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Chirally symmetric quark description of low energy p-p scattering

Pedro Bicudo,1 Stephen Cotanch,2 Felipe Llanes-Estrada,3 Pieter Maris,2 Emilio Ribeiro,1 and Adam Szczepaniak4

1Departamento de Fı´sica, Instituto Superior Te´cnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
2Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

3Departamento de Fı´sica Teo´rica I, Univ. Complutense de Madrid, 28040 Madrid, Spain
4Physics Department and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405-4202

~Received 27 November 2001; published 1 April 2002!

Weinberg’s theorem forp-p scattering, including the Adler zero at threshold in the chiral limit, is analyti-
cally proved for microscopic quark models that preserve chiral symmetry. Implementing Ward-Takahashi
identities, the isospin 0 and 2 scattering lengths are derived in exact agreement with Weinberg’s low energy
results. Our proof applies to alternative quark formulations including the Hamiltonian and Euclidean space
Dyson-Schwinger approaches. Finally, the thresholdp-p scattering amplitudes are calculated using the Dyson-
Schwinger equations in the rainbow-ladder truncation, confirming the formal derivation.
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I. INTRODUCTION

In the zero quark mass limit the strong interaction
chirally symmetric, exhibiting invariance under independe
rotations of left and right handed flavors. Nonvanishing,
beit small on the hadronic scale,u and d quark masses ex
plicitly break this symmetry. More importantly, howeve
chiral symmetry is also broken spontaneously by the vacu
and the corresponding Goldstone boson is the pion. Thu
is generally accepted that chiral symmetry underlines the
namics of soft pions. In particular, the low energyp-p scat-
tering lengths can be calculated using current algebra
PCAC ~partial conservation of axial vector current!. In the
seminal paper, based on these constraints, Weinberg@1# de-
duced the scattering lengths for total isospin 0 and 2 to
a0517L/4 and a252L/2, respectively, where L
5mp

2 /(8p f p
2 ) is given in terms of the pion massmp and

decay constant,f p . Further, chiral symmetry can also b
used to constrain low energy, effective theories describ
pion-hadron interactions. For example in the linears model,
chiral symmetry enforces delicate cancellations between
rect p-p interactions ands-exchange contributions to th
scattering amplitude.

Concurrently, the advent of QCD has spawned the de
opment of more fundamental, microscopic formulations w
quark degrees of freedom and low energy hadronic phen
ena have been successfully described by various constit
quark models. However, because constituent quark mo
generally do not respect chiral symmetry, the Goldstone
ture of the pion is lost and there is no fundamental differe
between the pion and, for example, ther meson. Conse-
quently, such models should not be expected to properly
scribe low energy pion scattering.

It is, however, possible to construct quark models imp
menting chiral symmetry, such as the rainbow-ladder trun
tion of the set of Dyson-Schwinger equations~DSE! and the
instantaneous Hamiltonian approach using the random p
approximation~RPA!, which preserve the pion’s Goldston
nature. For such models it is remarkable that both calcula
observables and attending mathematical relationships
erned by chiral symmetry are largely model independe
0556-2821/2002/65~7!/076008~8!/$20.00 65 0760
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even though gauge dependent non-observable constr
such as quark and gluon propagators, can be very m
sensitive. The pion mass is a quintessential example sinc
massless quarks this mass is zero, regardless of the for
the effective interactionprovided that there is spontaneou
dynamical chiral symmetry breaking (SxSB). Similarly,
p-p scattering near threshold is governed by this symme
and any model that preserves chirality should reprod
Weinberg’s scattering lengths.

The purpose of this paper is to demonstrate that fo
microscopic quark formulation with an arbitrary, but chir
symmetry preserving, quark-antiquark interaction We
berg’s results can indeed be explicitly obtained, and tha
correct description of low-energyp-p scattering emerges
The crucial step is to realize that there are important hig
order contributions top-p scattering which, in the chira
limit, must exactly cancel the impulse contribution to recov
the Adler zero. Similar effects occur in the microscop
Nambu–Jona-Lasinio model with contact interactions at
quark level @2#. This is closely related to the above me
tioned cancellation in thes model. The same results can als
be derived in models using bosonization techniques for
chiral pion fields as demonstrated in Ref.@3#.

