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Thermodynamics and kinetic theory of relativistic gases in 2D cosmological models
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A kinetic theory of relativistic gases in two-dimensional space-time is developed in order to obtain the
equilibrium distribution function and the expressions for the fields of energy per particle, pressure, entropy per
particle, and heat capacities in equilibrium. Furthermore, by using the method of Chapman and Enskog for a
kinetic model of the Boltzmann equation the nonequilibrium energy-momentum tensor and the entropy pro-
duction rate are determined for a universe described by a two-dimensional Robertson-Walker metric. The
solutions of the gravitational field equations that consider the nonequilibrium energy-momentum tensor, asso-
ciated with the coefficient of bulk viscosity, show that opposed to the four-dimensional case, the cosmic scale
factor attains a maximum value at a finite time decreasing to a ‘‘big crunch’’ and that there exists a solution of
the gravitational field equations corresponding to a ‘‘false vacuum.’’ The evolution of the fields of pressure,
energy density, and entropy production rate with the time is also discussed.
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I. INTRODUCTION

The combination of general relativity with the kinet
theory of gases is remarkably useful to construct cosmol
cal models@1#. In these formulations the cosmic sources
gravitational interactions are represented by the ene
momentum tensor of a fluid; in addition we have the hypo
esis of homogeneity and isotropy in the form of the we
known Robertson-Walker metric@2#. Although these theories
have explained several important features of our unive
fundamental questions still remain to be answered@3#.

Models in lower dimensions offer interesting results th
if properly analyzed, can be used to gain insight in the re
istic formulations. Two-dimensional~2D! gravity models
have been under intensive investigation during the last
decades@4–9#. The old problems of quantum gravity, blac
hole physics, and string dynamics were tested in these t
ries. In particular Teitelboim@4# and Jackiw@5# proposed a
consistent model in two dimensions analogous to gen
relativity. As immediate results, among others@5,8#, this
model offers a consistent Newtonian limit, gravitational c
lapse solutions that are basically a 2D Schwarzschild a
logue, and cosmological models based in a 2D Roberts
Walker metric.

For cosmological applications, a refinement in the co
struction of these models can be obtained by considerin
nonequilibrium scenario, including a bulk viscosity term
the energy-momentum tensor~for a review on viscous cos
mology up to 1990 one is referred to Gron@10#!. In the
four-dimensional case the inclusion of this term to analy
the evolution of the cosmic scale factor with the time w
done by Murphy@11# who has found a solution that corre
sponds only to an expansion. Other models were base
the coupling of the Einstein field equations with the balan
equations of extended thermodynamics@12# ~also known as
causal or second-order thermodynamic theory! and among
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others we cite the works of Belinskiiˇ et al. @13#, Zimdahl
@14#, and Di Priscoet al. @15#.

In this work we develop a kinetic theory of relativisti
gases in a two-dimensional space-time. The balance laws
the particle flow, energy-momentum tensor, and entropy fl
are obtained from the Boltzmann equation. We find also
equilibrium distribution function and the expressions for t
fields of energy per particle, pressure, entropy per parti
enthalpy per particle, and heat capacities in equilibrium i
two-dimensional space. Moreover, by using the method
Chapman and Enskog for the kinetic model of the Boltzma
equation proposed by Anderson and Witting@16# we calcu-
late the bulk viscosity and the entropy production rate.
apply the ideas of Murphy@11# to the 2D gravitational field
equations and we show that opposed to the four-dimensi
case the cosmic scale factor attains a maximum value
finite time decreasing to a ‘‘big crunch’’ and that there exis
a solution of the gravitational field equations correspond
to a ‘‘false vacuum.’’ The difference between the solutions
the four- and two-dimensional cases is due to the fact that
relationship between the metric tensor and the sources in
2D case is modified because the Einstein field equations
no dynamics for the 2D case.

The article is structured as follows. In Sec. II we intr
duce the two-dimensional Robertson-Walker metric. The
netic theory of relativistic gases in 2D is developed in S
III. In Sec. IV we introduce the gravitational equations
motion in the 2D case and in Sec. V we search for the so
tions of the gravitational field equations. Finally, in Sec.
we discuss the solutions that came out from the gravitatio
field equations.

