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Oscillation effects on neutrino decoupling in the early universe
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In the early universe, neutrinos decouple from equilibrium with the electromagnetic plasma at a temperature
which is only slightly higher than the temperature where electrons and positrons annihilate. Therefore neutrinos
to some extent share in the entropy transfer f@ne~ to other species, and their final temperature is slightly
higher than the canonical vaIuEV=(4/11)1’3Ty. We study neutrino decoupling in the early universe with
effects of neutrino oscillations included, and find that the change in neutrino energy densitye flom
annihilations can be about 2—3 % higher if oscillations are included. The primordial helium abundance can be
changed by as much as X80 “ by neutrino oscillations.
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I. INTRODUCTION Neutrino Observatory(SNO) [17] experiment have con-
firmed that the solar neutrino deficit is indeed explained by

Freeze-out of particle species from thermal equilibrium isactive-active neutrino oscillations, most likely— v, oscil-
one of the most important features of the early universe. Ontations[18]. However, the specific values of the mixing pa-
example is supersymmetric cold dark matter such as the newameters have not been conclusively measured. At present
tralino. If these particles were kept in thermal equilibrium there are four different solution regions in mixing parameter
throughout the history of the universe their present day abunspace. The best fit points for these four solutiéinsm Ref.
dance would be suppressed by a huge factor because of theirg)) are listed in Table I.
large mass. However, because of their weak interactions, the a|gq. by far the best explanation for the atmospheric neu-
pair annihilation processes which keep the particles in €quiging problem is oscillations with maximal mixing between

librium stop being efficient at a temperature of the or@ler -4 Jnother neutrino, most likely,, as suggested by the

~m/20[1]. At this time the particles decouple from equilib- Sﬁper-Kamiokande experimei0]. In the present paper we

%uorllgi?;gltgigaarlgijgr?a?ﬁzr::f;fet:e;\gg;dga?ggeilIl(:,lfnd bbey ;:Sf?ifreat neutrino decoupling in the early universe, taking into
ciently abundant today to make up the dark mafdr account neutrino oscillations. Unfortunately the numerical

In the present paper we discuss the decoupling of neutrlc_omplexny of the problem increases dramatically if oscilla-

nos from thermal equilibrium at a temperature-of. MeV. tions are introduced. We therefore treat the problem in the

In the canonical picture the electron neutrinos decouple at ao'ca"ed quantum rate equation appro_xmahon where the
temperature of about 2 MeV, whereas a@nd 7 neutrinos, momentum dependencg of the problem is mtegrateq ou_t. We
which do not have charged current interactions, decouple &lso refrain from treating the full thrc_ee—f_lavor os_0|llat|on
roughly 4 MeV. Shortly after this decoupling the temperatureProblem and concentrate on,— v, oscillations while as-
drops below the rest mass of the electron and electron/ po§Uming thatv is unmixed. Data on atmospheric neutrinos
itron pair-annihilate and dump their entropy into photons.suggest thav, and v are in fact maximally mixed, and our
The neutrinos are not supposed to share in this entropy trangssumption is therefore not likely to hold. We will discuss
fer and therefore their temperature is lower than the photoithis issue more thoroughly in Sec. IV.
temperature by a factor (4/143[2]. It is also implicit in this We find that neutrino heating is slightly more efficient if
treatment that oscillations between active neutrino speciesscillations are included. For non-oscillating neutrinos we
have no effect because their distributions remain identical. find an increase in neutrino energy densityAdfl,=~0.0467,
However, because the temperature difference betwee\ﬁhereAsz Splp, andp*=§(ﬁ)4/3py. In the case of very

neutrino decoupling and electron-positron annihilati@hT efficient mixing of v, and v, this is changed toAN,

~m¢/3) is only one order of magnitude the neutrinos will to =0.0479, a change of 2.5%. We also find that oscillations

some extent share in the entropy transfer and the final temc'an change the primordial helium abundance. Neutrino heat-
perature of the neutrinos will be slightly different from the ™" 9 P ) ' L
nduces a change dfYp=1.2X10"“ for non-oscillating

canonical value. Ing 1n{ _ S )

This problem has been treated many times in the past witﬂe“t”nos;f?r maximal mixing this is changed oYp
various methodg3—15|. Early calculations made various ap- =2-2<10 ", i.e. a difference comparable to the total mag-
proximationg 3—5], whereas recent treatments have includeditude of the effect. In the limiting case of complete mixing
solving the full momentum dependent system of BoltzmanrPf all neutrinos the result isAN,=0.0486 andAYp
equations, including all neutrino reactiof&-13]. ~2.5x10"%,

In all treatments so far, however, neutrinos have been as- The next section contains a discussion of the essential rate
sumed to be non-mixed speci@ithough the possibility that equations needed to treat neutrino decoupling, as well as the
neutrino heating could be changed by oscillations was merequations needed to treat the cosmological expansion. Sec-
tioned in Ref.[16]). The recent results from the Sudbury tion Il concerns the numerical details and results from solv-
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TABLE |. Best fit values of mixing parameters for solar neutrino solutions, as well as their goodness of fit.

