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Cosmic inversion: Reconstructing the primordial spectrum from CMB anisotropy

Makoto Matsumiya,* Misao Sasaki,† and Jun’ichi Yokoyama‡

Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
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We investigate the possibility of reconstructing the initial spectrum of density fluctuations from the cosmic
microwave background~CMB! anisotropy. As a first step toward this program, we consider a spatially flat,
CDM dominated universe. In this case, it is shown that, with a good accuracy, the initial spectrum satisfies a
first order differential equation with the source determined by the CMB angular correlation function. The
equation is found to contain singularities arising from zeros of the acoustic oscillations in the transfer func-
tions. Nevertheless, we find these singularities are not fatal, and the equation can be solved nicely. We test our
method by considering simple analytic forms for the transfer functions. We find the initial spectrum is repro-
duced within 5% accuracy even for a spectrum that has a sharp spike.
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I. INTRODUCTION

Determination of the primordial spectrum of the dens
fluctuations is one of the most important issues in mod
cosmology. The cosmic microwave background~CMB! an-
isotropy provides us with a great deal of information of t
primordial fluctuations, and it is considered to be a power
tool for studying the early universe@1#. This is because the
physical processes that determine the CMB anisotropy
described by linear perturbation theory, and they have b
well understood@2,3#.

Although the recent anisotropy observations are con
tent with a flat universe with a scale-invariant initial pow
spectrum, this does not exclude the possibilities of ot
models. In particular, we do not know how much the sha
of the initial power spectrum is constrained. In most of t
previous investigations, when cosmological model para
eters are estimated from the observational data by likelih
analysis, the initial spectrum is assumed to have a power
shape@4#. It is true that a conventional slow-roll inflatio
model@5#, that has now become a ‘‘standard model,’’ gives
power-law spectrum which is almost scale invariant@6#.
However, when analyzing the observed CMB anisotropy
is much more desirable, and probably much healthier, to c
strain the initial spectrum solely by observed data with
any theoretical prejudices. For example, even within the c
text of inflationary cosmology, a variety of generatio
mechanisms for non-scale-invariant perturbations have b
proposed@7#. In this connection, recently several autho
have discussed the extraction of nonpower law features f
the CMB observations@8#, where the initial spectrum is al
lowed to have a piecewise power-law shape.

In this paper, we approach this issue in an entirely diff
ent way, namely, by formulating an inverse problem as fa
ful as possible. Such an approach will be eventually nee
if we seriously want to constrain the initial power spectru
solely from observations of the CMB anisotropy. An a

*Email address: matumiya@vega.ess.sci.osaka-u.ac.jp
†Email address: misao@vega.ess.sci.osaka-u.ac.jp
‡Email address: yokoyama@vega.ess.sci.osaka-u.ac.jp
0556-2821/2002/65~8!/083007~8!/$20.00 65 0830
n

l

re
en

s-

r
e

-
d
w

it
n-
t
-

en

m

-
-
d

proach to this inversion problem has been discussed rece
@9#.

As a first step, we consider a simple situation in which t
transfer functions that relate the input power spectrumP(k)
of the gravitational potential to the output CMB angular co
relation functionC(u) are given analytically. This is cer
tainly a toy model. However, it has almost all the essen
features a realistic model would have. In particular, unl
@9#, our model takes account of not only the Sachs-Wo
~SW! effect @10# but also the Doppler effect. The latte
which gives rise to zero points in the transfer functions,
the main cause of the difficulty in this inversion problem.

The advantage of adopting this simple situation is that
method of inversion, which we shall develop below, may
easily tested at various stages of calculations. Since our
mary concern here is to formulate the inversion problem,
fix the cosmological parameters and do not study the dep
dence ofP(k) upon them.

The paper is organized as follows. In Sec. II, we give t
basic equations that relate the primordial spectrumP(k) with
the angular correlation functionC(u). In Sec. III, under
some reasonable assumptions, we derive a differential e
tion for P(k) and develop a method to solve it. Then we te
our method by applying it to several spectral shapes. We
our method is applicable even in the case of a spectrum w
a sharp spike.

