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Nonlinear integrated Sachs-Wolfe effect
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We discuss the nonlinear extension to the integrated Sachs-Wolfe effect~ISW! resulting from the divergence
of the large scale structure momentum density field. The nonlinear ISW effect leads to an increase in the total
ISW contribution by roughly two orders of magnitude atl;1000. This increase, however, is still below the
cosmic variance limit of the primary anisotropies; at further small angular scales, secondary effects such as
gravitational lensing and the kinetic Sunyaev-Zel’dovich effect dominate the nonlinear ISW power spectrum.
We show that this second-order nonlinear ISW contribution is effectively the same as the contribution previ-
ously described as a lensing effect due to the transverse motion of gravitational lenses and well known as the
Kaiser-Stebbins effect in the context of cosmic strings. Because of geometrical considerations, there is no
significant three-point correlation function, or bispectrum, between the linear ISW effect and its nonlinear
extension. The nonlinear ISW contribution can potentially be used as a probe of the transverse velocity of dark
matter halos such as galaxy clusters. Because of the small contribution to temperature fluctuations, of the order
of a few tenths of microkelvins, however, extracting useful measurements on velocities will be challenging.

DOI: 10.1103/PhysRevD.65.083518 PACS number~s!: 98.80.Es, 95.85.Nv, 98.35.Ce, 98.70.Vc
r-
ta
M
o

la
he
ge
ic
p
M
Th
e
n
fl

hi
h

-
ift
g
th
lo
n
f

th

ity
ar
s-

RS
nd
t a
di-
eld.
eld
ale
ugh
los
of
ate
ere

so
on-
the
is

uced
nal

the
e

n-
ef-
li-
tic
-
f-

W

ef-
ug
I. INTRODUCTION

The importance of cosmic microwave background~CMB!
temperature fluctuations as a probe of cosmology@1# is by
now well known. The accuracy to which cosmological info
mation can be extracted depends on how well we unders
the individual processes that lead to anisotropies in the C
temperature. Although effects during recombination are n
well understood@2#, contributions and modifications to CMB
anisotropies due to large scale structure between the
scattering surface and today are not completely establis
This is primarily due to the nonlinear evolution of the lar
scale structure at low redshifts, such that simple analyt
calculations based on linear theory may no longer be ap
cable. In general, large scale structure affects the C
through two processes: gravity and Compton scattering.
modifications due to gravity arise from frequency chang
via gravitational red- and blueshifts, while during the reio
ized epoch photons can both generate and erase primary
tuations through scattering via free electrons.

Here, we discuss an effect due to gravitational reds
commonly known in the literature as the integrated Sac
Wolfe ~ISW @3#! effect at late times.1 The temperature fluc
tuations in the ISW effect result from the differential redsh
effect from photons climbing in and out of time evolvin
potential perturbations from the last scattering surface to
present day. In currently popular cold dark matter cosmo
gies with a cosmological constant, significant contributio
arise at redshifts less than 1 and on and above the scale o
horizon at the time of decay.

Here, in particular, we extend previous discussions on

*Email address: asante@hyde.uchicago.edu
1To avoid confusion, we distinguish contributions to the ISW

fect during the matter dominant era as the late ISW effect, altho
there is an additional contribution during radiation dominance.
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ISW effect, usually due to linear fluctuations in the dens
field, to the nonlinear regime of clustering. The nonline
contribution to the ISW effect is generally called the Ree
Sciama~RS! @4# effect and we discuss one aspect of the
contribution involving the large scale structure density a
velocity fields. Using the continuity equation, we show tha
nonlinear contribution to the ISW effect comes from the
vergence of the large scale structure momentum density fi
We model the large scale structure momentum density fi
using the recently popular halo model where large sc
structure density field fluctuations can be described thro
dark matter within halos and correlations between ha
@5,6#. Our analytical calculations are consistent with those
@7# based on numerical simulations. Although we concentr
only on one aspect of the RS contribution, we note that th
may be additional contributions: collapsing structures

In addition to a recalculation of the contribution, we al
discuss this nonlinear extension to the ISW effect in the c
text of proposed contributions to the CMB temperature in
literature. We show that the nonlinear ISW contribution
essentially the same as the temperature anisotropy prod
through transverse motions of foreground gravitatio
lenses, as was first discussed in Ref.@8#, with further discus-
sion and corrections in Ref.@9#. The effect is generally called
the moving lens contribution@10,11# and its cosmic string
analogue is the well known Kaiser-Stebbins effect@12#. Un-
der this lensing description, the effect can be described as
gravitational lensing of the CMB dipole, formed by th
transverse motion of a halo or a galaxy cluster~in the rest
frame the halo!. We show that there are no significant no
Gaussian correlations associated with the nonlinear ISW
fect and the bispectrum formed with linear effects is neg
gible. There is also no correlation between the kine
Sunyaev-Zel’dovich~SZ! effect, due to the momentum den
sity field along the line of sight, and the nonlinear ISW e
fect.

