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Synergistic warm inflation
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We consider an alternative warm inflationary scenario in whichn scalar fields coupled to a dissipative matter
fluid cooperate to produce power-law inflation. The scalar fields are driven by an exponential potential and the
bulk dissipative pressure coefficient is linear in the expansion rate. We find that the entropy of the fluid attains
its asymptotic value in a characteristic time proportional to the square of the number of fields. This scenario
remains nearly isothermal along the inflationary stage. The perturbations in energy density and entropy are
studied in the long-wavelength regime and seen to grow roughly as the square of the scale factor. They are
shown to be compatible with COBE measurements of the fluctuations in temperature of the CMB.

DOI: 10.1103/PhysRevD.65.083510 PACS number~s!: 98.80.Hw, 04.20.Jb
y
th

ia
al
c
i

tia
en
ri
-
a

to
n
s
ev
ld
t
en

u

ba
o
d

l

he
a

le
v

en
alar
ni-
oint
is

ua-

nor

e-
te

is
hen
re-
ot
dard
ger

of
n-
d-
s a
o
cay
ter
se

pe-
ies
ght
-

ave
ain

lf-
he
I. INTRODUCTION

The very early Universe was supposedly populated b
host of scalar fields but soon only one came to dominate
dynamics; the others settled in the minimum of its potent
Of particular interest from the point of view of cosmologic
inflation are scalar fields with exponential potentials sin
these are natural candidates to drive power-law inflation
Friedmann-Lemaıˆtre-Robertson-Walker~FLRW! universes,
i.e., a(t)}ta where a(t) is the scale factor anda5const
.1 @1#.

As is well known, scalar fields possessing exponen
potentials appear naturally in different theories of fundam
tal physics as superstrings and higher dimensional theo
@2#, in N52 supergravity@3#, as well as in theories undergo
ing dimensional reduction to an effective four-dimension
theory @4#. However, in many cases they happen to be
steep and fail to do the job asa<1. Nevertheless, it has bee
shown that if one considersn noninteracting scalar field
with exponential potentials they can cooperate to achi
power-law inflation in spite of the fact that no single fie
can achieve it by itself@5#. The rationale behind it is tha
while each field descends toward the minimum of its pot
tial the cosmic expansion rate~to which all the fields coop-
erate! acts as a friction force upon each of them. This res
has been extended to Bianchi type I and VII0 cosmologies as
well @6#. A further interesting feature is that the largern is,
the closer the resulting spectrum of initial cosmic pertur
tions is to that of Harrison and Zeldovich. The proponents
this scenario termed it ‘‘assisted inflation;’’ however we fin
it more fitting to call it ‘‘synergistic inflation,’’ and we shal
do so henceforth.

A more realistic problem arises when in addition to t
scalar fields one considers a matter fluid. The price to be p
is a rather involved set of field equations even in the simp
case when the fluid interacts with the scalar fields only gra
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tationally. In a recent paper Coley and van den Hoog
qualitatively analyzed the autonomous system of two sc
fields of the kind discussed above in a curved FLRW u
verse and showed that the system has an equilibrium p
compatible with a stable phase of power-law inflation. Th
feature persists even if a perfect fluid with baryotropic eq
tion of state is allowed in the picture@7#. Again the authors
assumed that the fields do not interact among themselves
with the matter fluid.

At first sight the presence of a matter fluid~such as a sea
of relativistic particles! may be seen as rather irrelevant b
cause the fast inflationary expansion will very soon dilu
away these particles. However, as shown by Berera@8# if a
coupling between the inflaton field and the matter fluid
assumed, things change drastically to the point that w
inflation ends the Universe is far from being as cool as p
dicted by ordinary inflation models. In fact it can be h
enough to resume the radiation dominated phase of stan
big-bang cosmology; thus the reheating phase is no lon
necessary.

The main target of this paper is to study the scenario
warm inflation withn scalar fields having exponential pote
tials and interacting with the matter fluid. Section II consi
ers first the more simple case of a single scalar field plu
dissipative matter fluid. Then the analysis is extended tn
scalar fields. In Sec. III the scalar fields are allowed to de
into the matter fluid thereby the temperature of the lat
does not fall drastically and so the warm inflationary pha
can be followed by the conventional radiation dominated
riod without any intermediate reheating. Section IV stud
the perturbations in energy density and entropy brou
about by warm inflation; they do not conflict with the ob
served temperature anisotropies of the cosmic microw
background radiation. Finally, Sec. V summarizes our m
findings. Units have been chosen so thatc58pG51.

