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Anomalous neutrino interaction, muon g—2, and atomic parity nonconservation
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We propose a simple unified description of two recent precision measurements which suggests new physics
beyond the standard model of particle interactions, i.e., the deviation &f,sin deep inelastic neutrino-
nucleon scattering and that of the anomalous magnetic moment of the muon. Our proposal is also consistent
with a third precision measurement, i.e., that of parity nonconservation in atomic cesium, which agrees with the
standard model.
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The minimal standard modéBM) of particle interactions a small deviation is to be expected. This small deviation
is consistent with all present experimental data with only a(corresponding to a mixing angle of order ) turns out to
few possible exceptions. One such exception is a recent mebe just what is needed to explain the NuTeV result, as shown
surement 1] of the electroweak parameter ik, from v, below.

and v, interactions with nucleons, which claimed a three- ~ The Higgs sector of our model consists of three doublets:
standard-deviation departure from the SM prediction. An-®=(¢",¢% with charge 0 andn;,=(7y,,77,) with
other is the measuremej#t] of the anomalous magnetic mo- charge* 1 underU(1)x. The mass matrix spanningandZ
ment of the muon, which originally claimed a value higheris then given by

than the SM prediction by 2.6 standard deviatif®k but is s 2 o s

now revised down to only 1 after a theoretical sign error , | 29x(vitv) Ox9z(v1i—v3)

has been correctejdt]. A third important constraint comes X2 gx07(02—v2)  (932)(v3+vi+uvd)| 2
from the measuremeni5] of parity nonconservation in

atomic cesium, which was thought to be in disagreemenjyhere vo=(¢°% and v2,=(7ly with vZ+v2+v}
v_\nth the SM, but supsequent improved theoretical callc.ula-z(z\/geF)—l_ Assuming thab,;=uv, so that theX— Z mix-
tions[6] have shown it to be in gpod_ agreement. In addltlon,ing is small, we then have

the phenomena of neutrino oscillations are now well estab-

lished [7,8], which suggests strongly that neutrinos have 1

mass and mix with one another. M2~ §9§(US+ 2v}), Mi=4gjs, 3

In this paper, we propose a simple unified description of
all the above effects by extending the SM to include theyith the X—Z mixing angle given by
gauge symmetry ,—L . [9]. The relevance of this symmetry
to the muong—2 value and neutrino mass has been dis- _ Ix9x(vZ—v3)
cussed by us in a previous papé0n,11]. Here we focus on sin f= MZ_M ‘ (4)
how it can also explain the NuTeV resylt] and its other X z
possible experimental consequences. ) — ) )

Our model assumes the anomaly-free gauge symmetry The effectiver,, andv,, interactions with quz_;\rks have the_
U(1)x with gauge bosoiX which couples to ¢, ). , sr Same structurg a32 the SM, but the effective strength is
with charge+1 and to (,,7),_, 7 with charge— 1, but not ~ changed fromgz/My to
to any other fermion. This means that it has the contribution

,[cos6 sirPo _ 1 1
2m2 07 M% +|\/|_)2( —29xgzsm0c030 M_g—M_)Z(
Aoy, =20 M
12w My 9z [, 29x(MZz | _
=—Sl1+—=| —5—1]sing
. . Mzl 9z | Mk
to the muoianomalous magnetic moment. It also contributes )
to v, and v, interactions, but sinc& does not couple to _9 ©)
quarks, the NuTeV resuli] is only affected ifX mixes with M%p"'
the Z boson of the SM. This also applies to atomic parity
nonconservation. Note that the factor of 2 in the sthterm comes from the fact

In our previous pap€r 0], we assumed for simplicity that thatX couples tov,, with strength 1 whereas couples tov,,
X—2Z mixing is zero by the imposition of an interchange with strength 1/2 €15).
symmetry in the Higgs sector, but we also mention that this In the NuTeV analysis, ip,=1 is assumed, then ity
symmetry cannot be maintained for the entire theory, so that+0.2277:0.0013+ 0.0009, which deviates from the SM pre-
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other hand, if a simultaneous fit to both), and sif6, is "l owerim

made, we obtain 2l

diction of 0.2227-0.00037 by approximately @ On the T ' ' T Zdecay ——

p,=0.9983-0.0040, siRf,,=0.22650.0031, (6) L

with a correlation coefficient of 0.85 between the two param- .|
eters. This then suggests that one but not both of them ma#
be consistent with SM expectations. Here we choose to con os}
sider the deviation of the NuTeV result as being dug fo

The NuTeV analysis also makes a two-parameter fit in  °4f
terms of the isoscalar combinations of the effective neutral-
current quark couplings, resulting in

(g )2 0.3005+0.0014, 0 72 100 178 200 300

My (GeV)
(ggﬁ)2=0_0310t0_0011, (7) FIG. 1. The predicted lower limit of th& boson coupling
shown along with the LEP | upper limits fro@i— u* u~X decay
with a negligibly small correlation coefficient, whereas theand the universality relation between the-e*e™ andu* ™ par-
SM predictions are tial widths. TheX mass ranges of interest to the NuTeV anomaly are
Mx=60—72 GeV orMy>178 GeV.

