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Weinberg’s theorem fotr-7 scattering, including the Adler zero at threshold in the chiral limit, is analyti-
cally proved for microscopic quark models that preserve chiral symmetry. Implementing Ward-Takahashi
identities, the isospin 0 and 2 scattering lengths are derived in exact agreement with Weinberg’s low energy
results. Our proof applies to alternative quark formulations including the Hamiltonian and Euclidean space
Dyson-Schwinger approaches. Finally, the threshola scattering amplitudes are calculated using the Dyson-
Schwinger equations in the rainbow-ladder truncation, confirming the formal derivation.
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[. INTRODUCTION even though gauge dependent non-observable constructs,
such as quark and gluon propagators, can be very model

In the zero quark mass limit the strong interaction issensitive. The pion mass is a quintessential example since for
chirally symmetric, exhibiting invariance under independentmassless quarks this mass is zero, regardless of the form of
rotations of left and right handed flavors. Nonvanishing, al-the effective interactiorprovidedthat there is spontaneous
beit small on the hadronic scale,andd quark masses ex- dynamical chiral symmetry breaking ¥SB). Similarly,
plicitly break this symmetry. More importantly, however, -7 scattering near threshold is governed by this symmetry
chiral symmetry is also broken spontaneously by the vacuurand any model that preserves chirality should reproduce
and the corresponding Goldstone boson is the pion. Thus, Weinberg's scattering lengths.
is generally accepted that chiral symmetry underlines the dy- The purpose of this paper is to demonstrate that for a
namics of soft pions. In particular, the low energyr scat-  microscopic quark formulation with an arbitrary, but chiral
tering lengths can be calculated using current algebra angymmetry preserving, quark-antiquark interaction Wein-
PCAC (partial conservation of axial vector currgntn the  berg’s results can indeed be explicitly obtained, and that a
seminal paper, based on these constraints, Weirldgérde-  correct description of low-energy-m scattering emerges.
duced the scattering lengths for total isospin 0 and 2 to b&he crucial step is to realize that there are important higher
ap=+7L/4 and a,=-—L/2, respectively, whereL order contributions tor-7r scattering which, in the chiral
=m?2/(8=f2) is given in terms of the pion mags, and  limit, must exactly cancel the impulse contribution to recover
decay constantf . Further, chiral symmetry can also be the Adler zero. Similar effects occur in the microscopic
used to constrain low energy, effective theories describing\ambu—Jona-Lasinio model with contact interactions at the
pion-hadron interactions. For example in the lineamodel,  quark level[2]. This is closely related to the above men-
chiral symmetry enforces delicate cancellations between ditioned cancellation in the model. The same results can also
rect - interactions andr-exchange contributions to the be derived in models using bosonization techniques for the
scattering amplitude. chiral pion fields as demonstrated in RES].

Concurrently, the advent of QCD has spawned the devel- This paper is organized into five sections. In Sec. Il we
opment of more fundamental, microscopic formulations withutilize the Hamiltonian formulation to succinctly derive
quark degrees of freedom and low energy hadronic phenomA/einberg’s results for the special case of an infinite interac-
ena have been successfully described by various constituetin. Next, in Sec. Ill, we demonstrate model-independently
quark models. However, because constituent quark modet§at 7-7 scattering in impulse approximation violates chiral
generally do not respect chiral symmetry, the Goldstone nasymmetry (does not vanish in the chiral limitusing the
ture of the pion is lost and there is no fundamental differencé@xial-vector (AV) Ward-Takahashi identitfWTI). Section
between the pion and, for example, themeson. Conse- |V details a general proof of Weinberg's result using the
quently, such models should not be expected to properly deainbow-ladder truncation of the set of DSEs. We also pro-
scribe low energy pion scattering. vide a numerical solution of the DSEs further documenting

It is, however, possible to construct quark models implethe agreement with Weinberg's scattering lengths. Finally,
menting chiral symmetry, such as the rainbow-ladder truncaresults and conclusions are summarized in Sec. V.
tion of the set of Dyson-Schwinger equatiqidSE) and the
instantqneo_us Hamiltonign approach using_the random phasg yAMILTONIAN DESCRIPTION OF  m-m SCATTERING
approximation(RPA), which preserve the pion’s Goldstone
nature. For such models it is remarkable that both calculated In this section we provide a synopsis of our key result
observables and attending mathematical relationships gowithin the Hamiltonian framework. In Sec. Il A we first ad-
erned by chiral symmetry are largely model independentdress the one pion system anggSB. Then in the following
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subsection we derive Weinbergis-7 result in the infinite

interaction limit. 8, Cm B+ E(K)

