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Analytic properties of finite-temperature self-energies

H. Arthur Weldon
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The analytic properties in the energy variablek0 of finite-temperature self-energies are investigated. A
typical branch cut results fromn particles being emitted into the heat bath andn8 being absorbed from the heat
bath. There are three main results: First, in addition to the branch points at which the cuts terminate, there are
also branch points attached to the cuts along their length. Second, branch points atk056k are ubiquitous and
for massive particles they are essential singularities. Third, in a perturbative expansion using free particle
propagators or in a resummed expansion in which the propagator pole occurs at a real energy, the self-energy
will have a branch point at the pole location.
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I. INTRODUCTION

At non-zero temperatures most examinations of the s
energy have emphasized one-loop results. For mass
gauge theories Braaten and Pisarski showed that all diag
with one loop~but any number of external lines! will pro-
duce effects as large as the tree diagrams and must ther
be resummed@1,2#. In a resummed expansion the discon
nuities of various one-loop and two-loop diagrams have b
computed in QCD in order to predict processes relevant
quark gluon plasmas such as dilepton production, real pho
production, and vector meson production.

There have been few investigations of the analytic pr
erties of finite-temperature self-energies@3,4# and much of
the emphasis has been on the behavior at zero f
momentum@5#.

The development of the questions investigated in this
per and of the approach is best illustrated by conside
how a familiar zero-temperature calculation changes at n
zero temperature.

TÄ0 example

A typical example arises for a massive, self-interact
scalar field withHI5g2f4/4!. One of the two-loop contri-
butions to the zero-temperature self-energy is

PF~K !52 ig4E d4P1

~2p!4

d4P2

~2p!4

1

~P1
22m21 i e!

3
1

~P2
22m21 i e!

1

~P3
22m21 i e!

,

where P35K2P12P2. Direct integration of the energy
variablesP01 andP02 gives

PF~K !52g2E d3p1

~2p!3

d3p2

~2p!3

1

2E12E22E3

3F 1

k02E12E22E31 ih

2
1

k01E11E21E32 ihG , ~1.1!
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with Ej5(pj
21m2)1/2. The first denominator produces

branch point in the self-energy atk053E(k/3)5(k2

19m2)1/2 and a branch cut along the positivek0 axis for
3E(k/3)<k0<`. The second denominator produces
branch cut for 2`<k0<23E(k/3). From the operator
point of view these two contributions arise from inserting
three-particle intermediate state in the two time-orderin
contained in̂ 0uT(f3(x)f3(y))u0&. At higher orders in per-
turbation theory the self-energy continues to be real and a
lytic in the open interval23E(k/3),k0,3E(k/3).

The same example atTÅ0

At non-zero temperatures there are four real-time pro
gators organized into a 232 matrix Di j with i , j 51,2 @6,7#.
The proper self-energy becomes a matrixP i j . In the same
g2f4/4! theory the two-loop contribution to the time-ordere
self-energyP11 is

P11~K !52 ig4E d4P1

~2p!4

d4P2

~2p!4

3D11~P1!D11~P2!D11~P3!.

The finite-temperature propagators are

D11~P!5
11 f BE

P22m21 i e
2

f BE

P22m22 i e
,

where f BE5@exp(bup0u)21#21 is the Bose-Einstein function
Performing the integrations overP01 and P02 leads to an
integrand much more complicated than in Eq.~1.1!. The new
integrand can be expressed as a linear combination of e
terms each of which has a differentk0 dependence in the
denominator. The denominators are of the formk06E1

6E26E31 ih(pW j ), in which all possible sign combination
occur. In the various denominators the sign of the infinite
mal imaginary parts are momentum dependent, which ma
the calculation tedious and the analytic properties obsc
The complications of theih ’s is a result of the absolute valu
bars in f BE .

A much simpler analytic structure is enjoyed by the r
tarded self-energyPR . All four P i j can be expressed in
©2002 The American Physical Society10-1



e

is
lf-

us
le

a

e

e
q.
to
si

e
e

eo

io
ol
-
fo

he
rd

-

at
e-

t
om-
ll
ts

cle
lcu-

in
he
ill

d-

on
ur-

be-

n-

H. ARTHUR WELDON PHYSICAL REVIEW D65 076010
terms of PR and PA , where PA(K)5PR(2K). All four
propagatorsDi j can be expressed in terms of the retard
and advanced propagatorsDR and DA @8#. For example,
P11(K) is can be expressed as

P11~K !5@11 f #PR~K !2 f PA~K !,

where f 5@exp(bk0)21#21 has no absolute value bars and
an analytic function ofk0. The retarded and advanced se
energies have simple analytic structure:PR(K) is holomor-
phic for Im(k0).0 andPA(K) is holomorphic for Im(k0)
,0.

To compute the retarded self-energy directly without
ing theP i j , one can either use the real-time Feynman ru
expressed in terms ofDR andDA @8,9# or use the imaginary-
time Feynman rules@10# and then analytically continue in
energy. For the above two-loop example ing2f4/4! theory
the result for the retarded self-energy can be expressed
sum of eight contributions:

PR~K !5E d3p1

~2p!3

d3p2

~2p!3 (
A51

8
f A~pW 1 ,pW 2 ,pW 3!

k01 ih2cA
, ~1.2!

where now all the denominators depend onk01 ih so that
PR(K) is manifestly holomorphic in the upper-half of th
complex k0 plane. EachcA is a sum or difference of the
three particle energies:

cA56E16E26E3 , ~1.3!

where the eight combinations of the6 signs account for the
eight differentc ’s. The physical interpretation of all thes
possibilities is standard@11#: The energies that appear in E
~1.3! with a positive sign correspond to particles emitted in
the heat bath; the energies that appear in with a negative
correspond to particles absorbed from the heat bath.

Approximate dispersion relations that are real

Using a conventional propagator which has poles atp0
56(p21m2)1/2 may not be a good procedure because th
mal corrections will shift the pole to a different location. Th
shift in the pole location is most dramatic in massless th
ries. For example, in masslessg2f4/4! the one-loop correc-
tion will shift the pole top056(p21g2T2/24)1/2. In mass-
less QED and QCD the one-loop corrections to the ferm
and gauge-boson self-energies shift the locations of the p
to p056E(p), whereE(p) is a complicated, real transcen
dental function of momentum. The retarded propagator
any real dispersion relation is

DR~P!5
1

~p01 i e!22E2~p!
. ~1.4!

The analysis in this paper will apply to propagators of t
form DR . This propagator is not as complicated as the ha
thermal-loop propagators* S(P) and * Dmn(P) for fermion
and gauge bosons@1,6,12,13#. The hard-thermal-loop re
summed propagators have the structure
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* DR~P!5
1

~p01 i e!22p22 * PR~p0 ,p!
.

Although * DR(P) has the same poles on the real axis
p056E(p) as Eq.~1.4!, it also has a branch cut for spac
like momentum,2p<p0<p. It can be written as

* DR~P!5
N~p0 ,p!

~p01 i e!22E2~p!
,

where the numerator functionN contains the branch cut bu
has no poles. It seems quite likely that the self-energies c
puted with* DR would contain all the branch points that wi
be found usingDR and would contain additional branch cu
directly related to the branch cut inN. However, this diver-
sion will not be pursued.

Generalization to complex dispersion relations

From physical considerations one knows that parti
propagation is damped at finite temperature. One-loop ca
lations are misleading in that the solution toE25p21m2

1PR
1 loop(E,p) is always a real energyE(p). If one calcu-

lates the self-energy to two-loop accuracy then the pole
the propagator to two-loop accuracy will be complex. T
location of this complex pole in the retarded propagator w
be denoted byE(p):

E~p!5v~p!2
i

2
g~p!,

wherev andg both real and both positive. The correspon
ing propagator in the pole approximation is

DR~P!5
1

@p02E~p!#@p01E* ~p!#
. ~1.5!

It has no singularities for Im(p0).0. Whenp0 is complex
but p is real, it satisfies the conditionDR(p0 ,p)
5@DR(2p0* ,p)#* .

It is important to emphasize that the damping functi
g(p) cannot just be invented for phenomenological p
poses, because when the three-momentum is allowed to
come complex,pc5p1 ip8, thenE(pc) must be an analytic
function of the variablepc :

E~p1 ip8!5v~p,p8!2
i

2
g~p,p8!. ~1.6!

