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Dynamics of coupled bosonic systems with applications to preheating
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Coupled, multifield models of inflation can provide several attractive features unavailable in the case of a
single inflaton field. These models have a rich dynamical structure resulting from the interaction of the fields
and their associated fluctuations. We present a formalism to study the nonequilibrium dynamics of coupled
scalar fields. This formalism solves the problem of renormalizing interacting models in a transparent way using
dimensional regularization. The evolution is generated by a renormalized effective Lagrangian which incorpo-
rates the dynamics of the mean fields and their associated fluctuations at one-loop order. We apply our method
to two problems of physical interest:~i! a simple two-field model which exemplifies applications to reheating
in inflation, and~ii ! a supersymmetric hybrid inflation model. This second case is interesting because inflation
terminates via a smooth phase transition which gives rise to a spinodal instability in one of the fields. We study
the evolution of the zero mode of the fields and the energy density transfer to the fluctuations from the mean
fields. We conclude that back reaction effects can be significant over a wide parameter range. In particular for
the supersymmetric hybrid model we find that particle production can be suppressed due to these effects.
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I. INTRODUCTION

In recent years, the study of nonequilibrium dynamics
quantum field theory has received much attention in vari
areas of physics, and particularly in cosmology. The w
has been driven largely by inflation@1#, the most successfu
known mechanism for explaining the large-scale homoge
ity and isotropy of the universeand the small-scale inhomo
geneity and anisotropy of the Universe@2#. With observa-
tions for the first time able to directly test the more detai
predictions of specific inflationary models, the efforts in u
derstanding inflation and its dynamics have redoubled.

One area of particular interest is the dynamics of mu
field models of inflation in which the inflaton is coupled
another dynamical field during inflation. These models c
lead to a variety of features unavailable in the case o
single field. Such multifield scenarios include the w
known hybrid inflation models@3#.

On top of the dynamics during inflation, the subsequ
phase of energy transfer between the inflaton and other
grees of freedom leading to the standard picture of big b
cosmology has been the subject of intense study. The infl
may decay through perturbative processes@4,5# as well as
nonperturbative parametric amplification@6,7#. The latter can
lead to explosive particle production and very efficient
heating of the universe.

Hybrid inflation and reheating models share an import
common thread. They both involve the coupling of two
more dynamical, interacting scalar fields~or higher spin

*On leave of absence from Dortmund University, Dortmund, G
many.
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fields @8#!. An important aspect of such systems is the pos
bility of mixing between the fields. In Ref.@9# for example
the classical inflaton decay is investigated for a two fie
model by solving the non-linear equations of motions on
grid. In Ref. @10#, the authors treat the problem of couple
quantum scalar and fermion fields at the tree level. Beca
of the small couplings involved in inflationary cosmolog
such a tree level analysis is useful in a variety of physi
situations.

However, hybrid models as well as the dynamics of
heating typically include processes such as spinodal dec
position @11,12# and parametric amplification which requir
one to go beyond the tree level by including quantum effe
either in a perturbative expansion or by means of nonper
bative mean field techniques such as the Hartree approx
tion or a large-N expansion@5,13,14#.

Going beyond tree level brings in the issue of renorm
ization. The problem of renormalization of time evolutio
equations in single field models was understood sev
years ago. In one of the first papers in this field, Cooper
Mottola showed in 1987 Ref.@15#, that it is possible to find
a renormalization procedure which leads to counter te
independent of time and initial conditions of the mean fie
They used a WKB expansion in order to extract the div
gences of the theory. In a later paper Cooperet al. also dis-
cussed a closely related adiabatic method in order to re
malize thef4 theory in the large-N approximation. Also
Boyanovsky and de Vega, Ref.@11#, used a WKB method in
order to renormalize time-dependent equations in one-l
order, and later on Boyanovskyet al. @12# investigated af4

model in the large-N approximation and the Hartree approx
mation, too. In 1996 Baackeet al., Ref. @16#, proposed a
slightly different method in order to extract the divergenc

-
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of the theory, which enabled them to use dimensional re
larization. In contrast to the WKB ansatz this method can
extended for coupled system, which was demonstrated
Ref. @17#. This procedure will be used also in this paper. W
work in the context of a closed time path formalism@18#
appropriate to following the time-dependent evolution of t
system. In this formalism, thein-vacuum plays a predomi
nant role, as quantities are tracked by theirin-in expectation
values ~in contrast to thein-out formalism of scattering
theory!. We construct thein-vacuum by diagonalizing the
mass matrix of the system at the initial timet50. However,
because of the time-dependent mixing, a system initially
agonalized in this way will generally not be diagonalized
later times.

One approach to this problem, taken in Ref.@10#, is to
diagonalize the mass matrix at each moment in time thro
the use of a time-dependent rotation matrix. The cost of
ing so is the appearance of time derivatives of the rota
matrix into the kinetic operators of the theory. While such
scheme is in principle workable beyond the tree level,
modified kinetic operators introduce complications into t
extraction of the fluctuation corrections as well as the div
gences that are to be removed via renormalization.

We take an alternative approach where the mass matr
allowed to be non-diagonal for all timest.0 and account for
the mixing by expanding each of the fields in terms ofall of
the in-state creation and annihilation operators. The cos
doing so in anN-field system is the need to trackN2 complex
mode functions representing the fields instead of the usuaN.
However, this allows standard techniques to be used to p
erly renormalize the system. For the two-field systems co
mon in inflationary models, this effective doubling of th
field content adds a relatively minor cost.

For simplicity and clarity, we will work in Minkowski
spacetime and in a one-loop approximation. Extensions b
to Friedmann-Robertson-Walker spacetimes and to sim
non-perturbative schemes such as the Hartree approxima
while more complicated than the present analysis, presen
fundamental difficulties. We note that Minkowski spacetim
is a good approximation in the latter stages of certain hyb
inflation models, and it will also allow comparison wit
much of the original reheating literature@4–6# which often
neglects the effects of expansion, allowing us to directly
termine the role played by the mixing of the fields in t
dynamics.

The outline of the paper is as follows. We begin by co
sidering the Lagrangian forN coupled scalar fields and set u
our formalism for the quantization of the system. This
followed by an outline of the renormalization procedure. W
then provide a summary of the results for the two-field ca
We demonstrate the formalism with two examples: a sim
reheating model and a hybrid inflation model motivated
supersymmetry.