A. Single pion formulation and SySB

The Hamiltonian formalism for pions has an established
history. For an earlier reference consult Ref} along with +
Refs.[5—8] for more recent applications. In the Hilbert space
of pion Salpeter amplitudes the Hamiltonian can be ex-
pressed as =0

E(k)+E(k
$, (R Bk

o* -

FIG. 1. Pion Salpeter equation. In terms of the Dirac matriges
}mW[CID,CI)Jr]ag and @, the projection operators for the quark propagator, with mo-
1) mentumKk, are A™ =(1%sin(¢)Bxcos@)a-k)/2, and denoted in
the figure by{+,—}. For an instantaneous interaction and upon
with integration of the loop energiegandw’, only those components of
the quark propagators having the numeratdrsdepicted in the
(o3 (O figure will survive. As for the denominators the integrationsain
H [qfr} =—m,o3 q>+}' andw’ are trivial and vyill yield two cl/uster pr?pagatorid(i_ m,
@) —Eq(k) —Eg(k) iand |/_(i m,— Eq(k_ )— Eg(_k ) re;pectlvely.
Note that eachb~ (¢ in the figurg is consistent with the nor-
The normalization is given by malization condition, Eq(3), and should contain one such cluster
propagator. This is the reason the propagator cuts are displayed in
the figure. Two such cluster propagators are needed for thetaio
=1 3 but only one is generated per integration loop. Therefore in the
rightmost diagram, where we have only one integration loop, we
where g3 is the standard third component Pauli matrix and.ha“’e to multiply and divide byfhe miss.ing cluster propagator lead-
T o . o . ing to the factorst m_+ E,+ E, appearing there.
o7, represents the pion positive, negative energy com- 9
ponents, respectively. Fob*—®~, m_——m, while
ford*=d~, m_=0. be obtained from the trivial one by a BV transformation with

Previous pion Hamiltonian studi¢S—8] have utilized the @ ¢(Kk) that is determined by solving the mass gap equation.
Bogo|ubov_Va|atin (BV) [Or Bardeen, Cooper, Schrieffer This in turn SpeCiﬁeS the phySical Fock space. For further
(BC9)] transformation approach to describe the ground statéformation, including the origin of$, consult Refs[5-8.
vacuum and developed quasipartigietated quark-antiquark
creation and annihilationoperators for describing the pion
in the RPA[7,8]. The RPA Hamiltonian formalism rigorously
preserves chiral symmetry and is formally equivalent to the For 7-m scattering we can repeat the steps represented in
rainbow-ladder DSE, Bethe-Salpeter equati®BSE) ap-  Fig. 1. This is diagrammatically summarized in Fig. 2. Here
proach with an instantaneous kernel provided the quarkl,2} represent the incoming pions whi{@,4} denote the
propagator is consistent with the BCS vacuum. As detailedutgoing particles. Both the initial and final configurations
elsewherd9] the pion momentum wave function can be ex-have two energy componen®,”. Two Feynman diagrams
pressed in terms of the BV rotatigar BCS gap angle (k) are drawn together with the corresponding Goldstone dia-

grams in order to illustrate both the essential relativistic na-

. Sin(¢) 2 ture of pions(even at rest and the physical significance of
o= a *ad; a= §f7\/m_. 4) ®=*. In total there are 48 diagrams plus kinetic energy inser-

tions. Notice that these diagrams closely resemble those of
Form_=0, A=0 and the rest frame pion Salpeter compo-Fig. 1 so that we could anticipate the model independence of
nents reduce tab~=sin(¢)/(0) which are degenerate and -7 scattering lengths since the mép X m— 7} respects
non-normalizable. the structure of the pion Salpeter equatjdZ].