In particularv andg must satisfy the Cauchy-Riemann co
ditions:

]v~p,p8!

]p
52

1

2

]g~p,p8!

]p8

]v~p,p8!

]p8
5

1

2

]g~p,p8!

]p
.
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This guarantees that, in computing a self-energy correct
the integration contours for the momentum variables can
distorted into the complex plane. Without this property t
locus of non-analyticity for self-energy corrections would
continuous lines rather than isolated branch points.

Form of the self-energy

The following analysis will employ propagators of th
general form in Eq.~1.5!. Obviously Eq.~1.4! can be con-
sidered as a special case. A particular multi-loop self-ene
diagram will have many branch cuts and can be written
the sum of various integrals, each of which displays a uni
branch cut@14#. The branch cut of the most general integ
results from an intermediate state in whichn particles are
emitted into the heat bath andn8 particles are absorbed from
the heat bath and is of the form

PR~K !5E )
j 51

n21

d3pj)
l 51

n8

d3ql

f ~pW ,qW !

k02c
. ~1.7!

This definition applies in the region Im(k0).0, where the
retarded self-energy is holomorphic. Branch point will
sought by analytically continuing away from this region.
particular Feynman diagram will be the sum of several in
grals of this form, involving different values ofn andn8 and
often different values of the sumn1n8.

Although there aren1n8 momenta, one of them is dete
mined by momentum conservation:

kW5(
j 51

n

pW j1(
l 51

n8

qW l . ~1.8!

The denominator functionc sums over the energies of th
emitted particles positively and over the energies of the
sorbed particles negatively:

c5(
j 51

n

E~pW j !2(
l 51

n8

E* ~qW l !. ~1.9!

The complex energyE has a negative imaginary part and
c automatically has a negative imaginary part. This guar
tees thatPR(K) in Eq. ~1.7! is holomorphic for Im(k0).0.

The range of the functionc depends on the values ofn
and n8. For n>2 and n8>2 then 2`<c<` and so the
self-energy will have a branch cut along the entire length
the realk0 axis. Forn>2 andn851, momentum conserva
tion forcesc to be bounded from below but not from abov
For n51 andn8>2 momentum conservation forcesc to be
bounded from above but not from below. Forn51 andn8
51 the range ofc will be finite.

Most points at whichk05c will not produce singularities
in PR because the integration contours can generally be
torted so that the integration does not pass over the sing
ity @provided thatE(p) is analytic inp#. There are two situ-
ations which do produce singularities@15,16#. The first,
called pinch singularities, occurs at values ofk0 at which two
or more singularities of the integrand pinch the integrat
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contour from opposite sides. The necessary condition fo
pinch is the simultaneous vanishing ofk02c and of the

derivatives ofc with respect to thepW ’s and qW ’s. The suffi-
cient conditions require more detailed study of the integra
The second, called end point singularities, occurs at value
k0 at which the singularities of the integrand occur at en

points of the integration region, in this case frompW and qW

taking on values6`.
It is perhaps worth emphasizing that it is the location

branch points that is under investigation and not the value
the discontinuity across the branch cut. For the present
poses it does not matter if the discontinuity can be grou
as a product of factors from one side of the cut or the ot
@17#.

Applicability to QCD

In QCD the quark dispersion relations are different fro
the gluon dispersion relations at the one-loop level and c
tainly at higher loops. The analysis presented here applie
any self-energy contribution in which all of the cut propag
tors have the same dispersion relation. Thus, for quark s
energies it applies to cuts across intermediate states wit
quarks but no gluons. Similarly, for gluon self-energies
applies to cuts across intermediate states that are comp
entirely of gluons or entirely of quarks. The inability to tre
intermediate states with mixtures of particle species is ob
ously a limitation and it will require more work to overcom
Even atT50, unequal masses are difficult to treat.

Sample result

A simple but interesting example of the results that will
derived occurs for self-energy diagrams with a three-part
intermediate state. Three-particle intermediate states
which all three particles are the same species occur at t
loop order in the following cases:~a! scalar field self-energy
with f4 interaction as already discussed;~b! gluon self-
energy in QCD with three-gluon intermediate state;~c! quark
self-energy in QCD with a three-quark intermedia
state@18#. In all these examplesn1n853. One contribution
allows two particles to be emitted into the heat bath and
particle to be absorbed from the heat bath (n52,n851).
Subsequent analysis will show that there will be three bra
points: viz. atk056k and atk05` with branch cuts con-
necting them. The branch points atk056k will be essential
singularities with behavior exp@3m2k/(K2T)# as K2 ap-
proaches zero from the negative region. Herem is the effec-
tive thermal mass from the large-momentum expansion
the dispersion relation.

If the single-particle energyE(p) used to define the loop
expansion is complex, then only the above three bra
points occur. If, however, a real energyE(p) is used then the
self-energy will have a fourth branch point atk05E(k). In
this situation the propagator which was assumed to hav
simple pole atk05E(k) turns out to generate a branch poi
also atk05E(k). This ugliness infects any perturbative e
pansion built on a real dispersion relation.
0-3
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Organization

It is assumed throughout that the branch cuts of ther
self-energies come entirely from the denominators of
propagator functions and are not affected by the spin of
particles.

Section II presents three toy examples of functions w
branch cuts that extend from2` to 1`, as this does no
occur for zero-temperature self-energies. Two of these
amples have additional branch points on the real axis
illustrate features that will be found in the actual self-ener

Section III analyzes the branch points that occur for
general intermediate state consisting ofn particles emitted
into the heat bath andn8 absorbed from the heat bath
Section III D summarizes the results and may be read in
pendently of the development sections.

Section IV discusses some implications of the results.
There are four Appendixes. Appendixes A and B cont

detailed proofs that complete the arguments given in Sec
Appendix C is an explicit one-loop example that displays
essential singularity atk056k. Appendix D is an explicit
two-loop example from Wang and Heinz@19# that shows
both the essential singularity at the light cone and the bra
point at the mass shell.

II. SIMPLE FUNCTIONS WITH BRANCH POINTS AT Á`

One of the main results of this paper will be that se
energies atTÞ0 not only have branch points at the ends
their branch cuts but also have extra branch points not a
ends but attached to the cuts. Although this is unfami
from T50 physics, it is not very exotic mathematics. Th
section contains three toy examples involving on
dimensional integrals that can be computed exactly.

Each example concerns a function defined by an inte
of the form

F~v!5E
2`

`

dz
1

v2c~z!
, ~2.1!

where c(z) is a real function whenz is real. When Imv
.0 the function is holomorphic and defines the retard
form of F(v). When Imv,0 the function is holomorphic
and defines the advanced form ofF(v).

In the following examples the functionc(z) will be real
and chosen so thatF(v) have a branch cut running from
v52` to v5`, which separates the two regions of hol
morphicity. Such a cut requires thatc(z) takes on all real
values.

The branch points in the three examples can be found
examining the integrands and are confirmed by explicit in
gration. The discontinuity across the branch cut is p
imaginaryF(v r1 i e)2F(v r2 i e)52i Im F(v r), where

Im F~v r !52pE
2`

`

dzd@v r2c~z!#. ~2.2!

The discontinuity formula is not the best way to answer
question of whetherF(v) has any branch points at finite re
values ofv that are attached to the branch cut.
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Example 1.The first example is

f ~v!5E
2`

`

dz
1

v2sinhz
. ~2.3!

For any real value ofv, positive or negative, there is a re
value of z at which the denominator of the integrand va
ishes and this leads to a branch cut along the entire real a
The end pointsz56` of the integration produce the branc
points atv56`. Explicit integration confirms this:

f ~v!5
1

Av211
lnFv1Av211

v2Av211
G . ~2.4!

There are branch points atv56`, where the argument o
the logarithm vanishes. Inspection shows that Eq.~2.4! is
discontinuous across the real axis. Ifv approaches the rea
axis from above, then the argument of the logarith
approachese2 ipuRu; if v approaches the real axis from b
low, then the argument of the logarithm approacheseipuRu.
In this example there are no branch points at finite val
of v. This is the type of behavior that is usually thought
be typical of finite temperature field theory

Example 2.Next consider

g~v!5E
2`

`

dz
1

v2z3
. ~2.5!

