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Glass-like universe: Real-space correlation properties of standard cosmological models
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After reviewing the basic relevant properties of stationary stochastic processes~SSP!, defining basic terms
and quantities, we discuss the properties of the so-called Harrison-Zeldovich like spectra. These correlations,
usually characterized exclusively ink space@i.e., in terms of power spectraP(k)#, are a fundamental feature of
all current standard cosmological models. Examining them in real space we note their characteristics to be a
negativepower law tailj(r );2r 24, and asub-Poissoniannormalized variance in spheress2(R);R24ln R.
We note in particular that this latter behavior is at the limit of the most rapid decay (;R24) of this quantity
possible forany stochastic distribution~continuous or discrete!. This very particular characteristic is usually
obscured in cosmology by the use of Gaussian spheres. In a simple classification of all SSP into three
categories, we highlight with the name ‘‘superhomogeneous’’ the properties of the class to which models such
as this, withP(0)50, belong. In statistical physics language they are well described as glass-like. They have
neither ‘‘scale-invariant’’ features, in the sense of critical phenomena, nor fractal properties. We illustrate their
properties with some simple examples, in particular that of a ‘‘shuffled’’ lattice.
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I. INTRODUCTION

In standard theories of structure formation in cosmolo
the density field in the early Universe is described as a p
fectly homogeneous and isotropic matter distribution, w
superimposed tiny fluctuations characterized by some
ticular correlation properties~e.g.@1#!. These fluctuations are
believed to be the initial seeds from which, through a co
plex dynamical evolution, galaxies and galaxy structu
have emerged. In particular the initial fluctuations are tak
to have Gaussian statistics and a spectrum which is exa
or very close to, the so-calledHarrison-Zeldovich~HZ! @2,3#
or ‘‘scale-invariant’’ power spectrum~PS!. Because fluctua-
tions are Gaussian, the knowledge of the PS, or its Fou
conjugate, the real space correlation function, gives a c
plete statistical description of the fluctuations. The HZ ty
spectrum was first given special importance in cosmolo
with arguments for its ‘‘naturalness’’ as an initial conditio
for fluctuations in the framework of the expanding univer
cosmology, and it is in this context that the use of the te
‘‘scale invariant’’ to designate it can be understood. It sub
quently gained importance with the advent of inflationa
models in the 1980s, and the demonstration that such mo
quite generically predict a spectrum of fluctuations of t
type. Since the early 1990s, when the Cosmic Backgro
Explorer~COBE! experiment@4# measured for the first time
fluctuations in the temperature in the cosmic microwa
background radiation~CMBR! at large scales, and found re
sults consistent with the predictions of models with a H
spectrum at such scales, the HZ type spectra have beco
central pillar of standard models of structure formation in
0556-2821/2002/65~8!/083523~18!/$20.00 65 0835
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Universe. The aim of the present paper is twofold. First,
clarify the statistical properties in real space of these dis
butions, which have been almost completely overlooked
the literature on the subject. And secondly, through this d
cussion, to relate and compare this model of the primord
Universe to correlated systems encountered in statis
physics. We attempt to make the paper as self-containe
possible, and not excessively technical in its discussion
ther of cosmology or statistical concepts, in the hope tha
may be easily accessible to both cosmologists and statis
physicists.

The HZ spectrum arises in cosmology through a particu
condition applied to perturbations of Friedmann-Roberts
Walker ~FRW! models, which describe a homogeneous U
verse in expansion. This condition—commonly referred to
cosmology as ‘‘scale invariance’’ of the perturbations—giv
rise to a spectrum~commonly called the ‘‘scale-invariant’
perturbation spectrum! with P(k);k at smallk. All current
standard cosmological models of structure formation in
Universe assume a spectrum exactly like this, or close to
as the initial condition for perturbations in the Universe.
such models there is at any time a finite scale correspon
to the causal horizon, which increases with time, and be
which causal physics can act to modify the spectrum. T
causal physics depends, in general, on the details of
model, i.e., on the nature of its content in matter and rad
tion ~or other forms of energy!, until a characteristic time
~the time when matter and radiation have comparable de
ties!, after which purely gravitational evolution takes ove
There are many variants on standard cosmological mod
e.g., ‘‘cold dark matter’’ ~CDM!, ‘‘mixed dark matter’’
©2002 The American Physical Society23-1
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GABRIELLI, JOYCE, AND SYLOS LABINI PHYSICAL REVIEW D 65 083523
~MDM !, or the currently favored one with a nonzero cosm
logical constant (LCDM), each of them leading to a differ
ent form for the spectrum at smaller scales~i.e., largek)
which can be calculated. In CDM models~in which the pre-
dominant massive component driving collapse under gra
is cold dark matter, ‘‘cold’’ in the sense that the particl
have little initial velocity dispersion! the PS decays at sma
scales~large k) as a negative power law ink, while in hot
dark matter~HDM! models ~for which the prototype is a
Universe dominated by a light neutrino! there is a exponen
tial cutoff in the spectrum~due essentially to the fact that th
‘‘hot’’ neutrinos wipe out structures at these scales with th
large velocity dispersion!. All of these models, however
have the same ‘‘primordial’’ HZ spectrumP(k);k ~or very
close to it! on large scales~i.e., smallk), that is at scales
which are large compared to the causal scale at the tim
matter-radiation equality. This latter scale is of course mu
smaller than our present causal horizon~i.e., than the part of
the Universe we can probe today!. This means, in particular
that these primordial density correlations should be
printed in the distribution of matter at very large scales, a
should in principle be detectable in the distribution of gala
ies at very large scales, inside the present horizon. Until n
the only probe of fluctuations on such scales is through
temperature variations in the angle of the CMBR, as
angular correlations in temperature fluctuations are coup
directly to the three dimensional density fluctuations. Fr
the COBE measurements@4# the amplitude of the fluctua
tions inferred is;1025 in the PS at these scales. We w
discuss elsewhere the practical difficulties involved in m
suring such a weak signal in the discrete distribution of g
axies. Here we concentrate on identifying the real sp
properties of these theoretical models at large scales.

Another context in which an understanding of the sta
tical properties in real space of the HZ PS of the mass d
sity field is important is represented by cosmologicalN-body
simulations, the aim of which is to calculate the formation
structures under gravity in the Universe by a direct numer
calculation~see, e.g.@5,6#!. Because the time scale of evolu
tion in these simulations is short compared to the dynam
time of the system~i.e., a particle moves a small distanc
relative to the size of the box representing a large volume
the Universe! the final configuration depends strongly on t
initial conditions~IC! at all but the smallest scales. Indeed
central idea is that from the final distribution—which shou
be closely related to the observed one of galaxies—
should be able to ‘‘reconstruct’’ some important features
the IC, which can be related to other observations such
those of the CMBR. A key issue for these simulations is th
the setting up of these IC, which involves subtle proble
concerning the discretization of the system. The usual
proach to this problem is again entirely phrased ink-space,
where instead a real space approach proves very usefu@7#.
To avoid any possible confusion for those somewhat fami
with these simulations, we note here at the outset that
description of the HZ model we give in this paper, as lattic
like or glasslike, has no direct relation to the use of lattices
glasses in setting up IC in currentN-body simulations. There
lattices or glasses are understood to be sufficiently ‘‘hom
08352
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geneous’’ configurations on which to superimpose fluct
tions of a desired type. The reason for their use~instead of a
‘‘uniform’’ Poisson configuration! is purely numerical@7#,
and it has nothing to do with theintrinsic statistical proper-
ties of the systems being modeled. Indeed, as we will exp
further at the appropriate place below, these methods h
been used primarily to simulate cosmological models at
smaller scales at which they are not at all glasslike.

Discussions of real space properties of the density fl
tuations encountered in cosmology are puzzlingly spars
the literature on the subject. Peebles briefly notes~@1#, see p.
523! that a very particular characteristic of HZ models is th
‘‘on large scales the fluctuations have to be anticorrelated
suppress the root mean square mass contrast on the sc
the Hubble length.’’ Indeed, we emphasize the fact that th
models are characterized at large scales by a correla
functionj(r ) which has a negative power-law tail: detectin
it would be the real space equivalent of finding the turno
to HZ behavior to scales at which the PS goes asP(k);k.
The preference for ak-space description is probably roote
in the fact that the linear dynamics, which are used to
scribe many problems in cosmology, are most natura
treated in this space. While it is true of course that this
scription in k-space is complete, this by no means impli
that the complementary real space view is redundant, a
well known in many contexts in physics. One of the points
this paper is to show that this complementary view of the
apparently so familiar models is at the very least interest
and useful, in particular in how it facilitates compariso
with familiar physical systems.

A basic question we try to answer is the following: Wh
‘‘kind’’ of two-point correlation function is the one corre
sponding to the HZ behavior in cosmological models? W
compare it to some different statistical homogeneous and
tropic systems:~i! Poisson-like distributions,~ii ! systems
with a power-law correlation function found in critical phe
nomena@10# and ~iii ! distributions characterized by long
range order~e.g., lattice or glass-like! @11#. Through this
comparison we can classify HZ models in the third catego
We introduce the term ‘‘superhomogeneous’’ to refer to the
kinds of distributions, as their primary characteristic is th
mass fluctuations decay at large scales faster than in a c
pletely uncorrelated~Poisson! system. For critical system
one has instead a decay of the mass variance which is slo
than Poisson. Formally the definition of this class of ‘‘sup
homogeneous’’ distributions is given by the condition th
the PS hasP(0)50, or equivalently in real space that th
integral of the two point correlation function over all space
zero. In the cosmological literature the latter property of c
mological models is often noted, but its meaning~as a strong
non-local condition on a stochastic process! is not appreci-
ated, or worse misunderstood as a trivial condition apply
to any correlated system. In the textbook of Padmanab
@12#, for example, it is ‘‘proved’’ on p. 171 that the integra
over all space of the correlation function vanishes indep
dently of the functional behavior ofj(r ). The error is in an
implicit assumption made that the number of particles in
large volume in a single realization converges exactly to
ensemble average. This is not true because, in general
3-2
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GLASS-LIKE UNIVERSE: REAL-SPACE . . . PHYSICAL REVIEW D 65 083523
tensive quantities such as particle number have fluctuat
which are increasing functions of the volume~e.g., Poisso-
nian, for which the integral is not zero!. A slightly different,
but common, kind of misunderstanding of the meaning of
vanishing of the integral over the correlation function is e
denced in the book by Kolb and Turner@13#. There it is
affirmed@after its statement in Eq.~9.39!# to be ‘‘ . . . just a
statement of mass conservation: if galaxies are clustere
small scales, then on large scale they must be ‘‘a
clustered’’ to conserve the total amount of mass~number of
galaxies!.’’ The source of this misconception seems to be
confusion with the so-called ‘‘integral constraint’’ in da
analysis~e.g. @14,15#!, which imposes such a condition o
the estimatorof the correlation function in afinite sample,
due to the fact that the~unknown! average number of point
in such a sample is estimated by the~exactly known! number
of points in the actual sample. Despite their apparent si
larity, these are different conditions: the first~infinite vol-
ume! integral constraint provides non-trivial physical info
mation about the intrinsic probabilistic nature of fluctuation
while the second is just an artifact of the boundary con
tions which holds in a finite sample independently of t
nature of the underlying correlations. We will discuss th
point in a little more detail at the appropriate point below

