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Cosmic inversion: Reconstructing the primordial spectrum from CMB anisotropy
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We investigate the possibility of reconstructing the initial spectrum of density fluctuations from the cosmic
microwave backgroundCMB) anisotropy. As a first step toward this program, we consider a spatially flat,
CDM dominated universe. In this case, it is shown that, with a good accuracy, the initial spectrum satisfies a
first order differential equation with the source determined by the CMB angular correlation function. The
equation is found to contain singularities arising from zeros of the acoustic oscillations in the transfer func-
tions. Nevertheless, we find these singularities are not fatal, and the equation can be solved nicely. We test our
method by considering simple analytic forms for the transfer functions. We find the initial spectrum is repro-
duced within 5% accuracy even for a spectrum that has a sharp spike.
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I. INTRODUCTION proach to this inversion problem has been discussed recently
[9l.

Determination of the primordial spectrum of the density As a first step, we consider a simple situation in which the
fluctuations is one of the most important issues in moderrransfer functions that relate the input power spectiik)
cosmology. The cosmic microwave backgrou@MB) an- of the gravitational potential to the output CMB angular cor-
isotropy provides us with a great deal of information of therelation functionC(¢) are given analytically. This is cer-
primordial fluctuations, and it is considered to be a powerfultainly a toy model. However, it has almost all the essential
tool for studying the early univergd]. This is because the features a realistic model would have. In particular, unlike
physical processes that determine the CMB anisotropy ark®], our model takes account of not only the Sachs-Wolfe
described by linear perturbation theory, and they have beetSW) effect [10] but also the Doppler effect. The latter,
well understood?2,3]. which gives rise to zero points in the transfer functions, is

Although the recent anisotropy observations are consisthe main cause of the difficulty in this inversion problem.
tent with a flat universe with a scale-invariant initial power ~ The advantage of adopting this simple situation is that our
spectrum, this does not exclude the possibilities of othefmethod of inversion, which we shall develop below, may be
models. In particular, we do not know how much the shapeeasily tested at various stages of calculations. Since our pri-
of the initial power spectrum is constrained. In most of themary concern here is to formulate the inversion problem, we
previous investigations, when cosmological model paramfix the cosmological parameters and do not study the depen-
eters are estimated from the observational data by likelihoodence ofP(k) upon them.
analysis, the initial spectrum is assumed to have a power-law The paper is organized as follows. In Sec. II, we give the
shape[4]. It is true that a conventional slow-roll inflation basic equations that relate the primordial spectR(k) with
model[5], that has now become a “standard model,” gives athe angular correlation functio€(#6). In Sec. lll, under
power-law spectrum which is almost scale invarigff. = Ssome reasonable assumptions, we derive a differential equa-
However, when analyzing the observed CMB anisotropy, ittion for P(k) and develop a method to solve it. Then we test
is much more desirable, and probably much healthier, to coneur method by applying it to several spectral shapes. We find
strain the initial spectrum solely by observed data withoutour method is applicable even in the case of a spectrum with
any theoretical prejudices. For example, even within the cona sharp spike.
text of inflationary cosmology, a variety of generation
mechanisms for no_n-scale-in\_/ariant perturbations have been II. BASIC EQUATIONS
proposed[7]. In this connection, recently several authors
have discussed the extraction of nonpower law features from The angular correlation function of the CME(6) is
the CMB observation§8], where the initial spectrum is al- defined as
lowed to have a piecewise power-law shape.

In this paper, we approach this issue in an entirely differ- C(0)=(0(1)0(y,)), cosb=v,-v, (1)
ent way, namely, by formulating an inverse problem as faith-
ful as possible. Such an approach will be eventually needegl
if we seriously want to constrain the initial power spectrum
solely from observations of the CMB anisotropy. An ap-

here ® (y)=(AT/T)(y) is the temperature fluctuation in
the directiony and the average is taken over all angles and
all spatial positionsC(6) is expanded in the Legendre poly-
nomials and related to the angular power spectrGm,as
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C(6) or C, are the fundamental observables of the CMBlarge scales, the Doppler effect due to the fluid bulk velocity,
anisotropy. Our purpose is to reconstruct the initial powerand the integrated Sachs-Wolf&W) effect due to the time
spectrum from the above observables. We calculate in theariation of the metric perturbation after decoupling. If the