Solution sm?leV? sin 26, Goodness of fit
Large mixing anglgLMA ) 45x10°° 0.91 59%
Small mixing angle(SMA) 4.5x10°° 3.94x10 2 19%
Low 1.0x10°7 0.99 45%
Vacuum(VAC) 4.6x10°10 0.91 42%

ing the equations, and Sec. IV contains a discussion and ) ) ,
conclusion. Finally, the Appendixes contain various math- +j dp'd(p,p")Pr(p") —C(p)Po(P)
ematical details.

Il. BOLTZMANN EQUATIONS +f dp’c(p,p’)Po(p’) ©
The fundamental equation describing the evolution of all
particle species in the early universe is the Boltzmann equa-
tion, which for a non-mixed species [i21] Po(P)=R.(p)+Rs(p), (4
df - -
5= 2 Ci[f], (1)  wherePy=P,(p)x+Py(p)y is the transversal component of
I

the polarization vectoP. The rate terms are given by

whereC;[ f] are the collision terms. In a homogeneous and
isotropic systendf/dt=¢gf/gt. For the moment we do not

consider the expansion of the universe, but this will be dis- B , A , ,

cussed at the end of the section. Ri(p)‘f dp dkdk’[; Fij(PK[p"k")[n;(K")n;(p’)
However, for a treatment of oscillating neutrinos it is nec-

essary to replace the single particle distribution function with —ni(k)ni(p)]

the density matrixp, for the mixed species. For neutrinos
the density matrix is a 8 3 matrix, but in the present work
we limit ourselves to studying two-flavor oscillations, with 1
the third neutrino being nonmixe@ practice we study, -2 G(k'p’|k .P*
feutrino teing ne | . (k' |kp)Pr(p)-PF (K) (5)
— v, oscillations withy . being non-mixegdl The density ma- 21 | T T
trix for neutrinos can then be written as

where X; is over all weakly interacting species any is
over all other particles than the mixed neutrinos. In all cases
Jdq is taken to mean integration over phase space in the
sensefdqg= [d3q/(2)3.
where g; are the Pauli matrices. An equivalent expression Here, the first term in the brackets is the usual Boltzmann
holds for anti-neutrinos. Notice that this definition is slightly equation with exactly the same structure as for a nonmixed
different from the notation which is most often used)  species. The second term arises due to the possibility that
=3Po(p)[1+P(p)- o]. This notation has the advantage thatmixed state neutrinos annihilate with mixed state antineutri-
P describes the internal state of the mixed neutrinos, whereasos. This term therefore is only present for active-active os-
in our notation it does not. On the other hand, our notatiortillations where both states are interacting. The matrix ele-
significantly simplifies the equations because it is lingé&  ment termsF andG are given by
it does not contain &,P term). The convention we use is the
same as that used by McKellar and Thom$@ag] in their
treatment of active-active oscillations in the early universe. = —
The material in this section follows their treatment closely in Fij(pklp'k")=27NV(j(p),j(K)[i(p"),i (k"))
several respects. A

The usual one-particle distribution functions are the diag- X o(ptk=p'=k’) ®
onal elements of the density matrix so that,(p)

=3[Po(p) +P,(p)] andng(p) =3[ Po(p) — P,(p)].

1
p(p)=§[Po(p)+P(p)-o], 2

The mixed neutrinos, described b¥{,P) then evolve G (pklp’ K )=2aNV(v,(p’), v (K)|1(K),[(p))
according to the equations ¢ o ¢ .
XV (wp(p"),va(K)|1(K),T(p))
P(p)=VXP+[Rqy(p)—Rg(k)12=D(p)Pr(p) X 8(p+k—p'—k’). )
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All the non-mixed species evolve according to the standard The quantum rate equations then take the fo22)
Boltzmann equation

P=VxP—DP;—CP: +[R,—Rg]2 (12
hi(p)=J dp’dkdk’{z Fij(pklp k" )[n;(k")n;(p")
: Po=R,+R; (13)
—ni(k)ni(p)]
where
+Gi(kplk’p")Pr(p) - P5(K)], ®

1 _
Ri=2, Fi[hinini—n,n,1— 5 >, GP-PT (14
where again; goes over all species. As before there is a ' 2," IR L EI Pr-Pr (14

new term which arises from annihilation of mixed states. The
terms in Eq.(4) containingc, C, D and d are damping
terms from elastic gnd_ inelastic §catterings which break co- hiZE Fylhnni— ninﬂ+GiPT'ET' _ (15)
herence of the oscillations. Details of how to calculate these ]
terms can be found in Ref22].
Finally, theV X P term is the usual oscillation term which hj=1 for neutrinos anth;=; for electrons. The new param-
is responsible for the flavor oscillations. The potential vectoretersC, D, V, F;; andG; are then defined as
V can be written as

— PO _ ! ! !
V=2E X+ (Equ—Egp)2. 9) C_E_;f dp{C(p)n(p) fdp c(p,p")n(p )} (16)
Here,
sm? D=fdp[D(p)n(p)—fdp'd(p,pwn(p')} (17
m? V= f dpV(p)n(p) (18)

5
Eaa=Epp=— 55005 B0+ Va(p)=Vy(p), (11

where sm?=m3—m3 and ¢, is the vacuum mixing angle. Fij:J dpdp dkdK F;; (pk|p’k")n(p)n(k) (19
The matter potentiald/, arise from the neutrino interactions
with the medium[23,24.

