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Analytic properties of finite-temperature self-energies
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The analytic properties in the energy varialidg of finite-temperature self-energies are investigated. A
typical branch cut results fromparticles being emitted into the heat bath aridbeing absorbed from the heat
bath. There are three main results: First, in addition to the branch points at which the cuts terminate, there are
also branch points attached to the cuts along their length. Second, branch pé&jjtstat are ubiquitous and
for massive particles they are essential singularities. Third, in a perturbative expansion using free particle
propagators or in a resummed expansion in which the propagator pole occurs at a real energy, the self-energy
will have a branch point at the pole location.
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. INTRODUCTION with E;=(p’+m?)*% The first denominator produces a
branch point in the self-energy ak,=3E(k/3)=(k?

At non-zero temperatures most examinations of the self-+-9m?)%2 and a branch cut along the positikg axis for
energy have emphasized one-loop results. For masslegg(k/3)<k,<w. The second denominator produces a
gauge theories Braaten and Pisarski showed_ that_all diagramgganch cut for —co<ky<—3E(k/3). From the operator
with one loop(but any number of external lingsvill pro-  oint of view these two contributions arise from inserting a
duce effects as large as the tree diagrams and must theréfggee_particle intermediate state in the two time-orderings
be resummed1,2]. In a resummed expansion the disconti- . iaineaq (0| T(43(x) $3(y))|0). At higher orders in per-

ggmgi gdvﬁ]rilegS?r?'cl)?gepratgdpt;’ggggopegciggrsae?Sref}ztllgntﬁgfhrbation theory the self-energy continues to be real and ana-
guark gluon plasmas such as dilepton production, real ph0t0|¥t'c in the open interval-3E(k/3)<ko<3E(k/3).

production, and vector meson production.

There have been few investigations of the analytic prop- The same example afl #0
erties of finite-temperature self-energies4] and much of At non-zero temperatures there are four real-time propa-
the emphasis has been on the behavior at zero fou"gators organized into ax22 matrix D; with i,j=1,2[6,7].
momenturm(S]. The proper self-energy becomes a matiix . In the same

The development of the questions investigated in this pag2 44;41 theory the two-loop contribution to the time-ordered
per and of the approach is best illustrated by considerin elf-energyll,, is
- 11

how a familiar zero-temperature calculation changes at non-

zero temperature. d*P, d*P,
Hll(K):_ig4j 7 2
T=0 example (2m)* (2m)

A typical example arises for a massive, self-interacting X Dq4(P1)D11(P2)D14(P3).

scalar field with,=g?¢*/4!. One of the two-loop contri-
butions to the zero-temperature self-energy is The finite-temperature propagators are
_ d*P; d*P, 1 1+fge fae
H,:(K)=—Ig4J 2 7752 2. DuP)= 05—
(2m)"* (2m)" (P{—m“+ie) P °—m°+ie P“—m°—ie

y 1 1 wherefge=[exp@@|po)—1] ! is the Bose-Einstein function.
22, 2 2, Performing the integrations ove?y; and P, leads to an
(Pz=m7+ie) (Py—m+ie) integrand much more complicated than in B ). The new
where P;=K—P;—P,. Direct integration of the energy integrand can be expressed as a linear combination of eight
variablesP,; and P, gives terms each of which has a differekf dependence in the
denominator. The denominators are of the fokg-E;
IL(K) = _ng d°p; d°p, 1 +E,*Es+i 77(5,—_), in which all possible sign combinations
F (2m)3 (27)° 2E12E52E; occur. In the various denominators the sign of the infinitesi-
mal imaginary parts are momentum dependent, which makes
1 the calculation tedious and the analytic properties obscure.
ko—E;—E,—Ez+iy The complications of thez’s is a result of the absolute value
bars infgg.
B 1 } (1.1) A much simpler analytic structure is enjoyed by the re-
kotE;+E,+Ez—in| ' tarded self-energyfilz. All four II;; can be expressed in
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terms of IIg and I1,, whereIIA(K)=IIx(—K). All four 1
propagatorsD;; can be expressed in terms of the retarded *Dgr(P)= — > .
and advanced propagatoB; and D, [8]. For example, (Potie)*—p“—*1r(po,P)

M1(K) s can be expressed as Although *Dr(P) has the same poles on the real axis at

yy(K)=[ 1+ f]TIR(K) — fTTA(K), Po= +E(p) as Eq.(1.4), it also has a branch cut for space-
like momentum,— p<py=<p. It can be written as
wheref =[exp(Bky)—1] ! has no absolute value bars and is
an analytic function ok,. The retarded and advanced self- “D(P)= N(Po.P)
energies have simple analytic structukbz(K) is holomor- r(P)= (Poti€)—E2(p) '
phic for Im(kg) >0 andIl,(K) is holomorphic for ImKg)
<0. where the numerator functiod contains the branch cut but
To compute the retarded self-energy directly without us-has no poles. It seems quite likely that the self-energies com-

ing thell;;, one can either use the real-time Feynman ruleputed with* D would contain all the branch points that will
expressed in terms @z andD 4 [8,9] or use the imaginary- be found usingdr and would contain additional branch cuts
time Feynman rule$10] and then analytically continue in directly related to the branch cut M. However, this diver-
energy. For the above two-loop exampleghg?/4! theory  sion will not be pursued.
the result for the retarded self-energy can be expressed as a

sum of eight contributions: Generalization to complex dispersion relations

3 3 8 g From physical considerations one knows that particle
d’p. dp fA(pl,'pz’ps) . (1.2 propagation is damped at finite temperature. One-loop calcu-
(2m)3 (2m)® A=1 Kotim—ya lations are misleading in that the solution EF=p?+ m?

_ _ +I15'°°%E,p) is always a real energi(p). If one calcu-
where now all the denominators depend lati7 so that |56 the self-energy to two-loop accuracy then the pole in
I1g(K) is manifestly holomorphic in the upper-half of the {he propagator to two-loop accuracy will be complex. The
complexk, plane. Eachy, is a sum or difference of the |ocation of this complex pole in the retarded propagator will
three particle energies: be denoted by(p):

IIDA:iEli Ezi E3, (13)

HR(K):J

i
p)=wp)=5v(p),
where the eight combinations of the signs account for the
eight differenty’s. The physical interpretation of all these
possibilities is standarfdl1]: The energies that appear in Eq.
(1.3) with a positive sign correspond to particles emitted into
the heat bath; the energies that appear in with a negative sign 1
correspond to particles absorbed from the heat bath. Dr(P)= .

[Po—&(P) I[P+ E*(P)]

It has no singularities for Ingy) >0. Whenp, is complex
Using a conventional propagator which has polep@t but p is real, it satisfies the conditionDg(po,p)

=+ (p?+m?)¥2 may not be a good procedure because ther—[ Dr(—ps ,p)1*.

mal corrections will shift the pole to a different location. The |t js important to emphasize that the damping function

shift in the pole location is most dramatic in massless theos,p) cannot just be invented for phenomenological pur-

ries. For example, in masslegé¢?/4! the one-loop correc-  poses, because when the three-momentum is allowed to be-

tion will shift the pole topo=*(p?+gT%24)"% In mass-  come complexp,=p-~+ip’, then&(p,) must be an analytic
less QED and QCD the one-loop corrections to the fermiofynction of the variablep, :

and gauge-boson self-energies shift the locations of the poles

to po= = E(p), whereE(p) is a complicated, real transcen- ) [

dental function of momentum. The retarded propagator for &p+ip")=w(p,p’) =5 v(P.p). (1.6
any real dispersion relation is

wherew andy both real and both positive. The correspond-
ing propagator in the pole approximation is