In the reheating model we investigate two relevant
gimes discussed in detail in the literature@6,7#, viz., the nar-
row resonance regime and the broad resonance reg
These different regimes occur depending on the choice
initial conditions. Usually in these models the mixing effec
of the fields were neglected by choosing a vanishing ini
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value for one of the mean fields: We are now able to treat
full system and to investigate these mixing effects. For t
purpose we concentrate on studying the behavior of the fl
tuation integrals for the different fields and the tim
dependent mixing angle. Depending on the regime, as
mean fields evolve, the effects of the mixing can be qu
different. In the narrow resonance regime the mixing angl
very small and plays a subdominant role, whereas in
broad resonance regime the mixing effects are very imp
tant. Therefore, we emphasize that neglecting the mix
could lead to incomplete results.

Supersymmetric hybrid models are a special realization
general hybrid inflationary models~see, e.g., Refs.@19,20#!.
Based on a softly broken supersymmetry potential, the s
cial feature of these models is the occurrence of only o
coupling constant, whereas in nonsupersymmetric hyb
models there are at least two different couplings. Thus, in
supersymmetric case there is only one natural frequenc
oscillation for the mean fields as long as fluctuations
neglected. This leads to efficient particle production dur
the preheating stage in the early universe. However, we s
below that, by taking into account the fluctuations and inv
tigating the full mixed system, this feature of supersymm
ric hybrid models can be lost in some regimes. This is
cause the effective mass corrections for the two fields
different in these regimes, which leads to a chaotic traject
for the renormalized field equations of motion in a pha
space which mimics the situation of a nonsupersymme
hybrid model. It appears, then, that supersymmetric hyb
models can lose some of their attractiveness compare
general hybrid models.

II. N FIELDS

We work with the following Lagrangian for real scala
fields F i with i 51 . . .N:

L@F i #5(
i 51

N
1

2
]mF i~x!]mF i~x!2V@F i~x!#, ~2.1!

where the potential is

V~F i !5 (
i , j ,k,l 51

N

AiF i1
1

2
mi j F iF j1

1

3!
gi jkF iF jFk

1
1

4!
l i jkl F iF jFkF l . ~2.2!

Note thatmi j , gi jk , andl i jkl are symmetric in each index
but are generally non-diagonal resulting in the mixing of t
different fields. In what follows, subscripts and superscri
i . . . n run over the values 1 . . .N and we use a conventio
in which summation is assumed over repeated lowered i
ces, but not raised indices.

We will expand each field about their expectation valu
~taken to be space translation invariant!:

F i~x!5f i~ t !1df i~x!, f i~ t !5^F i~x!&. ~2.3!
1-2
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Expanding the equations of motion and keeping terms
quadratic order in the fluctuations yields a one-loop appro
mation. The equations of motion for the zero modesf i are
determined via the tadpole condition. We have

f̈ i1Ai1mi j f j1
1

2
gi jkf jfk1

1

6
l i jkl f jfkf l

1
1

2
gi jk^df jdfk&1

1

2
l i jkl f j^dfkdf l&50.

~2.4!

To this order, the fluctuations obey the equation

d̈f i2¹W 2df i1Mi j df j50, ~2.5!

with the mass matrix

Mi j 5mi j 1gi jkfk1
1

2
l i jkl fkf l . ~2.6!

As indicated in the Introduction, the complication th
arises is not the fact that the mass matrix~2.6! contains mix-
ing between the various fields, rather that the mixing chan
with time as thef i evolve according to Eq.~2.4!. This means
that if we diagonalize the mass matrix at one time, it will n
generally be diagonal at any other time.

Nonetheless, it is most convenient to quantize in terms
a diagonal system at the initial timet50. We define the
matrix

Di j 5OikMklO l j
T , ~2.7!

and the corresponding fluctuation fields

Xi5Oi j df j , ~2.8!

whereOi j is an orthogonal rotation matrix.Di j is diagonal at
the initial time:

Di j 5Did i j , ~2.9!

without summation over the raised indexi. TheXi obey the
equations of motion

Ẍi2¹W 2Xi1Di j Xj50. ~2.10!

We quantize the system by defining a set of creation
annihilation operatorsaa

†(kW ) and aa(kW ) where a51 . . .N
corresponds to thein-state quanta of frequency

va5Ak21Da. ~2.11!

As the mixing changes in time, each of the fieldsXi is ex-
panded in terms of all of thein-state operators. We have

Xi5 (
a51

N E d3k

~2p!3

1

2va0
@aa~kW !Ui

a~kW ,t !eikW•xW

1aa
†~kW !Ui

a* ~kW ,t !e2 ikW•xW#. ~2.12!
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The initial conditions for theN2 complex mode functions are

Ui
a~kW ,0!5d i

a , U̇ i
a~kW ,0!52 ivaUi

a~kW ,0!. ~2.13!

It is convenient to define the fluctuation integrals

^XiXj&5 (
a51

N E d3k

~2p!3

1

2va0
Ui

a* ~kW ,t !U j
a~kW ,t !,

~2.14!

from which it is straightforward to determine the contrib
tions appearing in the zero mode equations~2.4!:

^df idf j&5O ik
T O j l

T ^XiXj&. ~2.15!

It will also prove convenient to introduce the rotated co
plings

Gi jk5gilmO l j
TO mk

T , ~2.16!

L i jkl 5l i jmnO mk
T O nl

T , ~2.17!

which allows us to write the zero mode equations as

f̈ i1Ai1mi j f j1
1

2
gi jkf jfk1

1

6
l i jkl f jfkf l

1
1

2
Gi jk^XjXk&1

1

2
L i jkl f j^XkXl&50, ~2.18!

while the mode functions obey the equations

Ü i
a~kW ,t !1~k21Di j !U j

a~kW ,t !50. ~2.19!

In addition to the equations of motion, it is useful to ha
an expression for the energy density of the system. Thi
particularly true when one completes numerical simulatio
of the system, since energy conservation is a powerful ch
of the accuracy of the simulations. After once again deco
posing the fields into their expectation values and fluct
tions, the energy density to one loop order is

E5
1

2
ḟ i

21Aif i1
1

2
mi j f if j1

1

3!
gi jkf if jfk

1
1

4!
l i jkl f if jfkf l1

1

2
^Ẋi

2&

1
1

2
^~¹W Xi !