The above set of equations is quite complicated to solve,
both because of its non-linearity and because it is momentum  Gi= f dpdp' dkdK G;(p'k’[pk)n(p)n(k). (20
dependent. However, it is simplified enormously by using the
so-called quantum rate equations instead of the full quanturBome details about how to perform the phase space integrals
kinetic equations presented above. In the quantum rate equare given in the Appendix.
tions, the original quantum kinetic equations are integrated In the present calculation we are interested only in a dif-
over momentum space so that the momentum dependenésrential effect, i.e. the difference between the actual neutrino
disappears. This integration can only be accomplished analensity and the density if neutrinos were completely decou-
lytically if one assumes kinetic equilibrium for the neutrinos, pled. In that case, the quantum statistics of the involved par-
and therefore involves an assumption. We assume that thtles is not very importart7]. In the following we therefore
one-particle distribution functions for neutrin@ige diagonal  approximate all quantum statistics with Maxwell-Boltzmann

parts of the density matrpare of the forme P/, (MB) statistics. This means that bosons and fermions have
The usual number densities of the mixed neutrinos arexactly the same behavior.
then related to the integrated density matrix my=3[ P, In previous calculations of neutrino oscillations in the

+P,] and nﬁzé[Po— P,]. However, this number density is early universe it has been assumed that the active neutrino
not a dimensionless quantity. In order to maReand P,  species have the same temperature as the electromagnetic
dimensionless we instead work with the dimensionless quarplasma. However, that is not the case during electron-
titiesP, = P/nV0 andPg, = PO/n,,O, wherenV0 is the number  positron annihilation. We therefore have to operate with dif-
density of a decoupled neutrino species. As will be explainederent temperatures for all the different species. Specifically
at the end of the section this also has the advantage of make always assume a Maxwell-Boltzmann distribution with a
ing the expansion of the universe simpler to treat. For simiemperature given b¥q=To(n;/n, )", wheren, andT,

plicity we will in the remainder of the paper refrain from are the number density and temperature of a completely de-
denotingP,, and P, with an *. coupled non-mixed neutrino species.is the actual density
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of the given species. Electrons, positrons and photons are TABLE Il. Values of B for different annihilation processes.
assumed to be in full thermal equilibrium with the tempera
ture T,=T,. _ . . Process B

All of the above equations have been derived assuming a

— — 2
non-expanding universe. If the universe expands then for the veve—e'e 8X2+4X+1
usual one particle Boltzmann equation, the Liouville term vvueoete Bx"—ax+1
df/dt is changed fron#f/dt to of/ ot —Hpaf/ap [21]. Like- v —ete” 8x*—4x+1
wise, the left-hand side of the integrated Boltzmann equation Vel ,,/;M 1
is changed fromm to n+3Hn [21]. However, the equations Veveer U v, 1
can be made to look exactly like they do for the non- V,;,A—WJT 1

expanding case if they are recast in comoving quantities. The
momentum of a particle redshifts with expansion s
«R~1, For the momentum-dependent Boltzmann equation . : o .

) ; ignored in the calculation. This simplifies the numerical
one then defines the comoving momentumpgs=pR, a

guantity that does not redshift. The Liouville operator thenggg]uptlrjitnaglosnjctgfsm322835:3(; :eiﬁgsg Lhaetionnesmgggcr?l?i?] an-
becomesd f/dt=af/dt—Hpaf/ap=of(p, )/ at, i.e. it looks big.€. q 9

- . them are identical However, we stress that this is not nec-

exactly like the nonexpanding case. : N .

. . . essarily a good approximation, depending on the actual val-
For the integrated Boltzmann equation this also holds, . . .
The usual procedure is to write the number densities in units <, of neutrino chemical potentials.

proce . . If one neglects all lepton numbers, the result for electron
of entropy density as, =n/s. If entropy is conserved, is . :

‘ ; ) neutrinos is

not affected by cosmic expansion. However, in the present

case entropy is not conserved because full thermodynamic

equilibrium is not maintained. Instead one can rescale the 962G .1 5
number density in units of a completely decoupled neutrino Ve=—— | T, T,+ 7(1=x)T, |, (21)
speciesnyooc R™3. In this case the left-hand side of the Bolt- T My

zmann equation reads+ 3Hn=n, . If one recasts the quan-
tum rate equations in units cuso the cosmological expan- wherex=sirf4,~0.226. For the muon neutrino one finds a

sion does not appear anywhere, and one can readily use Egilar expression
(16)—(24) even in an expanding universe.

A. Matter potentials v 96\/§GFF- 175 } 29

The diagonal part of the matter potential comes both from r 772m\2N 4( X) Y| (22
interactions with other species, and from self-interactions.

