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Glass-like universe: Real-space correlation properties of standard cosmological models
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After reviewing the basic relevant properties of stationary stochastic proc&SBs defining basic terms
and quantities, we discuss the properties of the so-called Harrison-Zeldovich like spectra. These correlations,
usually characterized exclusively kspacdi.e., in terms of power spectia(k) ], are a fundamental feature of
all current standard cosmological models. Examining them in real space we note their characteristics to be a
negativepower law tail&(r)~ —r 4, and asub-Poissoniamormalized variance in sphereg(R)~R™4InR.
We note in particular that this latter behavior is at the limit of the most rapid deed® () of this quantity
possible forany stochastic distributioricontinuous or discrejeThis very particular characteristic is usually
obscured in cosmology by the use of Gaussian spheres. In a simple classification of all SSP into three
categories, we highlight with the name “superhomogeneous” the properties of the class to which models such
as this, withP(0)=0, belong. In statistical physics language they are well described as glass-like. They have
neither “scale-invariant” features, in the sense of critical phenomena, nor fractal properties. We illustrate their
properties with some simple examples, in particular that of a “shuffled” lattice.
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[. INTRODUCTION Universe. The aim of the present paper is twofold. First, to
clarify the statistical properties in real space of these distri-
In standard theories of structure formation in cosmologybutions, which have been almost completely overlooked in
the density field in the early Universe is described as a perthe literature on the subject. And secondly, through this dis-
fectly homogeneous and isotropic matter distribution, withcussion, to relate and compare this model of the primordial
superimposed tiny fluctuations characterized by some patdniverse to correlated systems encountered in statistical
ticular correlation propertie®.g.[1]). These fluctuations are physics. We attempt to make the paper as self-contained as
believed to be the initial seeds from which, through a com{ossible, and not excessively technical in its discussion ei-
plex dynamical evolution, galaxies and galaxy structuregher of cosmology or statistical concepts, in the hope that it
have emerged. In particular the initial fluctuations are takenmay be easily accessible to both cosmologists and statistical
to have Gaussian statistics and a spectrum which is exactlphysicists.
or very close to, the so-callddarrison-Zeldovich(HZ) [2,3] The HZ spectrum arises in cosmology through a particular
or “scale-invariant” power spectruniPS. Because fluctua- condition applied to perturbations of Friedmann-Robertson-
tions are Gaussian, the knowledge of the PS, or its FourieWalker (FRW) models, which describe a homogeneous Uni-
conjugate, the real space correlation function, gives a converse in expansion. This condition—commonly referred to in
plete statistical description of the fluctuations. The HZ typecosmology as “scale invariance” of the perturbations—gives
spectrum was first given special importance in cosmologyise to a spectrunfcommonly called the “scale-invariant”
with arguments for its “naturalness” as an initial condition perturbation spectruprwith P(k)~k at smallk. All current
for fluctuations in the framework of the expanding universestandard cosmological models of structure formation in the
cosmology, and it is in this context that the use of the termUniverse assume a spectrum exactly like this, or close to it,
“scale invariant” to designate it can be understood. It subseas the initial condition for perturbations in the Universe. In
quently gained importance with the advent of inflationarysuch models there is at any time a finite scale corresponding
models in the 1980s, and the demonstration that such modets the causal horizon, which increases with time, and below
quite generically predict a spectrum of fluctuations of thiswhich causal physics can act to modify the spectrum. This
type. Since the early 1990s, when the Cosmic Backgroundausal physics depends, in general, on the details of the
Explorer (COBE) experimen{4] measured for the first time model, i.e., on the nature of its content in matter and radia-
fluctuations in the temperature in the cosmic microwavetion (or other forms of energy until a characteristic time
background radiatiofCMBR) at large scales, and found re- (the time when matter and radiation have comparable densi-
sults consistent with the predictions of models with a HZties), after which purely gravitational evolution takes over.
spectrum at such scales, the HZ type spectra have becomeThere are many variants on standard cosmological models,
central pillar of standard models of structure formation in thee.g., “cold dark matter” (CDM), “mixed dark matter”
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(MDM), or the currently favored one with a nonzero cosmo-geneous” configurations on which to superimpose fluctua-
logical constant A CDM), each of them leading to a differ- tions of a desired type. The reason for their (isstead of a
ent form for the spectrum at smaller scalge., largek) “uniform” Poisson configuration is purely numerical7],
which can be calculated. In CDM modedlia which the pre- and it has nothing to do with thiatrinsic statistical proper-
dominant massive component driving collapse under gravitgies of the systems being modeled. Indeed, as we will explain
is cold dark matter, “cold” in the sense that the particlesfurther at the appropriate place below, these methods have
have little initial velocity dispersionthe PS decays at small been used primarily to simulate cosmological models at the
scales(large k) as a negative power law ik, while in hot  smaller scales at which they are not at all glasslike.
dark matter(HDM) models (for which the prototype is a Discussions of real space properties of the density fluc-
Universe dominated by a light neutrinthere is a exponen- tuations encountered in cosmology are puzzlingly sparse in
tial cutoff in the spectrunidue essentially to the fact that the the literature on the subject. Peebles briefly néfé} see p.
“hot” neutrinos wipe out structures at these scales with their523) that a very particular characteristic of HZ models is that
large velocity dispersion All of these models, however, “on large scales the fluctuations have to be anticorrelated to
have the same “primordial” HZ spectrud(k) ~k (or very  suppress the root mean square mass contrast on the scale of
close to i} on large scalesi.e., smallk), that is at scales the Hubble length.” Indeed, we emphasize the fact that these
which are large compared to the causal scale at the time ¢fiodels are characterized at large scales by a correlation
matter-radiation equality. This latter scale is of course mucHunction &(r) which has a negative power-law tail: detecting
smaller than our present causal horiZor., than the part of it would be the real space equivalent of finding the turnover
the Universe we can probe todairhis means, in particular, to HZ behavior to scales at which the PS goed$ék)~k.
that these primordial density correlations should be im-The preference for &-space description is probably rooted
printed in the distribution of matter at very large scales, andn the fact that the linear dynamics, which are used to de-
should in principle be detectable in the distribution of galax-scribe many problems in cosmology, are most naturally
ies at very large scales, inside the present horizon. Until nowreated in this space. While it is true of course that this de-
the only probe of fluctuations on such scales is through thecription in k-space is complete, this by no means implies
temperature variations in the angle of the CMBR, as thghat the complementary real space view is redundant, as is
angular correlations in temperature fluctuations are coupledell known in many contexts in physics. One of the points of
directly to the three dimensional density fluctuations. Fromthis paper is to show that this complementary view of these
the COBE measuremenfd| the amplitude of the fluctua- apparently so familiar models is at the very least interesting
tions inferred is~10"° in the PS at these scales. We will and useful, in particular in how it facilitates comparisons
discuss elsewhere the practical difficulties involved in meawith familiar physical systems.
suring such a weak signal in the discrete distribution of gal- A basic question we try to answer is the following: What
axies. Here we concentrate on identifying the real spacékind” of two-point correlation function is the one corre-
properties of these theoretical models at large scales. sponding to the HZ behavior in cosmological models? We
Another context in which an understanding of the statis-compare it to some different statistical homogeneous and iso-
tical properties in real space of the HZ PS of the mass dertropic systems:(i) Poisson-like distributions(ii) systems
sity field is important is represented by cosmologidebody  with a power-law correlation function found in critical phe-
simulations, the aim of which is to calculate the formation ofnomena[10] and (iii) distributions characterized by long-
structures under gravity in the Universe by a direct numericafange order(e.g., lattice or glass-like[11]. Through this
calculation(see, e.g[5,6]). Because the time scale of evolu- comparison we can classify HZ models in the third category.
tion in these simulations is short compared to the dynamica¥Ve introduce the term “superhomogeneous” to refer to these
time of the systenti.e., a particle moves a small distance kinds of distributions, as their primary characteristic is that
relative to the size of the box representing a large volume ofnass fluctuations decay at large scales faster than in a com-
the Universgthe final configuration depends strongly on the pletely uncorrelatedPoisson system. For critical systems
initial conditions(IC) at all but the smallest scales. Indeed aone has instead a decay of the mass variance which is slower
central idea is that from the final distribution—which should than Poisson. Formally the definition of this class of “super-
be closely related to the observed one of galaxies—onbomogeneous” distributions is given by the condition that
should be able to “reconstruct” some important features ofthe PS had?(0)=0, or equivalently in real space that the
the IC, which can be related to other observations such astegral of the two point correlation function over all space is
those of the CMBR. A key issue for these simulations is thusero. In the cosmological literature the latter property of cos-
the setting up of these IC, which involves subtle problemsmological models is often noted, but its meaniag a strong
concerning the discretization of the system. The usual apron-local condition on a stochastic procgds not appreci-
proach to this problem is again entirely phrased-ispace, ated, or worse misunderstood as a trivial condition applying
where instead a real space approach proves very Usgful to any correlated system. In the textbook of Padmanabhan
To avoid any possible confusion for those somewhat familiaf12], for example, it is “proved” on p. 171 that the integral
with these simulations, we note here at the outset that thever all space of the correlation function vanishes indepen-
description of the HZ model we give in this paper, as lattice-dently of the functional behavior df(r). The error is in an
like or glasslike, has no direct relation to the use of lattices oimplicit assumption made that the number of particles in a
glasses in setting up IC in curreNtbody simulations. There large volume in a single realization converges exactly to the
lattices or glasses are understood to be sufficiently “homoensemble average. This is not true because, in general, ex-
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tensive quantities such as particle number have fluctuation§ractal” and “correlation length” in relation to the HZ spec-
which are increasing functions of the voluneg., Poisso- trum in cosmology.

nian, for which the integral is not zexdA slightly different,

but common, kind of misunderstanding of the meaning of the |I. BASIC STATISTICAL PROPERTIES AND CONCEPTS

vanishing of the integral over the correlation function is evi- L . .
denced in the book by Kolb and Turngt3]. There it is Inhomogeneities in cosmology are described using the

affirmed[after its statement in E49.39] to be * . . . just a general framework of stationary stochastic proce$S&H.