This paper is organized into five sections. In Sec. II
utilize the Hamiltonian formulation to succinctly deriv
Weinberg’s results for the special case of an infinite inter
tion. Next, in Sec. III, we demonstrate model-independen
that p-p scattering in impulse approximation violates chir
symmetry ~does not vanish in the chiral limit! using the
axial-vector ~AV ! Ward-Takahashi identity~WTI!. Section
IV details a general proof of Weinberg’s result using t
rainbow-ladder truncation of the set of DSEs. We also p
vide a numerical solution of the DSEs further document
the agreement with Weinberg’s scattering lengths. Fina
results and conclusions are summarized in Sec. V.

II. HAMILTONIAN DESCRIPTION OF p-p SCATTERING

In this section we provide a synopsis of our key res
within the Hamiltonian framework. In Sec. II A we first ad
dress the one pion system and SxSB. Then in the following
©2002 The American Physical Society08-1
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PEDRO BICUDOet al. PHYSICAL REVIEW D 65 076008
subsection we derive Weinberg’sp-p result in the infinite
interaction limit.

A. Single pion formulation and SxSB

The Hamiltonian formalism for pions has an establish
history. For an earlier reference consult Ref.@4# along with
Refs.@5–8# for more recent applications. In the Hilbert spa
of pion Salpeter amplitudes the Hamiltonian can be
pressed as

H5s3 FF1

F2Gmp@F1,F2#s31s3FF2

F1Gmp@F2,F1#s3

~1!

with

H FF1

F2G5mps3FF1

F2G ; H FF2

F1G52mps3FF2

F1G .
~2!

The normalization is given by

E d3k@F1,F2#s3FF1

F2G51 ~3!

wheres3 is the standard third component Pauli matrix a
F1,F2 represents the pion positive, negative energy co
ponents, respectively. ForF1→F2, mp→2mp while
for F15F2, mp50.

Previous pion Hamiltonian studies@5–8# have utilized the
Bogolubov-Valatin ~BV! @or Bardeen, Cooper, Schrieffe
~BCS!# transformation approach to describe the ground s
vacuum and developed quasiparticle~rotated quark-antiquark
creation and annihilation! operators for describing the pio
in the RPA@7,8#. The RPA Hamiltonian formalism rigorousl
preserves chiral symmetry and is formally equivalent to
rainbow-ladder DSE, Bethe-Salpeter equation~BSE! ap-
proach with an instantaneous kernel provided the qu
propagator is consistent with the BCS vacuum. As deta
elsewhere@9# the pion momentum wave function can be e
pressed in terms of the BV rotation~or BCS gap! anglef(k)

F65
sin~f!

a
6aD; a5A2

3
f pAmp. ~4!

For mp50, D50 and the rest frame pion Salpeter comp
nents reduce toF65sin(f)/(0) which are degenerate an
non-normalizable.

The derivation of the above equations follows straightf
wardly from an instantaneous reduction of the pion Dys
Schwinger, Bethe-Salpeter equation which is depicted in
1. References@9–11# contain a more complete derivatio
along with applications. In this formulation the mechanis
of spontaneous chiral symmetry breaking is simple to und
stand: it corresponds to a self-consistent choice of the
mion Fock space appropriate to the quark kernel in use.
Pauli principle still permits an infinite set of Fock spac
which can be isomorphically mapped to an infinite set
functions with coordinatesf(k). Any such Fock space ca
07600
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be obtained from the trivial one by a BV transformation wi
a f(k) that is determined by solving the mass gap equati
This in turn specifies the physical Fock space. For furt
information, including the origin off, consult Refs.@5–8#.

