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Nonlinear integrated Sachs-Wolfe effect
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We discuss the nonlinear extension to the integrated Sachs-Wolfe @8®¢) resulting from the divergence
of the large scale structure momentum density field. The nonlinear ISW effect leads to an increase in the total
ISW contribution by roughly two orders of magnitudelat1000. This increase, however, is still below the
cosmic variance limit of the primary anisotropies; at further small angular scales, secondary effects such as
gravitational lensing and the kinetic Sunyaev-Zel'dovich effect dominate the nonlinear ISW power spectrum.
We show that this second-order nonlinear ISW contribution is effectively the same as the contribution previ-
ously described as a lensing effect due to the transverse motion of gravitational lenses and well known as the
Kaiser-Stebbins effect in the context of cosmic strings. Because of geometrical considerations, there is no
significant three-point correlation function, or bispectrum, between the linear ISW effect and its nonlinear
extension. The nonlinear ISW contribution can potentially be used as a probe of the transverse velocity of dark
matter halos such as galaxy clusters. Because of the small contribution to temperature fluctuations, of the order
of a few tenths of microkelvins, however, extracting useful measurements on velocities will be challenging.
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[. INTRODUCTION ISW effect, usually due to linear fluctuations in the density
field, to the nonlinear regime of clustering. The nonlinear
The importance of cosmic microwave backgroy@diB) contribution to the ISW effect is generally called the Rees-
temperature fluctuations as a probe of cosmolfjyis by  Sciama(RS) [4] effect and we discuss one aspect of the RS
now well known. The accuracy to which cosmological infor- contribution involving the large scale structure density and
mation can be extracted depends on how well we understancelocity fields. Using the continuity equation, we show that a
the individual processes that lead to anisotropies in the CMBonlinear contribution to the ISW effect comes from the di-
temperature. Although effects during recombination are nowergence of the large scale structure momentum density field.
well understood?2], contributions and modifications to CMB We model the large scale structure momentum density field
anisotropies due to large scale structure between the lassing the recently popular halo model where large scale
scattering surface and today are not completely establishedtructure density field fluctuations can be described through
This is primarily due to the nonlinear evolution of the large dark matter within halos and correlations between halos
scale structure at low redshifts, such that simple analyticdl5,6]. Our analytical calculations are consistent with those of
calculations based on linear theory may no longer be applif7] based on numerical simulations. Although we concentrate
cable. In general, large scale structure affects the CMBnly on one aspect of the RS contribution, we note that there
through two processes: gravity and Compton scattering. Thenay be additional contributions: collapsing structures
modifications due to gravity arise from frequency changes In addition to a recalculation of the contribution, we also
via gravitational red- and blueshifts, while during the reion-discuss this nonlinear extension to the ISW effect in the con-
ized epoch photons can both generate and erase primary flu@xt of proposed contributions to the CMB temperature in the
tuations through scattering via free electrons. literature. We show that the nonlinear ISW contribution is
Here, we discuss an effect due to gravitational redshifessentially the same as the temperature anisotropy produced
commonly known in the literature as the integrated Sachsthrough transverse motions of foreground gravitational
Wolfe (ISW [3]) effect at late times.The temperature fluc- lenses, as was first discussed in R81, with further discus-
tuations in the ISW effect result from the differential redshift sion and corrections in Re]. The effect is generally called
effect from photons climbing in and out of time evolving the moving lens contributiofi10,11] and its cosmic string
potential perturbations from the last scattering surface to thanalogue is the well known Kaiser-Stebbins effid]. Un-
present day. In currently popular cold dark matter cosmoloder this lensing description, the effect can be described as the
gies with a cosmological constant, significant contributionsgravitational lensing of the CMB dipole, formed by the
arise at redshifts less than 1 and on and above the scale of ttr@nsverse motion of a halo or a galaxy cludierthe rest
horizon at the time of decay. frame the halp We show that there are no significant non-
Here, in particular, we extend previous discussions on th&aussian correlations associated with the nonlinear ISW ef-
fect and the bispectrum formed with linear effects is negli-
gible. There is also no correlation between the kinetic
*Email address: asante@hyde.uchicago.edu Sunyaev-Zel'dovic(SZ2) effect, due to the momentum den-
To avoid confusion, we distinguish contributions to the ISW ef- Sity field along the line of sight, and the nonlinear ISW ef-
fect during the matter dominant era as the late ISW effect, althougffect.
there is an additional contribution during radiation dominance. Note that we discuss only the contribution to the ISW
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effect due to large scale structure growth and evolution of In linear theory, the density field may be scaled backward
structures by extending the well known result in the linearto higher redshift by the use of the growth functi@{z),
regime to the nonlinear regime. We note that there may bevhere 5(k,r)=G(r) 8(k,0) [16],

higher order contributions to the ISW effect, on both linear

and nonlinear scales, as calculated in second-order perturba- H(r)
tion theory for the geodesic equatiph3]. Here, we ignore G(r)= H m
these corrections resulting from the second-order geodesic

equation as the important ones were found to be small. Adote that in the matter dominated epoBkca=(1+27) L.
ditionally, we note that there were previous attempts to cal- Although we maintain generality in all derivations, we
culate the nonlinear ISW contribution under various approXi+jjystrate our results with the currently favored CDM with a

mations to the large scale structure, including the “SW'SscosmoIogicaI constantACDM). The parameters for this
cheese” model of Ref.14] and the void description of Ref. . J4al are 0,=0.30, 0,=0.05, 0,=0.65, h=0.65, Y,