(9f"3y=0.3042, (gg"3y=0.0301. )
1 1
Now if we take for example,=0.9962, then the above two v, gV=§+2 9x sing, ga= —+2 I )smﬁ
values becomegf™?=0. 3019 and ¢M2=0.0299, placing 9z z (14)
them both within I of the experimental measurements.
In atomic parity nonconservation, becauXedoes not Precision measurements & couplings at the CERN
couple to electrons, we have e"e” LEP I give[12]
M2 £=—0.0359-0.0033, gy=—0.0366+0.0014,
pe=COS 0+ Sin2¢9( M—ﬁ) =1 (9 v I (15)
X

where the smaller error ogy, is due to the use of polar-

to a very good approximation. Thus there should be no de
yd iy ization along with the forward-backward asymmetry. Thus

viation from the SM, in agreement with experiment.

From Eq.(5), we obtain 97— gt=4(gy/gz)sin 6= —0.0007=0.0036, (16)
. 9z |[_ MX adding the t in quadrature. Consid
—(p —1| 22 ' 10 g the two errors in quadrature. Consider now EG)
sino=(py. )( )( M2 Mz) (10" Lith the more conservative choice

which is of order 10° for p,=0.9962. This will affect pre- p,=0.9976 (17)
cision data at th& resonance in the following way. First,the o
observed resonance is of course the physicabson which ~ Which is within 1.6r of the NuTeV measurement og{
has a smalX component. However, sincédoes not couple Comparing it to Eq(16), we then obtain the following @
to electrons, the production &fis only suppressed by cts ~ bounds onMy:

which is indistinguishable from 1. The decay &fto most
fermions is also unaffected because the suppression factor is Mx<72 GeV or Mx>178 GeV. (18)

agal? Just CO%H'_ The  exceptions  are Z Alower bound orMy as a function ofjy is also available
—u' vy, 7 7 vow,. Their effective couplings are  from LEP | data orz decay into the four-muon final state via
Z—u"u X [10]. For example, if gx=0.2, then My

1 Ox 1 .
: =—— =__ >58 GeV. Furthermore, Eq3) requires
W Oy 2+2$|r12¢9w 2(92 sing, ga >
(11) gzM
gX> ZZM X' (19)

1 1 z

v, =-=2 9x siné ——2 Ix siné,
wo Qv 2 gz v 9a= 5 In Fig. 1, we show the above lower limit @iy as well as the

(12 20 upper limits on gx as functions of My from Z

—u X decay and the difference of the—e*e™ and

Ox )sme __} Z—u"u~ partial widths as the result of th¥ radiative

gz 9a=" 3 contribution. Details are provided in RéfL0]. The Z decay
(13)  limit essentially rules ouM w<<60 GeV. The analogous pro-

1
T Gu= 5 +2 Sirf Oy + 2
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cese"e” —u’ u~ X at LEP Il does not improve this bound, for the entire theory. If we try to extend this to the gauge
as already showfil0]. Thus we conclude thatly between sector, theru« 7 is implied. Hencem,# m_ in the Yukawa
60 and 72 GeV is still allowed, but perhap®ly  sector would break this symmetry. However, the size of this
>178 GeV is more likely. breaking is only of orderrt2—m2)/v§, which is smaller
Going back to Eq(1) for the muong—2 discrepancy, we than what we require for sifA In other wordsX—Z mixing
note that there is a theoretickdwer bound[10] of 1.56  of order 10 % is a very reasonable value.
% 10" % in this model, whereas the correcte range of the As shown in Ref[10], the charged-lepton mass matrix is
experimental discrepancy is (2:4.6)x 10 °. This is en-  diagonal becausg — = mixing is forbidden by the absence
tirely consistent with the lowM x solution, while in the case of a Higgs doublet withU(1)x charge of+2 or —2, and
of the highMy solution, the maximum deviation we get is e— u ande— 7 mixings are forbidden by &, discrete sym-
2.7X10°°. In either case, th& boson signal will be too metry. Hence the interaction of thé boson with charged
small to be observable at the Fermilab Tevatron, but will beeptons is diagonal with strength-91,— 1, respectively, for
clearly visible at the CERN Large Hadron ColliddrHC) e, u, 7. Therefore, whether or not—Z mixing occurs, there
[10] via the associated production processag(dg) are no flavor-changing neutral currents at tree level in this
— uuX and ud(du)— wrX. At a future muon colliderx ~ model. _ o
would be copiously produced, especially if it turns out to be M conclusion, we have shown in this paper how the gauge
light. symmetryL ,—L, (as_reallzed specifically by us in a previ-
To obtain naturally small Majorana neutrino masses, we?US Papei10]) explains naturally the recent NuTeV result
may add one heavy neutral fermion singhés with U(1)y 1] on the possible deviation from the standard mode# jn
charge 0 as in our previous paper, but then an extra chargéhd v,, scattering with nucleons. Our proposal also explains
scalar bosory™ with charge+1 is needed there to get a the possible discrepancy in the recent measuref2¢of the
second neutrino mass term, i.e.p ., radiatively. A possible anomalous magnetic moment of the muon. It further explains
alternative is to add twbdlg's. One is assumed to couple only Why there is no deviation from the sta}ndard mo.del in atomic
to a linear combination of 1(“772—,%7/;) and (v, 7’ parit_y _nonconservatiofs]. Our model is constrained by the
—7.5}), and the other tok.¢°— e, ¢*) as well. Using the precision measurements &f-u*u” andZ— 7" 7", from

canonical seesaw mechanigag], this structure allows for Which we predict that the new gauge bos¥ris likely to
the appearance of two massive neutrinos: one is predomfl2ve @ mass between 60 and 72 GeV, or be heavier than 178

nantly a mixture ofv, and v, the other is a linear combi- GeV. As such, our model will be verifiable experimentally in
" T

nation of v, and the orthogonab,— v, mixture. This may the future at the LHC.

then lead to a consistent pattern of neutrino masses and mix-
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