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Dynamics of coupled bosonic systems with applications to preheating

Daniel Cormier
Centre for Theoretical Physics, University of Sussex, Falmer, Brighton, BN1 9QH, United Kingdom

Katrin Heitmanri
T-8, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Anupam Mazumdar
The Abdus Salam International Centre for Theoretical Physics, Strada Costiera, 1-10, 34100 Trieste, Italy
(Received 22 May 2001; published 9 April 2002

Coupled, multifield models of inflation can provide several attractive features unavailable in the case of a
single inflaton field. These models have a rich dynamical structure resulting from the interaction of the fields
and their associated fluctuations. We present a formalism to study the nonequilibrium dynamics of coupled
scalar fields. This formalism solves the problem of renormalizing interacting models in a transparent way using
dimensional regularization. The evolution is generated by a renormalized effective Lagrangian which incorpo-
rates the dynamics of the mean fields and their associated fluctuations at one-loop order. We apply our method
to two problems of physical interedi) a simple two-field model which exemplifies applications to reheating
in inflation, and(ii) a supersymmetric hybrid inflation model. This second case is interesting because inflation
terminates via a smooth phase transition which gives rise to a spinodal instability in one of the fields. We study
the evolution of the zero mode of the fields and the energy density transfer to the fluctuations from the mean
fields. We conclude that back reaction effects can be significant over a wide parameter range. In particular for
the supersymmetric hybrid model we find that particle production can be suppressed due to these effects.
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I. INTRODUCTION fields[8]). An important aspect of such systems is the possi-
bility of mixing between the fields. In Ref9] for example
In recent years, the study of nonequilibrium dynamics inthe classical inflaton decay is investigated for a two field
quantum field theory has received much attention in variousnodel by solving the non-linear equations of motions on a
areas of physics, and particularly in cosmology. The workgrid. In Ref.[10], the authors treat the problem of coupled
has been driven largely by inflatigi], the most successful quantum scalar and fermion fields at the tree level. Because
known mechanism for explaining the large-scale homogenesf the small couplings involved in inflationary cosmology,
ity and isotropy of the universand the small-scale inhomo- such a tree level analysis is useful in a variety of physical
geneity and anisotropy of the Univer§2]. With observa- situations.
tions for the first time able to directly test the more detailed However, hybrid models as well as the dynamics of re-
predictions of specific inflationary models, the efforts in un-heating typically include processes such as spinodal decom-
derstanding inflation and its dynamics have redoubled. position[11,12 and parametric amplification which require
One area of particular interest is the dynamics of multi-one to go beyond the tree level by including quantum effects
field models of inflation in which the inflaton is coupled to either in a perturbative expansion or by means of nonpertur-
another dynamical field during inflation. These models carbative mean field techniques such as the Hartree approxima-
lead to a variety of features unavailable in the case of dion or a largeN expansior{5,13,14.
single field. Such multifield scenarios include the well Going beyond tree level brings in the issue of renormal-
known hybrid inflation model§3]. ization. The problem of renormalization of time evolution
On top of the dynamics during inflation, the subsequentquations in single field models was understood several
phase of energy transfer between the inflaton and other dgrears ago. In one of the first papers in this field, Cooper and
grees of freedom leading to the standard picture of big bandylottola showed in 1987 Ref15], that it is possible to find
cosmology has been the subject of intense study. The inflatom renormalization procedure which leads to counter terms
may decay through perturbative procespé$] as well as independent of time and initial conditions of the mean field.
nonperturbative parametric amplificatiph 7]. The latter can  They used a WKB expansion in order to extract the diver-
lead to explosive particle production and very efficient re-gences of the theory. In a later paper Coogeal. also dis-
heating of the universe. cussed a closely related adiabatic method in order to renor-
Hybrid inflation and reheating models share an importanmalize the ¢* theory in the largeN approximation. Also
common thread. They both involve the coupling of two or Boyanovsky and de Vega, Refl1], used a WKB method in
more dynamical, interacting scalar fielder higher spin order to renormalize time-dependent equations in one-loop
order, and later on Boyanovslet al.[12] investigated ap*
model in the largeN approximation and the Hartree approxi-
*On leave of absence from Dortmund University, Dortmund, Ger-mation, too. In 1996 Baacket al, Ref. [16], proposed a
many. slightly different method in order to extract the divergences
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of the theory, which enabled them to use dimensional reguvalue for one of the mean fields: We are now able to treat the
larization. In contrast to the WKB ansatz this method can bdull system and to investigate these mixing effects. For this
extended for coupled system, which was demonstrated ipurpose we concentrate on §tudying the behavior of thg fluc-
Ref.[17]. This procedure will be used also in this paper. Wetuation integrals for the different fields and the time-
work in the context of a closed time path formaligig]  dependent mixing angle. Depending on the regime, as the
appropriate to following the time-dependent evolution of themean fields evolve, the effects of the mixing can be quite
system. In this formalism, the-vacuum plays a predomi- different. In the narrow resonance regime the mixing angle is
nant role, as quantities are tracked by thieiin expectation Very small and plays a subdominant role, whereas in the
values (in contrast to thein-out formalism of scattering Proad resonance regime the mixing effects are very impor-
theory. We construct theén-vacuum by diagonalizing the tant. Therefor_e, we emphasize that neglecting the mixing
mass matrix of the system at the initial tie 0. However, ~could lead to incomplete results. _ o
because of the time-dependent mixing, a system initially di- SuPersymmetric hybrid models are a special realization of
agonalized in this way will generally not be diagonalized at9€neral hybrid inflationary modelsee, e.g., Ref419,20).
later times. Based on a softly broken supersymmetry potential, the spe-
One approach to this problem, taken in REf0], is to cial feature of these models is the occurrence of only one
diagonalize the mass matrix at each moment in time througRPUPIing constant, whereas in nonsupersymmetric hybrid
the use of a time-dependent rotation matrix. The cost of doM0dels there are at least two different couplings. Thus, in the
ing so is the appearance of time derivatives of the rotatiorfUP€rsymmetric case there is only one natural frequency of
matrix into the kinetic operators of the theory. While such a°Scillation for the mean fields as long as fluctuations are
scheme is in principle workable beyond the tree level, thdeglected. Thls Ieads to efficient p'artlcle production during
modified kinetic operators introduce complications into thetn® Preheating stage in the early universe. However, we show
extraction of the fluctuation corrections as well as the diverP€low that, by taking into account the fluctuations and inves-
gences that are to be removed via renormalization. tigating the full mixed system, this feature of supersymmet-