[15]. We note that such models may be unrealistic for the_ g 24 n=1 and X=1. with a normalization such that
large scale structure and a more direct approach based on the, o f,luctuaiion on thefB Mpc~* scale isog=0.9, consis-

formation and evolution of structures may be useful to conyen; \yith observations on the abundance of galaxy clusters
sider instead. [17] and Cosmic Background ExploréEOBE) normaliza-

i Thhe Iayo:;t of the pgger_ Is as fr?"OWS' In Sec. 1l, we out-tjn 118]. A reasonable value here is important since higher
ine the nonlinear contribution to the ISW effect after review- e correlations are nonlinearly dependent on the ampli-

ing briefly background material relevant for current calcula- ,4a of the density field. To compute the linear power spec-

tions in the context of adiabatic cold dark matt@®DM) ) "\e adopt the fitting formula for the transfer function
models. In Sec. lll, we discuss our results and consider thSiven in[19].

nonlinear contribution in the context of suggested secondary
effects in the CMB. We also discuss the bispectrum formed
by the combined linear ISW and its nonlinear extension. In
the same section, we study the possibility of extraction of the The integrated Sachs-Wolfe effd&] results from the late

transverse velocity of galaxy clusters using the nonlineatime decay of gravitational potential fluctuations. The result-

3

: 4

dz'(1+2)
0 Jz(r)

B. ISW effect

ISW effect. ing temperature fluctuations in the CMB can be written as
Il. CALCULATIONAL METHOD TISW(R) = — zfrodr d(r,nr), (5)
0
We first review the properties of adiabatic CDM models
relevant to the present calculations. where the overdot represents the derivative with respect to
conformal distance(or equivalently the look-back time
A. Adiabatic CDM model Writing multipole moments of the temperature fluctuation

The expansion rate for adiabatic CDM cosmological mod-field T(n),
els with a cosmological constant is

HZ=HZOn(1+2)°+ Qg (142740, (1) a'm:f dnT(mY7™ (n), ©

whereH, can be written as the inverse Hubble distance towe can formulate the angular power spectrum as
day,H, '=2997.91"1 Mpc. We follow the convention that, . b
in units of the critical density 83/87G, the contribution of (@ 1m1a'zmz>_ 01,1, %mm, 1y @)
each component is denot€l], i=c for the CDM,g for the
baryons, and\ for the cosmological constant. We also define
the auxiliary quantities),=Q.+Qp and Qx=1-3%,4;, &%
wh|c_h represent the matter depsﬂy and the cqntrlbutlon of aﬁWZi'f _J' drCID(k)I|(k)Y,m(R), @)
spatial curvature to the expansion rate, respectively. 22

Convenient measures of distance and time include the
conformal distancéor look-back timé from the observer at  with I,(k)=fdrW'SY(k,r)j,(kr), and the window function
redshiftz=0, for the ISW effectW'S" (see below. The angular power

spectrum is then given by

For the ISW effect, the multipole moments are

z dzZ’
- , 2
@) foH(z’) @ c:swzéf k2 dk Py (K)[1(Kk)1?, 9

and the analogous angular diameter distance . . ,
where the three-dimensional power spectrum of the time-

da= Hglﬂ;”zsinr(Hoﬂﬁlzr). (3)  evolving potential fluctuations is defined as
Note that ad)—0, dy—r, and we defing (z=)=r,. (D(Ky)D(Kp))=(27)35p(K1+Ka)Paip(Ky).  (10)
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The above expression for the angular power spectrum can leven though we have replaced the divergence of the velocity
evaluated efficiently under the Limber approximatid@0] field with a time derivative of the growth function, it should
for sufficiently highl values, usually in the order of a few be understood that the contributions to the ISW effect come
tens, as from the divergence of the velocity field and not directly
from the density field. Thus, to some extent, even the linear
ISW effect reflects statistical properties of the large scale
structure velocities.

In the mildly nonlinear to fully nonlinear regime of fluc-

In order to calculate the power spectrum of the time detuations, the approximation in E€lL4), involving §<1, is no
rivative of potential fluctuations, we make use of the cosmodonger valid and a full calculation of the time derivative of
logical Poisson equatidr21]. In Fourier space, we can relate density perturbations is required. This can be achieved in the
the fluctuations in the potential to the density field as second-order perturbation theory, although such an approxi-
mation need not be fully applicable as the second-order per-
turbation theory fails to describe even the weakly nonlinear
regime of fluctuations exactly. Motivated by applications of
the halo approach to large scale struct[Be6] and results
Thus, the derivative of the potential can be related to a defrom numerical simulation§23], we consider a description
rivative of the density field and the scale factorConsider-  for the time derivative of density fluctuations and rewrite Eq.
ing a flat universe witl) =0, we can write the full expres- (14) as
sion for the power spectrum of time-evolving potential
fluctuations, as is necessary for the ISW effect valid in all
regimes of density fluctuations, as