Newtonian gauge and follow the notation [&H. recombination occurs when the universe is matter-
Each Fourier mode of temperature perturbatiéhgy,k), ~ dominated,¥ and ® remain constant in time after decou-
obeys the Boltzmann equatigmi], pling until a stage at which either the curvature term or the

cosmological constant term becomes significant. In particu-
lar, in the Einstein—de Sitter universe, they remain constant

- . 1 _
O+iku(@+¥)=-0+70,-6- 1092P2(m) =TVl g today, hence the ISW effect is absent.

3) Conventionally,C, is expressed as
where the dot denotes a derivative with respect to the con-
: : : -1 2|+1 10(70,k)|?
formal time », k is the comoving wave numbeg =k~ "k ——Ci=— dk e— 1 (8

-y, 7is the differential Thomson optical depth a¥( is the
bulk velocity of baryonsW¥ and® are the gauge-invariant
Newtonian potential and spatial curvature perturbation, reFrom Egs.(7) and(8), we find
spectively [11]. Here, we decompos@®(7,k,u) into the

multipole moments, C':;Jo dk K[(O g+ W) (7,)j1(kd)+O4(7,)j| (kd)]?.

O(nkw)=2 (=)0 (7.k)P (), (4) ©

) ) The angular correlation function is calculated from E9).
where®,(7,k) is thel-th multipole moment o®(7,k,u). Here, we defing by

Integrating Eq.(3), we obtain

0
70 . _ .
(®+\If)(770,k,,u)=J0 {[Og+ ¥ —iuVyW(7n) r 2d3|n§. (10)
+ (¥ —d)e (Mekur=m0)d 5, This is the spatial distance between two points on the last

scattering surface which are observed with the angular sepa-
(5 ration 6. Since the thickness of the LSS is neglected in Eq.
(7), there is a one-to-one correspondence between the ob-
served temperature anisotropy and the perturbation variables
on the LSS. Using the relation

where 74 is the conformal time today ant(#) is the vis-
ibility function given by

V(n)=1(n)e "; 7(77)=f770'7(77’)d71’- (6) i sinkr
7 2 (21+1)P,(cosh)ji(kd) = ——, (12)

We have neglected the quadrupole term on the right hand
side of Eq.(3) since its contribution is negligible in the tight
coupling approximation. The visibility function has a sharp
peak around the last scattering tingg so that we assume

the angular correlation functio@(r) is given by

that recombination occurs instantaneouslyyat n, . Then, _ LJW w24 n Lﬁ
the multipole moments of eack mode are approximately < dk k) |00+ [*+ (B, \P)@lkd ar
given by
. +|®1|2 l+ rla, 2 % | | sinkr
0,(70,k) = (0o +V) (7, ,k)(21+1)]j(kd) 2 v a2 o Tl2d) Sz | ke
+01(7, ,K)(21+1)j/(kd) }
sinkr
:—f 0k K| |09+ ]2
+(21+1) dn—(\lf(n ,K)
N
_ |®,]2 sinkr
—® (' kDji(kmo—kn'), (7) Tz | Tk oSk
whered= 77— 7, is a conformal distance from the present i ;
epoch to the last scattering surfa¢eSS). Equation (7) (9o \I,)(al(—smkrwtcoskr)
shows that there are four sources for the temperature anisot- kd kr
ropy, namely, the intrinsic temperature variation, the Sachs- 19,2 [ sink
Wolfe (SW) effect which is caused by the static gravitational ;(ﬂ_coskr_ krsinkr) _ (12)
potential at the last scattering surface and is dominant on 4k2d?\ kr
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In the linear perturbation theory, differekimodes do not It must be noted thalP (k) has singularities on small scales
couple with each other but evolve independently. The initialsince f(k) and g(k) are oscillatory functions reflecting the
condition for eactk mode is directly reflected in the pertur- acoustic oscillations of the density perturbations. These sin-
bation variables through transfer functions. The variablesgularities are inevitable as long as we take this approach and
Oy, O, and ¥, in the integrand of Eq(12) are therefore the one-to-one correspondence betweg(r) and P(k)
linearly related to the initial condition and we can generallybreaks down at the singularities. However, we shall find in
express the relation betwe@gr) and the initial spectrum as the next section that there is a way to resolve this difficulty.