The derivation of the above equations follows straightfor- Figure 2 clearly indicates that both quark exchaage
wardly from an instantaneous reduction of the pion Dyson-quark annihilation amplitudes are necessary. Of course this is
Schwinger, Bethe-Salpeter equation which is depicted in Figa consequence of the quark Dirac nature, however, it is im-
1. Reference§9-11] contain a more complete derivation portant to note that with just quark exchange only repulsion
along with applications. In this formulation the mechanismis obtained. This is precisely the case of exotic scattering. It
of spontaneous chiral symmetry breaking is simple to underis chiral symmetry which governs the correct combination of
stand: it corresponds to a self-consistent choice of the ferexchange and annihilation diagrams to yield a Goldstone
mion Fock space appropriate to the quark kernel in use. Thpion and, by doing so, to produce the Weinberg scattering
Pauli principle still permits an infinite set of Fock spaceslengths.
which can be isomorphically mapped to an infinite set of We now evaluate the isospir=0 and 27-7 T matrix,
functions with coordinateg (k). Any such Fock space can T,, or scattering amplitud&,=i47m_T,, at zero pion mo-

H:O'3 q)_ mw[®+,®7]03+03 (I)+

(I)+
o ;

(I)+

HcI)‘

=Mmgo3

q)+

f PP D oy o -

B. @r-ar scattering
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X M

FIG. 3. Three different topologies for the direct contribution to
- scattering. Reversing the quark and antiquark flosversing
the arrow generates three other diagrams for a total of six. The
larger solid circles represent the pion-quark vertex while the smaller
solid circles denote the quark propagators are dressed.

FIG. 2. Representative-7 scattering diagrams. The super-
scripts for pions 1...,4 represent the different energy compo-
nents,® =, of each pion. In the leftmost pair of Feynman and Gold-
stone diagrams a possible energy parametrizagdirpions at rest,
for simplicity) is displayed. 1 and 2 are the incoming pions while 3
and 4 are the outgoing pions. The pion energigsn(,) are also
displayed. In the Goldstone diagrams both quark and antiquark lines j [@F, @ Jog
run from left to right. The left Goldstone diagram represents anti-
quark exchange between incoming pions 1 and 2 with incoming
pion 2 being represented by tlo@itgoingnegative energy compo- o
nentd ", i.e., anoutgoing hole The outgoing pion 3 is represented f [@, D7 ]o3
by anincoming hole with negative energy componedt™. The

Goldstone diagram on the right represents a quark-antiquark anni- . ) .
hilation diagram. and so on. It is then a textbook calculation to extract, in

lowest order inm_, the -7 scattering lengths from th&

) . . matrix, Eg. (5), since in the Born approximatiora,
mentum. Either from comparing Figs. 1 and 2 or from Eqs._ m,T,/(47) and we get the desired reswfo,=[7/4,
(1), (2), and(3) it is clear thatT, will be proportional tom, —1/2)L. '

because H is proportional tu,, . Further,T, is also inversely With this preliminary treatment we now address the more
proportional tof , since there argusttwo extra pion ampli-  general derivation for an arbitrary but finite quark kernel.
tudes when going from the Salpeter equation for one singlgj st we demonstrate that the impulse approximation is in-

pion to 77~ scattering. After including all potential energy g gficient for -7 scattering and violates chiral symmetry.
diagrams plus kinetic insertions we have

+

D _ .
cp}:f 4sin(¢p)A=1;

+2

B2 :f 2 sirt(¢p)Ala=1(2a) (7)

B 2 %42 2 . IMPULSE APPROXIMATION FOR  ar-r
Ti=b[® 507 H) o SCATTERING
drP- In this section we evaluate the leaditigpx) diagrams for
+C|[cp+q>,q)+q>]|-|{ B _} -7 scattering and demonstrate that they fail to provide a
¢ correct description since they violate chiral symmetry. These

+2 diagrams, which we call direct terms, correspond to the im-
+d[PT2D2H| . . (5)  pulse approximation and are illustrated in Fig. 3.
@ We can evaluate the direct terms model-independently us-

ing the AV-WTI which exactly relates the axial-vectd“ri,

o o .and pseudoscalal;®, vertices to the inverse of the dressed
In the above expression integration is assumed. The Ham'huark propagator

tonian is given by Eq(2) and the constants, entailing color,

spin and isospin traces, are . , ,
P P —i(PHTS(p’,p;P)—2my(1)T%(p’,p; P))