WISW 2
oo [
dA

I
k:d_A’r} (12)

2

H _2
1+3?§QK) sk,r). (12

_3Qm(H0 2

2 alk

S(X,1)=—V-V(X,r) = V- 8(X,r)\V(X,r), 17

9/0,\2(Ho\¥(a)? where we have separated the momentum term involygng
Poa(ki) =71 —"| | 5| || 5] Paslki) =(1+ 6)v into a velocity contribution and a density velocity
product. In Fourier space,
a
—2 Pk + P;ss(k,r)} 13 a3k’
5(k)=ik-p(k)=ik-v(k)+f = S(k—k)ik-v(k"),
with W'SW= —2 in Egs.(9) and (11). (2m)

To calculate the power spectrum involving the correla- (18)

tions between the time derivatives of density fluctuatibyg

and the cross-correlation term involving the density and timevhere we have dropped the time dependence for clarity. The
derivative of the density field®s;5, we make use of the first term involving the velocity field leads to the linear
continuity equation, which in position, or real, space can bgheory ISW effect, while the nonlinear aspects are captured

written in the form in the term involving convolution of thév term (see also
_ [7]). Following the approach motivated by Hu in Rg24],
O(X,r)==V_-[1+8(X,r)]v(x,r). (14)  discussed by Cooray in Reff6], and investigated in detail

through numerical simulations by Sheghal. in Ref. [23],
In the linear regime of fluctuations, whens(x,r)  we can write the power spectrum of density derivatives, or
=G(r)5(x,0)<1, the time derivative is simpIyS“”(x,r) equivalently the divergence of the momentum density field,
=—V.v(x,r) and we can obtain the well-known result for as
linear theory velocity fluctuations in Fourier space as
P 33(K)=K?Ppp(K)

B k
v=—iG 5(k,O)E. (15) 3

) d
:kzplu";(k)Jszf 2 )3M’2P55(|k—k'|)Pw(k’)
a
Thus, in linear theoryP;s=k?P,,(k,r)=G?P(k,0) and

. . 37 !, ’
Pss=kPj,(k.r)=GGP™(k,0) +sz d’k” (k=k'u')u

ov

These lead to the well-known results for the linear ISW (2m)?®  |k—Kk’|
effect with a power spectrum fob as 3, 3n
x([k—k')P (k’)+k2J' ok f T
. 2 — v
in 9/ Qm|?(Ho|Y & N i ’ 2m em3t*
PY. (k)= —| [=°] | = =G(r)+G| PI(k,0).
P 4\ a k a
16 X T sspo(k—K', —k—K" k' K"). (19)

The term within the square brackets € where F=G/a In the nonlinear regime& —k’ ~k andk—k”~k and we can
following the derivation for the linear ISW effect if22].  simplify by integrating over angles to obtain
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FIG. 1. The power spectrum of the divergence of the momentum FIG. 2. The angular power spectrum of the full ISW effect,
density field Ps5(k). Here, we show the contribution due to the including nonlinear contribution. The contribution called Rees-
divergence of the velocity field and the extension to the nonlineasciama(RS) shows the nonlinear extension, although for the total
regime using Eq(20). contribution, the cross term between the momentum field and the

density field leads to a slight suppression betwéerf 100 and
. 1 k'2dk’ 1000. The curve labeled “nl” is the full nonlinear contribution
Pss=k2P" (k) + ngP,;(;(k)f ——Pu(K'). (200 while the curve labeled “lin” is the contribution resulting from the
2m momentum field under second-order perturbation theory.

Note that in the deeply nonlinear regime contributions from
the trispectrum formed by the velocity-density correlations
drop out; this is due to the fact that, under the halo approac

Fhe' nonlinear trispectrum rgsulting from the single halo ternﬂ[23]’ using the halo approach as a description of the momen-
is independent of the configuration and thusof and tum density field observed in simulations, it was found that

(see the discussions ] and[25]). Also, the term involving the cross correlation between the density field and the mo-
the product of cross-power spectra between the density ar}aentum field can be well described as

velocity fields does not contribute in the nonlinear regime; at

small scales, the density fluctuations are independent of the — P (K)P (k)

large scale velocity field. In Fig. 1, we show the power spec- Pps(K) =P pp(K)P55(K). (22)
trum of momentum divergence, which in linear theory is
simply described by the divergence of the velocity field, with
the extension to the nonlinear regime of fluctuations fOHOW'correlation coefficient of 1; this relation is exact at mildly

ing Eq. (20). e . linear scales while at deeply nonlinear scales this perfect
Our description of the nonlinear momentum power spec-

L L ) L cross correlation requires a mass independent specific veloc-
trum is similar to the derivation of the nonlinear kinetic SZ q P P

L ity for individual halos[23]. Using this observation, we
effect by Hu[24] and Cooray[6] (see alsd23]) which in- . T STBT ik
volves the momentum field along the line of sight. In Eq.make the assumption thBts;~ VP 55P 55 which is generally

(20), the integral over the velocity power spectrum is Simplyreproduced in the halo moqel descrlptlon. of Fhe Cross corre-
the rms of the velocity fluctuations lation between the density field and density field derivatives.