II. BASIC EQUATIONS

The angular correlation function of the CMB,C(u) is
defined as

C~u!5^Q~g1!Q~g2!&, cosu5g1•g2 ~1!

where Q(g)5(DT/T̄)(g) is the temperature fluctuation i
the directiong and the average is taken over all angles a
all spatial positions.C(u) is expanded in the Legendre poly
nomials and related to the angular power spectrum,Cl , as

C~u!5(
l

2l 11

4p
Cl Pl~cosu!. ~2!
©2002 The American Physical Society07-1
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C(u) or Cl are the fundamental observables of the CM
anisotropy. Our purpose is to reconstruct the initial pow
spectrum from the above observables. We calculate in
Newtonian gauge and follow the notation of@3#.

Each Fourier mode of temperature perturbations,Q(h,k),
obeys the Boltzmann equation@11#,

Q̇1 ikm~Q1C!52Ḟ1 ṫFQ02Q2
1

10
Q2P2~m!2 imVbG ,

~3!

where the dot denotes a derivative with respect to the c
formal time h, k is the comoving wave number,m5k21k
•g, ṫ is the differential Thomson optical depth andVb is the
bulk velocity of baryons.C and F are the gauge-invarian
Newtonian potential and spatial curvature perturbation,
spectively @11#. Here, we decomposeQ(h,k,m) into the
multipole moments,

Q~h,k,m!5(
l

~2 i ! lQ l~h,k!Pl~m!, ~4!

whereQ l(h,k) is the l-th multipole moment ofQ(h,k,m).
Integrating Eq.~3!, we obtain

~Q1C!~h0 ,k,m!5E
0

h0
$@Q01C2 imVb#V~h!

1~Ċ2Ḟ!e2t(h)%eikm(h2h0)dh,

~5!

whereh0 is the conformal time today andV(h) is the vis-
ibility function given by

V~h!5 ṫ~h!e2t(h); t~h!5E
h

h0
ṫ~h8!dh8. ~6!

We have neglected the quadrupole term on the right h
side of Eq.~3! since its contribution is negligible in the tigh
coupling approximation. The visibility function has a sha
peak around the last scattering timeh* so that we assume
that recombination occurs instantaneously ath5h* . Then,
the multipole moments of eachk mode are approximately
given by

Q l~h0,k!5~Q01C!~h* ,k!~2l 11! j l~kd!

1Q1~h* ,k!~2l 11! j l8~kd!

1~2l 11!E
h
*

h0
dh8

]

]h8
„C~h8,k!

2F~h8,k!…j l~kh02kh8!, ~7!

whered5h02h* is a conformal distance from the prese
epoch to the last scattering surface~LSS!. Equation ~7!
shows that there are four sources for the temperature an
ropy, namely, the intrinsic temperature variation, the Sac
Wolfe ~SW! effect which is caused by the static gravitation
potential at the last scattering surface and is dominant
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large scales, the Doppler effect due to the fluid bulk veloc
and the integrated Sachs-Wolfe~ISW! effect due to the time
variation of the metric perturbation after decoupling. If th
recombination occurs when the universe is matt
dominated,C and F remain constant in time after decou
pling until a stage at which either the curvature term or
cosmological constant term becomes significant. In parti
lar, in the Einstein–de Sitter universe, they remain cons
until today, hence the ISW effect is absent.

Conventionally,Cl is expressed as

2l 11

4p
Cl5

1

2p2E0

`

dk k2
uQ l~h0 ,k!u2

2l 11
. ~8!

From Eqs.~7! and ~8!, we find

Cl5
2

pE0

`

dk k2@~Q01C!~h* ! j l~kd!1Q1~h* ! j l8~kd!#2.

~9!

The angular correlation function is calculated from Eq.~9!.
Here, we definer by

r 52d sin
u

2
. ~10!

This is the spatial distance between two points on the
scattering surface which are observed with the angular s
ration u. Since the thickness of the LSS is neglected in E
~7!, there is a one-to-one correspondence between the
served temperature anisotropy and the perturbation varia
on the LSS. Using the relation

(
l 50

`

~2l 11!Pl~cosu! j l
2~kd!5

sinkr

kr
, ~11!

the angular correlation functionC(r ) is given by

C~r !5
1

2p2E0

`

dk k2F uQ01Cu21~Q01C!Q1

r

kd

]

]r

1
uQ1u2

k2 H S 2
1

r
1

r

4d2D ]