B. p-p scattering

For p-p scattering we can repeat the steps represente
Fig. 1. This is diagrammatically summarized in Fig. 2. He
$1,2% represent the incoming pions while$3,4% denote the
outgoing particles. Both the initial and final configuratio
have two energy components,F6. Two Feynman diagrams
are drawn together with the corresponding Goldstone d
grams in order to illustrate both the essential relativistic
ture of pions~even at rest!, and the physical significance o
F6. In total there are 48 diagrams plus kinetic energy ins
tions. Notice that these diagrams closely resemble thos
Fig. 1 so that we could anticipate the model independenc
p-p scattering lengths since the map$p3p→p% respects
the structure of the pion Salpeter equation@12#.

Figure 2 clearly indicates that both quark exchangeand
quark annihilation amplitudes are necessary. Of course th
a consequence of the quark Dirac nature, however, it is
portant to note that with just quark exchange only repuls
is obtained. This is precisely the case of exotic scattering
is chiral symmetry which governs the correct combination
exchange and annihilation diagrams to yield a Goldsto
pion and, by doing so, to produce the Weinberg scatter
lengths.

We now evaluate the isospinI 50 and 2p-p T matrix,
TI , or scattering amplitudeAI5 i4pmpTI , at zero pion mo-

FIG. 1. Pion Salpeter equation. In terms of the Dirac matriceb

andaW , the projection operators for the quark propagator, with m

mentumkW , are L65(16sin(f)b6cos(f)a•k̂)/2, and denoted in
the figure by$1,2%. For an instantaneous interaction and up
integration of the loop energiesw andw8, only those components o
the quark propagators having the numeratorsL depicted in the
figure will survive. As for the denominators the integrations inw
and w8 are trivial and will yield two cluster propagators,i /„6mp

2Eq(k)2Eq̄(k)… and i /„6mp2Eq(k8)2Eq̄(k8)… respectively.
Note that eachF6 (f6 in the figure! is consistent with the nor-
malization condition, Eq.~3!, and should contain one such clust
propagator. This is the reason the propagator cuts are displaye
the figure. Two such cluster propagators are needed for the twoF’s
but only one is generated per integration loop. Therefore in
rightmost diagram, where we have only one integration loop,
have to multiply and divide by the missing cluster propagator le
ing to the factors6mp1Eq1Eq̄ appearing there.
8-2
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CHIRALLY SYMMETRIC QUARK DESCRIPTION OF LOW . . . PHYSICAL REVIEW D65 076008
mentum. Either from comparing Figs. 1 and 2 or from E
~1!, ~2!, and~3! it is clear thatTI will be proportional tomp

because H is proportional tomp . Further,TI is also inversely
proportional tof p since there arejust two extra pion ampli-
tudes when going from the Salpeter equation for one sin
pion to p-p scattering. After including all potential energ
diagrams plus kinetic insertions we have

TI5bI@F22,F12#HFF12

F22G
1cI@F1F2,F1F2#HFF1F2

F2F2G
1dI@F12,F22#HFF12

F22G . ~5!

In the above expression integration is assumed. The Ha
tonian is given by Eq.~2! and the constants, entailing colo
spin and isospin traces, are

b[ I 50,I 52]5@3/4,0#; c[0,2]5@3/4,0#; d[0,2]5@21/2,1#.
~6!

Equation~5! is especially simple to evaluate for an infi
nite interaction since sinf(k)→1. This limit always exists
because for a given class of the quark kernels~for instance
linear confinement with potentialsr ) the mass gap equatio
for f(k) can always be re-scaled as a dimensionless e
tion for f(k/As) for an arbitrary kernel strengths. In the
extremely strong limit, which also corresponds to the p
point limit, s→`, andf(k/As)→f(0)5p/2 which issuf-
ficient to obtain Weinberg’s scattering lengths. To appreci
this use Eq.~4! repeatedly with sin(f)51 to obtain