This cross term leads to a 10% reduction of power at multi-
poles between 100 and 1000, when compared to the total

lin
Urzms:f dkpgﬁ(:) ) (21)  when linear and nonlinear contributions are simply added.
w

In addition to the power spectrum of density derivatives,
in Eg. (13) we also require the cross-power spectrum be-
ween the density derivatives and density field itself;. In

This is equivalent to the statement that the density and mo-
mentum density fields are perfectly correlated with a cross-

Thus, the nonlinear power spectrum of the momentum field lll. DISCUSSION

divergence, as relevant for the ISW effect, involves one of In Fig. 2, we show the angular power spectrum of the
three components of the velocity field with #/3; note that  ISW effect with its nonlinear extensiofwhich we have la-
the expression for the fully nonlinear contribution to the mo-beled RS for Rees-Sciama effecthe curve labeled “ISW”
mentum field along the line of sight is similar to the aboveis the simple linear theory calculation with a power spectrum
and also involves one component of the velocity field afor potential derivatives given in Eq16). The curves la-
discussed if24] and[6]. The resulting expression for the beled “lin” and “nl” show the full nonlinear calculation fol-
nonlinear momentum field is fully consistent with simula- lowing the description given in Eq13) and using the linear
tions[23]. theory or full nonlinear power spectrum, in EQO), for the
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FIG. 3. The redshift dependence of the nonlinear ISW contribu-
tion. Here, we break down the contributionszdéss than 0.3dot- 10° |
ted ling, between 0.5 and 1.@ashed ling between 1.0 and 2.0
(long dashed ling and for redshifts greater than@ot-dashed ling »
As shown, most of the contributions arise at a redshift~af, z 10
leading to the peak in power &t-100 and a sharp decrease there- @
after. 107
density field, respectively. For the nonlinear density field ;= ‘ ‘ ‘
power spectrum, we make use of the halo approach for large 10' 10° 10° 10°

scale structure clusterif&,6] and calculate the power spec- (P) /
trum through a distribution of dark matter halos. We use
linear theory to describe the velocity field in both linear and  FIG. 4. (Top) The total ISW contribution compared with cosmic
nonlinear cases; since the velocity field only contributes agariance due to primary anisotropies. As shown, the contributions
an overall normalization, through,,, its nonlinear effects, are far below the cosmic variance and the nonlinearities are not
usually at highk values, are not important due to the shape offikely to impact the upcoming measurements of cosmological pa-
the velocity power spectrum and the behavior of the integrafameters from CMB data. At small angular scales, where the non-
in Eq. (21). linear contributions are well abow_e th_e sample variance, _other sec-

As shown in Fig. 2, the overall correction due to the non-ondary effects, such as the kinetic SZ effect, dominate the
linear ISW effect leads to roughly a two order of magnitudetemperature f.IuctuatlonsBotFom) Cumulative Slgnal-to-nqlse ratio
increase in power at~1000. The difference between the for the detection of the nonlinear ISW power spectr_um_, in the pres-
linear and nonlinear theory density field power spectra in qunce of the Sz ther_mal effe_(motted ling and n.Ot(SOHd I!ne),_ and

: ~for an all sky experiment with no detector noise contribution.

(20) leads only to at most an order of magnitude change in
power. Note that the curve labeled “lin” agrees with previ-
ous second-order perturbation theory calculations of thdiPoles of a few hundred where the power peaks.

Rees-Sciama effe¢], while the curve labeled “nl”is also _ Even though there is roughly two orders of magnitude
consistent with previous estimates based on results from niocrease in power at multipoles around 1000, in Fig. 4, we
merical simulations. show that this increase is still below the cosmic variance

There is an additional feature that should be observed i@Ssociated with the primary contribution given by
Fig. 2. At1~100 to 1000, there is roughly a 10% decrease in
total power. This is due to thBjs term in Eq.(13). If one o1
simply adds the linear ISW and nonlinear RS contributions, AC;= /—SKVCFMB, (23
this cross-correlation term is not present. This dip, due to a 2IA,+A,2
cancellation, is present when comparing results based on per-
turbation theory for RS and numerical simulations for the
full nonlinear ISW effect(see[7]); the cross term provides a
natural explanation for the slight decrease in power.

In Fig. 3, we breakdown the contribution to the nonlinear
effect, without the linear ISW or cross-term contributions,

where A, is the bin size in multipole space arig,, is the
fraction of sky covered. The signal-to-noise ratio for the de-
tection of the power spectrum is

into a function of steps in redshift. As shown, one essentially S\2 fg C, 2
finds equal contributions over a wide range in redshift with (N) =% > (21+1) —n) , (24
most of the contributions coming from a redshiftl to mul- ! C
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where C' is the power spectrum of noise wit'=CF"? (21,+1)(2l,+1)(2l5+1)

+Ci+ C,de‘; C; is any contribution from secondary effects B|1|2|3= \/ .

andC%'is any detector noise contribution. As shown in Fig.