1.5

Approximate dispersion relations that are real

In particularew andy must satisfy the Cauchy-Riemann con-

1 ditions:
Dr(P)= . 1.4
M) et 17— E%(p) 44

do(p,p’) 1 3dy(p,p’)
The analysis in this paper will apply to propagators of the p 2 ap’
form Dg. This propagator is not as complicated as the hard-
thermal-loop propagator§S(P) and *D ,,(P) for fermion , ,
and gauge bosongl,6,12,13. The har}a—thermal—loop re- do(p,p ):E Iy(p,p )_
summed propagators have the structure ap’ 2 dp
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This guarantees that, in computing a self-energy correctiorgontour from opposite sides. The necessary condition for a
the integration contours for the momentum variables can beinch is the simultaneous vanishing k§— ¢ and of the
distorted into the c_omplex plane. Without thig property thegerivatives of with respect to theﬁ’s and d’S- The suffi-
Iocu; of non.-analytlmty for se]f-energy corrections would be gient conditions require more detailed study of the integrand.
continuous lines rather than isolated branch points. The second, called end point singularities, occurs at values of
ko at which the singularities of the integrand occur at end-
points of the integration region, in this case frgmand q
The following analysis will employ propagators of the taking on valuest «.

general form in Eq(1.5). Obviously Eq.(1.4) can be con- It is perhaps worth emphasizing that it is the location of
sidered as a special case. A particular multi-loop self-energyranch points that is under investigation and not the value of
diagram will have many branch cuts and can be written agne discontinuity across the branch cut. For the present pur-

the sum of various integrals, each of which displays a uniqueoses it does not matter if the discontinuity can be grouped
branch cu{14]. The branch cut of the most general integral 55 5 product of factors from one side of the cut or the other
results from an intermediate state in whinhparticles are [17]

emitted into the heat bath amd particles are absorbed from
the heat bath and is of the form

Form of the self-energy

Applicability to QCD

n-1 n' > >
HR(K)=J IT o%pI1 d3q|];((p+Q). (1.7) In QCD the quark dispersion relations are different from

=1 =1 o= ¢ the gluon dispersion relations at the one-loop level and cer-
tainly at higher loops. The analysis presented here applies to
any self-energy contribution in which all of the cut propaga-
tors have the same dispersion relation. Thus, for quark self-
energies it applies to cuts across intermediate states with all
quarks but no gluons. Similarly, for gluon self-energies it
applies to cuts across intermediate states that are composed
entirely of gluons or entirely of quarks. The inability to treat
intermediate states with mixtures of particle species is obvi-
ously a limitation and it will require more work to overcome.
, Even atT=0, unequal masses are difficult to treat.

. 1.8
1 o 18 Sample result

This definition applies in the region Ikg)>0, where the
retarded self-energy is holomorphic. Branch point will be
sought by analytically continuing away from this region. A
particular Feynman diagram will be the sum of several inte
grals of this form, involving different values efandn’ and
often different values of the sum+n’.

Although there are+n’ momenta, one of them is deter-
mined by momentum conservation:

=

n
=1

A simple but interesting example of the results that will be

The denominator functioy sums over the energies of the derived s for self-eneray diagrams with a thr rticl
emitted particles positively and over the energies of the ab-SMVea occurs for sefi-energy ciagrams a tree-particie

sorbed particles negatively: intermediate state. Three-particle intermediate states in
' which all three particles are the same species occur at two-

n n' loop order in the following case$a) scalar field self-energy
- N . 4 . .
_ o= & _ 1.9 with ¢“ interaction as already discussed gluon self-
v 121 (Py) Z’l (@) 9 energy in QCD with three-gluon intermediate stdt;quark

self-energy in QCD with a three-quark intermediate
The complex energy has a negative imaginary part and so stat¢18]. In all these examples+n’=3. One contribution
¢ automatically has a negative imaginary part. This guaranallows two particles to be emitted into the heat bath and one
tees thalllx(K) in Eq. (1.7) is holomorphic for Imkg)>0. particle to be absorbed from the heat bath=Q,n'=1).

The range of the functiogy depends on the values of  Subsequent analysis will show that there will be three branch
andn’. Forn=2 andn’=2 then —<y=<w and so the points: viz. atk,=*k and atky=c with branch cuts con-
self-energy will have a branch cut along the entire length ohecting them. The branch pointslkat= =k will be essential
the realk, axis. Forn=2 andn’=1, momentum conserva- singularities with behavior efpn?k/(K?T)] as K? ap-
tion forcesy to be bounded from below but not from above. proaches zero from the negative region. Heres the effec-
Forn=1 andn’=2 momentum conservation forcésto be tive thermal mass from the large-momentum expansion of
bounded from above but not from below. Fo=1 andn’ the dispersion relation.
=1 the range of} will be finite. If the single-particle energy(p) used to define the loop

Most points at whictky= ¢ will not produce singularities expansion is complex, then only the above three branch
in [Tz because the integration contours can generally be digpoints occur. If, however, a real energyp) is used then the
torted so that the integration does not pass over the singulaself-energy will have a fourth branch point leg=E(K). In
ity [provided that€(p) is analytic inp]. There are two situ- this situation the propagator which was assumed to have a
ations which do produce singularitigd5,16. The first, simple pole aky=E(k) turns out to generate a branch point
called pinch singularities, occurs at valuekgfat which two  also atk,=E(k). This ugliness infects any perturbative ex-
or more singularities of the integrand pinch the integrationpansion built on a real dispersion relation.
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Organization Example 1The first example is
It is assumed throughout that the branch cuts of thermal " 1
self-energies come entirely from the denominators of the f(w):f dz———. (2.3
propagator functions and are not affected by the spin of the -= w=sinhz
particles.

hFor any real value ob, positive or negative, there is a real
value of z at which the denominator of the integrand van-
ishes and this leads to a branch cut along the entire real axis.
he end pointg= =« of the integration produce the branch
oints atw= *= . Explicit integration confirms this:

Section Il presents three toy examples of functions wit
branch cuts that extend fromo to +, as this does not
occur for zero-temperature self-energies. Two of these e
amples have additional branch points on the real axis tha
illustrate features that will be found in the actual self—energy.p

Section Il analyzes the branch points that occur for the

2
general intermediate state consistingroparticles emitted - 1 wtyot+l
: f(w) In . (2.9
into the heat bath and’ absorbed from the heat bath. Vol+l | o—Jo’+1
Section Il D summarizes the results and may be read inde-
pendently of the development sections. There are branch points at=*+o, where the argument of

Section IV discusses some implications of the results. the logarithm vanishes. Inspection shows that E34) is
There are four Appendixes. Appendixes A and B containdiscontinuous across the real axis.«dfapproaches the real
detailed proofs that complete the arguments given in Sec. lllaxis from above, then the argument of the logarithm
Appendix C is an explicit one-loop example that displays theapproachee™'"|R|; if w approaches the real axis from be-

essential singularity at,=+k. Appendix D is an explicit low, then the argument of the logarithm approach€$R|.

two-loop example from Wang and Heifi9] that shows In this example there are no branch points at finite values

both the essential singularity at the light cone and the branchf w. This is the type of behavior that is usually thought to

point at the mass shell. be typical of finite temperature field theory.
Example 2Next consider

II. SIMPLE FUNCTIONS WITH BRANCH POINTS AT =+

o 1
One of the main results of this paper will be that self- g(w):f dz—-r7. (2.5
energies af #0 not only have branch points at the ends of o072z
their branch cuts but also have extra branch points not at the, . integral has end-point singularities@t + and also
ends but attached to the cuts. Although this is unfamiliar, pinch singularity atv=0. The pinch occurs because zat
from T=0 physics, it is not very exotic mathematics. This

section contains three toy examples involvin one—:0 both (2) anddy/dz vanish[ 15,16,
ection ral y examp involving The integral may easily be evaluated by Cauchy’s theo-
dimensional integrals that can be computed exactly.