Note that we discuss only the contribution to the IS
h

©2002 The American Physical Society18-1



o
a
b
a
r

es
A
a
x
is
.
th
n
on

t
w-
la

th
a
e
I

th
ea

ls

d

to
,

ne

o

th
t

ard

e
a

t

ters

er
pli-
ec-
n

lt-
s

t to

on

e-

ASANTHA COORAY PHYSICAL REVIEW D 65 083518
effect due to large scale structure growth and evolution
structures by extending the well known result in the line
regime to the nonlinear regime. We note that there may
higher order contributions to the ISW effect, on both line
and nonlinear scales, as calculated in second-order pertu
tion theory for the geodesic equation@13#. Here, we ignore
these corrections resulting from the second-order geod
equation as the important ones were found to be small.
ditionally, we note that there were previous attempts to c
culate the nonlinear ISW contribution under various appro
mations to the large scale structure, including the ‘‘Sw
cheese’’ model of Ref.@14# and the void description of Ref
@15#. We note that such models may be unrealistic for
large scale structure and a more direct approach based o
formation and evolution of structures may be useful to c
sider instead.

The layout of the paper is as follows. In Sec. II, we ou
line the nonlinear contribution to the ISW effect after revie
ing briefly background material relevant for current calcu
tions in the context of adiabatic cold dark matter~CDM!
models. In Sec. III, we discuss our results and consider
nonlinear contribution in the context of suggested second
effects in the CMB. We also discuss the bispectrum form
by the combined linear ISW and its nonlinear extension.
the same section, we study the possibility of extraction of
transverse velocity of galaxy clusters using the nonlin
ISW effect.

II. CALCULATIONAL METHOD

We first review the properties of adiabatic CDM mode
relevant to the present calculations.

A. Adiabatic CDM model

The expansion rate for adiabatic CDM cosmological mo
els with a cosmological constant is

H25H0
2@Vm~11z!31VK~11z!21VL#, ~1!

whereH0 can be written as the inverse Hubble distance
day,H0

2152997.9h21 Mpc. We follow the convention that
in units of the critical density 3H0

2/8pG, the contribution of
each component is denotedV i , i 5c for the CDM,g for the
baryons, andL for the cosmological constant. We also defi
the auxiliary quantitiesVm5Vc1Vb and VK512( iV i ,
which represent the matter density and the contribution
spatial curvature to the expansion rate, respectively.

Convenient measures of distance and time include
conformal distance~or look-back time! from the observer a
redshiftz50,

r ~z!5E
0

z dz8

H~z8!
, ~2!

and the analogous angular diameter distance

dA5H0
21VK

21/2sinh~H0VK
1/2r !. ~3!

Note that asVK→0, dA→r , and we definer (z5`)5r 0.
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In linear theory, the density field may be scaled backw
to higher redshift by the use of the growth functionG(z),
whered(k,r )5G(r )d(k,0) @16#,

G~r !}
H~r !

H0
E

z(r )

`

dz8~11z8!S H0

H~z8!
D 3

. ~4!

Note that in the matter dominated epochG}a5(11z)21.
Although we maintain generality in all derivations, w

illustrate our results with the currently favored CDM with
cosmological constant (LCDM). The parameters for this
model are Vc50.30, Vb50.05, VL50.65, h50.65, Yp
50.24, n51, and X51, with a normalization such tha
mass fluctuation on the 8h Mpc21 scale iss850.9, consis-
tent with observations on the abundance of galaxy clus
@17# and Cosmic Background Explorer~COBE! normaliza-
tion @18#. A reasonable value here is important since high
order correlations are nonlinearly dependent on the am
tude of the density field. To compute the linear power sp
trum, we adopt the fitting formula for the transfer functio
given in @19#.

B. ISW effect

The integrated Sachs-Wolfe effect@3# results from the late
time decay of gravitational potential fluctuations. The resu
ing temperature fluctuations in the CMB can be written a

TISW~ n̂!522E
0

r 0
dr Ḟ~r ,n̂r !, ~5!

where the overdot represents the derivative with respec
conformal distance~or equivalently the look-back time!.
Writing multipole moments of the temperature fluctuati
field T(n̂),

alm5E dn̂ T~ n̂!Yl
m* ~ n̂!, ~6!

we can formulate the angular power spectrum as

^al 1m1
* al 2m2

&5d l 1l 2
D dm1m2

D Cl 1
. ~7!

For the ISW effect, the multipole moments are

alm
ISW5 i lE d3k

2p2E dr Ḟ~k!I l~k!Yl
m~ k̂!, ~8!

with I l(k)5*drWISW(k,r ) j l(kr), and the window function
for the ISW effectWISW ~see below!. The angular power
spectrum is then given by

Cl
ISW5

2

pE k2 dk PḞḞ~k!@ I l~k!#2, ~9!

where the three-dimensional power spectrum of the tim
evolving potential fluctuations is defined as

^Ḟ~k1!Ḟ~k2!&5~2p!3dD~k11k2!PḞḞ~k1!. ~10!
8-2
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NONLINEAR INTEGRATED SACHS-WOLFE EFFECT PHYSICAL REVIEW D65 083518
The above expression for the angular power spectrum ca
evaluated efficiently under the Limber approximation@20#
for sufficiently high l values, usually in the order of a few
tens, as

Cl
ISW5E dr

@WISW#2

dA
2

PḞḞFk5
l

dA
,r G . ~11!

In order to calculate the power spectrum of the time
rivative of potential fluctuations, we make use of the cosm
logical Poisson equation@21#. In Fourier space, we can rela
the fluctuations in the potential to the density field as

F5
3

2

Vm

a S H0

k D 2S 113
H0

2

k2 VKD 22

d~k,r !. ~12!