4(b), the cumulative signal-to-noise ratio is less than 1 even BT PR

for a full sky experiment withf 5, =1 and no detector noise. ( 0 0 O) S (28)

Here, we include contributions from the thermal and kinetic
Sunyaev-Zel'dovich effecteKSZ) [26,6] and the lensing ef-  ith
fect on CMB [27] as secondary contributions to the noise

power spectrum. The top line with cumulative signal-to- 23
noise ratio slightly above 1 is when the thermal SZ effect is b|l,,2,|3=—3J k? dklf k%deJ k2 dks Biiris
removed from the noise contribution. ™
Given the significant sample variance and the fact that the X (Ky kg ka) 1 (k)11 (ko)1 (Kg)
1 2 3

nonlinear ISW effect has no special property, such as a dif-
ferent frequency spectrum from the thermal CMB from the
case of the thermal SZ effef26,28, it is unlikely that the Xf X2 dx i, (kyx) i (koX)j 1 (kex).  (29)
nonlinear ISW effect power spectrum can be extracted from

CMB data easily. Going to much smaller angular scales, og pefore, the Limber approximatig@0] allows one to sim-
large multipoles, leads to a reduction in the cosmic varianc lify the integrals for speedy calculation:

although the increase in power associated with other small

angular scale secondary effects such as the thermal SZ effect
or the kinetic SZ effect can complicate any detection of the p,

f d WISW( klar)Wlsw( k21r)W|SW( k31r)
1l203™ r

nonlinear ISW effect. Later, we will address the possibility d4A

whether, instead of statistical properties such as the power

spectrum or the bispectrusee beloy, we can extract the XBoiid(Ke Kz Ka)lk =1, 1, ky=1,10, kg=15 /0,
associated signal from individual objects such as massive (30)

galaxy clusters.

Similar to the power spectrum in Eq10), the three-
A. ISW bispectrum dimensional bispectrum of the derivatives of potential fluc-

, ) , ) tuations is defined as
Following our earlier discussion for the angular power
spectrum, we can also consider the bispecttse®[29]), or - : -
the Fourier analogue of the three-point correlation function: (D (k1) P (ko) D" (k3))

R =(27)%5p(ky+ky+K3)Bipapd(Ki, Kz ka).
B(n,m,l)

(T(MT(m)T(D)) (31)

=> <allm1alzmzal3m3>Y|r:l(n)Y|n;2(m)Yr;s(|)v As an approximation, this three-dimensional bispectrum can
be calculated in second-order perturbation theerg.,[30]).
(29 To obtain an exact result valid in both the weakly nonlinear
and nonlinear regimes, we consider the coupling between
where the sum is over {,m;),(I2,my),(I3,ms). Statistical  two linear ISW effects and the nonlinear extension involving

isotropy again allows us to express the correlation in termshe V- v term. This leads to the following bispectrum:

of an mrindependent function,

a_ |

-=G+G
a

27

3 H§
0
B(-I)(I)(-D(kl!kZIk3): - 8

kikok3

O

a

R PR F
(@, m, 1,m, 1 m,) = m, m, my Bii, (26

. _ . XGG[Pw(kl,ow(sv(kz,m
Here the quantity in parentheses is the Wigngrsgmbol.
The orthonormality relation for the Wignerj 3symbol im- Ka-K
plies X 3k 2+ perm|, (32
2
B =3 il s )(a a.m 81.m.) where the permutations are with respect to the ordering of
als™ s \my m,  mg) Ml sms/ ki,k,, andks leading to a total of six terms. In E¢30),

(27)  W'SW= -2 as defined earlier. Because of the dependence on
an angle, saks-k, in Byoa (K, Ko ,K3), there are significant
For the coupling between ISW effects, using the multipo-cancellations and the final projected angular bispectrum of
lar moments written in Eq(8), we can write the bispectrum the ISW effect is smaller than a simple order of magnitude
as estimate involving the cube of the temperature fluctuation
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107° : : where &, is the fluctuation in the baryon field am{r) is a
weight function for Compton scattering withy=re "
=XH(0.0691(1-Y,)Qgh(1+2)% " where 7(r)=[{drr
is the optical depth out to[31,22,4.

The correlation between the nonlinear ISW effect and the
kinetic SZ effect is then

SN

10 F Bispectrum

d%’
(2m)*

/~L’ Vl_M’ZPSb(k)va(k’)r

(39

*,ISW,KSZ
<allm1 aI2m2>°cf

and is equal to zero through the angular terms involving the
integral overk-k’=kk’ u"; the cross correlation involves a
1(')1 1(‘)2 ppe cosine.term from .the divergence of the mpmentum associ-
p ated with the nonlinear ISW effect and a sine term from the
8 line of sight momentum associated with the kinetic SZ effect.
FIG. 5. The cumulative signal-to-noise ratio for the detection of | "€ geometrical cancellation is merely a statement that, al-
the nonlinear ISW effect bispectrum as a function of the multipolethough locally the line of sight velocity field may be corre-
lated with its transverse component, on average over the

whole sky there is no such correlation. This cancellation can
amplitude. In Fig. 5, we show the cumulative signal-to-noisebe avoided by several techniques. [B], we discussed a