L . Let us consider in general the description of a continuous or
statement of mass conservation: if galaxies are clustered on 9 P

small scales, then on large scale they must be “anti® discrete mass distributiqp‘(F) in terms of such a process.
clustered” to conserve the total amount of massmber of A stochastic process is completely characterized by its

galaxie3.” The source of this misconception seems to be a'Probability density functional” P{p(r)] which gives the
confusion with the so-called “integral constraint” in data Probability that the result of the stochastic process is the
analysis(e.g.[14,15), which imposes such a condition on density fieldp(r) (e.g. see Gaussian functional distributions
the estimatorof the correlation function in dinite sample, [17]). For a discrete mass distribution the spéegy. infinite
due to the fact that theuinknown average number of points three dimensional spacés divided into sufficiently small
in such a sample is estimated by tlexactly known number ~ cells and the stochastic process consists in occupying or not
of points in the actual sample. Despite their apparent simiany cell with a point-particle, ang(r) can be written in
larity, these are different conditions: the firgbfinite vol-  general as
ume integral constraint provides non-trivial physical infor-
mation about the intrinsic probabilistic nature of fluctuations,
while the second is just an artifact of the boundary condi-
tions which holds in a finite sample independently of the
nature of the underlying correlations. We will discuss thiswherer, is the position vector of the particieof the distri-
point in a little more detail at the appropriate point below. pytion.

The paper is organized as follows. In the first section we The stationarity refers in the present context to spatial
recall the basic properties of mass distributidbsth con-  stationarity of the process, and means that the functional

tinuous and discrejedescribed in terms of stationary sto- p{,(r)] is invariant under spatial translation. This property
chastic processes with a well defingunzerg average den- s also called thestatistical homogeneitypf the distribution.
sity. In this context we introduce the basic statistical\we suppose also that the distributiorststistically isotropic

guantities (homogeneity scale, correlation .functions, real (invariance ofP[p(F)] under spatial rotationand has a well
space mass variance, PS, ptesed to describe these sys- yeofined average valye, that is

tems. We discuss in particular the relation between the mass
variance in spheres and the PS, noting that for power law Y= pe>0 2
spectraP(k)~k" and n=1, the small scaldi.e., largek) {p(r))=po>0, @

power dominates the real space variance at any scale. Wehere (- --) is the ensemble average over all the possible
explain that this is not a simple mathematical pathology bufegjizations of the stochastic process, i.e. the average over

corresponds to a real property of these distributions. Indee e functional?| (F)] Statistical homoaeneity and isofro
for discrete distributions of points we note that a theorem ha : P ) ) geneity Lropy
SHI) imply that the I-point correlation functions

been proved16] showing the behavior approachednat 1 - -
to be the limiting decay of the variance, in real space(P(r1) --.p(r))), for anyl, depend only on the scalar rela-
spheres, in any distribution. In the subsequent section wive distances among thepoints[18]. Moreover, we assume
discuss the HZ spectrum, recalling the construction whictthat P{p(r)] is ergodic In order to clarify the meaning of
leads to it in cosmology and why it is called “scale invari- ergodicity, let us take a generic observabld
ant.” We note that the HZ criterion, as naively understood, is= F(p(Fl),P(Fz% ...) of the local densitw(F). Ergodicity
not one which is_ satisfiec_l exactly by _the_ spectrBI(rk)~_k. means thatF) is equal to the spatial averag_egiven by

In the next section we give a classification of all stationary

stochastic propertig$SSPH in terms of the behavior of the PS _ 1 . ..

ask—0. We give the name “superhomogeneous” to those FZMJ d3roF(p(r1—r0),p(r2—ro), L)) 3
which haveP(0)=0, referring to their basic characteristic as @

more homogeneous than the Poisson distribution, with a sub- : .

Poissonian decay of their mass variance. In the foIIowinnghere. thle'mtegral Is extended to thae Wh°|e spacand| Q|
section we give the examples of a lattice, and then 4 its (infinite) volume, and wherg(r) is (almosj any real-
“shuffled” lattice, to illustrate the properties of distributions ization of the particle distribution “extracted” from the func-
of this type, which have the strong order of a lattice or glasgional P p(r)]. This property is also referred to as thelf-
at large scales. Here we discuss also briefly the relation afiveraging property of the distribution. Note that if the
our description tdN-body simulations. In the final section we average in Eq(3) is extended only to a finite sub-sample
discuss various points in summarizing our findings. In par-of the whole spacé€) , then Eq.(3) is only anestimatorof
ticular we clarify the use of the term “scale invariance,” (F) in the given sub-sample.

p(F)=i=El s(r—ry), (1)
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In a Single realization of the mass distribution the eXiS-iS an Occupied p0|nE18] When 0n|y one rea“zatiop(F)

tence of a well defined average density implies {1 extracted fronP{p(r)] is available(F), can be substituted
by the spatial average:

1 -
lim————1]  d%p(r)=pp>0 4 1 g
RolCRXo)| e Fp(T)p(ra), - Dp=r5 2 Flp(Tati)p(F4)), )
i=1

where ||C(R,Xo)|=47R%3 is the volume of a sphere ®
C(R.xo) of radiusR, centered on tharbitrary point X, of  where the sum is restricted to all the pointé—) r/ oc-
space. When Eq.(4) is valid one can then definfl8] a  cupied by a particle of the distribution. Again in the case in

characteristihomogeneity scalas the scalé.o given by which the average is restricted to the partidféi)elonging

to a finite sample of volum& of the whole space, we can
J’ &% p(F) - consider Eq(8) only as anestimatorof (F),.

C(R;Xg) J c(Rixo) P Po The quantity

which depends on the nature of the fluctuations of the den- (p(r)p(ra) ... p(r))pdVadVa . .. AV} ©

sity in spheres. In practice, in characterizing the scale agjves the average probability of findingparticles placed in

which a system begins to be homogeneous, it is easier to Ugge infinitesimal volumesdV,,dV,, ... .dV, respectively

directly some simple two-point statistics. We will mention aroundr T f with the condition that the origin of
1,2, « o0

these deﬁmtpns at}he %ppropr|a2e p‘?'”t below. coordinates is an occupied point. We call
The quantity(p(r,)p(rs) . ..p(r))) is called thecom- (p(r)p(ra) ... p(1)), conditionall-point density.

pIetie I-p9|nt corr§lat|on function. I the dlscretg gase Applying the rules of conditional probability one higkS]
(p(ry)p(ry) ...p(r))dVy,dV,, ... ,dV, gives thea priori

1 -
(PoVR)\o, V%o (5)

probability of finding | particles, in a single realization, . <p(5)p(ﬁ)>
placed in the infinitesimal volumesV,,dV;, ....dV; re- (p(r)p= T
spectively around%,rz, SR I _ (10)
]_et us analyze in further detail the auto-correlatlon prop- ) ) <p(6)p(F1)p(F2)>
erties of these systems. Due to the hypothesis of statistical (p(ry)p(ry)),= _
homogeneity and isotropy,p(r1)p(r,)) depends only on Po
F1=|r1—r|. Moreover,(p(r;)p(r,)p(rs)) is only a func- However, in general, the following convention is assumed

tion of r,=|r1—"r,|, r,s=|r,—rs| andryz=|r;—r4. The in the definition of the conditional densities: the particle at
reducedtwo and three-point correlation functiogér) and  the origin does not observe itself. Therefdyg(r)), is de-

7(r 12,1 23,7 19) are respectively defined by fined only forr>0, and(p(ry)p(r)), for ry,r,>0. Conse-
quently, and this is what is usually done in cosmoldd],

- - 5 ~ one can redefine the reduced two and three-point correlation
r r,))=pol 1+ &(r 6 ~ ~
(p(rp(r2))=pol1+¢(r12)] ©) function&(r) andZ(rq,r,,rq,) to be equal t& and{ respec-
R R . o~ _ _ tively for r,r,,r,>0, and equal to zero far,r,,r,=0. This
(p(r)p(ra)p(ra))y=pgll+&(ri)+&(raa) +&(ry) means simply that the diagonal part is removed féoand?.
+7 7 In the following we use this convention.
¢(r12, a3, F19)]- @) Let us consider the paradigm of a stochastic homogeneous

_ point-mass distribution: thBoisson caseFor such a particle

The correlation functioné(r) is one way to measure the distribution the reduced two-point correlation function Eq.
“persistence of memory” of spatial variations in the mass(6) can be written agsee[18])
density[19]. Note that, as shown more explicitly below, in
the discrete case the functiogsand? differ from the usual
& and ¢ used in cosmology by the so-calléitagonal part

In the discrete case of particle distributions it is very im-
portant to consider observations from a point occupied by @nalogously, one can obtain the three point correlation func-
particle. In order to characterize statistically these observation [Eq. (7)]:
tions it is necessary to define another kind of average: the

~ 8
&(ry=——[i.e.&(r)=0]. (12
Po

conditional average(F),. This is defined as an ensemble ot 8(ry)a(ry) e l(f1utsf 19 =0]
average with the condition that the origin of the coordinates {(ryrz,r)= P2 €.4(11,12,r12)=0].