Each example concerns a function defined by an intearaf™ For anyw the integrand contains three simple poles as
P y 9% function ofz. Whenw is in the upper half-plane, there are

of the form ; .

two poles inz above the real axis and one pole below. Inte-

gration gives

F(w)=r dz—1 : (2.) .
e @—Y(2) 2 e 273

IMmw>0: g(w)= 3

o (2.6
where (z) is a real function wherz is real. When Inw 0]

>0 the function is holomorphic and defines the retarded o )
form of F(). When Imw<0 the function is holomorphic Whenw is in the lower half-plane, theg(w) is the complex
and defines the advanced form®fw). conjugate of the above:

In the following examples the function(z) will be real

i al2m/3
and chosen so tha(w) have a branch cut running from IMmw<0: g(w)= —2mi € . 2.7
w=—» to w=02, which separates the two regions of holo- 3 2B
morphicity. Such a cut requires thdiz) takes on all real
values. As expectedg(w) has a branch cut along the full length of

The branch points in the three examples can be found bthe real axis with branch points at= +. The new feature
examining the integrands and are confirmed by explicit inteis the third branch point ab=0.
gration. The discontinuity across the branch cut is pure It is useful to investigate the analytic structure a bit more.
imaginaryF(w,+i€)—F(w,—i€)=2i ImF(w,), where Let wg lie in the upper half-plane, whegf w) given by Eg.
(2.6) is analytic. To explorg(w) in the neighborhood aby,
setw=wy+re'® with r real. As¢ increases from 0 to 2,
o moves in a circle of radius centered orwg. This circle
can pass into the lower half-plane since EZ.6) can be
The discontinuity formula is not the best way to answer theanalytically continued into the lower half-plane. r& | w|
guestion of whetheF (w) has any branch points at finite real the the circle will not pass around the origin and the function
values ofw that are attached to the branch cut. (wp+re'?)?3 will have the same value a$p=0 and at

Im F(wr)Z—Wficdzﬁ[wr—z//(Z)]. (2.2
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¢=2m. However, ifr >|wg| thenw will encircle the origin  Thus the imaginary part oh(w) is discontinuous at the
andg(w) will not return to its original value. To clarify this, branch point. This method will be used in Appendix D.
choosew,=0 so thatw=re'?. Then wheng increases from

0 to 27, »?? will return to the valuee*™?w?°® and g(w) Ill. BRANCH POINTS OF SELF-ENERGIES

will return to the value ) . ) .
This section will examine the general problem of a per-

turbative expansion based on propagators of the form Eqg.
(2.9 (1.5 in which &(p) is any single-particle energy, real or
complex. A summary of this section is given in Sec. Il D.

2i
9i(w)=—3- o
This shows that the functiog(w) has a branch point ab

. e . o A. Branch points for n emissions with no absorptions
=0 in addition to those ab= *«. [If w encircles the origin P P

two more times in a counterclockwise direction thgfw) The simplest type of branch cuts are those that come from
will return to the original value in Eq2.6).] the production ofn particles. After integrations over the
Example 3The third example is time-like components of the loop momenta, the retarded
thermal, self-energy can be written as an integral aver
o 1 —1 independent three momenta:
h(w) f_x dsz_23+32. (2.9

d®p;d%p, . .. d3p,_1f(p;
HR(ko,k)=f P pzk0_¢pn 1f(py)

The numeratof(f)j) will depend on temperature and and on
the spins of the particles. The denominator functipis

(3.9
In addition to end-point singularities at= = «, this integral
has pinch singularities ab=+1. The pinch singularities
arise because/(z)=z>—3z has a local maximum at=1
and a local minimum at=—1. Consequently the denomi-

nator has a double zero at=+1 [15,16. n

Since the integrand has three simple poles, the integral (/,:E g(ﬁj),
can be performed using Cauchy’s theorem. FoklmO0 the i=1
result is

The momentum of the last particle, v'fzn, is determined by
2 i 1 momentum conservation
Imw>0: h((x)) = T

eZ‘ITi/3A2/3+ e72~rri/382/3+ 1 ! R n R
(2.10 k:JZl P

where
A value ofk, that makes the denominator of the integrand

A=w+Jol—1, B=w— Jol-1. in Eq. (3.1) vanish will rarely produce a singularity ifig
because the integration contour can be distorted into the

As expectedh(w) has four branch points on the real axis: at c0Omplex plane so as to avoid the point at which the denomi-
o= — whereA vanishes: ato=o, whereB vanishes: and Nator vanishes. Another way to describe this situation is to

at w==*1, whereA andB have branch points. focus on the values cﬁj that make the denominator vanish
The discontinuity ofh(w) across the real axis can be for a particulark,. As k, varies, the location of the criticgi,
computed either directly from Eq2.10 or by using Eq. varies. At a particulak, the singularity may move onto the
(2.2). By either method the result is real p; axis. This will generally not produce a singularity of
the functionllz because the contour can be distorted so as to

©?>1: Imh(w)=— 1 (2.11) avoid the singularity{15,16. However, if two singularities
3A2+B2+1 move so as to pinch the contour between them at a particular
ko then the functionllg will have a singularity at thakg.
- 1 The necessary condition for the denominator of &30 to
®?<1: Im h(w)=? 2co$(20+2m)3]+1’ have a double pole at some particukgrrequires that both

2.12 the denominator and its first derivative van|dlb,16].

' It is convenient to implement momentum conservation by
where for —1<w<1 the angled is defined byw=cosé. employing a Lagrange multiplier and defining a new func-
The imaginary part has a different value @asapproaches 1 tion ¥ as
from above or from below. For infinitesimal

n n
- V=2 &p)tv-| k-2, 5j). (3.2
w=1+e Imh(l+e)=-go (2.13 =1 =1
Any point at which the derivatives o with respect to
w=1—€e Imh(l-¢e)=—oo, (2.19 P1,....Py andv all vanish will be a point at which the
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derivatives ofy with respect toﬁl, c ,ﬁn_l vanish while
keeping momentum conserved.
To proceed further it is helpful to introduce the group

velocity

dé(p)

V(p)= ap (3.3

which may be complex wheé is complex. The pinch con-
ditions

~ -

p;V(pj)—v,

0

imply that all thef),- are equal. The common value 5]‘ is

PHYSICAL REVIEW D65 076010

0 17 R Vip)—0
&p] J J

implies that aIIf)j are equal. The condition

0

-

o]

—q\V*(a)—v

implies that all theﬁ| are equal. Eliminating the Lagrange
multiplier v in these last two conditions gives

determined by extremizing with respect to the Lagrange mul-

tiplier:
X
0= _):k—z pj’
Jv =1

and this fixesp;=k/N. The extreme value of is

Yex=NE(KIN). (3.9
Thus there will be a branch point k5=n5(IZ/n). For the
free-particle dispersion relation the branch point iskgt
=Jk?+(nm)?. When¢ is an effective thermal energy, the
branch point aky=nE(k/n) will be temperature dependent.
In either case, the branch cut runs parallel to the poskjve
axis and terminates with a branch pointkgt= «.

For the related situation aof particles absorbed from the
thermal bath, theny= —2?215‘*(5]). This produces a

branch point aky= —n&* (IZ/n) and a branch cut which runs
parallel to the negativi, axis and terminates at .

B. Branch points that only occur for real group velocities

piV(p) = —aV* (a)). (3.7)
The third condition is
o .o
0=—=k-2 pj—> q (3.9
Ju j=1 I=1

Case 1.£ real: When the single particle enerdyis real,
it is denoted byE. The group velocityV is real. Equation

(3.7) implies first thatp;=—q; and second thav/(p)

=V(q)). This is solved byp;= —q; . Equation(3.8) can then
be solved fom#n':

(Forn=n’ there is no solution.The value of Eq(3.6) at the
extremum is

hex=[N—n"]E(k/[n—n"]).