10

ls.

ratio for the ISW bispectrum, with similar situation involving the cross correlation between the
thermal SZ effect and the kinetic SZ effect and suggested the
S\2 B|2| | use (_)f a quadratic_ correlation involving the square of the
(_) =fg 2 1233 (33) density field. This is also equivalent to the use of absolute
N N5, 6C|”1C|”ZC|”3' values of the temperature fluctuations.
where again the noise power spectrunCis (see Ref[22] C. Relation to other effects

for detail9. In Fig. 5, we takeC'=C™® to consider sample

varnance frqm primary anisotropies alone. The. Cun1mat'veeffect is essentially the same contribution described 8y
signal-to-noise ratio is on the order of a few times 10

g > . . using the transverse motion of lensing objects; in the context
suggesting that the bispectrum is unlikely to be detected; 9 g obl

9 . ~ ~~of cosmic strings, this contribution is well known as the
similar values are also found for other three-point statistics . _ " ~ -
iser-Stebbins effecf12]. Writing T(n)= fdrAT(rn,r),

such as the skewness or the third moment. Thus, consistelif R .
with the second-order perturbation theory re§8@], there is  we consider the ISW effect such thaff(rn,r)=—2d(r).
no significant non-Gaussian signal at the three-point leveFollowing our earlier discussion related to the nonlinear con-
formed by the correlation between linear ISW effects and thdribution, we can relate the potential fluctuations to the den-
nonlinear ISW effect in the nonlinear regime of fluctuations.sity fluctuations using the Poisson equation. The contribu-
Also note that there is no bispectrum of the formtions now follow asAT«[—a/ad+S]. The first term

(ti)(kl)ti)”'(kz)@”'(k3)> since such a term leads to an odd containing the time derivative of the scale factor was re-

number of velocity or density fluctuation terms. cently reintroduced by32] as a time-delay effect. As dis-
cussed in[33], the time-delay contribution to the CMB is

second order as it involves a product of the spatial gradient
of the CMB at the last scattering surface and the cumulative
An additional way to extract or detect the presence of thigime-delay contribution and is not simply described by a
signal is through cross correlations with another source ofirst-order contribution. Additionally, as discussed for the lin-
anisotropy or a tracer of large scale structure. Since the mQsar |SW effect, considering only theterm leads to an over-

mentum density field is involved in the nonlinear ISW effect, gstimate of the fluctuation as there is a cancellation from a
one can expect the presence of a correlation between anot

T . fst-order term involving thes term.
tracer of'the momentum densr[y field. !t is well known that As before, using the complete continuity equation, we can
the kinetic SZ effect traces the line of sight large scale struc- ) T ) .
ture momentum density field such that the temperature flud€lateé the time derivative of the density fluctuationto the
tuations can be written as a modulation of the velocity fielddivergence of the velocity field and the divergence of the
by baryon fluctuations, product of overdensity and velocithTe[a/as+V - (1
+ 8)v] Here, we consider the nonlinear contribution result-
ing from the AT"<V . 6v term and reintroduce the density
field in terms of potentials using the Poisson equation,

We now suggest that the nonlinear extension to the ISW

B. Cross correlations

TKSZ(ﬁ)zfdrg(r)ﬁ.v(r,ﬁr)ab(r,ﬁr), (34)
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ATV= -2V . (®dVv)=~—v, -(2V,®)=—v SiNa e, COSE.
(36)

The simplifications assume that potential fluctuations are em:
bedded in a velocity field with much larger coherence scale
so that gradients in the velocity field do not contribute to
temperature anisotropies. Furthermore, we have introduce:
the lensing deflection anglé.,=2V,® where the gradient
is now an angular gradient on the sky and there is no contri-
bution to temperature anisotropy from the gradient of the
potential along the line of sight. This forces the contributing
component of the velocity field to be the one on the sky and
not along the line of sight. Herey is the angle between the
line of sight and the velocity field ang is the position angle
from the observer. As is now clear, this latter description of
the nonlinear ISW effect is what has been provided else-
where in the context of moving gravitational leng&®,11].
The correspondence between the two effects can also be -
noted using the description that is well utilized to calculate  FiG. 6. The contribution due to the nonlinear ISW effect for a
the gravitational lensing effect on the CMB7,22,34. Writ-  cluster of mass %10“M, with a transverse velocity of
ing 100 kms? across the line of sight. The temperature fluctuations
. . . . . . produce a distinct dipolar pattern on the sky and are of the order of
T(n)=T(n+An)=TP(n)+VrTP(n)~An, (37) a few tenths of microkelvins. Here, theandy coordinates are in