II. THE SYNERGISTIC MECHANISM

Let us assume a FLRW universe filled with a se
interacting scalar field plus a dissipative matter fluid. T
©2002 The American Physical Society10-1
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stress-energy tensor of this mixture is

Tab5~r1p1p!uaub1~p1p!gab , ~1!

wherer5rm1rf andp5pm1pf . Hererm andpm are the
energy density and pressure of the matter fluid with equa
of state given bypm5(gm21)rm and with its baryotropic
index in the interval 1<gm<2. Likewise rf and pf , the
energy density and pressure of the minimally coupled s
interacting fieldf, i.e.,

rf5
1

2
ḟ21V~f!, pf5

1

2
ḟ22V~f!, ~2!

are related by an equation of state similar to that of the m
ter, namelypf5(gf21)rf , so that its baryotropic index is
given by

gf5
ḟ2

~ḟ2/2!1V~f!
, ~3!

where for non-negative potentialsV(f) one has 0<gf<2,
and an overdot means derivative with respect to cosmic ti
In generalgf varies as the Universe expands, and the sa
is true forgm since the massive and massless componen
the matter fluid redshift at different rates.

The Friedmann equation together with the energy con
vation of the normal matter fluid with bulk dissipative pre
sure and Klein-Gordon equation can be written as

Vm1Vf1VK51, ~K51,0,21!, ~4!

ṙm13HS gm1
p

rm
D rm50, ~5!

ṙf13Hgfrf50, ~6!

whereH[ȧ/a denotes the Hubble factor. We have furth
introduced the density parametersVm[rm /rc ,Vf ,
[rf /rc , with rc[3H2 the critical density, andVK[
2K/(aH)2.

In terms of these quantities we can introduce an ove
baryotropic indexg:

gV5gmVm1gfVf , ~7!

where we have made use of the definitionV[Vm1Vf .
The flatness problem is solved by the attractor solutionV
51 of Eq. ~4!. In addition, the ratioVf /Vm becomes as-
ymptotically a constant, meaning that the matter conten
the universe does not dilute altogether as inflation proce
In @9# it was shown that these constant solutions are stab
the (V,Vm ,Vf) space. The fixed point solutionV51,Vm
5Vm0 and Vf5Vf0, respectively, of Eq.~4!–~6! is ob-
tained when the partial adiabatic indices and the dissipa
pressure are related by

gm1
p

rm
5gf52

2Ḣ

3H2
, ~8!
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accordingly the smallergf , the larger the dissipative effects
Typically bulk viscosity arises in mixtures either of di

ferent particles species, as in a radiative fluid, or of the sa
species but with different energies, as in a Maxwe
Boltzmann gas. Physically, we can think ofp as the internal
‘‘friction’’ that sets in due to the different cooling rates in th
expanding mixture. Any dissipation in exact FLRW un
verses has to be scalar in nature, and in principle it may
modeled as a bulk viscosity effect within a nonequilibriu
thermodynamic theory such as the Israel-Stewart’s@10#. In
that formulation and under certain general circumstances
evolution equation for the bulk dissipative pressure takes
form

p1tṗ523jH, ~9!

where the positive-definite quantityj stands for the phenom
enological coefficient of bulk viscosity,T the temperature of
the fluid, andt the relaxation time associated to the dissip
tive pressure—i.e., the time the system would take to re
the thermodynamic equilibrium state if the velocity dive
gence were suddenly turned off@11#. Usually j is given by
the kinetic theory of gases or a fluctuation-dissipation th
rem or both@12#. Expression~9! has been widely used in th
literature@13# and it meets the requirements of causality a
stability to be demanded to any physically acceptable tra
port equation@14#.

Combining Eqs.~8! and ~9! we obtain the equation o
motion of the attractor solutions satisfying flatness, acce
ated expansion and the nondilution condition

n21S Ḧ

H
13gmḢ D 1Ḣ1

3gm

2
H22

3j

2Vma
H50. ~10!