The paper is organized as follows. In the first section
recall the basic properties of mass distributions~both con-
tinuous and discrete! described in terms of stationary sto
chastic processes with a well defined~nonzero! average den-
sity. In this context we introduce the basic statistic
quantities ~homogeneity scale, correlation functions, re
space mass variance, PS, etc.! used to describe these sy
tems. We discuss in particular the relation between the m
variance in spheres and the PS, noting that for power
spectraP(k);kn and n>1, the small scale~i.e., largek)
power dominates the real space variance at any scale
explain that this is not a simple mathematical pathology
corresponds to a real property of these distributions. Ind
for discrete distributions of points we note that a theorem
been proved@16# showing the behavior approached atn51
to be the limiting decay of the variance, in real spa
spheres, in any distribution. In the subsequent section
discuss the HZ spectrum, recalling the construction wh
leads to it in cosmology and why it is called ‘‘scale inva
ant.’’ We note that the HZ criterion, as naively understood
not one which is satisfied exactly by the spectrumP(k);k.
In the next section we give a classification of all stationa
stochastic properties~SSP! in terms of the behavior of the P
as k→0. We give the name ‘‘superhomogeneous’’ to tho
which haveP(0)50, referring to their basic characteristic a
more homogeneous than the Poisson distribution, with a s
Poissonian decay of their mass variance. In the follow
section we give the examples of a lattice, and then
‘‘shuffled’’ lattice, to illustrate the properties of distribution
of this type, which have the strong order of a lattice or gla
at large scales. Here we discuss also briefly the relation
our description toN-body simulations. In the final section w
discuss various points in summarizing our findings. In p
ticular we clarify the use of the term ‘‘scale invariance
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‘‘fractal’’ and ‘‘correlation length’’ in relation to the HZ spec-
trum in cosmology.

II. BASIC STATISTICAL PROPERTIES AND CONCEPTS

Inhomogeneities in cosmology are described using
general framework of stationary stochastic processes~SSP!.
Let us consider in general the description of a continuous
a discrete mass distributionr(rW) in terms of such a process
A stochastic process is completely characterized by
‘‘probability density functional’’ P@r(rW)# which gives the
probability that the result of the stochastic process is
density fieldr(rW) ~e.g. see Gaussian functional distributio
@17#!. For a discrete mass distribution the space~e.g. infinite
three dimensional space! is divided into sufficiently small
cells and the stochastic process consists in occupying or
any cell with a point-particle, andr(rW) can be written in
general as

r~rW !5(
i 51

`

d~rW2rW i !, ~1!

whererW i is the position vector of the particlei of the distri-
bution.

The stationarity refers in the present context to spa
stationarity of the process, and means that the functio
P@r(rW)# is invariant under spatial translation. This proper
is also called thestatistical homogeneityof the distribution.
We suppose also that the distribution isstatistically isotropic

„invariance ofP@r(rW)# under spatial rotation…, and has a well
defined average valuer0, that is

^r~rW !&5r0.0, ~2!

where ^•••& is the ensemble average over all the possi
realizations of the stochastic process, i.e. the average
the functionalP@r(rW)#. Statistical homogeneity and isotrop
~SHI! imply that the l-point correlation functions

^r(rW1) . . . r(rW l)&, for any l, depend only on the scalar rela
tive distances among thel points@18#. Moreover, we assume
that P@r(rW)# is ergodic. In order to clarify the meaning o
ergodicity, let us take a generic observableF
5F„r(rW1),r(rW2), . . . … of the local densityr(rW). Ergodicity
means that̂F& is equal to the spatial averageF̄ given by

F̄5
1

iVi EV
d3r 0F„r~rW12rW0!,r~rW22rW0!, . . . … ~3!

where the integral is extended to the whole spaceV andiVi
is its ~infinite! volume, and wherer(rW) is ~almost! any real-
ization of the particle distribution ‘‘extracted’’ from the func
tional P@r(rW)#. This property is also referred to as theself-
averaging property of the distribution. Note that if the
average in Eq.~3! is extended only to a finite sub-sampleV
of the whole spaceV , then Eq.~3! is only anestimatorof
^F& in the given sub-sample.
3-3
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GABRIELLI, JOYCE, AND SYLOS LABINI PHYSICAL REVIEW D 65 083523
In a single realization of the mass distribution the ex
tence of a well defined average density implies that@18#

lim
R→`

1

iC~R;xW0!i
E

C(R,xW0)
d3rr~rW !5r0.0 ~4!

where iC(R,xW0)i[4pR3/3 is the volume of a spher
C(R,xW0) of radiusR, centered on thearbitrary point xW0 of
space.1 When Eq.~4! is valid one can then define@18# a
characteristichomogeneity scaleas the scalel0 given by

U 1

C~R;xW0!
E

C(R;xW0)
d3rr~rW !2r0U^r0;R&l0 ,;xW0 ~5!

which depends on the nature of the fluctuations of the d
sity in spheres. In practice, in characterizing the scale
which a system begins to be homogeneous, it is easier to
directly some simple two-point statistics. We will mentio
these definitions at the appropriate point below.

The quantity ^r(rW1)r(rW2) . . . r(rW l)& is called thecom-
plete l-point correlation function. In the discrete ca

^r(rW1)r(rW2) . . . r(rW l)&dV1 ,dV2 , . . . ,dVl gives thea priori
probability of finding l particles, in a single realization
placed in the infinitesimal volumesdV1 ,dV2 , . . . ,dVl re-
spectively aroundrW1 ,rW2 , . . . ,rW l .

Let us analyze in further detail the auto-correlation pro
erties of these systems. Due to the hypothesis of statis
homogeneity and isotropy,̂r(rW1)r(rW2)& depends only on
r 125urW12rW2u. Moreover,^r(rW1)r(rW2)r(rW3)& is only a func-
tion of r 125urW12rW2u, r 235urW22rW3u and r 135urW12rW3u. The
reducedtwo and three-point correlation functionsj̃(r ) and
z̃(r 12,r 23,r 13) are respectively defined by

^r~rW1!r~rW2!&[r0
2@11 j̃~r 12!# ~6!

^r~rW1!r~rW2!r~rW3!&[r0
3@11 j̃~r 12!1 j̃~r 23!1 j̃~r 13!

1 z̃~r 12,r 23,r 13!#. ~7!

The correlation functionj̃(r ) is one way to measure th
‘‘persistence of memory’’ of spatial variations in the ma
density @19#. Note that, as shown more explicitly below,
the discrete case the functionsj̃ and z̃ differ from the usual
j andz used in cosmology by the so-calleddiagonal part.

In the discrete case of particle distributions it is very im
portant to consider observations from a point occupied b
particle. In order to characterize statistically these obse
tions it is necessary to define another kind of average:
conditional average^F&p . This is defined as an ensemb
average with the condition that the origin of the coordina

1Because of the arbitrariness of the position of the center of
sphere, the average density is a one-point statistical property.
08352
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is an occupied point@18#. When only one realizationr(rW)
extracted fromP@r(rW)# is available,̂ F&p can be substituted
by the spatial average:

F„r~rW1!,r~rW2!, . . . …p5
1

N (
i 51

N

F„r~rW11rW i8!,r~rW21rW i8!, . . . …

~8!

where the sum is restricted to all the points (N→`) rW i8 oc-
cupied by a particle of the distribution. Again in the case
which the average is restricted to the particlesrW i8 belonging
to a finite sample of volumeV of the whole space, we ca
consider Eq.~8! only as anestimatorof ^F&p .

The quantity

^r~rW1!r~rW2! . . . r~rW l !&pdV1dV2 . . . dVl ~9!

gives the average probability of findingl particles placed in
the infinitesimal volumesdV1 ,dV2 , . . . ,dVl respectively
around rW1 ,rW2 , . . . ,rW l with the condition that the origin of
coordinates is an occupied point. We call

^r(rW1)r(rW2) . . . r(rW l)&p conditionall-point density.
Applying the rules of conditional probability one has@18#

^r~rW !&p5
^r~0W !r~rW !&

r0

~10!

^r~rW1!r~rW2!&p5
^r~0W !r~rW1!r~rW2!&

r0
.

However, in general, the following convention is assum
in the definition of the conditional densities: the particle
the origin does not observe itself. Therefore^r(rW)&p is de-
fined only forr .0, and^r(rW1)r(rW2)&p for r 1 ,r 2.0. Conse-
quently, and this is what is usually done in cosmology@14#,
one can redefine the reduced two and three-point correla
functionj(r ) andz(r 1 ,r 2 ,r 12) to be equal toj̃ andz̃ respec-
tively for r ,r 1 ,r 2.0, and equal to zero forr ,r 1 ,r 250. This
means simply that the diagonal part is removed fromj̃ andz̃.
In the following we use this convention.

Let us consider the paradigm of a stochastic homogene
point-mass distribution: thePoisson case. For such a particle
distribution the reduced two-point correlation function E
~6! can be written as~see@18#!

j̃~r !5
d~rW !

r0
@ i.e.,j~r !50#. ~11!

Analogously, one can obtain the three point correlation fu
tion @Eq. ~7!#:

z̃~r 1 ,r 2 ,r 12!5
d~rW1!d~rW2!

r0
2 @ i.e.,z~r 1 ,r 2 ,r 12!50#.

~12!

The two previous relations are direct consequences of
fact that there is no correlation between different spa
e

3-4
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GLASS-LIKE UNIVERSE: REAL-SPACE . . . PHYSICAL REVIEW D 65 083523
points. That is, the reduced correlation functionsj̃ and z̃
have only the diagonal part. The latter is present in the
duced correlation functions of any statistically homogene
discrete distribution of particles with correlations.

