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Thermodynamics and kinetic theory of relativistic gases in 2D cosmological models
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A kinetic theory of relativistic gases in two-dimensional space-time is developed in order to obtain the
equilibrium distribution function and the expressions for the fields of energy per particle, pressure, entropy per
particle, and heat capacities in equilibrium. Furthermore, by using the method of Chapman and Enskog for a
kinetic model of the Boltzmann equation the nonequilibrium energy-momentum tensor and the entropy pro-
duction rate are determined for a universe described by a two-dimensional Robertson-Walker metric. The
solutions of the gravitational field equations that consider the nonequilibrium energy-momentum tensor, asso-
ciated with the coefficient of bulk viscosity, show that opposed to the four-dimensional case, the cosmic scale
factor attains a maximum value at a finite time decreasing to a “big crunch” and that there exists a solution of
the gravitational field equations corresponding to a “false vacuum.” The evolution of the fields of pressure,
energy density, and entropy production rate with the time is also discussed.
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I. INTRODUCTION others we cite the works of Belinskét al. [13], Zimdahl
[14], and Di Prisccet al. [15].

The combination of general relativity with the kinetic  In this work we develop a kinetic theory of relativistic
theory of gases is remarkably useful to construct cosmologigases in a two-dimensional space-time. The balance laws for
cal modelg[1]. In these formulations the cosmic sources ofthe particle flow, energy-momentum tensor, and entropy flow
gravitational interactions are represented by the energyare obtained from the Boltzmann equation. We find also the
momentum tensor of a fluid; in addition we have the hypoth-€quilibrium distribution function and the expressions for the
esis of homogeneity and isotropy in the form of the well-fields of energy per particle, pressure, entropy per particle,
known Robertson-Walker metri@]. Although these theories enthalpy per particle, and heat capacities in equilibrium in a
have explained several important features of our universgwo-dimensional space. Moreover, by using the method of
fundamental questions still remain to be answdid Chapman and Enskog for the kinetic model of the Boltzmann

Models in lower dimensions offer interesting results that,equation proposed by Anderson and Wittirig] we calcu-
if properly analyzed, can be used to gain insight in the reallate the bulk viscosity and the entropy production rate. We
istic formulations. Two-dimensionai2D) gravity models ~apply the ideas of Murphj11] to the 2D gravitational field
have been under intensive investigation during the last tw&gquations and we show that opposed to the four-dimensional
decadeg4—9]. The old problems of quantum gravity, black case the cosmic scale factor attains a maximum value at a
hole physics, and string dynamics were tested in these thednite time decreasing to a “big crunch” and that there exists
ries. In particular Teitelboini4] and Jackiw{5] proposed a @ solution of the gravitational field equations corresponding
consistent model in two dimensions analogous to generdp a “false vacuum.” The difference between the solutions in
relativity. As immediate results, among othdis,8], this  the four- and two-dimensional cases is due to the fact that the
model offers a consistent Newtonian limit, gravitational col-relationship between the metric tensor and the sources in the
lapse solutions that are basically a 2D Schwarzschild anaD case is modified because the Einstein field equations give
logue, and cosmological models based in a 2D Robertsorf20 dynamics for the 2D case.

Walker metric. The article is structured as follows. In Sec. Il we intro-

For cosmological applications, a refinement in the con-duce the two-dimensional Robertson-Walker metric. The ki-
struction of these models can be obtained by considering Betic theory of relativistic gases in 2D is developed in Sec.
nonequilibrium scenario, including a bulk viscosity term in lll. In Sec. IV we introduce the gravitational equations of
the energy-momentum tenstor a review on viscous cos- motion in the 2D case and in Sec. V we search for the solu-
mology up to 1990 one is referred to Gr¢mQ]). In the tions of the gravitational field equations. Finally, in Sec. VI
four-dimensional case the inclusion of this term to analyzeve discuss the solutions that came out from the gravitational
the evolution of the cosmic scale factor with the time wasfield equations.
done by Murphy[11] who has found a solution that corre-
sponds only to an expansion. Other models were based on
the coupling of the Einstein field equations with the balance
equations of extended thermodynam(itg] (also known as One fundamental feature of 2D cosmological models is
causal or second-order thermodynamic th¢@amd among that they show considerably less mathematical complexity