]r
1S r

2dD 2 ]2

]r 2J G sinkr

kr

5
1

2p2E0

`

dk k2F uQ01Cu2
sinkr

kr

1
uQ1u2

k2r 2 S sinkr

kr
2coskr D

1
~Q01C!Q1

kd S 2
sinkr

kr
1coskr D

1
uQ1u2

4k2d2 S sinkr

kr
2coskr2krsinkr D G . ~12!
7-2
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In the linear perturbation theory, differentk modes do not
couple with each other but evolve independently. The ini
condition for eachk mode is directly reflected in the pertu
bation variables through transfer functions. The variab
Q0 , Q1 and C, in the integrand of Eq.~12! are therefore
linearly related to the initial condition and we can genera
express the relation betweenC(r ) and the initial spectrum a

C~r !5E
0

`

K~k,r !P~k!dk, ~13!

where we normalize the initial condition in terms of the cu
vature perturbation F(h50,k) and define P(k)
[^uF(0,k)u2&. In this case, introducing the transfer functio
f (k) andg(k) defined by

~Q01C!~h* ,k!5 f ~h* ,k!F~0,k!,

Q1~h* ,k!5g~h* ,k!F~0,k!, ~14!

K(k,r ) can be written as

K~k,r !5
k2

2p2r 3 S (i 50

2

a2i~k!r 2isinkr

1(
i 50

1

a2i 11~k!r 2i 11coskr D , ~15!

wherea i(k) are given by

a0~k!5
g2~k!

k3
,

a1~k!52
g2~k!

k2
,

a2~k!5
f 2~k!

k
2

f ~k!g~k!

k2d
1

g2~k!

4k3d2
,

a3~k!5
f ~k!g~k!

kd
2

g2~k!

4k2d2
,

a4~k!52
g2~k!

4kd2
. ~16!

Our purpose is to solve the integral equation~13! for P(k)
with the kernel given by Eq.~15!. When there is only the
monopole term, i.e.,Q150, Eq.~13! takes the familiar form

C~r !5
1

2p2E0

`

dk k2f 2~k!P~k!
sinkr

kr
. ~17!

In this case, using the Fourier sine formula, we obtain

P~k!5
4p

f 2~k!k
E

0

`

dr rC~r !sinkr. ~18!
08300
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It must be noted thatP(k) has singularities on small scale
since f (k) and g(k) are oscillatory functions reflecting th
acoustic oscillations of the density perturbations. These
gularities are inevitable as long as we take this approach
the one-to-one correspondence betweenC(r ) and P(k)
breaks down at the singularities. However, we shall find
the next section that there is a way to resolve this difficu

III. INVERSION METHOD

In the above discussion, we have tacitly assumed thr
runs from zero to infinity. In reality, however,r is bounded in
the finite range 0<r<2d. Furthermore, it is observationall
impossible to determineC(r ) on large scales due to the st
tistical ambiguity, i.e., the cosmic variance. However, t
scales which we are interested in arer !d and it is expected
that modes withk>1/d have little effect on these scales. W
therefore neglect the terms proportional to 1/d and 1/d2 in
Eq. ~12!. In this limit, we have

C~r !5
1

2p2E0

`

dk
P~k!

kr3
$F~k!k2r 2sin~kr !2G~k!kr coskr

1G~k!sinkr%, ~19!

where we have replacedf 2(k) and g2(k) with F(k) and
G(k), respectively, for notational simplicity. Multiplying by
r 3 and integrating by parts twice, we may re-express Eq.~19!
as

r 3C~r !5
1

2p2E0

`

dkH 2
]2

]k2
„kF~k!P~k!…1

]

]k
„G~k!P~k!…

1
1

k
G~k!P~k!J sinkr, ~20!

where we have assumed that the boundary terms vanish
the integral converges. Employing the Fourier sine formu
we obtain

2kF~k!P9~k!1~22F22kF81G!P8~k!

1~G822F82kF91G/k!P~k!

54pE
0

`

r 3C~r !sinkrdr. ~21!

This is a second-order ordinary differential equation in wh
the source term carries the information ofC(r ). It is of
course necessary to fix the boundary conditions forP(k) in
order to solve Eq.~21!. However, we have no means to d
termine these conditions. The only knowledge we have
that the boundary conditions atk50 andk5` are restricted
from the convergence of the integral in Eq.~19!.

In order to avoid this difficulty, we consider the reductio
of the order of the differential equation. If we take som
appropriate combination ofC(r ) and its derivative, we can
derive a differential equation of lower order. The simple
combination is given by
7-3
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M. MATSUMIYA, M. SASAKI, AND J. YOKOYAMA PHYSICAL REVIEW D 65 083007
C̃~r ![3rC~r !1r 2C8~r !

5
1

2p2E0

`

dkP~k!$F~k!k2r coskr1„2F~k!