The necessary conditions for a branch poinkgt ., are

thus satisfied. Because this extrememum is a saddle point
and not a local maximum or minimum, the conventional ex-
perience does not apply. To demonstrate that there actually is

(3.9

The part of the self-energy which has an intermediate? pinch of the integration contour requires more analysis.

state consisting of emitted particles and’ absorbed par-
ticles has the form

n’

n—-1
HR<K>=f lH d3pj|H d3q

=1

f(p,q)

Ko— (3.9

where the momenturp,, is determined by momentum con-
servation, Eq(1.8), and is given by Eq.(1.9).

This analysis is done in Appendix A and confirms that there
is a branch point aky= i/, and also shows that the branch
point has infinitely many sheets.

For the free particle dispersion relation the branch point is
atko=k*+[(n—n")m]?. If E is a temperature-dependent
effective energy, then the location of the branch cut will be
temperature dependent.

The most surprising consequence of this is that when
—n'=1, there is a branch point &=E(k), which is pre-

To examine for pinch singularities in momentum spacegisely at the location of the pole in the propagator that was
subject to the constraint of momentum conservation, it i;sed to define the perturbative series. An example of this

again convenient to introduce a Lagrange multiptieand
define a new function

n’

W=2 Epj) =2, £ @)+

j=1

352 )
j=1 I=1
(3.9

The pinch condition

phenomena occurs in the self-energyfihtheory. Wang and
Heinz [19] have calculated the imaginary part of the two-
loop self-energy. Appendix D shows explicitly that the two-
loop self-energy has a branch point at the mass-shell.
Whenn—n'=2 there is a branch point zkszE(IZ/Z)
that occurs by cuttingn+n’ propagators. Fon’ =0 this is
the two-particle normal threshold already displayed in Eqg.
(3.4). But for n’#0 the branch point occurs in more com-
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plicated diagrams than in E¢3.4). Similarly, forn—n'=7  versely polarized. It does not apply to the spinor field com-
the branch point ak,=7E(k/7) occurs in diagrams witn ~ Ponents that have the helicity opposite to the chirality nor to
+n'=7. the longitudinally polarized vector bosoriBoth these cases

Case 2.£ complex but V reallt is possible to have have asymptotic behavigi(p)— p-+Ap exp(—p?/n"). How-
&(p)=E(p)—ivy/2 but y is a non-zero constant. The true €Ver, in these two cases the residue of the pole vanishes at
damping cannot be constant, but the constamipproxima- ~ 1arge momentum like exﬂ(pz/mz)-_]
tion is sometimes usefu[20]. The group velocity V To investigate the branch points that can occur at large
=dE/dp s real so that the pinch condition is satisfied at theMomenta, it is useful to introduce three Lagrange multiplier
same momenta; andg, as in case 1. The only difference is VECOrSiv1,v2,P and define
that the extremum of E(3.6) is

Je=[n=n'JE(K[N=n")~i(n+n") 2. (310 = =
n!
When n—n’=1 the various branch points a&,=E(k) 0, %E—ﬁ— ai (3.12
—i(n+n")y/2 do not coincide with the single-particle pole =1

t ko=E(k)—iy/2. Th fin A dix A includes thi . . L .
2asg. (k) =iy © proot in Appendix A Includes this This is equivalent to Eq(3.6) because extremizing with re-

Case 3£ and V complexWhen the single-particle energy SPect toP setsu;=v,. However, we will compute the ex-
& is complex, it is difficult to solve Eq¢3.7) and(3.8). The  trema of Eq.(3.12 by computing the derivatives in a differ-

first equation implies thaﬁ)j = tfm . Let us examine the case &M order. The pair of conditions

pj=—0q. Then P o

0=—==V(p)p;~

V(p)=V* (). o

It is possible to invent an analytic functidf(p) that satisfies v 1 n
this condition at special momentum. However, the branch 0= —=-k+P->D 51.,

points would then be artifacts of the approximation scheme. vy, 2 =1

For the exact value of the single-particle pole enety, .
the imaginary part is negative and vanishes at zero momenply that all p; are equal and that they have the common
tum and at infinite momentum. Therefore its first derivativevalue
must be negative at small momentum and positive at large

momentum. Ifp; is small andg; is large, it may be possible 5;2 EEJF Bl/n. (3.13
for ImV(p;)=—1ImV(q,). Whether the real parts would sat- 2
isfy ReV(p;)=ReV(q;) seems unlikely. ) »
The pair of conditions
C. Essential singularities atky=*k
The branch points discussed above occur \Aqﬁleandﬁ, 0= 55 =-V*(q)q—v2
all have a finite magnitude. Additional branch points can !
result from pinches at infinite values pf andq; . To inves- n’
. o . oV 1. -
tigate these it is necessary to make some assumption about 0=—=—=-k-P-> q
the behavior of the dispersion relatidifp) at large mo- v, 2 =1

menta. It will be assumed that

5 imply that all theq, are equal and have the common value

m
p—ow:  Ep)—pt+ =+ (3.1
2p ﬁ|:

%E—ﬁ)/n’. (3.14
and that the imaginary part é{p) falls faster than 3. This

is obviously the correct asymptotic behavior for any theoryAs a result,

that is massive at zero temperature. Theories that are mass-

less at zero temperature require a resummation to obtain a 1. . 1 . .

sensible dispersion relatiaf(p). In this case the parameter \I’:r‘g(ﬂ P+k/2|) - ”'5*<;|P_k/2|) -

m plays acts as an effective thermal mass at large momen-
tum. The asymptotic behavior of one-loop dispersion rela-
tions in massless gauge theories is well kng®i2,13. The
asymptotic behavior Eq3.11 applies to spinless fields, to
the spinor field components which have the same helicity as
chirality, and to the vector field components that are trans-  |P+k/2)|

The condition 6= 9¥/3P requires

) P—k/2 (1
V*

CP—kiZl \n’

>

I

2

.k

2

P+ki2 (1
n

|
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Regardless of the value of the group velocity in this equa- n n’

tion, the two vectord + k/2 andP—k/2 can only be propor- Surec= 11 [1+0;N;1TT Nf (3.19
tional to each whe®, =0, whereP=kP;+P, . WhenP, = =t

=0 the vectors multiplying/ andV*, respectively, both are

n n'

equal to the unit vectok. Thus the condition reduces to Siverse Jl;[l leﬂl [1+NF] (3.20

Lo K Lip K —+1forb d fermi d

v| = pH+§ —v*| — p”_E _ (3.15  Whereo==1 for bosons and fermions an
n n’
N;j=1lexp BE(p;))) — o]

Because of the presumed asymptotic behavior in(BEd.D), _
this is satisfied in the limiP|— +oo. If Vis complex, this is Nj =1[exp BE*(q))) — o]

the only possible solution. N is real, then in addition to the ) _
solution for infinite P there is also a finite solution when Because of Eqs(3.11) and(3.16), in the regionP)—c the

n#n’, namely |5\|+ k/2=nk/(n—n"). The finite solution statistical factor becomes

was already treated in Sec. Il B and requires no further dis- S (ePH2— ae*ﬁ"’z)exp(—,BPH) (3.21)
cussion. . -
Thus, regardless of the valuesmandn’, at Pj—« the By finding the way in whichP; approaches infinity as

necessary conditions are satisfied for a branch point. Frorg,—k, one can be more specific about the nature of the
Egs.(3.13 and(3.14) and the fact thaP, =0, the important  branch point. Near the branch poikt,—k is very small but

region of integration is non-zero, and the self-energy denominddgt ¢ will vanish
whenP is very large but not actually infinite. The condition
o kK o kilk Ko— =0 gives a quadratic equation f& . The two roots
Pi=h §+P||), Q|=ﬁ(§—P|)- (3.16 are
1
The denominator function is P =7 (NP=n"?)m?+{[ 2k(ko— k)
4(ko—k)
1k 1 Kk —(n*+n’?)m??—[2nn'm?]?}*A).
y=n& n PH+§ —n'&* — P”_E .
n There are two cases to be distinguished.