2&1
1

2
Di j ^XiXj&, ~2.20!

where we have defined the integrals

^Ẋi&5 (
a51

N E d3k

~2p!3

1

2va0
uU̇ i

a~kW ,t !u2, ~2.21!

^~¹W Xi !
2&5 (

a51

N E d3k

~2p!3

k2

2va0
uUi

a~kW ,t !u2.

~2.22!
1-3



b

r
x
a
n
s

ld
h
he
ce
ws
ns
a
fi-

ec
ld
n

a

e

at

s

ar

th

-

di-

ure
of

opt
r-

n

s of

en-

ec-
the

e

DANIEL CORMIER, KATRIN HEITMANN, AND ANUPAM MAZUMDAR PHYSICAL REVIEW D 65 083521
A. Divergence structure and renormalization

The mode integrals in the equation of motion defined
Eq. ~2.14! and in the energy density defined by Eqs.~2.21!,
~2.22! are divergent and have to be regulated, allowing fo
renormalization of the theory. We require a method of e
tracting the divergent terms appearing in the mode integr
a nontrivial task, since the mode equations vary in time a
they are coupled. Our aim is now to find counter term
which are independent of the initial value of the mean fie
in order to formulate a finite theory. The correct choice of t
initial condition for the fluctuations guarantees that t
theory is renormalizable. One way to extract the divergen
of the mode integrals is due to a WKB method which allo
for a high momentum expansion of the mode functio
However, when the fields are coupled, as in the present c
the usual formulation of the WKB expansion runs into dif
culties which are yet to be resolved.

An alternative method has been developed@16,17,21#
which relies on a formal perturbative expansion in the eff
tive masses and time derivatives of the masses of the fie
As such, it results in a series expansion of the mode fu
tions in powers ofm/v andṁ/v2, etc. The first few terms in
the series include the divergent parts of the integrals that
to be removed via renormalization.

We begin by introducing the following ansatz for th
mode functions:

U j
a5e2 iva0t~d j

a1 f j
a!. ~2.23!

The first term on the right-hand side anticipates a quadr
divergence in the quantitieŝXi

2&. We define the following
potential:

Vi j
a~ t !5Di j ~ t !2Dad i j . ~2.24!

The equations of motion for the mode functions Eqs.~2.19!
can be written in a suggestive form with the help of Eq
~2.23!, ~2.24!

f̈ j
a2 i2va0 ḟ j

a52 (
l 51,2

Vjl
a~d l

a1 f l
a!. ~2.25!

The terms on the right-hand side of this expression
treated as perturbations to write thef 8s order by order inV,
with the initial conditionsf j

i (0)5 ḟ j
i (0)50. To first order in

V, we have the equations of motion:

f̈ j
a(1)22iva0 ḟ j

a(1)52Vj a
a . ~2.26!

The corresponding integral solutions for the real part of
f ’s are

2Rf j
a(1)52

Va j
a

2va0
1E

0

t

dt8
V̇a j

a ~ t8!

2va0
cos~2va0t8!,

~2.27!

while the imaginary part is of order 1/v3 and does not con
tribute to the divergences@17#.
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Using these results, we find quadratic and logarithmic
vergences:

^XiXj&div5E d3k

~2p!3 S 1

2v j
d i j 2

1

4v j
3

Vi j
j D , ~2.28!

which must be removed via some renormalization proced
while also providing finite corrections to the parameters
the theory.

To make the renormalization scheme explicit, we ad
dimensional regularization. We define the following dive
gent integrals:

E d3k

~2p!3

1

2Ak21m2
52m2I 23~m!2

m2

16p2
, ~2.29!

E d3k

~2p!3

1

4~k21m2!3/2
5I 23~m!, ~2.30!

wherem is an arbitrary renormalization point andI 23 carries
the infinite contributions. In dimensional regularizatio
I 23(m) is given by

I 23~m!5
1

16p2 H 2

e
1 ln

4pm2

m2
2gJ . ~2.31!

The infinite part of̂ XiXj& is found to be simply

^XiXj& infinite52Di j I 23~m!. ~2.32!

This leads to mass and coupling constant counterterm
the following form

dAi5
1

2
I 23~m!gi jkmjk , ~2.33!

dmi j 5
1

2
I 23~m!@gikmgkm j1l i jkl mkl#, ~2.34!

dgi jk5
3

2
I 23~m!gilml lm jk , ~2.35!

dl i jkl 5
3

2
I 23~m!l i jmnlmnkl . ~2.36!

It is important to notice that these counterterms are indep
dent of the initial conditions of the mean fieldsf i .

In addition to these counterterms, there are finite corr
tions of the parameters coming from the finite parts of
integrals~2.28!:

^XiXj&div,finite52
1

16p2
D jd i j 2

1

16p2
Di j ln

D j

m2
. ~2.37!

From this, we extract the following finite contributions to th
couplings and mass:
1-4
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DAi52
1

32p2 FGi j j D
j1gi jkmjkln

Dk

m2G , ~2.38!

Dmi j 52
1

32p2 FL i jkkDk1~giklgkl j1l i jkl mkl!

3 ln
Dk

m2G , ~2.39!

Dgi jk52
1

8p2
gilml lm jkln

Dm

m2
, ~2.40!

Dl i jkl 52
3

32p2
l i jmnlmnklln

Dm

m2
. ~2.41!

These finite corrections are also contributing to the ene
density. In addition we find a finite part due to the cosm
logical constant renormalization.

The full, finite equations of motion become

f̈ i1Ai1DAi1~mi j 1Dmi j !f j

1
1

2
~gi jk1Dgi jk !f jfk

1
1

6
~l i jkl 1Dl i jkl !f jfkf l

1
1

2
~Gikl1L i jkl f j ! (

a51

N E d3k

~2p!3

1

2va0

3F f k
a* f l

a1dk
a f l

a1d l
a f k

a* 1
1

2va0
2

d l
aVka

a G50.

~2.42!

B. Two fields

The two-field case is often encountered, and the phys
applications we present in the next section are both in
category. It is therefore worthwhile to pause to look at a f
details of such systems. We begin with a system of two r
scalar fieldsF andX

L5
1

2
~]mF!21

1

2
~]mX!22V~F,X!, ~2.43!

with the potential

V~F,X!5
1

2
mf

2 F21
1

2
mx

2X21
l

4!
F41

k

4!
X4

1
g2

4
F2X2. ~2.44!

This Lagrangian has the same form as that studied in
preceding section with the identifications
08352
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F1[F, F2[X,

m11[mf
2 , m22[mx

2 , m125m2150,

l1111[l, l2222[k, l1122[g2,

l11125l122250,Ai50, gi jk50. ~2.45!