and at the same time they preserve the physical principles

that are used to construct their four-dimensional counter-
*Electronic address: kremer@fisica.ufpr.br parts. One impressive result was that in 2D models the quan-
"Electronic address: devecchi@fisica.ufpr.br tization of the gravitational field is consistefi,6], opening
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the possibility of quantum cosmological models for the verywherel“llw is the affine connection. In the right-hand side of
early universe. These results in the 2D theories are of relthe above equation we have replaced the collision term of the
evance to include new ingredients in the “realistic” versions Boltzmann equation by the model equation proposed by
[8,9]. Anderson and Witting16], which refers to a relativistic gas
As it is well known, the so-called cosmological principle in the Landau and Lifshitz descriptidi9]. Further,r is a
is based on the assumption that the universe is spatially h@haracteristic time of order of the time between collisions,
mogeneous and isotropic. The metric that describes such? is the equilibrium distribution function, and* is the
kind of universe, known as the Robertson-Walker metric, hagwo-velocity such that)“U = c2.
the following form in a two-dimensional Riemannian space  The first moments of the one-particle distribution function
characterized by the metric tens@*” with signature are the particle flowN* and the energy-momentum tensor
(+-) [89] T*” which are defined by

- (dr)? dp dp
45" = (cdt®~ k(1)1 . & vemof prg o, T g S @

In the above equatior(t), the so-called cosmic scale factor, Furthermore, the entropy flo®* is defined by
is an unknown function of the time and has dimension of

length, whiler is a dimensionless quantity. If we introduce a " dp
new variablex=arcsin(/sr)/\s Eq. (1) reduces to S= —kcf pHtin f\/ag' ®
ds?=(cdt)*~ x()*(dx)%. (2 wherek is the Boltzmann constant.

The balance equations for the particle flov, energy-
momentum tensof*”, and entropy fluxs* can be obtained
from the Boltzmann equatio(6) and read

The components and the determingrt —det((g,,)) of the
metric tensorg,,, for the Robertson-Walker metrid) with
respect to the coordinategX) =(ct,x) are

N# , =0, T#" , =0, $,=s=0. 9
Y00~ 9 » 9u gtt’ 9 ' Above, s denotes the entropy production rate defined
through
The corresponding nonzero Christoffel symbols read
kqu f(o)( f 1)| f —dp 10
. K cT # (0) (0)
9= kxk, 1%1:;: 4 f f Po

In the Landau and Lifshitz descriptidd9] the particle flow
where the dot denotes the derivative with respect to the coand the energy-momentum tensor are decomposed according
ordinatex’=ct. Once the Christoffel symbols are known the to
nonvanishing components of the Ricci tenBpy, =R}, and

the curvature scaldR=g*'R,,, can be calculated and it fol- N#=nU*+ 7%, (11)
lows

. ) . TH'=p) — (P+m) A"+ %I;U“UV, (12)
ROOZZ! Rll: — KK, R= 2; . (5)
wheren is the particle number density/* the nonequilib-
rium part of the particle flonp‘“*) the pressure deviator, i.e.,
IIl. KINETIC THEORY OF RELATIVISTIC GASES IN 2D the traceless part of the pressure tenothe hydrostatic
A. Boltzmann equation and fields in equilibrium pressurew the dynamic pressure, i.e., the nonequilibrium

. L ) ) part of the trace of the energy-momentum tenedhe inter-
We conglder a relat[V|st|c_ ideal gas with particles of rest, | energy per particle, ani“” the projector defined by
massm which is described in the phase space by the one-

particle distribution functionf(x*,p#). The momentum 1
(p*)=(p°p) has a constraint of constant lenggl,p*p* A#P=gt’——=U*U" suchthat A*"U,=0,
=m?c? so thatf (x*,p*)=f(x,p,t). ¢

The evolution equation of the one-particle distribution APPAT=ART A APT=1, (13

function in the phase space is described by the Boltzmann

equation, which in the presence of a gravitational field isThe nonequilibrium part of the particle flog* and the
given by[17,18 pressure deviatgp‘*” are perpendicular to*.