_ ) ) o Case 1. =n': If kg is real and approaché&srom below,
The asymptotic behavior assumed in E8.11) implies the root that approachesx is

ok (nm)?  (n'm)? k[ 2(nm)?
PH—>+00.(/I—> +2P”+k—2P”_k+~-~. (3.17 P”,—z 1_m- (3.22

Therefore the branch point illx(K) produced by the de- The statistical factor Eq3.21) becomes

nominatork,— ¢ will occur atky,=Kk. The regionP|— —c K 3 5
produces a branch point &= —k. As in Sec. llIB the Sﬂ(eﬁklz_ Ue—,ek/z)exp< _'8_, /1_ (nm) )
arguments thus far presented are only necessary conditions 2 k(ko—k)

for a branch point. To show sufficiency requires a more de- (3.23

il lysi his i i in A ix B.
tailed analysis and this is provided in Appendix This is an essential singularity &=k. If k, is real and

approachexk from below, thenS—0. More generally, the

. behavior depends on hoky—k approaches zero in the com-
In Secs. lllA and 111 B the branch points were produced piex plane. Appendix C provides a one-loop calculation with

by particle momenta that were finite. Here the branch point$— ' — 1 that displays this behavior in E(C3).

at ko= *k are produced by momenta that are infinite and case 2. ntn’: For definiteness take>n’. Then ifk, is

this makes it possible to show that the branch points argea| and approachdsfrom above, the root that approaches

Why an essential singularity

essential singularities. +o s

The effect comes from the statistical fact8r,in the in-
tegrand of the self-energy contribution that containsmit- (n2—n'?)m?
ted particles anah’ absorbed particles: Pj+— —2(k0—k) .

S= Syirect™ T Sinverser (3.18  The statistical factor Eq.3.21) becomes

whereo=1 for a boson self-energy angd=—1 for a fer- B(n*—n'?)m?

erea o 9y S—(eP?— ge P2 exp — . (3.29
mion self-energy. The statistical factors are 2(kg—k)
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This, again, is an essential singularity lgt=k, whose be- gators or equivalently through an intermediate state with a
havior naturally depends upon the direction from whigh  particular number of particles. As a practical matter, this is
approachex. Appendix D provides a two-loop calculation perhaps the most useful way to summarize the cut structure.
withn=2, n’=1, andk=0. The exponent is predicted to be  (a) Two-particle statesTwo-particle intermediate states,
— B3m?/2k,, and this is just what is found in EGD14). n+n’=2, are possible with a cubic coupling but not with a
Comment on hard thermal loopShe one-loop gluon quartic coupling. There are three types of branch cuts. For
self-energy has branch points la§= =k [6,12,13. These n=2,n'=0 there will be a semi-infinite cut &k/2)<k,
come from intermediate states with=1,n'=1 (either two <. Forn=n’'=1 there will be a finite length branch cut
gluons or two fermions The one-loop calculations are done —k=<ky<k. For n=0,n"=2 there will be a semi-infinite
using a massless dispersion relation for the intermediate pabranch cut—o<ky<—2&* (k/2).
ticles. Thereforen=0 in Eq.(3.11) so thatP|, =k/2 in Eq. (b) Three-particle statesthe possibilityn+n’=3 occurs
(3.22. Since this momenta is finite, the statistical fackds  with both cubic and quartic coupling. There are four types of
unremarkable and cannot produce an essential singularitiranch cuts. Fon=3n"=0 there will be a semi-infinite
Explicit calculations show that the branch points kat= branch cut Z(k/3)<kg=o. Forn=2,n"=1 there will be a

+k are logarithmic for the hard thermal loops. semi-infinite branch cut for k<kg=<c and in addition there
will be a branch point attached to the cutlgt=k. [If the
D. Summary single-particle energies are real, there will be an exceptional

branch point ak,=E(k).] Forn=1, n' =2 the range of the
branch cut is—e=<ky=<k with an attached branch point at
ko= —k. [If the single-particle energies are real, there will be
h an exceptional branch point &= —E(k).] For n=0, n’
=3 the extent of the branch cut will be-oco=<ky<
3&* (k/3).

In the following summary the single-particle energies
&(p) can be complex or real. For results that only apply
when the energies are real, the bldekvill be used instead
of the script£. Real E produces the exceptional branc
points discussed in Sec. Il B and they will be described in
parentheses in the summary below. The ubiquitous branch , ,
points atk,=*k are always essential singularities and this () Four-particle states:For a cut throughn+n’=4
will not be repeated each time. As noted following E59), propagators, there are five different types of branch cuts. For
whenn and/orn’ have the value 1, the range ¢fis con- N— 4, n"=0 thereis only a four—partlcle production cut for
strained by momentum conservation and this often dete145(k/4)<k0Soo Forn=3, n"=1 the range of the branch

mines the end points of the branch cuts. —k<ko=o with an additional branch point &,=k.
[If the single-particle energies are real, there will be an ex-
1. Organized by , the number of absorptions ceptional branch point a,=2E(k/2).] Forn=n’=2 the

branch cut runs the full length of the real axisc~<Kk,
The most concise way to summarize the previous results. , \ ih two additional branch points d,=—k and k
is byn’, the number of particles absorbed from the heat bath_ —k. Forn=1, n’=3 the range of the branch cut ISOg

(a) No absorptions: h=0. This is the simplest case and <ky=k with an additional branch point &= — k. [If the

directly analogous to zero temperature. The branch cut I§|ngle particle energies are real, there will be an exceptional

semi-infinite:n &(k/n) <k =oo. branch _
. point atkky=—2E(k/2).] For n=0, n'=4 there is
(b) One absorption: h=1. There are two subcases.nf only a four-particle absorption cut for—o<k,<

=1 then the branch cut is only for space-like four momenta:_ 48* (kI4).

—k=ko=<k. If n=2 then the branch cut is semi-infinite:

—k=<ko=w; and there is a branch point &=k. (If the

single-particle energies are real, there is an exceptional I[V. COMMENTS

branch point aky=[n—1]E(k/[n—1]). For n=2 the last

branch point coincides with the free particle pole lqt

=E(k).) Section Il A showed that there will be a branch point in
(c) Two or more absorptions: =2. There are three sub- the retarded self-energMg(ko, k) at ko—nE(k/n) that re-

cases. Ifn=0 the branch cut is semi-infinitero<ky< sults from the emission of particles and, likewise, a branch

—n'&*(k/n"). If n=1 the branch cut is also semi-infinte: point atk,=—n&* (k/n) that results from the absorption of
—o=<Kko=<k, and there is an additional branch pointkgt=  particles from the heat bath. The effective single-particle en-
—k. If n=2 the branch cut runs the full length of the real ergies will generally be temperature dependent and complex
axis: —w<kys<o; and there are two additional branch and so the location of the branch points will generally be
points atko=*k. (If the single-particle energies are real, temperature dependent and complex. Furthermore, the loca-
there are exceptional branch points for-n’ at ko=[n tion of the branch points is model dependent in the sense that
—n']JE(k/[n—n"]). Whenevem—n'=+1 this last branch one can change the single-particle energiesand thus
point coincides with the free particle poleskat=+ E(K).) change the location of the branch points in the perturbative
expansion.