As already mentioned, in the definition of condition
densities, we exclude the contribution of the origin of co
dinates. Consequently, for a Poisson distribution, we ob
from Eq. ~10!:

^r~rW !&p5r0

^r~rW1!r~rW2!&p5r0
2F11

d~rW12rW2!

r0
G . ~13!

In general@20,15# for a SHI distribution of particles the
reduced correlation function can be written as

j̃~r !5
d~rW !

r0
1j~r !,

~14!

z̃~r 1 ,r 2 ,r 12!5
d~rW1!d~rW2!

r0
2

1z~r 1 ,r 2 ,r 12!

wherej andz are the nondiagonal parts which are meanin
ful only for r .0 adr 1 ,r 2.0 respectively. In generalj(r ) is
a smooth function ofr @20,18#. Hence we obtain, from Eq
~10! ~by excluding again the contribution of the origin o
coordinates!,

^r~rW !&p5r0@11j~r !#

~15!

^r~rW1!r~rW2!&p5r0
2@11j~r 1!1j~r 2!1 j̃~r 12!

1z~r 1 ,r 2 ,r 12!#.

A. The mass variance in a sphere

In this section we consider the amplitude of the ma
fluctuations in a generic sphere of radiusR with respect to
the average mass. First letM (R)5*C(R)r(rW)d3r be the mass
~for a discrete distribution of the number of particles! inside
the sphereC(R) of radius R @and then volumeiC(R)i
5(4p/3)R3#. The normalized mass variance is defined a

s2~R!5
^M ~R!2&2^M ~R!&2

^M ~R!&2
, ~16!

where

^M ~R!&5E
C(R)

d3r ^r~rW !&5r0iC~R!i , ~17!

and

^M ~R!2&5E
C(R)

d3r 1E
C(R)

d3r 2^r~rW1!r~rW2!&. ~18!
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Note that there is no condition on the location of the cen
of the sphere, because of the assumed translational in
ance ofP@r(rW)#.

In the discrete Poisson case, using Eq.~11!, we obtain that

s2~R!5
1

r0iC~R!i [
1

^M ~R!&
. ~19!

In general, for a SHI mass density field with correlation
substituting Eq.~6! in Eq. ~16!, we obtain

s2~R!5
1

iC~R!i2EC(R)
d3r 1E

C(R)
d3r 2j̃~ urW12rW2u!. ~20!

Using Eq.~14! in the discrete case we can write

s2~R!5
1

r0iC~R!i 1
1

iC~R!i2EC(R)
d3r 1

3E
C(R)

d3r 2j~ urW12rW2u!. ~21!

Note that the sign of the second term of Eq.~21! is not
uniquely determined. We clarify this point later on. Equ
tions ~20! and ~21! make evident the relation between flu
tuations in one-point properties~as in this case the number o
points in a sphere centered on a random point in space! and
two-point correlations. In general similar links can be fou
between fluctuations inn-point properties and (n11)-point
correlations.

Equation~4! is equivalent to the requirement that

lim
R→`

s2~R!50, ~22!

which is therefore a condition satisfied by any SHI distrib
tion. An alternative ~slightly different! definition to that
given by Eq.~5! for the scale characterizing homogeneity
thus the scale at whichs2(R) reaches unity~or some other
appropriate fiducial value!.2 In the cosmological literature on
the distribution of matter~galaxies, clusters, etc.! in the Uni-
verse there is no global convention about how this scal
defined; in fact it is a scale which is almost never discus
in precise terms. The two most commonly used quanti
used in characterizing the two-point properties are~i! the
scale3 r 0 defined byj(r 0)51, and~ii ! the amplitude of the
mass variance at a fiducial physical scale, taken to
8h21 Mpc ~e.g @23#!. Given ~or having determined! the de-
pendence on scale of the correlation function or mass v

2Note that such a definition holds for SHI distributions, and not
all for the case of fractal systems@25# as discussed in our Conclu
sions section below.

3This scale has unfortunately been commonly referred to in
cosmological literature as the ‘‘correlation length’’@14#. It has no
relation to the statistical physics use of the same term, which
scale characterizing the rate of decay of fluctuations, not their
plitude. See@21,22# for a clear discussion of this point.
3-5
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ance, these can be easily related to simple definitions of
homogeneity scale. A practical working definition of hom
geneity scale applicable in the analysis of galaxy surveys
a discussion of the current status of this scale are give
@24,25#.

Let us return to further discussion of Eqs.~20! and~21!. It
is very important for our discussion to note that this con
tion ~22! which holds for any mass distribution generated
a SSP, is very different from the requirement

E
V

d3r j̃~r !50 ~23!

~whereV is the whole space! which is a much stronger spe
cial condition which holds for certain distributions—those
which below we will ascribe the name ‘‘superhomog
neous.’’

Note that, in cosmology~e.g. @14,15#! the following ap-
proximation is often used

E
C(R)

d3r 1E
C(R)

d3r 2j̃~ urW12rW2u!'iC~R!i E
C(R)

d3r j̃~rW !

~24!

in particular in evaluating the variance through Eq.~20!.
Such an approximation is not always valid, and the conv
gence properties of the double integral need to be exam
carefully to establish it. In particular it does not hold wh
the condition Eq.~23! is satisfied. This will be evident fol-
lowing the analysis we give below, as we will discuss th
one has, for any distribution~continuous or discrete!, a large
distance behaviors2(R)5R2a wherea<d11 ~whered is
the space dimension!. Using the approximation~24! one
could apparently obtain through Eq.~20! arbitrarily rapidly
decaying behaviors with an appropriate power-law beha
in the correlation function.

In the discrete case, to measures2(R) one has to take into
account both terms in Eq.~21!, not only the second one
From Eq.~21! the variance can, in general, be written as
sum of two contributions:

s2~R!5sPoi
2 ~R!1J~R!, ~25!

where the first termsPoi
2 represents the intrinsic Poisso

noise of any stochastic particle distribution,4 and the second
term J(r ) ~which, as noted above, does not have to be o
determined sign! is the additional contribution due to corre
lations @i.e. to j(r )Þ0#.

B. The power spectrum

The PSP(kW ) is the main statistical tool used to descri
cosmological models. It is defined as

P~kW !5^udr~kW !u2& ~26!

4Note that this term can give a contribution to the variance wh
dominates over that due to the intrinsic correlations.
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wheredr(kW ) is the Fourier transform~FT! of the normalized
fluctuation field „r(rW)2r0…/r0. For a spatially stationary
mass distributionr(rW) it is possible to demonstrate that it ca
be obtained by simply taking the FT of the correlation fun
tion j̃(rW) ~up to a multiplicative constant! @26#:

P~kW !5
1

~2p!dEV
ddr exp~2 ikW rW !j̃~rW !. ~27!

Further, given statistical isotropyP(kW )[P(k). For a con-
tinuous mass density field obtained by a SSP, the two b
properties of the PS are the following~Khintchine theorem
@17#!:

~1! P(kW )>0 ;kW ;
~2! P(kW ) is integrable in the whole space.
For a discrete particle distribution the first property is s

valid, while the second is not because of the diagonal par
j̃(rW) ~the Dirac delta function inrW50W ). Indeed, this part
gives a positive constant contribution for everykW which
makes the integral ofP(kW ) divergent. This constant contri
bution is the PS for the uncorrelated Poisson distribution
particles. Consequently, for discrete distributions, the pr
erty ~2! is modified as follows:

(28) The FT of thej(rW) @i.e. j̃(rW) without the diagonal
part# is integrable in the wholek-space.

In d-dimensions the properties~2! and (28) imply that

lim
k→0

kdP~kW !50 ~28!

lim
k→`

kdP~kW !50 ~29!

where in the discrete caseP(kW ) is the FT ofj(r ) rather than
of j̃(r ).

In three dimensions we have therefore that, in general,
PS can diverge ask→0 with only the condition that the
divergence is slower thatk23. Any standard type cosmologi
cal model has in this limit the HZ spectrum, or somethi
close to it, and in any case always hasP(0)50, which im-
plies that Eq.~23! holds. We will discuss the meaning of th
condition at length below.

C. The PS and real space variance

Let us analyze the relation between the PS and the m
variance in real space. We first discuss continuous den
fields, and then make some relevant comments on the
crete case. We first rewrite Eqs.~16!–~18!, generalizing them
to the case in which we calculate the mass variance i
topologically more complex volumeV of sizeV. To do this
one introduces the window functionWV(rW) defined as

WV~rW !5H 1 if rWPV,

0 otherwise.
~30!

Therefore we can rewrite Eq.~17! as
h

3-6
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^M ~V!&5E
V

WV~rW !^r~rW !&d3r ~31!

and Eq.~18! as

^M2~V!&5E
V
E

V
d3r 1d3r 2WV~rW1!WV~rW2!

3^r~rW1!r~rW2!&, ~32!

where the integrals are over all space. The normalized v
ance is then given by

s2~V!5
1

V2EV
E

V
d3r 1d3r 2WV~rW1!WV~rW2!j̃~rW12rW2!.

~33!

On taking the FT one obtains

s2~V!5
1

~2p!3E d3kP~kW !uW̃V~kW !u2 ~34!

which is explicitly positive, andW̃V(kW ) is the FT ofWV(rW),
normalized by the volume defined by the window functi
itself,

W̃V~kW !5
1

VEV
d3re2 ikW•rWWV~rW ! ~35!

with V5*VWV(rW)d3r .
Consider now again the real sphere of radiusR for which

the FT of the window function~normalized as defined! is

W̃R~kW !5
3

~kR!3
~sinkR2kRcoskR!. ~36!

One then has, assuming statistical isotropy so thatP(kW )
5P(k), an expression for the variance in real spheres wh
is

s2~R!5
1

2p2E0

`

dk
9

~kR!6
~sinkR2kRcoskR!2k2P~k!.

~37!