Thus, the derivative of the potential can be related to a
rivative of the density field and the scale factora. Consider-
ing a flat universe withVK50, we can write the full expres
sion for the power spectrum of time-evolving potent
fluctuations, as is necessary for the ISW effect valid in
regimes of density fluctuations, as

PḞḞ~k,r !5
9

4 S Vm

a D 2S H0

k D 4F S ȧ

a
D 2

Pdd~k,r !

22
ȧ

a
Pdḋ~k,r !1Pḋ ḋ~k,r !G ~13!

with WISW522 in Eqs.~9! and ~11!.
To calculate the power spectrum involving the corre

tions between the time derivatives of density fluctuationsPḋ ḋ
and the cross-correlation term involving the density and ti
derivative of the density fieldsPdḋ , we make use of the
continuity equation, which in position, or real, space can
written in the form

ḋ~x,r !52“•@11d~x,r !#v~x,r !. ~14!

In the linear regime of fluctuations, whend(x,r )
5G(r )d(x,0)!1, the time derivative is simplyḋ lin(x,r )
52¹•v(x,r ) and we can obtain the well-known result fo
linear theory velocity fluctuations in Fourier space as

v52 iĠd~k,0!
k

k2
. ~15!

Thus, in linear theory,Pḋ ḋ[k2Pvv(k,r )5Ġ2Pdd
lin (k,0) and

Pdḋ[kPdv(k,r )5GĠPdd
lin (k,0)

These lead to the well-known results for the linear IS
effect with a power spectrum forḞ as

PḞḞ
lin

~k,r !5
9

4S Vm

a D 2S H0

k D 4F2
ȧ

a
G~r !1ĠG2

Pdd
lin ~k,0!.

~16!

The term within the square brackets isḞ2 where F5G/a
following the derivation for the linear ISW effect in@22#.
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Even though we have replaced the divergence of the velo
field with a time derivative of the growth function, it shoul
be understood that the contributions to the ISW effect co
from the divergence of the velocity field and not direct
from the density field. Thus, to some extent, even the lin
ISW effect reflects statistical properties of the large sc
structure velocities.

In the mildly nonlinear to fully nonlinear regime of fluc
tuations, the approximation in Eq.~14!, involving d!1, is no
longer valid and a full calculation of the time derivative
density perturbations is required. This can be achieved in
second-order perturbation theory, although such an appr
mation need not be fully applicable as the second-order
turbation theory fails to describe even the weakly nonlin
regime of fluctuations exactly. Motivated by applications
the halo approach to large scale structure@5,6# and results
from numerical simulations@23#, we consider a description
for the time derivative of density fluctuations and rewrite E
~14! as

ḋ~x,r !52“•v~x,r !2“•d~x,r !v~x,r !, ~17!

where we have separated the momentum term involvinp
5(11d)v into a velocity contribution and a density velocit
product. In Fourier space,

ḋ~k!5 ik•p~k!5 ik•v~k!1E d3k8

~2p!3
d~k2k8!ik•v~k8!,

~18!

where we have dropped the time dependence for clarity.
first term involving the velocity field leads to the linea
theory ISW effect, while the nonlinear aspects are captu
in the term involving convolution of thedv term ~see also
@7#!. Following the approach motivated by Hu in Ref.@24#,
discussed by Cooray in Ref.@6#, and investigated in detai
through numerical simulations by Shethet al. in Ref. @23#,
we can write the power spectrum of density derivatives,
equivalently the divergence of the momentum density fie
as

Pḋ ḋ~k![k2Ppp~k!

5k2Pvv
lin ~k!1k2E d3k8

~2p!3
m82Pdd~ uk2k8u!Pvv~k8!

1k2E d3k8

~2p!3

~k2k8m8!m8

uk2k8u
Pdv

3~ uk2k8u!Pdv~k8!1k2E d3k8

~2p!3E d3k9

~2p!3
m8m9

3Tddvv~k2k8,2k2k9,k8,k9!. ~19!

In the nonlinear regime,k2k8;k andk2k9;k and we can
simplify by integrating over angles to obtain
8-3
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ASANTHA COORAY PHYSICAL REVIEW D 65 083518
Pḋ ḋ5k2Pvv
lin ~k!1

1

3
k2Pdd~k!E k82 dk8

2p2
Pvv~k8!. ~20!

Note that in the deeply nonlinear regime contributions fro
the trispectrum formed by the velocity-density correlatio
drop out; this is due to the fact that, under the halo approa
the nonlinear trispectrum resulting from the single halo te
is independent of the configuration and thus ofm8 and m9
~see the discussions in@6# and@25#!. Also, the term involving
the product of cross-power spectra between the density
velocity fields does not contribute in the nonlinear regime
small scales, the density fluctuations are independent of
large scale velocity field. In Fig. 1, we show the power sp
trum of momentum divergence, which in linear theory
simply described by the divergence of the velocity field, w
the extension to the nonlinear regime of fluctuations follo
ing Eq. ~20!.

Our description of the nonlinear momentum power sp
trum is similar to the derivation of the nonlinear kinetic S
effect by Hu@24# and Cooray@6# ~see also@23#! which in-
volves the momentum field along the line of sight. In E
~20!, the integral over the velocity power spectrum is simp
the rms of the velocity fluctuations

v rms
2 5E dk

Pdd
lin ~k!

2p2
. ~21!