=S7H(p") y5+ 155 X(p). t:)
012 ~[3400;  Coa=(3/40; doa=[-121] >

Here p, p'=p+P are the respective incoming, outgoing

quark momenta, anB the momentum flowing into the ver-
Equation(5) is especially simple to evaluate for an infi- ©€X- The inverse of the dressed quark pr_opagﬁoﬂ,(p),

nite interaction since sim(k)—1. This limit always exists Can Pe expressed in terms of scalar functiérsnd B:

because for a given class of the quark kerriéds instance

linear confinement with potentiair) the mass gap equation iS™H(p)=A(p*)p—B(p?). 9)

for ¢(k) can always be re-scaled as a dimensionless equa-

tion for ¢(k/+/o) for an arbitrary kernel strength. In the  For the free propagatoA=1 and B=mgy(u), the current

extremely strong limit, which also corresponds to the pionquark mass which explicitly breaks chiral symmetry. Since

point limit, c— o, and ¢(k/ /o) — ¢(0)=7/2 which issuf-  the interaction contains a diverging, but renormalizable,

ficientto obtain Weinberg's scattering lengths. To appreciateshort-range component, this mass requires renormalization

this use Eq(4) repeatedly with sing)=1 to obtain and depends on scale.

076008-3



PEDRO BICUDOet al. PHYSICAL REVIEW D 65 076008

Meson bound states can be described by a Bethe-Salpeter 1 B(k)
amplitude(BSA) satisfying a homogeneous BSE —f 0 (16)
2 k(A (k) +B(k))?
ab, 71 . _ ab;cd/ A7 - ’
Fa(p’,piP)= ka (p",pikK’) Note that this direct term result, which is exact since it fol-

lows from the AV-WT], is not zero in the chiral limit. From
X[S(K)T (k' k;P)S(K)1%, (100  Weinberg’s theorem, however, therr scattering amplitude
at threshold scales ad2/f2 and therefore must vanish in
the chiral limit. Clearly the impulse approximation is insuf-

antiqL_Jark scattering kef”?" properly regula_rized for _diver'ficient to obtain Weinberg's result and additional diagrams
gent integrals. This equation only has solutions for d|scret%re necessary

values of P2 corresponding to the bound state mass. The
lowest bound state in the pseudoscalar channel is the pion,
P2=M?Z, which produces poles in both, andI'®. For the
axial-vector vertex the residue of this polefisP ,, while

where [, representsf[d*k/(2m)*] and K is the quark-

IV. DYSON-SCHWINGER METHOD IN THE

RAINBOW-LADDER APPROACH
M 1

the residue of pseudoscalar vertex is labelg(g). Both can The problem raised in the previous section can be re-
be calculated from the properly normalized pion BSA andsglved by utilizing a formalism which preserves chiral sym-
the dressed quark propagators metry. In this section we consider one such approach, the
Dyson-Schwinger method in the rainbow ladder truncation
Pﬂfw:izzf Tr[S(k')T (k' ,k;P)S(K) y,¥s], (see Ref.[15] for a review and applicatior)\sThe_ set of
k DSEs form a hierarchy of coupled integral equations for the

(13) Green’s function of the underlying theory. For example, the
quark propagatos(p) satisfies

Mg( )1 p(4) =~ Zame( ) Jk TH S(k') R
iS‘l(p)=er5—Z4mq(M)—ifgzngs(k)F'V(k,p)
XTI (K" k;P)S(k) ys]. (12 k
The constant¥, andZ, are the usual quark wave function xXD#(k=p), (17)
and mass renormalization terms, respectively. They depend i , )
on both renormalization and regulator scales but when com¥herel’,(k,p) is the dressecyi quark-gluon vertex with gluon
bined with the integrals anah,(x) incorporated in the above color labeli=1...8 andD*”(k—p) is the gluon propaga-
expressions, the final results are scale indeperfd@htThis  tor- The constant&, andZ, follow from the renormalization
has been checked explicitly for a model having an effectiverondition

interaction that reduces to the one-loop running coupling

[14]. Finally, these residues are constrained to cancel through iSTH(P)p2= 2= —mMy( ) (18
the AV-WTI
at the renormalization scalg. The generic DSE for a
Mifw—qu(,u)rp(,u):O. (13 dressed verteX'®” is the inhomogeneous BSE
Even though there is no pion pole in the inverse quark propa- . ) e
gator, we can still use the AV-WTI to expreEs, in terms of I'2(p",p;P) = yihomT f K&p’,p;k,k")
the inverse quark propagator. In the combined chiral and k
P,—0 limit this yields X [S(k)T (K’ k; P)S(k)]9°, (19
2
I .(p,p;0)= Bo(P7) s (14) Whereyﬁ]%om is the corresponding bare vertex; for clarity, we
fr have explicitly included the spinor indices as roman super-

scripts, but will suppress these indices when clarity permits.
Thus, the dressed axial-vector vertﬁfg(p’,p; P) and pseu-
doscalar verteX'>(p’,p;P) satisfy an inhomogeneous BSE
with inhomogeneous tern®,y,,y> andZ,y°, respectively.