However, the location of the branch points in the exact
self-energy cannot be model dependent. If one summed the
A particular diagram can generally be cut in several posperturbative self-energy contributions to all orders, the
sible ways. Each cut is through a particular number of propamodel-dependence of the branch points would disappear just

A. Expectations for the exact self-energy

2. Organized by #n’, the number of particles
in the intermediate state
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as the model-dependence of the propagator pole would dis- C. Good feature of complex dispersion relations

appear. If the exact propagator has a pol&€gl(p), the Any complex dispersion relatiofeven if the group veloc-
exgct self-energy should have normal-threshold branchy s tea) will generate a perturbative expansion that does
points atko=n&eac(k/N) and atko=—n&g,(k/n). In ad-  not have a branch point in the higher order self-energy at

dition, there will be essential singularities lag= = k. ko=£&(k) as shown in Sec. Il B. Leﬂgﬁ(ko) be the self-
energy computed beyond one-loop order using the free re-
B. Bad features of real dispersion relations tarded propagator in Eq1.5). The radiatively-corrected re-

Performing perturbative calculations using the free ther—tardEd propagator is

mal propagator or indeed any thermal propagator containing

a real dispersion relatioB(p) leads to a self-energy that has D(ko) = ! . (4.4)

branch points at the perturbative mass shieji=E(k). If (kO—S)(kOJré‘*)—HEﬂ(kO)

ITr(ko) is the retarded self-energy computed beyond one-

loop order using a real enerdy(p) to define the perturba- The pole in this propagator satisfies

tion series, then to improve on the valueEfp) one needs off

to solve perturbatively fo€,e (Epote™ E) (Epotet € ) =R (Epole) - (4.9
Epole™ VEZ+ HR(Epote) - (4.1)  Since the self-energli&(ko) does not have a branch point

atky=¢, it is infinitely differentiable there. The perturbative
A perturbative expansion means tHak(E) and its deriva-  solution to Eq.(4.5) is
tives atE are small compared t&. Thus the lowest-order
contribution to the damping rate should be

oo _1 s
Epoe=E+ 2 %[H?ﬁ(e)]s

s—1 1 ‘|

=1 (k)15 '
IM &g~ IM[ TT(E) ]/2E. 4.2 dko ~ [9ka) ],
However, this will fail at two-loop order becausbg(ky) has ~ whereg(ko) is the function
a branch point precisely &= E. This was first encountered
in calculations of the fermion damping rate in QCD, where it (ko)' 1 d'HeRﬁ(E)
was found that even with a magnetic mass to eliminate the 9(ko) = _k0_2w+|§1 [ des'
infrared divergence there is a branch pointkgt=E that
comes from the_lntermedlat.e.state W"th_Fz’n, jl [18]. Ap- In this caseg(ky) does exist and the perturbative expansion
pendix D contains an explicit calculation " theory that for £ _is valid

. . . pole '

shows that the self-energy is not differentiable at the mass

oo

(4.6

shell.
If one pretends that the self-energy is differentiabldcat ACKNOWLEDGMENTS
then the solution to Eq4.1) would be This work was supported in part by National Science
. Foundation grant PHY-0099380.
£ u=E 2—(_1)811 E)]° 1
pole™ +S=1 s! [MR(E)] dkS L [f(ko)]® ' APPENDIX A: DETAILED PROOF OF BRANCH POINT AT
ko=0 ko=[n—n’]E(k/[n—n’']) FOR n#n’
wheref (ko) is the function In Sec. Il B it was shown that if the single-particle energy
E is real, the necessary conditions for a singularity are satis-
“ (ko) "L d'TI(E fied at
f(ko)=—ko— 2E+ ( °|)| Lﬁ) (4.3
=1 dE ko=(n—n")E(K/[[n—n’]). (A1)

| | -
However,d'I1g(E)/dE" does not exist and thus the pertur- this appendix proves sufficiency, viz. that there really is a

bative calculation o€ fails. branch point. The momenta which trap the integration con-

There is another consequence of real dispersion relationgr are near a saddle point and this makes the analysis dif-
that is curious, though perhaps not as dire. Diagrams ifgrent than at zero temperature.

which two particles are emitted and none absorbed (
=2,n"=0) will have the usual normal threshold branch
point atk0=2E(l2/2). All contributions in whichn’ +2 par- .
ticles are emitted and’ are absorbed will also have a branch It is convenient to label all the loop momentagsso that
point atk,=2E(k/2). Similarly, all contributions in which the denominator function is

n'+3 particles are emitted and’ are absorbed will also N nan’

be absent f & bomplex dispersion relation s employed. V=2 B 2 ER). (82

1. Taylor series expansion ofy near the saddle point
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Defines=k/(n—n') and put

. [ +s+q;, 1<sj=n,
=1 . . . (A3)
i ~s+a;, Ntlsjs=n+n’.

The stationary point of that was found in Sec. 11l B occurs

when alla;=0. Momentum conservation requires that

n+n’

j=1

(A4)

A typical energy can be expanded in a Taylor series to

second order in the small quantitié@. In doing this it is
convenient to decompose the vectors into components para

lel and perpendicular t& or equivalently tos. Thus a;

= Raj||+ &u . The Taylor series can then be written to sec-

ond order as

dE 1
E(S+a )= E(S)+ IH+ A”aJ”
1 ~2
+ Al
where
A 4 (A53)
=— a
l ds
_LGE ASb
=S ds (ASb)
For a free particleE(s) = (s*+m?)*? and Aj=m?E? and

=1/E. For a quasiparticle dispersion relation, one or bot
of AjandA, could be negative. This will not alter the fol-

lowing argument.

When this expansion is inserted into E4=2), the terms
linear in @; cancel because of momentum conservation and

leave

n n+n’
S 8-S )

j=n+1

1
Yy=(n—n")E(s)+ EAH

2 au

(AB)

n+n
E au)

The constraint in Eq(A4) means that there are onh#-n’

PHYSICAL REVIEW D 65 076010

2. Diagonalization of i
The simplest case is=2n'=1, i.e. a three particle in-
termediate state in which two particles are emitted and oneis

absorbed. From the constraiat + a2+ a3 0, expreSSa3
in terms of the other two. Then

1 2 2 2
y=E(k)+ zAu[alqu ag)— (ag+az)”]
1 2 2 - - 2
+ EAL[Olll"'azL_(au"'azﬂ ]

:E(k)_AHa’lHQZH_ALalL'aZL .

'|'h|s can be easily dlagonallzed by defining new momenta
u= (al+ aZ)IZ andu —(al aZ)IZ so that

Y=EK) +A(—uf+of)+A (—ul+0v?).

The diagonal form is a function of the six Cartesian compo-

nents ofu andv. The diagonal form is traceless with three
positive terms and three negative terms regardless of the
signs of A andA, .

For generah andn’ express&nm, in terms of the other
a's using Eq.(A4). Theny has the form

n+n’—1

y=(n—n")E(S)— A HE:l Mij i aj)

n+n’—1

_AL IJZ M,]au all’

(A7)

whereMj; is a simple numerical matrix. The eigenvalues of
this matrix will be called\; . The matrix can be diagonalized

by a real rotation to a new basis s@t. In the new basig/

will be diagonal:

n+n’—1

y=(n—n")E(s)—A ;21 NiBY

n+n’—1
“AL 2 NBL (A8)
None of the eigenvalues; vanish as the following analysis
will show.
Case 1. 1=1: When there is only one absorptiar
=1 and any number of emissions=2, the matrix elements
M;; have the following values:

—1 linearly independent momentum vectors. One can elimi- 1, i#j,

nate the last momenturﬁmn, , by expressing it as the sum 7o, i=j. (A9)
of all the othera’s. When this is done, EqA6) is no longer

diagonal, but it will be real and symmetric and can thereforelhere aren eigenvalues of this matrix:

be diagonalized by a real rotation. The rotation that diago-

nalizes the terms proportional fg will also diagonalize the A= [ n—1, degeneracy=1, (A10)
terms proportional t&\ . —1, degeneracy=n-—1.
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Thus the diagonal form of is [ n’ 12
i u=| 2, I\l + AT (A15)
w=<n—n')E<s>—A”(<n—1>ﬁﬁ—2 ﬂ,?”) '
= (n"+n-1 12
I = NI(ABLHA B | . Al6
—Al((n—l)ﬁf—gl ﬂi)- A v _,-z%ll il(ABj LBJL)] (A16)

However, |f one or both ofA| and A, are negative, then
deflne u? as the sum of the terms that enter negatively in
g. (A13) andv? as the sum of the terms that enter posi-