II. ROBERTSON-WALKER METRIC

One fundamental feature of 2D cosmological models
that they show considerably less mathematical comple
and at the same time they preserve the physical princi
that are used to construct their four-dimensional coun
parts. One impressive result was that in 2D models the qu
tization of the gravitational field is consistent@5,6#, opening
©2002 The American Physical Society15-1
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the possibility of quantum cosmological models for the ve
early universe. These results in the 2D theories are of
evance to include new ingredients in the ‘‘realistic’’ versio
@8,9#.

As it is well known, the so-called cosmological princip
is based on the assumption that the universe is spatially
mogeneous and isotropic. The metric that describes s
kind of universe, known as the Robertson-Walker metric,
the following form in a two-dimensional Riemannian spa
characterized by the metric tensorgmn with signature
(12) @8,9#

ds25~cdt!22k~ t !2
~dr !2

12«r 2 . ~1!

In the above equationk(t), the so-called cosmic scale facto
is an unknown function of the time and has dimension
length, whiler is a dimensionless quantity. If we introduce
new variablex5arcsin(A«r )/A« Eq. ~1! reduces to

ds25~cdt!22k~ t !2~dx!2. ~2!

The components and the determinantg52det((gmn)) of the
metric tensorgmn for the Robertson-Walker metric~1! with
respect to the coordinates (xm)5(ct,x) are

g005g0051, g1152k25
1

g11
, g5k2. ~3!

The corresponding nonzero Christoffel symbols read

G11
0 5k̇k, G01

1 5
k̇

k
, ~4!

where the dot denotes the derivative with respect to the
ordinatex05ct. Once the Christoffel symbols are known th
nonvanishing components of the Ricci tensorRmn5Rmtn

t and
the curvature scalarR5gmnRmn can be calculated and it fol
lows

R005
k̈

k
, R1152k̈k, R52

k̈

k
. ~5!

III. KINETIC THEORY OF RELATIVISTIC GASES IN 2D

A. Boltzmann equation and fields in equilibrium

We consider a relativistic ideal gas with particles of re
massm which is described in the phase space by the o
particle distribution function f (xm,pm). The momentum
(pm)5(p0,p) has a constraint of constant lengthgmnpmpm

5m2c2 so thatf (xm,pm)[ f (x,p,t).
The evolution equation of the one-particle distributi

function in the phase space is described by the Boltzm
equation, which in the presence of a gravitational field
given by @17,18#

pm
] f

]xm 2Gmn
1 pmpn

] f

]p
52

Umpm

c2t
~ f 2 f (0)!, ~6!
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whereGmn
1 is the affine connection. In the right-hand side

the above equation we have replaced the collision term of
Boltzmann equation by the model equation proposed
Anderson and Witting@16#, which refers to a relativistic gas
in the Landau and Lifshitz description@19#. Further,t is a
characteristic time of order of the time between collision
f (0) is the equilibrium distribution function, andUm is the
two-velocity such thatUmUm5c2.

The first moments of the one-particle distribution functi
are the particle flowNm and the energy-momentum tens
Tmn which are defined by

Nm5cE pm fAg
dp

p0
, Tmn5cE pmpn fAg

dp

p0
. ~7!

Furthermore, the entropy flowSm is defined by

Sm52kcE pm f ln fAg
dp

p0
, ~8!

wherek is the Boltzmann constant.
The balance equations for the particle flowNm, energy-

momentum tensorTmn, and entropy fluxSm can be obtained
from the Boltzmann equation~6! and read

Nm
;m50, Tmn

;m50, Sm
;m5§>0. ~9!

Above, § denotes the entropy production rate defin
through

§5
kUm

ct E pm f (0)S f

f (0)
21D ln

f

f (0)
Ag

dp

p0
. ~10!

In the Landau and Lifshitz description@19# the particle flow
and the energy-momentum tensor are decomposed acco
to

Nm5nUm1J m, ~11!