1G~k!…ksinkr%. ~22!

Note that the power ofr in the integrand is reduced. N
linear combination can reduce the order of the differen
equation lower thanC̃(r ). Integrating by parts, we obtain

2Fk2P81~2F8k1G!kP54pE
0

`

C̃~r !sinkrdr.

~23!

This is a first order differential equation. We discuss
method for solving this equation in the rest of this sectio

We now give the expressions forf (k) andg(k) explicitly
in order to examine the properties of Eq.~23!, and to verify
if thus obtained solution correctly reproduces the origi
spectrum. For a given model,f (k) andg(k) are determined
by the coupled Einstein-fluid equations which are to
solved numerically. However, in order to understand
property of Eq.~23! and to establish a method which we c
apply to general cases, we start with a toy model in wh
f (k) andg(k) are given analytically.

Before recombination, photons are tightly coupled w
baryons through the Thomson scattering. With the tight c
pling approximation, we can expand the Boltzmann equa
for photons together with the continuity and Euler equatio
for baryons in the Thomson scattering time@2#. To the lead-
ing order, the dynamics of the photon-baryon fluid is d
scribed by the following simple equation for each Four
mode@3#,

Q̈01
ȧ

a

R

11R
Q̇01k2cs

2Q05F~h!, ~24!

wherecs is the sound speed of the photon-baryon fluid,R
[3rb/4rg , andF(h) is the driving term due to the gravita
tional potential,

F~h!52F̈2
ȧ

a

R

11R
Ċ2

k2

3
C. ~25!

The dipole moment is obtained from the continuity equati

kQ1523~Q̇01Ċ!. ~26!

Note that Eqs.~24! and ~26! are applicable not only to the
Einstein–de Sitter universe but also to other cosmolog
models.

Here we solve Eqs.~24! and ~26! under the following
assumptions:

~i! The gravitational potential fluctuationC(h) and the
spatial curvature fluctuationF(h) are always independent o
time, i.e.,Ċ5Ḟ50, andC52F.

~ii ! The baryon denisty is negligible, i.e.,R50.
~iii ! The perturbation is adiabatic.
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The assumption~i! is valid only on large and intermediat
scales, but fails on small scales~i.e., on scales much smalle
than the Hubble horizon scale at decoupling! since the acous-
tic oscillations tend to destroy the gravitational potential
such scales. The assumption~ii ! is, of course, quite unrealis
tic, while ~iii ! is a natural consequence of inflationary co
mology. However, these assumptions do not alter the es
tial features of the CMB anisotropy spectrum. The difficu
of solving Eq.~23! is caused by the acoustic oscillations
temperature fluctuations which give rise to zero points in
transfer functionsf andg, and this is a common feature of th
CMB anisotropy regardless of cosmological models. Furth
more, we do not take account of the diffusion damping@12#
which becomes significant on small scales, since this ef
does not significantly change the structure of Eq.~23! either.

We solve Eqs.~24! and ~26! in this toy model. The solu-
tions are given by

@Q01C#~h!52
1

3
F~0!cos~kcsh!,

Q1~h!52csF~0!sin~kcsh!, ~27!

wherecs51/A3 and we take the adiabatic initial condition a
Q0(0)5C(0)/352F(0)/3 andQ1(0)50. From Eq.~23!,
we obtain

2
1

9
cos2kr* k2P81S 2

9
kr* coskr* sinkr* 1

1

3
sin2kr* D kP

5S~k!, ~28!

wherer * 5csh* and

S~k!54pE
0

`

C̃~r !sinkrdr. ~29!

Now let us describe our method. When the data ofC̃(r ) is
given, S(k) is computed from the Fourier sine transform
it. In actual situations,C̃(r ) is to be obtained by observation
However, here we useC̃(r ) obtained from Eq.~12! by giv-
ing an original spectrum by hand. Then we solve Eq.~28!
and compare the solution with the original spectrum. N
that we do not use Eq.~19! for the evaluation ofC̃(r ) since
it is an approximate formula obtained by taking the limitd
→`. This is because our purpose is to examine the accu
of our method which uses several approximations. For
distance to the LSS, we choosed5100r * .

