V=4 ( A2+ Rz)f AN(1—\)pd\ —2d(x)
Comparing Eqs(A2) and(A5), we arrive at 0
r(x,X") = 0™H(x,X) ~ (A2 + ROAL(XX').  (A6) —20(x"). (AL2)
Substituting this into Eq(A9), we obtain our final expres-
We see that the two-point functiol(x,x’) determines by sjon for the van Vleck determinant:
how much the squared geodesic intergaliffers from its
- I 1
flat-spacetime value. A(x,x") =1+ 4m(At2+ Rz)f N(1=N)p(&N))dN.
0
2. van Vleck determinant (A13)

The scalarized van Vieck determindAt,63 plays a fun- We see that\ (x,x') differs from 1 if and only if the straight

spacetime. This is defined by distribution.
A(x,x')=— de(_aaﬁ’fﬂ ’ (A7) 3. A(x,x") near the light cone
Vg(x)g(x") We have previously evaluated the two-point function

] ] i ] A(x,x") in the case wherg andx’ are connected by a null
wherea(x,x’) is the world function defined in E§A4), and  geodesic of the background Minkowski spacetime. We now
g(x) is the metric determinant evaluated>atThe general  jmprove on this result, by allowing the parameter
theory predicts that in EGA1), u(x,x’) is the square root of
the van Vleck determinant. We will verify this result with our

— 2 2__ 2 2
weak-curvature scalar Green’s function. In order to do so we e=\s"—e’= 5\/“ -R (A14)
must computeA (x,x").

We rewrite Eq.(A6) in the formo=¢"—Q, where to be nonzero. We will, however, assume that1, and

evaluate Eq(4.6) in this limit. This is the near-light-cone
QXX") = X (X=X D)X= X") "Aj(X,X"). (A8) approximation.
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To second order ir, the vectory of Eq. (4.5 readszn!
=gsinfgcosg, n’=esindsing, and °=e[1+ 1(ele)?
+0(&*)]cosh. We substitute this intd (x,+ ), expand to

second order irz, and then integrate over the angles. After

re-introducing the parametar= 3(cosé+1), we obtain
1 g2 r1 .
A=A|C+47782J A(1—N\)pdh + EJ (2N —1)® _n?d\
0 0

1 ~ ~
_ng A(1—=N)P 4pn?nPdN+O(e?). (A15)
0

Here,A; is the restriction ofA(x,x’) on the light cone, the

quantity given by Eq(A2), andn is a unit vector pointing in
the direction ofx—x’. The quantities inside the integrals are
evaluated at the poinf(\) defined by Eq.(A3), and the

PHYSICAL REVIEW D 65 084001

where G™{(x,x") is the retarded Green’s function of flat
spacetime, given by E@3.3). This can be re-expressed as

G"(x,x") = 8(x,x") 8( "), (A19)
where 6(x,x") is the time ordering function introduced in
Eq. (A1), ando™(x,x") =1 (— At?>+R?).

To calculate the Green’s function we need to take into
account the fact that both(x,x") andB(x,x") are zero ifx
and x’ are spacelike relatedin the flat-spacetime back-
ground, and ifx’ lies to the future ok. We express this as

AX,X" )= 0(x,x") 0 — ™Y A(x,x"),
B(x,x")= 0(x,x")0(— c"™)B(x,x"), (A20)

in which the #-functions explicitly enforce the vanishing of

derivatives of® are taken with respect to this vector. To get he two-point functions except whe is in the causal past

the first integral we have used Poisson’s equatiGigp
=4p.

In the second and third integrals of E4\15), the deriva-
tives of @ in the direction ofn can be expressed as deriva-
tives with respect tox: dd®/d\=2ed ,n? and d?d/d\?
= (2e)?® ,y;n?nP. After substitution into Eq(A15) and an

integration by parts on the last term, we find that these inte-

grals cancel out. Our final expression for the two-point func
tion is therefore

A(x,x’)=A|c(x,x’)+4ws2fl)\(1—)\)p(f()\))d)\-l—O(sA).
0
(A16)

We recognize here the same integral over the mass densi(%eﬁcicient
that appears in our previous expression for the van Vlec

determinant, Eq(A13). This allows us to rewrite EQA16)
as

2

2

A(X,X")=Ac(x,x")+ [A(x,x")—1]+O(&%).