Here n5(tH)21 is the number of relaxation times in
Hubble time—for a quasistatic expansionn is proportional to
the number of particle interactions in a Hubble time. Perf
fluid behavior occurs in the limitn→`, and a consisten
hydrodynamical description of the fluids requiresn.1.

The problem of a homogeneous scalar field driven b
exponential potential

V5V0e2Af, ~11!

minimally coupled to gravity in a flat FLRW spacetime wit
a linear viscosity coefficient

j5j0H, ~12!

whereV0 andj0 are constants, has the solution

a5a0~ t/t0!a, ~13!

f5f0 ln~ t/t0!. ~14!

The quantities
0-2
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a5
2

~12Vma!A
2

, ~15!

j05Vma~gm2gfa!@123gfa n21#, ~16!

and

gfa5
2

3a
~17!

are obtained by solving the system~4!–~6!, ~8!, ~10! and
~11!; the subindexa stands for asymptotic value of the co
responding quantity. The power-law expansion~13! will be
inflationary forA2,2(12Vma)

21.
Rewriting Eq.~10! in terms of the field baryotropic inde

gf , we get

gf8 53gf
2 2~n13gm!gf1nS gm2

j

VmaH
D , ~18!

where a prime indicates derivative with respect toh5 ln a.
When the phenomenological coefficient of bulk viscosity
given by Eqs.~12! and ~16!, that isja , Eq. ~18! admits the
constant solutiongf5gfa . It gives an accelerated expan
sion in the late time regime whengfa,2/3. As j.0 and
gm>1, the hydrodynamical parametern is restricted ton
.3gfa . The case of constantj0 arises for instance in a
radiating fluid, and the nearly linear regime, with slow
varying n andgm , was already investigated in the quasip
fect limit, corresponding ton21→0 @9#.

To analyze the stability of the solutiongf5gfa we insert
Eq. ~12! in Eq. ~18! to obtain

gf8 53~gf
2 2gfa

2 !2~n13gm!~gf2gfa!. ~19!

As gfa,2/3,n.max(3gfa,1) and gm>1, Eq. ~19! shows
that]gf8 /]gf,0 in a neighborhood ofgfa . Hence this con-
stant solution is asymptotically stable, showing that all so
tions of Eq.~10!, that is all the accelerated attractors of t
system~4!, ~5!, ~6!, ~9!, are themselves attracted towards t
constant solutiongf5gfa provided that they satisfyj;ja
at late time.

Let us now assume that instead of having just one sc
field, we haven homogeneous noninteracting scalar field
f i with exponential potentialsVi5V0i e2Aif i. In that case
the Einstein-Klein-Gordon equations can be recast as

Vm1(
i 51

n

Vf i
1VK51 ~K51,0,21!, ~20!

ṙm13HS gm1
p

rm
D rm50, ~21!

ṙf i13Hgf irf i50 ~ i 51,2,. . . ,n!.
~22!

As it stands the problem in its full generality is rather i
volved. Therefore to bring it to a form amenable to analyti
treatment we shall consider henceforth a simplified vers
08351
-

-

ar
,

l
n

characterized byA15A25•••5An[A and V015V025•••

5V0n[V0. As we shall see in the next section, we can e
pect in this particular case that all scalar fields share the s
asymptotic limit. So, in the remaining of this section we w
assume f15f25•••5fn[f, so that V15V2
5•••5Vn[V5V0 e2Af and Eq.~20! becomes

Vm1nVf i
1VK51 ~K51,0,21!, ~23!

while Eq. ~22! simplifies to Eq.~6!. Following parallel steps
to that leading to Eqs.~15!–~17! it can be seen that the
Einstein-Klein-Gordon system has the spatially flat pow
law attractor solution~13! but now with

a5
2 n

~12Vma!A
2

, ~24!

showing that then scalar fieldsf cooperate to a stronge
inflation.

Let us now assume that then homogeneous scalar fields
f i are driven by a general potentialV5V(f i). In that case
the Einstein-Klein-Gordon equations are

3H25
1

2 (
i 51

n

ḟ i
21V1rm2

3K

a2
, ~25!

f̈ i13Hḟ i1V,f i
50, ~26!

along with Eq. ~21! (V,f i
stand for ]V/]f i). From these

equations we get

Ḣ52
1

2 (
i 51

n

ḟ i
22

1

2
~gmrm1p!1

K

a2
. ~27!

