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Synergistic warm inflation
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We consider an alternative warm inflationary scenario in whishalar fields coupled to a dissipative matter
fluid cooperate to produce power-law inflation. The scalar fields are driven by an exponential potential and the
bulk dissipative pressure coefficient is linear in the expansion rate. We find that the entropy of the fluid attains
its asymptotic value in a characteristic time proportional to the square of the number of fields. This scenario
remains nearly isothermal along the inflationary stage. The perturbations in energy density and entropy are
studied in the long-wavelength regime and seen to grow roughly as the square of the scale factor. They are
shown to be compatible with COBE measurements of the fluctuations in temperature of the CMB.
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[. INTRODUCTION tationally. In a recent paper Coley and van den Hoogen
qualitatively analyzed the autonomous system of two scalar
The very early Universe was supposedly populated by dields of the kind discussed above in a curved FLRW uni-
host of scalar fields but soon only one came to dominate theerse and showed that the system has an equilibrium point
dynamics; the others settled in the minimum of its potential compatible with a stable phase of power-law inflation. This
Of particular interest from the point of view of cosmological feature persists even if a perfect fluid with baryotropic equa-
inflation are scalar fields with exponential potentials sinceijon of state is allowed in the pictufg]. Again the authors
these are natural candidates to drive power-law inflation ilyssumed that the fields do not interact among themselves nor
Friedmann-Lemane-Robertson-Walker(FLRW) universes, ith the matter fluid.
e, a(t)=t* wherea(t) is the scale factor and=const At first sight the presence of a matter fluilich as a sea
>1 [1],- . . . of relativistic particles may be seen as rather irrelevant be-
As is well known, scalar fields possessing exponentialy e the fast inflationary expansion will very soon dilute

potentials appear naturally in different theories of fundamenéway these particles. However, as shown by Bef8taf a

tal physics as superstrings and higher dimensional theorie - ; ' o
[2], in N=2 supergraviti3], as well as in theories undergo- (.Souplmg between the inflaton field and the matter fluid is

. . . ) . . ; assumed, things change drastically to the point that when
ing dimensional reduction to an effective four-dimensional. . . . .
theory [4]. However, in many cases they happen to be toomflatlon ends the Universe is far from being as cool as pre-
steep and fail to do £hej0b as<1. Nevertheless, it has been dicted by ordinary inflatio_n _models._ In fact it can be hot

shown that if one considers noninteracting scalar fields enough to resume the radiation dominated phase of standard

with exponential potentials they can cooperate to achiev@d-Pang cosmology; thus the reheating phase is no longer
power-law inflation in spite of the fact that no single field N€cessary. _ _ _
can achieve it by itself5]. The rationale behind it is that ~ The main target of this paper is to study the scenario of
while each field descends toward the minimum of its potenWarm inflation withn scalar fields having exponential poten-
tial the cosmic expansion rateo which all the fields coop- tials and interacting with the matter fluid. Section Il consid-
eraté acts as a friction force upon each of them. This resul€rs first the more simple case of a single scalar field plus a
has been extended to Bianchi type | andyWbsmologies as dissipative matter fluid. Then the analysis is extended to
well [6]. A further interesting feature is that the largeis, scalar fields. In Sec. lll the scalar fields are allowed to decay
the closer the resulting spectrum of initial cosmic perturbainto the matter fluid thereby the temperature of the latter
tions is to that of Harrison and Zeldovich. The proponents ofdoes not fall drastically and so the warm inflationary phase
this scenario termed it “assisted inflation;” however we find can be followed by the conventional radiation dominated pe-
it more fitting to call it “synergistic inflation,” and we shall riod without any intermediate reheating. Section IV studies
do so henceforth. the perturbations in energy density and entropy brought
A more realistic problem arises when in addition to theapout by warm inflation; they do not conflict with the ob-
scalar fields one considers a matter fluid. The price to be paigeryed temperature anisotropies of the cosmic microwave