The remaining components ofl i jkl are determined by the
fact that it is symmetric in each of its indices.

The mass matrixM is

M5S mf
2 1lf2/21g2x2/2 g2fx

g2fx mx
21kx2/21g2f2/2

D .

~2.46!

For two fields, the orthogonal rotation matrix can be writt
in terms of a single mixing angleu. The matrix has the form

O5S cosu sinu

2sinu cosu D , ~2.47!

where the mixing angle is determined by thet50 mass ma-
trix M, Eq. ~2.46!, through the relation

tanu5
1

2M12~0!
@M22~0!2M11~0!

1A@M22~0!2M11~0!#214M 12
2 ~0!#.

~2.48!

The eigenvalues ofO are the diagonal elements of the matr
D, Eq. ~2.7!, at the initial time:

D~0!5S D1 0

0 D2D , ~2.49!

with the values

D15
1

2
@M11~0!1M22~0!

1A@M22~0!2M11~0!#214M 12
2 ~0!#, ~2.50!

D25
1

2
@M11~0!1M22~0!

2A@M22~0!2M11~0!#214M 12
2 ~0!#. ~2.51!

For general times, the mass matrix for the fieldsX1 and
X2, writing cu5cosu andsu5sinu, is
1-5
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D~ t !5S cu
2M1112sucuM121su

2M22 sucuM222sucuM111~cu
22su

2!M12

sucuM222sucuM111~cu
22su

2!M12 22cu
2M2222sucuM121su

2M11
D ~2.52!

The zero mode equations, before renormalization, read

f̈1mf
2 f1

l

6
f31

g2

2
fx21(

i j
Qi j ~ t !^XiXj&50, ~2.53!

ẍ1mx
2x1

k

6
x31

g2

2
xf21(

i j
Ri j ~ t !^XiXj&50, ~2.54!

where
Qi j 5L1ki jfk

5S l

2
cu

2f1
g2

2
su

2f1g2sucux 2
l

2
sucuf1

g2

2
sucuf1

g2

2
~cu

22su
2!x

2
l

2
sucuf1

g2

2
sucuf1

g2

2
~cu

22su
2!x

l

2
su

2f1
g2

2
cu

2f2g2sucux
D ,

Ri j 5L2ki jfk

5S k

2
su

2x1
g2

2
cu

2x1g2sucuf
k

2
sucux2

g2

2
sucux1

g2

2
~cu

22su
2!f

k

2
sucux2

g2

2
sucux1

g2

2
~cu

22su
2!f

k

2
cu

2x1
g2

2
su

2x2g2sucuf.
D . ~2.55!
c
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The total energy density of the system, including the flu

tuations, can be expressed as

E5
1

2
ḟ21

1

2
ẋ21

1

2
mf

2 f21
1

2
mx

2x21
l

4!
f41

k

4!
x4

1
g2

4
f2x21

1

2
^Ẋi

2&1
1

2
^~¹W Xi !

2&1
1

2
Di j ^XiXj&.

~2.56!

Now we have to formulate finite equations of motion a
a finite energy density. We adopt the renormalization pro
dure of Sec. II A for theN field case. By using the identifi
cations~2.45! we derive the appropriate counterterms for t
two field case from Eqs.~2.33!–~2.36!. We find in particular

dmf
2 5

1

2
~lmf

2 1g2mx
2!I 23~m!,

dmx
25

1

2
~g2mf

2 1kmx
2!I 23~m!,

dl5
3

2
~l21g4!I 23~m!,

dg25
g2

2
~l1k14g2!I 23~m!,

dk5
3

2
~g41k2!I 23~m!. ~2.57!
08352
-

-

Of course we get also similar results to Eqs.~2.38!–~2.41!
in the N field case finite corrections to the masses and c
plings of the form

Dmf
2 52

1

32p2
$D1~lcu

21g2su
2!1D2~lsu

21g2cu
2!

1g2mx
2L11lmf

2 L2%, ~2.58!

Dmx
252

1

32p2
$D1~ksu

21g2cu
2!1D2~g2su

21kcu
2!

1g2mfL21kmx
2L1%, ~2.59!

Dl52
1

32p2
$l2L21g4L1%, ~2.60!

Dg252
3

32p2 H g4~L11L2!1
1

2
g2lL21

1

2
g2kL1J ,

~2.61!

Dk52
1

32p2
$g4L21k2L1%, ~2.62!

where
1-6
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L15su
2ln

D1

m2
1cu

2ln
D2

m2
,

L25su
2ln

D2

m2
1cu

2ln
D1

m2
. ~2.63!

As a result of these finite corrections Eqs.~2.58!–~2.62!, the
total Lagrangian Eq.~2.43! is also modified. This is exactly
the renormalized Lagrangian which we needed. We also
an additional finite contribution to the classical Lagrang
given by
o-
a
s

d
co

08352
d

DL52
g2sucufx

64p2 H 4~D12D2!

1 ln
D1

D2
@~l1g2!x21~k1g2!f2

12~mx
21mf

2 !#J , ~2.64!

and, the final zero mode equations forf andx are given by
f̈1~mf
2 1Dmf

2 !f1
1

6
~l1Dl!f31

1

2
~g21Dg2!fx21

]DL
]f

1H (
la

Qll ~ t !E d3k

~2p!3

1

2va0
S 2d l

aRf l
l1 f l

a f l
a* 1

Vll

4va0
3 D

1(
aÞ l

QlaE d3k

~2p!3

1

2va0
S Rf l

a1Rf a
aRf l

a1If a
aIf l

a1
Vla

2va0
2 D J 50, ~2.65!

and,

ẍ1~mf
2 1Dmf

2 !x1
1

6
~k1Dk!x31

1

2
~g21Dg2!fx21

]DL
]x

1H (
la

Rll ~ t !E d3k

~2p!3

1

2va0
S 2d l

aRf l
l1 f l

a f l
a* 1

Vll

4va0
3 D

1(
aÞ l

QlaE d3k

~2p!3

1

2va0
S Rf l

a1Rf a
aRf l

a1If a
aIf l

a1
Vla

2va0
2 D J 50. ~2.66!
s we
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.
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After writing down the finite zero mode equations of m
tion we also have to renormalize the energy density. Ag
by using the ansatz~2.23! we can extract the divergent term
of the fluctuation integrals in Eq.~2.56!. In addition to the
quadratic and logarithmic divergences we find a quartic
vergence. This leads to a counterterm which acts as a
mological constant and has the form

dL5
1

4
~mx

41mf
4 !I 23~m!. ~2.67!