Thus, the nonlinear power spectrum of the momentum fi
divergence, as relevant for the ISW effect, involves one
three components of the velocity field with 1/3v rms

2 ; note that
the expression for the fully nonlinear contribution to the m
mentum field along the line of sight is similar to the abo
and also involves one component of the velocity field
discussed in@24# and @6#. The resulting expression for th
nonlinear momentum field is fully consistent with simul
tions @23#.

FIG. 1. The power spectrum of the divergence of the momen
density field Pḋ ḋ(k). Here, we show the contribution due to th
divergence of the velocity field and the extension to the nonlin
regime using Eq.~20!.
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In addition to the power spectrum of density derivative
in Eq. ~13! we also require the cross-power spectrum b
tween the density derivatives and density field itself,Pdḋ . In
@23#, using the halo approach as a description of the mom
tum density field observed in simulations, it was found th
the cross correlation between the density field and the
mentum field can be well described as

Ppd~k!5APpp~k!Pdd~k!. ~22!

This is equivalent to the statement that the density and
mentum density fields are perfectly correlated with a cro
correlation coefficient of 1; this relation is exact at mild
linear scales while at deeply nonlinear scales this per
cross correlation requires a mass independent specific ve
ity for individual halos @23#. Using this observation, we
make the assumption thatPdḋ;APddPḋ ḋ, which is generally
reproduced in the halo model description of the cross co
lation between the density field and density field derivativ
This cross term leads to a 10% reduction of power at mu
poles between 100 and 1000, when compared to the t
when linear and nonlinear contributions are simply added

III. DISCUSSION

In Fig. 2, we show the angular power spectrum of t
ISW effect with its nonlinear extension~which we have la-
beled RS for Rees-Sciama effect!. The curve labeled ‘‘ISW’’
is the simple linear theory calculation with a power spectr
for potential derivatives given in Eq.~16!. The curves la-
beled ‘‘lin’’ and ‘‘nl’’ show the full nonlinear calculation fol-
lowing the description given in Eq.~13! and using the linear
theory or full nonlinear power spectrum, in Eq.~20!, for the

m

r

FIG. 2. The angular power spectrum of the full ISW effec
including nonlinear contribution. The contribution called Ree
Sciama~RS! shows the nonlinear extension, although for the to
contribution, the cross term between the momentum field and
density field leads to a slight suppression betweenl of 100 and
1000. The curve labeled ‘‘nl’’ is the full nonlinear contributio
while the curve labeled ‘‘lin’’ is the contribution resulting from th
momentum field under second-order perturbation theory.
8-4
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NONLINEAR INTEGRATED SACHS-WOLFE EFFECT PHYSICAL REVIEW D65 083518
density field, respectively. For the nonlinear density fie
power spectrum, we make use of the halo approach for la
scale structure clustering@5,6# and calculate the power spe
trum through a distribution of dark matter halos. We u
linear theory to describe the velocity field in both linear a
nonlinear cases; since the velocity field only contributes
an overall normalization, throughv rms, its nonlinear effects,
usually at highk values, are not important due to the shape
the velocity power spectrum and the behavior of the integ
in Eq. ~21!.

As shown in Fig. 2, the overall correction due to the no
linear ISW effect leads to roughly a two order of magnitu
increase in power atl;1000. The difference between th
linear and nonlinear theory density field power spectra in
~20! leads only to at most an order of magnitude change
power. Note that the curve labeled ‘‘lin’’ agrees with prev
ous second-order perturbation theory calculations of
Rees-Sciama effect@7#, while the curve labeled ‘‘nl’’ is also
consistent with previous estimates based on results from
merical simulations.

There is an additional feature that should be observe
Fig. 2. At l;100 to 1000, there is roughly a 10% decrease
total power. This is due to thePḋd term in Eq.~13!. If one
simply adds the linear ISW and nonlinear RS contributio
this cross-correlation term is not present. This dip, due t
cancellation, is present when comparing results based on
turbation theory for RS and numerical simulations for t
full nonlinear ISW effect~see@7#!; the cross term provides
natural explanation for the slight decrease in power.

In Fig. 3, we breakdown the contribution to the nonline
effect, without the linear ISW or cross-term contribution
into a function of steps in redshift. As shown, one essenti
finds equal contributions over a wide range in redshift w
most of the contributions coming from a redshift;1 to mul-

FIG. 3. The redshift dependence of the nonlinear ISW contri
tion. Here, we break down the contributions atz less than 0.5~dot-
ted line!, between 0.5 and 1.0~dashed line!, between 1.0 and 2.0
~long dashed line!, and for redshifts greater than 2~dot-dashed line!.
As shown, most of the contributions arise at a redshift of;1,
leading to the peak in power atl;100 and a sharp decrease the
after.
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tipoles of a few hundred where the power peaks.
Even though there is roughly two orders of magnitu

increase in power at multipoles around 1000, in Fig. 4,
show that this increase is still below the cosmic varian
associated with the primary contribution given by

DCl5A 2 f sky
21

2lD l1D l
2
Cl

CMB , ~23!

whereD l is the bin size in multipole space andf sky is the
fraction of sky covered. The signal-to-noise ratio for the d
tection of the power spectrum is

S S

ND 2

5
f sky

2 (
l

~2l 11!S Cl

Cl
nD 2

, ~24!