FIG. 2. Representativep-p scattering diagrams. The6 super-
scripts for pions 1, . . . ,4 represent the different energy comp
nents,F6, of each pion. In the leftmost pair of Feynman and Go
stone diagrams a possible energy parametrization~all pions at rest,
for simplicity! is displayed. 1 and 2 are the incoming pions while
and 4 are the outgoing pions. The pion energies (6mp) are also
displayed. In the Goldstone diagrams both quark and antiquark l
run from left to right. The left Goldstone diagram represents a
quark exchange between incoming pions 1 and 2 with incom
pion 2 being represented by theoutgoingnegative energy compo
nentF2, i.e., anoutgoing hole. The outgoing pion 3 is represente
by an incoming hole, with negative energy componentF2. The
Goldstone diagram on the right represents a quark-antiquark a
hilation diagram.
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E @F1,F2#s3FF1

F2G5E 4 sin~f!D51;

E @F2,F1#s3FF12

F22G5E 2 sin2~f!D/a51~2a! ~7!

and so on. It is then a textbook calculation to extract,
lowest order inmp , the p-p scattering lengths from theT
matrix, Eq. ~5!, since in the Born approximationaI
5mpTI /(4p) and we get the desired resulta[0,2]5@7/4,
21/2#L.

With this preliminary treatment we now address the mo
general derivation for an arbitrary but finite quark kern
First we demonstrate that the impulse approximation is
sufficient forp-p scattering and violates chiral symmetry.

III. IMPULSE APPROXIMATION FOR p-p
SCATTERING

In this section we evaluate the leading~box! diagrams for
p-p scattering and demonstrate that they fail to provide
correct description since they violate chiral symmetry. The
diagrams, which we call direct terms, correspond to the
pulse approximation and are illustrated in Fig. 3.

We can evaluate the direct terms model-independently
ing the AV-WTI which exactly relates the axial-vector,Gm

5 ,
and pseudoscalar,G5, vertices to the inverse of the dresse
quark propagator

2 i „PmGm
5 ~p8,p;P!22mq~m!G5~p8,p;P!…

5S21~p8!g51g5S21~p!. ~8!

Here p, p85p1P are the respective incoming, outgoin
quark momenta, andP the momentum flowing into the ver
tex. The inverse of the dressed quark propagator,S21(p),
can be expressed in terms of scalar functionsA andB:

iS21~p!5A~p2!p”2B~p2!. ~9!

For the free propagatorA51 and B5mq(m), the current
quark mass which explicitly breaks chiral symmetry. Sin
the interaction contains a diverging, but renormalizab
short-range component, this mass requires renormaliza
and depends on scalem.

-

es
i-
g

ni-

FIG. 3. Three different topologies for the direct contribution
p-p scattering. Reversing the quark and antiquark flow~reversing
the arrow! generates three other diagrams for a total of six. T
larger solid circles represent the pion-quark vertex while the sma
solid circles denote the quark propagators are dressed.
8-3
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Meson bound states can be described by a Bethe-Sal
amplitude~BSA! satisfying a homogeneous BSE

GH
ab~p8,p;P!5E

k
Kab;cd~p8,p;k,k8!

3@S~k8!GH~k8,k;P!S~k!#dc, ~10!

where *k represents*@d4k/(2p)4# and K is the quark-
antiquark scattering kernel, properly regularized for div
gent integrals. This equation only has solutions for discr
values of P2 corresponding to the bound state mass. T
lowest bound state in the pseudoscalar channel is the p
P25Mp

2 , which produces poles in bothGm
5 andG5. For the

axial-vector vertex the residue of this pole isf pPm , while
the residue of pseudoscalar vertex is labeledr P(m). Both can
be calculated from the properly normalized pion BSA a
the dressed quark propagators

Pm f p5 iZ2E
k

Tr @S~k8!Gp~k8,k;P!S~k!gmg5#,

~11!

mq~m!r P~m!52Z4mq~m!E
k

Tr@S~k8!

3Gp~k8,k;P!S~k!g5#. ~12!