8R?
(A17)

In this calculation we have used the fact that the fadttt
+ R? appearing on the right-hand side of EA13) is equal
to 2R[1+0(&?)].

Equations (A16) and (Al17) indicate that unless the
straight line connecting to X’ intersects the matter distribu-
tion, A(x,x’) makes an excellent approximation to
A(X,xX").

4. Scalar Green’s function

of x. In what follows we will keep the time-ordering function
implicit, and re-insert it at the end of the calculation.
Differentiation of Eq.(A20) gives

O A= 0(— ") 3, A— 8™ (1+2At4,) A

+6' (o) AL2A, (A21)
‘where the prime on thé-function indicates differentiation
with respect tor™ To calculate the time derivative @f in
the second term, we use E€A16) which we copy asA
=A—o™C+0O(¢™?), where C=2m/A(1—\)pdX\.
Dropping all terms proportional to™, we find that the co-
efficient of the §-function becomes—A;—xC, where y
= At?+ R?. Working now on the third term, we find that the
of the differentiated-function is 3 A — (A
K1 C) o™+ 0(¢™?), The term that is linear i can be
2X%“)o
transferred to the coefficient of th&function with the help
of the distributional identityo 6’ (¢) = — 8(o). The end re-
sult is

— p( _ flat "_E flat l 1o flat
O A= 0(= 0" 3 A= 5 xCO(™) + 5 XA (™).
(A22)

We substitute this into EqA18). With the help of Egs.
(A19) and(A20), we obtain

G= ( 1+ XC) 5( o_flat) _ XA|C5/(0,ﬂat) + 9( _ O_flat)
X[ =28, A—2£B]. (A23)

We can re-express the first three terms in the form (1
+ xC) 8(c™'— yA,.). From Eq.(A6) we recognize the new

We now have the necessary tools to cast the scalgigument of thes-function as the world function—_(x,x’) of
Green’s function calculated in Sec. 11l B into the Hadamardth® weakly curved spacetime. And we recognize the factor

form [29] displayed in Eq(Al). Recall from Eq.3.11) and
(3.14) that our expression for the Green’s function was

G(x,X) =G (x,x") = 2,/ A(X,X") — 2EB(X,X"),
(A18)

1+ xC in front as the square root of the van Vleck determi-
nant, calculated in EqA13). Finally, because the quantity
within the square brackets in EGA23) is already of the first
order in the Newtonian potential, we can safely replafd
with o as the argument of theé-function. The only remain-
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ing task is to re-insert the time-ordering function that has \/ﬁsinao SiNgo=—Y, SuCOSHy=—2z+e,
been left out of our expressions. (B4)
Our conclusion is that the scalar Green’s function of Eq.
(A18) can indeed be cast in the form of EGAL), with u which must be solved fos,. It is not hard to show that this
=AY2 For the weakly curved spacetimes considered in thismounts to solving the quadratic
paper, the world functiolr(x,x") is worked out in Eq(A6),
the van Vleck determinani(x,x") in Eg. (A13), and 1 1
i X sé—E(r2+r’2)sg+E(r2—r’2)2=0, (B5)
v(X,X")= =23 A(X,X") —2&B(X,X") (A24)
: . . ~ wherer =|x| andr’=|x’|. This finally givessy=3(r+r’).
Is the tail part of the Green’s function. HerA(x,x’) and Going |b¢'-Lck to Eq(|B3|), we see tﬁ/a?we r’r?usi (distin(_;uish
B(x,x") are the two-point functions introduced in Sec. lll A. petween the casest>r+r’, for which 25 =At, and At
<r+r’, for which 2s_=r+r’. This gives
APPENDIX B: TWO-POINT FUNCTIONS FOR THE
POINT-MASS POTENTIAL rAr 4R

M
A(X,X')=—EG(At—R) 0(r+rl_At)lnr+r’—R

In this appendix we evaluate the two-point functions
A(x,x") and B(x,x’) for the special cas&(x)=—M/|x|.