Altogether the divergent part of the energy density reads

Ediv52
I 23~m!

4 H ~g2mx
21lmf

2 !f21~g2mf
2 kmx

2!x2

1
1

2
g2~l1k14g2!f2x21

1

4
~l21g4!f4

1
1

4
~k21g4!x41mx

41mf
4 J . ~2.68!
in

i-
s-

This expression leads of course to the same counterterm
found for the equations of motion, and therefore also to
same finite corrections to couplings and masses. Therefo
is straightforward to formulate a finite energy expression

Now, we are in a position to discuss the physical appli
tions of our problem. This we shall do in Sec. III, but first w
introduce one more quantity that is convenient in discuss
the degree to which the mixing plays a role in the dynami

C. Time-dependent mixing angle

To better understand how the system evolves in time,
useful to have a measure of how much the fieldsf and x
mix at each moment, and how this mixing evolves with t
system. To provide us with a measure of the mixing,
introduce a time-dependent mixing angleQ(t), which is de-
fined in terms of the time-dependent mass matrixM(t), Eq.
~2.46!:
1-7
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tanQ~ t !5
1

2M12~ t !
@M22~ t !2M11~ t !

1A~M22~ t !2M11~ t !!214M 12
2 ~ t !#.

~2.69!

III. PHYSICAL APPLICATIONS

After setting up the technical framework, we are now in
position to investigate some relevant cosmological mu
field models for inflation. We begin our analysis with
simple two-field model often used for studying the phase
parametric amplification.~This phase occurs just after th
completion of inflation in chaotic inflationary models@6,7#.!
This model provides a useful context to analyze the effe
due to field mixing. Next we turn our attention to a sup
symmetric hybrid inflationary model, which is of particula
interest in cosmology. As discussed in the literature~see, for
example, Ref.@19#! particle production~and hence reheating!
in these models is much more efficient compared to the n
supersymmetric hybrid models. Until now the mixing effec
in these models have not been treated fully, including b
reaction effects of the quantum fluctuations in the mean fi
approximation. This approximation does not take rescat
ing processes into account and therefore we cannot add
the problem of thermalization.

A. Reheating

The reheating phase in chaotic inflationary models
characterized by two different regimes, which depend on
chosen initial conditions: the first is the narrow resonan
regime, while the second is the case of broad resonanc
order to investigate these regimes we examine two diffe
parameter sets, where only the initial values for the z
modes are varied. We find significant differences in the
havior of the fluctuation integrals as well as the mixing an
in the two regimes.

To make the analysis as simple as possible, we setl5k
50 as well asmx50. For the remaining parameters, we s
mf51, which just acts as a unit of mass, andg250.01. With

FIG. 1. The logarithm of the fluctuation integrals^X1
2& ~solid!,

^X1X2& ~dashed!, and ^X2
2& ~dotted! for the narrow resonance re

gime.
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these parameters, the case usually studied in the litera
x(0)50, does not introduce any mixing between the fie
since the off-diagonal elements of thef-x mass matrix are
proportional tox. However, takingx(0)50 may not always
be the case. For instance,x field could take a large vacuum
expectation value during inflation, providedx is treated as a
field other than the inflaton. For the purpose of illustrati
we may consider a non-zero initial condition forx which is
of order its effective massgf at the beginning of the pre
heating stage and examine the consequences. The initial
dition for f in the narrow resonance regime is fixed by t
condition g2f(0)/4mf

2 50.1 ~remember,g is fixed to beg
50.001) and for the broad resonance regime
g2f(0)/4mf

2 5100. If we takef(0) to be approximately the
Planck scale as appropriate to the end of inflation, this wo
correspond tomf;1017 GeV andmf;1014 GeV for the
two respective cases. Note that these parameters are ch
to depict the phenomena of interest during a time scale
can be accurately simulated. The results are, in any c
representative of two-field mixing in the narrow and bro
resonance regimes regardless of the precise parameter v
in any particular model.

Figure 1 shows the logarithm of the three fluctuation
tegrals ^X1

2&, ^X1X2& and ^X2
2& for the narrow resonance

case. These are seen to be dominated by the expone
growth of ^X2

2&, while the other contributions grow mor
slowly. Therefore, the evolution is characterized by prod
tion of X2 particles. We now turn to the broad resonan
regime, where things look quite different. Here, each of
fluctuation integrals grows rapidly as shown in Fig. 2. S
nificant mixing of the species occurs along with copious p
ticle production.

The behavior of the fluctuation integrals is consistent w
the behavior of the time-dependent mixing angleQ. Here,
the mixing plays a sub-dominant role in the narrow res
nance regime~Fig. 3! with the mixing angle remaining nea
zero. This means thatX2 predominantly corresponds to thex
field, such that the process is one ofx particle production,
which is as expected. Concentrating on the time-depend
mixing angle in the broad resonance regime, Fig. 4, sign
cant mixing between the fields is observed. The rapid va
tion in the mixing angle indicates that mixing between t

FIG. 2. The logarithm of the fluctuation integrals^X1
2& ~solid!,

^X1X2& ~dashed!, and^X2
2& ~dotted! for the broad resonance regime
1-8
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DYNAMICS OF COUPLED BOSONIC SYSTEMS WITH . . . PHYSICAL REVIEW D65 083521
fields plays a very important role in the evolution of prehe
ing in the broad resonance regime. The large influence
has on the behavior of the system is clear from the evolu
of the zero mode componentsf(t) in Fig. 5 andx(t) in Fig.
6.

B. Supersymmetric hybrid inflation

We now consider a hybrid inflationary model where t
finite coupling of two fields plays an interesting role in th
termination of slow roll inflation@3#. The particular model
we study is based on softly broken supersymmetry@19# with
the potential

V~s,N!5
1

2
ms

2s21
1

4
ks

2~N222sc
2!21ks

2N2s2.

~3.1!

The field s plays the role of an inflaton during inflatio
while the fieldN is trapped in a false vacuum̂N&50. The
inflaton rolls down the potential along thes direction to
reach a critical values5sc . Once s reaches its critical
value, the effective squared mass for theN field becomes
negative and consequently it rolls down from the fa
vacuum to its global minimum through the mechanism

FIG. 3. Time-dependent mixing angleQ(t) for the narrow reso-
nance regime.