(12

!Because of the arbitrariness of the position of the center of thd’he two previous relations are direct consequences of the
sphere, the average density is a one-point statistical property.  fact that there is no correlation between different spatial
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points. That is, the reduced correlation functichsand ¢ Note that there is no condition on the location of the center
have only the diagonal part. The latter is present in the reof the spherie, because of the assumed translational invari-
duced correlation functions of any statistically homogeneousnce of P[p(r)].

discrete distribution of particles with correlations. In the discrete Poisson case, using 8Bd), we obtain that
As already mentioned, in the definition of conditional
densities, we exclude the contribution of the origin of coor- 1 1
. o(R)= - (19

dinates. Consequently, for a Poisson distribution, we obtain poll C(R) (M(R))”
from Eq. (10):
In general, for a SHI mass density field with correlations,

(p(F)>p=po substituting Eq(6) in Eqg. (16), we obtain

S(ry—r
14 (rq 2).
Po

L 2y L ; \ o
(p(r1)p(r2))p=p (13 0<R>—|C(R)”2JC(R)0' rlfC(R)drzgdrl ). (0

In general[20,15 for a SHI distribution of particles the USing Eq.(14) in the discrete case we can write
reduced correlation function can be written as

- 0_2(R): 1 n 1 J &
E(r)=@+g(r) pollCRI Ry |2 e
Po ’

o (14) X JC(R)d3r2§<|F1—F2|>. (21)
~ o(rq)8(ry)
F1,fp,Fp)=——5——+(rq,rp,r
(2.1 pg (2.1 Note that the sign of the second term of H81) is not

uniquely determined. We clarify this point later on. Equa-
where¢ and{ are the nondiagonal parts which are meaning-tions (20) and (21) make evident the relation between fluc-
ful only for r>0 adr,,r,>0 respectively. In generd@(r) is  tuations in one-point propertig¢as in this case the number of
a smooth function of [20,18. Hence we obtain, from Eg. points in a sphere centered on a random point in gpaice
(10) (by excluding again the contribution of the origin of two-point correlations. In general similar links can be found

coordinates between fluctuations in-point properties andn+1)-point
correlations.
<p(F)>p:PO[1+ N1 Equation(4) is equivalent to the requirement that
L , - (19 lim o?(R) =0, 22)
(p(r)p(r2))p=pol 1+ £(r1) +&(ra) +£(ro) R
+L(rra.rp)]. which is therefore a condition satisfied by any SHI distribu-
tion. An alternative (slightly differeny definition to that
A. The mass variance in a sphere given by Eq.(5) for the scale characterizing homogeneity is

In this section we consider the amplitude of the mass;[huS the scale at whict’(R) reaches unityor some other

fluctuations in a generic sphere of radiRswith respect to appropriate fiducial valy€ In the cosmological literature on

. -3 the distribution of mattefgalaxies, clusters, ejdn the Uni-
the average mass. First Bt(R) = [¢(r)p(r)d°r be the mass  \erse there is no global convention about how this scale is
(for a discrete distribution of the number of partiglésside

g defined; in fact it is a scale which is almost never discussed
the sphergC(R) of radius R [and then voIgmdlC_(R)ll in precise terms. The two most commonly used quantities
=(4m/3)R’]. The normalized mass variance is defined as |;geq in characterizing the two-point properties jethe
) ) scalé r defined by&(r,)=1, and(ii) the amplitude of the
Uz(R):<M(R) )—{M(R)) (16) mass variance at a fiducial physical scale, taken to be
(M(R))? ' 8h~1 Mpc (e.g[23]). Given (or having determinedthe de-
pendence on scale of the correlation function or mass vari-

where

3 - 2Note that such a definition holds for SHI distributions, and not at
(M(R))= fc R d r(P(r)>:Po||C(R)||7 17 all for the case of fractal systenig5| as discussed in our Conclu-
R sions section below.
3This scale has unfortunately been commonly referred to in the
cosmological literature as the “correlation lengtfi4]. It has no
relation to the statistical physics use of the same term, which is a

M(R)2 :j d3r f d3r r ). (18 scale characterizing the rate of decay of fluctuations, not their am-
< (R) > C(R) ! (R) 2<p( VP 2)> ) plitude. Seq21,22 for a clear discussion of this point.

and
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ance, these can be easily related to simple definitions of thghere 5,(k) is the Fourier transfornFT) of the normalized
homogeneity scale. A practical working definition of homo- fluctuation field (P(F)_Po)/Po- For a spatially stationary

eneity scale applicable in the analysis of galaxy surveys and N S0 _ .
g Y bp y ¢ y y ass distributiom(r) it is possible to demonstrate that it can

a discussion of the current status of this scale are given i ; s . .
[24,25. g e obtained by simply taking the FT of the correlation func-

Let us return to further discussion of E480) and(21). It ~ tion &(r) (up to a multiplicative constanf26:
is very important for our discussion to note that this condi-

tion (22) which holds for any mass distribution generated by >\ f d S
a SSP, is very different from the requirement Pl (2)¢ Qd rexp(—ikr)&(n). @7
f d3ré(r)=0 (23) Further, given statistical isotropi(k)=P(k). For a con-
Q tinuous mass density field obtained by a SSP, the two basic

properties of the PS are the followirighintchine theorem
(whereQ) is the whole spagewhich is a much stronger spe- [17]):
cial condition which holds for certain distributions—those to (1) P(IZ)>0 Vk;
which below we will ascribe the name “superhomoge-
neous.”
Note that, in cosmologye.g.[14,15) the following ap-
proximation is often used

(2 P(IZ) is integrable in the whole space.

For a discrete particle distribution the first property is still
valid, while the second is not because of the diagonal part of
E(r) (the Dirac delta function irr=0). Indeed, this part

& Bl = e gives a positive constzint contribution for evelfywhich
fC(R) rlfC(R) r2§(|r1—r2|)~||C(R)||fC(R) rer) makes the integral oP(k) divergent. This constant contri-
(24)  bution is the PS for the uncorrelated Poisson distribution of
particles. Consequently, for discrete distributions, the prop-
in particular in evaluating the variance through Eg0).  erty (2) is modified as follows:
Such an approximation is not always valid, and the conver- (2’) The FT of the&(r) [i.e. €(r) without the diagonal
gence properties of the double integral need to be examingghri is integrable in the whol&-space.

carefully to establish it. In particular it does not hold when |n d-dimensions the propertig®) and (2) imply that
the condition Eq(23) is satisfied. This will be evident fol-

lowing the analysis we give below, as we will discuss that limkIP(K)=0 (28

one has, for any distributiofcontinuous or discrejea large k—0

distance behavioo?(R)=R™ 2 wherea<d+ 1 (whered is )

the space dimensionUsing the approximatior(24) one limkiP(k)=0 (29

could apparently obtain through EO) arbitrarily rapidly k—o

decaying behaviors with an appropriate power-law behavior .

in the correlation function. where in the discrete casq k) is the FT ofé(r) rather than

In the discrete case, to measur¥ R) one has to take into  of &(r).

account both terms in Eq21), not only the second one. In three dimensions we have therefore that, in general, the

From Eq.(21) the variance can, in general, be written as thePS can diverge ak—0 with only the condition that the

sum of two contributions: divergence is slower th&t 3. Any standard type cosmologi-

cal model has in this limit the HZ spectrum, or something

d?(R)=03,(R)+E(R), (25  close to it, and in any case always Hag)=0, which im-

plies that Eq(23) holds. We will discuss the meaning of this
where the first termo3,; represents the intrinsic Poisson condition at length below.
noise of any stochastic particle distributiband the second
term Z(r) (which, as noted above, does not have to be of a C. The PS and real space variance
determined signis the additional contribution due to corre-

lations[i.e. to £(r)#0]. Let us analyze the relation between the PS and the mass-

variance in real space. We first discuss continuous density
fields, and then make some relevant comments on the dis-
B. The power spectrum crete case. We first rewrite Eq4.6)—(18), generalizing them
to the case in which we calculate the mass variance in a
topologically more complex volum¥ of sizeV. To do this

one introduces the window function,(r) defined as

The PSP(IZ) is the main statistical tool used to describe
cosmological models. It is defined as

P(k)=(] 5,(K)|? (26) ]
(12, (k) Wl 1 ifrev, 30
r' =
v 0 otherwise.
“Note that this term can give a contribution to the variance which

dominates over that due to the intrinsic correlations. Therefore we can rewrite E417) as
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R - subsequently that the results we derive are not sensitive to
(M(V))= L)Wv(r)@(f))d r (31)  the form of this cutoff at largé. It is convenient to rescale
variables to rewrite Eq37) as

and Eq.(18) as

9A
) ) T (R)=—— 3+nj dx(sinx—x cosx)?x"~4e /X
(MZ(V)>=fﬂfgd3rld3r2WV(r1)Wv(r2) 2 39
X(p(r)p(ra)), (32 with x.=k.R.

Since the window function goes to unity when-0 the
|integral will be well behaved at its lower limisince n>
—3). It is also convergent at its upper limit because of the
1 exponential. Let us consider the dependence on t?e latter for
a?(V)= _zf j d3r L3 Wi )WA(T ) E(F1— ). gsphere much larger Fhan the cutoff scalja,RQ.kC , that

valala is x;>1. Forx>1 the integrand goes ad ™ ?cogX, so that
(33 the integral converges, without the exponential cutoff,rfor

<1. Thus the variance as a function of radius behaves as

1/R%**" and the integral is dominated by modesR™ 1. In

fact, since the integral is independent of the cutoff, we have,
(34) up to a numerical factor of order unity, the relation

where the integrals are over all space. The normalized var
ance is then given by

On taking the FT one obtains

1
which is explicitly positive, and\,(K) is the FT ofW(r), TR}~ 5 P(K)K%—r -1 (39
normalized by the volume defined by the window function
itself, so that the amplitude of the PSlatan be thought simply to
1 o correspond to the variance at the physical s&ilé.
\7\/V(|Z) = Vf d3re*”"er(F) (35) Forn=1, on the other hand, the integral diverges and the
Q

cutoff comes into play. Fon=1 the integral is

with V= [ oWy(r)d®r. dx
Consider now again the real sphere of radfu®r which f 76 We~Inx.~InR (40
the FT of the window functiorinormalized as defingds

so thato?(R) ~ (In R)/R*. Finally for n>1 the integral goes
(sinkR—KRCOSkR). (36) as~x- ! so that one gets?(R) ~ 1/R*, independently of.
Importantly, forn=1, the integral in Eq(38) is dominated
R by the short wavelengths witk~ kgl, and not by the fluc-
One then has, assuming statistical isotropy so fhgh) tuations on the scale~R ™, and correspondingly the rela-
=P(k), an expression for the variance in real spheres whichion (39) does not hold. The amplitude of the PS is no longer

We(K) = —
0= R

is related to the real space fluctuations at the séakR !;
instead large scale spatial fluctuations have their behavior
1 (= 9 i determined by the short scale power in the theory.
2 — 21,2
o (R)= 222)0 dk(kR)s(S'nkR_kRCOSkR) kP (k). To summarize clearly: For a power-laR(k)~k" (with

(37) an appropriate cutoff around the wave numkgrthe mass
variance for real spheres with radiBs>k. is given by