The electron lepton number is known to be small, (
=Lp~ 1019 because of charge neutrality. However theThis is very close to what is found using Fermi-DiréD)
neutrino lepton numbers are not well constrained at presenstatistics for neutrinos. For FD statistics the front factor
At present the strongest constraints come from consideringhould be[49¢(4)/45/(3)]m?=9.68 [38] instead of 96#2
big bang nucleosynthesi@8BN) and cosmic microwave =9.72 for MB. More details about the calculation of the
background radiatiotCMBR) arguments. From BBN con- matter potentials can be found in the Appendix.
siderations one finds an upper bound on relativistic energy In addition to the diagonal part of the matter potential
density (usually expressed as the effective number of neuthere is an off-diagonal part due to neutrino-neutrino and
trino specieN,=p/p, ) [25,26], and therefore also on neu- neutrino-antineutrino forward scatteri§9]. This term is
trino lepton number§27]. However, because electron neutri- Proportional to fP(p)dp=P, so that in the quantum rate
nos enter directly into the weak interactions that regulate th@pproximation the term is identically zero. The off-diagonal
neutron to proton ratio an electron neutrino chemical potenterm has the effect of synchronizing the oscillations of dif-
tial cannot be directly translated into an effective number offerent neutrino modes. However, in the quantum rate ap-
neutrino specief27]. CMBR, on the other hand, is not sen- Proximation the problem is reduced to following a single
sitive to neutrino flavor but only to energy density. Therefore“effective” mode and therefore the oscillations of different
the CMBR bound on the effective number of neutrino spe-modes is in some sense already synchronized. In fact there is
cies can be directly translated into a bound on neutrino lepan additional off-diagonal term which is proportionaldg; ,
ton numberg28—30. Hanseret al. [31] recently combined but as will be explained in the Appendix A this term is al-
BBN and CMBR to derive the tightest present constraint ofvays very small.
—-0.01<L, <0.22 and|LVM T|<2.6 (see alsd32-37. This

constraint is of course many orders of magnitude larger than
the known value of the electron lepton number. o

For the sake of simplicity we assume that all lepton num-  The annihilation term for the procesis— jj for particlei
bers are of the same order hg. In that case they can be can be written as

B. Annihilation and damping terms

083006-4



OSCILLATION EFFECTS ON NEUTRINO DECOUPLING . .. PHYSICAL REVIEW B5 083006

4G2 & T8 "
Rij=Fylhynny—n,m]=— T3 B| o4~ — al:
S I A =~ ;
Yo Yo D i
. T TP 3 § 107
=Fob| g7 5 | © F
T, To, :
g . 10—‘
where B depends on the specific process. Table Il lists the
value of B for different processes. Again, the front factor 107
value 4 is very close to what is found using FD statistics -~ -
(=3.97)[38]. 2 i
The same front factor can be used to calculate the damp- € 107k
. - : ) N 107
ing coefficientsC and D. The calculation of these terms is § £
discussed in Ref.22] for the case of FD statistics. Here we r
just state the result for MB statistics 107
107
1| TeTs, TeT, TeT, ~
_ = e 0 2 e -
D—ZFO 8 8 +8 18 +(8X“+4x+1) — \:, r
6) 3) vy 10_3_
Nl
“
TiT4 10~
2_ “ .
+(8x“—4x+1) e 1 10
Yo T (MeV)
™ 1 T i
Ve v ve' v FIG. 1. The evolution ofén/n for electron, muon and tau-
2l —+——++ - (24) i 2— -5 e\2 i
+ 8 8 T8 neutrino forsm==3Xx10">eV~, plotted for different values of the
vo vo vo vacuum mixing angle. The full line is for sirgg=0, the dotted for
sin 26,=0.1, the dashed for sirgg=0.5 and the dot-dashed for
sin 26,=0.9.
T T
C=2(16x*+4)Fg—5—= (25 As the two independent equations we choose the Fried-
Vg man equatiori2]
4 4 87G
5 T”eTVﬂ H2= P (28)
Ge=(32%"~4)Fo— (26) 3
° and the equation of energy conservatj@h
T4 T4 3 3 _
G, =4F, eg M @7 d(pR°)+Pd(R*)=0 (29
"o as our fundamental equations. These two equations can then

These expressions are very similar to those derived b€ rewritten as equations fdr, and R. Details of how to
McKellar and Thomsori22] who used FD statistics but as- SOlve these equations in the case of Maxwell-Boltzmann sta-
sumed identical temperatures for all species. tistics can be found in Ref7].