FIG. 4. Time-dependent mixing angleQ(t) for the broad reso-
nance regime.
08352
-
is
n

f

spinodal instability@11,12#. Thus, inflation comes to an en
and both the fields begin oscillations around their respec
minima given by

s50, N5A2sc . ~3.2!

This is the onset of the preheating stage, which has b
discussed in the literature@22,19,23#. The difference between
the supersymmetric hybrid potential and no
supersymmetric hybrid potentials lies in different coupli
constants. In Eq.~3.1!, there is only the single coupling pa
rameterks, while in the non-supersymmetric version the
can be at least two different coupling constants. The ab
potential, except for thes mass term, can be derived ver
easily from the superpotential forF-term spontaneously su
persymmetry breaking:

W5
ks

2
s~N22sc

2!. ~3.3!

The appearance of a mass term fors in Eq. ~3.1! is due to
the presence of soft supersymmetry breaking. Its presen
essential for slow roll inflation to produce adequate dens
perturbations and also to provide a correct tilt in the pow

FIG. 5. Zero mode evolution with fluctuation~solid line! and
without fluctuation~dotted line! for f(t) for the broad resonance
regime.

FIG. 6. Zero mode evolution with fluctuation~solid line! and
without fluctuation~dotted line! for x(t) for the broad resonance
regime.
1-9
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DANIEL CORMIER, KATRIN HEITMANN, AND ANUPAM MAZUMDAR PHYSICAL REVIEW D 65 083521
spectrum@19#. The height of the potential during inflation i
given by ks

2sc
4 . Similar potentials to Eq.~3.1! can also be

derived fromD-term supersymmetry breaking as discuss
in Refs. @24#. In these models the critical valuesc and the
height of the potential energy are related to the Fay
Illipoulus term coming from an anomalous U~1! symmetry.
As in any inflationary model, hybrid inflation is constraine
by the Cosmic Background Explorer~COBE! @25#. This im-
poses the bound

kssc'1.2731015uhu GeV, ~3.4!

whereh is one of the slow roll parameters which determin
the slope of the power spectral index@25#. For our purpose
we fix it to be uhu;0.01.

In order to discuss the details of the physics we ment
here the equivalence between Eq.~3.1! and Eq.~2.2!. This
helps us to establish direct relationship with our ear
analysis:

f[s, x[N, df[ds, dx[dN,

l50, k[6ks
2, g[2ks, mf[ms ,

mx
2[22ks

2sc
2 . ~3.5!

Notice thatmx
2 is negative. An interesting feature of the h

brid model is that irrespective of the values of the parame
ks, sc , and ms , as long as they satisfy the COBE co
straints, the behavior of the mean fields follow a comm
pattern once they begin to oscillate@19#. First of all, the mass
term for thes field, ms , becomes less dominant compar
to the effective frequency for the two fields, which is give
by the effective mass for the two fields during oscillation

meffs5meffN52kssc@ms . ~3.6!

Hence, there is a single natural frequency of oscillati
thanks to supersymmetry. Since the masses of the fields
the same at the global minima, there exists a particular s
tion of the equations of motion for thes andN fields. Their
trajectory follows a straight line towards their glob
minima:

N56A2~sc2s!. ~3.7!

The maximum amplitude attained by thes field is ;sc ,
while the other field attains a larger amplitudeN5A2sc .
~We remind readers thats5sc corresponds to the poin
where the effective mass forN field changes its sign.! This is
the point of instability which we need to discuss here. Fr
Eq. ~3.1! we notice that prior to the oscillations of the field
and during the oscillations, the effective mass square fors is
always positive. However, this is not the case forN, and its
mass square can be positive as well as negative even d
the oscillations of the fields, provided the amplitudes
large enough. If the amplitudes fors and N are such that
they satisfy Eq.~3.7!, then the effective mass square for t
N field is in fact always negative fors,sc . If the ampli-
tudes are large enough such that after the second order p
08352
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transition the initial amplitude fors'sc , it is then quite
possible that near the critical point the effective mass for
field N vanishes completely. As far as the motion of the me
field without including fluctuations is concerned this do
not provide any new insight. However, if the fields are qua
tized then the perturbations in the field, especially fordN,
grow exponentially becausevN

2 in Eq. ~2.26! becomes nega
tive for sufficiently small momentumk. This shows that the
vacuum is unstable near the critical pointsc .

Another intuitive way to appreciate this point is to co
sider the adiabatic condition for the vacuum. The adiaba
evolution for the zero mode evolution forN field is given by
uv̇Nu!vN

2 . This condition is maximally violated at the poin
where the effective mass square forN becomes zero, and
violation in adiabatic evolution of the zero mode forN sug-
gests that many fluctuations ofdN are produced during the
finite period when the adiabaticity is broken@23#. This ex-
planation is quite naive because the overall production
particles and fluctuations depends also upon the global
havior of the zero mode fields. The effect of corrections d
to fluctuations might affect the production of particles a
this is the point we are going to emphasize in our numer
simulations.

In some sense the hybrid model is quite different fro
chaotic inflationary models. In chaotic models, the inflat
field rolls down with an amplitude;1/(mt), wherem is the
mass of the oscillating field. However, in the hybrid mod
the amplitude of the oscillations die down very slowly, a
lowing many oscillations of thes andN fields in one Hubble
time. Thus, one could expect large amplitude oscillations
the fields for a long time. This crucially depends on the p
rametersc . If sc!Mp , then we notice that effective masse
for s and N fields during oscillations are much larger tha
the Hubble parameter. The Hubble parameter is given bH
'ksc

2/Mp during inflation, so,

meffs

H
5

meffN

H
'

Mp

sc
@1, ~3.8!

provided the scale ofsc is quite small compared to th
Planck mass, we can effectively neglect the expansion of
Universe.

In the supersymmetric hybrid model there are two
gimes of interest. Just after the mass square of theN field
becomes negative, the fields begin to oscillate with an a
plitude which decreases as}1/t2. When the field amplitude
drops belowuN(t)/A2sc21u<1/3, the amplitude of the os
cillations decreases as}1/t. In this regime, when the expan
sion of the Universe is neglected, the amplitude of the os
lations remains constant and the oscillations are harmon

N~ t !