We take an alternative approach where the mass matrix ¢ hybrid models can be lost in some regimes. This is be-
allowed to be non-diagonal for all timés-0 and account for €ause the effective mass corrections for the two fields are
the mixing by expanding each of the fields in termsatfof different in these_reglm_es, which _Ieads toa chaot_lc trajectory
the in-state creation and annihilation operators. The cost of0! the renormalized field equations of motion in a phase
doing so in arN-field system is the need to trabl complex ~ SPace which mimics the situation of a nonsupersymmetric
mode functions representing the fields instead of the ugual NYPrid model. It appears, then, that supersymmetric hybrid

However, this allows standard techniques to be used to propl'@dels can lose some of their attractiveness compared to

erly renormalize the system. For the two-field systems comd&neral hybrid models.
mon in inflationary models, this effective doubling of the
field content adds a relatively minor cost. Il. N FIELDS

For simplicity and clarity, we will work in Minkowski . . .
spacetime and in a one-loop approximation. Extensions bot We Wor_k V\.”th the following Lagrangian for real scalar
to Friedmann-Robertson-Walker spacetimes and to simpll€lds ®; with i=1...N:
non-perturbative schemes such as the Hartree approximation,
while more complicated than the present analysis, present no
fundamental difficulties. We note that Minkowski spacetime
is a good approximation in the latter stages of certain hybrid
inflation model_s,_ and it Wi!| als_o allow compz_irison with \where the potential is
much of the original reheating literatufd—6] which often
neglects the effects of expansion, allowing us to directly de- N
termine the role played by the mixing of the fields in the _ 1 1

_ played by g V(d)= >, AP+ 5 M D ®+ 2 g P P

dynamics. ijkI=1 :

The outline of the paper is as follows. We begin by con- 1
sidering the Lagrangian fdy coupled scalar fields and set up + N DD DD, . (2.2)
our formalism for the quantization of the system. This is 417" J
followed by an outline of the renormalization procedure. We
then provide a summary of the results for the two-field caselNote thatm;;, gjj., and\;j are symmetric in each index,
We demonstrate the formalism with two examples: a simpléut are generally non-diagonal resulting in the mixing of the
reheating model and a hybrid inflation model motivated bydifferent fields. In what follows, subscripts and superscripts
supersymmetry. i ...nrun over the values 1 . N and we use a convention

In the reheating model we investigate two relevant re4n which summation is assumed over repeated lowered indi-
gimes discussed in detail in the literatyig7], viz., the nar-  ces, but not raised indices.
row resonance regime and the broad resonance regime. We will expand each field about their expectation values
These different regimes occur depending on the choice dftaken to be space translation invarjant
initial conditions. Usually in these models the mixing effects
of the fields were neglected by choosing a vanishing initial D(x)=di(t) + 8P (X), Pi(1)=(D;(X)). (2.3

N1
LL®i]= 2, 50,8100 ~VI®i(x)], (2.1
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Expanding the equations of motion and keeping terms tdhe initial conditions for théd? complex mode functions are
guadratic order in the fluctuations yields a one-loop approxi- R o R

mation. The equations of motion for the zero modgsare U(k,00=¢", U{(k0)=-iw,U{k0. (213
determined via the tadpole condition. We have

. 1 1
di+Ai+m;p;+ Egijk¢j Dt g)\ijkl i b

It is convenient to define the fluctuation integrals
—U"*(k,t)U]f’(IZ,t),

+ Egijk< S¢Sy + E)\ijkld’j<5¢k5¢l>zo- (214
from which it is straightforward to determine the contribu-

(2.4 tions appearing in the zero mode equati¢2g):
To this order, the fluctuations obey the equation
(818 = OO [ {XiX;). (2.15
g . — —)2 . qn .=
0hi =V ohit M4 =0, 25 It will also prove convenient to introduce the rotated cou-
with the mass matrix plings
1 Gijk= im0 ;O ks (2.1
Mij =M+ Gije bt 5 Nijki b - (2.6 ]
Aijkl |jmn0mk0nl ' (2-17)

As indicated in the Introduction, the complication that
arises is not the fact that the mass maté6) contains mix-
ing between the various fields, rather that the mixing changes 1 1
with time as thep; evolve according to Eq2.4). This means bi+ A+ Mij b;+ = Uik i Pkt = Nijui D) brb
that if we diagonalize the mass matrix at one time, it will not 2 6
generally be diagonal at any other time.

which allows us to write the zero mode equations as

o . o 1 1
l\_lonetheless, it is most convenient to quantize in terms of + EGijk<xjxk>+ EAijkl (X X)=0, (2.18
a diagonal system at the initial time=0. We define the
matrix

while the mode functions obey the equations
T
Dii= 0w MOy @7 UK, + (k2 + Dy UK, 1) =0, (2.19
and the corresponding fluctuation fields
In addition to the equations of motion, it is useful to have

Xi=0;j 09, (2.8 an expression for the energy density of the system. This is
particularly true when one completes numerical simulations
whereQ;; is an orthogonal rotation matrif?; is diagonal at  of the system, since energy conservation is a powerful check
the initial time: of the accuracy of the simulations. After once again decom-
posing the fields into their expectation values and fluctua-

Djj =D S » (2.9 tions, the energy density to one loop order is
without summation over the raised indexThe X; obey the 1. 1 1