C. Time-temperature relationship 1. NUMERICAL DETAILS

Fundamentally, two equations are needed to fully describe We have solved the quantum rate equations, EHd—
the cosmological expansion with tim{€]. The system of (20), together with the expansion equations E@8), (29),
photons and electrons/positrons can to an extremely goofr the case ofv.— v, oscillations.v, is in the present cal-
approximation be assumed to be in full thermal equilibriumculation assumed to be non-mixed. As initial conditions we
via electromagnetic interactions, so that they can be dechooseT,=T,=15MeV, a temperature well above the
scribed by a common temperaturg,. Therefore the two electron-positron annihilation temperatufg,,~0.3 MeV.
variables describing the cosmological expansion with time-urthermore, we se®,=P,=P,=0 andP,=2 (and identi-
can be taken to be the scale factBr,and the photon tem- cally for anti-neutrinos However, the outcome is not sensi-
perature,T,,. tive to initial conditions in the mixed neutrino sector because
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and 0.00410,11. The most recent treatment by Gnedin and
Gnedin found 0.0097 and 0.00622].
In Fig. 2 we show the evolution d?,= Ny, =Ny, for dif-

. ferent values of the mixing angle. It is clear that for this
] specific choice oBm? a very large mixing angle is needed to
] achieve a noticeable effecem?=1x10 °eV? is of the
4 same order of magnitude as the best fitting solutions for the
] LMA  (6m?=4.5x10"° eV?) and SMA (6m?
=4.7x10 ®eV?) solutions to the solar neutrino problem.
Therefore it is clear that for the SMA solution where the best
1 10 fit at present is sin@=0.04 there will be no noticeable ef-

T (MeV) fect of neutrino oscillations on neutrino heating. On the other

FIG. 2. The temperature evolution &,=n, —n, for om? hand, for the LMA solution sin&=0.91, which is large
e 3

=1.0x10"5eV? for various different values of sing. The full enough to give a 5|gn|f|gant change.
line is for sin 2,=0, the dotted for sin@=0.1, the dashed for The evolution ofP, with temperature can be understood

sin 24,=0.5, the dot-dashed for sirfg=0.9, and the long-dashed as follows. At high temperatures oscillations are suppressed

for sin 26,=0.99. by the matter potential, and therefoRg evolves indepen-
dently of the mixing angle. However, at a certain temperature

f the matter mixing angle goes through a maximum and oscil-

at high temperatureB is quickly driven to zero because o lati b ) rant libration factor. The rate of
fast interactions, no matter what its initial value is. The sys—a lons become an important equilibration factor. 1ne raté o

L - ilibration between the two species is to a rough approxi-
tem of equation is then straightforward to solve. equi . i :
Figure 1 shows the evolution of the quantity mation given byl ¢~ D cos20sin?26 [40]. This should be

compared with the rate at which the abundances are driven

apart by interactions with the electron-positron plasma,
sn n,—n, [grive~ (Re—R,). The matter mixing angle is given by the
Z (30) expression

nV
0
for ve, v, andv,, for different values of the mixing angle, SiP26=sirf26,/(1— 2f cos 20+ 2), (31
all calculated for the specific value of the mass difference
Sm?=3x10 °eV2. Again,.nvyo is thg numper. density of a \yhere fEGT(Ve—VM)/amZ. This mixing angle goes
standard, decoupled neutrino species. This figure also ShOVYﬁrough a maximum wherf=cos %, which also corre-
the limiting case of non-mixed neutrinos (sié,2-0). _sponds to a maximum in the equilibration rate. This maxi-
It should be noted that the result of the non-mixed case i$,um occurs exactly at the temperature where the dm,iis
quite close to the result found by elaborate momentumgeen. Below this temperature the mixing angle approaches
dependent calculations. The calculation by Dodelson an¢he vacuum value and’ o4/ T grve @pproaches a constant

Turner[7] used the same approximation as we have in the;,ame, which to a reasonable approximation is
present work(i.e. zero electron mass and Boltzmann statis-

tics for all particleg, except that they solved the full
momentum-dependent Boltzmann equation for the non-
mixed case. Their result was approximatet?,pyelpy0
=0.012 andﬁpvﬂ/p,,O:O.OOS, whereas our result for the
non-mixed case is 5p,,e/p,,020.0124 and 5p,,ﬂ/py0
=0.0057. Notice thabp/p= (p,,—p,,o)/p,,o is not equivalent
to én/n, the quantity shown in Fig. 1. However, since we
assume thermal Maxwell-Boltzmann distributions for all par-
ticles the two quantities are simply related b§p/p

g 8
Carive  16x242

4 4/3
11) Sinf26,co<26,. (32

This asymptotic value is always smaller than one so that
for small temperature®, follows the same trend indepen-
dently of the vacuum mixing angle because the driving term
is dominant. However, as the vacuum mixing angle increases

4 the equilibration around the maximum of the mixing angle
=3on/n. ; :

k . ) . becomes more and more important. Therefore the final value

This shows that although our calculation is quite crude in

. of P, decreases strongly with increasing vacuum mixin
the sense that it does not fully account for momentum de z oy g g

D ; . angle.
pendence, it yields results which are fairly close 10 gijjations in general become important once the matter

momentum-dependent calculations, at least for the case Qfyential no longer dominates the vacuum oscillation term.
non-mixed neutrinos. We do expect the same to be true fof’his happens when

the mixed case, although this remains to be verified.
Calculations which have used exact quantum statistics
and electron mass give slightly smaller neutrino heating.
Hannestad and Madsen found 0.0083 #grand 0.0041 for TMeV<<
v, [9], whereas Dolgov, Hansen and Semikoz found 0.009