We now show that, for power-law spectraP(k);kn ~for
smallk, n.23) the integral in Eq.~37! has a very different
behavior forn,1 andn>1. Forn,1 the integral is domi-
nated byk;R21, while for n>1 it becomes dominated b
the largek behavior, and therefore sensitive to the PS a
scale k unrelated ~in general! to R21. Correspondingly
s2(R) is found to have a limiting rapidity of decay at 1/R4,
related to the appearance of this divergence. Then we
the physical interpretation of this result, and note the dan
of the use of a ‘‘Gaussian window’’ to mask it in cosmolog

So let us return to Eq.~37! and take a PSP(k)
5Akne2k/kc ~where A and kc are two constants!. We con-
sider n.23 and take the cutoff to satisfy the convergen
properties of the Khintchine theorem. It is easy to che
08352
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subsequently that the results we derive are not sensitiv
the form of this cutoff at largek. It is convenient to rescale
variables to rewrite Eq.~37! as

s2~R!5
9A

2p2

1

R31nE0

`

dx~sinx2x cosx!2xn24e2x/xc

~38!

with xc5kcR.
Since the window function goes to unity whenx;0 the

integral will be well behaved at its lower limit~since n.
23). It is also convergent at its upper limit because of t
exponential. Let us consider the dependence on the latte
a sphere much larger than the cutoff scale, i.e.R@kc

21 , that
is xc@1. For x@1 the integrand goes asxn22cos2x, so that
the integral converges, without the exponential cutoff, forn
,1. Thus the variance as a function of radius behaves
1/R31n, and the integral is dominated by modesk;R21. In
fact, since the integral is independent of the cutoff, we ha
up to a numerical factor of order unity, the relation

s2~R!'
1

2
P~k!k3uk5R21 ~39!

so that the amplitude of the PS atk can be thought simply to
correspond to the variance at the physical scaleR21.

For n>1, on the other hand, the integral diverges and
cutoff comes into play. Forn51 the integral is

E dx

x
e2x/xc; ln xc; ln R ~40!

so thats2(R);(ln R)/R4. Finally for n.1 the integral goes
as;xc

n21 so that one getss2(R);1/R4, independently ofn.
Importantly, forn>1, the integral in Eq.~38! is dominated
by the short wavelengths withk;kc

21 , and not by the fluc-
tuations on the scalek;R21, and correspondingly the rela
tion ~39! does not hold. The amplitude of the PS is no long
related to the real space fluctuations at the scalek;R21;
instead large scale spatial fluctuations have their behav
determined by the short scale power in the theory.

To summarize clearly: For a power-lawP(k);kn ~with
an appropriate cutoff around the wave numberkc) the mass
variance for real spheres with radiusR@kc is given by

~1! For n,1, s2(R);1/R31n and the dominant contribu
tion comes from the PS modes atk;R21.

~2! For n.1, s2(R);1/R4 and the dominant contribu
tion comes from the PS modes atkc

21 .
~3! For n51, we have the limiting logarithmic divergenc

with s2(R);(ln R)/R4.
In the cosmological literature5 the divergences in the latte

two cases are treated as a simple mathematical pathology
to the assumption of a perfect sphere~with a perfectly de-
fined boundary!. Replacing the real sphere with a smoo

5See, for example, the section entitled ‘‘Problems with filters’’
the book by Lucchin and Coles@27#.
3-7
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Gaussian filterWV(rW);e2r 2/R2
these integrals are also cu

off at the scalek;R21 and one recovers a behaviors2(R)
;1/R31n and a relation of the form~39!. While of course
this is valid mathematically it misses an important poi
which is that this limiting behavior of the variance~as 1/R4)
has a very real physical meaning which has to do with
nature of systems with such a rapidly decaying PS. T
correspond to extremely homogeneous systems~i.e. ex-
tremely ordered systems! in which the variance really is
dominated by the small scale fluctuations. Let us explain
point further.

First, that the behavior has nothing to do in principle w
the ideality of the perfect sphere is easily seen by conside
a more realistic modeling of the sphere, using a wind
function giving a smearing on a length scale correspond
to the uncertainty in the radius of the sphere~this could cor-
respond, for example, to the uncertainty in the distance m
sure to a galaxy!. If it is larger than the intrinsic cutoff scale
in the power spectrum, it is this scale which then provid
the cutoff in the integral giving the mass variance in t
sphere. Since this scale is in principle independent of
radius of the sphereR, the same limiting 1/R4 behavior of the
variance is recovered. Thus it is a physical result for a c
tinuous SSP thatthe mass variance measured in spheres
radius R cannot decrease faster than1/R4.

A more intuitive understanding of this fact can be gain
by considering discrete distributions. One would reason
any continuous distribution can be arbitrarily well appro
mated at large scales by an appropriate discretization
cess, and that therefore the same result may hold of disc
distributions. In fact such a result has been proved sev
years ago@28#: In d-dimensions there exists no discrete d
tribution of points in which the variance in spheres deca
faster than 1/Rd11. One can see roughly why this is so b
considering the most ordered distribution of points one mi
think of: a simple cubic lattice. The variance in a sphere
given by averaging over spheres with a center anywher
the unit cell. As the sphere moves in the unit cell the va
ance, one would guess~correctly!, in the number of points is
proportional to the difference in the volume of the spher
which is proportional to the surface area of spheres,
}Rd21 in d-dimensions. Thus the normalized variance sca
as 1/Rd11, a result proved rigorously in@16# ~see also@28#
for a more general discussion of the problem!. As we will
discuss further below the regular lattice, or rather a rando
ized version of it, can be thought of as a kind of prototy
for the class of distributions to which the HZ spectrum b
longs. They are distributions which are highly order
~‘‘glass-like’’ ! in which the fluctuations in real space actua
are at small scales~those at which the PS is cutoff!. Because
of this it is one of their characteristics, as we have seen,
there is no direct relation between the PS at scale k and
physical variance in real space at the scale R;k21.

The Gaussian sphere completely obscures this beha
for n>1, giving an apparent behavior of a real space va
ance}1/Rd1n. It does this because it models the edge of
sphere as smeared on the length scale of the radius~i.e. as-
sumes that the uncertainty in our measure of distance
08352
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point is necessarily of the order of the distance!. Instead of
the dependence of the mass variance in spheres~with some
intrinsic uncertainty in the definition of their edges! on the
radius, the Gaussian sphere gives us the behavior of the
ance in spheres as a function of radius when both the ra
and the smearing imposed on the edge change together
in linear proportion. This is a real space measure which
can define to recoverk-space properties, but it loses com
pletely the essential characteristic of the real space varia
~measured in real physical spheres!.

III. THE HZ SPECTRUM AND ITS REAL SPACE
PROPERTIES

Let us first recall the kind of argument6 that singles out
the HZ spectrum in cosmology, and why the term ‘‘sca
invariant’’ is applied to it. In a homogeneous FRW cosmo
ogy there is a fundamental characteristic length scale,
horizon scaleRH(t). It is simply the distance light can trave
from the big bang singularityt50 until any given time in the
evolution of the Universe, and it grows linearly with tim
The HZ criterion can be written

sM
2
„R5RH~ t !…5const, ~41!

i.e. it requires thatthe mass variance at the horizon scale
constant. Equivalently, given the proportionality of gravita
tional potential to mass, it can be stated as the constraint
the variance in the gravitational potential be constant at
horizon scale. It arises naturally in the framework of FR
cosmology as a kind of consistency constraint: the FRW
cosmological solution for a homogeneous Universe, ab
which fluctuations represent an inhomogeneous perturba
If we take any other prescription other than Eq.~41! such a
description will always break down in the past or future,
the amplitude of the perturbations become arbitrarily large
small. It is in this specific sense that the resulting PS is s
to be ‘‘scale-invariant:’’ there is no characteristic scale
which fluctuations become large~or small!, or, put another
way, they have the same amplitude as a function of the o
scale in the model. As we will discuss further below, it h
nothing to do with the same term as understood in statist
physics. There scale invariance is a characterization no
the amplitude of fluctuations, but rather is associated t
particular range of power-law behaviors in the correlati
function.

More precisely the form of the HZ spectrum is arrived
from the condition~41! in the following way. We move nec-
essarily to ak space description, as we need to include
dynamical evolution of the density field to infer the PS insi
the horizon today. Letdk(t) be the amplitude of the Fourie
component of the density contrast as a function of time.
every such modek we can associate a timetc at which it

6We choose here a particular~but commonly used! way of de-
scribing the HZ spectrum which allows us to avoid too much ex
formalism. For a commonly used formulation preferred by ma
cosmologists, in terms of a constant ‘‘gauge independent’’ poten
see for example@29#.
3-8
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‘‘enters the horizon,’’ i.e. at which the wavelengthk21 is
equal in size to the horizon. Here we work~as almost always
in cosmology! with a k which is the FT with respect to th
spatial coordinates which do not change with the expans
the so-called ‘‘comoving’’ coordinates. In these coordina
the time at which the mode enters the horizon is given
kh51 whereh is the so-called ‘‘conformal’’ time given by
h5*dt/a(t), with a(t) the scale factor describing the e
pansion of all physical scales in the Universe.@The horizon
scale is simplyRH(t)5a(t)h, corresponding to horizon
crossing criterion (k/a)RH(t)51.# The PS today~at t5to ,
say! given byudk(to)u2 can be written in terms of the ampl
tude of each modek when it entered the horizon. In linea
perturbation theory, in the matter dominated Universe~i.e.
recent epochs!, the mode evolves as

dk~ to!5S a~ to!

a~ t ! D dk~ t !. ~42!

In the matter dominated FRW cosmology we havea}t2/3

and thush}t1/3, so that the timetc(k) when the modek
crosses the horizon followstc(k)}1/k3 and therefore

dk~ to!}k2dk~ tc!. ~43!

The HZ choice for the primordial PSudk(to)u2}k is then
singled out by imposing the criterion

k3udk~ tc!u25const, ~44!

which is identified as the mass variance at the horizon s
h5k21. We note immediately, following the preceding di
cussion, that the latter identification is in fact valid only f
power spectrakn with n,1. Strictly speaking therefore it is
impossible to satisfy the HZ criterion as it is understo
naively; or, to put it another way, the HZ spectrum, th
which satisfies Eq.~44!, does not satisfy the condition o
‘‘scale invariance’’ since the mass variance at the horiz
scale (}h) is dominated in this case by the power at t
cutoff scale, not by the modesk;h21. Taking a spectrum
k12e (e.0) one can get arbitrarily close to satisfying th
HZ criterion, but the condition of ‘‘scale invariance’’~in the
sense just explained! is not physically satisfiable. To avoi
this conclusion the criterion could be refined to be that
mass variance in Gaussian spheres of radius of the hor
size be constant. While it does allow a mathematically
herent formulation, from a physical point of view it is a
artificial way of avoiding the problem, which is that the va
ance at a given real space scale has nothing to do in princ
with the amplitude of the PS at the inverse scale forn>1.
This is, as we have discussed in the previous section, a
physical property of such systems, not a mathematical a
fact.