Tmn5p^mn&2~P1Ã!Dmn1
en

c2 UmUn, ~12!

wheren is the particle number density,J m the nonequilib-
rium part of the particle flow,p^mn& the pressure deviator, i.e
the traceless part of the pressure tensor,P the hydrostatic
pressure,Ã the dynamic pressure, i.e., the nonequilibriu
part of the trace of the energy-momentum tensor,e the inter-
nal energy per particle, andDmn the projector defined by

Dmn5gmn2
1

c2 UmUn, such that DmnUn50,

DmnDn
s5Dms,DmnDmn51. ~13!

The nonequilibrium part of the particle flowJ m and the
pressure deviatorp^mn& are perpendicular toUm.

One can also decompose the entropy flow as

Sm5nsUm1fm, ~14!
5-2
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THERMODYNAMICS AND KINETIC THEORY OF . . . PHYSICAL REVIEW D 65 083515
wheres denotes the entropy per particle andfm the entropy
flux which is perpendicular toUm.

The equilibrium distribution function in a two
dimensional space, which is the so-called Maxwell-Ju¨ttner
distribution function, can be written as

f (0)5
n

2mcK1~z!
e2(1/kT)Umpm, where z5

mc2

kT
,

~15!

whereT denotes the absolute temperature. The parametz
represents the ratio between the rest energy of a particle
the thermal energy of the gas. Moreover,Kn(z) denotes the
modified Bessel function of second kind~see, for example
@20#!

Kn~z!5S z

2D n GS 1

2D
GS n1

1

2D E1

`

e2zy~y221!n2(1/2) dy.

~16!

Once the equilibrium distribution function is known, one c
obtain the following expressions for the fields of energy p
particle, pressure, and entropy per particle in equilibrium

e5mc2FK2~z!

K1~z!
2

1

z G , P5nkT,

sE5kH e

kT
2 lnF n

2mcK1~z!G J . ~17!

The thermodynamic quantities enthalpy per particleh and
heat capacities per particle at constant volumecv and at con-
stant pressurecp follow from their definitions by using Eq
~17!, yielding

h5e1
P

n
5mc2

K2~z!

K1~z!
, cv5S ]e

]TD
v

5kFz213z
K2~z!

K1~z!
2z2S K2~z!

K1~z! D
2

21G , ~18!

cp5S ]h

]TD
p

5kFz213z
K2~z!

K1~z!
2z2S K2~z!

K1~z! D
2G

5cv1k. ~19!

The above thermodynamic fields in the nonrelativistic lim
ing case wherez@1, i.e., for low temperatures, read

e'mc21
kT

2 F11
3

4z
1 . . . G ,

sE'kF1

2
1 lnA2pmk1 lnAT

n
1

1

z
1 . . . G , ~20!
08351
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h'mc21
3kT

2 F11
3

4z
1 . . . G ,

cv'
k

2 F11
3

2z
2

9

4z2 1 . . . G . ~21!

In the ultrarelativistic limiting case wherez!1, i.e., for high
temperatures and/or for very small rest mass, we have
the leading term of each thermodynamic field is given by

e'kT5
P

n
, sE'kF11 ln

2kT

nc G ,
h'2kT, cv'3k. ~22!

B. Dynamic pressure in a homogeneous and isotropic universe

We shall determine in this section the dynamic press
and the entropy production rate in a spatially homogene
and isotropic universe. In the four-dimensional case th
topics were discussed by Weinberg@21# within the frame-
work of a phenomenological theory and by Bernstein@1#
within the framework of a kinetic theory of gases. Witho
loss of generality, we shall use here the Anderson and W
ting model of the Boltzmann equation~6! in order to sim-
plify the calculations.

We begin by neglecting the space gradients, since we
dealing with a spatially homogeneous and isotropic unive
and by considering a comoving frame where (Um)5(c,0) in
a two-dimensional space. Hence it follows that the Bol
mann equation~6! reduces to

] f

]x0 22
k̇

k
p

] f

]p
52

1

ct
~ f 2 f (0)!. ~23!