C(r)=f:K(k,r)P(k)dk, (13

IIl. INVERSION METHOD

In the above discussion, we have tacitly assumed ithat

where we normalize the initial condition in terms of the cur-runs from zero to infinity. In reality, howevar,s bounded in

vature perturbation ®(»=0k) and define P(k)

the finite range &r=<2d. Furthermore, it is observationally

=(|®(0k)|?). In this case, introducing the transfer functions impossible to determin€(r) on large scales due to the sta-

f(k) andg(k) defined by
(Oo+ W) (7, ,K)=1F(7, ,K)P(0k),

01(7, . K)=9(7, ,KP(0k), (14
K(k,r) can be written as
K [ "
K(k,r)= m(;g i (K)r&sinkr
1
+ZO aZiH(k)rZ‘“coskr), (15)
where «;(k) are given by
2(k)
ao(k=" 5",
g°(k)
ai(k)=— K2
)= (k) f(kg(k) N 9%(k)
)= Kd | 4k3d?’
_f(kgk)  g*(k)
a3(k)_ kd _4k2d21
g%(k)
k) ==2 . (16

Our purpose is to solve the integral equati@B) for P(k)
with the kernel given by Eq(15). When there is only the
monopole term, i.e®,=0, Eq.(13) takes the familiar form

sinkr
kr °

U 2
C(r)_szo dk K2f2(k)P(k) (17)

In this case, using the Fourier sine formula, we obtain

41
f2(k)k

P(k)= f:drrC(r)sinkr. (18

tistical ambiguity, i.e., the cosmic variance. However, the
scales which we are interested in ared and it is expected
that modes wittk=1/d have little effect on these scales. We
therefore neglect the terms proportional tal Hnd 142 in
Eqg. (12). In this limit, we have

N ALY 2 26i kr) —
C(r)= 2772J0 dk e {F(k)k“r“sin(kr) — G(k)kr coskr

+G(k)sinkr}, (19
where we have replacetf(k) and g?(k) with F(k) and
G(k), respectively, for notational simplicity. Multiplying by
r3 and integrating by parts twice, we may re-express(fEg).
as

r3c r)—ifwdk —a—z(kF K)P(k))+ i(G K)P(K))
(—27720 52 (K)P( ok (GOP(

+1G(k)P(k)]sinkr, (20)

k

where we have assumed that the boundary terms vanish and
the integral converges. Employing the Fourier sine formula,
we obtain

—KF(K)P"(K)+ (—2F —2kF' + G)P’ (k)
+(G'—2F" —KF"+G/K)P(K)

=477f r3C(r)sinkrdr.
0

(21)

This is a second-order ordinary differential equation in which
the source term carries the information 6{r). It is of
course necessary to fix the boundary conditionsH¢k) in
order to solve Eq(21). However, we have no means to de-
termine these conditions. The only knowledge we have is
that the boundary conditions k=0 andk=< are restricted
from the convergence of the integral in EG9).

In order to avoid this difficulty, we consider the reduction
of the order of the differential equation. If we take some
appropriate combination dE(r) and its derivative, we can
derive a differential equation of lower order. The simplest
combination is given by
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C(r)=3rC(r)+r2C’(r) The assumptioli) is valid only on large and intermediate
scales, but fails on small scal@s., on scales much smaller

1 (= than the Hubble horizon scale at decoupliepce the acous-
= —Zf dkP(k){F (k)kr coskr + (2F (k) tic oscillations tend to destroy the gravitational potential on
2m=Jo such scales. The assumption is, of course, quite unrealis-