The HZ spectrum can equivalently be characterized
terms of fluctuations in the gravitational potential,df(rW),
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which are linked to the density fluctuationsdr(rW) via the
gravitational Poisson equation:7

¹2df~rW !524pGdr~rW !. ~45!

From this, transformed to Fourier space, it follows that t
PS of the potentialPf(k)5^udf̂(kW )u2& is related to the den-
sity PSP(k) as

Pf~k!;
P~k!

k4
.

The HZ spectrum corresponds therefore toPf(k)}k23; or,
considering the variance in real space spheres of the gra
tional potential fluctuations, which as for the density fluctu
tions is related to the PS by Eq.~39!, one finds that this
variance is constant as a function ofR. This is the alternative
form in which the HZ condition is often formulated. Not
that the Khintchine theorem@cf. Eq.~28!# requires that a well
defined SSP haveP(k);ka with a.23 for k→0, so that
the HZ corresponds to the limiting~disallowed! behavior.
Equivalently the constancy of the variance is in contradict
with Eq. ~22! which requires that the asymptotic variance
zero~in order to have a well defined mean about which flu
tuations are defined!. The HZ spectrum can thus be seen
the ~disallowed! limiting behavior for the potential fluctua
tions to be treatable as an SSP. That such a treatmen
applicable to the potential fluctuations is however not
physical requirement. The work of Chandrasekhar@8# ~and
see also@9#! treats the gravitational force probability distr
bution in a point distribution and, in particular, shows it
well defined even in the Poissonian case, for which the
tential fluctuations are not an SSP (n50). To treat the force
field as an SSP requires only the weaker conditionP(k)
;ka with a.21.

A. The real space correlation function of CDM-HDM models

All of the current ‘‘viable’’ standard type cosmologica
models have a ‘‘primordial’’ PS which is the HZ one~or very
close to it! down to some arbitrarily small scale. During co
mological evolution causal physics modifies this spectrum
large k, which is roughly the causal horizon at that tim
Around the time at which the matter in the Universe~with
density scaling as 1/a3) begins to dominate over the radia
tion ~with density scaling as 1/a4), the evolution becomes
purely gravitational at all but the very smallest scales, wh
prior to this time it depends strongly on the details of t
particular model. As a result all such models are HZ fork
,keq , but ‘‘turn-over’’ at this scale to a PS decreasing as
function of k. The form of the spectrum in this region de
pends on the details of the particular model. Since the s
keq

21 , being the size of the causal horizon at this time

7We simplify here to Newtonian gravity, which becomes a go
approximation on sub-horizon scales. The comments given be
can however be generalized to a rigorous formulation of pertur
tions to a FRW model.
3-9
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GABRIELLI, JOYCE, AND SYLOS LABINI PHYSICAL REVIEW D 65 083523
matter-radiation equality, is much smaller than the causal
rizon today, the primordial HZ PS is in principle detectab
today. Indirect evidence for its reality come from the me
surements of temperature fluctuations in the CMBR, wh
show a dependence on angular scale quite consistent wit
HZ spectrum, with the power-law spectrumP(k);kn giving
a fit in the rangen51.160.5 @4#. The search to observe th
‘‘turn-over’’ to HZ behavior directly in three dimensions i
the distribution of matter at large scales—a central predic
and check on such models—has so far proved elusive,
cause of weak statistics at large scales in observations o
distribution of galaxies. It is anticipated that forthcomin
surveys, now being made@31# or close to completion@32#,
will have the capacity to detect this turn-over~see the dis-
cussion at the conclusions!. In the cosmological literature
this question is again treated almost exclusively ink space.
Here we look at the characteristic real space features w
should be found in these galaxy surveys if the underly
behavior is HZ. In further works we will discuss in detail th
question of the detection of these features; here we con
trate solely on their identification.

We consider first the two point correlation function.
general the FT of the PS of standard cosmological mod
must be done numerically. Before doing so for some stand
models we considered a simple PS which can be tra
formed, a HZ spectrum with a simple exponential cutoff:

P~k!5A3k3e2k/kc, ~46!

whereA is the amplitude andkc
21 the cutoff scale. The cor

relation function is given by~see e.g.@1#!

j̃~r !5
A

p2

S 3

kc
2

2r 2D
S 1

kc
2

1r 2D 3 . ~47!

For r ,r c[kc
21 we havej̃(r ).(3A/p)kc

4.0, changing at
r;r c to an asymptotic behaviorj(r );2r 24. Note that the
correlation does not oscillate, its only zero crossing being
scaler 5A3r c . Simply because of the conditionP(0)50,
which implies that the integral of the correlation functio
must be zero, the correlation function must change sign
in this case it only does so once and thus remains negativ
large scales.

In the normalized mass variances2(R) shows a corre-
sponding change in behavior from being approximately c
stant at small scalesR,r c to a lnR/R4 decay at large scales
as was shown in Sec. II C above. Note that, unlike for
variance in spheres discussed in Sec. II C, there is no lim
the rapidity of the decay of the correlation function~for the
more general expression see@14#!. Despite the weakness o
this correlation at large scales, however, the variance
spheres does not behave like that of a Poisson system
cause of the balance between positive correlations at s
and negative at large scales imposed by the nonlocal co
tion P(0)50.
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In cosmological HDM models the form of the PS is a
most the same as we have just considered with an expo
tial cutoff @12#

P~k!;k exp~2k/kc!
3/2. ~48!

A numerical integration verifies that the correlation functi
is essentially unchanged.

For CDM models, the class by far favored in the past f
years, the form of the PS at scales below turn-over from
behavior is considerably more complicated. In a linear ana
sis the PS of CDM matter density field decays below
turn-over with a power-law;k23/2 at largek until a smaller
scale at which it is cutoff with an exponential~in a manner
similar to that in the HDM model!. Numerical studies of
these models designed to include the nonlinear evolu
bring further modifications, roughly increasing the expone
in the negative power law regime. For our analysis we ha
taken an analytical approximation to the final PS given
Eisenstien and Hu@33#, and computed numerically the FT t
the two-point correlation function. We have also comput
directly the variance in spheres. This form of the PS is giv
in terms of the various cosmological parameters. Here
consider for simplicity the case with the small baryon dens
set to zero (Vb50), which gives a PS without the famou
oscillations reportedly detected in recent observations of
CMBR @34,35#. This structure is not of primary interest to u
here because it can modify the correlation function only
small scales~it arises from causal physics at early times!. In
Figs. 1 and 2 we show respectively the behavior of the
and of the correlation function for two quite different valu
of the total matter density of the modelV51,0.2. Minor
differences will result in the case that there is a cosmolog
constantVLÞ0 @33#. In Fig. 3 we show the behavior of th
unconditional variance, computed in real-space spheres.
see again a clear convergence in both models to the pred
1/R4 behavior beyond the scale characterizing the ‘‘tu
over.’’

FIG. 1. Behavior of the power spectrum for a CDM model wi
V51,0.2, respectively. The two reference lines have exponenk,
k22.
3-10
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GLASS-LIKE UNIVERSE: REAL-SPACE . . . PHYSICAL REVIEW D 65 083523
In conclusion two simple real space characteristics to
in the distribution of matter coming from the primordial H
PS are anegative non-oscillating power-law tail in the tw
point correlation functionj(r );2r 24, and a (ln R)/R4 de-
cay in the variance of mass in spheres of radius R. These are
the peculiar distinctive features of HZ type spectra wh
should possibly be detected in real space by the new ga
catalogs.

FIG. 2. Behavior of absolute value of the real space correla
function for the two CDM modelsV51,0.2 andh50.5. The two

reference lines arer 24 and r 21. Note that at small scalej̃(r ).0,
with a zero crossing at a scale depending on the location of the

or ‘‘turn-over’’ in the PS, after which it remains negative@ j̃(r );
2r 24# at larger distances. The correlation function has been

malized to bej̃(r 0)51 for r 055 Mpc.

FIG. 3. Behavior of the unconditional variance in spheres for
two CDM modelsV51,0.2 andh50.5. The two vertical lines
show the transition to thej(r );r 24 behavior for the two models
The r 24 behavior is a clear and distinctive feature corresponding
the P(k);k behavior.
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IV. REAL SPACE CLASSIFICATION OF LONG RANGE
FLUCTUATIONS

We now return to a discussion of the nature of corre
tions in systems with HZ like power spectra, with the aim
elucidating their properties by comparison with systems
scribed in statistical physics. To this end we first introdu
here a classification of all possible mass distributions
terms of the main features of the correlation functionj̃(r ).
Following from the discussion of Sec. II concerning the b
havior of mass fluctuations, we define three distinct clas
~for either the case of discrete particle distribution or of
continuous density field!:

~1! If

E
V

ddr j̃~r !5const.0 ~49!

we can say that at large scale the system issubstantially
Poissonian. Indeed Eq.~49! implies that the PS goes to
constant nonzero value ask goes to zero, and therefore th
the large distance behavior of the mass fluctuations is

^M2~R!&2^M ~R!&2;Rd;^M ~R!&. ~50!

We write here the unnormalized form of the variance as
result that the variance of an extensive quantity such as
mass is proportional to the volume on which it is measure
the most intuitive way of characterizing a Poisson type
havior. In this class is, for example, a system with a fin
range correlationj(r );e2r /r c. Beyond the scaler c ~the cor-
relation length—see below for a discussion about this leng!
the system is uncorrelated and effectively Poissonian.

~2! If

E
V

ddr j̃~r !51` ~51!

then we are in a case similar to a system at the critical p
of a second order phase transition~e.g. the liquid-gas critical
point!. Such systems have a positive correlation funct
which is asymptotically a positive power law, withj(r )
;1/r g and g,d, corresponding to a PSP(k);kg2d as k
→0. One then has at large scales the variance

^M2~R!&2^M ~R!&2;Ra with d<a,2d, ~52!

or ^M2(R)&2^M (R)&2;^M (R)&b with b5a/d.1. This
means that mass fluctuations are large~always overwhelming
the Poisson fluctuations! and thus they are strongly corre
lated at all scales.8 It is in this context that the concept o
self-similarity and scale invariance has been introduced
statistical mechanics. These terms refer to the fact tha
these systems the mass fluctuation field has well defi
fractal properties@25#.