We use now the Chapman and Enskog method~see, for ex-
ample, @17#! and search for a solution of the Boltzman
equation~23! of the form

f 5 f (0)~11f!, ~24!

where f (0) is the Maxwell-Ju¨ttner distribution function~15!
and f (0)f is the deviation from equilibrium of the one
particle distribution function. We insert the above repres
tation into the Boltzmann equation~23! and by taking into
account only the derivatives of the Maxwell-Ju¨ttner distribu-
tion function we get that the deviationf is given by

f52ctS ] ln f (0)

]x0
22

k̇

k
p

] ln f (0)

]p D
52ctF ṅ

n
1S 12z

K2

K1
D Ṫ

T
1

c

kT
p0

Ṫ

T
1

c

kT

k̇

k

p2

p0
G .

~25!

For the elimination ofṅ and Ṫ from Eq. ~25! we use the
balance equations of the particle flow and energy-momen
tensor of a nonviscous and nonheat-conducting relativi
gas whose constitutive equations read:
5-3
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G. M. KREMER AND F. P. DEVECCHI PHYSICAL REVIEW D65 083515
Nm5nUm, Tmn5~ne1P!
UmUn

c2 2Pgmn. ~26!

Insertion of the above representations into the balance e
tions Nm

;m50 andTmn
;n50 leads to

1

Ag

]

]xm ~AgnUm!50, ~27!

2
]P

]xn gmn1
1

Ag

]

]xn FAg~ne1P!
UmUn

c2 G
1~ne1P!Gln

m UlUn

c2 50. ~28!

In a comoving frame Eq.~27! becomes

ṅ

n
52

k̇

k
, ~29!

while the spatial components of Eq.~28! are identically sat-
isfied due to the constraint that all quantitiesn,P,e, andk
are only functions of the time coordinate. The temporal co
ponent of Eq.~28! can be written as

Ṫ

T
52

k

cv

k̇

k
, ~30!

where the heat capacity per particle at constant volumecv is
given by Eq.~18!. Equations~29! and~30! are used to elimi-
nateṅ and Ṫ from Eq. ~25!, yielding

f5ctF11S 12z
K2

K1
D k

cv
1

c

cvT
p02

c

kT

p2

p0
G k̇

k
. ~31!

Once the nonequilibrium distribution function~24! is known
it is possible to calculate the projection of the energ
momentum tensor in a comoving frame which correspo
to the sum of the hydrostatic pressure with the dynamic p
sure, i.e.,

P1Ã52DmnTmn

52S gmn2
UmUn

c2 D cE pmpn fAg
dp

p0

5ck3E p2f
dp

p0
. ~32!

We insert Eq.~24! together with Eq.~31! into ~32! and inte-
grate the resulting equation, yielding

Ã52hc
k̇

k
,

where
08351
a-
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h52PtH z2F K2

zK1
211

Ki1

K1
G212

1

cv
J . ~33!

In the above equation Ki1 denotes the integral for the mod
fied Bessel functions~see Abramowitz and Stegun@20#, p.
483!:

Kin~z!5E
z

`

Kin21~ t !dt5E
0

`e2z cosht

coshn t
dt. ~34!

Hence we have identified the coefficient of proportional
betweenÃ andck̇/k as the bulk viscosityh. If we compare
Eq. ~33! with the constitutive equation for the dynamic pre
sure, given in terms of the divergence of the two-veloc
i.e., Ã52hUm

;m , we infer that hereck̇/k plays the same
role as Um

;m . Furthermore, due to the fact that the bu
viscosity is a positive quantity the dynamic pressure
creases when the universe is expanding (k̇.0) while it in-
creases when the universe is contracting (k̇,0).

As in the four-dimensional case the coefficient of bu
viscosity vanishes in the nonrelativistic and ultra-relativis
limiting cases. This can be seen from Fig. 1 where the co
ficient of bulk viscosityhs/AkTm is plotted versus the pa
rameterz5mc2/(kT). Here we have chosen the followin
expression for the characteristic time@22#

t5
1

nsvs
, with vs5Ac2cpkT

cvh
, ~35!

wheres is a differential cross section andvs the adiabatic
sound speed.

If we consider that the distribution function is given b
Eq. ~25!, i.e., f 5 f (0)(11f), we can use the approximatio
ln(11f)'f valid for ufu!1 in order to write the entropy
production rate~10! in a comoving frame as

§5
k

tE f (0)f2Agdp. ~36!

We insert now Eq.~24! together with Eq.~31! into ~36! and
get by integrating the resulting equation

§5
hc2

T
S k̇

k
D 2

. ~37!