-

-

FIG. 4. ~Top! The total ISW contribution compared with cosm
variance due to primary anisotropies. As shown, the contributi
are far below the cosmic variance and the nonlinearities are
likely to impact the upcoming measurements of cosmological
rameters from CMB data. At small angular scales, where the n
linear contributions are well above the sample variance, other
ondary effects, such as the kinetic SZ effect, dominate
temperature fluctuations.~Bottom! Cumulative signal-to-noise ratio
for the detection of the nonlinear ISW power spectrum, in the pr
ence of the SZ thermal effect~dotted line! and not~solid line!, and
for an all sky experiment with no detector noise contribution.
8-5
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ASANTHA COORAY PHYSICAL REVIEW D 65 083518
where Cl
n is the power spectrum of noise withCl

n5Cl
CMB

1Cl
s1Cl

det; Cl
s is any contribution from secondary effec

andCl
det is any detector noise contribution. As shown in F

4~b!, the cumulative signal-to-noise ratio is less than 1 ev
for a full sky experiment withf sky51 and no detector noise
Here, we include contributions from the thermal and kine
Sunyaev-Zel’dovich effects~KSZ! @26,6# and the lensing ef-
fect on CMB @27# as secondary contributions to the noi
power spectrum. The top line with cumulative signal-t
noise ratio slightly above 1 is when the thermal SZ effec
removed from the noise contribution.

Given the significant sample variance and the fact that
nonlinear ISW effect has no special property, such as a
ferent frequency spectrum from the thermal CMB from t
case of the thermal SZ effect@26,28#, it is unlikely that the
nonlinear ISW effect power spectrum can be extracted fr
CMB data easily. Going to much smaller angular scales
large multipoles, leads to a reduction in the cosmic varian
although the increase in power associated with other sm
angular scale secondary effects such as the thermal SZ e
or the kinetic SZ effect can complicate any detection of
nonlinear ISW effect. Later, we will address the possibil
whether, instead of statistical properties such as the po
spectrum or the bispectrum~see below!, we can extract the
associated signal from individual objects such as mas
galaxy clusters.

A. ISW bispectrum

Following our earlier discussion for the angular pow
spectrum, we can also consider the bispectrum~see@29#!, or
the Fourier analogue of the three-point correlation functio

B~ n̂,m̂, l̂ ![^T~ n̂!T~m̂!T~ l̂ !&

[( ^al 1m1
al 2m2

al 3m3
&Yl 1

m1~ n̂!Yl 2

m2~m̂!Yl 3

m3~ l̂ !,

~25!

where the sum is over (l 1 ,m1),(l 2 ,m2),(l 3 ,m3). Statistical
isotropy again allows us to express the correlation in te
of an m-independent function,

^al 1m1
al 2m2

al 3m3
&5S l 1 l 2 l 3

m1 m2 m3
DBl 1l 2l 3

. ~26!

Here the quantity in parentheses is the Wigner 3j symbol.
The orthonormality relation for the Wigner 3j symbol im-
plies

Bl 1l 2l 3
5 (

m1m2m3
S l 1 l 2 l 3

m1 m2 m3
D ^al 1m1

al 2m2
al 3m3

&.

~27!

For the coupling between ISW effects, using the multip
lar moments written in Eq.~8!, we can write the bispectrum
as
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Bl 1l 2l 3
5A~2l 111!~2l 211!~2l 311!

4p

3S l 1 l 2 l 3

0 0 0D bl 1 ,l 2 ,l 3
, ~28!

with

bl 1 ,l 2 ,l 3
5

23

p3E k1
2 dk1E k2

2 dk2E k3
2 dk3 BḞḞḞ

3~k1 ,k2 ,k3!I l 1
~k1!I l 2

~k2!I l 3
~k3!

3E x2 dx jl 1~k1x! j l 2
~k2x! j l 3

~k3x!. ~29!

As before, the Limber approximation@20# allows one to sim-
plify the integrals for speedy calculation:

bl 1 ,l 2 ,l 3
5E dr

WISW~k1 ,r !WISW~k2 ,r !WISW~k3 ,r !

dA
4

3BḞḞḞ~k1 ,k2 ,k3!uk15 l 1 /dA ,k25 l 2 /dA ,k35 l 3 /dA
.

~30!

Similar to the power spectrum in Eq.~10!, the three-
dimensional bispectrum of the derivatives of potential flu
tuations is defined as

^Ḟ~k1!Ḟ~k2!Ḟnl~k3!&

5~2p!3dD~k11k21k3!BḞḞḞ~k1 ,k2 ,k3!.

~31!

As an approximation, this three-dimensional bispectrum
be calculated in second-order perturbation theory~e.g.,@30#!.
To obtain an exact result valid in both the weakly nonline
and nonlinear regimes, we consider the coupling betw
two linear ISW effects and the nonlinear extension involvi
the“•dv term. This leads to the following bispectrum:

BḞḞḞ~k1 ,k2 ,k3!52
27

8 S Vm

a D 3 H0
6

k1
2k2

2k3
2 F2

ȧ

a
G1ĠG2

3GĠFPdd~k1,0!Pdv~k2,0!