1 .
+47)\ijkl¢i¢j¢k¢l+§<xi2>

We quantize the system by defining a set of creation and

annihilation operators(k) and a,(k) wherea=1...N 1, .01
corresponds to thim-state quanta of frequency + 5 (VX)) +5Di(XiX)), (2.20
=vk+ D% (213 \where we have defined the integrals
As the mixing changes in time, each of the fieksis ex- N d3
panded in terms of all of than-state operators. We have |> 2 (2.21
> [ &
Xi= S——[a(K)Uf (K ek
)3 .
+al (KU (ke k], (2.12 (2.2
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A. Divergence structure and renormalization Using these results, we find quadratic and logarithmic di-
The mode integrals in the equation of motion defined byV€'9ences:
Eq. (2.14 and in the energy density defined by E¢.21), 3
(2.22 are divergent and have to be regulated, allowing for a (XX g :J' k ié_ _ ivj_ (2.28
renormalization of the theory. We require a method of ex- 173/ div (2m)3\ 20 " 4wf’ ue :

tracting the divergent terms appearing in the mode integrals,

a nontrivial task, since the mode equations vary in time andvhich must be removed via some renormalization procedure
they are coupled. Our aim is now to find counter termswhile also providing finite corrections to the parameters of
which are independent of the initial value of the mean fieldshe theory.

in order to formulate a finite theory. The correct choice of the To make the renormalization scheme explicit, we adopt
initial condition for the fluctuations guarantees that thedimensional regularization. We define the following diver-
theory is renormalizable. One way to extract the divergencegent integrals:

of the mode integrals is due to a WKB method which allows

for a high momentum expansion of the mode functions. d3k 1 5 2
However, when the fields are coupled, as in the present case, f o Mls(w)— 5 (2.29
the usual formulation of the WKB expansion runs into diffi- (2m)” 2K+ p &
culties which are yet to be resolved. .
An alternative method has been develofgdd,17,2] d°k 1
which relies on a formal perturbative expansion in the effec- 3 2. 292 | ~a(u), (2.30
(2m)° 4(k"+ u%)

tive masses and time derivatives of the masses of the fields.

As such, it results in a series expansion of the mode funGyhere is an arbitrary renormalization point and, carries
tions in powers ofn/ @ andm/ »?, etc. The first few terms in  the infinite contributions. In dimensional regularization
the series include the divergent parts of the integrals that are_;(u) is given by
to be removed via renormalization.

We begin by introducing the following ansatz for the 1 |2 47TM2
mode functions: | _3(pm)= To7? +1n [ (2.31

€

Uit=e 1@al( 57+ 7). (2.23 o _ _
The infinite part of(X;X;) is found to be simply

The first term on the right-hand side anticipates a quadratic B

divergence in the quantitieX?). We define the following (XiX;Yinfinte =~ Dijl -3(1). (232

potential: This leads to mass and coupling constant counterterms of

the following form

Vﬁ(t)ZD”(t)_Daﬁlj . (224)
. . . 1
The equations of motion for the mode functions E@s19 A = E| —3( ) GijkMik (2.33
can be written in a suggestive form with the help of Egs.
(2.23, (2.29 1
) . omy; = 1 —a(w) [ GikmGkmjt NijuMal, (2.4
ff—izwaoff:—|=§;2v§(5r+fr). (2.25
’ 3
The terms on the right-hand side of this expression are oGijk =3 ~3(#)GitmM imjk (2.39
treated as perturbations to write thies order by order inv,
with the initial conditionsf!(0)=f!(0)=0. To first order in
i j == -~
V, we have the equations of motion: ONijki = 2 L—3()NijmnN mnki- (2.36
fe—2iw,of fM=—Vv2 . (2.26  Itis important to notice that these counterterms are indepen-

dent of the initial conditions of the mean fields.
The corresponding integral solutions for the real part of the In addition to these counterterms, there are finite correc-
f's are tions of the parameters coming from the finite parts of the
integrals(2.29:
Vai L[t Vet |
2mf = — o +f dt'— — cog2w,0t"), 1 1 DI
a0 JO a0 XiXi)givfinie= — —— D18 — ——=DjIn—.  (2.37
(2.27) < i J)dlv,flnlte 167T2 ij 167T2 ij /-L2

while the imaginary part is of order @ and does not con- From this, we extract the following finite contributions to the
tribute to the divergencd4d7]. couplings and mass:
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k

1 . D
AAi:__32772 iijJ‘i‘gijkmjkIn; , (238)
Amjj=-— o? Aijkka+(giklgkIj+)\ijklmkl)

Dk

XIn—|, (2.39

M

m
Agije=~ 2 YimMimidn—, (2.40
gljk 87ng”m Imjk Mz

3 m

ANiigi = — ——=NiimpA mnin— . (2.41)
ijkl 32772 ijmnAmnkl ,U«Z

PHYSICAL REVIEW B5 083521

q)lz(b, (I)ZEX,

2 2 . —
Mp=mMy, Mp=m, MmMp=myn=0,

Ni11=A, N1127~=0%,

Nooo =K,

N11157=N1222=0A =0, g;x=0. (2.49

The remaining components of;;,; are determined by the
fact that it is symmetric in each of its indices.
The mass matrix\ is

M5+ N p2/2+ g2x /2
R

9’ hx
M+ kx*12+9%p%2)
(2.46

These finite corrections are also contributing to the energy

density. In addition we find a finite part due to the cosmo-

logical constant renormalization.
The full, finite equations of motion become

;.ﬁi+Ai+AAi+(mij +Am”)(/>]
1
+ E(giijrAgijk)(ﬁjﬁbk

1
+ E()\ijkl +A)\ijkl)¢j Pui

+1(G +A )% J’ 1
2 ikl |JkI¢J ~ (271_)3 2wa0
akx ga £ O X £ Xk 1 a\
X fk f| +5kf| +5| fk +_25| Vka =0.
Zwao
(2.42

B. Two fields

The two-field case is often encountered, and the physical
applications we present in the next section are both in this

For two fields, the orthogonal rotation matrix can be written
in terms of a single mixing angl@. The matrix has the form

cosf siné
S o R

—sinfd coso

where the mixing angle is determined by the0 mass ma-
trix M, Eq. (2.46, through the relation

tano= [ My(0) — M;14(0)

1
2M15(0)
+ [ M 0) — M15(0) 12+ 4MZ,0)].

(2.48

The eigenvalues a® are the diagonal elements of the matrix
D, Eq. (2.7), at the initial time:

(2.49

D! 0
0 D?)’