This integral has end-point singularities atv56` and also
a pinch singularity atv50. The pinch occurs because atz
50 bothc(z) anddc/dz vanish@15,16#.

The integral may easily be evaluated by Cauchy’s th
rem. For anyv the integrand contains three simple poles
a function ofz. Whenv is in the upper half-plane, there ar
two poles inz above the real axis and one pole below. In
gration gives

Im v.0: g~v!5
2p i

3

e2 i2p/3

v2/3
. ~2.6!

Whenv is in the lower half-plane, theng(v) is the complex
conjugate of the above:

Im v,0: g~v!5
22p i

3

ei2p/3

v2/3
. ~2.7!

As expected,g(v) has a branch cut along the full length o
the real axis with branch points atv56`. The new feature
is the third branch point atv50.

It is useful to investigate the analytic structure a bit mo
Let v0 lie in the upper half-plane, whereg(v) given by Eq.
~2.6! is analytic. To exploreg(v) in the neighborhood ofv0,
setv5v01reif with r real. Asf increases from 0 to 2p,
v moves in a circle of radiusr centered onv0. This circle
can pass into the lower half-plane since Eq.~2.6! can be
analytically continued into the lower half-plane. Ifr ,uv0u
the the circle will not pass around the origin and the funct
(v01reif)2/3 will have the same value atf50 and at
0-4
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f52p. However, if r .uv0u thenv will encircle the origin
andg(v) will not return to its original value. To clarify this
choosev050 so thatv5reif. Then whenf increases from
0 to 2p, v2/3 will return to the valuee4p i /3v2/3 and g(v)
will return to the value

gII ~v!5
2p i

3

1

v2/3
. ~2.8!

This shows that the functiong(v) has a branch point atv
50 in addition to those atv56`. @If v encircles the origin
two more times in a counterclockwise direction theng(v)
will return to the original value in Eq.~2.6!.#

Example 3.The third example is

h~v!5E
2`

`

dz
1

2v2z313z
. ~2.9!

In addition to end-point singularities atv56`, this integral
has pinch singularities atv561. The pinch singularities
arise becausec(z)5z323z has a local maximum atz51
and a local minimum atz521. Consequently the denom
nator has a double zero atv561 @15,16#.

Since the integrand has three simple poles, the inte
can be performed using Cauchy’s theorem. For Imv.0 the
result is

Im v.0: h~v!5
2p i

3

1

e2p i /3A2/31e22p i /3B2/311
,

~2.10!

where

A5v1Av221, B5v2Av221.

As expected,h(v) has four branch points on the real axis:
v52` whereA vanishes; atv5`, whereB vanishes; and
at v561, whereA andB have branch points.

The discontinuity ofh(v) across the real axis can b
computed either directly from Eq.~2.10! or by using Eq.
~2.2!. By either method the result is

v2.1: Imh~v!52
p

3

1

A21B211
~2.11!

v2,1: Imh~v!5
2p

3

1

2 cos@~2u12p!/3#11
,

~2.12!

where for 21,v,1 the angleu is defined byv5cosu.
The imaginary part has a different value asv approaches 1
from above or from below. For infinitesimale,

v511e: Im h~11e!52
p

9
~2.13!

v512e: Im h~12e!52`. ~2.14!
07601
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Thus the imaginary part ofh(v) is discontinuous at the
branch point. This method will be used in Appendix D.

III. BRANCH POINTS OF SELF-ENERGIES

This section will examine the general problem of a p
turbative expansion based on propagators of the form
~1.5! in which E(p) is any single-particle energy, real o
complex. A summary of this section is given in Sec. III D

A. Branch points for n emissions with no absorptions

The simplest type of branch cuts are those that come f
the production ofn particles. After integrations over th
time-like components of the loop momenta, the retard
thermal, self-energy can be written as an integral oven
21 independent three momenta:

PR~k0 ,k!5E d3p1d3p2 . . . d3pn21f ~pW j !

k02c
. ~3.1!

The numeratorf (pW j ) will depend on temperature and and o
the spins of the particles. The denominator functionc is

c5(
j 51

n

E~pW j !.

The momentum of the last particle, viz.pW n , is determined by
momentum conservation

kW5(
j 51

n

pW j .

A value ofk0 that makes the denominator of the integra
in Eq. ~3.1! vanish will rarely produce a singularity inPR
because the integration contour can be distorted into
complex plane so as to avoid the point at which the deno
nator vanishes. Another way to describe this situation is
focus on the values ofpW j that make the denominator vanis
for a particulark0. As k0 varies, the location of the criticalpW j
varies. At a particulark0 the singularity may move onto th
real pW j axis. This will generally not produce a singularity o
the functionPR because the contour can be distorted so a
avoid the singularity@15,16#. However, if two singularities
move so as to pinch the contour between them at a partic
k0 then the functionPR will have a singularity at thatk0.
The necessary condition for the denominator of Eq.~3.1! to
have a double pole at some particulark0 requires that both
the denominator and its first derivative vanish@15,16#.

It is convenient to implement momentum conservation
employing a Lagrange multipliervW and defining a new func-
tion C as

C5(
j 51

n

E~pW j !1vW •S kW2(
j 51

n

pW j D . ~3.2!

Any point at which the derivatives ofC with respect to
pW 1 , . . . ,pW n and vW all vanish will be a point at which the
0-5
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H. ARTHUR WELDON PHYSICAL REVIEW D65 076010
derivatives ofc with respect topW 1 , . . . ,pW n21 vanish while
keeping momentum conserved.

To proceed further it is helpful to introduce the grou
velocity

V~p!5
dE~p!

dp
, ~3.3!

which may be complex whenE is complex. The pinch con
ditions

05
]C

]pW j

5 p̂ jV~pj !2vW ,

imply that all thepW j are equal. The common value ofpW j is
determined by extremizing with respect to the Lagrange m
tiplier:

05
]C

]vW
5kW2(

j 51

n

pW j ,

and this fixespW j5kW /N. The extreme value ofc is

cext5nE~kW /n!. ~3.4!

Thus there will be a branch point atk05nE(kW /n). For the
free-particle dispersion relation the branch point is atk0

5Ak21(nm)2. WhenE is an effective thermal energy, th
branch point atk05nE(k/n) will be temperature dependen
In either case, the branch cut runs parallel to the positivek0
axis and terminates with a branch point atk05`.

For the related situation ofn particles absorbed from th
thermal bath, thenc52( j 51

n E* (pW j ). This produces a

branch point atk052nE* (kW /n) and a branch cut which run
parallel to the negativek0 axis and terminates at2`.

B. Branch points that only occur for real group velocities

The part of the self-energy which has an intermedi
state consisting ofn emitted particles andn8 absorbed par-
ticles has the form

PR~K !5E )
j 5 i

n21

d3pj)
l 51

n8

d3ql

f ~pW ,qW !

k02c
~3.5!

where the momentumpW n is determined by momentum con
servation, Eq.~1.8!, andc is given by Eq.~1.9!.

To examine for pinch singularities in momentum spa
subject to the constraint of momentum conservation, i
again convenient to introduce a Lagrange multipliervW and
define a new function

C5(
j 51

n

E~pW j !2(
l 51

n8

E* ~qW l !1vW •S kW2(
j 51

n

pW j2(
l 51

n8

qW l D .

~3.6!

The pinch condition
07601
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e
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05
]C

]pW j

5 p̂ jV~pj !2vW

implies that allpW j are equal. The condition

05
]C

]qW l

52q̂lV* ~ql !2vW

implies that all theqW l are equal. Eliminating the Lagrang
multiplier vW in these last two conditions gives

p̂ jV~pj !52q̂lV* ~ql !. ~3.7!

The third condition is

05
]C

]vW
5kW2(

j 51

n

pW j2(
l 51

n8

qW l . ~3.8!

Case 1.E real: When the single particle energyE is real,
it is denoted byE. The group velocityV is real. Equation
~3.7! implies first that p̂ j52q̂l and second thatV(pj )
5V(ql). This is solved bypW j52qW l . Equation~3.8! can then
be solved fornÞn8:

pW j5
kW

n2n8
; qW l5

2kW

n2n8
.