A2sc

'11
1

3
cos~meffst !. ~3.9!

The corresponding evolution equation for thes field can be
found from Eq.~3.7!.
1-10
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DYNAMICS OF COUPLED BOSONIC SYSTEMS WITH . . . PHYSICAL REVIEW D65 083521
In this paper we are neglecting the expansion of the U
verse. We concentrate upon two regimes–one with large
plitude oscillations which leads to the following paramete

l50, k524, g54, ms
250,

mN
2 5216310212,

s~0!51.431026,

N~0!51310215, ~3.10!

and the other with small amplitude oscillations with the p
rameters

l50, k52431026, g5431023,

ms
250, mN

2 524310212,

s~0!50.2431023, N~0!50.6631023.
~3.11!

The coupling constants are dimensionless while the o
dimensionful parameters are denoted in Planck units. We
below a marked difference in the zero mode behavior of
fieldss andN in these two cases, depending on whether
fluctuations are taken into account or neglected.

In parameter set~3.10!, we study the features of the field
with a large amplitude. This can happen when thes andN
fields begin their oscillations just after the end of inflatio
As mentioned earlier, after the end of inflation the maximu
amplitude attained by the mean fields can be quite largs
5sc , andN5A2sc . This is precisely the initial condition
we have chosen for the mean fields for our numerics,
shown in Fig. 7. The values forks andsc can be evaluated
from Eq. ~3.5!, which yields

ks52, sc5A231026. ~3.12!
We notice that the evolution fors and N fields without

taking into account the fluctuations are anharmonic, see
7, and, their trajectories in thes-N plane is a straight line, a
shown in Fig. 8. However, switching on the fluctuatio
leads to a completely chaotic trajectory as shown in Fig
The departure from the straight line trajectory is quite s

FIG. 7. Evolution ofs ~solid line! andN ~dotted line! without
fluctuations for parameter set~3.10!.
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nificant and it tells us that the renormalized zero mode eq
tions have different contributions to the parameter 6ks

2 and
to the effective mass of theN field. This mismatch in the
frequencies of the zero mode equations fors andN leads to
an irregular trajectory.

The other way to interpret this behavior is to think
terms of different effective mass corrections tos and N
fields, such that the effective frequencies of the oscillatio
for s and N do not match each other at the bottom of t
potential. This is certainly a nontrivial result. Nonethele
the result is quite expected from the fact that the amplitu
of the oscillations are quite large and the effective mass
the N field is zero at each and every oscillation whens
5sc .

As we mentioned earlier, the frequencies of the osci
tions of the zero modes are different, as can be noticed
Figs. 10 and 11. The zero mode ofs influenced by the fluc-
tuations oscillates around its minimums50 with a more
rapid frequency than when fluctuations are neglected. T
suggests that the effective mass correction to the zero m
for s is coming solely from the finite coupling contributio
from the N field. ~Note that we have already set the ba
mass forms50.! The oscillations maintain the regularit
with increasing and decreasing amplitude. However,
story is not the same for the zero mode behavior for theN
field. The amplitude ofN increases gradually and the fre

FIG. 8. Trajectory for the fieldss andN for parameter set~3.10!
without fluctuations.

FIG. 9. Trajectory for the fieldss andN for parameter set~3.10!
with fluctuations.
1-11



th
.

e

2
y
e

th
re
re

tra
h
is

n-

o
ua
nt
co
lin

i
m

del

ite

their

n-
er
ent

tu-
he
This

e for
for
e
in
on-

is

his

ex-
ery
in

tion
his
ut an
es

ds.
or-

DANIEL CORMIER, KATRIN HEITMANN, AND ANUPAM MAZUMDAR PHYSICAL REVIEW D 65 083521
quency of the oscillations varies. We mention here that
effective mass for theN field can vanish at a critical point
As a result, the adiabatic condition for theN field is violated
at those instants and this is the reason why the amplitud
the N field is enhanced rather than suppressed.

The evolution of the energy density is shown in Fig. 1
At first instance it seems quite odd that the energy densit
the fluctuations does not increase further. One would naiv
expect a larger contribution of the energy density ofds and
dN. This is not the case here. The energy density for
mean fields and the fluctuations are equally shared. The
son is the correction due to the fluctuations. These cor
tions modify the effective mass of theN field and induce
corrections to the coupling constants, namelyk and g. The
coupling constants are modified in such a way that the
jectory of zero mode fields become irregular. Usually t
production of fluctuations is not efficient in this case. This
quite similar to the situation of preheating in no
supersymmetric hybrid models@22#. Even though we started
with a supersymmetric hybrid model where at the bottom
the potential there is a single effective frequency, the sit
tion changes completely if the fluctuations are taken i
account. Essentially the coupling constants get a large
rection which does not preserve an effective single coup
constant for the evolution of the zero mode fields. This
precisely the reason why the zero mode trajectory beco

FIG. 10. Zero mode evolution fors(t) with fluctuations for
parameter set~3.10!.

FIG. 11. Zero mode evolution forN(t) with fluctuations for
parameter set~3.10!.
08352
e

of

.
of
ly

e
a-
c-

-
e

f
-

o
r-
g
s
es

irregular and also why the production ofdf and dN is so
low.

As a next example of the supersymmetric hybrid mo
we choose parameter set~3.11!, with a small couplingks and
small sc

ks5231023, sc50.70731023. ~3.13!

In this example, the coupling between the fields is qu
small; g5431023, and also the initial conditions fors and
N have been chosen such that the fields oscillate around
respective minima. The maximum amplitude fors(0)
5sc/3 and N(0)5(2A2/3)sc is much below the critical
point sc . We remind the readers that the chosen initial co
ditions for the oscillations do not come naturally just aft
the end of inflation, therefore this example does not repres
a real situation. In spite of this we study the particular si
ation in order to notice the contrast in the behavior of t
zero modes and the energy densities in the fluctuations.
particular set of initial conditions fors(0),N(0) offers an
alternative example where spinodal instability in theN field
does not take place. As a result the effective mass squar
theN field never crosses zero and the adiabatic condition
the N field is not strongly broken. The oscillations of th
mean fieldss and N are harmonic in nature, as shown
Figs. 13 and 14 by the dotted lines. The amplitudes are c
stant with a frequency given by Eq.~3.6!. The oscillations of
the mean fields is governed by Eqs.~3.7! and ~3.9!. The
trajectory in thes-N plane is a straight line whose slope
governed by Eq.~3.7!.