+G(K))ksinkrl. (22) tic, while (i) is a natural consequence of inflationary cos-

mology. However, these assumptions do not alter the essen-
Note that the power of in the integrand is reduced. No tial features of the CMB anisotropy spectrum. The difficulty
linear combination can reduce the order of the differentialof solving Eq.(23) is caused by the acoustic oscillations of
equation lower thai©(r). Integrating by parts, we obtain  temperature fluctuations which give rise to zero points in the
transfer function$ andg, and this is a common feature of the
o) , * ) CMB anisotropy regardless of cosmological models. Further-
—Fk*P'+(-F k+G)kP:47Tfo C(r)sinkrdr. more, we do not take account of the diffusion damgibg]
(23) which becomes significant on small scales, since this effect
does not significantly change the structure of &9) either.
This is a first order differential equation. We discuss a We solve Eqs(24) and(26) in this toy model. The solu-
method for solving this equation in the rest of this section. tions are given by
We now give the expressions fotk) andg(k) explicitly 1
in order to examine the properties of E§3), and to verify _ -
if thus obtained solution correctly reproduces the original [Oo+W1(7)= SCID(O)cos{kcsn),
spectrum. For a given moddi(k) andg(k) are determined
by the coupled Einstein-fluid equations which are to be O.(n)=—cP(0)sin(kcsn), (27
solved numerically. However, in order to understand the
property of Eq.(23) and to establish a method which we can wherecs= 1//3 and we take the adiabatic initial condition as
apply to general cases, we start with a toy model in which®o(0)="¥(0)/3=—®(0)/3 and®,(0)=0. From Eq.(23),
f(k) andg(k) are given analytically. we obtain
Before recombination, photons are tightly coupled with
baryons through the Thomson scattering. With the tight cou- _ ~- 2y, k2p’ +
pling approximation, we can expand the Boltzmann equation 9 *
for photons together with the continuity and Euler equations
for baryons in the Thomson scattering tiffd. To the lead- =S(k), (28)
ing order, the dynamics of the photon-baryon fluid is de- _
scribed by the following simple equation for each FourierWherer*_Csn* and
mode[3],

2 ) 1
§kr*coskr*smkr*+§sm2kr* kP

S(k)=4wJ:E(r)sinkrdr. (29)

.. a R .
Oot 2 77RO+ K ciO0=F(n), (24 _

a Now let us describe our method. When the dat& €f) is
wherec, is the sound speed of the photon-baryon flud, given, S(k) is computed from the Fourier sine transform of

=3pyldp,,, andF(7) is the driving term due to the gravita- it. In actual situationsC(r) is to be obtained by observation.

tional potential, However, here we us€(r) obtained from Eq(12) by giv-
) ing an original spectrum by hand. Then we solve E2B)

—_é a R ¥ kzqf ) and compare the solution with the original spectrum. Note
Fo==C-o 1 g¥-3 ¥ @9 that we do not use Eq19) for the evaluation of(r) since

_ _ . o _itis an approximate formula obtained by taking the limit
The dipole moment is obtained from the continuity equation,— . This is because our purpose is to examine the accuracy
, . of our method which uses several approximations. For the
k@,=—3(0+V). (26)  distance to the LSS, we choode= 100, .
The theoretical expression f&(r) includes contributions
ﬁrom C, of allI; 0=l=wo. In reality, the monopole and dipole
a o .
contributions of the anisotropy cannot be observed and the

Note that Eqs(24) and (26) are applicable not only to the
Einstein—de Sitter universe but also to other cosmologic

models. hiah Itinol t limited by th I [
Here we solve Eqs(24) and (26) under the following '9"'c" MUTPO'e MOMENTS are fimited by the anguiar resoiu-
assumptions: tion of observation. Therefore, we subtract these contribu-

(i) The gravitational potential fluctuatiow(») and the tions fromC(r) and define the following function instead of
spatial curvature fluctuatio®( ») are always independent of EG. (2):
time, i.e, W =d=0, and¥V=—.

lo 2
(ii) The baryon denisty is negligible, i.eR=0. Cobs(f)=2 Mclpl 1— - , (30)
(iii) The perturbation is adiabatic. i=2 4w 2d?
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FIG. 2. The exact source terfaolid line), and the source term
FIG. 1. C(r) (0<I<w), Capy(r) (0=<I=<2000) andC,p(r)  calculated from the Fourier transform &%,,{r) (dotted ling for
(2<1=<2000) for the spectruniP(k)=(kd) 3exp(—k/ky). We set the spectrum same as Fig. 1. The exact source term is calculated by

kod=500. The relative error betwe@y,,(r) andC(r) is less than ~ substituting the analyti€ (k) into the left-hand side of Eq28) in
204, the text. The relative error, which results from the small scale ap-

proximation,r/d<1, and the finiteness of th@, data, is below 5%.