is a rather involved set of field equations even in the simplespackground radiation. Finally, Sec. V summarizes our main
case when the fluid interacts with the scalar fields only gravifindings. Units have been chosen so that8G=1.
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stress-energy tensor of this mixture is accordingly the smalley,, the larger the dissipative effects.
Typically bulk viscosity arises in mixtures either of dif-
Tap=(p+ P+ m)UaUp+(P+7)Gap, (1) ferent particles species, as in a radiative fluid, or of the same

species but with different energies, as in a Maxwell-
Boltzmann gas. Physically, we can think @fas the internal
Bfriction” that sets in due to the different cooling rates in the
expanding mixture. Any dissipation in exact FLRW uni-
verses has to be scalar in nature, and in principle it may be
modeled as a bulk viscosity effect within a nonequilibrium

wherep=pn,+p, andp=pn+p,. Herep, andp,, are the
energy density and pressure of the matter fluid with equatio
of state given byp,,=(ym—1)pm and with its baryotropic
index in the interval & y,<2. Likewisep, andp,, the
energy density and pressure of the minimally coupled self

interacting field¢, i.e., thermodynamic theory such as the Israel-Stew4t@. In
1 1 that formulation and under certain general circumstances, the
p¢:§¢2+v(¢), p¢=§¢2—V(¢), 2) fevolution equation for the bulk dissipative pressure takes the
orm
are related by an equation of state similar to that of the mat- )
ter, namelyp,=(v4—1)p,, SO that its baryotropic index is m+ rm=—3¢H, 9
given by
] where the positive-definite quantigystands for the phenom-
B ®? enological coefficient of bulk viscosity, the temperature of
7¢_(¢2/2)+V(¢) ' 3 the fluid, andr the relaxation time associated to the dissipa-

tive pressure—i.e., the time the system would take to reach

where for non-negative potential4(#) one has & y,<2, the thermodynamic equilibrium state if the velocity diver-
and an overdot means derivative with respect to cosmic timegence were suddenly turned ¢ff1]. Usually £ is given by
In generaly,, varies as the Universe expands, and the sam#ée kinetic theory of gases or a fluctuation-dissipation theo-
is true for y,, since the massive and massless components ¢gM or both[12]. Expressior(9) has been widely used in the
the matter fluid redshift at different rates. literature[13] and it meets the requirements of causality and

The Friedmann equation together with the energy consesstability to be demanded to any physically acceptable trans-
vation of the normal matter fluid with bulk dissipative pres- Port equatior{14].

sure and Klein-Gordon equation can be written as Combining Eqgs.(8) and (9) we obtain the equation of
motion of the attractor solutions satisfying flatness, acceler-
Qnt+Q,+0¢=1, (K=1,0-1), (4) ated expansion and the nondilution condition
ot 3H| Y+ —| pm=0 (5 H g 3m 3¢
Pm YmT P vt 7 +H37mH +H+TH2— 5 _H=0. (10
ma
Pt 3HY4p4=0, ©®  Here v=(7H)"1 is the number of relaxation times in a

Hubble time—for a quasistatic expansiotis proportional to
the number of particle interactions in a Hubble time. Perfect
fluid behavior occurs in the limiv—, and a consistent
hydrodynamical description of the fluids requires 1.

The problem of a homogeneous scalar field driven by a
ponential potential

whereH=a/a denotes the Hubble factor. We have further
introduced the density parameters),=pm,/p.,Qy,
=pylpc, with p,=3H? the critical density, andQ,=
—K/(aH)2.