We now show that, for power-law spectP{k)~k" (for (1) Forn<1, ¢?(R)~1/R**" and the dominant contribu-
smallk, n>— 3) the integral in Eq(37) has a very different tion comes from the PS modeslat R~ 1.
behavior forn<1 andn=1. Forn<1 the integral is domi- (2) For n>1, o?(R)~1/R* and the dominant contribu-

nated byk~R™!, while for n=1 it becomes dominated by tion comes from the PS modeskagl.

the largek behavior, and therefore sensitive to the PS at a (3) Forn=1, we have the limiting logarithmic divergence

scale k unrelated (in general to R™. Correspondingly with ¢*(R)~ (In R/R.

o?(R) is found to have a limiting rapidity of decay atRt}, In the cosmological literaturehe divergences in the latter

related to the appearance of this divergence. Then we givevo cases are treated as a simple mathematical pathology due

the physical interpretation of this result, and note the dangeto the assumption of a perfect spheéwgth a perfectly de-

of the use of a “Gaussian window” to mask it in cosmology. fined boundary Replacing the real sphere with a smooth
So let us return to EQ(37) and take a PSP(k)

=Ak"e ¥k (where A and k. are two constanjs We con-

sidern>—3 and take the cutoff to satisfy the convergence S5See, for example, the section entitled “Problems with filters” in

properties of the Khintchine theorem. It is easy to checkhe book by Lucchin and Cold27].
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-1%IR? {hese integrals are also cut point is necessarily of the order pf the _distahdqstead of

the dependence of the mass variance in sphigvite some
intrinsic uncertainty in the definition of their edgesn the
radius, the Gaussian sphere gives us the behavior of the vari-
which is that this limiting behavior of the varianéas 1R%) o 0% Zﬂ:‘g;f;gsirﬁpfggggoonn"t‘;reaggjgewchhznnggt?ogﬁhr:f;Jnsd
has a very real phyS|.caI meaning W_h'Ch has tp do with the?n linear proportion. This is a real space measure which one
nature of systems with such a rapidly decaying PS. Thexan define to recovek-space properties, but it loses com-
correspond to extremely homogeneous systdff&s ex-  pietely the essential characteristic of the real space variance
tremely ordered systemsn which the variance really is (measured in real physical spheres
dominated by the small scale fluctuations. Let us explain this
point further. _ _ - _ lll. THE HZ SPECTRUM AND ITS REAL SPACE

First, that the behavior has nothing to do in principle with PROPERTIES

the ideality of the perfect sphere is easily seen by considering
a more realistic modeling of the sphere, using a window Let us first recall the kind of arguménthat singles out
function giving a smearing on a length scale correspondingh® HZ spectrum in cosmology, and why the term “scale-
to the uncertainty in the radius of the sphéttas could cor- invariant” is applied to it. In a homogeneous FRW cosmol-

respond, for example, to the uncertainty in the distance me429Y there is a fundamental characteristic length scale, the

sure to a galaxy If it is larger than the intrinsic cutoff scale N0rizon scaleRy(t). Itis simply the distance light can travel
idedrom the big bang singularity=0 until any given time in the

the cutoff in the integral giving the mass variance in theevolution of the Universe, and it grows linearly with time.

sphere. Since this scale is in principle independent of th(z_l—he HZ cniterion can be witten
rad_lus of 'ghe spheri, the same I'|m|t|ng R"‘ behavior of the af,.(RZ Ry(t))=const, (42)
variance is recovered. Thus it is a physical result for a con-
tinuous SSP thathe mass variance measured in spheres of e_ it requires thathe mass variance at the horizon scale be
radius R cannot decrease faster thaiR*. constant Equivalently, given the proportionality of gravita-
A more intuitive understanding of this fact can be gainedtional potential to mass, it can be stated as the constraint that
by considering discrete distributions. One would reason thaghe variance in the gravitational potential be constant at the
any continuous distribution can be arbitrarily well approxi- horizon scale. It arises naturally in the framework of FRW
mated at large scales by an appropriate discretization preosmology as a kind of consistency constraint: the FRW is a
cess, and that therefore the same result may hold of discreg®smological solution for a homogeneous Universe, about
distributions. In fact such a result has been proved severgihich fluctuations represent an inhomogeneous perturbation.
years agd28]: In d-dimensions there exists no discrete dis-|f we take any other prescription other than E4l) such a
tribution of points in which the variance in spheres decaysjescription will always break down in the past or future, as
faster than RR%**. One can see roughly why this is so by the amplitude of the perturbations become arbitrarily large or
considering the most ordered distribution of points one mightmall. It is in this specific sense that the resulting PS is said
think of: a simple cubic lattice. The variance in a sphere iso be “scale-invariant:” there is no characteristic scale at
given by averaging over spheres with a center anywhere igvhich fluctuations become larger smal), or, put another
the unit cell. As the sphere moves in the unit cell the vari-way, they have the same amplitude as a function of the only
ance, one would guessorrectly, in the number of points is  scale in the model. As we will discuss further below, it has
proportional to the difference in the volume of the spheresnothing to do with the same term as understood in statistical
which ‘is proportional to the surface area of spheres, i.ephysics. There scale invariance is a characterization not of
«R%" 1 in d-dimensions. Thus the normalized variance scaleshe amplitude of fluctuations, but rather is associated to a
as 1R%**, a result proved rigorously ifiL6] (see alsd28]  particular range of power-law behaviors in the correlation
for a more general discussion of the probjers we will  function.
discuss further below the regular lattice, or rather a random- More precisely the form of the HZ spectrum is arrived at
ized version of it, can be thought of as a kind of prototypefrom the condition(41) in the following way. We move nec-
for the class of distributions to which the HZ spectrum be-essarily to ak space description, as we need to include the
longs. They are distributions which are highly ordereddynamical evolution of the density field to infer the PS inside
(“glass-like”) in which the fluctuations in real space actually the horizon today. LeB,(t) be the amplitude of the Fourier
are at small scaleghose at which the PS is cutpfBecause  component of the density contrast as a function of time. To
of this it is one of their characteristics, as we have seen, thatvery such modé we can associate a tinte at which it
there is no direct relation between the PS at scale k and the
physical variance in real space at the scale-R 1.

The Gaussian sphere completely obscures this behavio®ye choose here a particuléiout commonly usedway of de-
for n=1, giving an apparent behavior of a real space variscribing the HZ spectrum which allows us to avoid too much extra
ancex1/R%*". It does this because it models the edge of theformalism. For a commonly used formulation preferred by many
sphere as smeared on the length scale of the rdd@isas-  cosmologists, in terms of a constant “gauge independent” potential,
sumes that the uncertainty in our measure of distance to see for exampl§29].

Gaussian fiIter\NV(F)~e
off at the scal&k~R ™! and one recovers a behaviof(R)
~1/R®™" and a relation of the fornt39). While of course
this is valid mathematically it misses an important point,
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“enters the horizon,” i.e. at which the wavelengk* is  which are linked to the density fluctuatio(r) via the
equal in size to the horizon. Here we wdds almost always  gravitational Poisson equatidn:

in cosmology with a k which is the FT with respect to the
spatial coordinates which do not change with the expansion, V26¢(F)= —47G 5p(F)_ (45)

the so-called “comoving” coordinates. In these coordinates

the time at which the mode enters the horizon is given byFrom this, transformed to Fourier space, it follows that the
kn=1 wheren is the so-called “conformal” time given by ps of the potentiaP¢(k)=(|6<?>(IZ)|2> is related to the den-
n=Jdt/a(t), with a(t) the scale factor describing the ex- sjty PSP(k) as

pansion of all physical scales in the UnivergEhe horizon

scale is simplyRy(t)=a(t)», corresponding to horizon P(k)

crossing criterion K/a)Ry(t)=1.] The PS todayat t=t,, Py(K)~——.

say) given by|8,(t,)|? can be written in terms of the ampli- k
tude of each modé& when it entered the horizon. In linear
perturbation theory, in the matter dominated Univefise.
recent epochs the mode evolves as

The HZ spectrum corresponds thereforePtg(k)ock*; or,
considering the variance in real space spheres of the gravita-
tional potential fluctuations, which as for the density fluctua-
tions is related to the PS by E@39), one finds that this
variance is constant as a functionRfThis is the alternative
S (). (42)  form in which the HZ condition is often formulated. Note
that the Khintchine theorefief. Eq. (28)] requires that a well
defined SSP have (k) ~k? with a>—3 for k—0, so that
In the matter dominated FRW cosmology we havet?®  the HZ corresponds to the limitingdisallowed behavior.
and thus»=t¥3 so that the timet,(k) when the modek  Equivalently the constancy of the variance is in contradiction
crosses the horizon followts(k) = 1/k* and therefore with Eqg. (22) which requires that the asymptotic variance be
zero(in order to have a well defined mean about which fluc-
tuations are defingdThe HZ spectrum can thus be seen as
the (disallowed limiting behavior for the potential fluctua-
tions to be treatable as an SSP. That such a treatment be
The HZ choice for the primordial P$5,(t,)|>>k is then applicable to the potential fluctuations is however not a
singled out by imposing the criterion physical requirement. The work of Chandrasekf&r(and
see alsd9]) treats the gravitational force probability distri-
5 5 bution in a point distribution and, in particular, shows it is
k®| 8¢(te)|*=const, (44)  well defined even in the Poissonian case, for which the po-
tential fluctuations are not an SSR=0). To treat the force
fleld as an SSP requires only the weaker conditifk)
~k? with a>—1.

a(to)
a(t)