~For n5n8 there is no solution.! The value of Eq.~3.6! at the
extremum is

cext5@n2n8#E~k/@n2n8# !. ~3.9!

The necessary conditions for a branch point atk05cext are
thus satisfied. Because this extrememum is a saddle p
and not a local maximum or minimum, the conventional e
perience does not apply. To demonstrate that there actua
a pinch of the integration contour requires more analy
This analysis is done in Appendix A and confirms that the
is a branch point atk05cext and also shows that the branc
point has infinitely many sheets.

For the free particle dispersion relation the branch poin
at k05Ak21@(n2n8)m#2. If E is a temperature-depende
effective energy, then the location of the branch cut will
temperature dependent.

The most surprising consequence of this is that when
2n851, there is a branch point atk05E(k), which is pre-
cisely at the location of the pole in the propagator that w
used to define the perturbative series. An example of
phenomena occurs in the self-energy inf4 theory. Wang and
Heinz @19# have calculated the imaginary part of the tw
loop self-energy. Appendix D shows explicitly that the tw
loop self-energy has a branch point at the mass-shell.

When n2n852 there is a branch point atk052E(kW /2)
that occurs by cuttingn1n8 propagators. Forn850 this is
the two-particle normal threshold already displayed in E
~3.4!. But for n8Þ0 the branch point occurs in more com
0-6
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plicated diagrams than in Eq.~3.4!. Similarly, for n2n857
the branch point atk057E(kW /7) occurs in diagrams withn
1n8>7.

Case 2.E complex but V real:It is possible to have
E(p)5E(p)2 ig/2 but g is a non-zero constant. The tru
damping cannot be constant, but the constantg approxima-
tion is sometimes useful@20#. The group velocity V
5dE/dp is real so that the pinch condition is satisfied at t
same momentapW j andqW l as in case 1. The only difference
that the extremum of Eq.~3.6! is

cext5@n2n8#E~k/@n2n8# !2 i ~n1n8!
g

2
. ~3.10!

When n2n851 the various branch points atk05E(k)
2 i (n1n8)g/2 do not coincide with the single-particle po
at k05E(k)2 ig/2. The proof in Appendix A includes this
case.

Case 3.E and V complex:When the single-particle energ
E is complex, it is difficult to solve Eqs.~3.7! and~3.8!. The
first equation implies thatp̂ j56q̂l . Let us examine the cas
p̂ j52q̂l . Then

V~pj !5V* ~ql !.

It is possible to invent an analytic functionV(p) that satisfies
this condition at special momentum. However, the bran
points would then be artifacts of the approximation schem
For the exact value of the single-particle pole energy,Epole,
the imaginary part is negative and vanishes at zero mom
tum and at infinite momentum. Therefore its first derivati
must be negative at small momentum and positive at la
momentum. Ifpj is small andql is large, it may be possible
for Im V(pj )52Im V(ql). Whether the real parts would sa
isfy ReV(pj )5ReV(ql) seems unlikely.

C. Essential singularities atk0ÄÁk

The branch points discussed above occur whenpW j andqW l
all have a finite magnitude. Additional branch points c
result from pinches at infinite values ofpW j andqW l . To inves-
tigate these it is necessary to make some assumption a
the behavior of the dispersion relationE(p) at large mo-
menta. It will be assumed that

p→`: E~p!→p1
m2

2p
1••• ~3.11!

and that the imaginary part ofE(p) falls faster than 1/p. This
is obviously the correct asymptotic behavior for any theo
that is massive at zero temperature. Theories that are m
less at zero temperature require a resummation to obta
sensible dispersion relationE(p). In this case the paramete
m plays acts as an effective thermal mass at large mom
tum. The asymptotic behavior of one-loop dispersion re
tions in massless gauge theories is well known@6,12,13#. The
asymptotic behavior Eq.~3.11! applies to spinless fields, t
the spinor field components which have the same helicity
chirality, and to the vector field components that are tra
07601
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versely polarized. It does not apply to the spinor field co
ponents that have the helicity opposite to the chirality nor
the longitudinally polarized vector bosons.@Both these cases
have asymptotic behaviorE(p)→p1Ap exp(2p2/m2). How-
ever, in these two cases the residue of the pole vanishe
large momentum like exp(2p2/m2).#

To investigate the branch points that can occur at la
momenta, it is useful to introduce three Lagrange multipl
vectors:vW 1 ,vW 2 ,PW and define

C5(
j 51

n

E~pW j !2(
l 51

n8

E* ~qW l !1vW 1•S 1

2
kW1PW 2(

j 51

n

pW j D
1vW 2•S 1

2
kW2PW 2(

l 51

n8

qW l D . ~3.12!

This is equivalent to Eq.~3.6! because extremizing with re
spect toPW setsvW 15vW 2. However, we will compute the ex
trema of Eq.~3.12! by computing the derivatives in a differ
ent order. The pair of conditions

05
]C

]pW j

5V~pj ! p̂ j2vW 1

05
]C

]vW 1

5
1

2
kW1PW 2(

j 51

n

pW j ,

imply that all pW j are equal and that they have the comm
value

pW j5S 1

2
kW1PW D /n. ~3.13!

The pair of conditions

05
]C

]qW l

52V* ~ql !q̂l2vW 2

05
]C

]vW 2

5
1

2
kW2PW 2(

l 51

n8

qW l

imply that all theqW l are equal and have the common valu

qW l5S 1

2
kW2PW D /n8. ~3.14!

As a result,

C5nES 1

n
uPW 1kW /2u D2n8E* S 1

n8
uPW 2kW /2u D .

The condition 05]C/]PW requires

PW 1kW /2

uPW 1kW /2u
VS 1

n
UPW 1

kW

2
U D 5

PW 2kW /2

uPW 2kW /2u
V* S 1

n8
UPW 2

kW

2
U D .
0-7
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Regardless of the value of the group velocity in this eq
tion, the two vectorsPW 1kW /2 andPW 2kW /2 can only be propor-
tional to each whenPW'50, wherePW 5 k̂Pi1PW' . WhenPW'

50 the vectors multiplyingV andV* , respectively, both are
equal to the unit vectork̂. Thus the condition reduces to

VS 1

n UPi1
k

2U D5V* S 1

n8
UPi2

k

2U D . ~3.15!

Because of the presumed asymptotic behavior in Eq.~3.11!,
this is satisfied in the limitPi→6`. If V is complex, this is
the only possible solution. IfV is real, then in addition to the
solution for infinite Pi there is also a finite solution whe
nÞn8, namely PW i1k/25nk/(n2n8). The finite solution
was already treated in Sec. III B and requires no further d
cussion.

Thus, regardless of the values ofn andn8, at Pi→` the
necessary conditions are satisfied for a branch point. F
Eqs.~3.13! and~3.14! and the fact thatPW'50, the important
region of integration is

pW j5
k̂

n S k

2
1Pi D , qW l5

k̂

n S k

2
2Pi D . ~3.16!

The denominator function is

c5nES 1

n UPi1
k

2U D2n8E* S 1

n8
UPi2

k

2U D .

The asymptotic behavior assumed in Eq.~3.11! implies

Pi→1`: c→k1
~nm!2

2Pi1k
2

~n8m!2

2Pi2k
1••• . ~3.17!

Therefore the branch point inPR(K) produced by the de
nominatork02c will occur at k05k. The regionPi→2`
produces a branch point atk052k. As in Sec. III B the
arguments thus far presented are only necessary condi
for a branch point. To show sufficiency requires a more
tailed analysis and this is provided in Appendix B.

Why an essential singularity

In Secs. III A and III B the branch points were produc
by particle momenta that were finite. Here the branch po
at k056k are produced by momenta that are infinite a
this makes it possible to show that the branch points
essential singularities.

The effect comes from the statistical factor,S, in the in-
tegrand of the self-energy contribution that containsn emit-
ted particles andn8 absorbed particles:

S5Sdirect2sSinverse, ~3.18!

wheres51 for a boson self-energy ands521 for a fer-
mion self-energy. The statistical factors are
07601
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Sdirect5)
j 51

n

@11s jNj #)
l 51

n8

Nl* ~3.19!