In order to investigate the stable scalar field configu
tions it is expedient to introduce the ancillary quantity

v5

(
i 51

n

ḟ i
2

nḟa
2

, ~28!

which reduces tov51 for the completely symmetric con
figurationf15f25•••5fn . Using Eqs.~25!–~28! we find
the differential equation forv:

v̇52
nV,fa

ḟav2V̇

nḟa
2

. ~29!

~In this section no summation convention applies to repea
Greek indices.! If we further assume that the potential sat
fies the condition

V̇5nV,fa
ḟa , ~30!

then Eq.~29! becomes
0-3
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v̇52
V,fa

ḟa

~v21!. ~31!

This has a fixed point solution, namelyv51. Further, with
the aid of Eqs.~27!, ~28! the general solution of Eq.~31! can
be found in terms of the scale factor, the matter fluid and
bulk viscous pressure

v5S 11
nc

2a6F Ḣ1
1

2
~gmrm1p!2

K

a2G D
21

, ~32!

wherec is an arbitrary integration constant. Evaluating E
~32! in the asymptotic regime of the attractor solutiongf
5gfa and the potentialsVi5V0ie

2Aif i, which asymptoti-
cally satisfies the condition~30!, it can be easily shown tha
the particular solutionv51 is an attractor for evolutions tha
behave asymptotically asa}ta with a.1/3. On the other
hand, this result strongly suggests that the special cas
which all scalar fields are equal may be the late-time attra
of more general scenarios.

III. WARM INFLATION

Warm inflation arises when a strong enough coupling
tween the scalar field and matter fluid~which we shall as-
sume perfect! exists. The former decays into the latter~which
acts as a thermal bath! while the inflaton slowly rolls down
the potential@8#. The decay is phenomenologically imple
mented by inserting a~usually constant! friction term G in
the equation of evolution forf

f̈13~H1G!ḟ1V8~f!50. ~33!

We adopt this picture except that~i! we consider no slow-roll
~although it can be straightforwardly incorporated!, and ~ii !
rather than a single field we haven scalar fields all of them
with identical exponential potential. Heref stands for any of
these fields. Accordingly Eq.~33! is not just a single equa
tion butn identical equations; besides for mathematical s
plicity we assume the same friction term for each field.

Obviously the coupling between then scalar fields and the
matter fluid introduces a source term in the energy bala
equation for the latter

ṙm13gmHrm53Gḟ2. ~34!

So there is a continuous transfer of energy from the sc
fields to the matter adjusted in such a way that the form
experience a damped evolution and give rise to a nearly
thermal expansion. Accordingly, like in standard warm infl
tion, no reheating mechanism is needed at the end of in
tion. Moreover, thermal rather than quantum fluctuatio
produce the primordial spectrum of density perturbatio
@15–19#.

We can identify the phenomenological coupling with
effective dissipative pressurep* along the evolution on the
attractor. Then comparing Eq.~5! with Eq. ~34! we get
08351
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p* 52
Gḟ2

H
. ~35!

In the case at hand the attractor condition~8! becomes dy-
namic because the starred magnitudes include the intera
between the scalar field and radiation

gm1
p*

rm
5gf* 52

2Ḣ

3H2
, ~36!

wheregf* [gf2(p* /rf). Using this together with Eqs.~2!
and ~3! it follows that

G5S gm

gf*
21D rm

rf
H[RH ~37!

~bear in mind thatgm.gf* ). This implies that the scalar field

evolves with an ‘‘effective’’ expansion rateH̃5(11R)H.
Once converged to the attractor solution,R becomes a con-
stant and the effective power-law exponent results larger b
factor (11R):

a5
2n~11R!

~12Vma!A
2

. ~38!

This means that this interaction between the scalar fields
radiation further assist to inflation.

Let us investigate the entropy productionṠ along this era.
Using Eqs.~36! and ~5! we get that matter redshifts asrm

5rme(a/ae)
23gf* ~subindexe means evaluation at inflation

exit!. As it is customary in warm inflationary scenarios w
assume that this matter behaves as radiationrm5c1T4,
wherec15p2/30g andg is the effective number of relativ
istic degrees of freedom, so we have

T5Te~a/ae!
23gf* /4. ~39!