In terms of these quantities we can introduce an overallax
baryotropic indexy:

YQ= Yyt 7¢Q¢ ) (7) V= VOG_AQS’ (11

where we have made use of the definiti=Qn,+Q,.  minimally coupled to gravity in a flat FLRW spacetime with
The flatness problem is solved by the attractor solutibn g3 |inear viscosity coefficient

=1 of Eq. (4). In addition, the ratiof2 /), becomes as-
ymptotically a constant, meaning that the matter content of £=éoH (12)
the universe does not dilute altogether as inflation proceeds. o
In [9] it was shown that these constant solutions are stable in i
the (©,0,,,Q4) space. The fixed point solutioft=1,0,, whereV, and &, are constants, has the solution
=Qpmo and Q,=Q,,, respectively, of Eq(4)—(6) is ob-
tained when the partial adiabatic indices and the dissipative a=ap(t/te)”, 13
pressure are related by
i ¢=doIn(t/t). (14
a

Ym T YT T 52 The quantities
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2
= 15
T (1-0,)A? 19
gO:Qma(')’m_7¢a)[1_37¢a7’71]v (16)
and
2
')’d)a:@ (17)

are obtained by solving the syste@)—(6), (8), (10) and
(12); the subindexa stands for asymptotic value of the cor-
responding quantity. The power-law expansidd) will be
inflationary forA?<2(1— Q) L.

Rewriting Eq.(10) in terms of the field baryotropic index
Y4, We get

3

r_ 2 -
Yo=3Ve— (V+3¥Ym) ¥yt | ¥m O,

) . (18

where a prime indicates derivative with respectiteIn a.
When the phenomenological coefficient of bulk viscosity is
given by Eqgs(12) and(16), that is¢,, Eq. (18) admits the
constant solutiony,,= y4,. It gives an accelerated expan-
sion in the late time regime whep,,<2/3. As £>0 and
vm=1, the hydrodynamical parameteris restricted tov
>3v4a- The case of constard, arises for instance in a
radiating fluid, and the nearly linear regime, with slowly
varying v and y,,, was already investigated in the quasiper-
fect limit, corresponding tor~1—0 [9].

To analyze the stability of the solutiop,= y4, We insert
Eqg. (12) in Eq. (18) to obtain

Y6=3(¥5~ Y52~ (v 3Ym) (Y4~ v4a)- (19

As y4a<2/3y>max(3yg1) and yn,=1, Eq. (19) shows
thatay:ﬁ/ay¢<0 in a neighborhood of,,,. Hence this con-

stant solution is asymptotically stable, showing that all solu-

tions of Eq.(10), that is all the accelerated attractors of the
system(4), (5), (6), (9), are themselves attracted towards the
constant solutiony,= 4, provided that they satisf§~ &,

at late time.

Let us now assume that instead of having just one scalar

field, we haven homogeneous noninteracting scalar fields,
¢; with exponential potential¥/; =V, e %%, In that case
the Einstein-Klein-Gordon equations can be recast as

n

Qut D Qu+0¢=1 (K=10-1), (20
i=1 !
. iy
pmt3H{ YmT —|pm=0, (21)
Pm
b¢i+3H7¢iP¢i:0 (i=1,2,...,n).
(22)

As it stands the problem in its full generality is rather in-
volved. Therefore to bring it to a form amenable to analytical
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characterized byA;=A,=---=A,=A andVy=Vgp="--

=V =V,. As we shall see in the next section, we can ex-
pect in this particular case that all scalar fields share the same
asymptotic limit. So, in the remaining of this section we will

assume ¢1=d,=---=¢d,=¢, so that V=V,
=...=V,=V=V,e "¢ and Eq.(20) becomes
QutnQy+0x=1 (K=1,0-1), (23

while Eq.(22) simplifies to Eq.(6). Following parallel steps
to that leading to Eqgs(15—(17) it can be seen that the
Einstein-Klein-Gordon system has the spatially flat power-
law attractor solutio13) but now with

2n

a (1—0, A" (24
showing that then scalar fields¢ cooperate to a stronger
inflation.

Let us now assume that tirehomogeneous scalar fields,
¢; are driven by a general potenti=V(¢;). In that case
the Einstein-Klein-Gordon equations are

o, 3K
> BVt pn— 5, (25
a

1
3H?==
275

$i+3H¢i+V,¢i=0, (26)

along with Eg.(21) (V,¢i stand fordV/dg¢;). From these
equations we get

H= (27)

lae -, 1 K
"5 & WOt .