The constantsZ2 andZ4 are the usual quark wave functio
and mass renormalization terms, respectively. They dep
on both renormalization and regulator scales but when c
bined with the integrals andmq(m) incorporated in the above
expressions, the final results are scale independent@13#. This
has been checked explicitly for a model having an effect
interaction that reduces to the one-loop running coupl
@14#. Finally, these residues are constrained to cancel thro
the AV-WTI

Mp
2 f p22mq~m!r P~m!50. ~13!

Even though there is no pion pole in the inverse quark pro
gator, we can still use the AV-WTI to expressGp in terms of
the inverse quark propagator. In the combined chiral a
Pm→0 limit this yields

Gp~p,p;0!5
B0~p2!

f p
g5 ~14!

where the subscript 0 indicates the chiral limit.
The evaluation of the direct terms in Fig. 3 produces

E
k

Tr@Gp~k1P1 ,k;P1!S~k!Gp~k,k2P2 ;P2!

3S~k2P2!Ḡp~k2P2 ,k2P22P3 ;P3!S~k2P22P3!

3Ḡp~k2P22P3 ,k1P1 ;P4!S~k1P1!#, ~15!

which at threshold and along with Eq.~14! reduces in the
chiral limit to
07600
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f p
4 Ek

B0
4~k!

„k2A0
2~k!1B0

2~k!…2
5” 0. ~16!

Note that this direct term result, which is exact since it fo
lows from the AV-WTI, is not zero in the chiral limit. From
Weinberg’s theorem, however, thep-p scattering amplitude
at threshold scales asMp

2 / f p
2 and therefore must vanish i

the chiral limit. Clearly the impulse approximation is insu
ficient to obtain Weinberg’s result and additional diagra
are necessary.

IV. DYSON-SCHWINGER METHOD IN THE
RAINBOW-LADDER APPROACH

The problem raised in the previous section can be
solved by utilizing a formalism which preserves chiral sym
metry. In this section we consider one such approach,
Dyson-Schwinger method in the rainbow ladder truncat
~see Ref.@15# for a review and applications!. The set of
DSEs form a hierarchy of coupled integral equations for
Green’s function of the underlying theory. For example, t
quark propagatorS(p) satisfies

iS21~p!5Z2p”2Z4mq~m!2 i E
k
g2gm

l i

2
S~k!Gn

i ~k,p!

3Dmn~k2p!, ~17!

whereGn
i (k,p) is the dressed quark-gluon vertex with gluo

color labeli 51 . . . 8 andDmn(k2p) is the gluon propaga-
tor. The constantsZ2 andZ4 follow from the renormalization
condition

iS21~p!up25m25p”2mq~m! ~18!

at the renormalization scalem. The generic DSE for a
dressed vertexGab is the inhomogeneous BSE

Gab~p8,p;P!5g inhom
ab 1E

k
Kab;cd~p8,p;k,k8!

3@S~k8!G~k8,k;P!S~k!#dc, ~19!

whereg inhom
ab is the corresponding bare vertex; for clarity, w

have explicitly included the spinor indices as roman sup
scripts, but will suppress these indices when clarity perm
Thus, the dressed axial-vector vertexGm

5 (p8,p;P) and pseu-
doscalar vertexG5(p8,p;P) satisfy an inhomogeneous BS
with inhomogeneous termsZ2gmg5 andZ4g5, respectively.

It is convenient to also define an axial vertexgA(P)

gA~P!52 i „Z2P” 22Z4mq~m!…g5. ~20!

The correspondingdressedaxial vertex

GA~p8,p;P!52 i „PmGm
5 ~p8,p;P!22mq~m!G5~p8,p;P!…,

~21!
8-4
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satisfies Eq.~19! with inhomogeneous termg inhom5gA(P).
With this vertex, we can write the AV-WTI, Eq.~8!, as

GA~p8,p;P!5S21~p8!g51g5S21~p!. ~22!

For low momentumP, small quark mass and thus sma
pion mass, we can relate this dressed axial vertexGA(P) to
the pion BSA, using an expansion in powers ofP andmq

i

2 f p
GA~p8,p;P!5Gp~p8,p;P!1O~P!1O„mq~m!….