Sinverse5)
j 51

n

Nj)
l 51

n8

@11s lNl* # ~3.20!

wheres561 for bosons and fermions and

Nj51/@exp~bE~pW j !!2s j #

Nl* 51/@exp~bE* ~qW l !!2s l #.

Because of Eqs.~3.11! and ~3.16!, in the regionPi→` the
statistical factor becomes

S→~ebk/22se2bk/2!exp~2bPi!. ~3.21!

By finding the way in whichPi approaches infinity as
k0→k, one can be more specific about the nature of
branch point. Near the branch point,k02k is very small but
non-zero, and the self-energy denominatork02c will vanish
whenPi is very large but not actually infinite. The conditio
k02c50 gives a quadratic equation forPi . The two roots
are

Pi65
1

4~k02k!
„~n22n82!m26$@2k~k02k!

2~n21n82!m2#22@2nn8m2#2%1/2
….

There are two cases to be distinguished.
Case 1. n5n8: If k0 is real and approachesk from below,

the root that approaches1` is

Pi25
k

2
A12

2~nm!2

k~k02k!
. ~3.22!

The statistical factor Eq.~3.21! becomes

S→~ebk/22se2bk/2!expS 2
bk

2
A12

2~nm!2

k~k02k!
D .

~3.23!

This is an essential singularity atk05k. If k0 is real and
approachesk from below, thenS→0. More generally, the
behavior depends on howk02k approaches zero in the com
plex plane. Appendix C provides a one-loop calculation w
n5n851 that displays this behavior in Eq.~C3!.

Case 2. nÞn8: For definiteness taken.n8. Then if k0 is
real and approachesk from above, the root that approache
1` is

Pi1→ ~n22n82!m2

2~k02k!
.

The statistical factor Eq.~3.21! becomes

S→~ebk/22se2bk/2!expS 2
b~n22n82!m2

2~k02k! D . ~3.24!
0-8
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This, again, is an essential singularity atk05k, whose be-
havior naturally depends upon the direction from whichk0
approachesk. Appendix D provides a two-loop calculatio
with n52, n851, andk50. The exponent is predicted to b
2b3m2/2k0, and this is just what is found in Eq.~D14!.

Comment on hard thermal loops:The one-loop gluon
self-energy has branch points atk056k @6,12,13#. These
come from intermediate states withn51,n851 ~either two
gluons or two fermions!. The one-loop calculations are don
using a massless dispersion relation for the intermediate
ticles. Thereforem50 in Eq. ~3.11! so thatPi15k/2 in Eq.
~3.22!. Since this momenta is finite, the statistical factorS is
unremarkable and cannot produce an essential singula
Explicit calculations show that the branch points atk05
6k are logarithmic for the hard thermal loops.

D. Summary

In the following summary the single-particle energi
E(p) can be complex or real. For results that only app
when the energies are real, the blockE will be used instead
of the script E. Real E produces the exceptional branc
points discussed in Sec. III B and they will be described
parentheses in the summary below. The ubiquitous bra
points atk056k are always essential singularities and th
will not be repeated each time. As noted following Eq.~1.9!,
when n and/orn8 have the value 1, the range ofc is con-
strained by momentum conservation and this often de
mines the end points of the branch cuts.

1. Organized by n8, the number of absorptions

The most concise way to summarize the previous res
is by n8, the number of particles absorbed from the heat b

~a! No absorptions: n850. This is the simplest case an
directly analogous to zero temperature. The branch cu
semi-infinite:n E(k/n)<k0<`.

~b! One absorption: n851. There are two subcases. Ifn
51 then the branch cut is only for space-like four momen
2k<k0<k. If n>2 then the branch cut is semi-infinite
2k<k0<`; and there is a branch point atk05k. „If the
single-particle energies are real, there is an exceptio
branch point atk05@n21#E(k/@n21#). For n52 the last
branch point coincides with the free particle pole atk0
5E(k).…

~c! Two or more absorptions: n8>2. There are three sub
cases. Ifn50 the branch cut is semi-infinite:2`<k0<
2n8E* (k/n8). If n51 the branch cut is also semi-infinte
2`<k0<k, and there is an additional branch point atk05
2k. If n>2 the branch cut runs the full length of the re
axis: 2`<k0<`; and there are two additional branc
points atk056k. „If the single-particle energies are rea
there are exceptional branch points fornÞn8 at k05@n
2n8#E(k/@n2n8#). Whenevern2n8561 this last branch
point coincides with the free particle poles atk056E(k).…

2. Organized by n¿n8, the number of particles
in the intermediate state

A particular diagram can generally be cut in several p
sible ways. Each cut is through a particular number of pro
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gators or equivalently through an intermediate state wit
particular number of particles. As a practical matter, this
perhaps the most useful way to summarize the cut struct

~a! Two-particle states:Two-particle intermediate states
n1n852, are possible with a cubic coupling but not with
quartic coupling. There are three types of branch cuts.
n52,n850 there will be a semi-infinite cut 2E(k/2)<k0
<`. For n5n851 there will be a finite length branch cut
2k<k0<k. For n50,n852 there will be a semi-infinite
branch cut2`<k0<22E* (k/2).

~b! Three-particle states:The possibilityn1n853 occurs
with both cubic and quartic coupling. There are four types
branch cuts. Forn53,n850 there will be a semi-infinite
branch cut 3E(k/3)<k0<`. For n52,n851 there will be a
semi-infinite branch cut for2k<k0<` and in addition there
will be a branch point attached to the cut atk05k. @If the
single-particle energies are real, there will be an exceptio
branch point atk05E(k).# For n51, n852 the range of the
branch cut is2`<k0<k with an attached branch point a
k052k. @If the single-particle energies are real, there will
an exceptional branch point atk052E(k).# For n50, n8
53 the extent of the branch cut will be2`<k0<
23E* (k/3).

~c! Four-particle states:For a cut throughn1n854
propagators, there are five different types of branch cuts.
n54, n850 there is only a four-particle production cut fo
4E(k/4)<k0<`. For n53, n851 the range of the branch
cut is 2k<k0<` with an additional branch point atk05k.
@If the single-particle energies are real, there will be an
ceptional branch point atk052E(k/2).# For n5n852 the
branch cut runs the full length of the real axis,2`<k0
<` with two additional branch points atk052k and k0
5k. For n51, n853 the range of the branch cut is2`
<k0<k with an additional branch point atk052k. @If the
single-particle energies are real, there will be an exceptio
branch point atk0522E(k/2).# For n50, n854 there is
only a four-particle absorption cut for2`<k0<
24E* (k/4).

IV. COMMENTS

A. Expectations for the exact self-energy

Section III A showed that there will be a branch point
the retarded self-energyPR(k0 ,kW ) at k05nE(kW /n) that re-
sults from the emission ofn particles and, likewise, a branc
point atk052nE* (kW /n) that results from the absorption ofn
particles from the heat bath. The effective single-particle
ergies will generally be temperature dependent and com
and so the location of the branch points will generally
temperature dependent and complex. Furthermore, the l
tion of the branch points is model dependent in the sense
one can change the single-particle energiesE and thus
change the location of the branch points in the perturba
expansion.

However, the location of the branch points in the exa
self-energy cannot be model dependent. If one summed
perturbative self-energy contributions to all orders, t
model-dependence of the branch points would disappear
0-9
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as the model-dependence of the propagator pole would
appear. If the exact propagator has a pole atEexact(p), the
exact self-energy should have normal-threshold bra
points atk05nEexact(kW /n) and atk052nEexact* (kW /n). In ad-
dition, there will be essential singularities atk056k.

B. Bad features of real dispersion relations

Performing perturbative calculations using the free th
mal propagator or indeed any thermal propagator contain
a real dispersion relationE(p) leads to a self-energy that ha
branch points at the perturbative mass shell,k05E(k). If
PR(k0) is the retarded self-energy computed beyond o
loop order using a real energyE(p) to define the perturba
tion series, then to improve on the value ofE(p) one needs
to solve perturbatively forEpole

Epole5AE21PR~Epole!. ~4.1!

A perturbative expansion means thatPR(E) and its deriva-
tives atE are small compared toE. Thus the lowest-orde
contribution to the damping rate should be

Im Epole'Im@PR~E!#/2E. ~4.2!