In order to investigate the stable scalar field configura-
tions it is expedient to introduce the ancillary quantity

(28)

which reduces tav=1 for the completely symmetric con-
figuration = p,=- - - = ¢, . Using Eqs(25—(28) we find
the differential equation fow:

nV’%(.f)aw—\./
ne>

(23
(In this section no summation convention applies to repeated
Greek indiceg.If we further assume that the potential satis-
fies the condition

w=2

(29

V= nv,%é;sa, (30)

treatment we shall consider henceforth a simplified versiorthen Eq.(29) becomes
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. Vs
w=2(.7“(w—1). (31 ™=-q (35

a

This has a fixed point solution, namedy=1. Further, with  In the case at hand the attractor conditi@ becomes dy-
the aid of Eqs(27), (28) the general solution of E¢31) can  namic because the starred magnitudes include the interaction
be found in terms of the scale factor, the matter fluid and théetween the scalar field and radiation
bulk viscous pressure
-1 n ’7T* % 2H 36
w=| 1+ ne T e T om 70T 3 (30

o1
2ab H+ S (Ympmt+ 7)) — —
2 a2

whereyy=vy,—(7*/p,). Using this together with Eqg2)

. , _ ) ) and (3) it follows that
wherec is an arbitrary integration constant. Evaluating Eq.

(32) in the asymptotic regime of the attractor solutiop
=v4a and the potentiald/;=Vye A%, which asymptoti- r=| Y _11P"H—RrH (37)
cally satisfies the conditiofB80), it can be easily shown that y’; Pe

the particular solutiom =1 is an attractor for evolutions that

behave asymptotically ag>t® with «>1/3. On the other  (bear in mind thaty,,> y%). This implies that the scalar field
hand, this result' strongly suggests that the spgual case il ojves with an “effective” expansion ratél=(1+R)H.
which all scalar fields are equal may be the late-time attractobnce converged to the attractor soluti®hbecomes a con-

of more general scenarios. stant and the effective power-law exponent results larger by a

factor (1+R):
I1l. WARM INFLATION

Warm inflation arises when a strong enough coupling be- 2n(1+R)
tween the scalar field and matter fluithich we shall as- a= 10 A (38)
sume perfegtexists. The former decays into the lattaich m
acts as a thermal bathwhile the inflaton slowly rolls down ) o ) )
the potential[8]. The decay is phenomenologically imple- This means that this interaction between the scalar fields and

mented by inserting 4usually constantfriction term T in  radiation further assist to inflation.

the equation of evolution fogp Let us investigate the entropy productiSranng this era.
_ Using Egs.(36) and (5) we get that matter redshifts ag,
$+3(H+T)p+V'(4)=0. (33  =p,Lala,) 3" (subindexe means evaluation at inflation

o ) ) exit). As it is customary in warm inflationary scenarios we
We adopt this picture except th@t we consider no slow-roll  gssuyme that this matter behaves as radiapen=c, T4,

(although it can be straightforwardly incorporakednd (i) wherec, = 72/30g andg is the effective number of relativ-
rather than a single field we havescalar fields all of them gtic degrees of freedom, so we have

with identical exponential potential. Heti stands for any of
these fields. Accordingly Eq33) is not just a single equa- L3t
tion butn identical equations; besides for mathematical sim- T=Te(alag) 7™ (39
plicity we assume the same friction term for each field.

Obviously the coupling between thmescalar fields and the  Then, using Eq¥8), (12), (39), (13) andS=7*%/£T, we get
matter fluid introduces a source term in the energy balance
equation for the latter

T 3/2
at):se[l—({ } (40

bm+37mem:3F¢2- (34)

So there is a continuous transfer of energy from the scalawhere

fields to the matter adjusted in such a way that the former

experience a damped evolution and give rise to a nearly iso-

thermal expansion. Accordingly, like in standard warm infla- T =

tion, no reheating mechanism is needed at the end of infla-

tion. Moreover, thermal rather than quantum fluctuations

produce the primordial spectrum of density perturbationds the characteristic time for the entropy density to attain a

[15-19. constant values, and is directly related to the time for the
We can identify the phenomenological coupling with anstart of warm inflation.

effective dissipative pressure* along the evolution on the We see from Eq(39) that the requirement of a nearly

attractor. Then comparing E() with Eqg. (34) we get isothermal expansion along the inflationary era imposes a

2/3
16y} — 413207,

97336, TeSete?