FIG. 1. Volume viscosityhs/AkTm vs z.
5-4
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Hence the entropy production rate is connected with the b
viscosity. Weinberg@21# has derived a similar formula in
four-dimensional space by using a phenomenological the
and has also shown that the bulk viscosity alone could
explain the high entropy of the present microwave ba
ground radiation. For more details one is referred to We
berg @21,2#.

IV. GRAVITATIONAL EQUATIONS OF MOTION

Given the sources of our universe it is possible to obt
the equations of motion for the gravitational field in th
whole space-time. The starting point is of course, the E
stein theory of gravitation.

As far as we are working in 2D some fundamental pro
lems appear. In fact, the main point is that the Einstein ac
in 2D furnishes no dynamics. In other words the usual le
hand side of Einstein equations of motion that follows
using the Hamilton variational principle

Rmn2
1

2
gmnR[0, ~38!

are in fact anidentity in 2D. This is related to the gaug
invariances of gravitation in 2D: space-time diffeomo
phisms and~local! conformal transformations. With this in
mind Teitelboim@4# and Jackiw@5# proposed as 2D action1

S5E d2xA2g$N~x!@R~x!18pTm
m~x!#%, ~39!

where Tm
m(x) is the trace of the energy-momentum tens

Above we have not taken into account the term that refer
the cosmological constant. Using the variational principle
the auxiliary fieldN(x) the equation of motion that follows
is

R~x!528pTm
m~x!, ~40!

together with the conservation lawTmn
;n50. Equation~40!

relates the curvature scalar with the trace of the ene
momentum tensor.

V. SOLUTION OF GRAVITATIONAL FIELD EQUATIONS

The gravitational field equations are obtained from E
~40! together withTmn

;n50 and by taking into account th
constitutive equation for the energy-momentum tensorTmn

5eUmUn2(P1Ã)Dmn wheree5ne is the energy density
Hence it follows that

k̈524p~e2P2Ã!k, k̇~e1P1Ã!1kė50. ~41!

Since Ã52hk̇/k, the above system is closed if we ca
relate the pressureP and the coefficient of bulk viscosityh
to the energy densitye. Here we follow Murphy@11# and

1From this section on, units have been chosen so thatG5c5k
51.
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assume a barotropic equation of state for the pressure a
linear relationship between the coefficient of bulk viscos
and the energy density, so that

P5~g21!e, h5ae. ~42!

Above a is a constant andg may range from 0<g<2. The
value g51 refers to a pure matter~dust!, g52 to a pure
radiation, andg,1 to a ‘‘false vacuum.’’

If we introduce the Hubble parameterH5k̇/k the field
equations~41! can be written thanks to Eq.~42! as

Ḣ1H254pe~g222aH !, H~g2aH !e1 ė50.
~43!

The elimination of the energy density of the two above eq
tions leads to an equation for the Hubble parameter
reads

~Ḧ12HḢ !~g222aH !1aḢ~Ḣ1H2!

1H~g222aH !~g2aH !~Ḣ1H2!50. ~44!

Let us search for a solution of Eq.~44! by consideringH
5H* 5constant. In this case we get that Eq.~44! reduces to
(g222aH* )(g2aH* )H

*
3 50 and apart from the trivial

solutionH* 50 we have two other solutions, namely:~i! a
5g/H* and ~ii ! a5(g22)/H* . Only the first solution is
physically possible since 0<g<2.

We proceed to analyze the two energy conditions@23#,
namely the weak energy condition which dictates that
energy density is a semipositive quantity, i.e.,e>0 and the
strong energy condition which imposes that the inequa
e1P1Ã>0 must hold implying thatH/H* <1.

We are now ready to determine the solutions of the gra
tational field equations. To that end we write the system
Eqs.~41! and ~43! as

~g21!
k̈

k
54pPS g222g

k̇

k
D ,

g
k̇

k
S 12

k̇

k
D 1

Ṗ

P
50, ~45!