Then, using Eqs.~8!, ~12!, ~39!, ~13! andṠ5p* 2/jT, we get

S~ t !5SeF12S t1

t D 3/2G , ~40!

where

t15F16~gf* 24/3!2Vma
2

9gf*
3j0TeSete

1/2 G 2/3

~41!

is the characteristic time for the entropy density to attain
constant valueSe and is directly related to the time for th
start of warm inflation.

We see from Eq.~39! that the requirement of a nearl
isothermal expansion along the inflationary era impose
0-4
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constraint on the value ofgf* . Namely, if Ti is the tempera-
ture of the radiation fluid at the beginning of inflation,Te at
the end, andN is the number of e-folds, we have

Ti

Te
5e23gf* N/4. ~42!

Assuming Ti /Te5O(1) we find thatgf* .1022. From
Eqs. ~17! and ~24! we see that this can be easily achieve
with n in the range of 10–100, without fine-tuning the p
tential slope.

Inflationary scenarios need to achieve a graceful exit fr
inflation. In our case this is not a problem since the ra
rf /rm is not exactly constant, as can been seen from E
~33! and ~34!. Therefore, the continuous transfer of ener
from the n scalar fields to the matter fluid slowly increas
the energy of the latter and decreases that of the former. T
the acceleration equationä/a52 1

6 (r13p) implies that the
universe ceases to accelerate when both energy den
equalize. This criterion for ending inflation coincides wi
Taylor and Berera’s@16#.

IV. EVOLUTION OF PERTURBATIONS

This section considers the evolution of energy dens
entropy and curvature fluctuations in the perturbative lo
wavelength regime during the attractor era. Scalar pertu
tions are covariantly and gauge-invariantly characterized
the spatial gradients of scalars. Energy density inhomoge
ities are described by the comoving fractional density gra
ent @20#

d i5
aDir

r
, ~43!

where Di stands for the covariant spatial derivative DjAi •••
5hj

khi
l
•••¹kAl ••• . The scalar partd[aDid i5(aD)2r/r

encodes the total scalar contribution to energy density in
mogeneities. It relates to the usual gauge-invariant den
perturbation scalar«m through d5¹2«m, where¹2 is the
Laplacian for the metric of the 3-surfaces of constant cur
ture @21,22#. Also the comoving expansion gradient, the no
malized pressure gradient, and normalized entropy grad
are defined by@20,23#

u i5aDiu, pi5
aDi p

r
, ei5

anTDis

r
, ~44!

n being the particle number density,T the temperature, ands
the specific entropy per particle. The evolution equation
scalar density perturbations reads@23#

d̈1H~826g13cs
2!ḋ2 3

2 H2$210114g23g226cs
2

1@123~g21!212cs
2#k%d2cs

2D2d

5S@e#1S@p* #1S@q#1S@s#, ~45!
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where

cs
25S ]p

]r D
s

, r 5
1

nT S ]p

]sD
r

, ~46!

are, respectively, the adiabatic speed of sound and a
baryotropic index. The sources in the right-hand side of
~45! arising, respectively, from entropy perturbations, bu
viscous stress, energy flux, and shear viscous stress are
in @23#. Since in our case there are no shear viscous st
(s i j 50) andS@q# vanishes by choosing the energy fram
(qi50), we reproduce here only the expressions forS@e#
andS@p* #:

S@e#5r ~3KH21D2!e, ~47!

S@p* #52~3KH21D2!B, ~48!

where the scalar entropy perturbation

e5aDiei5
a2nT

r
D2s ~49!

and the dimensionless perturbation scalar

B5
a2D2p*

r
, ~50!

related to the inhomogeneous part of the bulk viscous str
were defined. Also, the entropy perturbation equation in
energy frame is

ė13H~cs
22g111r !e523HB. ~51!

The coupled system that governs scalar dissipative pe
bations in the general case is given by the energy den
perturbation equation~45!, the entropy perturbation equatio
~51!, the equation for the scalar bulk viscosity~9!, and the
equation for temperature perturbations.