wherel is an upper limit ofl and we takd ,=2000 in the

following calculation. We denote the correspondidy) by ~ Cobs(r) byl a smoi)dth fﬁ,”%“?” Whi(‘hh dan:lps O#t Scth'f)ply at
~ ~ =
Copd(r). Since thel =0, 1 terms contribute t€(r) mainly some scaler=0.01d which is much smaller than but

at larger, the source term is not expected to be modifiedIarge enough to reproduce the spectrum over a sufficiently

significantly by neglecting these terms. As for the contribu—mgdeersantag' fﬁlrtzggr?hoé?;ngvirs ttrt]ee g&?ilgf?;nogfé?“rgehas
tions of =1, they are negligible sinc€, decreases expo- ’ y

i ) ~ - little deviation from the exacB(k) on scales of our interest.
nentially for largel. In Fig. 1, we showC(r) andC,4r) for

_ X Both the exact and calculate®(k) are shown in Fig. 2.
a power law spectrum with a damping factoR(k)  gince we takel,=2000, the region where the calculated

= (kd) “3exp(~K/ky). In this case,C(r) can be calculated source term matches the exact one is bekal | <2000.
analytically and we can estimate the effect of using the finite As mentioned before, Eq28) has singularities akr,
data set ofC,. We also plotéapp(r) which is given by =(n+1/2)7 which cause difficulties when we solve it nu-
cutting off the high multipole contributions df=I, from  merically. We can, however, determine the value® @) at
C(r). The relative error betweeB,,,(r) and the analytic these singularities if we assume that the derivative @) is
&(r) is below 2%, which justifies the neglect of the high fINite- Then the first term on the left-hand side of E28)

: o ~ , vanishes akr, =(n+3), and the values oP(k) at these
muInEoIe contributions. On the other han@y,4(r) differs singularities are given by
from C(r) substantially. However, since we are interested in
scales much smaller thah this subtraction of =0,1 modes

is expected to béand in fact found to beharmless. 1\ =
For a given spectrum, the exdstk) can be evaluated by P{k: n+ CIFR
simply substituting the originaP (k) into the left-hand side *
of Eq. (28). Since we are interested in the inversion problem, 3r, 1
we need to know how accurately the source t&(k) can be T 1 k={n+ 2/, (3D
calculated fromC,p(r). In particular, we must reproduce ”+§ ™

the exact one with a good accuracy on scdled00. We
therefore examine the accuracy of the calculaBHl) by

comparing it with the exact one. Once these values are given, we can solve (E8) by ex-

Before we make this comparison, however, there is on@anding it around the singularities. We search the true solu-
more problem to be resolved. It is the problem of the ranggjon which connects the adjacent singularities using the
of definition of r. The Fourier transform o€(r) cannot be shooting method. We solve the equation until the 5th singu-
performed in the exact sense simcgiven by Eq.(10) is not  larity, kd= 450, for the following two cases of the original
defined forr>2d. To avoid this difficulty, we cut off spectra:
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FIG. 3. The original spectréhe solid curvesand the reconstructed spectthe boxes and trianglgsThe left panel shows the case of
the double power-law spectrum given by Eg2) and the middle and the right panels show the single power-law spectra with a sharp peak
(s=+1) and a dip §=—1), respectively, given by Eq33). The triangles show the locations of the singular points. We stopped the
numerical integrations in the vicinity of the singularities when the relative error exceeded 10%.