~g21!~Ḣ1H2!54pP~g222gH !,

Hg~12H !P1 Ṗ50, ~46!

respectively, where the cosmic scale factor, the Hubble
rameter, the pressure, and the time are now taken as dim
sionless quantities with respect toH* . From the first system
of equations~45! one may determine the cosmic scale fac
k(t) and the pressureP(t) while from the second one~46!
the Hubble parameterH(t) can be obtained. We have chose
two values forg, one of themg50.5 corresponds to a nega
tive pressure~‘‘false vacuum’’! while the otherg51.5 im-
plies a positive pressure. For the solutions of the two syste
of Eqs. ~45! and ~46! the following initial conditions were
taken into account:
5-5
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G. M. KREMER AND F. P. DEVECCHI PHYSICAL REVIEW D65 083515
for g50.5, then H~0!50.5,k~0!51,

P~0!521,

for g51.5, then H~0!50.5,k~0!51,

P~0!51. ~47!

In Figs. 2–5 it is shown the evolution with respect to t
time of the cosmic scale factor, the Hubble parameter,
pressure, and the energy density which follow from the s
tems of Eqs.~45! and ~46! by taking into account the initia
conditions~47! and the barotropic equation of state.

Another important quantity which can be plotted vers
the time is the entropy production rate. For the cases wh
g.1 the dimensionless expression for entropy product
rate ~37! can be written as

§5
gH2

~g21!k
. ~48!

In order to obtain the above equation we have used the e
tion of stateP5nT and the solution of the continuity equa

FIG. 2. Cosmic scale factork(t) vs time t.

FIG. 3. Hubble parameterH(t) vs time t.
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tion ~29! which readsn}1/k. In Fig. 6 we show the evolu-
tion of the entropy production rate with respect to the tim

VI. DISCUSSION OF THE RESULTS

We proceed to discuss the results obtained in the last
tion. First we call attention to the fact that the period whe
this theory can be applied is the one where there exists
interaction between radiation and matter. The reason is
in the period of pure radiation the dynamic pressure vanis
while in the period of pure matter~dust! there is no interac-
tion at all. Furthermore, the solutions are not valid for
values of the time, since in some periods the radiation
couples from matter and we have no more the interac
between the radiation and matter which implies a vanish
dynamic pressure.

Plotted in Fig. 2 is the cosmic scale factor as a function
the time. We have chosen that at the beginning of this pe
(t50 by adjusting clocks! the cosmic scale factor is differen
from zero. We infer from this figure that the cosmic sca
factor has a maximum att'0.0243 for g51.5 and att
'0.0123 forg50.5. From these points on the cosmic sca
factor decreases and tends to zero, i.e., it goes to a ‘
crunch.’’ It is noteworthy that the corresponding solution

FIG. 4. PressureP(t) vs time t.

FIG. 5. Energy densitye(t) vs time t.
5-6
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the four-dimensional case@11# neither has this behavior fo
the cosmic scale factor nor admits a ‘‘false vacuum’’ so
tion. As was previously pointed out the difference betwe
the solutions in the four- and two-dimensional cases is du
the fact that the relationship between the metric tensor
the sources in the 2D case is modified because the Ein

FIG. 6. Entropy production rate§(t) vs time t.
-

er

s
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field equations give no dynamics for the 2D case.
The Hubble parameter as a function of the time is sho

in Fig. 3. For both values ofg the Hubble parameter de
creases, attains a zero value for a time which correspond
the maximum of the cosmic scale factor, and assumes n
tives values.

In Figs. 4 and 5 the evolution of the pressure and of
energy density are represented as functions of the time
spectively. Both functions decrease with the time and att
their minimum values at the times where the cosmic sc
factor has its maximum value. Since in this theory there
ists no mechanism that could increase the pressure and
energy density, we infer that the solutions fort*0.0243
wheng51.5 and fort*0.0123 wheng50.5 are not physi-
cally possible. The same conclusion can be drawn out fr
Fig. 6 where the evolution of the entropy production rate
plotted as a function of the time. From this figure we no
that the entropy production rate decreases with the time
attains its minimum (§50) when the cosmic scale facto
reaches its maximum value. At this point the entropy p
particles attains its maximum value sincenDs5§>0. There
exists no mechanism in this theory that could increase
entropy density rate from its minimum value with a corr
sponding decrease of the entropy per particle from its ma
mum value.
.
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