where the subscript O indicates the chiral limit.
The evaluation of the direct terms in Fig. 3 produces

fk T T (k+P1,k;P)SKT (k,k—P5;Py) It is convenient to also define an axial vertex(P)
I _ _ 5
X S(k—P,)T (K~ Py,k—P,—P3;Pg)S(k— P, Py) YalP) =~ 1(ZoP = 2Z4mg(w) ™. (20
xﬁ,(k— P,—Pa,k+P;;P,)S(k+P)], (150  The correspondingressedaxial vertex

which at threshold and along with E¢L4) reduces in the FA(p’,p;P):—i(P“Fi(p’,p;P)—2mq(,u)l“5(p’,p;P)),
chiral limit to (21
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B i £

FIG. 4. The unamputated quark-antiquark scattering amplitude
L in the ladder truncation. The quark propagators are dressed, but
for simplicity the solid circles indicating the dressing are omitted in
this and subsequent diagrams.

FIG. 5. Reduction of connected ladder amplitudes.

Lab;Cd(p"p;k,k,):Sad(p)SCb(k)(S“(p_k)

satisfies Eq(19) with inhomogeneous ternyi,nom= ya(P). —J s (p')ys
With this vertex, we can write the AV-WTI, Eq8), as a

><Ld,C/;Cd(q,yq;k,k’)’yi/b/

xS"P(p)g’ D (p—q). (27
For low momentunP, small quark mass and thus small _
pion mass, we can relate this dressed axial veligP) to  Using the AV-WTI, the ladder truncated amplitudes con-

the pion BSA, using an expansion in powersroindm, nected by the vertek' 5, depicted in Fig. 5, can be reduced
to (see Ref[11] for a similar reduction of the vector vertex

TA(p’,p;P)=S"1(p" ) ys+ vsS 1(p). (22

T A(p\PiP) =T (P’ ,piP)+ O(P) + O(mg( ).

2f, fL""b?b"”"(p’+Q,p;q,q'+Q)Fi""(q’+Q,q’;Q)
(23 a

d’c’;cdf N7 ~- ’ —1\c'b’
Furthermore, from Eqgs(11)—(13) it follows that for any <L (a”.q:k. k(S ™7 ()
four-momentumQ flowing into the diagram we have _ ,yga’l_a’b;cd(p/ pik,k’)

+Labed (p 4 Q,pik, k" )y, (28)
Related, it can also be shown in the combined rainbow-
ladder truncation that

JkTr[s<k+ P)I(k+P,k;P)S(K) ya(Q)]
=(P-Q+M%)f . (24)

Note that the left-hand sidé.HS) in this last equation in- J'kLab:Cd(P“L P1,p—P2k=P3 k+Py)
volves thebare axial vertex, not the dressed vertex.
X [T a(k+ Py, k;P1)S(K)T a(k,k— P,;P,)]9¢

A. Rainbow-ladder truncation —[y5S(p)T A(P,p—P2;P,)S(p— Pz)]ab
Provided that the regularization scheme is translationally
invariant, the rainbow truncation for the quark DSE +J Labied(p+ P, p—P,:k— Py k+P1)
. k
. : A'
IS 1(p)=Zz|é—Z4mq(u)—lfkngs(k) X[ y5ya(P2)]9¢ (29
A and, similarly, for on-shell pions
X¥,59*D*(k=p), (25

L3%¢%(p+Py,p—Py;k— Py k+Py)
combined with the ladder truncation for the quark-antiquark

scattering kernel X[Ta(k+ P,k P)S(K)T H(k k=P P2)]%
A i =[75S(P)T (p,p—P2;P2)S(p—P2)1*". (30)
Kaed(p’ pik. k) =75 7" 5 g*D*"(p—k), (26)
B. -7 scattering in rainbow-ladder truncation
is consistent with the Ward identitigd4,16. To discuss We now utilize Eq.(23) to evaluate ther-7 scattering