When only bulk viscous stress dissipation is present,
coupled system can be reduced to a pair of coupled equa
in d ~third order in time! ande ~second order in time!. For a
flat background, the equations are@23#
0-5
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t d̂1@113~22g1cs
2!tH#d̈1H$826g13cs

213t~cs
2!•2 1

2 @214175g248g21~21g230!cs
2#tH%ḋ2 3

2 H2$6210g

15g226cs
224t~cs

2!•22@26118g215g215g31~6228g110g2!cs
2#tH%d

5
a2j

rg
D2~D2ḋ !1

3a2~g21!H

rg
D2~D2d!1tcs

2D2ḋ1trD2ė1F ~123gtH !cs
21t~cs

2!•13S ]j

]r D
s
GD2d

1F ~123gtH !r 1t ṙ 13S ]j

]sD
r
GD2e, ~52!

and

të1@12 3
2 ~2213g22cs

222r !tH#ė23HFg212cs
22r 13g~g2cs

2!tH1t~cs
21r !•2

r

g S ]j

]sD
r
Ge

52
j

g
ḋ1

3H

g F ~g21!j1rS ]j

]r D
s
Gd. ~53!
si
o

e it

.

-

We shall consider here the evolution of the energy den
and entropy perturbations in the attractor stage with the c
ditions r 50 and]n/]s50. Together with Eq.~12! they im-
ply

S ]j

]sD
r

50, ~54!

S ]j

]r D
s

5S ]j

]rm
D

s

5
j0

6VmaH
. ~55!

In this case Eq.~52! decouples to give

d̂1
c1

t
d̈1

c2

t2
ḋ1

c3

t3
d5c4 t2aD4ḋ1c5t2a D4d1cs

2D2ḋ

1S c6

t
1c7DD2d, ~56!

and Eq.~53! becomes

ë1
c8

t
ė1

c9

t2
e5

c10

t2
ḋ1

c11

t2
d ~57!

where the constant coefficientsc1 . . . c11 depend upon the
parameters of the model:n,k1 ,k2 ,Vm ,a,g,cs

2 , and the
value of the scale factorae at the exit from inflation. For our
purposes, only the explicit expression forc1 ,c8, andc9 are
relevant, being
08351
ty
n-

c15an13a~22g2cs
2!,

c85aFn2
3

2
~3g2222cs

2!G ,
c9523a2@n~g212cs

2!13g~g2cs
2!#. ~58!

We deal with the system~56!, ~57! by performing separa-
tion of variables in the formd5dxd t ande5exet , wheredx
andex depend upon the spatial variables whiled t andet are
functions of the coordinate timet. Then, Eq.~56! can be
recast as

d̂ t

d t
1

c1

t

d̈ t

d t
1

c2

t2

ḋ t

d t
1

c3

t3
5t2aS c4

ḋ t

d t
1c5DD4dx

dx

1S cs
2 ḋ t

d t
1

c6

t
1c7D D2dx

dx
,

~59!

which can only hold if

~D22m!dx50, ~60!

m being an arbitrary constant. In Fourier transformed spac
becomes an identity that holds for an arbitrary amplitudedk
with m52k2/a2, where k/a is the physical wavenumber
Also, Eq. ~57! leads to

t2~ ët /et!1c8t~ ėt /et!1c9

c10~ ḋ t /et!1c11~d t /et!
5

dx

ex
, ~61!

which requiresex5Adx , with A a constant. Then the evolu
tion equation for modem becomes
0-6
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d̂ t1
c1

t
d̈ t1S c2

t2
2m2 t2a c42mcs

2D ḋ t1Fc3

t3
2m2t2ac5

2mS c6

t
1c7D Gd t50. ~62!

As we are interested in the asymptotic behavior of
perturbations along the attractor regime, it suffices to c
sider the dominant terms in Eq.~62! for large time. Asa
.0 we have

d̂ t1
c1

t
d̈ t2m2t2ac4ḋ t2m2t2ac5d t>0. ~63!

To study the asymptotic evolution of the long-waveleng
modes much larger than the Hubble scale (k/aH!1), we
expandd t in powers ofm2 as d t>d t

(0)1m2d t
(1) . Then, re-

placing this expression in Eq.~63! and retaining terms up to
first order inm2, we obtain

F d̂ t
(1)1

c1

t
d̈ t

(1)2t2ac4 ḋ t
(0)2t2ac5d t

(0)Gm21 d̂ t
(0)1

c1

t
d̈ t

(0)

50. ~64!