(kd)~3 present in the CMB spectrum as a consequence of an irregu-
(k)= ———— exp(—k/ko), (32 lar feature in the primordial spectrum. The above result in-
1+ (kiks) dicates that our method is capable of reproducing such a
Kde k. d)?) 15 featl_Jre fro_m_the CMB spectrum.
1+Aexp{ _ (kd—kpd) H Fmally, |t_|_s wc_)rthwhllg to comment that the presence of
o the singularities in the differential equatid®3) may be re-
garded as an advantage, since the value3(&) at the sin-
gularities can be estimated without solving the differential
equation. In particular, if there is a good reason to believe
s=*1. (33  that the spectrum should be a smoothly varying function, a
qualitative feature of the spectrum can be obtained at once.
The first one is a double power-law spectrum and the secondor example, in the case of the double power-law spectrum
is a single power-law spectrum with a spiky structure, eitheq32), one can see that the original spectrum can be approxi-
with a peak 6=+1) or a dip 6=—1). The results for the mately recovered by simply interpolating between the adja-
choice of the parameters gs=2, A=10, k,d=600, o cent triangles shown in Fig. 3.
=10 and kod=1000 are shown in Fig. 3. We find our
methoq reproduce; the original spectra with a good accuracy. IV. CONCLUSION
In particular, even if the spectrum has a sharp peak or a dip,
we can resolve such a local structure using this method. The We have considered the problem of reconstructing the ini-
numerical solution diverges as it approaches the singularitieal power spectrum of metric perturbatidd(k) from C,
(indicated by the trianglesbut the relative error except for data. As a first step, we have investigated a simple case,
the regions close to the singularities is below $%. namely, the Einstein—de Sitter universe with negligible bary-
For comparison, in Fig. 4, we also show the correspondeons and negligible thickness of the LSS. In this toy model,
ing CMB angular power spectra calculated by using thethe observed temperature fluctuations are represented only
transfer functions given by E@27). In the case of the spec- by the perturbation variables on the LSS and the ISW effect
trum with a peak, one can clearly see an enhanceme@t of is absent. Then, the relation between the initial spectrum and
atl~600, though the peak height is suppressed by a factor dhe angular correlation function is expressed in terms of an
~4 as compared to the original peak in the primordial specintegral equation. We have shown that this equation can be
trum. As for the spectrum with a dip, the structure is eventransformed to a second order differential equationFok).
more suppressed and leaves only a small imprint in the anMe have found that by forming an appropriate linear combi-
gular spectrum. In a realistic case, a small structure may beation of the angular correlation function and its derivative,
the order of the differential equation can be reduced to the
first order. The resulting equation is found to have singulari-
When the spiky feature falls on a singularity, the accuracy ofties that come from the acoustic oscillations of photons,
numerical integration becomes bad, though the value(&j atthe  hence their presence is inevitable in any cosmological mod-
singularity can still be obtained from E¢1). We defer such a case €ls not restricted to our simple model. Fortunately, however,
to a future work. the presence of these singularities turns out to be not only

P(k)=(kd) 3

Xexp(—k/kg);

083007-6



COSMIC INVERSION: RECONSTRUCTING TH. . . PHYSICAL REVIEW D 65 083007

0.06 : : 0.06 . :
0.04
0.04
0.02
154 Qo.02
: 0.0l :
= =

0.01

50 500 1000 1500 50 500 1000 1500
1 1

FIG. 4. The CMB angular power spectra for the two initial spectra,(B8. (left pane) and Eq.(33) (right pane). The solid line and the
dashed line on the right panel show the case with a psaky{1) and the case with a dis€ — 1), respectively, and the dotted line shows
the case without the spiky structure in the initial spectrum. The normalization is arbitrary. Since we have neglected the contribution of
baryons to the transfer functions, the acoustic peaks appear less prominent and their locations are shiftet teolargalistic models with
baryons, the acoustic peaks will become more prominent and their locations will shift to smatlich would make the peak from the
original P(k) a bit less visible and the dip a bit more visible. For example, the first peak, which is locate®@@ in the figures, will shift
to | ~200.

harmless but rather advantageous. At the singularities thpresent. Such a model, called the cold dark matter model

coefficient of P’ (k) vanishes, and the values B{k) there  with a cosmological constant\(CDM) is preferred by recent

can be obtained without solving the differential equation. Byobservation$13]. Our next step is to include the ISW effect

plotting the values oP(k), one can obtain a rough estimate in our method which is currently under study.

of the behavior of the spectrum. Then, to recover the precise

features of the spectrum, the rest parfgk) can be solved

with its values at the singularities as the initial values. We ACKNOWLEDGMENTS
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