) o ) terms of the scale radius of the cluster, based on a NFW profile.
where angular deflections due to gravitational lensing are

given by An=2V ¢, where the projected lensing potential scription arises, unfortunately, when attempting to describe
is ¢(n)=D,s/D®. Here, TP(n) is the primary CMB con- the contribution from the divergence of the momentum den-
tribution while V, T?(n) is the angular gradient on the sky of sity field as a gravitational lensing effect.
these temperature fluctuations. Essentially, gravitational lens-
ing angular deflections remap the distribution of temperature
fluctuations, and this remapping is captured by the depen-
dence on distances, where the distance from lens to source As discussed before, the detection of the power spectrum
(CMB last scattering surfagés D5 and the distance from of temperature anisotropies due to the nonlinear ISW effect
observer to source iB5. Also, as written, the gravitational is heavily affected by the dominant cosmic variance of the
lensing effect on the CMB is second order due to the depenCMB primary anisotropies. From geometrical consider-
dence on the angular gradient of the CMB on the &yT;  ations, there is also no significant non-Gaussian contribution
this is consistent with the fact that lensing does not chang€r cross correlation with other effects. Thus, instead of sta-
the surface brightness and results only in a modification ofistical properties such as the power spectrum, one can try to
the temperature fluctuation distribution. extract the associated signal in individual objects such as
The second-order effect related to the nonlinear ISW efmassive galaxy clusters.
fect is due to the lensing of the dipole created by the motion In Fig. 6, we show the distinct signature formed by the
of halos such tha¥,T=v sina. To be consistent with the nonlinear ISW effect for a cluster of masx&0“M ¢, with a
description given using the time derivative of the densitytransverse velocity of 100 km's across the line of sight.
fluctuations, we requir® =D, such that there is no de- We assume a Navarro-Frenk-WhitFW) [35] profile for
pendence on the ratio of distance factors, usually encourihe dark matter distribution of the cluster and take a descrip-
tered in lensing studies. This is equivalent to the case thdion for the concentration-mass relation followihg6]. In
D,<D such thatD,;~Ds, which is not necessarily true terms of the density distribution of the cluster, the deflection
even for clusters at~0.5. In either case, the nonlinear ISW angle, at an impact distance gffrom the cluster center, is
effect cannot be considered as a remapping of the tempergiven by
ture fluctuations similar to the conventional gravitational
lensing, as there is no real source, a temperature gradient, in
the problem; the temperature gradient essentially exists from
the coordinate transformation from a moving lens to a sta-

tionary lens? An inconsistency with the lensing mapping de-
where the surface mass density is

D. Toward transverse velocities

87G
5Ien(77):72T_fan drlz (ry) (38
c*np JO

2We note that this issue has led to some confusion in the literature +r,
when calculating the so-called moving lens effect, with some in- E (rL):j dryp(r,,ry. (39
cluding the ratio oD, /D [10] while others, correctly, do n¢.1]. Ty

083518-8



NONLINEAR INTEGRATED SACHS-WOLFE EFFECT PHYSICAL REVIEW B5 083518

In the abovey , is the distance across the line of sightis

the distance along the line of sight, angis the virial radius

of the cluster, which we take to be at an overdensity of 200
following the NFW/[35] description. The above equation for

the deflection angle also assumes a circularly symmetric dark™
matter distribution within the halo. 25

As shown in Fig. 6, the contribution to temperature fluc-
tuations is at most 0.3uK. In order to detect this small
signal, one has to be able to extract it from other contribu- .-
tions to the CMB due to galaxy clusters. The most significant
contributions from clusters arise from the SZ thermal effect °
[26] due to inverse Compton scattering of photons via hot
electrons. Here, temperature changes of the order of 1 mK
are produced and these are now routinely observed toward °
massive clusterg37]. The SZ thermal effect, however, has a
distinct frequency dependence, and in multifrequency CMB
data the effect can be separated out from thermal CMB and
other fluctuations[28]. The next significant contribution
comes from the kinetic SZ effect due to the line of sight
motion of the scatterers in clustdi6]. In Fig. 7, we show
the kinetic SZ effect for the same cluster as in Fig. 6. Here,
we have assumed that the electron distribution in clusters is
described by hydrostatic equilibriuf®] and have taken a .
line of sight velocity of 100 km'st. The contribution due to
the SZ kinetic effect, and also the SZ thermal effect, is highly ¢
peaked toward the center of the cluster and can be as high a: |
a few tens of microkelvins.

The next important contribution is due to gravitational 2
lensing of the large scale CMB gradient, whose rms is of
order 13 uKarcmin 1. With a deflection angle of order
~0.5 arcmin, the contribution due to lensing is in the range -2
of a few microkelvins. As shown in Fig. 7, the lensing effect
has the same profile shape as the contribution resulting from
the transverse velocity; the two profiles need not lie in the
same direction since the large scale CMB gradient and the
transverse velocities can be aligned differently. When the
thermal SZ effect is separated, in temperature fluctuations, a
galaxy cluster exhibits a slightly offset dipolar pattern with a
significant temperature increment or decrement toward the
center, resulting from the direction of the line of sight veloc- 3
ity associated with the kinetic SZ effect. Detecting such a |~
profile will certainly remain a challenging goal for future .
cluster observationg38].