5k(to) =

Sito) ki (te). (43

which is identified as the mass variance at the horizon scal
n=k~ 1. We note immediately, following the preceding dis-
cussion, that the latter identification is in fact valid only for
power spectr&” with n<1. Strictly speaking therefore it is A. The real space correlation function of CDM-HDM models

impossible to satisfy the HZ criterion as it is understood A of the current “viable” standard type cosmological
naively; or, to put it another way, the HZ spectrum, thatmodels have a “primordial” PS which is the HZ otter very
which satisfies Eq(44), does not satisfy the condition of ¢jose to it down to some arbitrarily small scale. During cos-
“scale invariance” since the mass variance at the horizonmo|ogical evolution causal physics modifies this spectrum at
scale ¢<7) is dominated in this case by the power at the|grge k, which is roughly the causal horizon at that time.
cutoff scale, not by the modés~ 7~ *. Taking a spectrum Around the time at which the matter in the Univereth
k'~ (e>0) one can get arbitrarily close to satisfying the density scaling as &) begins to dominate over the radia-
HZ criterion, but the condition of “scale invariancéin the  tjgn (with density scaling as &), the evolution becomes
sense just explaingds not physically satisfiable. To avoid pyrely gravitational at all but the very smallest scales, while
this conclusion the criterion could be refined to be that thebrior to this time it depends strongly on the details of the
mass variance in Gaussian spheres of radius of the horiz%rticular model. As a result all such models are HZ Kor
size be constant. While it does allow a mathematically co-— keq, but “turn-over” at this scale to a PS decreasing as a
herent formulation, from a physical point of view it is an fynction of k. The form of the spectrum in this region de-
artificial way of avoiding the problem, which is that the vari- hends on the details of the particular model. Since the scale

ance atagive.n real space scale has .nothing to do in princip > 1 being the size of the causal horizon at this time of
with the amplitude of the PS at the inverse scalerferl. a

This is, as we have discussed in the previous section, a real———
physical property of such systems, not a mathematical arti- 7, simplify here to Newtonian gravity, which becomes a good

fact. . . . approximation on sub-horizon scales. The comments given below
The HZ spectrum can equivalently be characterized incan however be generalized to a rigorous formulation of perturba-
terms of fluctuations in the gravitational potentidkp(r),  tions to a FRW model.
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matter-radiation equality, is much smaller than the causal ho- 10™ .
rizon today, the primordial HZ PS is in principle detectable
today. Indirect evidence for its reality come from the mea- — Q=1
surements of temperature fluctuations in the CMBR, which_ t  ———- Q=02
show a dependence on angular scale quite consistent with th@ 10~ . k
HZ spectrum, with the power-law spectrufk) ~k" giving =T —
a fit in the rangen=1.1+0.5[4]. The search to observe this
“turn-over” to HZ behavior directly in three dimensions in g
the distribution of matter at large scales—a central predictiornz=
and check on such models—has so far proved elusive, beg
cause of weak statistics at large scales in observations of thE ;
distribution of galaxies. It is anticipated that forthcoming §=107 +
surveys, now being madé&1] or close to completion32],
will have the capacity to detect this turn-oviee the dis-
cussion at the conclusionsln the cosmological literature P
this question is again treated almost exclusivelkispace. 10'10-1" '
Here we look at the characteristic real space features whict k
should be found in these galaxy surveys if the underlying
behavior is HZ. In further works we will discuss in detail the  FIG. 1. Behavior of the power spectrum for a CDM model with
question of the detection of these features; here we concelf:>, 1,02, respectively. The two reference lines have exporients
trate solely on their identification. k™
We consider first the two point correlation function. In . .
general the FT of the PS of Etandard cosmological models In cosmological HDM models the form of the PS is al-

must be done numerically. Before doing so for some standar@'0St the same as we have just considered with an exponen-

models we considered a simple PS which can be trandi@! cutoff [12]

formed, a HZ spectrum with a simple exponential cutoff: P(K)~k exp( — k/k,)3"? (48)
o)

rb

_ —klkg
P(k)=Axkxe ' (46) A numerical integration verifies that the correlation function

is essentially unchanged.

whereA is the amplitude and, * the cutoff scale. The cor- For CDM models, the class by far favored in the past few
relation function is given bysee e.g[1]) years, the form of the PS at scales below turn-over from HZ
behavior is considerably more complicated. In a linear analy-
3 sis the PS of CDM matter density field decays below the

A F_r turn-over with a power-law-k~%? at largek until a smaller

FHr)=— c - (47 scale at which it is cutoff with an exponentiah a manner

A ) similar to that in the HDM mode¢l Numerical studies of
T these models designed to include the nonlinear evolution

C

bring further modifications, roughly increasing the exponent
_ in the negative power law regime. For our analysis we have
Forr<r.= kc_1 we haveg(r)z(BA/Tr)k‘c‘>0, changing at taken an analytical approximation to the final PS given by
r~r. to an asymptotic behavigf(r)~—r~*. Note that the  Eisenstien and H{B83], and computed numerically the FT to
correlation does not oscillate, its only zero crossing being athe two-point correlation function. We have also computed
scaler =/3r.. Simply because of the conditioR(0)=0, directly the variance in spheres. This form of the PS is given
which implies that the integral of the correlation function in terms of the various cosmological parameters. Here we
must be zero, the correlation function must change sign andonsider for simplicity the case with the small baryon density
in this case it only does so once and thus remains negative agét to zero (2,=0), which gives a PS without the famous
large scales. oscillations reportedly detected in recent observations of the
In the normalized mass varianeg’(R) shows a corre- CMBR [34,35. This structure is not of primary interest to us
sponding change in behavior from being approximately conhere because it can modify the correlation function only at
stant at small scaleB<r to a INR/R* decay at large scales, small scalegit arises from causal physics at early times
as was shown in Sec. Il C above. Note that, unlike for theFigs. 1 and 2 we show respectively the behavior of the PS
variance in spheres discussed in Sec. Il C, there is no limit tand of the correlation function for two quite different values
the rapidity of the decay of the correlation functifor the  of the total matter density of the mod€l=1,0.2. Minor
more general expression sgkl]). Despite the weakness of differences will result in the case that there is a cosmological
this correlation at large scales, however, the variance imonstant(),, #0 [33]. In Fig. 3 we show the behavior of the
spheres does not behave like that of a Poisson system, benconditional variance, computed in real-space spheres. We
cause of the balance between positive correlations at smadkee again a clear convergence in both models to the predicted
and negative at large scales imposed by the nonlocal condi/R* behavior beyond the scale characterizing the “turn-
tion P(0)=0. over.”
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10" — ; ‘ IV. REAL SPACE CLASSIFICATION OF LONG RANGE
= FLUCTUATIONS
10° .
We now return to a discussion of the nature of correla-
10" - 3 tions in systems with HZ like power spectra, with the aim of
107 TR ] elucidating their properties by comparison with systems de-
scribed in statistical physics. To this end we first introduce
= 10° N ] here a classification of all possible mass distributions in
3104 - T = Y% terms of the main features of the correlation functé(n).
- P - S}4=0-2 Following from the discussion of Sec. Il concerning the be-
0% L r havior of mass fluctuations, we define three distinct classes
R (for either the case of discrete particle distribution or of a
10° - continuous density field
07 L Q) If
8 i ~
00 10’ 10° 10° fnddrg(r)=const>0 (49

r (Mpc)

FIG. 2. Behavior of absolute value of the real space correlationowe can say that at large scale the systensubstantially
function for the two CDM model$)=1,0.2 andh=0.5. The two  Poissonian Indeed Eq.(49) implies that the PS goes to a
reference lines are"* andr ~*. Note that at small scaié(r)>0,  constant nonzero value &sgoes to zero, and therefore that
with a zero crossing at a scale depending on the location of the pegke large distance behavior of the mass fluctuations is
or “turn-over” in the PS, after which it remains negatiyé(r) ~
—r~*] at larger distances. The correlation function has been nor- (M4(R))—(M(R))?>~R%~(M(R)). (50
malized to béé(ro)=1 forr,=5 Mpc.

We write here the unnormalized form of the variance as the

. . - result that the variance of an extensive quantity such as the
_ In co_ncl_usu)_n two simple real_ space charact_erlstlgs tOda}‘nass is proportional to the volume on which it is measured is
in the distribution of matter coming from the primordial HZ o most intuitive way of characterizing a Poisson type be-
PS are anegative non-oscillating power-law tail in the two phayior. In this class is, for example, a system with a finite
point correlation functioné(r)~—r~* and a(InR)/R" de-  range correlatiors(r)~e~""". Beyond the scale, (the cor-
cay in the variance of mass in spheres of radiugRese are  relation length—see below for a discussion about this length
the peculiar distinctive features of HZ type spectra whichthe system is uncorrelated and effectively Poissonian.
should possibly be detected in real space by the new galaxy (2) If

catalogs.
f dIré(r) =+ (51)
Q
10° ; ,
then we are in a case similar to a system at the critical point
\ of a second order phase transiti@ng. the liquid-gas critical
1 point). Such systems have a positive correlation function
= which is asymptotically a positive power law, witf(r)
‘g - ~1/r” and y<d, corresponding to a P8(k)~k?" 9 ask
> —0. One then has at large scales the variance
<
5 .
2 10 (M%((R))—(M(R))?>~R* with dsa<2d, (52
E or (M3((R))—(M(R))2~(M(R))# with B=a/d>1. This
© 0 means that mass fluctuations are laf@evays overwhelming
the Poisson fluctuationsand thus they are strongly corre-
‘ lated at all scale¥.lt is in this context that the concept of
107 L ‘ self-similarity and scale invariance has been introduced in

1 10 ¥ (Mpc) 100 1000 gpatistical mechanics. These terms refer to the fact that in

these systems the mass fluctuation field has well defined

FIG. 3. Behavior of the unconditional variance in spheres for thefractal propertie$25].
two CDM modelsQ=1,0.2 andh=0.5. The two vertical lines
show the transition to thé(r)~r 4 behavior for the two models.
Ther ~* behavior is a clear and distinctive feature corresponding to 8For example these properties near the critical point of the liquid-
the P(k)~k behavior. gas transition give place to opalescence phenomena.