Its zeroth-order solution is

d t
(0)~ t !5

A1

~12c1!~22c1!
t22c11A2t1A3 , ~65!

for c1¹$1,2% and beingAi ,i 51,2,3 arbitrary integration
constants. Then,d t

(1) satisfies the inhomogeneous equatio

d̂ t
(1)1

c1

t
d̈ t

(1)2t2ac4ḋ t
(0)2t2ac5d t

(0)50, ~66!

whose general solution has the form

d t
(1)5

B1

~12c1!~22c1!
t22c11B2t1B31a1t2a142c1

1a2t2a131a3t2a152c11a4t2a14, ~67!

where the coefficientsBi ,i 51,2,3 are integration constan
andai ,i 51, . . . ,4depend ona,c1, and theBi . Bearing in
mind thata@1, we find that the dominant mode of the e
ergy density perturbations in the super-Hubble regime gro
asymptotically like t2a14}a21(4/a).a2, independently of
the wavenumber, until inflation exit.

On the other hand, Eq.~53! becomes, in the leading re
gime,

ët1
c8

t
ėt1

c9

t2
et5c12t

2a11F11
3

n S g211
1

2Vma
D t G ,

~68!

whose solution is
08351
e
-

s

et~ t !5B4tl11B5tl21c13t
2a13F11

3

n S g211
1

2Vma
D t G ,

~69!

wherel1,2 are the roots of the equationl21(c821)l1c9
50,B4 ,B5 are arbitrary integration constants, andc12,c13 are
functions of the parameters and the previously defined in
gration constants. It follows that the dominant mode of t
entropy perturbations also grows asa21(4/a).a2 for n
5O(1).

To deal with the evolution of the curvature perturbatio
generated by these energy density and entropy fluctuat
we will turn to the standard metric-based gauge-invari
approach. In a particular choice for slicing of space-tim
named the longitudinal gauge, the metric describing the
homogeneous perturbations of the spatially flat FLRW ba
ground takes the simple form

ds25~112F!dt22a2~ t !~122C!d i j dxidxj , ~70!

in terms of the gauge invariant Bardeen potentialsF andC
@21,24#. Besides, when the shear stress vanishes, it follo
from the equations of motion for the gauge invariant va
ables thatF5C. So, just a single scalar degree of freedo
say F, is required to describe linear perturbations of t
metric. We get two second order equations, namely

¹2F23aHF823a2H2F5
1

2
a2dr, ~71!

F913aH~11cs
2!F82cs

2¹2F1@2a~aH!8

1~113cs
2!a2H2#F

5
1

2
a2~dp1dp* 2cs

2dr!, ~72!

where the prime denotes derivative with respect to confor
time, and the source terms contain the energy density pe
bationdr, the equilibrium pressure perturbationdp and the
dissipative pressure perturbationdp* .

When the source term of Eq.~72! vanishes, and the scale
are larger than the Hubble radius such that the spatial gr
ents can be neglected, Eq.~72! can be recast in terms of th
curvature perturbation on uniform-density hypersurfac
@25–27#

z[F1H
dr

ṙ
5F1

2

3

H21Ḟ1F

g1p* /r
~73!

as a conservation lawż50 @28,29#. We consider that the
equilibrium pressure perturbation is isentropic during wa
inflationary and radiation-dominated eras, and that the di
pative pressure perturbation switches off during the tran
tion between both eras with a relaxation time that is a fr
tion of a Hubble time. Hence, one should expect thatż soon
vanishes along this transition so that the valueze at inflation
exit on super-Hubble scales may be equated to that at ree
of long wavelength modes to Hubble radius during t
0-7
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radiation- or matter-dominated eras. To find this value
need the evolution ofF along the attractor era for long
wavelength modes. Again, neglecting the spatial deriva
term and using the relationshipemk52d tdk /k2.
2a2dk /k2, the Fourier transform of Eq.~71! becomes

a
dFk

da
1Fk5

dk

2k2
a2. ~74!