3
k3•k2

k2
1perm.G , ~32!

where the permutations are with respect to the ordering
k1 ,k2, and k3 leading to a total of six terms. In Eq.~30!,
WISW522 as defined earlier. Because of the dependence
an angle, sayk3•k2 in BḞḞḞ(k1 ,k2 ,k3), there are significant
cancellations and the final projected angular bispectrum
the ISW effect is smaller than a simple order of magnitu
estimate involving the cube of the temperature fluctuat
8-6
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amplitude. In Fig. 5, we show the cumulative signal-to-no
ratio for the ISW bispectrum, with

S S

ND 2

5 f sky (
l 1 ,l 2 ,l 3

Bl 1l 2l 3
2

6Cl 1
n Cl 2

n Cl 3
n

, ~33!

where again the noise power spectrum isCl
n ~see Ref.@22#

for details!. In Fig. 5, we takeCl
n5Cl

CMB to consider sample
variance from primary anisotropies alone. The cumulat
signal-to-noise ratio is on the order of a few times 1027,
suggesting that the bispectrum is unlikely to be detec
similar values are also found for other three-point statis
such as the skewness or the third moment. Thus, consi
with the second-order perturbation theory result@30#, there is
no significant non-Gaussian signal at the three-point le
formed by the correlation between linear ISW effects and
nonlinear ISW effect in the nonlinear regime of fluctuation
Also note that there is no bispectrum of the for

^Ḟ(k1)Ḟnl(k2)Ḟnl(k3)& since such a term leads to an od
number of velocity or density fluctuation terms.

B. Cross correlations

An additional way to extract or detect the presence of t
signal is through cross correlations with another source
anisotropy or a tracer of large scale structure. Since the
mentum density field is involved in the nonlinear ISW effe
one can expect the presence of a correlation between an
tracer of the momentum density field. It is well known th
the kinetic SZ effect traces the line of sight large scale str
ture momentum density field such that the temperature fl
tuations can be written as a modulation of the velocity fi
by baryon fluctuations,

TKSZ~ n̂!5E dr g~r !n̂•v~r ,n̂r !db~r ,n̂r !, ~34!

FIG. 5. The cumulative signal-to-noise ratio for the detection
the nonlinear ISW effect bispectrum as a function of the multip
l 3.
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wheredb is the fluctuation in the baryon field andg(r ) is a
weight function for Compton scattering withg[ṫe2t

5XH00.0691(12Yp)Vgh(11z)2e2t where t(r )5*0
r dr ṫ

is the optical depth out tor @31,22,6#.
The correlation between the nonlinear ISW effect and

kinetic SZ effect is then

^al 1m1
* ,ISWal 2m2

KSZ &}E d3k8

~2p!3
m8A12m82Pdb~k!Pvv~k8!,

~35!

and is equal to zero through the angular terms involving
integral overk•k85kk8m8; the cross correlation involves
cosine term from the divergence of the momentum ass
ated with the nonlinear ISW effect and a sine term from
line of sight momentum associated with the kinetic SZ effe
The geometrical cancellation is merely a statement that,
though locally the line of sight velocity field may be corr
lated with its transverse component, on average over
whole sky there is no such correlation. This cancellation c
be avoided by several techniques. In@6#, we discussed a
similar situation involving the cross correlation between t
thermal SZ effect and the kinetic SZ effect and suggested
use of a quadratic correlation involving the square of
density field. This is also equivalent to the use of absol
values of the temperature fluctuations.

C. Relation to other effects

We now suggest that the nonlinear extension to the IS
effect is essentially the same contribution described by@8#
using the transverse motion of lensing objects; in the con
of cosmic strings, this contribution is well known as th
Kaiser-Stebbins effect@12#. Writing T(n̂)5*drDT(r n̂,r ),
we consider the ISW effect such thatDT(r n̂,r )522Ḟ(r ).
Following our earlier discussion related to the nonlinear c
tribution, we can relate the potential fluctuations to the d
sity fluctuations using the Poisson equation. The contri
tions now follow as DT}@2ȧ/ad1 ḋ #. The first term
containing the time derivative of the scale factor was
cently reintroduced by@32# as a time-delay effect. As dis
cussed in@33#, the time-delay contribution to the CMB i
second order as it involves a product of the spatial grad
of the CMB at the last scattering surface and the cumula
time-delay contribution and is not simply described by
first-order contribution. Additionally, as discussed for the li
ear ISW effect, considering only theȧ term leads to an over
estimate of the fluctuation as there is a cancellation from
first-order term involving theḋ term.

As before, using the complete continuity equation, we c
relate the time derivative of the density fluctuationsḋ to the
divergence of the velocity field and the divergence of t
product of overdensity and velocityDT}@ ȧ/ad1“•(1
1d)v# Here, we consider the nonlinear contribution resu
ing from theDTnl}“•dv term and reintroduce the densit
field in terms of potentials using the Poisson equation,

f
e

8-7



em
a
to
c

t
tr

th
ng
n

e

o
lse

o
te

ar
al

f
n
ur
e
u

l
e

ng
o

e
io

ity
-
u

th

e
a
t,

ro
ta

e-

ibe
en-

rum
fect
the
er-
tion
ta-
y to
as

he

.

rip-

ion

tu
in

a

ns
r of

e.

ASANTHA COORAY PHYSICAL REVIEW D 65 083518
DTnl522“•~Fv!'2v'•~2“ rF!52v sinad lencosf.
~36!