083523-11



GABRIELLI, JOYCE, AND SYLOS LABINI PHYSICAL REVIEW D 65 083523

Q) If use to this class of systems is not particularly useful. Instead
it is appropriate to classify the correlation properties of these
systems directly through the integral of the correlation func-
tion as we have done. It is this behavior of their correlations
which distinguishes them from the other two cases, just as
then, as we have discussed, we have for the behavior of tHBese cases are typically distinguished from one another by
mass fluctuations the value(finite or infinite) of their correlation length. Cer-

tainly, as we have noted, the use of the term “correlation

(MA((R))—(M(R))>~R® with d—1<a<d, (54) length”in the cosmological literature, which is definEt#]

as a scale defining the amplitude of the correlation function,
i.e. (M2(R))—(M(R))2~(M(R))? with B=ald<1, so isin no way related to its use in statistical physics.
that the mass fluctuations are always asymptotically smaller Before continuing with a more detailed discussion of the
than in the uncorrelated Poisson case. This also correspondsature of this class oBuperhomogeneoudistributions to
to a strongly correlated, long-range ordered, system. We wilwhich standard cosmological models belong, we clarify one
refer to them with the term “superhomogeneous” to under-quite common misunderstanding about them in cosmology.
line this feature that they are more homogeneous than a Pois-
son system(Indeed, the Poisson patrticle distribution is con-
sidered as the paradigm of a stochastic homogeneous mas
distribution[26]). In the context of statistical mechanics they ~ As we have noted in the Introduction the physical mean-
can be described as glasslike, as they have the properties i@y of the constrainP(0), equivalent to Eq(53), is often
glasses, which are highly ordered compact systems. That cafissed in the cosmological literature because of a confusion
be said to be typically latticelike, with a long-range orderedwith the so-called “integral constraint,” which is another
packing, but without the discrete symmetries of an exact latyery similar, but actually completely different, constraint. Let
tice. Note again that, sing&0)>0 (a Dirac delta function in  us clarify this point.

f dré(r)=0 (53
QO

SV. P(0)=0 AND CONSTRAINTS IN A FINITE SAMPLE

the discrete cagdy definition,£(r) must change sign with The “integral constraint” refers in this context to a con-
at least once. They are systems with finely balanced positivétraint which appears in the estimation of the correlation
and negative correlation. function in a finite sample&, say. It is a constraint which

The distinction betweefil) and (2) is typical of the sta- indeed can take the superficially similar form to E53):
tistical physics of critical phenomena in order to distinguish
a critical statdcase(2)] from a noncritical statgcase(1)]. In 3~
this context the concept of correlation length is central. The f Sd rée(r)=0 (56)
correlation length is a measure of the distance up to which
one has spatial memory of the spatial variations in the mass o ) )
density [19]. There is no unique definition of this length where the subscript |nd~|cates that the integral is over the
scale, but from a phenomenological point of view it can befinite sample volume, anék(r) is the value of theestimator
defined as the length scale up to which the effect of a smalbf the correlation function. This is in general a quantity cal-
local perturbation in the system is felt. This is due to theculable from the sample whose ensemble average converges
fluctuation-dissipation theoremwhich links the response of to the real correlation function at any finite scale when the
the system to a local perturbation and the large scale behabBoundaries of the sample go to infinity.

ior of the two-point correlation functiortfor the different That such a constraint has in principle nothing to do with
precise definitions of the correlation length see for exampldéhe constraint?(0)=0 is clear from the fact that it is one
[10]). A simple definition is(but see als$21,22)) which holds independently of what kind of distribution the

sample is taken from. Its origin is simple, in the fact that the

244 7 mean mass density, relative to which fluctuations are esti-
o rl&r)] mated, is taken in the estimator from the sample itself.
rgorrz _— (55) Therefore, roughly speaking, the positive correlations mea-
j d%r[E(r)| sured relative to this density are constrained to be balanced
Q by anti-correlations, giving rise to a constraint like E56).

More specifically the two point correlation function can be
In case (1) one can generally define a finite correlation written as

length, while in cas€?) it will generally diverge. In particu-

lar in the case&(r) ~exp(—r/ry), r. is indeed then the corre- (n(r))
lation length, while for a positive power-lag(r)~1/r* and &)= P1 (57)
y<d (case(2) r o . (n)

Case(3) is typical of ordered compact systems with small
correlated perturbations. One can meet this kind of correlawhere (n(r)), is the mean density at distancefrom an
tion function for example in the statistical physics of liquids, occupied point andn) the true(unconditional mean den-
glasses, phonons in lattices. The concept of correlatiosity. Integrating this expression over the volume of the
length in this context is less central, and the extension of itsampleS gives the relation
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. one suppresses fluctuations at the scale of the sample by

<NS>p_<NS>:<n>JSd rér) (58 construction. An estimator which imposes the relation Eq.
(59) on the estimated correlation function would therefore be

where(Ng), is the average number of points in the sample®xpected to make a smaller error for the class of superhomo-

volume, with a point at the origin by construction, while 9€n€ous distributions than for others. We will return to issues

(Ng) is the average number of points in the same volumeSuch as this in forthcoming work.

but without the condition that there is a point at the location

of the observer. If one estimates the true mean deriséy VI]. SUPERHOMOGENEOUS DISTRIBUTIONS

(n)=(Ng)/Vyg) in a galaxy catalogue sample from the actual ] . ] ]

density in the samplé.e. on averagéNg),/Vy), the esti- In this section we discuss the properties of long-range

mator for the correlation function will by construction on ordered mass distributions, or superhomogeneous distribu-
average obey the condition EG6) i.e. tions. We first discuss the simplest example of such a situa-

tion, represented by a lattice of particles. It has many of the
e relevant properties under discussion. By studying its pertur-
Ld r{&e(r))=0. (59 pation(the “shuffled lattice’) it is possible to understand the
properties of more isotropic distributions, both continuous
Such a systemati@.e. ensemble averapeffset between the and discrete, which are characterized again by long-range
estimated and the real correlation function is sometimes reorder. The main feature of these distributions, as we have
ferred to in the cosmological literature on the subject agliscussed, is that?(R) (the unconditional variangalecays
“bias.” It is only in very specific circumstances, with certain faster than in the uncorrelated Poissonian case, i.e. faster
estimators, that Eq(56) holds for a single sample. For an thanR™® (whered is the space dimensianWe then discuss
estimator of the fornj25] how a continuous field with such correlations can be con-
structed, making it clear that the intuitions about the nature
~ I'(r) of the fluctuations in the shuffled lattice can be extended to
fE(r):n_S_l (60 the continuous case. We mention here that one physical
model in which such correlations are fodfids the “one
whereI'(r) is estimator of(n(r)),, andng an estimate of component plasma” studied, for example, [ihl,37]. This
the mean-density from the sample, E§6) will hold if models a Coulomb system of discrete positive charges in a
continuous negatively charged background. In equilibrium
n :iJ I'(r)dr 61) the charges reach an extremely ordered glasslike configura-
S"Vsls ' tion with PS at smalk like that of the shuffled lattice.

This is in fact a perfectly good prescription for how to esti-
mate the mean density in a finite sample, but one that is not ) . o ,
used in most estimators, which typically have a variance 1he microscopic density in the case of particles placed on
around the average behavior E§9). Estimator® which do  the sites of a regular lattigén any dimensiopcan be simply
not take the mean density as the simple density of points iM/tten as

the sample do not in general obey even Esp), but will

alwgys obey som'e_cqnsyrai_nt of this type, which cannot be p(F):Z S(r—R—17) (62
avoided because it is intrinsic to the fact that any real sample R

contains an occupied point at the position of the observer.

relation functiong(r) measured in a finite sample, which the position vector of the lattice site wi=0 with respect
may take a form similar to the condition E(p3) defining ._to the origin of coordinates, iR+ ;7 runs over all the lattice

Yites. For simplicity let us suppose we have a cubic lattice of
Xmitary lattice spacing. Then, in order to eliminate the depen-

d|rf£er:rrt1t oofnt%lg ﬂirc]?u;?igiglir;]gé gengaﬁ]e;(;rg;'g? d’ci‘sntriltr)]lgrtligils(,:dence on the position of the origin of coordinates with re-
property 'spect to the lattice, we can define an ensemble of lattices by

D o o g he posion of the orig wih o probabiy i
Y pi€. n unitary cell. For instance iW=3, —1/2<n,7,,7,

resemblance however is not completely without meaning and ;5 wherex,y,z are the axis coordinates, and then the

can be understood as follows: in a superhomogeneous diStr‘iénsembIe average” i - )= Y2 dn,dn.d
bution the fluctuations between samples are extremely sup- Clearl h g that = —yAndndn, ... .
pressed, being smaller than Poissonian fluctuations; in a fi- ~'cary We have tha

nite sample a similar behavior is artificially imposed since

A. The perfect lattice

(p(r)=1. (63)

For a discussion of estimators used in the cosmological literature,
see e.g[36]. Oe thank B. Jancovici for describing these systems to us.
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We want to compute now the two-point correlation functionthe square rogtof the number of particles contained in the
(p(r1)p(ry)). First we have that last shell of the sphere of thickness equal to the lattice spac-
ing (which scales a®?™?).
- - . s e s o This is due to the strong order of the particles in the lattice
p(rp(r)= 2, S(F—Ri=md(r=Ro=71) (64  from 4 large scale point of view. Thus the lattice has a be-
RLR; havior of its mass variance which places it in the superho-

from which one obtains mogeneous category, with the limiting decreasing behavior
- - - .- o?(R)~R™(4*1), (69)
(p(r)p(r)=2 8(r1—r,—R) ® »
R i.e. c°(R)~R™* for d=3.

and hence the two-point correlation function B. The “shuffled” lattice

~ = = Ap(r)p(ry) In this section we define a superhomogeneous stochastic
Eryr)=—,-5—-1 distribution of particles obtained from a lattice which shows
{p) more evident resemblances with the cosmological HZ case.
The recipe is the following(1) Consider a cubic lattice of
= ( > 8(r—r,—R) | —1. particles, as discussed aboy2) take a particle of the distri-
R bution and draw a lattice-oriented cubic box of sidarger

(66)  than the lattice spacing centered on the particle it48f;
T, displace the particle to a randomly chosen point of this box;
Note thaté(r,,r,)=&(r,—r,) which means that our occu- (4) repeat for each particle of the lattice.

pation stochastic procedse. the ensembleis stationary. We can writep(r) for a certain realization of this stochas-
However since it is not invariant for generic spatial rotationstjc process as

we have¢(r,—r,)#&(]ri—r,|) (the lattice breaks spatial
isotropy). A p(r)= 2 S(r—R—ma—17), (70)
In order to evaluatd®(k) we need to perform the FT of R