(42)
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constraint on the value ofr;. Namely, if T; is the tempera- where
ture of the radiation fluid at the beginning of inflatioR, at
the end, andN is the number of e-folds, we have

2
; = 3TN (42) ) ( o

e

d 19
o, el o

Assuming T;/Te=0(1) we f'n.d that72=10_2- Frqm are, respectively, the adiabatic speed of sound and a non-
Egs.(17) and (24) we see that this can be easily achieved,, v qropic index. The sources in the right-hand side of Eq.
with n in the range of 10100, without fine-tuning the po- (45) arising, respectively, from entropy perturbations, bulk
tential slope. , _ , viscous stress, energy flux, and shear viscous stress are given

Inflationary scenarios need to achieve a graceful exit from, [23]. Since in our case there are no shear viscous stress
inflation. In our case this is not a problem since the ratio(a”:O) and S[q] vanishes by choosing the energy frame

ps!pm is Not exactly constant, as can been seen from Eqg, '=0). we reproduce here onlv the expressions $be
(33) and (34). Therefore, the continuous transfer of energyz(?]'d S[)7;*]: P 4 P Seel

from the n scalar fields to the matter fluid slowly increases
the energy of the latter and decreases that of the former. Thus

the acceleration equatiafa= — £ (p+3p) implies that the

universe ceases to accelerate when both energy densities S[e]=r(3KH?+D?e, (47)
equalize. This criterion for ending inflation coincides with

Taylor and Berera’$16].

S[7*]=—(3KH?+D?B, (48)
IV. EVOLUTION OF PERTURBATIONS

This section considers the evolution of energy density, .
entropy and curvature fluctuations in the perturbative long¥here the scalar entropy perturbation

wavelength regime during the attractor era. Scalar perturba-
tions are covariantly and gauge-invariantly characterized by

the spatial gradients of scalars. Energy density inhomogene- a?nT
ities are described by the comoving fractional density gradi- e=aD'e= D%s (49
ent[20]
aD' . . .
5= |P, 43) and the dimensionless perturbation scalar
P
where [ stands for the covariant spatial derivativeAD .. 22D%
=h;*h'---V,A, .. The scalar parts=aD's;=(aD)?%p/p B= T (50)
encodes the total scalar contribution to energy density inho- p

mogeneities. It relates to the usual gauge-invariant density

perturbation scalae,, through 6=V?2¢,,, whereV? is the

Laplacian for the metric of the 3-surfaces of constant curvarelated to the inhomogeneous part of the bulk viscous stress,
ture[21,22. Also the comoving expansion gradient, the nor-were defined. Also, the entropy perturbation equation in the
malized pressure gradient, and normalized entropy gradie@nergy frame is

are defined by20,23

ab; anTD;s ¢ 2_ - _
6.—aDif, pi= .p' o= s (44) e+3H(ci—y+1+r)e=—3HEB. (51
p p
n being the particle number densiflythe temperature, arsl The coupled system that governs scalar dissipative pertur-
the specific entropy per particle. The evolution equation forbations in the general case is given by the energy density
scalar density perturbations red@s] perturbation equatiof5), the entropy perturbation equation

(51), the equation for the scalar bulk viscosil§), and the
equation for temperature perturbations.