D(0)=(

category. It is therefore worthwhile to pause to look at a few
details of such systems. We begin with a system of two rea}ith the values

scalar fieldsb and X

1 1
L= (a#d>)2+§(aMX)2—V(<D,X),

=3 (2.43

with the potential

1 1 \ K
_ 252 22 4 4
V(<I),X)—§m¢,<D +§mXX +—4!<IJ +—4!X

2
+ g—CIDZXZ.

: (2.44)

1
D= E[Mll(o) + My,(0)

+ [ My 0)— M15(0)12+4M2,0)], (2.50

1
D?= 5 [M11(0)+ M25(0)

— V[ M 0) = My5(0)]?+4MI,0)]. (2.5

This Lagrangian has the same form as that studied in the For general times, the mass matrix for the fielisand

preceding section with the identifications

X,, writing c4=cosf ands,=siné, is

083521-5
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CiM a1+ 25,C oMt SeMyp, SyCoMay—SyCoMyst (Ch— S5 My, ot
D(t)= .
() SICoMar—SeCoeMurt (Ch—SHMip = 2C5Mpp— 28,0y MyptSHMyy (252
The zero mode equations, before renormalization, read
. A 9°
dHmidt o T X"+ 2 Q((XX)=0, (2.53
X+miy+ 6X3+ —X¢2+2 Rij (1)(X;X;)=0, (2.54
where
Qij = A 1kijdx
2 2 2
g A g g
§C§¢+ ?Sgﬂﬁ"'gzsace)( 25500¢+ SeCop+ - (Ci—S?,)X
1o g2 g2 92 !
23000¢+ SeCop+ = (C§—S§)x ES?NH' ?Cgfﬁ_gzsaco)(
Rij = Agkij Pk
2 2 2
K g K g g
553)(‘*' 7(35)("“ 9°S4Co 5S6CoX ?Sacf)X"’ 7(C§—S§)¢
= . (2.55
K g’ g’ 22 K 2 g’ 2 2
5S6CoX~ 5 SeCox T ?(Cy_ Sp) ¢ 5Cox T 5 Sex— 9 SyCooh-

The total energy density of the system, including the fluc- Of course we get also similar results to E(538—(2.41)
tuations, can be expressed as in the N field case finite corrections to the masses and cou-
plings of the form

1.0 1., 1 1
Rt Ul S ST B 2+_4
E= 597+ SxX*+ Mg+ Smix P X

" ) . . Am55=— Y(\c%+g%s%) + D?(\s3+g?c?
+z¢2X2+ §<Xi2>+§<(€Xi)2>+§Dij<xixj>- X )
+meXL1+>\m¢L2}, (2.58
(2.56
Now we have to formulate finite equations of motion and 2_ 1) 2 ~2:2 2/ 42a2 2
a finite energy density. We adopt the renormalization proce- A 327-,2{D (kSy+g°Cy) + D g7syH xCh)
dure of Sec. Il A for theN field case. By using the identifi- ) )
cations(2.45 we derive the appropriate counterterms for the +g°mylo+xkmilq}, (2.59
two field case from Eq92.33—(2.36. We find in particular
2 1 2 22 2 4
5m¢=§()\m¢+g m)l_s(u), AN=— SN Lotg L1} (2.60
32
5m2=3(g2m2+;<m2)| (w)
e ’ S Ag? 3 4(L+L)+12)\L+12L
- - ~ g2kl !,
s g 3277291229 2T 597Ky
=5 (N +gH)1—3(n), (2.61)
9° 1
2_9 2
89°=5 (A + Kk +4g7)1 _3(u), Ak=— -~ {g*Lo+ kL4, (2.62
5K=§(g4+,<2)| (w) (2.57)
2 —3: ' where
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D! D?
L,=sjin— +cjin—, AL‘:—M‘MDl D?)
% s 6472
D2 D! D*
Lo=sjIn— +ciin—. (2.63 +|n§[(>\+gz)xz+(l<+gz)¢2
,U« w

As a result of these finite corrections E¢®.58—(2.62), the 2, 2

total Lagrangian Eq(2.43 is also modified. This is exactly +2(mX+m¢)]}, (2.64
the renormalized Lagrangian which we needed. We also find

an additional finite contribution to the classical Lagrangian

given by and, the final zero mode equations tprand y are given by

$+(m2+Am2)¢+l(>\+A>\)¢3+E( 2+ Ag?) ¢ 2, 2L
¢ ¢ 6 597 Tag%)ex

d¢
+12Q (t)f LI .
i (2m)3 2w,0\ " g8

W40
E Q f d% REE+REOREA+ TFOTE+ — Via =0 (2.65
'“) (27)3 2040 202, ! '
and,
- , 1 L, AAL
X+ (M +Amg) x+ E(K—FAK))( +§(g +AQ%) dx +W
Vv
[E R”(t)J (25f’%f+f“f“*+ !
wao
+2Q f ok R+ BRI+ 3t | |20 (2.66
a “ Jfe3 =0. .
') (2m)3 2040\ ! ' 202,

After writing down the finite zero mode equations of mo- This expression leads of course to the same counterterms we
tion we also have to renormalize the energy density. Agairfound for the equations of motion, and therefore also to the
by using the ansat®.23 we can extract the divergent terms same finite corrections to couplings and masses. Therefore it
of the fluctuation integrals in Eq2.56). In addition to the s straightforward to formulate a finite energy expression.
quadratic and Iogarithmic divergences we find a quartic di- Now, we are in a posmon to discuss the phy5|Ca| app||ca-
vergence. This leads to a counterterm which acts as a cogions of our problem. This we shall do in Sec. IlI, but first we
mological constant and has the form introduce one more quantity that is convenient in discussing
the degree to which the mixing plays a role in the dynamics.

1 4 4
5A:Z(mx+m¢)l,3(m). (2.67
Altogether the divergent part of the energy density reads

I_3(m)
4

C. Time-dependent mixing angle

Edv= (g2mi+Amg) &2+ (g?mi ki) x° To better understand how the system evolves in time, it is
useful to have a measure of how much the fiefdsand y
mix at each moment, and how this mixing evolves with the
system. To provide us with a measure of the mixing, we
introduce a time-dependent mixing an@ét), which is de-
(2.69 fined in terms of the time-dependent mass mawiXt), Eq.