The theoretical expression forC̃(r ) includes contributions
from Cl of all l; 0< l<`. In reality, the monopole and dipol
contributions of the anisotropy cannot be observed and
higher multipole moments are limited by the angular reso
tion of observation. Therefore, we subtract these contri
tions fromC̃(r ) and define the following function instead o
Eq. ~2!:

Cobs~r !5(
l 52

l 0 2l 11

4p
Cl PlS 12

r 2

2d2D , ~30!
7-4
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where l 0 is an upper limit ofl and we takel 052000 in the

following calculation. We denote the correspondingC̃(r ) by
C̃obs(r ). Since thel 50, 1 terms contribute toC̃(r ) mainly
at large r, the source term is not expected to be modifi
significantly by neglecting these terms. As for the contrib
tions of l> l 0, they are negligible sinceCl decreases expo
nentially for largel. In Fig. 1, we showC̃(r ) andC̃obs(r ) for
a power law spectrum with a damping factor,P(k)
5(kd)23exp(2k/k0). In this case,C̃(r ) can be calculated
analytically and we can estimate the effect of using the fin
data set ofCl . We also plotC̃app(r ) which is given by
cutting off the high multipole contributions ofl> l 0 from
C̃(r ). The relative error betweenC̃app(r ) and the analytic
C̃(r ) is below 2%, which justifies the neglect of the hig
multipole contributions. On the other hand,C̃obs(r ) differs
from C̃(r ) substantially. However, since we are interested
scales much smaller thand, this subtraction ofl 50,1 modes
is expected to be~and in fact found to be! harmless.

For a given spectrum, the exactS(k) can be evaluated by
simply substituting the originalP(k) into the left-hand side
of Eq. ~28!. Since we are interested in the inversion proble
we need to know how accurately the source termS(k) can be
calculated fromC̃obs(r ). In particular, we must reproduc
the exact one with a good accuracy on scalesl *100. We
therefore examine the accuracy of the calculatedS(k) by
comparing it with the exact one.

Before we make this comparison, however, there is
more problem to be resolved. It is the problem of the ran
of definition of r. The Fourier transform ofC̃(r ) cannot be
performed in the exact sense sincer given by Eq.~10! is not
defined for r .2d. To avoid this difficulty, we cut off

FIG. 1. C̃(r ) (0< l ,`), C̃app(r ) (0< l<2000) andC̃obs(r )
(2< l<2000) for the spectrumP(k)5(kd)23exp(2k/k0). We set

k0d5500. The relative error betweenC̃app(r ) andC̃(r ) is less than
2%.
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C̃obs(r ) by a smooth function which damps out steeply
some scaler *0.01d which is much smaller than 2d but
large enough to reproduce the spectrum over a sufficie
wide range. Although this lowers the amplitude of largek
modes, the function obtained by the Fourier transform
little deviation from the exactS(k) on scales of our interest
Both the exact and calculatedS(k) are shown in Fig. 2.
Since we takel 052000, the region where the calculate
source term matches the exact one is belowkd5 l<2000.

As mentioned before, Eq.~28! has singularities atkr*
5(n11/2)p which cause difficulties when we solve it nu
merically. We can, however, determine the values ofP(k) at
these singularities if we assume that the derivative ofP(k) is
finite. Then the first term on the left-hand side of Eq.~28!
vanishes atkr* 5(n1 1

2 )p, and the values ofP(k) at these
singularities are given by

PFk5S n1
1

2D p

r *
G

5
3r *S n1

1

2Dp

SFk5S n1
1

2D p

r *
G . ~31!

Once these values are given, we can solve Eq.~28! by ex-
panding it around the singularities. We search the true s
tion which connects the adjacent singularities using
shooting method. We solve the equation until the 5th sin
larity, kd5450p, for the following two cases of the origina
spectra:

FIG. 2. The exact source term~solid line!, and the source term

calculated from the Fourier transform ofC̃obs(r ) ~dotted line! for
the spectrum same as Fig. 1. The exact source term is calculate
substituting the analyticP(k) into the left-hand side of Eq.~28! in
the text. The relative error, which results from the small scale
proximation,r /d!1, and the finiteness of theCl data, is below 5%.
7-5
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FIG. 3. The original spectra~the solid curves! and the reconstructed spectra~the boxes and triangles!. The left panel shows the case o
the double power-law spectrum given by Eq.~32! and the middle and the right panels show the single power-law spectra with a sharp
(s511) and a dip (s521), respectively, given by Eq.~33!. The triangles show the locations of the singular points. We stopped
numerical integrations in the vicinity of the singularities when the relative error exceeded 10%.
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P~k!5
~kd!23

11~k/ks!
p

exp~2k/k0!, ~32!