K — 2y'e_ 31425 _ 2.2 _pa2
o+H(8—6y+3c5)d—2HA ~10+14y—3y"—6c; When only bulk viscous stress dissipation is present, the

+[1-3(y— l)2+2c2]k}5— c2D2s coupled system can be reduced to a pair of coupled equations
S S in & (third order in tim@ ande (second order in time For a
=9[e]+S[#*]+S[q]+S[ ], (45 flat background, the equations d&8|
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78+[1+3(2— y+c2)TH]5+ H{8—6y+3c2+37(cd) — 3[— 14+ 75y— 48y?+ (21y—30)c2]7H} s— 3H?{6— 10y
+592— 63— 47(c2) —2[ — 6+ 18y— 15y%+59°+ (6 — 28y+ 10y?)c2] 7H} S

a? . 3a%(y—1)H : : J
:p—sz(Dzé)—i—LDz(Dzé)-I—Tc§D25+ mrD%e+ | (1-3yrH)ci+ 7(c?) +3 &—i) }D25
S
. (o€
+| (1=3yrH)r+mr+3( ——| D%, (52)
P
and
. 3 2 : 2 2 2, .. P9
re+[1-3(—2+3y—2ci—2r)rH]e—3H| y—1—c{—r+3y(y—cg)TH+ 7(cs+r) ~5\as e
P
S Py (%) 3 (53
¥y | Plap) |
|
We shall consider here the evolution of the energy density ci=av+3a(2—y—c?),

and entropy perturbations in the attractor stage with the con-
ditionsr =0 anddv/ds=0. Together with Eq(12) they im-

ply Co=a V—g(3y—2—2c§) ,
(f?_f) o, 54 co=—3a?w(y—1-c)+3y(y—cd)]. (58)

We deal with the systertb6), (57) by performing separa-
tion of variables in the fornd= 6,6, ande=e,e;, whered,

aE IE & and e depend upon thg spatigl variables whileande, are
2o T\ap] = . (55) functions of the coordinate time Then, Eq.(56) can be
pls \pmlg 6QmaH recast as
. . : .
In this case Eq(52) decouples to give S Ci1d Ca b ©3 _ 20| ¢ ﬂJrC D"
o t o t26 3 45t ° Ox
’ 2
z, Cio Co G 2apy4’ 20 4 22’ 2§ Co D7
5+T5+t—25+t—35—c4 t“D*5+cst*® D*6+cDS + 055t+ t +¢; 5,
(59
Cg )
+| —+c; | D6, (56)
t which can only hold if
(D?— ) 8,=0, (60)

and Eq.(53) becomes

wu being an arbitrary constant. In Fourier transformed space it

c c becomes an identity that holds for an arbitrary amplitdgde
e+ —et —e=—0+ 205 (579  Wwith u=—k?/a® wherek/a is the physical wavenumber.
t ot t t Also, Eq.(57) leads to

. 2(e,le) +cgt(e /e +
where the constant coefficients . ..c;; depend upon the tei/e) +Cat(er/e) +Co & (61)

parameters of the modelv,k,kp,Qm,a,v,c2, and the Ciol S /€) +cuu(Si/e) &
value of the scale facta, at the exit from inflation. For our

purposes, only the explicit expression for,cg, andcg are  which requiresee,=Ad,, with A a constant. Then the evolu-
relevant, being tion equation for modex becomes
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3
Cq.. C . c a
St 54| 2= p? 120 cp— puc? | 5+ | — — plt2acy e(t) =Byt' 1+ Bgth2+cygt?* "3 14+ —| y—1+ t,
t t2 s t3 v 20ma
(69)
—u %+c7 5,=0. (62) where\, , are the roots of the equatior?+ (cg— 1)\ +cq
t =0,B,,B5 are arbitrary integration constants, and,cqz are

functions of the parameters and the previously defined inte-

As we are interested in the asymptotic behavior of thegration constants. It follows that the dominant mode of the
perturbations along the attractor regime, it suffices to conentropy perturbations also grows a€**®=a? for »
sider the dominant terms in E¢62) for large time. Asa  =0O(1).
>0 we have To deal with the evolution of the curvature perturbations
generated by these energy density and entropy fluctuations
we will turn to the standard metric-based gauge-invariant
approach. In a particular choice for slicing of space-time
named the longitudinal gauge, the metric describing the in-