The results derived here were first obtained by DeWitt and At+R
DeWitt [48]; we include this discussion here for complete- + B(At—r—r’)lnm_ R (B6)
ness.

We begin with Eq(4.6), which we rewrite as where, we recally =|x|, r'=|x'|, R=|x—x'|, and At=t

M 1 —t'. For completeness we have re-inserted the step function
A(X,X")=— _f — = d0Q, (81  0(At—R) that was left implicit in Eqs(4.6) and (B1). We

4w ) | 9=l see that the two-point function undergoes a change of behav-
ior whenAt=r+r'. This time delay corresponds to a signal
propagating with the speed of light fromto the center(at
which the Newtonian potential is singuland then on tx’.
For shorter delaysA(x,x’) is time-independent; for longer
delays, A(x,x") depends explicitly onAt. This sudden
change of behavior makes the two-point function slightly
suspicious: Although our calculations are based on the as-
sumption that the spacetime is weakly curved everywhere,
the change of behavior is dictated by a region of spacetime—
the center—in which the Newtonian potential is decidedly

where %(s, 6,¢) is the vector of Eq.(4.5 with s=3At
=1(t—t"), and 5o=—Xxo=—3(x+x’). The point 7,, at
which the central mass is locatéoh a coordinate system
centered aty=0), will be represented by the ellipsoidal co-
ordinates §,, 6, o). We recall thae=3R= 3|x—x'| is the
ellipticity of the coordinate system.

To evaluate the integral of E¢B1) we invoke the addi-
tion theorem in ellipsoidal coordinat¢§4],

0 |

1 AT (I—=m)! not small.
—_ _ m m
lp— 9 e Eo m;. (=1 (I+m)! Pris</e) The computation oB(x,x") is quite simple for the poten-
tial &=-M/r, for which the mass density ip(X)
XQ"(s-1€)Yin(00,h0)Yim(0,¢),  (B2)  =M§(x). Substituting this into Eq4.2) gives

wheres_ (s.) is the lessergreatey of s ands,, and P["

andQ" are associated Legendre polynom{&s]. Substitut- B(x,x')= ﬂé(At_ r—r'). (B7)
ing this into Eq.(B1), we find that the integration over the rr'

spherical harmonic¥, (6, ¢) is zero unlessandmare both

zero, and we obtailh=— (M/e)Py(s- /€)Qq(s- /e), or Again we notice a suspicious dependence on the conditions
at the center.
M 2s_+R Despite the notes of caution, the results derived here for
A=——1In (B3) the special casé=—M/r are in complete agreement with

R"2s.—R our general results of Sec. IV. First, E@®7) is identical to

using the known forms for the Legendre functions of zerotth' (4.18, Wh!Ch was obtained as th? leading te_rm in a mul-
order. tipole expansion foB(x,x"). This indicates that in fact, our
result for this two-point function is quite insensitive to the
conditions near the center. Second, BBf) implies that near
coincidence R small and smaller thait), A(x,x") can

be approximated by

The hard part of the calculation resides with the compu
tation of s5. Recalling thatx and x’ differ by a vectorR
pointing in thez direction, we writex=(X,y,2), X' =(X,y,z
—R), and we haven,=(—x,—Yy,—z+3R). This and Eq.
(4.5) give us the equations

2M

1
. "= — +
Vs —e? sinfy cosgo=—x, ACGXT) rar! !

., (BY)

2
- 4
L.
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which could be recast in the form of E@t.11). In particular,
differentiation of Eq.(B8) with respect tax andx’ confirms
Eg. (4.13. In this case we haved ,,=(M/r3) (8

—3r 4 p), with r ,=x3r. Third, Eq.(B6) implies that for
long delays At large and larger thaR), we have the ap-
proximation

2M
AXX")=———

Attt 3

1 R)Z i
37 O (BY)
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which is evidently compatible with E¢4.14). This compari-

son between our general results of Sec. IV and those of this
appendix shows that any aspect of the two-point functions
that might be sensitive to the strong-field portion of the
spacetime near the center will not be involved in the compu-
tation of the self-forces. This statement provides a further
validation of the work of DeWitt and DeWitf48], which

was entirely based on the special cdse —M/r.
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