-1 Scattering, we introduce the unamputated quarkamplitude near threshold. Since there are six topologically
antiquark scattering amplitudé, in the ladder truncation different ways to attach the external pion legs to the direct
which is pictorially represented in Fig. 4. Here the solid hori-term, we first calculate the contribution from one of these
zontal lines represent quatkntiquark propagation and the topologies by adding two sets of diagrams with a complete
coiled vertical lines correspond to the quark-antiquark kerset of ladder kernelK inserted in the direct contributioisee

nel, K, in the ladder truncation, E¢26). Fig. 6 and Ref[10] for additional details
This scattering amplitude satisfies the following DSE in  Then using the notation introduced in the previous section
the ladder truncation: yields them-7r scattering amplitudei\

076008-5
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_—s+2m2
A2=| 72—, (34)

m

for the =2 amplitude, respectively. This reduces to the
Weinberg limit at thresholds=4m?)

2

FIG. 6. Amplitude for-7 scattering in rainbow-ladder trunca- Ao=1 oz =116may, (35
tion that reproduces Weinberg's result. Note thesign for the i
direct contribution due to the disconnected term in the amplitude mi
A2: —i f_2:i1677a.2, (36)
A=J J [T .(p+P3,p;P3)S(P)T (P, p—P4;Py) ]2 independent of ladder kernel details. Hejeare the S wave
kJp scattering lengths. Hence, to properly describer scatter-
X Labcdp—P, p+Pgik— P, k+Py) ing in the rainbow-ladder truncation, all possible diagrams
with one or more insertions of the ladder kertemust be
X[T . (k+ Py, k:P)SKT (k. k—P,:P,)]9¢ combined with the direct terms. Note that in the direct terms

there is implicitly an infinite number of ladders inserted
“across one BSA in a corner” and on the bare quark lines.
Thus, for a consistent calculation, the ladder kernel must be

+Up[i(wP4,p;P4>S<p>rw<p,p—Pl;Pmba
inserted, inall possible ways, without crossing, in the skel-

X LAY p—Py,p+ Py k+ Py, k—Ps) eton diagrams like the ones in Fig. 3.
_ This prescription can easily be generalized to other pro-
X[ (k+ Py, k;P,)S(K)T . (k,k—P3;P3)]9¢ cesses even if they involve a different number of external
particles. The rainbow-ladder truncation for the two- and
_f T[T (k+ Py, k:Py)S(KT (k,k—Py:Py) three-point functions(propagators and vertices or BSAs
K satisfies various symmetry constraints: pions are Goldstone

. bosons, and théAV-)WTIs are conserved. For processes

X S(k—P)I (K- P,,k—P,—P3;P3)S(k—P,—P5)  Wwith threeexternal particles, the rainbow-ladder truncation in

o combination with the impulse approximation does satisfy
XTI _(k—P,—P3,k+P1;P,)S(k+P;)] (31 consistency requirements following from current conserva-
tion (see Ref[18] for an electromagnetic applicatiprin this
. . case all possible insertions of the ladder kerfwithout
W?ere thep; are constrained by !T.IOYTI(ZEI’]'EUI’;] ConserV":lt"m'crossing are already implicitly included in the dressing of
2i_1Pi=0, and the on-shell conditiorR{=m7. Note that  the propagators and vertices. However, for processes with
there is a minus sign for the direct term because our definifour (or more external particles rainbow-ladder truncation in
tion of L includes the disconnected contributipeee Eq.  combination with impulse approximation breaks down. Such
(27)]. Using the expansion Ed23) and the relations Eqgs. processeexplicitly require including the ladder kernel in all
(24) and(28)—(30), one can show that to ord&P; the sum  possible ways in the skeleton diagrams.

of these diagrams reduces to
C. Numerical results at threshold

Utilizing the DSEs in rainbow-ladder truncation and the
= —((P1+ P,)%+ (P, + P4)2—2mi). (32 effective quark-antiquark interaction introduced in Refs.

e [14,17, we have conducted a numerical analysismofr
scattering. The ultraviolet behavior of this effective interac-

It immediately follows that ther-r scattering amplitude at tion is chosen to be that of the QCD running couplin@’);
threshold is proportionaln../f_)? and vanishes fom the ladder-rainbow truncation of the DSEs then generates the

—.0. This is the Adler zero. Hence, in the chiral limit the correct perturbative QCD behavior. In the infrared region,

sum of the ladder diagrams exactly cancels the direct terr‘we interaction Is sufficiently strong to produce a realistic
contribution value for the chiral condensate of about (240 M&\f) also