The simplifications assume that potential fluctuations are
bedded in a velocity field with much larger coherence sc
so that gradients in the velocity field do not contribute
temperature anisotropies. Furthermore, we have introdu
the lensing deflection angled len52“ rF where the gradien
is now an angular gradient on the sky and there is no con
bution to temperature anisotropy from the gradient of
potential along the line of sight. This forces the contributi
component of the velocity field to be the one on the sky a
not along the line of sight. Here,a is the angle between th
line of sight and the velocity field andf is the position angle
from the observer. As is now clear, this latter description
the nonlinear ISW effect is what has been provided e
where in the context of moving gravitational lenses@10,11#.

The correspondence between the two effects can als
noted using the description that is well utilized to calcula
the gravitational lensing effect on the CMB@27,22,34#. Writ-
ing

T~ n̂!5T~ n̂1Dn̂!5TP~ n̂!1“ rT
P~ n̂!•Dn̂, ~37!

where angular deflections due to gravitational lensing
given by Dn̂52“ rf, where the projected lensing potenti
is f(n̂)5Dls /DsF. Here,TP(n̂) is the primary CMB con-
tribution while“ rT

P(n̂) is the angular gradient on the sky o
these temperature fluctuations. Essentially, gravitational le
ing angular deflections remap the distribution of temperat
fluctuations, and this remapping is captured by the dep
dence on distances, where the distance from lens to so
~CMB last scattering surface! is Dls and the distance from
observer to source isDs . Also, as written, the gravitationa
lensing effect on the CMB is second order due to the dep
dence on the angular gradient of the CMB on the sky,“ rT;
this is consistent with the fact that lensing does not cha
the surface brightness and results only in a modification
the temperature fluctuation distribution.

The second-order effect related to the nonlinear ISW
fect is due to the lensing of the dipole created by the mot
of halos such that“ rT5v sina. To be consistent with the
description given using the time derivative of the dens
fluctuations, we requireDls5Ds , such that there is no de
pendence on the ratio of distance factors, usually enco
tered in lensing studies. This is equivalent to the case
Dl!Ds such thatDls;Ds , which is not necessarily true
even for clusters atz;0.5. In either case, the nonlinear ISW
effect cannot be considered as a remapping of the temp
ture fluctuations similar to the conventional gravitation
lensing, as there is no real source, a temperature gradien
the problem; the temperature gradient essentially exists f
the coordinate transformation from a moving lens to a s
tionary lens.2 An inconsistency with the lensing mapping d

2We note that this issue has led to some confusion in the litera
when calculating the so-called moving lens effect, with some
cluding the ratio ofDls /Ds @10# while others, correctly, do not@11#.
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scription arises, unfortunately, when attempting to descr
the contribution from the divergence of the momentum d
sity field as a gravitational lensing effect.

D. Toward transverse velocities

As discussed before, the detection of the power spect
of temperature anisotropies due to the nonlinear ISW ef
is heavily affected by the dominant cosmic variance of
CMB primary anisotropies. From geometrical consid
ations, there is also no significant non-Gaussian contribu
or cross correlation with other effects. Thus, instead of s
tistical properties such as the power spectrum, one can tr
extract the associated signal in individual objects such
massive galaxy clusters.

In Fig. 6, we show the distinct signature formed by t
nonlinear ISW effect for a cluster of mass 531014M ( with a
transverse velocity of 100 km s21 across the line of sight
We assume a Navarro-Frenk-White~NFW! @35# profile for
the dark matter distribution of the cluster and take a desc
tion for the concentration-mass relation following@36#. In
terms of the density distribution of the cluster, the deflect
angle, at an impact distance ofh from the cluster center, is
given by

d len~h!5
8pG

c2h
E

0

h
r' dr' ( ~r'! ~38!

where the surface mass density is

( ~r'!5E
2r v

1r v
dr i r~r' ,r i!. ~39!

re
-

FIG. 6. The contribution due to the nonlinear ISW effect for
cluster of mass 531014M ( with a transverse velocity of
100 km s21 across the line of sight. The temperature fluctuatio
produce a distinct dipolar pattern on the sky and are of the orde
a few tenths of microkelvins. Here, thex andy coordinates are in
terms of the scale radius of the cluster, based on a NFW profil
8-8
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In the above,r' is the distance across the line of sight,r i is
the distance along the line of sight, andr v is the virial radius
of the cluster, which we take to be at an overdensity of 2
following the NFW@35# description. The above equation fo
the deflection angle also assumes a circularly symmetric d
matter distribution within the halo.

As shown in Fig. 6, the contribution to temperature flu
tuations is at most 0.3mK. In order to detect this smal
signal, one has to be able to extract it from other contri
tions to the CMB due to galaxy clusters. The most signific
contributions from clusters arise from the SZ thermal eff
@26# due to inverse Compton scattering of photons via
electrons. Here, temperature changes of the order of 1
are produced and these are now routinely observed tow
massive clusters@37#. The SZ thermal effect, however, has
distinct frequency dependence, and in multifrequency CM
data the effect can be separated out from thermal CMB
other fluctuations@28#. The next significant contribution
comes from the kinetic SZ effect due to the line of sig
motion of the scatterers in clusters@26#. In Fig. 7, we show
the kinetic SZ effect for the same cluster as in Fig. 6. He
we have assumed that the electron distribution in cluster
described by hydrostatic equilibrium@6# and have taken a
line of sight velocity of 100 km s21. The contribution due to
the SZ kinetic effect, and also the SZ thermal effect, is hig
peaked toward the center of the cluster and can be as hig
a few tens of microkelvins.