P~k!5~kd!23F11A expH 2
~kd2kpd!2

s J Gs

3exp~2k/k0!;

s561. ~33!

The first one is a double power-law spectrum and the sec
is a single power-law spectrum with a spiky structure, eit
with a peak (s511) or a dip (s521). The results for the
choice of the parameters asp52, A510, kpd5600, s
510 and k0d51000 are shown in Fig. 3. We find ou
method reproduces the original spectra with a good accur
In particular, even if the spectrum has a sharp peak or a
we can resolve such a local structure using this method.
numerical solution diverges as it approaches the singular
~indicated by the triangles!, but the relative error except fo
the regions close to the singularities is below 5%.1

For comparison, in Fig. 4, we also show the correspo
ing CMB angular power spectra calculated by using
transfer functions given by Eq.~27!. In the case of the spec
trum with a peak, one can clearly see an enhancement oCl
at l;600, though the peak height is suppressed by a facto
;4 as compared to the original peak in the primordial sp
trum. As for the spectrum with a dip, the structure is ev
more suppressed and leaves only a small imprint in the
gular spectrum. In a realistic case, a small structure may

1When the spiky feature falls on a singularity, the accuracy
numerical integration becomes bad, though the value ofP(k) at the
singularity can still be obtained from Eq.~31!. We defer such a cas
to a future work.
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present in the CMB spectrum as a consequence of an irr
lar feature in the primordial spectrum. The above result
dicates that our method is capable of reproducing suc
feature from the CMB spectrum.

Finally, it is worthwhile to comment that the presence
the singularities in the differential equation~23! may be re-
garded as an advantage, since the values ofP(k) at the sin-
gularities can be estimated without solving the different
equation. In particular, if there is a good reason to belie
that the spectrum should be a smoothly varying function
qualitative feature of the spectrum can be obtained at on
For example, in the case of the double power-law spectr
~32!, one can see that the original spectrum can be appr
mately recovered by simply interpolating between the ad
cent triangles shown in Fig. 3.

IV. CONCLUSION

We have considered the problem of reconstructing the
tial power spectrum of metric perturbationP(k) from Cl
data. As a first step, we have investigated a simple c
namely, the Einstein–de Sitter universe with negligible ba
ons and negligible thickness of the LSS. In this toy mod
the observed temperature fluctuations are represented
by the perturbation variables on the LSS and the ISW eff
is absent. Then, the relation between the initial spectrum
the angular correlation function is expressed in terms of
integral equation. We have shown that this equation can
transformed to a second order differential equation forP(k).
We have found that by forming an appropriate linear com
nation of the angular correlation function and its derivativ
the order of the differential equation can be reduced to
first order. The resulting equation is found to have singula
ties that come from the acoustic oscillations of photo
hence their presence is inevitable in any cosmological m
els not restricted to our simple model. Fortunately, howev
the presence of these singularities turns out to be not o

f
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FIG. 4. The CMB angular power spectra for the two initial spectra, Eq.~32! ~left panel! and Eq.~33! ~right panel!. The solid line and the
dashed line on the right panel show the case with a peak (s511) and the case with a dip (s521), respectively, and the dotted line show
the case without the spiky structure in the initial spectrum. The normalization is arbitrary. Since we have neglected the contrib
baryons to the transfer functions, the acoustic peaks appear less prominent and their locations are shifted to largerl. For realistic models with
baryons, the acoustic peaks will become more prominent and their locations will shift to smallerl, which would make the peak from th
original P(k) a bit less visible and the dip a bit more visible. For example, the first peak, which is located atl;300 in the figures, will shift
to l;200.
t
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harmless but rather advantageous. At the singularities
coefficient ofP8(k) vanishes, and the values ofP(k) there
can be obtained without solving the differential equation.
plotting the values ofP(k), one can obtain a rough estima
of the behavior of the spectrum. Then, to recover the pre
features of the spectrum, the rest part ofP(k) can be solved
with its values at the singularities as the initial values. W
have found our method can reproduce the original spect
with a good accuracy even for a spectrum with a sharp, sp
structure.

The method presented here is applicable only to
Einstein–de Sitter universe in which the ISW effect is ne
ligible. The ISW effect gives an important contribution ev
in a flat universe model if the cosmological constant
o-
e

s-
.

,
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present. Such a model, called the cold dark matter mo
with a cosmological constant (LCDM! is preferred by recen
observations@13#. Our next step is to include the ISW effec
in our method which is currently under study.
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