Case 2. '=2: When there are’ =2 absorptions and a
larger numben>n’ of emissions, the matrix elements are

1, i#j, tively in Eq. (A13). Obviouslyu andv are real and positive.
o The relevant integration is only over these two variables and
Mjj=4 0. i=j=n, (A12) s of the form
2, i=j=n+1.
. L . Umax Umax h(u,l})
The matrix has two non-trivial eigenvalues: j duf dvﬁ, (A17)
0 0 w—Uu“+v
1 1 ! 2 !
Ne=5[n+n —1=\(n+n'—1)°-4(n—n")]. where
Both A, and\ _ are positive. The complete set of eigenval- w=ko—(n—n")E(k/[n=n"]). (A18)
ues are
A branch point in the self-energy is now reduced to the ques-
N, , degeneracy=1, tion of showing that Eq(A17) has a branch point ab=0.
A_, degeneracy=1, The limits uy,a, and v sy represent the region of validity of
A= , the second order Taylor series expansion. The integral as
L degeneracy=n’-2, written has a branch cut on the real axis for —v2_ <
—1, degeneracy=n—1. <u?

max-*

Thusn’ eigenvalues are positive amd-1 are negative.

Thus there are always' positive eigenvalues, which will 3. Existence of the branch point

be labeled\4|, ... |\n|, andn—1 negative eigenvalues,  The question at hand is whether the integral E4L7)
which will be labeled— |\, 4|, ...,— Ay 4n_1|. Theny  has, in addition to the branch cut along the real axis, a branch
has the form point atw=0. The putative existence of such a branch point
clearly comes from the region~v and has nothing to do
n’ with the upper limits of integration and nothing to do with
g=(n—n")E(s)— >, |)\j|(AHBﬁ\+AJ_:éj2J.) the numerator functioh(u,v). To complete the analysis it is
=1 therefore sufficient to examine the function
n+n’—1
> M M
+ 2 INIABRHALBY). (A13) f(w)=f duJ do————. (A19)
j=n"+1 0 0 w—U+v

The contribution to the retarded self-energy of this small

i . Although this integral cannot be performed explicitly, it is
region of momentum space is

possible to prove the existence of a branch poindat0. To
analyze this integral it is useful to split the integration ower

i f(B;) into two parts:
HR(ko)zf ( 11 d3,8,> Jw. (A14) '
In the quadratic approximatiog; does not depend separately flw)= f duf dv m
on all the vectorsé]- but only on two real variableg andv
such that M M 1
+f duf dv —-
0 u w—Uu°+v

y=(n—n")E(s)—u?+v?

As noted earlierAj and A, are expected to be positive. If In the first integral, replace by x= JuZ—v2. In the second,
that is the case, defineandv by replacev by x=\v2—u?:
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(o) jMd fud X 1 § q X | M+\/M2—X2
w)= ul| dx——=— X n
0 0 JuP—x% w—x? s w+x? X
M IMZ— 2 X 1 . M+ VM?Z+ o
+f duf S = —igin| — 2 ) (A21)
0 0 Ju?+x% w+x2 iVo

The change inf(w) resulting from encircling the origin is
Now interchange the order of integration in both and perfornthe sum of Eqs(A20) and (A21):
the integrations oveu to obtain

. i(M+M2—w
f(e®mw)—f(w)=imin (—2) . (A22)
" N M+ VM*+ w

f(w)ZJ dx + _ . . '

0 w—X° w+x? The non-vanishing of the right-hand side confirms that there
— is a branch point aiw=0 and completes the proof. The
<In M+ VM“—x branch point has infinitely many sheets because if one rotates
X ' the phase ofv by 27N the result is
H(E™M )~ () =iNaIn| Aa T YMTZ @)
is fini i i w)—T(w)=INmT .
Note thatf(0) is finite, but[df(w)/dw],-¢ is divergent as M+ M2+ o

are all the odd derivatives. This already shows that) is
not analytic atw=0. [Note that the original function in Eq.
(A17) contains a numeratdn(u,v) which could vanish at
x=0. Consequently the divergence of the first derivative of APPENDIX B: DETAILED PROOF OF BRANCH
f(w) may not hold when the numerator is included. How- POINT AT ko==k
ever, higher derivatives will divergg.

To confirm the branch point aé=0 the best procedure is

(A23)

In Sec. llIC it was shown that for a real or complex
. | : . . single-particle energy with the asymptotic behavior in Eq.
to_ qnal_rytr:ca_lly contlgue;n n s sm_all T'rdel enclos_ln\?_the (3.1 the necessary conditions for a singularity are satisfied
ongin. “he mie_gran 0 (‘”)_ as simple poles at; = Vo,  4;k — + k. This appendix proves that there is a branch point.
X;= =, X3=iw, andx,= —i\w. Wheno has a small, As before, it is necessary to examine the integration in the

positive imaginary part, these singularities are off the realegion at which the contour is trapped. The denominator
axis. To expose the branch pointat0, setw=re'?. Then function is

as ¢ increases from 0 to 27", all four x; move in small
counterclockwise circles and return to different values:

n n+n
moves to the negative real axis without coming near the _ &6 — 6. B1
integration contourx, moves counterclockwise through the 4 ,Zl () jz (P))- B1)
integration contour into the upper half-plane at the position
originally occupied byx;. The change in the value of the Define the two momenta
integral can be computed by integrating in a small circular
contourC, around the position originally occupied by: . kik _ kK
S= — _+PH , S'=— ——P” , (B2)
ni\2 n’ 2
nN2_ 2
f# dx X |n'\/hL M7~ x and set
Cq w—X2 X
s+a\ P, 1sj=n,
= o A ®3
='W|”T- (A20) " s +a;P, ntisjsn+n’.
w
Momentum conservation requires that
Likewise, as¢ increases from 0 to 27", x3 moves from e
the positive imaginary axis clockwise to the negative imagi- 0= 2 > (B4)
nary axis without touching to the real axis. Howevgy, =1 %

moves counterclockwise from the negative real axis to the
ositive real axis and drags tlecontour with it. The change -
P . 9 o . 9 _When all thea;j=0
in the value of the integral from this distortion can be com
puted by integrating in a small circular contoGg around

the position originally occupied by: Yla;=0=n&(S)—n"&(s').

J
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To demonstrate that there is a branch point it is necessary to

expandy in a Taylor series foq‘c?j|\/5” small compared to
|s| and|s’|:

Pl < *
V=NE(S)+ 5 2 (Ajafj+A,af)

n+n’

P -
—-n'E(s')— 7“ j:%l (Alial-zu—i—ALajzl).

The terms linear iny; canceled by momentum conservation

as in Appendix A. The coefficients andA, are as defined
in Eq. (A5).