8For example these properties near the critical point of the liqu
gas transition give place to opalescence phenomena.
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GABRIELLI, JOYCE, AND SYLOS LABINI PHYSICAL REVIEW D 65 083523
~3! If

E
V

ddr j̃~r !50 ~53!

then, as we have discussed, we have for the behavior o
mass fluctuations

^M2~R!&2^M ~R!&2;Ra with d21,a,d, ~54!

i.e. ^M2(R)&2^M (R)&2;^M (R)&b with b5a/d,1, so
that the mass fluctuations are always asymptotically sma
than in the uncorrelated Poisson case. This also corresp
to a strongly correlated, long-range ordered, system. We
refer to them with the term ‘‘superhomogeneous’’ to und
line this feature that they are more homogeneous than a P
son system.~Indeed, the Poisson particle distribution is co
sidered as the paradigm of a stochastic homogeneous
distribution@26#!. In the context of statistical mechanics the
can be described as glasslike, as they have the properti
glasses, which are highly ordered compact systems. Tha
be said to be typically latticelike, with a long-range order
packing, but without the discrete symmetries of an exact
tice. Note again that, sincej̃(0).0 ~a Dirac delta function in
the discrete case! by definition,j̃(r ) must change sign withr
at least once. They are systems with finely balanced pos
and negative correlation.

The distinction between~1! and ~2! is typical of the sta-
tistical physics of critical phenomena in order to distingu
a critical state@case~2!# from a noncritical state@case~1!#. In
this context the concept of correlation length is central. T
correlation length is a measure of the distance up to wh
one has spatial memory of the spatial variations in the m
density @19#. There is no unique definition of this lengt
scale, but from a phenomenological point of view it can
defined as the length scale up to which the effect of a sm
local perturbation in the system is felt. This is due to t
fluctuation-dissipation theoremwhich links the response o
the system to a local perturbation and the large scale be
ior of the two-point correlation function~for the different
precise definitions of the correlation length see for exam
@10#!. A simple definition is~but see also@21,22#!

r corr
2 5

E
V

r 2ddr u j̃~r !u

E
V

ddr u j̃~r !u
. ~55!

In case ~1! one can generally define a finite correlatio
length, while in case~2! it will generally diverge. In particu-
lar in the casej(r );exp(2r/rc), r c is indeed then the corre
lation length, while for a positive power-lawj(r );1/r g and
g,d ~case~2! r corr→`.

Case~3! is typical of ordered compact systems with sm
correlated perturbations. One can meet this kind of corr
tion function for example in the statistical physics of liquid
glasses, phonons in lattices. The concept of correla
length in this context is less central, and the extension o
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use to this class of systems is not particularly useful. Inst
it is appropriate to classify the correlation properties of the
systems directly through the integral of the correlation fun
tion as we have done. It is this behavior of their correlatio
which distinguishes them from the other two cases, just
these cases are typically distinguished from one anothe
the value~finite or infinite! of their correlation length. Cer-
tainly, as we have noted, the use of the term ‘‘correlat
length’’ in the cosmological literature, which is defined@14#
as a scale defining the amplitude of the correlation functi
is in no way related to its use in statistical physics.

Before continuing with a more detailed discussion of t
nature of this class ofsuperhomogeneousdistributions to
which standard cosmological models belong, we clarify o
quite common misunderstanding about them in cosmolog

V. P„0…Ä0 AND CONSTRAINTS IN A FINITE SAMPLE

As we have noted in the Introduction the physical mea
ing of the constraintP(0), equivalent to Eq.~53!, is often
missed in the cosmological literature because of a confus
with the so-called ‘‘integral constraint,’’ which is anothe
very similar, but actually completely different, constraint. L
us clarify this point.

The ‘‘integral constraint’’ refers in this context to a con
straint which appears in the estimation of the correlat
function in a finite sample (S, say!. It is a constraint which
indeed can take the superficially similar form to Eq.~53!:

E
S
d3r j̃E~r !50 ~56!

where the subscript indicates that the integral is over
finite sample volume, andj̃E(r ) is the value of theestimator
of the correlation function. This is in general a quantity c
culable from the sample whose ensemble average conve
to the real correlation function at any finite scale when
boundaries of the sample go to infinity.

That such a constraint has in principle nothing to do w
the constraintP(0)50 is clear from the fact that it is one
which holds independently of what kind of distribution th
sample is taken from. Its origin is simple, in the fact that t
mean mass density, relative to which fluctuations are e
mated, is taken in the estimator from the sample its
Therefore, roughly speaking, the positive correlations m
sured relative to this density are constrained to be balan
by anti-correlations, giving rise to a constraint like Eq.~56!.
More specifically the two point correlation function can b
written as

j̃~r !5
^n~r !&p

^n&
21 ~57!

where ^n(r )&p is the mean density at distancer from an
occupied point and̂n& the true~unconditional! mean den-
sity. Integrating this expression over the volume of t
sampleS gives the relation
3-12
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GLASS-LIKE UNIVERSE: REAL-SPACE . . . PHYSICAL REVIEW D 65 083523
^NS&p2^NS&5^n&E
S
d3r j̃~r ! ~58!

where^NS&p is the average number of points in the sam
volume, with a point at the origin by construction, whi
^NS& is the average number of points in the same volum
but without the condition that there is a point at the locat
of the observer. If one estimates the true mean density~i.e.
^n&5^NS&/VS) in a galaxy catalogue sample from the actu
density in the sample~i.e. on averagêNS&p /VS), the esti-
mator for the correlation function will by construction o
average obey the condition Eq.~56! i.e.

E
S
d3r ^j̃E~r !&50. ~59!

Such a systematic~i.e. ensemble average! offset between the
estimated and the real correlation function is sometimes
ferred to in the cosmological literature on the subject
‘‘bias.’’ It is only in very specific circumstances, with certa
estimators, that Eq.~56! holds for a single sample. For a
estimator of the form@25#

j̃E~r !5
G~r !

nS
21 ~60!

whereG(r ) is estimator of̂ n(r )&p , andnS an estimate of
the mean-density from the sample, Eq.~56! will hold if

nS5
1

VS
E

S
G~r !d3r . ~61!

This is in fact a perfectly good prescription for how to es
mate the mean density in a finite sample, but one that is
used in most estimators, which typically have a varian
around the average behavior Eq.~59!. Estimators9 which do
not take the mean density as the simple density of point
the sample do not in general obey even Eq.~59!, but will
always obey some constraint of this type, which cannot
avoided because it is intrinsic to the fact that any real sam
contains an occupied point at the position of the observe

In summary there are necessarily constraints on the
relation functionj̃E(r ) measured in a finite sample, whic
may take a form similar to the condition Eq.~53! defining
superhomogeneous distributions, but over a finite integra
volume. These two kinds of constraints have a comple
different origin and meaning, one describing an intrin
property of the fluctuations in a certain class of distributio
the other a property of the estimated correlation function
any distribution as measured in a finite sample. Their form
resemblance however is not completely without meaning
can be understood as follows: in a superhomogeneous d
bution the fluctuations between samples are extremely
pressed, being smaller than Poissonian fluctuations; in
nite sample a similar behavior is artificially imposed sin

9For a discussion of estimators used in the cosmological literat
see e.g.@36#.
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one suppresses fluctuations at the scale of the sampl
construction. An estimator which imposes the relation E
~59! on the estimated correlation function would therefore
expected to make a smaller error for the class of superho
geneous distributions than for others. We will return to issu
such as this in forthcoming work.

VI. SUPERHOMOGENEOUS DISTRIBUTIONS

In this section we discuss the properties of long-ran
ordered mass distributions, or superhomogeneous distr
tions. We first discuss the simplest example of such a si
tion, represented by a lattice of particles. It has many of
relevant properties under discussion. By studying its per
bation~the ‘‘shuffled lattice’’! it is possible to understand th
properties of more isotropic distributions, both continuo
and discrete, which are characterized again by long-ra
order. The main feature of these distributions, as we h
discussed, is thats2(R) ~the unconditional variance! decays
faster than in the uncorrelated Poissonian case, i.e. fa
thanR2d ~whered is the space dimension!. We then discuss
how a continuous field with such correlations can be c
structed, making it clear that the intuitions about the nat
of the fluctuations in the shuffled lattice can be extended
the continuous case. We mention here that one phys
model in which such correlations are found10 is the ‘‘one
component plasma’’ studied, for example, in@11,37#. This
models a Coulomb system of discrete positive charges
continuous negatively charged background. In equilibriu
the charges reach an extremely ordered glasslike config
tion with PS at smallk like that of the shuffled lattice.

A. The perfect lattice

The microscopic density in the case of particles placed
the sites of a regular lattice~in any dimension! can be simply
written as

r~rW !5(
RW

d~rW2RW 2hW ! ~62!

whereRW is the generic lattice displacement vector andhW is
the position vector of the lattice site withRW 50 with respect
to the origin of coordinates, i.e.RW 1hW runs over all the lattice
sites. For simplicity let us suppose we have a cubic lattice
unitary lattice spacing. Then, in order to eliminate the dep
dence on the position of the origin of coordinates with
spect to the lattice, we can define an ensemble of lattice
varying the position of the origin with uniform probability in
an unitary cell. For instance ind53, 21/2<hx ,hy ,hz
,1/2 wherex,y,z are the axis coordinates, and then t
‘‘ensemble average’’ iŝ•••&[***21/2

1/2 dhxdhydhz . . . .
Clearly we have that

^r~rW !&51. ~63!

e,
10We thank B. Jancovici for describing these systems to us.
3-13
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We want to compute now the two-point correlation functi

^r(rW1)r(rW2)&. First we have that

r~rW1!r~rW2!5 (
RW 1 ,RW 2

d~rW2RW 12hW !d~rW2RW 22hW ! ~64!

from which one obtains

^r~rW1!r~rW2!&5(
RW

d~rW12rW22RW ! ~65!

and hence the two-point correlation function

j̃~rW1 ,rW2!5
^r~rW1!r~rW2!&

^r&2
21

5S (
RW

d~rW12rW22RW !D 21.

~66!

Note thatj̃(rW1 ,rW2)[j̃(rW12rW2) which means that our occu
pation stochastic process~i.e. the ensemble! is stationary.
However since it is not invariant for generic spatial rotatio
we have j̃(rW12rW2)Þj̃(urW12rW2u) ~the lattice breaks spatia
isotropy!.

In order to evaluateP(kW ) we need to perform the FT o
j̃(rW). In the case of a lattice this gives simply

P~kW !5 (
hW Þ0

d~kW2hW ! ~67!

where the sum is extended to all the dual lattice vectohW

satisfying theduality conditionhW •RW 52pm, wherem is any
integer, but with the exception ofhW 50W . Note that, because o
this last condition, also in this caseP(0W )50.