However, this will fail at two-loop order becausePR(k0) has
a branch point precisely atk05E. This was first encountere
in calculations of the fermion damping rate in QCD, where
was found that even with a magnetic mass to eliminate
infrared divergence there is a branch point atk05E that
comes from the intermediate state withn52,n851 @18#. Ap-
pendix D contains an explicit calculation inf4 theory that
shows that the self-energy is not differentiable at the m
shell.

If one pretends that the self-energy is differentiable aE
then the solution to Eq.~4.1! would be

Epole5E1(
s51

`
~21!s

s!
@PR~E!#sF ds21

dk0
s21

1

@ f ~k0!#sG
k050

,

where f (k0) is the function

f ~k0!52k022E1(
l 51

`
~k0! l 21

l !

dlPR~E!

dEl
. ~4.3!

However,dlPR(E)/dEl does not exist and thus the pertu
bative calculation ofEpole fails.

There is another consequence of real dispersion relat
that is curious, though perhaps not as dire. Diagrams
which two particles are emitted and none absorbedn
52,n850) will have the usual normal threshold bran
point atk052E(kW /2). All contributions in whichn812 par-
ticles are emitted andn8 are absorbed will also have a bran
point at k052E(kW /2). Similarly, all contributions in which
n813 particles are emitted andn8 are absorbed will also
have a branch point atk053E(kW /3). These coincidences wil
be absent if a complex dispersion relation is employed.
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C. Good feature of complex dispersion relations

Any complex dispersion relation~even if the group veloc-
ity is real! will generate a perturbative expansion that do
not have a branch point in the higher order self-energy
k05E(k) as shown in Sec. III B. LetPR

eff(k0) be the self-
energy computed beyond one-loop order using the free
tarded propagator in Eq.~1.5!. The radiatively-corrected re
tarded propagator is

DR
eff~k0!5

1

~k02E!~k01E* !2PR
eff~k0!

. ~4.4!

The pole in this propagator satisfies

~Epole2E!~Epole1E* !5PR
eff~Epole!. ~4.5!

Since the self-energyPR
eff(k0) does not have a branch poin

at k05E, it is infinitely differentiable there. The perturbativ
solution to Eq.~4.5! is

Epole5E1(
s51

`
~21!s

s!
@PR

eff~E!#sF ds21

dk0
s21

1

@g~k0!#sG
k050

,

whereg(k0) is the function

g~k0!52k022v1(
l 51

`
~k0! l 21

l !

dlPR
eff~E!

dE l
. ~4.6!

In this case,g(k0) does exist and the perturbative expansi
for Epole is valid.
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APPENDIX A: DETAILED PROOF OF BRANCH POINT AT
k0Ä†nÀn8‡E„k¢ Õ†nÀn8‡… FOR nÅn8

In Sec. III B it was shown that if the single-particle energ
E is real, the necessary conditions for a singularity are sa
fied at

k05~n2n8!E~kW /@n2n8# !. ~A1!

This appendix proves sufficiency, viz. that there really is
branch point. The momenta which trap the integration c
tour are near a saddle point and this makes the analysis
ferent than at zero temperature.

1. Taylor series expansion ofc near the saddle point

It is convenient to label all the loop momenta aspW j so that
the denominator function is

c5(
j 51

n

E~pW j !2 (
j 5n11

n1n8

E~pW j !. ~A2!
0-10
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DefinesW5kW /(n2n8) and put

pW j5H 1sW1aW j , 1< j <n,

2sW1aW j , n11< j <n1n8.
~A3!

The stationary point ofc that was found in Sec. III B occur
when alla j50. Momentum conservation requires that

05 (
j 51

n1n8

aW j . ~A4!

A typical energy can be expanded in a Taylor series
second order in the small quantitiesaW j . In doing this it is
convenient to decompose the vectors into components p
lel and perpendicular tokW or equivalently tosW. Thus aW j

5 k̂a j i1aW j' . The Taylor series can then be written to se
ond order as

E~sW1aW j !5E~sW !1
dE

ds
a j i1

1

2
Aia j i

2

1
1

2
A'aW j'

2 1•••

where

Ai5
d2E

ds2
~A5a!

A'5
1

s

dE

ds
. ~A5b!

For a free particle,E(s)5(s21m2)1/2, andAi5m2/E3 and
A'51/E. For a quasiparticle dispersion relation, one or b
of Ai andA' could be negative. This will not alter the fo
lowing argument.

When this expansion is inserted into Eq.~A2!, the terms
linear in aW j cancel because of momentum conservation
leave

c5~n2n8!E~s!1
1

2
AiS (

j 51

n

a j i
2 2 (

j 5n11

n1n8

a j i
2 D

1
1

2
A'S (

j 51

n

aW j'
2 2 (

j 5n11

n1n8

aW j'
2 D . ~A6!

The constraint in Eq.~A4! means that there are onlyn1n8
21 linearly independent momentum vectors. One can eli
nate the last momentum,aW n1n8 , by expressing it as the sum
of all the otheraW ’s. When this is done, Eq.~A6! is no longer
diagonal, but it will be real and symmetric and can theref
be diagonalized by a real rotation. The rotation that dia
nalizes the terms proportional toAi will also diagonalize the
terms proportional toA' .
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2. Diagonalization of c

The simplest case isn52,n851, i.e. a three particle in-
termediate state in which two particles are emitted and on
absorbed. From the constraintaW 11aW 21aW 350, expressaW 3
in terms of the other two. Then

c5E~k!1
1

2
Ai@a1i

2 1a2i
2 2~a1i1a2i!

2#

1
1

2
A'@aW 1'

2 1aW 2'
2 2~aW 1'1aW 2'!2#

5E~k!2Aia1ia2i2A'aW 1'•aW 2' .

This can be easily diagonalized by defining new mome
uW 5(aW 11aW 2)/2 andvW 5(aW 12aW 2)/2 so that

c5E~k!1Ai~2ui
21v i

2!1A'~2u'
2 1v'

2 !.

The diagonal form is a function of the six Cartesian comp
nents ofuW andvW . The diagonal form is traceless with thre
positive terms and three negative terms regardless of
signs ofAi andA' .

For generaln andn8 expressaW n1n8 in terms of the other
aW 8s using Eq.~A4!. Thenc has the form

c5~n2n8!E~s!2Ai (
i , j 51

n1n821

Mi j a i ia j i

2A' (
i , j 51

n1n821

Mi j aW i'•aW j' , ~A7!

whereMi j is a simple numerical matrix. The eigenvalues
this matrix will be calledl j . The matrix can be diagonalize
by a real rotation to a new basis setbW j . In the new basisc
will be diagonal:

c5~n2n8!E~s!2Ai (
j 51

n1n821

l jb j i
2

2A' (
j 51

n1n821

l jbW j'
2 . ~A8!

None of the eigenvaluesl j vanish as the following analysi
will show.

Case 1. n851: When there is only one absorptionn8
51 and any number of emissionsn>2, the matrix elements
Mi j have the following values:

Mi j 5H 1, iÞ j ,

0, i 5 j .
~A9!

There aren eigenvalues of this matrix:

l5H n21, degeneracy51,

21, degeneracy5n21.
~A10!
0-11
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Thus the diagonal form ofc is

c5~n2n8!E~s!2AiS ~n21!b i
22 (

j 51

n21

b j i
2 D

2A'S ~n21!bW'
2 2 (

j 51

n21

bW j'
2 D . ~A11!

Case 2. n8>2: When there aren8>2 absorptions and a
larger numbern.n8 of emissions, the matrix elements ar

Mi j 5H 1, iÞ j ,

0, i 5 j <n,

2, i 5 j >n11.

~A12!

The matrix has two non-trivial eigenvalues:

l65
1

2
@n1n8216A~n1n821!224~n2n8!#.

Both l1 andl2 are positive. The complete set of eigenva
ues are

l55
l1 , degeneracy51,

l2 , degeneracy51,

1, degeneracy5n822,

21, degeneracy5n21.

Thusn8 eigenvalues are positive andn21 are negative.
Thus there are alwaysn8 positive eigenvalues, which wil

be labeledul1u, . . . ,uln8u, and n21 negative eigenvalues
which will be labeled2uln811u, . . . ,2uln81n21u. Then c
has the form

c5~n2n8!E~s!2(
j 51

n8

ul j u~Aib j i
2 1A'bW j'

2 !