(2.46:

1 1
+ EQZ(Wr k+49%) $?x*+ Z()\2+ g4 ¢*

1
+ Z(K2+ gh) X+ mi+mi
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FIG. 1. The logarithm of the fluctuation integrgX?) (solid), FIG. 2. The logarithm of the fluctuation integra[%3) (solid),

(X1X,) (dashedl and(X3) (dotted for the narrow resonance re- (x,x.) (dashed and(X2) (dotted for the broad resonance regime.
gime.
these parameters, the case usually studied in the literature,
x(0)=0, does not introduce any mixing between the fields

tan® (V)= 5 o M = Mu(®) since the off-diagonal elements of tifey mass matrix are
proportional toy. However, takingy(0)=0 may not always
+V(Mpa(t) = Myy(1))2+4M 'fz(t)]. be the case. For instance,field could take a large vacuum

expectation value during inflation, providgdis treated as a
field other than the inflaton. For the purpose of illustration
we may consider a non-zero initial condition fprwhich is

Ill. PHYSICAL APPLICATIONS of order its effective masg¢ at the beginning of the pre-
heating stage and examine the consequences. The initial con-
dition for ¢ in the narrow resonance regime is fixed by the

(2.69

After setting up the technical framework, we are now in a

position to investigate some relevant cosmological multi- o 2 2 _ N
field models for inflation. We begin our analysis with ac_ondmong ¢(0)/4m,=0.1 (rememberg is fixed to peg
=0.001) and for the broad resonance regime by

simple two-field model often used for studying the phase of , 2 .
parametric amplification(This phase occurs just after the g*¢(0)/4m(, = 100. If we takeg(0) to be approximately the

completion of inflation in chaotic inflationary modd#s,7].) Planck scale as appropriate to the end of inflation, this would

— 7 — 4
This model provides a useful context to analyze the effect§orrespond tamy 10" GeV andm,~10" GeV for the
due to field mixing. Next we turn our attention to a super-WO respective cases. Note that these parameters are chosen

symmetric hybrid inflationary model, which is of particular 1© depict the phenomena of interest during a time scale that

interest in cosmology. As discussed in the literatisee, for ~Can be accurately simulated. The results are, in any case,
example, Ref{19]) particle productiorfand hence reheating representatwe_of two-field mixing in the narrow and broad

in these models is much more efficient compared to the norf€sonance regimes regardless of the precise parameter values
supersymmetric hybrid models. Until now the mixing effects!" @ny particular model. o

in these models have not been treated fully, including back F|gure21 shows the Iogarlzthm of the three fluctuation in-
reaction effects of the quantum fluctuations in the mean field€9rals (X1), (X;Xz) and (X3) for the narrow resonance
approximation. This approximation does not take rescatterc@se. These are seen to be dominated by the exponential

. . 2 . . .
ing processes into account and therefore we cannot addre§&wth of (X5), while the other contributions grow more
the problem of thermalization. slowly. Therefore, the evolution is characterized by produc-

tion of X, particles. We now turn to the broad resonance
regime, where things look quite different. Here, each of the
fluctuation integrals grows rapidly as shown in Fig. 2. Sig-
The reheating phase in chaotic inflationary models isificant mixing of the species occurs along with copious par-
characterized by two different regimes, which depend on théicle production.
chosen initial conditions: the first is the narrow resonance The behavior of the fluctuation integrals is consistent with
regime, while the second is the case of broad resonance. the behavior of the time-dependent mixing angle Here,
order to investigate these regimes we examine two differenthe mixing plays a sub-dominant role in the narrow reso-
parameter sets, where only the initial values for the zermance regiméFig. 3) with the mixing angle remaining near
modes are varied. We find significant differences in the bezero. This means that, predominantly corresponds to tiye
havior of the fluctuation integrals as well as the mixing anglefield, such that the process is one ypfparticle production,
in the two regimes. which is as expected. Concentrating on the time-dependent
To make the analysis as simple as possible, we\sek  mixing angle in the broad resonance regime, Fig. 4, signifi-
=0 as well agn, =0. For the remaining parameters, we setcant mixing between the fields is observed. The rapid varia-
my=1, which just acts as a unit of mass, afc=0.01. With  tion in the mixing angle indicates that mixing between the

A. Reheating
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FIG. 3. Time-dependent mixing angk(t) for the narrow reso-

) FIG. 5. Zero mode evolution with fluctuatiofsolid line) and
nance regime.

without fluctuation(dotted ling for ¢(t) for the broad resonance
regime.
fields plays a very important role in the evolution of preheat- _ - ) _
ing in the broad resonance regime. The large influence thigPinodal instability{11,12. Thus, inflation comes to an end
has on the behavior of the system is clear from the evolutio@nd both the fields begin oscillations around their respective
of the zero mode componentgt) in Fig. 5 andy(t) in Fig. ~ Minima given by
6. 0=0, N=\20.. (3.2
B. Supersymmetric hybrid inflation This is the onset of the preheating stage, which has been
We now consider a hybrid inflationary model where thediscussed in the literatuf@2,19,23. The difference between
finite coupling of two fields plays an interesting role in the the  supersymmetric  hybrid  potential and  non-
termination of slow roll inflation3]. The particular model supersymmetric hybrid potentials lies in different coupling
we study is based on softly broken supersymmEt8] with  constants. In Eq(3.1), there is only the single coupling pa-
the potential rameterkg, while in the non-supersymmetric version there
can be at least two different coupling constants. The above
potential, except for ther mass term, can be derived very
easily from the superpotential fé-term spontaneously su-
(3.1  persymmetry breaking:

1 1
V(o,N)= 5 moo?+ 2 k(N = 200) %+ kIN20?.