1/6
smcos 26,

_— 33
1.0x10°7 eV? 33
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0.004 ] _4 _
0.002F 3
] -5F
A’ 0.000F ] — - SMa
-0.002F : 6
—0.004 f_ émt = 10 eV'_f NE _7E
L 1 O
. . E : E
0.004 F . - —8F E
0.002 _oF ]
. : VAC +
o’ 0.000f _10f . . . .
—-0.002 | 0.2 0.4 0.6 0.8
N sin 24,
—0.004
FIG. 5. The total change in the effective number of neutrino
0.004 species AN, =N, —3) as a function om? and sin &,. Shown are
0.002 also the best fit values for the possible solar neutrino solufib®ls
o, 0.000
—0.002 oscillations are apparent, but still of very low amplitude.
Notice that at low temperatures the mean of the oscillating
—0.004 , ] curve still rises slowly due to neutrino heating by the
0.1 1.0 10.0 electron-positron  annihilations.  Finally,  for ém?
T (MeV) =1019 eV? neutrinos have decoupled completely before

oscillations become important. This means that there is ef-
FIG. 3. The temperature evolution 8,=n, —n, forsin26,  fectively no damping of neutrino oscillations once they com-
=0.9 for various different values ofm?. The upper panel is for mence.
Sm?=1.0x 10_62‘3V2' the middie forsm?=1.0x10"° eV? and Therefore, for low values ofm?, P, does not approach a
the lower forém®=1.0x10""eV~. definite value for low temperatures, even though the total
neutrino number densityp,, does.

For the | lue oBm? din Fig. 2 thi _ Of course the oscillation oP, at low temperature is an
or the large value obm™ used In Fig. 2 this temperature IS apiiact of the guantum rate approximation. In the

above the decoupling temperature for neutrinos. Thereforg,,menym-dependent treatment different modes oscillate
once the oscillations become important they are quicklyi gitferent frequencies and oscillations decohere because
damped and no oscillation pattern is seen at lower tempergy s effect. However, it should be noted that if neutrino
tures. X . lepton numbers are significant, this picture can change com-
This is not the case for lower values &in™ where osCil-  yjetely [41]. In that case the off-diagonal elements in the
lations only become important well after neutrino decou-pe rino matter potential are large, and neutrino oscillations
pling. In F|gz. 3 we SZhOW Efge eZVOIUt'O” P, for various  pocome coherent. As long as all lepton numbers can be ne-
values ofém*. For 6m"=10""eV" the oscillations are com- giacted, as was assumed in the present treatment, it will
pletely da”_‘ped away becau_se neutrinos ha;/e notsdeczouplc?ﬁiake better sense to use the averagdpinstead of the
before oscillations become important. FOM*=10""eV" 4oyl value because the decoherence effect was not ac-
counted for.

10_4§ ! E The increase in oscillation amplitude seen for decreasing
10791 N om? is also seen for active-sterile oscillations, for the same
N 3 reason[38].
10 "¢ 3 One non-standard feature in the active-active oscillations
o 10°7L ] is the appearance of the interference terms in the Boltzmann
_8§ E equation. These terms could potentially be important and
0 7F 3 lead to a different result for neutrino heating. However, it
10—9; ] turns out that they are always completely negligible com-
10_105 | ] pared with the usual collision terms. Figure 4 shows the

10 quantity Q=33G;Pr-P7/ZFy[hjnjnj—n, ] for i
T (MeV) =v,, for the specific case 0bm?=3x10 °eV?, sin 24,
=0.5. This clearly shows that the non-standard terms from
FIG. 4. The evolution of the parameterQ  annihilation of mixed states is tiny compared with the stan-
E%EiGiPT'P¥/2jFij[hjnjnT_nyin;i] for i=w,, for the specific dard Boltzmann terms and that they can be safely ignored in
case ofém?=3x10"%eV?, sin 26,=0.5. numerical treatments.
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TABLE Ill. Change in helium abundance due to neutrino heating for the casggef5x 10 .

Solution sm?/eV? sin 26, Spy Ipy, 1, 1P, Spy Ipy, AYp
LMA 45x10°° 0.908 0.0097 0.0087 0.0057 xao0*
No oscillations - - 0.0124 0.0057 0.0057 x20 4
Maximal mixing - - 0.0093 0.0093 0.0058 X204
IV. DISCUSSION servation the photon temperature is slightly lower if neutrino

We have solved the Boltzmann equations governing th e_ating is_included becausg photon heatingebg - annihi—.
evolution of neutrinos around the time of their decoupling ation is slightly S’_“a"er- This also has the effect .Of lowering
from equilibrium, including effects due to mixing of, and then—p conversion rate because there are slightly fewer
v, . We always assumed that the tau neutrino is unmixed. electrons and positrons. _ -

As could be expected oscillations have the effect of bring- 10 g€t a feeling for how neutrino oscillations change the
ing the v, and v, abundances closer together. Strong oscil-nelium production we have modified the Kawano nucleosyn-
lations also have an effect on the total neutrino energy deril€SiS codg42] to take into account neutrino heating. We
sity after electron-positron annihilation. The reason is thaf'@ve then performed the numerical calculation for oscillation
without oscillations, most of the heating is to thg sector ~Parameters corresponding to the best fit for the LZMAzsolar
because electron neutrinos have charged current interactiof}eutrino _530|“t'°” (sing=0.908 and 6m°/eV"
Oscillations drain away electron neutrinos into muon neutri-— 4-5<10"°). The result is shown in Table Ill, together with