E(F). In the case of a lattice this gives simply - - . -
whereR and z have the same meaning as before, gprds

R . the vector giving the displacement of the particle in the box
P(k)=§o o(k=h) (€7 from the lattice rest positioR-+ ;; By definition each com-
ponent of the vector is a random number uniformly dis-
where the sum is extended to all the dual lattice vetior tributed in the interval —1/2,4-1/2]. Therefore, for instance
satisfying theduality conditionh- R=27m, wheremis any I d=3, the ensemble average- -) is now defined to be
integer, but with the exception &f= 0. Note that, because of " 2 4o
this last condition, also in this casq0)=0. (-- ~>=f f f a3yl j f f R (71
It has been showifil6] that for the simple lattice ird -vz R -z 13

dimensions the fluctuations in a Balbf radiusR, centered

on a randomly chosen point, behave as _After some algebra one finally obtains th(ry,r)
=¢&(rq—r,) (i.e. the ensemble is stationand ind dimen-
(M(R)?)—(M(R))?~RI"* (68  sions for integet one finds exactly
compared to the Poisson behaw{dd (R)?) — (M (R))?>~R". 1 |rd
This result can be understood as follows: - - BRI [ LR Irl<l,

In the Poisson distribution, if we take two randomly g(r)zé(r)—kﬂl N (72)
placed spheres of the same radius, the numbers of particle N 0 it |r=1.
contained in them differ by an amount which is typically of
the order of the square root of the average numbeR{); |t is very simple to verify that [ /. Z(r)d® =0, which is

In the case of a lattice the two numbers differ by anihe condition of super-homogeneity. Note that fer + o

amount which corresponds to a Poissonian fluctuation E(F) reduces correctly to the simple delta function, i.e. to the
Poisson correlation function. In fact in that limit we must of
course obtain a Poissonian distribution of particles without
correlations. Note that, consequently, we have the following
noncommutativity of the limits:

"Note thai[16,28 for the same quantity in cubic boxes of sie
one obtaingM (R)?)— (M (R))2~R%*1, This is a typical pathology
of the lattice which is not a real stochastic particle distribution,

having adeterministicdiscrete translation symmetry. This pathol- © “
ogy is eliminated in the case we consider below of a “shuffled 0= |imJ J J E(F);&J J J |im~§(F):1_ (73)
lattice.” | —c0 - —®| o0
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One can also find an exact form B(E) by app|y|ng Eq in the part of it OnN'bOdy simulations. This is not the case,

(27) in d-dimensions: and it is worth explaining this to avoid any possible confu-
sion on this point. This technique for generating initial con-
. 1 d 2(1—coglk;)) ditions has in fact been introduced to avoid problems with

P(k)= -1 ——= (74)  Poisson noise at small scalfargek) in the discretization

(2m) =1 Izkiz procedure, and not because the system being simulated is
understood to actually intrinsically resemble a lattice at small
k. Indeed the primary goal of most of these simulations has
been to study the dynamical evolution in a range of scales
well below the “turn-over” in the PS, where the R&t large
— (759 k) has a negative power-law form-(k~#, with >0, cor-
(2m)* 12 responding to a positive correlation function with a “criti-
o . ] ) cal” power law behavior Thus this procedure is applied
which implies an isotropic behavior fé&r—0 even though by primarily in a range of scales where the system being mod-
constructionP (k) is not isotropic for a generd. Note that  eled does not intrinsically resemble a lattice or glass at all.
we have theP(0) =0 behavior of the HZ spectrum. Finally, Only the more recent very large simulations describe the
the fact that fork—o the PS tends to a positive constantlarger scales at which the initial conditions should have
means that such a distribution is Poissonian at small scalB(k)~K. In this case too the use of a displaced lattice in
(r<l). setting up initial conditions is not because the underlying
It is now easy to calculate analytically the unconditionalSystem is understood to be lattice-like, but is simply inher-
number variance. In particular the calculation can be donéed as a numerical technique for the same small scale con-
exacﬂy in cubic boxes with the same lattice Symmetry and'SiderationS[so:'. |ndeed, as will be further clarified in the
with some simple approximations, in spheres. In both casef®llowing section, there is in principal no reason why one has
one obtainsr?(R) ~R~* for large scales, as in the case of a to start from a lattice to produce such a spectrum; nor indeed
lattice, but eliminating the pathology of different scaling be-is it certain that one obtains the right correlation properties if
haviors between cubic boxes and Spheres which we noted @€ starts from a lattice. What is true is that the SpeCtrum of
present for the rigid lattice. Note that the fact thet(R)  the initial conditions, if it is HZ, should be glass-like in the
~R™* at large scales corresponds to the fact that, despite thzense we have discussed. A real space analysis of the initial
“shuffling” of particles with respect to the lattice, the strong conditions actually used in such simulations sh¢Wisthat
lattice order is maintained at large scales. For nonintéger they do not in fact have the appropriate properties.

Let us analyze the behavior for small values kofAt the
leading order we can write

12 K2

P(K)~

>1, even though calculations are cumbersome &mdl is Note finally that glass-like systems belong to a wide fam-
not simply written, the main results aboB(k) for small k ily of distributions for which the common feature is that
and o2(R) for largeR are the same. P(k) ~k® with a>0 for k— 0 and hencé(0)=0. However

The HZ spectrum has this same behavior characteristic gfuch behaviors in the PS do not imply directly tdat) has
latticelike order at large scales, while its sm&llPS is @ negative power-law tail at large scales. In particular this is
P(k) ~k instead of~k2. This spectrum corresponds to more NOt true if the PS has a singularity f&{(0)#0, as happens
power at large scales. We will see in the next section that thi? many systems. For examlé] the glass-like distributions
can be associated with an appropriately more ordéred (unper_turbed and pe_rturb)gdsed as |n|t_|al conditions in cos-
coherent shuffling of the lattice, and precisely what kind of Mmological N-body simulations have indeed an oscillating
large scale correlations is required to obtain the HZ spectruré(r) at all scales, and a mass variancdr)~r~*. Thus we
will be made explicit. The crucial point is that such shuffling @mphasize that the negative power-law tail of the real-space
must leave intact at very large scales the strong order of thgorrelation function of the HZ distributions in cosmology is a
lattice, so that one still has the characteristic behaviors w¥ery particular feature of these models.
have seen in the shuffled latti¢a correlation function which
is negative at large scales and integrates to zero, a nhormal-
ized variance in spheres decreasing faster than the volume ) o _
We thus say that the distribution described by the HZ spec- Let us consider the case of a mass distribut@mlensity
trum has a lattice-like or, more appropriately because of thé€!d) obtained by superimposing a random displacement
isotropy, glass-like long range order. More specifically, it canfield on & completely uniform density field.
be characterized as a glass with superimposed opportune co- Let the uniform density field bgy(r)=po and superim-
herent long-range perturbative waves of displacement.  pose on it the stochastic displacement fie{d) [the infini-

In relation to this description it is interesting to make (aqimal volumedV at f is displaced b)/J(F)]. Let us call

some brief comments on cosmologiddbody simulations - . -
(see e.g[6]). In this context a standard algorithm used to P(r). the r_esultlng dens_lty field. W_e suppose that t_he stochas-
tic field displacement is the realization of a stationary and

generate initial conditions for these simulations involves im-, ! : . -
posing perturbations on a perfect latti@@ sometimes even isotropic stochastic process characterized by the probability

“glassy” configuration. At first sight this would suggest that density functionalLu(r)]. In this wayPu(r) ] defines also
the point we are making about the HZ spectrum is in factan ensemble of density fielggr) which is stationary and
already understood in the cosmological literature, or at leassotropic, with(- - -) the ensemble average.

C. Uniform distributions with a displacement field
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By applying the mass conservatigne. the continuity “superhomogeneity” of a lattice at the corresponding scales,

equation we find with the characteristic real space behaviors we have used to
~ define it. Equally if one starts from a lattice one can arrive at
p(r)—po N distributions which are not superhomogeneous. Indeed, as
Tz—Vu(r). (76 e noted above, in the context d-body simulations in

cosmology the displacement from a lattice to produce initial
If we call as usualf(r) the reduced two-point correlation conditions has been introduced in simulations describing the

function of the density field we can write evolution in cosmological models at scales where the models
are not HZ, but rather have a positive correlation function
g(r)=(§~ﬁ(?)ﬁ-ﬁ(5)). 77 with a “critical” power-law. The starting point of a lattice

has been favored over a “uniform” Poisson distribution sim-
Then, taking the FT of both sides of E(77), and making Ply because of numerical limitations, the latter producing at

use of the statistical isotropy, we obtain any feasible resolution too much small scale noise over-
whelming correlations at small scales. In summary, the cen-
P(k)~k2P(k), (79)  tral point we are making here ot that a HZ type spectrum

can be obtained in principal by perturbing a lattice; rather the

where P(k) is the usual PS of the mass density field andcrucial point is that such a system is intrinsically latticelike,
P,(K) is the PS of the displacement field. @rrespeqtive of how a discrete realizatior_1 of it is constructed
SinceP,(K) is itself the PS of a SSP it is subject to the in practice. These are two completely different things.
constraints of the Khintchine theorem. Thus at snkait
must diverge slower than-k™ 3, allowing one to obtain at
most P(k)~k ™1, corresponding to a real space correlation
function which must go to zero faster tharrd/asr—c. First we return to the use of the term “scale invariance”
Therefore any continuous SSP of the “substantially Poissoin cosmology. We have described in Sec. Ill with what mean-
nian” and “superhomogeneous” type can be obtained in thising this term has been introduced in cosmology: it refers to
way, but not all the “critical” type behaviors. In particular the fact that the variance of the mass equivalently gravi-
one can obtain a HZ type spectrum wikh,(k)~k™ ! de- tational potentigl has an amplitude at the horizon scale
scribing a critical type SSP. which does not depend on time. The PS associated with this
What is the relation to the discrete case? If we supposeehavior is that of a correlated system which is of the super-
that P,(0)=const>0, i.e. the displacement field at large homogeneous type. This use of the term “scale invariance”
spatial scales is Poissonidie. uncorrelated we find that therefore is not in any way analogous to (gsiginal) use in
for k—0 one hasP(k)~k2?. This is exactly the same statistical physics. In this context it is associated with a dis-
asymptotic behavior as that we found for the case of thdinctly different class of distributions which have special
shuffled lattice. Indeed we obtained the latter through theproperties with respect to scale transformations: typically
superposition of an uncorrelated random displacement fieldritical systems, like a liquid-gas coexistence phase at the
to a “uniform” background, and thus the result is natural. critical point, which have a well defined homogeneity scale
Moreover, in general we would expect the relation E&)  and a reduced two-point correlation function which decays
to give us in the discrete case the large scale behavior of a sas a nonintegrable power law(r)~r~ 7 with 0<y<3. In
of fluctuations imposed on a discretization of the continuougarticular the term does not have anything to do with the
uniform density field, and in particular of a rigid lattice amplitudesof fluctuations being independent of scale: the
which is simply such an object. Thus if instead of shufflingamplitudes of fluctuations vary with scale, while the system
the lattice as in the previous section we superimpose corrgs correlated at all scales.