__S 22
The field o plays the role of an inflaton during inflation W= 5 o(N"=ap). 33

while the fieldN is trapped in a false vacuufN)=0. The

inflaton rolls down the potential along the direction to  The appearance of a mass term éoin Eq. (3.1) is due to
reach a critical valuer=o0,. Once o reaches its critical the presence of soft supersymmetry breaking. Its presence is
value, the effective squared mass for tNefield becomes essential for slow roll inflation to produce adequate density
negative and consequently it rolls down from the falseperturbations and also to provide a correct tilt in the power
vacuum to its global minimum through the mechanism of

100 . .
0.03 ; r ; T 75 | SN J
7 Y
1 A
1 A
50 | II \‘ ]
0.01 o
- =
3,
c
8
-0.01 + -
_0.03 1 1 1 1
0 20 40 60 80 100 t

t
FIG. 6. Zero mode evolution with fluctuatiosolid line) and

FIG. 4. Time-dependent mixing angé(t) for the broad reso- without fluctuation(dotted ling for x(t) for the broad resonance
nance regime. regime.
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spectrun{19]. The height of the potential during inflation is transition the initial amplitude for~ao, it is then quite
given by Kga;‘. Similar potentials to Eq(3.1) can also be possible that near the critical point the effective mass for the
derived fromD-term supersymmetry breaking as discussedield N vanishes completely. As far as the motion of the mean
in Refs.[24]. In these models the critical value, and the field without including fluctuations is concerned this does
height of the potential energy are related to the Fayethot provide any new insight. However, if the fields are quan-
lllipoulus term coming from an anomalous(l) symmetry. tized then the perturbations in the field, especially #t,

As in any inflationary model, hybrid inflation is constrained grow exponentially becauseﬁ, in Eq. (2.26 becomes nega-
by the Cosmic Background Exploré€€OBE) [25]. This im- tive for sufficiently small momenturk. This shows that the

poses the bound vacuum is unstable near the critical point.
5 Another intuitive way to appreciate this point is to con-
Kkso~1.27x 10 5| GeV, (34 sider the adiabatic condition for the vacuum. The adiabatic

. . .___evolution for the zero mode evolution fdt field is given by
where 7 is one of the slow roll parameters which determines, -

the slope of the power spectral indE25]. For our purpose |on| < w? . This condition is maximally violated at the point
we fix it to be|7|~0.01 where the effective mass square fdrbecomes zero, and,

In order to discuss the details of the physics we mentiorYi0lation in adiabatic evolution of the zero mode frsug-
here the equivalence between E8.1) and Eq.(2.2). This gests that many fluctuations 6N are produced during the

helps us to establish direct relationship with our earlieriNite period when the adiabaticity is brokg3]. This ex-
planation is quite naive because the overall production of

analysis: particles and fluctuations depends also upon the global be-
dp=0, x=N, J¢p=680, Sx=06N, havior of the zero mode fields. The effect of corrections due
to fluctuations might affect the production of particles and
A=0, Kzekg, 9=2ks, My=m,, this is the point we are going to emphasize in our numerical
simulations.
miz—ZKﬁaﬁ. (3.5 In some sense the hybrid model is quite different from

chaotic inflationary models. In chaotic models, the inflaton

Notice thatm? is negative. An interesting feature of the hy- field rolls down with an amplitude-1/(mt), wheremis the
brid model is that irrespective of the values of the parameterg1ass of the oscillating field. However, in the hybrid model
ks, 0¢, andm,, as long as they satisfy the COBE con- the amplitude of the oscillations die down very slowly, al-
straints, the behavior of the mean fields follow a common/OWing many oscillations of the- andN fields in one Hubble
pattern once they begin to oscilldtE]. First of all, the mass time._ Thus, one coulq expecf[ Iarge_amplitude oscillations of
term for theo field, m,, becomes less dominant comparedthe fields for a long time. This crucially depends on the pa-
to the effective frequency for the two fields, which is given rametero . If o.<M,, then we notice that effective masses

by the effective mass for the two fields during oscillations for o andN fields during oscillations are much larger than
the Hubble parameter. The Hubble parameter is giveii by

Metto = Mefin = 2K0 > M, . (3.6)  ~«kod/M, during inflation, so,
Hence, there is a single natural frequency of oscillation, m m M
thanks to supersymmetry. Since the masses of the fields are ety _ N _ TPy, (3.9
the same at the global minima, there exists a particular solu- H H Oc

tion of the equations of motion for the andN fields. Their

tre_xjgctory follows a straight line towards their global provided the scale ofr. is quite small compared to the
minima. Planck mass, we can effectively neglect the expansion of the
Universe.

N=+\2(oc—0). (3.7 In the supersymmetric hybrid model there are two re-
gimes of interest. Just after the mass square ofNHeeld
becomes negative, the fields begin to oscillate with an am-
plitude which decreases asl/t?. When the field amplitude

(We remind readers thad= o corresponds to the point d )

: ! o> e rops below|N(t)/ 20— 1|<1/3, the amplitude of the os-
where _the effectlvg_mass_forﬁeld changes_ns sign'This is cillations decreases asl/. In this regime, when the expan-
the point of instability which we need to discuss here. From

: . S ! sion of the Universe is neglected, the amplitude of the oscil-
Eq. (3'1). we notlce_tha_t prior to the oscﬂlaﬂons of the fl_elds, lations remains constant and the oscillations are harmonic:
and during the oscillations, the effective mass square-fisr
always positive. However, this is not the case fhrand its
mass square can be positive as well as negative even during N(t) 1
the oscillations of the fields, provided the amplitudes are 2 ~1+ 3C0q Mefiot). (3.9
large enough. If the amplitudes for and N are such that Te
they satisfy Eq(3.7), then the effective mass square for the
N field is in fact always negative for<o.. If the ampli-  The corresponding evolution equation for thdield can be
tudes are large enough such that after the second order phdseind from Eq.(3.7).

The maximum amplitude attained by thefield is ~ o,
while the other field attains a larger amplitutie= \20-.
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2x10°
2x10° | 1
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®
1x10° | 1
0
-1x10°® 0 : '
0 -5x10™" 0 5x10™ 1 2
t ©/G,
fluctuations for parameter s€.10. without fluctuations.