One can also decompose the entropy flow as

of of U“p
P TP == A (=19, (e

axH ap S*=nsU*+ ¢*, (14
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wheres denotes the entropy per particle and the entropy T 3
flux which is perpendicular t&J*. h~mc>+ T 1+ 4—§+ . }
The equilibrium distribution function in a two-
dimensional space, which is the so-called Maxwettsirr k 3 9
distribution function, can be written as c,~5 1+ 20 Azt } (21
£(0) n —(1KT)U#p h _ m_c2 In the ultrarelativistic limiting case wheig<1, i.e., for high
“2meky(0)° #,  Wwhere [{=-—, temperatures and/or for very small rest mass, we have that
(15  the leading term of each thermodynamic field is given by
whereT denotes the absolute temperature. The parandeter e~kT= E se~k 1+|nE ,
represents the ratio between the rest energy of a particle and n nc
the thermal energy of the gas. Moreovi§y,({) denotes the h~2kT. c ~3K 22)
modified Bessel function of second kiridee, for example, ’ v ’
20
(20 B. Dynamic pressure in a homogeneous and isotropic universe
F(E) We shall determine in this section the dynamic pressure
Z\" % and the entropy production rate in a spatially homogeneous
Kn(§)=<§) 1 f e Y(y?—1)"" (2 dy, and isotropic universe. In the four-dimensional case these
'l n+ 5 topics were discussed by Weinbg@l] within the frame-

work of a phenomenological theory and by Bernstgln
within the framework of a kinetic theory of gases. Without

I L L loss of generality, we shall use here the Anderson and Wit-
Once the equilibrium distribution function is known, one CaNting model of the Boltzmann equatia) in order to sim-

obtain the following expressions for the fields of energy PElify the calculations.

particle, pressure, and entropy per particle in equilibrium: We begin by neglecting the space gradients, since we are
dealing with a spatially homogeneous and isotropic universe,

(16)

e=ma Ka({) _ E} P=nkT and by considering a comoving frame whet&“) = (c,0) in
Ki(g) ¢ ' a two-dimensional space. Hence it follows that the Boltz-
o 0 mann equatiori6) reduces to
SE_k{kT " 2mcK1(§)”' 0 o et 1 s
ax° Kpr?p - CT( )- (23

The thermodynamic quantities enthalpy per particlend
heat capacities per particle at constant volumand at con- We use now the Chapman and Enskog mettsee, for ex-
stant pressure,, follow from their definitions by using Eq. ample, [17]) and search for a solution of the Boltzmann

(17), yielding equation(23) of the form
—f(0
P Ka(¢) de f=10(1+¢), (24)
h=e+—=m¢c . C=|= i
n K1(0) at/, wheref(© is the Maxwell-Jttner distribution function(15)

K K ) and f(©¢ is the deviation from equilibrium of the one-
=k| £2+3¢ 2(5)_§2< 2(0) _1} (18) particle distribution function. We insert the above represen-
K1() K1() ’ tation into the Boltzmann equatia23) and by taking into
account only the derivatives of the Maxwelltther distribu-
ah ) Ko(0)  L(Ka(D))? tion function we get that the deviatiop is given by
“lam) T ko
p ! ! aInfO o ginfO
. =-—CrT —2—p
=c,tk. (19 ax0 K~ dp
The above thermodynamic fields in the nonrelativistic limit- n Ki\T ¢ T ¢ «p?
ing case wheré>1, i.e., for low temperatures, read =—C7T ﬁ+ 1—§K—1)?+ ﬁpo?Jr KT ;E .
(25)
A+ ol 1+ S,
e=m 2 Y For the elimination ofn and T from Eq. (25) we use the

balance equations of the particle flow and energy-momentum

tensor of a nonviscous and nonheat-conducting relativistic
=+1Iny2 mk+|n\ﬁ+—+... , (20 e :
2 . n ¢ } (20 gas whose constitutive equations read:

SE%k
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/AUV 0.015
N“=nU*,  T#=(net+P)—5——Pg". (26
Insertion of the above representations into the balance equa- g 0.01
tionsN#. =0 andT#",,=0 leads to 2
g
1 9 2
\/_5 W(\/an u*)=0, (27 0.005 |
P 1 9 u“y” .
- ﬁXVgM +\/_§{9XV \/a(ne"‘P) o2 % 2 4 . 6 8 10
NN R . .
+(ne+P)IE C;J o, 29) FIG. 1. Volume viscositypo/\kTmvs .
| Kz Ki, 1
, p=—Pr 3= —1+——|-1-—|. (33
In a comoving frame Eq27) becomes (K K1 Cy
. . In the above equation Kidenotes the integral for the modi-
n__ f' (29 fied Bessel functiongsee Abramowitz and Steguyi20], p.
n K 483):
while the spatial components of E@®8) are identically sat- ) w g ¢ Costt
isfied due to the constraint that all quantities,e, and « Kin()= | Kiy-1(t)dt= dt. (34)
) : : £ 0 cosh't
are only functions of the time coordinate. The temporal com-
ponent of Eq(28) can be written as Hence we have identified the coefficient of proportionality

betweenw andck/« as the bulk viscosity;. If we compare
Eq. (33) with the constitutive equation for the dynamic pres-
sure, given in terms of the divergence of the two-velocity,
i.e., m=—nU*  , we infer that hereex/« plays the same
where the heat capacity per particle at constant voloie  role asU*.,. Furthermore, due to the fact that the bulk
given by Eq.(18). Equationg29) and(30) are used to elimi-  viscosity is a positive quantity the dynamic pressure de-

T  k« 20
TN 30

viscosity vanishes in the nonrelativistic and ultra-relativistic
limiting cases. This can be seen from Fig. 1 where the coef-
Once the nonequilibrium distribution functid@4) is known  ficient of bulk viscosityno/\kTm s plotted versus the pa-

it is possible to calculate the projection of the energy-rameter/=mc?/(kT). Here we have chosen the following
momentum tensor in a comoving frame which correspondexpression for the characteristic tiff22]

to the sum of the hydrostatic pressure with the dynamic pres-
1 . CCpkT
,  with vg= ch

naten and T from Eq. (25), yielding creases when the universe is expandirg-0) while it in-
oy - creases when the universe is contractiv'tg:()).
K2 c C p7| Kk As in the four-dimensional case the coefficient of bulk
= +1-¢——|—+ —=po—=—|—.
¢=cr i+l é'VKl) c, cUTpO kT po| k (31)

sure, i.e., r= (35
Novg
P+w=—A,T# . . . . . .
where o is a differential cross section and the adiabatic
u,.u, dp sound speed.
9 ——|c| pp*ig — If ider that the distribution function is given b
u c Po we consider that the distribution function is given by

Eq. (25), i.e., f=f((1+ ¢), we can use the approximation

=cK3f pzfﬂ. (32 In(1+¢)~¢ valid for |p|<1 in order to write the entropy
Po production ratg10) in a comoving frame as
We insert Eq.(24) together with Eq(31) into (32) and inte- = Ef f(0)¢2\/§d . (36)
grate the resulting equation, yielding T
) We insert now Eq(24) together with Eq(31) into (36) and
_ K get by integrating the resulting equation
W= — 770;,
N\ 2
_ 7 (x @
where ST\ K
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Hence the entropy production rate is connected with the bullassume a barotropic equation of state for the pressure and a
viscosity. Weinberd21] has derived a similar formula in a linear relationship between the coefficient of bulk viscosity
four-dimensional space by using a phenomenological theorgnd the energy density, so that

and has also shown that the bulk viscosity alone could not

explain the high entropy of the present microwave back- P=(y—1)e, n=ae (42)
ground radiation. For more details one is referred to Wein- .
berg[21,2]. Above « is a constant ang' may range from & y<2. The

value y=1 refers to a pure mattgdush, y=2 to a pure
radiation, andy<<1 to a “false vacuum.”
If we introduce the Hubble parameter= «/« the field