L our result for the case of no oscillations and the limiting case
nos, and therefore the back-reactiofv,—e e~ decreases > :
) O ; ; ; of large m* and sin &,.
in efficiency. The end result is a slightly larger neutrino en- This shows that more helium is produced for the oscillat-
ergy density. As is customary we parametrize the neutring : A :
energy density in units of the energy density of a decouplec'fIgl case. The_ main reason for th's. IS the Iower_densny (_)f
massless neutrind\,=p,/p, (so that in the absence of electron neutrinos in the case _of mixing, but the increase in
) . v viPro o the effective number of neutrino species also leads to an
neutrino heating\,=3). However, it is also necessary 0 jncrease in helium production. Interestingly, the change in
account for the slightly lower photon temperature if neutrinOnejium abundance due to oscillations is of the same order of
heating is accounted for, because all quantities should bgagnitude as the total effect. The reason is that in the non-
measured relative to the actual photon temperature. Wgscillating case the effect on helium is very small because of
therefore use the definition cancellations. The increase in electron neutrino temperature
is roughly compensated by the increase in the effective num-
p ber of neutrinos, as well as the decrease in photon tempera-
_Pv T (34)  ture. Oscillations destroy this accidental cancellation and
Pvy Py therefore have a large effect. Our finding for the non-
oscillating case fits well with other calculations. Using the

In Fig. 5 we plot theN, at low temperature. From this same approximations as in the present paper Fields, Dodel-
figure it can be seen that neutrino oscillations can change theon and Turnef8] found AYp=1.1x 10 *. More sophisti-
effective number of neutrino species by aboutX1® 3. cated methods find similar values in the rang¥p,=1.1
The effective number of neutrino species without oscillations— 1.5x 10~ .
is N, =3.0467, and in the limit of a large mass difference and In terms of energy density the changes to neutrino heating
mixing angle it approaches,=3.0479. This value is some- by neutrino oscillations are quite small. If indeed the large
what higher than what is found in the more thorough calcu-mixing angle solution turns out to be correct then the effec-
lations using FD statistics and the full momentum-dependentive number of neutrino species is changed by roughly 8
Boltzmann equationN,=3.028[9], N,=3.034[10,11], N,, X 10~ * compared to the non-oscillating case. From CMBR
=3.032[12]) simply because of the larger neutrino heatingthe present bound on the effective number of neutrino spe-
when MB statistics is use@ur value fits very well with that cies isN,<13[29,30, i.e. more than two orders of magni-
of Ref.[7], who foundN,=3.046 using MB statistigs tude larger than the effect induced by neutrino heating, and

For BBN calculations, there is an additional effect whichabout 16 times bigger than the change induced by oscilla-
must be considered. The electron neutrinos have a differeriions. With precision data from upcoming satellite experi-
effect on BBN than muon or tau neutrinos because they entenents such as the Planck Surveyor it could be possible to
directly in the B-reaction, which regulates the neutron to measureAN,=0.04[43] which is comparable to the effect
proton ratio. An increased number of electron neutrinos androm neutrino heating. Even so the small difference induced
anti-neutrinos have the effect of increasing thep conver- by oscillations will likely remain undetectable.
sion efficiency. This in turn leads to a lower neutron to pro- For BBN the change due to neutrino heating is of the
ton ratio at helium formation and in turn a lower helium order 10°*. At present the observational uncertainty on the
abundance. This effect works in the opposite direction of grimordial helium abundance is abou{Y)~0.005[26],
simple increase ilN, . Furthermore, because of energy con-which is about 50 times larger than the change. Here, how-

4
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TABLE IV. Change in helium abundance due to neutrino heating for the caggyef5x 10 1°. Results are from assuming infinitely
tight coupling between, and v, .

Solution sm?leV? sin 26, 8py 1Py, 8py, 1P, 8py_1py, AYp
LMA 45x10°° 0.908 0.0089 0.0077 0.0077 x30 4
No oscillation - - 0.0124 0.0057 0.0057 K204
Maximal mixing - - 0.0082 0.0082 0.0082 23804
ever, the change due to neutrino heating is more significant, APPENDIX A: MATTER POTENTIALS

comparable in magnitude to the total neutrino heating effect.