For the physical scattering amplitude all six topologiesleads to quark confinement. The model parameters, along

) i L ith the quark masses, were fitted in REf7] to reproduce
must be added, each with the appropriate combmapon he corre?:t chiral condensate,,x andf .. This mo%lel also

. . Sgives a good description of the pion and kaon electromag-
s, t, andu, the final result is netic form factors[18] and of various two-particle decay
processes of the light pseudoscalar and vector mgd@®is
2s— m;ﬁ Figure 7 shows our numerical results for both isospin
Ap=i BT (33)  scattering amplitudes at threshold as a function of the current
m quark masgthe imaginary phase has been suppressHie
corresponding pion mass and decay constant are also calcu-
for thel =0 amplitude, and lated as a function of the quark mass and the square of their

i
A_
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isospin 2 channel to this effect. The 3rd order chiral pertur-
bation theory fora, is almost identical to Weinberg’s value,
whereas there are significant corrections from 2nd and even
3rd order chiral perturbation theory to Weinbergg

In addition to chiral symmetry there is another important
correction that is implicitly included in our approach. This is
the effect from scalar bound states. In particular an idealized
o meson, which appears agjg bound state in our model, is

present and also influences the isospin zero scattering ampli-
tude.

V. FURTHER COMMENTS AND CONCLUSION

Summarizing, we find chiral symmetry preserving quark
models can indeed yield the corréet 0 andl =27-7 scat-
tering amplitudes near threshold, §2m?2)/(2if2) and
(—s+2m?)/(2if2), respectively. Further, we have rigor-

. . _ously reproduced Weinberg's low energy theorem for the
_FIG. 7. Them-m sca_tterlng amplltu_des at threshold calculated mscattering lengths. We have proved this in a manifestly co-
rainbow-ladder truncation as a function of the current quark mass\./ riant DSE-BSE roach usina the rainbow-ladder trun
For comparison, we also show the Weinberg limit, using our calcu-t."’l a. d -d ta?ﬁ)hoag tu'f gf the a (IZ '? € K ptca—
lated values fom_ andf . . ion, independent of the details of the quark-antiquark inter-

action, and also for an instantaneous Hamiltonian

ratio is plotted as well. This model calculation clearly showsformulation in the infinite interaction limit. In the former
that the scattering amplitudes indeed behave fikgf2 if ~ case this result has also been demonstrated by summing the
one includes the two complete sets of ladder diagrams i§€ries of diagrams in Fig. 6 numerically using the model of
addition to the direct term, as indicated in Fig. 6. In the chiralRefs.[17,18. Lastly, both approaches correctly produce the
limit the two sets of ladders cancel the direct contributionAdler zero which provides new and important bounds for
within the numerical accuracy. couplings to scalar mesons. _

It is interesting that the direct term alone generates a scat- /e €xpect our result to be a general feature in any quark

tering amplitude about 20 times larger than observation. Foflodel preserving both chiral symmetry and the AV-WTI.
the physical value of the degenerate d current quark HOWeVer, care is necessary to ensure that a truncation does

mass,m,=5.54 MeV at renormalization scaje=1 GeV, indeed satisfy all(chiral) symmetry constraints. For the

about 95% of the direct contribution is cancelled by indud_rainbow—ladder truncation, the crucial step is to include the

ing the ladder diagrams. For this quark mass our correspond@dder kernel irall possible waysn the skeleton diagrams of
ing scattering lengths am,=0.170 anda,= — 0.045 which the process of interest. We firmly believe this prescription is

again are in excellent agreement with Weinberg's values ofSC Necessary for consistency in other procegsgs current
a,=0.156 anda,=—0.044 (using m_=138.04 MeV and conservatiop as \_/veII as for reactions involving more than
f_=92.44 MeV). This is also in good agreement with the f0Ur external particles.

physical m-m scattering lengths,a;=0.220 and a,
=—0.0444.

It is also interesting to note that chiral perturbation theory P.B. acknowledges Goalp Marques’ assistance and en-
reproduces even more precisely the physical scatterinfightening discussions with Gastao Krein, George Rupp and
lengths[20]. This is due to pion loops, which we have not Mike Scadron. This work is supported in part by grants DOE
included, and the isospin 0 channel is more sensitive than thBE-FG02-97ER41048 and NSF INT-9807009.
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