~23!

Furthermore, from Eqs.~11!–~13! it follows that for any
four-momentumQ flowing into the diagram we have

E
k

Tr@S~k1P!Gp~k1P,k;P!S~k!gA~Q!#

5~P•Q1Mp
2 ! f p . ~24!

Note that the left-hand side~LHS! in this last equation in-
volves thebare axial vertex, not the dressed vertex.

A. Rainbow-ladder truncation

Provided that the regularization scheme is translation
invariant, the rainbow truncation for the quark DSE

iS21~p!5Z2p”2Z4mq~m!2 i E
k
gm

l i

2
S~k!

3gn

l i

2
g2Dmn~k2p!, ~25!

combined with the ladder truncation for the quark-antiqu
scattering kernel

Kab;cd~p8,p;k,k8!5gm
ad l i

2
gn

cb l i

2
g2Dmn~p2k!, ~26!

is consistent with the Ward identities@14,16#. To discuss
p-p scattering, we introduce the unamputated qua
antiquark scattering amplitude,L, in the ladder truncation
which is pictorially represented in Fig. 4. Here the solid ho
zontal lines represent quark~antiquark! propagation and the
coiled vertical lines correspond to the quark-antiquark k
nel, K, in the ladder truncation, Eq.~26!.

This scattering amplitude satisfies the following DSE
the ladder truncation:

FIG. 4. The unamputated quark-antiquark scattering amplit
L in the ladder truncation. The quark propagators are dressed
for simplicity the solid circles indicating the dressing are omitted
this and subsequent diagrams.
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Lab;cd~p8,p;k,k8!5Sad~p!Scb~k!d4~p2k!

2E
q
Saa8~p8!gm

a8d8

3Ld8c8;cd~q8,q;k,k8!gn
c8b8

3Sb8b~p!g2Dmn~p2q!. ~27!

Using the AV-WTI, the ladder truncated amplitudes co
nected by the vertexGA , depicted in Fig. 5, can be reduce
to ~see Ref.@11# for a similar reduction of the vector vertex!

E
q
Lab;b8a8~p81Q,p;q,q81Q!GA

a8d8~q81Q,q8;Q!

3Ld8c8;cd~q8,q;k,k8!~S21!c8b8~q!

5g5
aa8La8b;cd~p8,p;k,k8!

1Lab;cd8~p81Q,p;k,k8!g5
d8d . ~28!

Related, it can also be shown in the combined rainbo
ladder truncation that

E
k
Lab;cd~p1P1 ,p2P2 ;k2P2 ,k1P1!

3@GA~k1P1 ,k;P1!S~k!GA~k,k2P2 ;P2!#dc

5@g5S~p!GA~p,p2P2 ;P2!S~p2P2!#ab

1E
k
Lab;cd~p1P1 ,p2P2 ;k2P2 ,k1P1!

3@g5gA~P2!#dc ~29!

and, similarly, for on-shell pions

E
k
Lab;cd~p1P1 ,p2P2 ;k2P2 ,k1P1!

3@GA~k1P1 ,k;P1!S~k!Gp~k,k2P2 ;P2!#dc

5@g5S~p!Gp~p,p2P2 ;P2!S~p2P2!#ab. ~30!

B. p-p scattering in rainbow-ladder truncation

We now utilize Eq.~23! to evaluate thep-p scattering
amplitude near threshold. Since there are six topologic
different ways to attach the external pion legs to the dir
term, we first calculate the contribution from one of the
topologies by adding two sets of diagrams with a compl
set of ladder kernelsK inserted in the direct contribution~see
Fig. 6 and Ref.@10# for additional details!.

Then using the notation introduced in the previous sect
yields thep-p scattering amplitude,A

e
ut

FIG. 5. Reduction of connected ladder amplitudes.
8-5
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A5E
k
E

p
@Ḡp~p1P3 ,p;P3!S~p!Ḡp~p,p2P4 ;P4!#ba

3Lab;cd~p2P4 ,p1P3 ;k2P2 ,k1P1!