The branch point we are seeking occurs wiign-. In
this limit both s ands’ approach infinity so that

2

g N
(S)—>S 2_5

d& m?
-
ds 252

m2
3s

1 m?
MTs st

At large P| the denominator functiog behaves as

(mn)?  (mn')?
2P||+|(_ 2PH—|(

n+n’

n ’
npPy -, np -2

2P”+k =1 I ZPH—k j=n+1 L

Now take P|— so that

n n , n+n’
. _ ~2 ~2
P‘|~>OO ¢_k+§j:1 ail_?j:%l a]-l. (55)

This is of the same form as EGA6) except thafzj” does not

enter. Therefore, the proof from Appendix A applies. The

contribution to the retarded self-energy is

(B6)

n+n’ f(&)
(ko) = f dPa; |
ko= | | 1 aJ) "
The proof in Appendix A shows that K,=k+re'® then the
value ofI1z(ky) does not return to the same value whgn

increases from O to 2.
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APPENDIX C: ¢% EXAMPLE TO ONE LOOP

The simplest example of an essential singularitkat
+k occurs in a theory withH,=g¢%/3!. With the free-
particle dispersion relatioB(p) = (p2+m?)*2 the one-loop
self-energy has a branch cut fertk<ky=<k that results from
an intermediate state with=n’=1. The following calcula-
tion will expose the essential singularity k= *k in the
self-energy:

d3p n(p)—n(p+K)
2m)3 (ko+ie— ) 2E(p)2E(p+K)

Meko) =
The denominator function is

y=E(p+K) —E(p).
Rather that calculatély itself, it is easier to calculate the
imaginary part:
n(p)—n(p+Kk)

I K__gz_ﬂfda_p -
MU= e M e e

With the decompositiorﬁ=Rp”+5L, the integral over|5L
can be performed using the Dirac delta function:

2mp E(p)E(p+K)
j d?p, 8[ko— )= m|¢=k0:2ﬂ'k—o-
Consequently
g° [~
Im HR(K):_Tﬂ_kOJ Ldpin(p) —n(p+k)]. (C1)

P

The conditionk,= ¢ can only be satisfied faK2<0 and it
makesE(ﬁ) a linear function ofp;:

B = k K2
(p)—k—opu— 7y’

where

kK ko 4(m?+p?)
pH:—E'F? l_?

Since O<p, <, the minimum value of the parallel momen-
tum is

. k 4m?
min_ + no o

Pr=—5%% K2

The remaining integration in E¢C1) is elementary:

2

gT
167k

1— e BE(K+p™

- , C2
1_eBE(pm.n)1 (€2

ImIIx(K)= In

where the energies that enter are
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At 5=O, Wang and Heinz express the imaginary part of
E(p"™) = the self-energy as

E(k+ pmm ; / o<mp: Imgs(w,0)= f:dv F(w,v) (D2)

Both energies are positive sin&€<0. Thus the imaginary

part is w>mp:  Im gz(w,O)zf dv F(w,v).
a
92T 1— e~ Blko+kV1—4m?/K?)2 (D3)
ImIIx(K)=— In —.
167k | 1 g Al-ko+kVL1-4nmiKE)2 In the integralspy andw are Latin lettersv is a dimension-

less variablgan energy divided byl') andw is the dimen-

The imaginary part is an odd function &f. As expected, qignjess ratio

there is an essential singularity laj= + k. The leading be-
havior asky—Kk is

2 w= .
6k (e,Bk/Z_ e—ﬂk/z) T

Bk | 2(nm)? The lower limit of the first integral is
Xexp — 7 1- m . (C3

(a®—w?)(9a’—w?)

ImIIx(K)——

1/2

This agrees perfectly with E¢3.23 for n=n"=1. e=|a%+ . , (D4)
4w
APPENDIX D: ¢* EXAMPLE AT TWO LOOPS
This appendix will explicitly show the branch points on @nd the lower limit of the second integral is
the light cone and on the mass shelkffi theory at two-loop
order. The analysis of this section will be based on the work mp
of Wang and HeinZ19], who calculated the imaginary part a= T
of the self-energy to two-loop order as a function of energy.
Previous works had computed the imaginary part just on the
mass-shel[21,27]. Note thate —a whenw—a.
The notation in this appendix will be that of Wang and
Heinz [19]. The interaction Hamiltonian ig2¢*/4!. The 1 Branch boint at e—m
zero-temperature particles are taken as massless, but thermal ' P @=Me
resummation leads to propagators with polepgt + (p? At the mass shellbb=mp (equivalentlyw=a) the lower
+m3)*2, wheremp, is a resummed plasmon mass limits are equal £ =a) and thus Ing,(w,0) is continuous at
= P .
, 9°T? g /3 The first derivative of Eq(D2) is
mi="s—|1-=—1\/=|. (D1)
24 27 V2
_ Td Im g,(w,0) B de .
The imaginary part of the two-loop self-energy is grouped asw<m'°' do T dw (W)

Im3(w,p)=IMg;(w,p)+Imgy(w,p).

©  JF(w,v)
Hereg; contains the usual three-particle ctite. n=3, n’ + L dv T ow (D5)
=0 andn=0, n’=3) and will not be discussed herg;
contains the cut for two emissions and one absorption (
=2n’=1) and the cut for one emission and two absorptionAn essential property of the integrand[ 9]
(n=1n"=2). As demonstrated in Sec. lll, the function
g»(w,p) should have branch points ai=+ (p?+m32)*? F(w,v)[,=4=0. (D)
and essential singularities at= = p. The results of Wang
and Heinz for Ingz(w p) are extremely complicated double As w—ms, the lower limits—a. SinceF (a,a)=0 by Eq.

integrals whemvﬁo Consequently, this appendix will only (pg), the first derivative of Eq(D2) at w=mj is the same as
examinep=0 and will demonstrate a branch point @t the first derivative of Eq(D3) at w=mp.
=mp and an essential singularity at=0 The second derivative of ED2) is
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de
—F(w,¢)

Tzdzlm Jo(w0 d
dw

Ow<Mp: =——
P dew? dw

de JF(w,g)
dw  ow

= §?F(w,v)
+ dv—z.
€ ow

(D7)

The second term on the right-hand side vanishewata
because of Eq(D6). The first term on the right-hand side
simplifies to

de dF(w,g)

dw Jw

de
dw

29F(w,€)
de

- —F(w,e)—
W

The first two terms of this vanish at=a because of Eq.
(D6), but the third does not. Thus asapproachesnp from
below, the second derivative is

Tzdzlmgz(w,O) - d_82 dF(a,v)
dw? - o dw| . dv | _,
w—mp
= PF(w,v)
+f do———>—.  (D8)
a W

At w=a, Eq. (D4) gives de/dw=—2. From Wang and
Heinz[19] the functionF(w,v) simplifies atw=a to
g4T2 ea_l

2
12878 e?—1 e2tv—1

e’ sinh(v/2)

Flav)= " sinha/2)

(D9)

As expected, this vanishes at the lower limit a. However,
dF(a,v)/dv does not vanish at=a. Thus the second de-
rivative is discontinuous atv=mp with a discontinuity
given by

w=m;

d?lm g,(w,0) 4 a

dw?

f— g —_—
_ 3278 (1)
P

(D10)

This confirms the existence of a branch point at the mass

shello=mp.
There is a further check of EqD10). In the specific

PHYSICAL REVIEW D65 076010

mal so thata=mp/T is independent of temperature. How-
ever, the calculation of the two-loop discontinuity would also
apply in a theory with a non-thermal mass Then the right-
hand side of Eq(D10) would be temperature dependent with
a=m/T. In the zero-temperature limig—c and disconti-
nuity in the second derivative vanishes as expected.

2. Essential singularity atw=0

For p#0, the functiong,(w,p) will have essential singu-

larities atw=*p. In the case considered here, vfz.zo,
these collapse to an essential singularityvat0. In the vi-
cinity of w~0, the imaginary part is given by E¢D2). The
lower limit of the integral grows as&—0:

3a?
e— 45—+

2w

w—0:
It is convenient to change variables framto v,

2
U=m[l+v],

(D11)
where O<y<w. Then Eq.(D2) becomes

3a% [»
w<Mp: Imgz(w,O)sz’0 dvF(w,v). (D12

From[19] the integral becomes in the limi— 0:

gg4T2 a4

IM g(,0)— 3w, D13
000~ = (@) (D13
v _ 3v
I(w)=f dve332v/2“’(1+v)<1+ —.
0 4+ 3v

As w—0, the integrand of (w) is exponentially small for
any v that is not infinitesimal. The dominant contribution

comes from the region €v<2w/3a® and gives|(w)
—2w/3a?. Thus

4.2
Mp .2
e 3a /2w_

(D14)
51248

Imgy(w,0)—

w—0:

The exponent here; 3a%/2w, agrees precisely with that an-

calculation of Wang and Heinz, the mass was entirely therticipated in Eq.(3.29 for n=2n'=1.
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