The next important contribution is due to gravitation
lensing of the large scale CMB gradient, whose rms is
order 13 mK arcmin21. With a deflection angle of orde
;0.5 arcmin, the contribution due to lensing is in the ran
of a few microkelvins. As shown in Fig. 7, the lensing effe
has the same profile shape as the contribution resulting f
the transverse velocity; the two profiles need not lie in
same direction since the large scale CMB gradient and
transverse velocities can be aligned differently. When
thermal SZ effect is separated, in temperature fluctuation
galaxy cluster exhibits a slightly offset dipolar pattern with
significant temperature increment or decrement toward
center, resulting from the direction of the line of sight velo
ity associated with the kinetic SZ effect. Detecting such
profile will certainly remain a challenging goal for futur
cluster observations@38#.

Eventually, if the transverse velocity contribution can
detected, its amplitude and the direction of the dipole patt
will provide significant information on large scale structu
velocities not generally available from other observatio
We can ask how well one can detect a typical cluster thro
this effect. First, to make a reasonable signal-to-noise de
tion, it is clear that one must extract effects such as
kinetic SZ and CMB lensing. This requires detailed know
edge of the baryon and dark matter distributions within cl
ters. Assuming such information is available, we can obt
an estimate for the signal-to-noise ratio by noting that
observed signal can be written as@38,39#

DT

T
~u!5s~u!1n~u!, ~40!
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FIG. 7. Temperature fluctuations due to clusters. Top: Kine
SZ effect; middle: lensing of CMB primary temperature fluctu
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wheres(u) is the profile of the signal andn(u) is the profile
of the noise distribution. In order to remove the excess no
associated with large scale temperature fluctuations from
mary anisotropies or other secondary effects, we can c
struct an appropriately normalized filter which provides
optimal detection of the signal in the presence of such no
This filter can be written as

C~ l!5
s~ l!

Cl
n F E d2l

~2p!2

us~ l!u2

Cl
n G21

~41!

whereCl
n is the power spectrum of the noise. The signal-

noise ratio for the detection of the profile, for an axisymm
ric distribution fors(u), is

S S

ND 2

5E l dl

2p

s~ l !2

Cl
n

. ~42!

In Fig. 8, we show the cumulative signal-to-noise ratio
a function of l. Here, we assume a noise power spectr
given by the sum of the intrinsic CMB and secondary effec
where secondary effects include all thermal contributio
CMB lensing, kinetic SZ, and a model for the inhomog
neous reionization. At smalll ’s, corresponding to the oute
extent of the cluster, fluctuations in the intrinsic CMB tem
perature confuse the detection of the signal, while at la
l ’s, corresponding to the inner extent of the cluster, fluct
tions from the local universe complicate it. Even if detail
properties of clusters are known so that intrinsic CMB le
ing and the kinetic SZ effect can be perfectly separated fr
the transverse effect, it is unlikely that we will know a
sources of temperature fluctuation along the line of si
toward a given cluster, leading to confusion in the detecti
For typical transverse velocities of order a few 100 km s21,
we find signal-to-noise values of the order of 0.1 sugges
that detection of this signal for individual clusters will re
main challenging even for an experiment with no instrum

FIG. 8. The signal-to-noise ratio for the detection of the nonl
ear ISW effect. The galaxy cluster considered here is the on
Fig. 6.
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tal noise contributions; alternatively, one can put an up
limit on the transverse velocity contribution at the level of
few thousand km s21; this upper limit is considerably large
than what one expects under currently popularLCDM cos-
mological models.

The signal-to-noise ratio for detection may be improved
cross-correlation techniques can be considered, e.g., if
has some knowledge of the intrinsic and secondary fluc
tions toward the observed cluster and of the direction of
large scale bulk flows from other methods, even if the a
plitude of that bulk flow is not known. Separately, since t
coherence scales of bulk flows are much larger than an i
vidual cluster, it may be possible to extract the transve
effect by averaging the signal over a number of cluste
Using numerically simulated cluster images, and realis
sources of noise and confusion, we plan to study how w
such an extraction can be performed in a future paper.

IV. SUMMARY

We have discussed the nonlinear extension to the i
grated Sachs-Wolfe effect resulting from the divergence
the large scale structure momentum density field. This n
linear ISW effect, calculated under the recently popular h
approach to nonlinear large scale structure clustering, le
to an increase in the total ISW contribution by roughly tw
orders of magnitude atl;1000. This increase, however,
still below the cosmic variance limit of the primary anisotr
pies; at smaller angular scales, secondary effects suc
gravitational lensing and the kinetic Sunyaev-Zel’dovich
fect dominate the nonlinear ISW power spectrum.

Further, we have shown that this second-order nonlin
ISW contribution is effectively the same as the contributi
previously described as a lensing effect due to the transv
motion of gravitational lenses and well known as the Kais
Stebbins effect related to cosmic strings. From geometr
considerations, there is no significant three-point correlat
function, or bispectrum, between the linear ISW effect a
its nonlinear counterpart. The correlation between the n
linear ISW effect and the kinetic SZ effect is again zero d
to the geometry associated with the line of sight and div
gence of the momentum density field. The nonlinear IS
contribution can potentially be used as a probe of the tra
verse velocity of dark matter halos such as galaxy clust
however, because of the small contribution to temperat
fluctuations of the order of a few tenths of microkelvin
extracting useful measurements on velocities will be ch
lenging.
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