3@Gp~k1P1 ,k;P1!S~k!Gp~k,k2P2 ;P2!#dc

1E
k
E

p
@Ḡp~p1P4 ,p;P4!S~p!Gp~p,p2P1 ;P1!#ba

3Lab;cd~p2P1 ,p1P4 ;k1P2 ,k2P3!

3@Gp~k1P2 ,k;P2!S~k!Ḡp~k,k2P3 ;P3!#dc

2E
k

Tr@Gp~k1P1 ,k;P1!S~k!Gp~k,k2P2 ;P2!

3S~k2P2!Ḡp~k2P2 ,k2P22P3 ;P3!S~k2P22P3!

3Ḡp~k2P22P3 ,k1P1 ;P4!S~k1P1!# ~31!

where thePi are constrained by momentum conservatio
( i 51

4 Pi50, and the on-shell condition,Pi
25mp

2 . Note that
there is a minus sign for the direct term because our de
tion of L includes the disconnected contribution@see Eq.
~27!#. Using the expansion Eq.~23! and the relations Eqs
~24! and~28!–~30!, one can show that to orderPi Pj the sum
of these diagrams reduces to

A5
i

4 f p
2
„~P11P2!21~P11P4!222mp

2
…. ~32!

It immediately follows that thep-p scattering amplitude a
threshold is proportional (mp / f p)2 and vanishes formp

→0. This is the Adler zero. Hence, in the chiral limit th
sum of the ladder diagrams exactly cancels the direct t
contribution.

For the physical scattering amplitude all six topolog
must be added, each with the appropriate combination
isospin factors. In terms of the usual Mandelstam variab
s, t, andu, the final result is

A05 i
2s2mp

2

2 f p
2 , ~33!

for the I 50 amplitude, and

FIG. 6. Amplitude forp-p scattering in rainbow-ladder trunca
tion that reproduces Weinberg’s result. Note the2 sign for the
direct contribution due to the disconnected term in the amplitudL.
07600
,

i-

m

of
s,

A25 i
2s12mp

2

2 f p
2 , ~34!

for the I 52 amplitude, respectively. This reduces to t
Weinberg limit at threshold (s54mp

2 )

A05 i
7mp

2

2 f p
2 5 i16pa0 , ~35!

A252 i
mp

2

f p
2 5 i16pa2 , ~36!

independent of ladder kernel details. HereaI are the S wave
scattering lengths. Hence, to properly describep-p scatter-
ing in the rainbow-ladder truncation, all possible diagra
with one or more insertions of the ladder kernelK must be
combined with the direct terms. Note that in the direct ter
there is implicitly an infinite number of ladders inserte
‘‘across one BSA in a corner’’ and on the bare quark line
Thus, for a consistent calculation, the ladder kernel mus
inserted, inall possible ways, without crossing, in the ske
eton diagrams like the ones in Fig. 3.

This prescription can easily be generalized to other p
cesses even if they involve a different number of exter
particles. The rainbow-ladder truncation for the two- a
three-point functions~propagators and vertices or BSAs!,
satisfies various symmetry constraints: pions are Goldst
bosons, and the~AV- !WTIs are conserved. For process
with threeexternal particles, the rainbow-ladder truncation
combination with the impulse approximation does sati
consistency requirements following from current conser
tion ~see Ref.@18# for an electromagnetic application!. In this
case all possible insertions of the ladder kernel~without
crossing! are already implicitly included in the dressing o
the propagators and vertices. However, for processes
four ~or more! external particles rainbow-ladder truncation
combination with impulse approximation breaks down. Su
processesexplicitly require including the ladder kernel in a
possible ways in the skeleton diagrams.