In this paper we are neglecting the expansion of the Uninjficant and it tells us that the renormalized zero mode equa-

verse. We concentrate upon two regimes—one with large amjons have different contributions to the parametef éind
plitude oscillations which leads to the following parameters:ig the effective mass of thd field. This mismatch in the

N=0, xk=24, g=4, m2=0 frequencies of f[he zero mode equationsdoandN leads to
' ' ' o 7 an irregular trajectory.
The other way to interpret this behavior is to think in

2 _ — 12
=—16X ) ) .
aLY 16x10°™, terms of different effective mass corrections doand N

o(0)=1.4x10"° fields, such that the effective frequencies of the oscillations
' ’ for o and N do not match each other at the bottom of the
N(0)=1x10"15, (3.10 potential. This is certainly a nontrivial result. Nonetheless,

the result is quite expected from the fact that the amplitude
and the other with small amplitude oscillations with the pa-of the oscillations are quite large and the effective mass for
rameters the N field is zero at each and every oscillation when
=0¢.
A=0, «k=24x10"° g=4x10"¢ As we mentioned earlier, the frequencies of the oscilla-
5 5 1 tions of the zero modes are different, as can be noticed in
m,=0, my=—-4Xx10"", Figs. 10 and 11. The zero mode @finfluenced by the fluc-
B . B . tuations oscillates around its minimum=0 with a more
0(0)=0.24x10"°,  N(0)=0.66<10"". rapid frequency than when fluctuations are neglected. This
(311 suggests that the effective mass correction to the zero mode

The coupling constants are dimensionless while the othdP! @ IS coming solely from the finite coupling contribution
dimensionful parameters are denoted in Planck units. We find0om the N field. (Note that we have already set the bare
below a marked difference in the zero mode behavior of thén@ss form,=0.) The oscillations maintain the regularity
fields o andN in these two cases, depending on whether theVith increasing and decreasing amplitude. However, the
fluctuations are taken into account or neglected. story is not the.same for_the zero mode behavior forhe
In parameter seB.10, we study the features of the fields field. The amplitude ofN increases gradually and the fre-
with a large amplitude. This can happen when thandN
fields begin their oscillations just after the end of inflation.
As mentioned earlier, after the end of inflation the maximum
amplitude attained by the mean fields can be quite large 0
=0, andN=20,. This is precisely the initial condition
we have chosen for the mean fields for our numerics, as .
shown in Fig. 7. The values fots and o, can be evaluated $ 50
from Eq. (3.5), which yields

50

k=2, 0c=1\2X107C. (3.12 19
We notice that the evolution fos- and N fields without
taking into account the fluctuations are anharmonic, see Fig  -150 - : '
7, and, their trajectories in the-N plane is a straight line, as 099 ! L'/? 102 1.03
shown in Fig. 8. However, switching on the fluctuations ’

leads to a completely chaotic trajectory as shown in Fig. 9. FIG. 9. Trajectory for the fields- andN for parameter se.10
The departure from the straight line trajectory is quite sig-with fluctuations.
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FIG. 10. Zero mode evolution foo(t) with fluctuations for FIG. 12. Energy density stored iAo and 6N fluctuations
parameter sef3.10. (dashed lingand zero mode energy densigotted ling for param-

eter set(3.10. The total energy remains constdsblid line).

guency of the oscillations varies. We mention here that the _ _

effective mass for thé field can vanish at a critical point. ''égular and also why the production 6 and 6N is so

As a result, the adiabatic condition for thifield is violated low. ) i

at those instants and this is the reason why the amplitude of AS & next example of the supersymmetric hybrid model

the N field is enhanced rather than suppressed. we choose parameter $8t11), with a small coupling<; and
The evolution of the energy density is shown in Fig. 12.Smalloc

At first instance it seems quite odd that the energy density of

the fluctuations does not increase further. One would naively

expect a larger contribution of the energy densityofand |, yis example, the coupling between the fields is quite

ON. Th_|s is not the case h(_are. The energy density for th%mall;g:4><10‘3, and also the initial conditions far and

mean fields and the fluctuations are equally shared. The regr 5y heen chosen such that the fields oscillate around their

son is the_ correction d_ue to the fluctuat!ons. The_se Correcr'espective minima. The maximum amplitude far(0)

tions m0d|fy the eﬁectlye mass of the field and induce = 0/3 and N(0)=(2+2/3)o, is much below the critical

e oI gonSiats, DTG0, T antr W remind he readers i h chosen nil con
ditions for the oscillations do not come naturally just after

jectory of zero mode fields become irregular. Usually thethe end of inflation, therefore this example does not represent

pz?gucgﬂng; fILtj(():tutar;[;on;tlﬁ{;%neffg(?entrér;]g;tsmcasieh TE'OSn'_Sa real situation. In spite of this we study the particular situ-
gu ersymmetric hybrid modef&2] Everrl)thou h \?ve started ation in order to notice the contrast in the behavior of the
Persy y X 9 tzero modes and the energy densities in the fluctuations. This

with a supersymmetric hybrid model where at the bottom o particular set of initial conditions forr(0),N(0) offers an

t_he potential there is a sm_gle effective f_requency, the S'.tuaélternative example where spinodal instability in tdield
tion changes co_mpletely if th_e fluctuations are taken Intodoes not take place. As a result the effective mass square for
accqunt. E_ssentlally the coupling constants gf_et a large ©Othe N field never crosses zero and the adiabatic condition for
rection which does not preserve an effective single couplin

constant for the evolution of the zero mode fields. This isqhe N f'.eld s not strongly broke_n. _The oscillations of th_e
mean fieldsoc and N are harmonic in nature, as shown in

precisely the reason why the zero mode trajectory become|§|gs_ 13 and 14 by the dotted lines. The amplitudes are con-

stant with a frequency given by E(B.6). The oscillations of
the mean fields is governed by Eg8.7) and (3.9). The
trajectory in theo-N plane is a straight line whose slope is
governed by Eq(3.7).

The effect of the fluctuations is also quite expected in this
case. The amplitudes of the zero mode éoand N fields
decreases after a while and, in contrast to the preceding ex-

ks=2X10"3% ¢,=0.707x10 3, (3.13

5.0x10™"

N(t)

14

-5.0x10 ample, the frequency of the oscillations do not change very
dramatically; see the behavior of zero mode in solid lines in
-1.0x107"® Figs. 13 and 14. The trajectories for the zero mode evolution
remain a straight line in this case, as shown in Fig. 15. This
15x10°1 s s is quite reasonable for the parameters we have chosen, but an
-1.5x10 7 10 20 30

important observation is that the effect of fluctuations does

not alter the straight line trajectory for the zero mode fields.
FIG. 11. Zero mode evolution foN(t) with fluctuations for ~ This suggests that for small amplitude oscillations the cor-

parameter set3.10. rections to the coupling constantsx andAg, are such that

t
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FIG. 13. Zero mode evolution far(t) with fluctuations(solid FIG. 15. Zero mode trajectories with fluctuations for parameter
lines) and the without fluctuationgdotted ling for parameter set  set(3.11).
(3.1D.