To study the asymptotic evolution of the long-wavelengthhomogeneous perturbations of the spatially flat FLRW back-
modes much larger than the Hubble scakdaH<1), we ground takes the simple form

expandé, in powers ofu? as 8= 6"+ u?6. Then, re- B 2 2rena i
placing this expression in E¢63) and retaining terms up to ds’=(1+2®)dt*~a’(t)(1 2¥)sydxdx, (70

Cq.. .
5o+ Tltst— w2290, 5, — p2t2%cs6,=0. (63)

. - 2 .
first order inw*, we obtain in terms of the gauge invariant Bardeen potentiblsand ¥
[21,24). Besides, when the shear stress vanishes, it follows
'(§§1)+ &3§1)_t2ac4 '550)_,[2%5550) w2+ 3§0)+23§O) from the equations o_f motiqn for the gauge invariant vari-
t t ables thatb =V. So, just a single scalar degree of freedom,
—0 (64) say @, is required to describe linear perturbations of the
T metric. We get two second order equations, hamely
Its zeroth-order solution is 1
V2<I>—3aH<I)’—3a2H2<I>=§a25p, (71)
A
5,50)(11): ﬁt2*01+A2t+A3, (65)
(1=cy)(2=cy) ®"+3aH(1+c)d’ —c2V2d +[2a(aH)’
for c,¢{1,2 and beingA;,i=1,2,3 arbitrary integration +(1+3c§)a2H2]<I>
constants. Ther6§1) satisfies the inhomogeneous equation 1
= za2( op+ om* —c26p), (72)

Cq.. .

5D+ T15§1>—t2“c45§°>—t20c55§°>= 0, (66
where the prime denotes derivative with respect to conformal
time, and the source terms contain the energy density pertur-

whose general solution has the form ; S ;
bation ép, the equilibrium pressure perturbatiép and the

B, dissipative pressure perturbationr” .
o= {2 C14 Byt + Byt a t?e i When the source term of E¢72) vanishes, and the scales
(1=cy)(2—cy) are larger than the Hubble radius such that the spatial gradi-
+a,t2at 34 gu2atsociy g p2at 4 (67)  ents can be neglected, Eq2) can be recast in terms of the

curvature perturbation on uniform-density hypersurfaces
where the coefficient8; ,i=1,2,3 are integration constants [25-27

anda;,i=1, ... ,4depend orw,c,, and theB;. Bearing in Y
mind thata>1, we find that the dominant mode of the en- [=d+H % _ o4 2H "0+ 73
ergy density perturbations in the super-Hubble regime grows p 3 y+a*lp
asymptotically like t?*"4oca?* (¥ =32 independently of
the wavenumber, until inflation exit. . . as a conservation law=0 [28,29. We consider that the
~On the other hand, Eq53) becomes, in the leading re- equilibrium pressure perturbation is isentropic during warm
gime, inflationary and radiation-dominated eras, and that the dissi-
pative pressure perturbation switches off during the transi-
. Cg. Cg Swtl 3 1 ) tion between both eras with a relaxation time that is a frac-
e+ 6+ —e=cqt 1+—| y—1+ ty, . . :
t t2 v 2Qma tion of a Hubble time. Hence, one should expect thabon

(68)  vanishes along this transition so that the vajuat inflation
exit on super-Hubble scales may be equated to that at reentry
whose solution is of long wavelength modes to Hubble radius during the
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radiation- or matter-dominated eras. To find this value we After the inflationary stage, we recover the standard pic-
need the evolution ofP along the attractor era for long- ture of conserved isentropic curvature perturbations and well
wavelength modes. Again, neglecting the spatial derivativiknown calculations show that the density contrast at Hubble
term and using the relationshipem = — 66, /k*= scale entry 6p/p)y—an iS proportional toZ, or equivalently
—a26,/k?, the Fourier transform of Eq71) becomes to the comoving curvature perturbati® with a proportion-
ality factor of 2/5 during presureless matter dominated era,

dd, S , or 4/9 during the radiation-dominated efa0]. So, using
4 TP (74 COBE normalization for the power spectrum of curvature
(2/5)PH?=1.91x 10" ° at the scal&k *=10> Mpc, we find
lts solution that at inflation exite,, =9.55< 10 %/ @=10"° for a=100.
Besides, due to the proportionality of power spectra, the ob-
C, & served bound on the spectral slope of curvature perturbations
CDk—E —2a2 (75  n=1.0=0.2 implies the same bound on the spectral slope of
6k the energy density perturbations at inflation exit. Recalling

that the amplitudeS, is an arbitrary function, these observa-
tional bounds impose no fine tuning constraints whatsoever
on the parameters of the scalar field potential.