It has been shown@16# that for the simple lattice ind
dimensions the fluctuations in a ball11 of radiusR, centered
on a randomly chosen point, behave as

^M ~R!2&2^M ~R!&2;Rd21 ~68!

compared to the Poisson behavior^M (R)2&2^M (R)&2;Rd.
This result can be understood as follows:

In the Poisson distribution, if we take two random
placed spheres of the same radius, the numbers of par
contained in them differ by an amount which is typically
the order of the square root of the average number (;Rd);

In the case of a lattice the two numbers differ by
amount which corresponds to a Poissonian fluctuation~i.e.

11Note that@16,28# for the same quantity in cubic boxes of sizeR
one obtainŝM (R)2&2^M (R)&2;Rd11. This is a typical pathology
of the lattice which is not a real stochastic particle distributio
having adeterministicdiscrete translation symmetry. This patho
ogy is eliminated in the case we consider below of a ‘‘shuffl
lattice.’’
08352
s
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the square root! of the number of particles contained in th
last shell of the sphere of thickness equal to the lattice sp
ing ~which scales asRd21).

This is due to the strong order of the particles in the latt
from a large scale point of view. Thus the lattice has a
havior of its mass variance which places it in the super
mogeneous category, with the limiting decreasing behav

s2~R!;R2(d11), ~69!

i.e. s2(R);R24 for d53.

B. The ‘‘shuffled’’ lattice

In this section we define a superhomogeneous stocha
distribution of particles obtained from a lattice which show
more evident resemblances with the cosmological HZ ca
The recipe is the following:~1! Consider a cubic lattice o
particles, as discussed above;~2! take a particle of the distri-
bution and draw a lattice-oriented cubic box of sizel larger
than the lattice spacing centered on the particle itself;~3!
displace the particle to a randomly chosen point of this b
~4! repeat for each particle of the lattice.

We can writer(rW) for a certain realization of this stochas
tic process as

r~rW !5(
RW

d~rW2RW 2hW RW 2hW !, ~70!

whereRW andhW have the same meaning as before, andhW RW is
the vector giving the displacement of the particle in the b
from the lattice rest positionRW 1hW . By definition each com-
ponent of the vectorhW RW is a random number uniformly dis
tributed in the interval@2 l /2,1 l /2#. Therefore, for instance
in d53, the ensemble average^•••& is now defined to be

^•••&5E E E
21/2

1/2

d3h)
RW

E E E
2 l /2

l /2 d3hRW

l 3
•••. ~71!

After some algebra one finally obtains thatj̃(rW1 ,rW2)
[j̃(rW12rW2) ~i.e. the ensemble is stationary! and ind dimen-
sions for integerl one finds exactly

j̃~rW !5d~rW !2)
k51

d H 1

l
2

ur ku

l 2
if ur ku, l ,

0 if ur ku> l .

~72!

It is very simple to verify that***2`
` j̃(rW)d3r 50, which is

the condition of super-homogeneity. Note that forl→1`

j̃(rW) reduces correctly to the simple delta function, i.e. to t
Poisson correlation function. In fact in that limit we must
course obtain a Poissonian distribution of particles with
correlations. Note that, consequently, we have the follow
noncommutativity of the limits:

05 lim
l→`

E E E
2`

`

j̃~rW !ÞE E E
2`

`

lim
l→`

j̃~rW !51. ~73!

,
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One can also find an exact form ofP(kW ) by applying Eq.
~27! in d-dimensions:

P~kW !5
1

~2p!d F12)
i 51

d
2„12cos~ lk i !…

l 2ki
2 G . ~74!

Let us analyze the behavior for small values ofk. At the
leading order we can write

P~kW !'
l 2

~2p!d

k2

12
, ~75!

which implies an isotropic behavior fork→0 even though by
constructionP(kW ) is not isotropic for a generalkW . Note that
we have theP(0W )50 behavior of the HZ spectrum. Finally
the fact that fork→` the PS tends to a positive consta
means that such a distribution is Poissonian at small s
(r , l ).

It is now easy to calculate analytically the uncondition
number variance. In particular the calculation can be d
exactly in cubic boxes with the same lattice symmetry a
with some simple approximations, in spheres. In both ca
one obtainss2(R);R24 for large scales, as in the case of
lattice, but eliminating the pathology of different scaling b
haviors between cubic boxes and spheres which we note
present for the rigid lattice. Note that the fact thats2(R)
;R24 at large scales corresponds to the fact that, despite
‘‘shuffling’’ of particles with respect to the lattice, the stron
lattice order is maintained at large scales. For nonintegl
.1, even though calculations are cumbersome andj(r ) is
not simply written, the main results aboutP(k) for small k
ands2(R) for largeR are the same.

The HZ spectrum has this same behavior characteristi
latticelike order at large scales, while its smallk PS is
P(k);k instead of;k2. This spectrum corresponds to mo
power at large scales. We will see in the next section that
can be associated with an appropriately more ordered~i.e.
coherent! shuffling of the lattice, and precisely what kind o
large scale correlations is required to obtain the HZ spect
will be made explicit. The crucial point is that such shufflin
must leave intact at very large scales the strong order of
lattice, so that one still has the characteristic behaviors
have seen in the shuffled lattice~a correlation function which
is negative at large scales and integrates to zero, a nor
ized variance in spheres decreasing faster than the volu!.
We thus say that the distribution described by the HZ sp
trum has a lattice-like or, more appropriately because of
isotropy, glass-like long range order. More specifically, it c
be characterized as a glass with superimposed opportun
herent long-range perturbative waves of displacement.

In relation to this description it is interesting to mak
some brief comments on cosmologicalN-body simulations
~see e.g.@6#!. In this context a standard algorithm used
generate initial conditions for these simulations involves i
posing perturbations on a perfect lattice~or sometimes even
‘‘glassy’’ configuration!. At first sight this would suggest tha
the point we are making about the HZ spectrum is in f
already understood in the cosmological literature, or at le
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in the part of it onN-body simulations. This is not the cas
and it is worth explaining this to avoid any possible conf
sion on this point. This technique for generating initial co
ditions has in fact been introduced to avoid problems w
Poisson noise at small scales~large k) in the discretization
procedure, and not because the system being simulate
understood to actually intrinsically resemble a lattice at sm
k. Indeed the primary goal of most of these simulations h
been to study the dynamical evolution in a range of sca
well below the ‘‘turn-over’’ in the PS, where the PS~at large
k) has a negative power-law form (;k2b, with b.0, cor-
responding to a positive correlation function with a ‘‘crit
cal’’ power law behavior!. Thus this procedure is applie
primarily in a range of scales where the system being m
eled does not intrinsically resemble a lattice or glass at a

Only the more recent very large simulations describe
larger scales at which the initial conditions should ha
P(k);k. In this case too the use of a displaced lattice
setting up initial conditions is not because the underly
system is understood to be lattice-like, but is simply inh
ited as a numerical technique for the same small scale c
siderations@30#. Indeed, as will be further clarified in th
following section, there is in principal no reason why one h
to start from a lattice to produce such a spectrum; nor ind
is it certain that one obtains the right correlation propertie
one starts from a lattice. What is true is that the spectrum
the initial conditions, if it is HZ, should be glass-like in th
sense we have discussed. A real space analysis of the in
conditions actually used in such simulations shows@7# that
they do not in fact have the appropriate properties.

Note finally that glass-like systems belong to a wide fa
ily of distributions for which the common feature is th
P(k);ka with a.0 for k→0 and henceP(0)50. However
such behaviors in the PS do not imply directly thatj(r ) has
a negative power-law tail at large scales. In particular this
not true if the PS has a singularity forP(0)Þ0, as happens
in many systems. For example@7# the glass-like distributions
~unperturbed and perturbed! used as initial conditions in cos
mological N-body simulations have indeed an oscillatin
j(r ) at all scales, and a mass variances2(r );r 24. Thus we
emphasize that the negative power-law tail of the real-sp
correlation function of the HZ distributions in cosmology is
very particular feature of these models.

C. Uniform distributions with a displacement field

Let us consider the case of a mass distribution~a density
field! obtained by superimposing a random displacem
field on a completely uniform density field.

Let the uniform density field ber0(rW)5r0 and superim-
pose on it the stochastic displacement fielduW (rW) @the infini-
tesimal volumedV at rW is displaced byuW (rW)#. Let us call
r(rW) the resulting density field. We suppose that the stoch
tic field displacement is the realization of a stationary a
isotropic stochastic process characterized by the probab
density functionalP@uW (rW)#. In this wayP@uW (rW)# defines also
an ensemble of density fieldsr(rW) which is stationary and
isotropic, with^•••& the ensemble average.
3-15
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By applying the mass conservation~i.e. the continuity
equation! we find

r~rW !2r0

r0
.2¹W •uW ~rW !. ~76!

If we call as usualj(r ) the reduced two-point correlatio
function of the density field we can write

j~r !5^¹W •uW ~rW !¹W •uW ~0W !&. ~77!

Then, taking the FT of both sides of Eq.~77!, and making
use of the statistical isotropy, we obtain

P~k!;k2Pu~k!, ~78!

where P(k) is the usual PS of the mass density field a
Pu(k) is the PS of the displacement field.

SincePu(k) is itself the PS of a SSP it is subject to th
constraints of the Khintchine theorem. Thus at smallk it
must diverge slower than;k23, allowing one to obtain at
most P(k);k21, corresponding to a real space correlati
function which must go to zero faster than 1/r 2 as r→`.
Therefore any continuous SSP of the ‘‘substantially Pois
nian’’ and ‘‘superhomogeneous’’ type can be obtained in t
way, but not all the ‘‘critical’’ type behaviors. In particula
one can obtain a HZ type spectrum withPu(k);k21 de-
scribing a critical type SSP.

What is the relation to the discrete case? If we supp
that Pu(0)5const.0, i.e. the displacement field at larg
spatial scales is Poissonian~i.e. uncorrelated!, we find that
for k→0 one hasP(k);k2. This is exactly the same
asymptotic behavior as that we found for the case of
shuffled lattice. Indeed we obtained the latter through
superposition of an uncorrelated random displacement fi
to a ‘‘uniform’’ background, and thus the result is natur
Moreover, in general we would expect the relation Eq.~78!
to give us in the discrete case the large scale behavior of
of fluctuations imposed on a discretization of the continuo
uniform density field, and in particular of a rigid lattic
which is simply such an object. Thus if instead of shuffli
the lattice as in the previous section we superimpose co
lated fluctuations with a spectrum;k21 we will obtain at
large scales a distribution with HZ behavior, and the ass
ated real space properties at large scales.