Given the sources of our universe it is possible to obtainequations(41) can be written thanks to E¢42) as
the equations of motion for the gravitational field in the

whole space-time. The starting point is of course, the Ein- 1 H2=47¢(y—2—aH), H(y—aH)e+e=0.
stein theory of gravitation. (43)

As far as we are working in 2D some fundamental prob-
lems appear. In fact, the main point is that the Einstein actiomhe elimination of the energy density of the two above equa-
in 2D furnishes no dynamics. In other words the usual left-tions leads to an equation for the Hubble parameter that
hand side of Einstein equations of motion that follows byreads
using the Hamilton variational principle

IV. GRAVITATIONAL EQUATIONS OF MOTION

(H+2HH)(y—2—aH)+aH(H+H?)

1
R~ 59,,R=0, (38) +H(y=2-aH)(y—aH)(H+H»)=0. (49

are in fact anidentity in 2D. This is related to the gauge Let us search for a solution of E¢44) by consideringH
invariances of gravitation in 2D: space-time diffeomor- =H, =constant. In this case we get that E44) reduces to
phisms and(local) conformal transformations. With this in (y—2—aH, )(y—aH,)H2 =0 and apart from the trivial
mind Teitelboim[4] and Jackiw[5] proposed as 2D actién  solutionH, =0 we have two other solutions, namely}
=y/H, and(ii) a=(y—2)/H, . Only the first solution is
_ 2, [— " physically possible sinceQy=<2.
S f d X\/_g{N(X)[R(XH&TT”(X)]}’ 39 We proceed to analyze the two energy conditip2s],

u . namely the weak energy condition which dictates that the
where T),(x) is the trace of the energy-momentum tensor.energy density is a semipositive quantity, i.€=0 and the

Above we have not taken into account the term that refers Qyrong energy condition which imposes that the inequality
the cosmological constant. Using the variational principle for, p3 =0 must hold implying thatH/H, <1
=1

Fhe auxiliary fieldN(x) the equation of motion that follows We are now ready to determine the solutions of the gravi-

IS tational field equations. To that end we write the system of
Egs.(41) and(43) as

R(X)=—87T(x), (40
together with the conservation laW*”.,=0. Equation(40) (y—1) £:4WP( y—2— yf) '
relates the curvature scalar with the trace of the energy- K K
momentum tensor. . .
K K P
y—(l—— +==0, (45
V. SOLUTION OF GRAVITATIONAL FIELD EQUATIONS K K P
The gravitational field equations are obtained from Eg. — 1) (H+H2) =47P(v—2—vH
(40) together withT#".,=0 and by taking into account the (y= 1) )=4mPly ),
constitutive equation for the energy-momentum terigtf Hy(1-H)P+P=0, (46)
=eU*U"—(P+w)A*” wheree=ne is the energy density.
Hence it follows that respectively, where the cosmic scale factor, the Hubble pa-

. . ) rameter, the pressure, and the time are now taken as dimen-
k=—4m(e-P-w)k, «(e+tP+w)+ke=0. (4)  sionless quantities with respectht, . From the first system
. of equationg45) one may determine the cosmic scale factor
Since w= — n«/k, the above system is closed if we can «(t) and the pressurB(t) while from the second onet6)
relate the pressure and the coefficient of bulk viscosity  the Hubble parametét (t) can be obtained. We have chosen
to the energy densitg. Here we follow Murphy[11] and  two values fory, one of themy=0.5 corresponds to a nega-
tive pressurg“false vacuum” while the othery=1.5 im-
plies a positive pressure. For the solutions of the two systems
IFrom this section on, units have been chosen so @at=k of Egs. (45) and (46) the following initial conditions were
=1. taken into account:
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FIG. 2. Cosmic scale factoe(t) vs timet. FIG. 4. Pressur@(t) vs timet.