It is perhaps conceivable that the difference in neutrino hea - t;gitgggcx}tari trr?:ti\rcEo:gggzlfnzgisuemm?rwenn(::mnri]t% ézogf
ing from including oscillations could be detected. 9 ) 9

Finally, we stress that the present treatment is by n he potentials was first calculated by t¥old and Raffelt

means definitive. A proper treatment of momentum depen.—23] (see f\!zdt2_4]).dln th[e L_':lbtsencte of Iepttr?n nutm_bers, ]Eh;[e
dence is missing, as is the inclusion of three-neutrino oscil:;S no cf<|)n f ul\llon ue ofmherac IOﬂSﬂWI ne_zuk;mﬁs ot air
lations. Inclusion of momentum dependence is not likely to erent flavor. Neutrinos of the same flavor yield the contri-
have a big effect for the relatively large mass difference ané’ ution

mixing angle characterising the LMA solution, but may be

important for the vacuum solution. I, and v, are maxi- 16\2Gep
mally mixed, as is indicated by atmospheric neutrino mea- = —2<E,,>NV. (A1)
surements, then they will behave effectively as one species 3mz

during neutrino decoupling. This should have the effect of
lowering the electron neutrino temperature more than fo
two-neutrino oscillations, while increasing the overall effec-
tive number of neutrino species slightly. Altogether this
amounts to the same effect as for two-neutrino oscillations,

or electron neutrinos there is an additional contribution
from interactions with the background electrons and posi-
trons. If the electron mass is neglected the contribution is

but slightly larger. 16\/§GFp
It is simple to calculate the extreme upper limit on the V= —2<Ee>Ne- (A2)
oscillation effect by considering a complete coupling:of 3my

andv,. In Table IV we show results of the same calculation ) ) .
as in Table 11, but now assuming an infinitely tight coupling Neglecting the electron mass in the matter potentials only

between muon and tau neutrinos. This is likely to be a Ver)}eads to very small errors and is consistent with neglecting it

good approximation to the true state of affairs, because thi% the interaction matrix elements. In the quantum rate ap-

preferred values of the mixing parameters fgr », mixing ~ Proximation one should 3ma|2<e the replsaCtazm@%(_EV)

is at present20] (Sm?=2x103eV?, sin24y=1). This =3T,. Then usingNe= 2T /7 andN,=T;/7*, one finds

means that oscillations become important already when

=5 MeV, long before neutrinos decouple and also long be- 962G

fore neutrino heating commences. Therefore in this cage, o= ToVEER

and v, should be treated as having effectively the same tem- 3772m\2N

perature. Note that this is only a good approximation when

6,3 is small so that there is little direct mixing of and v, . for the electron neutrinos. For the muon neutrino there is no

Observations indeed indicate that this is the case. contribution from electrons, and one finds the result
Maximal coupling between the muon and tau neutrinos

therefore leads to a slightly larger increase in energy density

T T4+£(1—X)T5} (A3)
Ve Y 4 Ve

due to neutrino heating. In the case of maximgt v, cou- VvV o=— 96‘/§GF F 1-x)T5 |. (A4)

pling N, increases from 3.0479 to 3.0484, and for the LMA P 3aPmd, 14 “n

solution from 3.0476 to 3.0478. Helium production is also

slightly increased, by about 0210 *. Although we have As was mentioned in Sec. Il A there is an additional off-

not performed a full three-neutrino oscillation calculation, diagonal term which is of the forf22]

this estimate should be fairly close to the true value because

v, and v, are most likely maximally mixed with a large 832G

mass differenc¢20]. Ve sz<Ey>paB. (A5)
3mg
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APPENDIX B: PHASE-SPACE INTEGRALS The result is
In this section we discuss how to perform the phase-space
integrals needed to calculate the terms in EZy). A full - 1 16 WGE )
derivation of all the terms would be too lengthy, but as a Re(veveere )= —— = 5 g (8X“+4x+1)
representative example we show the calculation of the con- v = (2)
tribution to R, by the process v.«—se*e™, d3p d3k
e PlTeeMTe
2po 2Kkg
— 1
Re(veve<—>e+e_)=n f dpdp dkdK (27)* —e PMe KTy
Yo

12
Xv2(pk|p/k/)5(p+k_p/_k/) X(p k) . (B4)

, ) We then use thatp(- k)%= p?k?(1—cos#)?, where ¢ is the
X[fe(p)fe(k )_fve(p)fve(k)]' angle between the direction pfandk. After performing the
(B1)  integrals overd®p anddk the result is then

Here, dp=d®p/2py(27)%, fe(p')=eP'Te, and f, (p) 1 4G2
=e P'Tv, All quantities are normalized to the density of a Re(veve—ete )= —5F(8x2+4x+ 1)
single decoupled neutrino species, which explains theoll vo T
in front. X[T8-T18]. (B5)
The squared matrix element is e
UsingnyozTiolw2 the contribution to the Boltzmann col-
VA(pklp'k’) =32GE[(2x+1)*(p-K')(k-p") lision integral is
+(2x)%(p-p’)(k-k")]. (B2) )
Because of the Boltzmann statisticsf(p’)fo(k’) Re(vere—ete™)= —;T§0(8x2+4x+ 1)
a

=f(p)fe(K). Using this, thedp’,dk’ integrals can be per-

formed using Lenard’s formula T8 Tﬁ
e e
T | (B6)
T T
d3pr d3kr ar ) Yo Yo
f ———38(P—p'—K')p'#k'"=(2P*P"+g"P?). . ) ) ] ) )
2ps 2kg 24 This result is almost identical to what is found using FD

(B3) statistics(3.97 in the front factor instead of) 4
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