Its solution

Fk5
C1

a
1

dk

6k2
a2 ~75!

shows thatF grows asymptotically asa2 during the attractor
regime. Inserting this result back in Eq.~73! we find thatz
also grows asa2 during this regime. This nonconservation
the super-Hubble curvature perturbations is a consequen
the growth of the entropy perturbations, which, in its turn,
due to dissipation effects as Eq.~51! shows. Then, taking
into account thatgf* !1, we find thatz.3aF.2aem/2 at
inflation exit. Hence the power spectra ofz and F at that
moment are proportional to the power spectrum of the
mordial energy density perturbations.

For a mode that crosses outside the Hubble radius at s
factoraA during inflation and reenters to the Hubble radius
scale factoraB during the radiation-dominated era, we fin
the number ofe-foldings before the end of inflationNA
5a/(a21)ln(aB /ae) by using the continuity of the energ
density at the turnover between the warm inflation and
radiation dominated eras. Then, for this mode of pertur
tions, the regime of growth asa2 starts at scale factora1
@aA , when bothaH@k and the evolution is close to th
attractor, and it continues until inflation exit. Then we obta

ae

a1
5

1

s S aB

baN
D a/(a21)

.
aB

bsaN
, ~76!

wheres5a1 /aA , aN is the scale factor at the start of nu
cleosynthesis era, corresponding to a temperatureTN
.1 MeV,b5ae /aN and we are takinga@1. As in this
warm inflationary scenario there is no need to accommod
a reheating stage, inflation may end shortly before nuc
synthesis and we may take safelyb.1022. Then we obtain
an upper bound on the growth of perturbation modes cro
ing inside the Hubble radius during the radiation-domina
era by considering the matter-radiation equality scalekeq

21

.100 Mpc, corresponding to a cluster of galaxies.
aeq /aN.106, taking s*103 we find thateme/em15ze /z1
&1010. Similarly, for a mode crossing inside the Hubble r
dius during the matter-dominated era, we obtain

ae

a1
.

3

4bs S aeq

aN
D S aB

aeq
D 1/2

. ~77!

Thus, scaleskhor
21 .104 Mpc, corresponding to the ob

servable universe, give the upper bound on the growth
perturbation modesze /z1&1013.
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After the inflationary stage, we recover the standard p
ture of conserved isentropic curvature perturbations and w
known calculations show that the density contrast at Hub
scale entry (dr/r)k5aH is proportional toz, or equivalently
to the comoving curvature perturbationR, with a proportion-
ality factor of 2/5 during presureless matter dominated e
or 4/9 during the radiation-dominated era@30#. So, using
COBE normalization for the power spectrum of curvatu
(2/5)PR

1/251.9131025 at the scalek21.103 Mpc, we find
that at inflation exitemk59.5531025/a.1026 for a.100.
Besides, due to the proportionality of power spectra, the
served bound on the spectral slope of curvature perturbat
n51.060.2 implies the same bound on the spectral slope
the energy density perturbations at inflation exit. Recall
that the amplitudedk is an arbitrary function, these observ
tional bounds impose no fine tuning constraints whatsoe
on the parameters of the scalar field potential.

V. DISCUSSION

We have proposed a new inflationary scenario wh
main ingredients aren scalar fields and a dissipative matt
fluid. The former decay into the latter at a high rateG. While
no single scalar field can achieve inflation by its own th
cooperate synergistically to produce it. We have derived
attractor condition Eq.~8! and shown that the presences
dissipation does not spoil the linear relationship between
power-law exponenta and the number of fields, preservin
the stability of the symmetric configuration ofn identical
fields.

We have described the interaction between the sc
fields and the radiation fluid in the warm inflationary sc
nario by means of an effective bulk dissipative pressure
generalized the attractor condition. Likewise, we have
sorted to the synergistic mechanism to calculate the prod
tion of entropy and the evolution of temperature. The e
temperature results lower but approximately of the same
der than the initial temperature. This renders the rehea
phase redundant.

Further, we have found that the combination of the sy
ergistic mechanism and the decay of the scalar fields into
matter fluid produces significant entropy perturbations w
proportional spectral amplitude and dominant mode evo
tion to that of energy density perturbations on large wa
length scales until inflation exit. This steep growth contra
with other models of inflation where long wavelength curv
ture modes evolve isentropically~see, e.g.,@29#, @31#!; how-
ever in our case there is a continuous transfer of energy f
the scalar fields to matter. Moreover, observational bou
on the curvature perturbations at Hubble scale entry do
force on our model any slow-roll constraints on the sca
field.
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