Let us return again finally to our comments at the end
the last section onN-body simulations~see@7# for a more
complete discussion of this point!. With the previous con-
struction it is easy to see why one arrives at the idea
generating a distribution with a certain PS by displac
points on a rigid lattice. The lattice is simply a discretizati
of the continuous uniform background which is then p
turbed. One could in principle start from a Poissonian dis
bution of particles—for the generation of the largek
behavior—which can always be made ‘‘uniform’’ to any d
sired precision~assuming no practical limitation on the num
ber of points used!, and then superimpose the displacem
field to produce the required PS. If the distribution produc
is to be HZ, and particularly of CDM type, it will have th
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‘‘superhomogeneity’’ of a lattice at the corresponding scal
with the characteristic real space behaviors we have use
define it. Equally if one starts from a lattice one can arrive
distributions which are not superhomogeneous. Indeed
we noted above, in the context ofN-body simulations in
cosmology the displacement from a lattice to produce ini
conditions has been introduced in simulations describing
evolution in cosmological models at scales where the mod
are not HZ, but rather have a positive correlation functi
with a ‘‘critical’’ power-law. The starting point of a lattice
has been favored over a ‘‘uniform’’ Poisson distribution sim
ply because of numerical limitations, the latter producing
any feasible resolution too much small scale noise ov
whelming correlations at small scales. In summary, the c
tral point we are making here isnot that a HZ type spectrum
can be obtained in principal by perturbing a lattice; rather
crucial point is that such a system is intrinsically latticelik
irrespective of how a discrete realization of it is construc
in practice. These are two completely different things.

VII. DISCUSSION AND CONCLUSIONS

First we return to the use of the term ‘‘scale invarianc
in cosmology. We have described in Sec. III with what mea
ing this term has been introduced in cosmology: it refers
the fact that the variance of the mass~or equivalently gravi-
tational potential! has an amplitude at the horizon sca
which does not depend on time. The PS associated with
behavior is that of a correlated system which is of the sup
homogeneous type. This use of the term ‘‘scale invarian
therefore is not in any way analogous to its~original! use in
statistical physics. In this context it is associated with a d
tinctly different class of distributions which have spec
properties with respect to scale transformations: typica
critical systems, like a liquid-gas coexistence phase at
critical point, which have a well defined homogeneity sca
and a reduced two-point correlation function which deca
as a nonintegrable power law:j(r );r 2g with 0,g,3. In
particular the term does not have anything to do with
amplitudesof fluctuations being independent of scale: t
amplitudes of fluctuations vary with scale, while the syste
is correlated at all scales.

We note that one might be tempted to associate the t
‘‘scale invariance’’ in the context of cosmology simply to th
power-law behavior of the correlation function. From
mathematical point of view, the terminology ‘‘scale invar
ance’’ could be used for any distribution with a power-la
tailedj(r ), that is satisfyingj(r 8)5A(b)j(r ) for r 85br. In
this case the HZ spectrum would, however, be no m
‘‘scale invariant’’ than any other spectrum with a power-la
form at smallk. In terms of its meaning in physics howeve
this usage is restricted to the context of critical phenome
in which it has been demonstrated to be very powerful a
useful. As we have discussed, this case is completely dif
ent from the systems we have termed superhomogeneou
particular in the former systems fluctuations are always la
at all scales, which formally is associated with the no
integrability of the correlation function. The superhomog
neous systems have correlations of a completely differ
3-16
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kind: they are delicately balanced to make the mass fluc
tions smaller than for a Poisson type distribution.

In Sec. IV we have briefly discussed the use of the te
‘‘correlation length.’’ Historically this term was introduced i
the context of critical phenomena to characterize the tra
tion towards a state of the system where~positive! correla-
tions are long range and the normalized fluctuations of
mass~or of other extensive quantities! decay with the scale
more slowly than in the non-critical Poissonian state. Mo
over, in this context, the meaning of correlation length
given through the fluctuation-dissipation theorem, in wh
the correlation length plays the role of the distance up
which the system responds to a local external perturbatio
is thus a scale used to capture the essential physical dis
tion between two types of distributions which are both
turn distinct from the superhomogeneous systems. The
sential difference between each of these three cases ca
best characterized according to the large scale behavio
the mass fluctuations in each case. It is therefore usefu
take as a classification parameter the value of the integra
j̃(r ) over all space as we have done, while the notion
correlation length has no obvious or unique generalizatio
this case.

Another term whose meaning it is useful to clarify
‘‘fractal.’’ Fractal distributions, which are the prototype o
scale-invariant geometrical distributions, represent a m
extreme case of correlated systems: their average dens
zero in the infinite volume limit and the conditional avera
density ^n(rW)&p decays to zero as a power lawr 2g as a
function of the distance from an occupied point~with 0,g
,d). The fractal dimension of the mass distribution is giv
by D f5d2g @38,39#. A fractal is inhomogeneous at a
scales and the concept of average density in a finite sam
centered on an occupied point has no intrinsic meaning,
cause it depends on the sample size. Moreover, since
asymptotic average density of a fractal distribution is ze
both j(r ) and P(k) are undefined for such a system@25#.
Instead one has to work directly with the un-normalized c
ditional density^n(rW)&p . In general, before introducing th
estimators ofj(r ) and P(k) for a finite sample of a system
whose underlying properties one does not know~e.g. the
distribution of galaxies in the Universe!, one needs to verify
that the estimator of the average densityr0 is not strongly
dependent on the sample size@25#.

There is sometimes confusion in the cosmological lite
ture about the meaning of ‘‘fractal’’ in connection with th
notion of scale invariance. For example in the book by P
cock @40# ~Sec. 16! the author writes that ‘‘The Zeldovich
spectrum is a scale-invariant spectrum . . . .’’ It is then
shown that the PS of the fluctuations in the gravitatio
potential Pf;k23 and hence the auto-correlation functio
or the quantityDf

2 ;Pf(k)•k3 is a constant: the author con
cludes that ‘Since potential perturbations govern the flatn
of space-time, this says that the scale-invariant spectrum
responds to a metric that isfractal :12 space-time has the

12Bold font is author’s.
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same degree of ‘‘wrinkliness’’ of each resolution scale.’ Bo
the term ‘‘fractal’’ and ‘‘scale invariance’’ are used here in a
incorrect and misleading way with respect to any of t
meanings attached to them in their~original! context of sta-
tistical physics. In particular the HZ spectrum does not ha
any properties which would allow it to be associated with
fractal mass distribution.

We have discussed the criterion which leads to the
spectrum. We have pointed out that the usual naive form
tion of this condition is in fact not satisfied by the spectru
P(k);k, and that one must phrase the condition in terms
the variance in Gaussian spheres at the scale of the hor
This is because the spectrumP(k);k is singled out by the
constancy~as a function of time! of k3P(k) at the horizon
scale, which cannot be taken to be proportional to the v
ance in spheres of radiusR;k21 for P(k);kn and n>1.
We have emphasized that this is not at all an unphys
behavior due to the ideality of a sphere. Rather it actua
tells us something very fundamental about the nature of th
distributions: They are distributions which are so ordered
large scales that the variance of mass at large scales r
does come from small scales. The HZ spectrum marks
transition to a pure lattice-like behavior of the normaliz
variance in spheress2(R);1/R4, which has been shown to
be the most rapid possible decay of this quantity forany
stochastic distribution of points.

What then does the use, widespread in cosmology, o
Gaussian sphere mean for such a distribution? Mathem
cally, it simply filters out the power up to a certain modek
~which then dominates the integral!. Physically it can be ex-
tremely misleading if interpreted incorrectly as a charact
ization of a variance in real space. Consider the example
the shuffled lattice. It has PS;k2 at small k ~i.e. kl!1,
wherel is the shuffling scale!. Using a Gaussian sphere on
would infer that the variance at large scale goes as 1R5.
Physically we know that all the variance comes from sm
scales in this case, and that this behavior dominated by
lower cutoff givess2(R);1/R4. The behavior in Gaussian
spheres comes from the fact that one is smearing the s
scale behavior over the scalek21. As the sphere grows the
lower cutoff grows too. One would obtain the same behav
by taking a different smearing scale on the sphere’s bou
ary, but by making this scale change in proportion to t
radius of the sphere. The behavior observed has to do
the very particular way one is smearing, and the real sp
properties of the system are actually obscured. The only u
fulness of the Gaussian sphere is an alternative way of sa
that P(k);k2, i.e. as a statement aboutk space properties
not real space ones. It does not describe in any useful w
property of the system in real space. In particular the
criterion should be understood really as ak space one, and
caution should be applied to its formulation as ‘‘constancy
mass variance at the horizon scale.’’

We have highlighted the fact that all current cosmologi
models will share at large scales the characteristic beha
in real space of the HZ spectrum. Specifically we note p
marily the very characteristic latticelike behavior of the va
ance in spheress2(R);R24 ~up to a small correction which
is formally logarithmic for the case of exact HZ!, as well as
3-17
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GABRIELLI, JOYCE, AND SYLOS LABINI PHYSICAL REVIEW D 65 083523
the characteristic negative~nonoscillating! power-law tail in
the two point correlation functionj(r );2r 24. In this paper
we have not addressed practical questions concerning
observation of such behavior in cosmological data. In p
ticular one would expect such behavior to be seen in p
ciple, if these models are correct, in the distribution of ma
in the Universe at large scales, and in particular in the d
tribution of galaxies. So far such behavior has not been
served. Rather the characteristic feature of galaxy cluste
at small scales is that it shows fractal behavior@25,41#,
which as we have noted corresponds to a very different k
of distribution than that described by CDM type models.
centrally important~and much debated@25,41,24#! observa-
tional question is the determination of the scale marking
transition from this behavior to homogeneity. On mu
larger scales galaxy structures should then present the s
homogeneous character of the HZ type PS. Indeed
should be a critical test of the interpretation of measureme
of CMBR in terms of the HZ picture on large spatial sca
@4,34,35#. Observationally a crucial question is the feasibil
ys
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of measuring the transition between these regimes directl
galaxy distributions. With large forthcoming galaxy surve
it may be possible to do so, but this is a question which m
address exactly the statistics of these surveys and the e
nature of the signal in any given model. These are quest
we will address in future works. One other direct usage
the results developed here is in the context ofN-body simu-
lations, in which one studies numerically the evolution
perturbations in cosmological models, and a knowledge
their real space characteristics can be very useful. We refe
@7# for a detailed discussion of this point.
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