shows thatb grows asymptotically ag® during the attractor
regime. Inserting this result back in E.3) we find that{
also grows as? during this regime. This nonconservation of
the super-Hubble curvature perturbations is a consequence of

the growth of the entropy perturbations, which, in its turn, is V. DISCUSSION
due to dissipation effects as E(h1) shows. Then, taking

into account thatyy <1, we find thaty=3a®=—aen/2 al iy ingredients are scalar fields and a dissipative matter
inflation exit. Hence the power spectra ofand ® at that  ,iq The former decay into the latter at a high ratewhile
moment are proportional to the power spectrum of the priy single scalar field can achieve inflation by its own they
mordial energy density perturba_tlons. ) cooperate synergistically to produce it. We have derived the
For a mode that crosses outside the Hubble radius at scalgyator condition Eq(8) and shown that the presences of
factora, during inflation and reenters to the Hubble radius atyissination does not spoil the linear relationship between the
scale factorag durmg_ the radlatlon-domlnated.era,.we find power-law exponent and the number of fields, preserving
the number ofe-foldings before the end of inflatioNa  the stability of the symmetric configuration of identical
=al(a—1)In(ag/ay) by using the continuity of the energy fg|ds.
density at the turnover between the warm inflation and the \\e have described the interaction between the scalar
radiation dominated eras. Ther;, for this mode of perturbaie|gs and the radiation fluid in the warm inflationary sce-
tions, the regime of growth aa” starts at scale fact@,  nparip by means of an effective bulk dissipative pressure and
>a,, when bothaH>k and the evolution is close to the generalized the attractor condition. Likewise, we have re-
attractor, and it continues until inflation exit. Then we obtainggted to the synergistic mechanism to calculate the produc-

We have proposed a new inflationary scenario whose

al(a-1) tion of entropy and the evolution of temperature. The exit
a. 1/ ag ag .

e_Z| B ~ ' (76)  temperature results lower but approximately of the same or-
a; o\ Bay Boay der than the initial temperature. This renders the reheating

) phase redundant.

whereo=a, /a,, ay is the scale factor at the start of nu- = Fyrther, we have found that the combination of the syn-

cleosynthesis era, corresponding to a temperatlife  ergistic mechanism and the decay of the scalar fields into the
=1 MeV,B=ac./ay and we are takingyr>1. As in this  matter fluid produces significant entropy perturbations with

warm inflationary scenario there is no need to accommodatgroportional spectral amplitude and dominant mode evolu-
a reheating stage, inflation may end shortly before nucleotion to that of energy density perturbations on large wave-
synthesis and we may take safedy=10"2. Then we obtain |ength scales until inflation exit. This steep growth contrasts
an upper bound on the growth of perturbation modes crossgith other models of inflation where long wavelength curva-

ing inside the Hubble radius during the radiation-dominatedyre modes evolve isentropicaligee, e.g.[29], [31]); how-

era by considering the matter-radiation equality sdaJg¢  ever in our case there is a continuous transfer of energy from
=100 Mpc, corresponding to a cluster of galaxies. Asthe scalar fields to matter. Moreover, observational bounds
aeq/ay=10%, taking 0=10° we find thatene/em=Le/{1  on the curvature perturbations at Hubble scale entry do not
<10, Similarly, for a mode crossing inside the Hubble ra- force on our model any slow-roll constraints on the scalar

dius during the matter-dominated era, we obtain field.
e 3 [ag\[as|™?
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