Hubble expansion, the results we have obtained are quite
the zero mode equations still have a similar oscillating fretobust because supersymmetric hybrid inflationary models
quency. This can be seen in Figs. 13 and 14. The productioRave a unique behavior of the fields which allows a smaller
of o and SN is not very significant because the energyinflationary scale compared to the effective masses of the
density stored info and SN does not grow rapidly. Thus the fields around their global minima. This suggests that during
energy transfer from the zero modes to the fluctuation modeghe oscillations, the expansion is felt much later, on a time
is not favorable for such small amplitude oscillations as carscale determined by the parameters. This behavior is not
be seen in Fig. 16. shared by models where inflation is governed by a single

We conclude this section by mentioning that preheating irfield as in chaotic inflationary models. This undermines the
this supersymmetric hybrid model is quite interesting. De-production of quanta from the vacuum fluctuations. In sev-
pending on the amplitude of the oscillations of the fields, theeral ways this affects the post inflationary radiation era of the
behavior of the zero mode can be quite different. As a newUniverse. Supersymmetric, weakly interacting dark matter
feature we noticed that if the amplitude of the oscillations isformation and generation of baryonic asymmetry in the Uni-
close to the critical valuer., the effective mass square for verse during preheating are the two most important frontiers
the N field becomes negative and as a result the fluctuationghich due to our results may warrant a careful revaluation.
of the field grows exponentially. However, the effect of fluc-  In order to substantiate our claim that a due consideration
tuations alters the coupling constants in such a way that thef fluctuations after the end of inflation is an important fea-
trajectory of the zero modes become irregular. Even thougkure of any supersymmetric hybrid model, we have chosen
the adiabatic conditions seem to be broken for khéield  an unphysical example which serves the purpose of making a
near the critical value, the energy density transferred fronvivid distinction. We stress here that the spinodal instability
the zero mode to the fluctuations is not sufficient. Our studywhich is actually responsible for producing an irregular tra-
reveals some interesting messages which we briefly mentiojectory of the zero mode of the fields in a phase space is
here. We emphasize the point that the departure from theompletely lacking if the amplitudes of the oscillations for

straight line trajectory of the zero mode is an essential feag,N are small compared to the critical valug. This acts as
ture of a supersymmetric hybrid model if the fluctuations are

taken into account. Even though, we have not included the
o
3x1071° | Wi
0.0012 g i
|
] 2
0001 | -
:
\
0.0008
0.0006 ‘ ‘ ' t
0 250 500 750

FIG. 16. Energy density stored & and N (dotted ling along
with the zero mode energy densifgouble dotted lingfor param-

FIG. 14. Zero mode evolution fog(t) with fluctuations(solid eter set(3.11). The total energy density remains constasolid
lines) and without fluctuationgdotted ling for parameter seB.11). line).

t
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a comparative study and shows that after the end of inflationscales from TeV to 1§ GeV. The phase transition leads to
in a supersymmetric hybrid inflationary model, due to thea spinodal instability in one of the fields which leads to co-
spinodal instability in a field, a proper renormalization of the herent oscillations of the fields around their global minima.
masses and the coupling constant have to be taken into athe instability occurs in one of the fields which demands
count. careful study of the back reaction to an otherwise growing
mean field in an intertwined coupled bosonic system. An
V. CONCLUSION account of influence of the fluctuations gives rise to uneven
contribution to the renormalized masses of the fields. This
results in an irregular trajectory of the zero mode in a phase
pace, which breaks the coherent oscillations of the two

We have introduced a formalism to address the dynamic
of N nonequilibrium, coupled, time varying scalar fields. We

have shown that the one-loop corrections to the mean fiel elds. This prohibits an excessive production of particles

evolution can be renormalized by dimensional regularizationfrom the vacuum fluctuations. This requires a careful re-
For the sake .Of clarity_ and sir_nplicity_ we restricted Ourselvesevaluation of the successes of the production of weakly in-
to M'T"‘OWS"' spacetime while deriving the renormalized teracting massive particles and baryogenesis via out of equi-
equations of motion ?”d the energy density of the systemy, decay in supersymmetric hybrid inflationary models.
we applleq our formalism foa two-field case where we StUdyOur study implies that exciting higher spin particles from the
the behavior of the quantized mode functions and the eﬁec\}acuum fluctuations of the coherent oscillations of the fields

of fluctuatlons ?n th_e zleg_) mode”equgtllons of m?tlodn forin a supersymmetric hybrid inflationary model demands
various parameters, including small and large amplitude 0Sz, ol reconsideration.

cillations and large and weak coupling between two scalar g, o, though we have neglected the effect of expansion in
fields. The var.led COl_Jpllngs and gmplltudes '”“SFfate Varous, - calculation, our results are robust enough to claim that
facets of the intertwined dy”"’?m'cs of the tWO'f"?lds WhIChthe fluctuations in a supersymmetric hybrid model do not
lead to a deeper understanding of the; production of ‘Q_’elf' row if the back reaction of the fluctuations is taken into
quanta and the transfer of energy density between the fieldg, .t in the mean field evolution. An extension of our

Ina cosmolog|cal context. .. . formalism to an expanding universe deserves separate atten-
As a special example we have chosen a two-field mfla—tion

tionary model which is genuinely motivated by supersymme-
try and thus preserves the effective masses of the fields to be
the same in their local minima. The model, as a paradigm,
predicts inflation which comes to an end via a smooth phase The authors are thankful to Mar Bastero-Gil and Michael
transition, and the robustness of the model is confirmed by &. Schmidt for helpful discussion. We thank Salman Habib
slightly tilted spectrum of scalar density fluctuations within for helpful comments on the manuscript. A.M. is partially
the COBE limit. The model parameters can be adjusted tsupported byThe Early Universe NetworklPRN-CT-2000-
give an inflationary scale covering a wide range of energy00152.
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