The effect of the fluctuations is also quite expected in t
case. The amplitudes of the zero mode fors and N fields
decreases after a while and, in contrast to the preceding
ample, the frequency of the oscillations do not change v
dramatically; see the behavior of zero mode in solid lines
Figs. 13 and 14. The trajectories for the zero mode evolu
remain a straight line in this case, as shown in Fig. 15. T
is quite reasonable for the parameters we have chosen, b
important observation is that the effect of fluctuations do
not alter the straight line trajectory for the zero mode fiel
This suggests that for small amplitude oscillations the c
rections to the coupling constants,Dk andDg, are such that

FIG. 12. Energy density stored inds and dN fluctuations
~dashed line! and zero mode energy density~dotted line! for param-
eter set~3.10!. The total energy remains constant~solid line!.
1-12
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DYNAMICS OF COUPLED BOSONIC SYSTEMS WITH . . . PHYSICAL REVIEW D65 083521
the zero mode equations still have a similar oscillating f
quency. This can be seen in Figs. 13 and 14. The produc
of ds and dN is not very significant because the ener
density stored inds anddN does not grow rapidly. Thus th
energy transfer from the zero modes to the fluctuation mo
is not favorable for such small amplitude oscillations as c
be seen in Fig. 16.

We conclude this section by mentioning that preheating
this supersymmetric hybrid model is quite interesting. D
pending on the amplitude of the oscillations of the fields,
behavior of the zero mode can be quite different. As a n
feature we noticed that if the amplitude of the oscillations
close to the critical valuesc , the effective mass square fo
the N field becomes negative and as a result the fluctuat
of the field grows exponentially. However, the effect of flu
tuations alters the coupling constants in such a way that
trajectory of the zero modes become irregular. Even tho
the adiabatic conditions seem to be broken for theN field
near the critical value, the energy density transferred fr
the zero mode to the fluctuations is not sufficient. Our stu
reveals some interesting messages which we briefly men
here. We emphasize the point that the departure from
straight line trajectory of the zero mode is an essential f
ture of a supersymmetric hybrid model if the fluctuations
taken into account. Even though, we have not included

FIG. 13. Zero mode evolution fors(t) with fluctuations~solid
lines! and the without fluctuations~dotted line! for parameter set
~3.11!.

FIG. 14. Zero mode evolution forx(t) with fluctuations~solid
lines! and without fluctuations~dotted line! for parameter set~3.11!.
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Hubble expansion, the results we have obtained are q
robust because supersymmetric hybrid inflationary mod
have a unique behavior of the fields which allows a sma
inflationary scale compared to the effective masses of
fields around their global minima. This suggests that dur
the oscillations, the expansion is felt much later, on a ti
scale determined by the parameters. This behavior is
shared by models where inflation is governed by a sin
field as in chaotic inflationary models. This undermines
production of quanta from the vacuum fluctuations. In se
eral ways this affects the post inflationary radiation era of
Universe. Supersymmetric, weakly interacting dark ma
formation and generation of baryonic asymmetry in the U
verse during preheating are the two most important front
which due to our results may warrant a careful revaluatio

In order to substantiate our claim that a due considera
of fluctuations after the end of inflation is an important fe
ture of any supersymmetric hybrid model, we have cho
an unphysical example which serves the purpose of makin
vivid distinction. We stress here that the spinodal instabi
which is actually responsible for producing an irregular t
jectory of the zero mode of the fields in a phase space
completely lacking if the amplitudes of the oscillations f
s,N are small compared to the critical valuesc . This acts as

FIG. 15. Zero mode trajectories with fluctuations for parame
set ~3.11!.

FIG. 16. Energy density stored inds anddN ~dotted line! along
with the zero mode energy density~double dotted line! for param-
eter set~3.11!. The total energy density remains constant~solid
line!.
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a comparative study and shows that after the end of inflat
in a supersymmetric hybrid inflationary model, due to t
spinodal instability in a field, a proper renormalization of t
masses and the coupling constant have to be taken into
count.

IV. CONCLUSION

We have introduced a formalism to address the dynam
of N nonequilibrium, coupled, time varying scalar fields. W
have shown that the one-loop corrections to the mean fi
evolution can be renormalized by dimensional regularizati
For the sake of clarity and simplicity we restricted ourselv
to Minkowski spacetime while deriving the renormalize
equations of motion and the energy density of the syst
We applied our formalism to a two-field case where we stu
the behavior of the quantized mode functions and the ef
of fluctuations on the zero mode equations of motion
various parameters, including small and large amplitude
cillations and large and weak coupling between two sca
fields. The varied couplings and amplitudes illustrate vario
facets of the intertwined dynamics of the two-fields whi
lead to a deeper understanding of the production of s
quanta and the transfer of energy density between the fi
in a cosmological context.

As a special example we have chosen a two-field in
tionary model which is genuinely motivated by supersymm
try and thus preserves the effective masses of the fields t
the same in their local minima. The model, as a paradig
predicts inflation which comes to an end via a smooth ph
transition, and the robustness of the model is confirmed b
slightly tilted spectrum of scalar density fluctuations with
the COBE limit. The model parameters can be adjusted
give an inflationary scale covering a wide range of ene
,

t.

D

ys

A

.
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scales from TeV to 1015 GeV. The phase transition leads
a spinodal instability in one of the fields which leads to c
herent oscillations of the fields around their global minim
The instability occurs in one of the fields which deman
careful study of the back reaction to an otherwise grow
mean field in an intertwined coupled bosonic system.
account of influence of the fluctuations gives rise to unev
contribution to the renormalized masses of the fields. T
results in an irregular trajectory of the zero mode in a ph
space, which breaks the coherent oscillations of the
fields. This prohibits an excessive production of partic
from the vacuum fluctuations. This requires a careful
evaluation of the successes of the production of weakly
teracting massive particles and baryogenesis via out of e
librium decay in supersymmetric hybrid inflationary mode
Our study implies that exciting higher spin particles from t
vacuum fluctuations of the coherent oscillations of the fie
in a supersymmetric hybrid inflationary model deman
careful reconsideration.

Even though we have neglected the effect of expansio
our calculation, our results are robust enough to claim t
the fluctuations in a supersymmetric hybrid model do n
grow if the back reaction of the fluctuations is taken in
account in the mean field evolution. An extension of o
formalism to an expanding universe deserves separate a
tion.
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