1 (
j 5n811

n1n821

ul j u~Aib j i
2 1A'bW j'

2 !. ~A13!

The contribution to the retarded self-energy of this sm
region of momentum space is

PR~k0!5E S )
j 51

n1n821

d3b j D f ~bW j !

k02c
. ~A14!

In the quadratic approximation,c does not depend separate
on all the vectorsbW j but only on two real variablesu andv
such that

c5~n2n8!E~s!2u21v2.

As noted earlier,Ai and A' are expected to be positive.
that is the case, defineu andv by
07601
ll

u5F (
j 51

n8

ul j u~Aib j i
2 1A'bW j'

2 !G 1/2

~A15!

v5F (
j 5n811

n81n21

ul j u~Aib j i
2 1A'bW j'

2 !G 1/2

. ~A16!

However, if one or both ofAi and A' are negative, then
define2u2 as the sum of the terms that enter negatively
Eq. ~A13! and v2 as the sum of the terms that enter po
tively in Eq. ~A13!. Obviouslyu andv are real and positive
The relevant integration is only over these two variables a
is of the form

E
0

umax
duE

0

vmax
dv

h~u,v !

v2u21v2
, ~A17!

where

v5k02~n2n8!E~k/@n2n8# !. ~A18!

A branch point in the self-energy is now reduced to the qu
tion of showing that Eq.~A17! has a branch point atv50.
The limits umax andvmax represent the region of validity o
the second order Taylor series expansion. The integra
written has a branch cut on the realv axis for 2vmax

2 ,v
,umax

2 .

3. Existence of the branch point

The question at hand is whether the integral Eq.~A17!
has, in addition to the branch cut along the real axis, a bra
point atv50. The putative existence of such a branch po
clearly comes from the regionu'v and has nothing to do
with the upper limits of integration and nothing to do wi
the numerator functionh(u,v). To complete the analysis it is
therefore sufficient to examine the function

f ~v!5E
0

M

duE
0

M

dv
1

v2u21v2
. ~A19!

Although this integral cannot be performed explicitly, it
possible to prove the existence of a branch point atv50. To
analyze this integral it is useful to split the integration overv
into two parts:

f ~v!5E
0

M

duE
0

u

dv
1

v2u21v2

1E
0

M

duE
u

M

dv
1

v2u21v2
.

In the first integral, replacev by x5Au22v2. In the second,
replacev by x5Av22u2:
0-12
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f ~v!5E
0

M

duE
0

u

dx
x

Au22x2

1

v2x2

1E
0

M

duE
0

AM22u2

dx
x

Au21x2

1

v1x2
.

Now interchange the order of integration in both and perfo
the integrations overu to obtain

f ~v!5E
0

M

dxS x

v2x2
1

x

v1x2D
3 lnFM1AM22x2

x G .
Note thatf (0) is finite, but@d f(v)/dv#v50 is divergent as
are all the odd derivatives. This already shows thatf (v) is
not analytic atv50. @Note that the original function in Eq
~A17! contains a numeratorh(u,v) which could vanish at
x50. Consequently the divergence of the first derivative
f (v) may not hold when the numerator is included. Ho
ever, higher derivatives will diverge.#

To confirm the branch point atv50 the best procedure i
to analytically continuev in a small circle enclosing the
origin. The integrand off (v) has simple poles atx15Av,
x252Av, x35 iAv, andx452 iAv. Whenv has a small,
positive imaginary part, these singularities are off the r
axis. To expose the branch point atv50, setv5reif. Then
as f increases from 01 to 2p1, all four xj move in small
counterclockwise circles and return to different values:x1
moves to the negative real axis without coming near
integration contour;x2 moves counterclockwise through th
integration contour into the upper half-plane at the posit
originally occupied byx1. The change in the value of th
integral can be computed by integrating in a small circu
contourC1 around the position originally occupied byx1:

R
C1

dx
x

v2x2
lnFM1AM22x2

x G
5 ip lnFM1AM22v

Av
G . ~A20!

Likewise, asf increases from 01 to 2p1, x3 moves from
the positive imaginary axis clockwise to the negative ima
nary axis without touching to the real axis. However,x4
moves counterclockwise from the negative real axis to
positive real axis and drags thex contour with it. The change
in the value of the integral from this distortion can be co
puted by integrating in a small circular contourC3 around
the position originally occupied byx3:
07601
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R
C3

dx
x

v1x2
lnFM1AM22x2

x G
52 ip lnFM1AM21v

iAv
G . ~A21!

The change inf (v) resulting from encircling the origin is
the sum of Eqs.~A20! and ~A21!:

f ~e2p iv!2 f ~v!5 ip lnF i ~M1AM22v!

M1AM21v
G . ~A22!

The non-vanishing of the right-hand side confirms that th
is a branch point atv50 and completes the proof. Th
branch point has infinitely many sheets because if one rot
the phase ofv by 2pN the result is

f ~e2pNiv!2 f ~v!5 iNp lnF i ~M1AM22v!

M1AM21v
G .

~A23!

APPENDIX B: DETAILED PROOF OF BRANCH
POINT AT k0ÄÁk

In Sec. III C it was shown that for a real or comple
single-particle energy with the asymptotic behavior in E
~3.11! the necessary conditions for a singularity are satisfi
at k056k. This appendix proves that there is a branch po

As before, it is necessary to examine the integration in
region at which the contour is trapped. The denomina
function is

c5(
j 51

n

E~pW j !2 (
j 5n11

n1n8

E~pW j !. ~B1!

Define the two momenta

sW5
k̂

n S k

2
1Pi D , sW85

k̂

n8
S k

2
2Pi D , ~B2!

and set

pW j5H sW1aW jAPi, 1< j <n,

sW81aW jAPi, n11< j <n1n8.
~B3!

Momentum conservation requires that

05 (
j 51

n1n8

aW j . ~B4!

When all theaW j50

cuaW j 505nE~sW !2n8E~sW8!.
0-13
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To demonstrate that there is a branch point it is necessa
expandc in a Taylor series foruaW j uAPi small compared to
usWu and usW8u:

c5nE~s!1
Pi

2 (
j 51

n

~Aia j i
2 1A'aW j'

2 !

2n8E~s8!2
Pi

2 (
j 5n11

n1n8

~Ai8a j i
2 1A'8 aW j'

2 !.

The terms linear inaW j canceled by momentum conservatio
as in Appendix A. The coefficientsAi andA' are as defined
in Eq. ~A5!.

The branch point we are seeking occurs whenPi→`. In
this limit both s ands8 approach infinity so that

E~s!→s1
m2

2s
1•••

dE
ds

→12
m2

2s2
1•••

Ai→
m2

3s2
1•••

A'→ 1

s
2

m2

2s3
1••• .

At large Pi the denominator functionc behaves as

c→k1
~mn!2

2Pi1k
2

~mn8!2

2Pi2k

1
nPi

2Pi1k (
j 51

n

aW j'
2 2

n8pi

2Pi2k (
j 5n11

n1n8

aW j'
2 .

Now takePi→` so that

Pi→`: c5k1
n

2 (
j 51

n

aW j'
2 2

n8

2 (
j 5n11

n1n8

aW j'
2 . ~B5!

This is of the same form as Eq.~A6! except thataW j i does not
enter. Therefore, the proof from Appendix A applies. T
contribution to the retarded self-energy is

PR~k0!5E S )
j 51

n1n8

d3a j D f ~aW j !

k02c
. ~B6!

The proof in Appendix A shows that ifk05k1reif then the
value ofPR(k0) does not return to the same value whenf
increases from 0 to 2p.
07601
to APPENDIX C: f3 EXAMPLE TO ONE LOOP

The simplest example of an essential singularity atk05
6k occurs in a theory withHI5gf3/3!. With the free-
particle dispersion relationE(p)5(p21m2)1/2, the one-loop
self-energy has a branch cut for2k<k0<k that results from
an intermediate state withn5n851. The following calcula-
tion will expose the essential singularity atk056k in the
self-energy:

PR~k0!5g2E d3p

~2p!3

n~p!2n~pW 1kW !

~k01 i e2c!2E~p!2E~pW 1kW !
.