Eventually, if the transverse velocity contribution can be
detected, its amplitude and the direction of the dipole pattern ,»
will provide significant information on large scale structure
velocities not generally available from other observations.
We can ask how well one can detect a typical cluster through .
this effect. First, to make a reasonable signal-to-noise detec-
tion, it is clear that one must extract effects such as the
kinetic SZ and CMB lensing. This requires detailed knowl-
edge of the baryon and dark matter distributions within clus-
ters. Assuming such information is available, we can obtain ©)
an estimate for the signal-to-noise ratio by noting that the
observed signal can be written [38,39

20

20

10

o

FIG. 7. Temperature fluctuations due to clusters. Top: Kinetic

Sz effect; middle: lensing of CMB primary temperature fluctua-

A_T(a)zs( 0)+n(0), (40) tions; and bottom: total contribution from kinetic SZ, lensing, and
T transverse velocities. We use the same cluster as shown in Fig. 6.
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10° . . . . tal noise contributions; alternatively, one can put an upper
limit on the transverse velocity contribution at the level of a
few thousand km's!; this upper limit is considerably larger
than what one expects under currently popul&DM cos-
mological models.

The signal-to-noise ratio for detection may be improved if
cross-correlation techniques can be considered, e.g., if one
has some knowledge of the intrinsic and secondary fluctua-
tions toward the observed cluster and of the direction of the
large scale bulk flows from other methods, even if the am-
plitude of that bulk flow is not known. Separately, since the
coherence scales of bulk flows are much larger than an indi-
vidual cluster, it may be possible to extract the transverse
effect by averaging the signal over a number of clusters.
. . . . Using numerically simulated cluster images, and realistic
0 2000 4000 6000 8000 10000 sources of noise and confusion, we plan to study how well

! such an extraction can be performed in a future paper.

FIG. 8. The signal-to-noise ratio for the detection of the nonlin-
ear ISW effect. The galaxy cluster considered here is the one in IV. SUMMARY
Fig. 6.

’ We have discussed the nonlinear extension to the inte-
wheres(6) is the profile of the signal and(6) is the profile ~ grated Sachs-Wolfe effect resulting from the divergence of
of the noise distribution. In order to remove the excess noiséhe large scale structure momentum density field. This non-
associated with large scale temperature fluctuations from priinear ISW effect, calculated under the recently popular halo
mary anisotropies or other secondary effects, we can corfpproach to nonlinear large scale structure clustering, leads
struct an appropriately normalized filter which provides anto an increase in the total ISW contribution by roughly two
optimal detection of the signal in the presence of such noise2rders of magnitude dt-1000. This increase, however, is
This filter can be written as still below the cosmic variance limit of the primary anisotro-

pies; at smaller angular scales, secondary effects such as
gravitational lensing and the kinetic Sunyaev-Zel'dovich ef-
(41)  fect dominate the nonlinear ISW power spectrum.

Further, we have shown that this second-order nonlinear
ISW contribution is effectively the same as the contribution
previously described as a lensing effect due to the transverse
motion of gravitational lenses and well known as the Kaiser-
Stebbins effect related to cosmic strings. From geometrical
s\2 Ll s(1)? consi_derations, there is no significant three—point correlation
(_) _ f e . (42) functlon_, or bispectrum, between the I_mear ISW effect and

N 2 cl its nonlinear counterpart. The correlation between the non-

linear ISW effect and the kinetic SZ effect is again zero due

In Fig. 8, we show the cumulative signal-to-noise ratio asto the geometry associated with the line of sight and diver-
a function ofl. Here, we assume a noise power spectrungence of the momentum density field. The nonlinear ISW
given by the sum of the intrinsic CMB and secondary effectscontribution can potentially be used as a probe of the trans-
where secondary effects include all thermal contributionsverse velocity of dark matter halos such as galaxy clusters;
CMB lensing, kinetic SZ, and a model for the inhomoge-however, because of the small contribution to temperature
neous reionization. At smalls, corresponding to the outer fluctuations of the order of a few tenths of microkelvins,
extent of the cluster, fluctuations in the intrinsic CMB tem- extracting useful measurements on velocities will be chal-
perature confuse the detection of the signal, while at largéenging.
I's, corresponding to the inner extent of the cluster, fluctua-
tions from the local universe complicate it. Even if detailed
properties of clusters are known so that intrinsic CMB lens-
ing and the kinetic SZ effect can be perfectly separated from We are grateful to Wayne Hu for useful discussions. We
the transverse effect, it is unlikely that we will know all thank Ravi Sheth and his collaborators for providing us with
sources of temperature fluctuation along the line of sightain early draft of their paper on a halo model description of
toward a given cluster, leading to confusion in the detectionthe velocity and momentum density fields and for useful con-
For typical transverse velocities of order a few 100 km,s versations. We also thank Albert Stebbins for his encourage-
we find signal-to-noise values of the order of 0.1 suggestingnent of this work. A.C. was supported by a NASA grant
that detection of this signal for individual clusters will re- NAG5-10840 at Chicago and the Fairchild Foundation and
main challenging even for an experiment with no instrumenDOE at Caltech.

-1

s(l)
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2 2
S~ f a2 |s()]
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whereC/' is the power spectrum of the noise. The signal-to-
noise ratio for the detection of the profile, for an axisymmet-
ric distribution fors(6), is
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