C. Numerical results at threshold

Utilizing the DSEs in rainbow-ladder truncation and th
effective quark-antiquark interaction introduced in Re
@14,17#, we have conducted a numerical analysis ofp-p
scattering. The ultraviolet behavior of this effective intera
tion is chosen to be that of the QCD running couplinga(q2);
the ladder-rainbow truncation of the DSEs then generates
correct perturbative QCD behavior. In the infrared regio
the interaction is sufficiently strong to produce a realis
value for the chiral condensate of about (240 MeV)3; it also
leads to quark confinement. The model parameters, a
with the quark masses, were fitted in Ref.@17# to reproduce
the correct chiral condensate,mp/K and f p . This model also
gives a good description of the pion and kaon electrom
netic form factors@18# and of various two-particle deca
processes of the light pseudoscalar and vector mesons@19#.

Figure 7 shows our numerical results for both isosp
scattering amplitudes at threshold as a function of the cur
quark mass~the imaginary phase has been suppressed!. The
corresponding pion mass and decay constant are also c
lated as a function of the quark mass and the square of t
8-6
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ratio is plotted as well. This model calculation clearly sho
that the scattering amplitudes indeed behave likemp

2 / f p
2 if

one includes the two complete sets of ladder diagram
addition to the direct term, as indicated in Fig. 6. In the chi
limit the two sets of ladders cancel the direct contributi
within the numerical accuracy.

It is interesting that the direct term alone generates a s
tering amplitude about 20 times larger than observation.
the physical value of the degenerateu, d current quark
mass,mq55.54 MeV at renormalization scalem51 GeV,
about 95% of the direct contribution is cancelled by inclu
ing the ladder diagrams. For this quark mass our correspo
ing scattering lengths area050.170 anda2520.045 which
again are in excellent agreement with Weinberg’s values
a050.156 anda2520.044 ~using mp5138.04 MeV and
f p592.44 MeV). This is also in good agreement with t
physical p-p scattering lengths, a050.220 and a2
520.0444.

It is also interesting to note that chiral perturbation theo
reproduces even more precisely the physical scatte
lengths@20#. This is due to pion loops, which we have n
included, and the isospin 0 channel is more sensitive than

FIG. 7. Thep-p scattering amplitudes at threshold calculated
rainbow-ladder truncation as a function of the current quark m
For comparison, we also show the Weinberg limit, using our ca
lated values formp and f p .
tt.

a,

s
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isospin 2 channel to this effect. The 3rd order chiral pert
bation theory fora2 is almost identical to Weinberg’s value
whereas there are significant corrections from 2nd and e
3rd order chiral perturbation theory to Weinberg’sa0.

In addition to chiral symmetry there is another importa
correction that is implicitly included in our approach. This
the effect from scalar bound states. In particular an ideali
s meson, which appears as aqq̄ bound state in our model, is
present and also influences the isospin zero scattering am
tude.

V. FURTHER COMMENTS AND CONCLUSION

Summarizing, we find chiral symmetry preserving qua
models can indeed yield the correctI 50 andI 52p-p scat-
tering amplitudes near threshold, (2s2mp

2 )/(2i f p
2 ) and

(2s12mp
2 )/(2i f p

2 ), respectively. Further, we have rigo
ously reproduced Weinberg’s low energy theorem for
scattering lengths. We have proved this in a manifestly
variant DSE-BSE approach using the rainbow-ladder trun
tion, independent of the details of the quark-antiquark int
action, and also for an instantaneous Hamilton
formulation in the infinite interaction limit. In the forme
case this result has also been demonstrated by summin
series of diagrams in Fig. 6 numerically using the model
Refs.@17,18#. Lastly, both approaches correctly produce t
Adler zero which provides new and important bounds
couplings to scalar mesons.

We expect our result to be a general feature in any qu
model preserving both chiral symmetry and the AV-WT
However, care is necessary to ensure that a truncation
indeed satisfy all~chiral! symmetry constraints. For th
rainbow-ladder truncation, the crucial step is to include
ladder kernel inall possible waysin the skeleton diagrams o
the process of interest. We firmly believe this prescription
also necessary for consistency in other processes~e.g. current
conservation!, as well as for reactions involving more tha
four external particles.
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