The denominator function is

c5E~pW 1kW !2E~p!.

Rather that calculatePR itself, it is easier to calculate the
imaginary part:

Im PR~K !52
g2p

4 E d3p

~2p!3
d@k02c#

n~p!2n~pW 1kW !

E~p!E~pW 1kW !
.

With the decompositionpW 5 k̂pi1pW' , the integral overpW'

can be performed using the Dirac delta function:

E d2p'd@k02c#5
2pp'

dc/dp'

uc5k0
52p

E~pW !E~pW 1kW !

k0
.

Consequently

Im PR~K !52
g2

16pk0
E

pi
min

`

dpi@n~p!2n~p1k!#. ~C1!

The conditionk05c can only be satisfied forK2,0 and it
makesE(pW ) a linear function ofpi :

E~pW !5
k

k0
pi2

K2

2k0
,

where

pi52
k

2
1

k0

2
A12

4~m21p'
2 !

K2
.

Since 0<p'<`, the minimum value of the parallel momen
tum is

pi
min52

k

2
1

k0

2
A12

4m2

K2
.

The remaining integration in Eq.~C1! is elementary:

Im PR~K !52
g2T

16pk
lnF12e2bE(k1pi

min)

12e2bE(pi
min) G , ~C2!

where the energies that enter are
0-14
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E~pi
min!52

k0

2
1

k

2
A12

4m2

K2

E~k1pi
min!5

k0

2
1

k

2
A12

4m2

K2
.

Both energies are positive sinceK2,0. Thus the imaginary
part is

Im PR~K !52
g2T

16pk
lnF 12e2b(k01kA124m2/K2)/2

12e2b(2k01kA124m2/K2)/2
G .

The imaginary part is an odd function ofk0. As expected,
there is an essential singularity atk056k. The leading be-
havior ask0→k is

Im PR~K !→2
g2T

16pk
~ebk/22e2bk/2!

3expS 2
bk

2
A12

2~nm!2

k~k02k!
D . ~C3!

This agrees perfectly with Eq.~3.23! for n5n851.

APPENDIX D: f4 EXAMPLE AT TWO LOOPS

This appendix will explicitly show the branch points o
the light cone and on the mass shell inf4 theory at two-loop
order. The analysis of this section will be based on the w
of Wang and Heinz@19#, who calculated the imaginary pa
of the self-energy to two-loop order as a function of ener
Previous works had computed the imaginary part just on
mass-shell@21,22#.

The notation in this appendix will be that of Wang an
Heinz @19#. The interaction Hamiltonian isg2f4/4!. The
zero-temperature particles are taken as massless, but the
resummation leads to propagators with poles atp056(p2

1mP
2 )1/2, wheremP is a resummed plasmon mass

mP
2 5

g2T2

24 S 12
g

2p
A3

2D . ~D1!

The imaginary part of the two-loop self-energy is grouped

Im S~v,pW !5Im g1~v,pW !1Im g2~v,pW !.

Hereg1 contains the usual three-particle cuts~i.e. n53, n8
50 and n50, n853) and will not be discussed here;g2
contains the cut for two emissions and one absorptionn
52,n851) and the cut for one emission and two absorpt
(n51,n852). As demonstrated in Sec. III, the functio
g2(v,pW ) should have branch points atv56(p21mP

2 )1/2

and essential singularities atv56p. The results of Wang
and Heinz for Img2(v,pW ) are extremely complicated doub
integrals whenpW Þ0. Consequently, this appendix will onl
examinepW 50 and will demonstrate a branch point atv
5mP and an essential singularity atv50.
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At pW 50, Wang and Heinz express the imaginary part
the self-energy as

v,mP : Im g2~v,0!5E
«

`

dv F~w,v ! ~D2!

v.mP : Im g2~v,0!5E
a

`

dv F~w,v !.

~D3!

In the integrals,v andw are Latin letters:v is a dimension-
less variable~an energy divided byT) and w is the dimen-
sionless ratio

w5
v

T
.

The lower limit of the first integral is

«5Fa21
~a22w2!~9a22w2!

4w2 G 1/2

, ~D4!

and the lower limit of the second integral is

a5
mP

T
.

Note that«→a whenw→a.

1. Branch point at vÄmP

At the mass shellv5mP ~equivalentlyw5a) the lower
limits are equal («5a) and thus Img2(v,0) is continuous at
v5mP .

The first derivative of Eq.~D2! is

v,mP : T
d Im g2~v,0!

dv
52

d«

dw
F~w,«!

1E
«

`

dv
]F~w,v !

]w
. ~D5!

An essential property of the integrand is@19#

F~w,v !uv5a50. ~D6!

As v→mP , the lower limit«→a. SinceF(a,a)50 by Eq.
~D6!, the first derivative of Eq.~D2! at v5mP is the same as
the first derivative of Eq.~D3! at v5mP .

The second derivative of Eq.~D2! is
0-15
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v,mP : T2
d2Im g2~v,0!

dv2
52

d

dw F d«

dw
F~w,«!G

2
d«

dw

]F~w,«!

]w

1E
«

`

dv
]2F~w,v !

]w2
. ~D7!

The second term on the right-hand side vanishes atw5a
because of Eq.~D6!. The first term on the right-hand sid
simplifies to

2
d2«

dw2
F~w,«!2

d«

dw

]F~w,«!

]w
2F d«

dwG2 ]F~w,«!

d«
.

The first two terms of this vanish atw5a because of Eq.
~D6!, but the third does not. Thus asv approachesmP from
below, the second derivative is

T2
d2Im g2~v,0!

dv2 U
v5m

P
2

52F d«

dwG
v5a

2 ]F~a,v !

]v U
v5a

1E
a

`

dv
]2F~w,v !

]w2
. ~D8!

At v5a, Eq. ~D4! gives d«/dw522. From Wang and
Heinz @19# the functionF(w,v) simplifies atw5a to

F~a,v !5
g4T2

128p3

ev

ev21

ea21

ea1v21
2 lnFsinh~v/2!

sinh~a/2!G .
~D9!

As expected, this vanishes at the lower limitv5a. However,
]F(a,v)/]v does not vanish atv5a. Thus the second de
rivative is discontinuous atw5mP with a discontinuity
given by

Fd2Im g2~v,0!

dv2 G
v5m

P
2

v5mP
1

5
g4

32p3

ea

~ea21!2
. ~D10!

This confirms the existence of a branch point at the m
shell v5mP .

There is a further check of Eq.~D10!. In the specific
calculation of Wang and Heinz, the mass was entirely th
07601
s

r-

mal so thata5mP /T is independent of temperature. How
ever, the calculation of the two-loop discontinuity would al
apply in a theory with a non-thermal massm. Then the right-
hand side of Eq.~D10! would be temperature dependent wi
a5m/T. In the zero-temperature limit,a→` and disconti-
nuity in the second derivative vanishes as expected.

2. Essential singularity at vÄ0

For pW Þ0, the functiong2(v,pW ) will have essential singu-
larities at v56p. In the case considered here, viz.pW 50,
these collapse to an essential singularity atv50. In the vi-
cinity of v'0, the imaginary part is given by Eq.~D2!. The
lower limit of the integral grows asv→0:

v→0: «→ 3a2

2w
1••• .

It is convenient to change variables fromv to v̄,

v5
3a2

2w
@11 v̄#, ~D11!

where 0< v̄<`. Then Eq.~D2! becomes

v,mP : Im g2~v,0!5
3a2

2w E
0

`

dv̄F~w,v !. ~D12!

From @19# the integral becomes in the limitv→0:

Im g2~v,0!→ 9g4T2

1024p3

a4

w
e23a2/2wI ~v! ~D13!

I ~v!5E
0

`

dv̄e23a2v̄/2v~11 v̄ !S 11A 3v̄

413v̄
D .

As w→0, the integrand ofI (v) is exponentially small for
any v̄ that is not infinitesimal. The dominant contributio
comes from the region 0< v̄!2w/3a2 and gives I (v)
→2v/3a2. Thus

v→0: Img2~v,0!→
3g4mP

2

512p3
e23a2/2w. ~D14!

The exponent here,23a2/2w, agrees precisely with that an
ticipated in Eq.~3.24! for n52,n851.
.
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