VIl. DISCUSSION AND CONCLUSIONS

lated fluctuations with a spectrumk ™! we will obtain at We note that one might be tempted to associate the term
large scales a distribution with HZ behavior, and the associscale invariance” in the context of cosmology simply to the
ated real space properties at large scales. power-law behavior of the correlation function. From a

Let us return again finally to our comments at the end ofmathematical point of view, the terminology “scale invari-
the last section omM-body simulationgsee[7] for a more  ance” could be used for any distribution with a power-law
complete discussion of this pojntWith the previous con- tailed&(r), that is satisfyingg(r')=A(b)&(r) forr’=br. In
struction it is easy to see why one arrives at the idea ofhis case the HZ spectrum would, however, be no more
generating a distribution with a certain PS by displacing“scale invariant” than any other spectrum with a power-law
points on a rigid lattice. The lattice is simply a discretizationform at smallk. In terms of its meaning in physics however
of the continuous uniform background which is then per-this usage is restricted to the context of critical phenomena,
turbed. One could in principle start from a Poissonian distri-in which it has been demonstrated to be very powerful and
bution of particles—for the generation of the larde useful. As we have discussed, this case is completely differ-
behavior—which can always be made “uniform” to any de- ent from the systems we have termed superhomogeneous. In
sired precisiorfassuming no practical limitation on the num- particular in the former systems fluctuations are always large
ber of points used and then superimpose the displacementat all scales, which formally is associated with the non-
field to produce the required PS. If the distribution producedntegrability of the correlation function. The superhomoge-
is to be HZ, and particularly of CDM type, it will have the neous systems have correlations of a completely different
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kind: they are delicately balanced to make the mass fluctussame degree of “wrinkliness” of each resolution scale.’ Both
tions smaller than for a Poisson type distribution. the term “fractal” and “scale invariance” are used here in an
In Sec. IV we have briefly discussed the use of the termincorrect and misleading way with respect to any of the
“correlation length.” Historically this term was introduced in meanings attached to them in théariginal) context of sta-
the context of critical phenomena to characterize the transttistical physics. In particular the HZ spectrum does not have
tion towards a state of the system whépesitive) correla-  any properties which would allow it to be associated with a
tions are long range and the normalized fluctuations of théractal mass distribution.
mass(or of other extensive quantitipslecay with the scale We have discussed the criterion which leads to the HZ
more slowly than in the non-critical Poissonian state. More-Spectrum. We have pointed out that the usual naive formula-
over, in this context, the meaning of correlation length istion of this condition is in fact not satisfied by the spectrum
given through the fluctuation-dissipation theorem, in whichP (k) ~k, and that one must phrase the condition in terms of
the correlation length plays the role of the distance up t&h? variance in Gaussian spheres atl thg scale of the horizon.
which the system responds to a local external perturbation. Ithis is because the spectru{k)~k is singled out by the
is thus a scale used to capture the essential physical distinEonstancy(as a function of timg of k*P (k) at the horizon
tion between two types of distributions which are both inscale,.whlch cannot be.taken to be proportional to the vari-
turn distinct from the superhomogeneous systems. The e§nce in spheres of radilR~k™* for P(k)~k" andn=1.
sential difference between each of these three cases can ¥¢ have emphasized that this is not at all an unphysical
best characterized according to the large scale behavior &€havior due to the ideality of a sphere. Rather it actually
the mass fluctuations in each case. It is therefore useful t#lls us something very fundamental about the nature of these
take as a classification parameter the value of the integral glistributions: They are di;tributions which are so ordered at
E(r) over all space as we have done, while the notion 01large scales that the variance of mass at large scales really

correlation length has no obvious or unique generalization irgoes_gome from small _scal_es. The H.Z spectrum mark_s the
this case. transition to a pure lattice-like behavior of the normalized

Another term whose meaning it is useful to clarify is \l;aritince in fphergsz(R)BlllR;, WhiChf r:ﬁ.s been tstrlown to
“fractal.” Fractal distributions, which are the prototype of e the most rapid possible decay of this quantity sy

scale-invariant geometrical distributions, represent a morétOChaStIC distribution of points.

extreme case of correlated systems: their average density j Wh?t thenhdoes the ufse, W|dhesp:je.atd.t|)n t.cos?mli)/llo?ﬁ/ , of t‘?‘
zero in the infinite volume limit and the conditional average aussian sphere mean lor such a distributions Mathemai-

, > cally, it simply filters out the power up to a certain mokle
density (n(r)), decays to zero as a power law?” as a y Py b b

. . s X (which then dominates the integraPhysically it can be ex-
function of the dlsFance 'from an occupleq Pf_’@W"Fh O_< Y tremely misleading if interpreted incorrectly as a character-
<d). The fractal dimension of the mass distribution is given;,ation of a variance in real space. Consider the example of

by Dy=d—y [38,39. A fractal is inhomogeneous at all the shuffled lattice. It has PSk? at smallk (i.e. kl<1,
scales and the concept of average density in a finite samp|gnerel is the shuffling scale Using a Gaussian sphere one
centered on an occupied point has no intrinsic meaning, b&yoy1q infer that the variance at large scale goes &.1/
cause it depends on the sample size. Moreover, since the,sically we know that all the variance comes from small
asymptotic average density of a fractal distribution is zeroggjes in this case, and that this behavior dominated by the
both £(r) and P(k) are undefined for such a systd@5].  |5yer cutoff giveso?(R)~ 1/R%. The behavior in Gaussian
Instead one has toawork directly with the un-normalized CONpheres comes from the fact that one is smearing the small
ditional density(n(r)),. In general, before introducing the scale behavior over the scate . As the sphere grows the
estimators of(r) andP(k) for a finite sample of a system |ower cutoff grows too. One would obtain the same behavior
whose underlying properties one does not kn@g. the by taking a different smearing scale on the sphere’s bound-
distribution of galaxies in the Universeone needs to verify ary, but by making this scale change in proportion to the
that the estimator of the average densityis not strongly  radius of the sphere. The behavior observed has to do with
dependent on the sample siZ5]. the very particular way one is smearing, and the real space
There is sometimes confusion in the cosmological literaproperties of the system are actually obscured. The only use-
ture about the meaning of “fractal” in connection with the fulness of the Gaussian sphere is an alternative way of saying
notion of scale invariance. For example in the book by Peathat P(k)~k?, i.e. as a statement abokitspace properties,
cock [40] (Sec. 16 the author writes that “The Zeldovich not real space ones. It does not describe in any useful way a
spectrum is a scale-invariant speetru.. .” It is then  property of the system in real space. In particular the HZ
shown that the PS of the fluctuations in the gravitationalkriterion should be understood really ak apace one, and
potential P,~k ™3 and hence the auto-correlation function, caution should be applied to its formulation as “constancy of
or the quantityA(2b~ P 4(K)- k3 is a constant: the author con- mass variance at the horizon scale.”
cludes that ‘Since potential perturbations govern the flathess We have highlighted the fact that all current cosmological
of space-time, this says that the scale-invariant spectrum comodels will share at large scales the characteristic behavior
responds to a metric that isactal:** space-time has the in real space of the HZ spectrum. Specifically we note pri-
marily the very characteristic latticelike behavior of the vari-
ance in spheres?(R)~R ™ * (up to a small correction which
12Bold font is author’s. is formally logarithmic for the case of exact Wzas well as
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the characteristic negativ@onoscillating power-law tail in  of measuring the transition between these regimes directly in
the two point correlation functioéi(r)~—r 4. In this paper  galaxy distributions. With large forthcoming galaxy surveys
we have not addressed practical questions concerning themay be possible to do so, but this is a question which must
observation of such behavior in cosmological data. In paraddress exactly the statistics of these surveys and the exact
ticular one would expect such behavior to be seen in prinnature of the signal in any given model. These are questions
ciple, if these models are correct, in the distribution of mattemwe will address in future works. One other direct usage of
in the Universe at large scales, and in particular in the disthe results developed here is in the contexNdfody simu-
tribution of galaxies. So far such behavior has not been oblations, in which one studies numerically the evolution of
served. Rather the characteristic feature of galaxy clusteringerturbations in cosmological models, and a knowledge of
at small scales is that it shows fractal behavigb,41], their real space characteristics can be very useful. We refer to
which as we have noted corresponds to a very different kindli7] for a detailed discussion of this point.

of distribution than that described by CDM type models. A
centrally importantand much debate®5,41,24) observa-
tional question is the determination of the scale marking the
transition from this behavior to homogeneity. On much We thank T. Antal, R. Ball, Y.V. Baryshev, T.
larger scales galaxy structures should then present the sup&aertschiger, R. Durrer, P. Ferreira, B. Jancovici, L. Pietron-
homogeneous character of the HZ type PS. Indeed thisro and F. Vernizzi for useful discussions and comments.
should be a critical test of the interpretation of measurement$his work has been partially supported by the EC TMR Net-
of CMBR in terms of the HZ picture on large spatial scaleswork “Fractal structures and self-organization” ERBFM-
[4,34,35. Observationally a crucial question is the feasibility RXCT980183 and by the Swiss NSF.
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