_ _ _ tion (29) which readsn=«1/«. In Fig. 6 we show the evolu-
for y=0.5, then H(0)=0.5x(0)=1, tion of the entropy production rate with respect to the time.
P(0)=—1,

VI. DISCUSSION OF THE RESULTS

for y=15then H(0)=0.5x«(0)=1, We proceed to discuss the results obtained in the last sec-
P(0)=1. (47) tion. First we call attention to the fact that the period where

this theory can be applied is the one where there exists an

In Figs. 2-5 it is shown the evolution with respect to theinteraction between radiation and matter. The reason is that

time of the cosmic scale factor, the Hubble parameter, thé" the period of pure radiation the dynamic pressure vanishes
pressure, and the energy density which follow from the sysWhile in the period of pure mattédusy there is no interac-
tems of Eqs(45) and(46) by tak|ng into account the initial tion at all. Furthermore, the solutions are not valid for all
conditions(47) and the barotropic equation of state. values of the time, since in some periods the radiation de-

Another important quantity which can be plotted versuscouples from matter and we have no more the interaction
the time is the entropy production rate. For the cases wher@etween the radiation and matter which implies a vanishing
y>1 the dimensionless expression for entropy productiorflynamic pressure.

rate (37) can be written as Plotted in Fig. 2 is the cosmic scale factor as a function of
the time. We have chosen that at the beginning of this period
yH?2 (t=0 by adjusting clocksthe cosmic scale factor is different
= ——7. (48  from zero. We infer from this figure that the cosmic scale
(y=1k factor has a maximum at~0.0243 for y=1.5 and att

) ) ~0.0123 fory=0.5. From these points on the cosmic scale
In order to obtain the above equation we have used the equgscior decreases and tends to zero. i.e.. it goes to a “big

tion of stateP=nT and the solution of the continuity equa- crynch.” It is noteworthy that the corresponding solution in

05

04
03| _

y=15 2,005
02

0,1+

0
0,1

Hubble parameter
rgy density

02

Ene
=)
0
W

03 .
o4l y=05 ™

1,99
0,5

06 S L

s ) | . 1,985 . I s I .
0 0,01 0,02 0,03 0 001 0,02 0,03

t t

FIG. 3. Hubble parametét (t) vs timet. FIG. 5. Energy densitg(t) vs timet.
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08 field equations give no dynamics for the 2D case.

The Hubble parameter as a function of the time is shown
in Fig. 3. For both values ofy the Hubble parameter de-
creases, attains a zero value for a time which corresponds to
the maximum of the cosmic scale factor, and assumes nega-
tives values.

In Figs. 4 and 5 the evolution of the pressure and of the
energy density are represented as functions of the time, re-
spectively. Both functions decrease with the time and attain
their minimum values at the times where the cosmic scale
factor has its maximum value. Since in this theory there ex-
ists no mechanism that could increase the pressure and the
energy density, we infer that the solutions foe0.0243
‘ | , , / when y=1.5 and fort=0.0123 wheny=0.5 are not physi-

0 0,01 0.02 0,03 0,04 cally possible. The same conclusion can be drawn out from

t Fig. 6 where the evolution of the entropy production rate is
plotted as a function of the time. From this figure we note
that the entropy production rate decreases with the time and
attains its minimum €=0) when the cosmic scale factor
the four-dimensional cadd 1] neither has this behavior for reaches its maximum value. At this point the entropy per
the cosmic scale factor nor admits a “false vacuum” solu-particles attains its maximum value sinceEDs=s=0. There
tion. As was previously pointed out the difference betweerexists no mechanism in this theory that could increase the
the solutions in the four- and two-dimensional cases is due tentropy density rate from its minimum value with a corre-
the fact that the relationship between the metric tensor andponding decrease of the entropy per particle from its maxi-
the sources in the 2D case is modified because the Einstemum value.

Entropy production rate

FIG. 6. Entropy production rate(t) vs timet.
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