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Noncompact gauge fields on a lattice: SU„n… theories
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Recently, a noncompact regularization of the SU~2! gauge theory on a lattice has been investigated numeri-
cally. The results have been interpreted as an indication that the physical volume is larger than in the Wilson
theory with the same number of sites. In its original formulation the noncompact regularization is directly
applicable to U(n) theories for anyn but to SU(n) theories forn52 only. In this paper we extend it to SU(n)
for any n and investigate some of its properties.
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I. INTRODUCTION

One of the present problems of lattice gauge theorie
how to increase the physical volume where the numer
simulations are performed. The physical size of the lattic
indeed a major limitation in the study of hadronic structu
functions @1# and light hadron spectroscopy@2#, and in the
evaluation of the ratioe8/e @3#.

Recently, the size of the physical volume was investiga
in a noncompact regularization and compared to that in
Wilson regularization for the gauge group SU~2! @4#. The
comparison was made by determining in the two cases~with
lattices of the same number of sites! the physical value of the
lattice spacing in regions of the scaling window with t
same physical properties. The authors concluded that
noncompact regularization provides a larger volume. It the
fore appears interesting to repeat the simulation for
physically relevant SU~3! theory, but in its original formula-
tion this regularization is directly applicable to U(n) theories
for any n but to SU(n) theories forn52 only. It is the
purpose of the present paper to extend it to SU(n) for anyn
and to investigate some of its properties.

As is well known, a formal discretization of gauge the
ries breaks gauge invariance. To avoid this inconvenie
Wilson assumed@5# as dynamical variables elements of t
gauge group instead of the gauge fields that exist in
group algebra. In this way one gets a theory with an ex
symmetry which has the desired formal continuum lim
This theory is said to be compact because the dynam
variables are compact.

The success of Wilson’s regularization is by now c
ebrated in textbooks. But one might wonder whether its
act lattice symmetry can also be realized without compa
fying the variables, and if this might have some advanta
with respect to specific issues, reducing the artifacts of
lattice. In addition to the possibility of having larger vo
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umes, the importance of noncompact gauge fields, espec
in their coupling with matter fields, has been advocated
the investigation of a possible fixed point of QED at fini
coupling @6#. Moreover, perturbative calculations should
easier since one does not have to expand the link variable
the Wilson theory in terms of the gauge fields. Perturbat
calculations are at least necessary to make contact with
continuum formulation, but other applications like the stu
of renormalons should also be mentioned@7#. Finally, in nu-
merical simulations one might expect a faster approach to
scaling, the more so the more important is the summation
the tadpoles@8# generated by the expansion of the link va
ables.

If one defines the covariant derivative in close analogy
the continuum as an ordinary discrete derivative plus
appropriate element of the algebra of the group, the lat
symmetry is broken, but it can be maintained by introduc
compensating auxiliary fields which decouple in the co
tinuum limit @9,10#. Such a regularization has been studi
exhaustively in the case of SU~2!. Specifically, the renormal-
ization group parameter has been evaluated, and the pe
bative properties have been shown to agree with Lu¨scher’s
calculation in Wilson regularization@11,12#. Moreover,
Monte Carlo simulations@13,4# gave results compatible with
Wilson’s theory; in particular, they reproduced the corre
value of the string tension, thus proving confinement w
such a regularization@13#. What makes the issue worth fur
ther study is the conclusion by the authors of@4# that the
physical volume is larger than in the Wilson theory with t
same number of sites. This is what we expect heuristic
for a regularization closer to the continuum.

In the original formulation of this noncompact regulariz
tion, with the exception of the casen52, invariance with
respect to SU(n) implies invariance with respect to U(n).
The aim of this paper is to construct a potential that bre
the U(n) invariance down to SU(n) and to investigate some
of its properties. For simplicity, explicit formulas will be
given for n53, but the generalization is obvious. The co
pling to matter fields is also obvious and will therefore not
discussed.
©2002 The American Physical Society09-1
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In Sec. II we report, for the convenience of the reader,
regularization for U(n). In Sec. III we show how to construc
a SU(n) invariant theory. In Secs. IV and V we derive th
Ward identities and the formulation in a background gau
which might be useful in perturbative calculations. In t
Appendix we report the explicit expression for the U~3!
breaking potential.

II. THE NONCOMPACT REGULARIZATION FOR U „3…

We first consider the regularization of U(n) gauge theo-
ries. For n51 we get a truly noncompact QED, name
noncompact also in the coupling with the matter fields.

We want to construct a covariant derivativeDm which
transforms according to

Dm8 ~x!5g~x!Dm~x!g†~x1m!, ~1!

wheng(x) is an element of U(n). A simple discretization of
the continuum would give

Dm5¹m1 i ~xm11Am
a Ta!, ~2!

where¹m is the ordinary right discrete derivative, andxm and
Am

a are the Abelian and non-Abelian gauge fields, resp
tively. We adopt for the generators of SU~3! in the funda-
mental representation the normalizations1

$Ta ,Tb%5
4

3
dab112dab

c Tc , @Ta ,Tb#52i f ab
c Tc . ~3!

As is well known, with such a definition of the covaria
derivative it is impossible to satisfy the transformation ru
of Eq. ~1!. The way out that we reconsider here is based
the use of auxiliary compensating fields. It turns out that
lattice covariant derivative transforms in the right way if
acts on a fieldc in the fundamental representation accordi
to

~Dmc!~x!5Dm~x!c~x1m!2
1

a
c~x!, ~4!

whereDm has the following form:

Dm~x!5F1

a
2sm~x!1 ixm~x!G11@ iAm

a 2am
a ~x!#Ta . ~5!

In the above equationa is the lattice spacing, andsm andam
are the additional fields necessary to enforce the lattice ga
invariance. With a little abuse of language we will also c
Dm a covariant derivative. The action of U~3! on the fields,
for g(x).12 iTaua(x)2 i 1u0(x), is

1These normalizations are slightly different from those used
@10#.
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„Am
a ~x!…85Am

a ~x!1Dmua~x!12 f bc
a ub~x!Am

c ~x!

2asm~x!Dmua~x!2a fbc
a Am

b ~x!Dmuc~x!

2adbc
a am

b ~x!Dmuc~x!2aam
a ~x!Dmu0~x!,

„am
a ~x!…85am

a ~x!12 f bc
a ub~x!am

c ~x!

2a fbc
a am

b ~x!Dmuc~x!1axm~x!Dmua~x!

1adbc
a Am

b ~x!Dmuc~x!1aAm
a ~x!Dmu0~x!,

~6!

„xm~x!…85xm~x!1Dmu0~x!2
2

3
aam

a ~x!Dmua~x!

2asm~x!Dmu0~x!,

„sm~x!…85sm~x!1
2

3
aAm

a ~x!Dmua~x!

1axm~x!Dmu0~x!.

Since all the fields are mixed with one another by the ga
transformations, we cannot say at this point which are
physical fields. They are selected by the action as we will
by studying the Ward identities.

A lattice action invariant under the above transformatio
is

LY M~x!5
1

4
b Tr Fmn

1 Fmn , ~7!

whereFmn is the stress tensor

Fmn~x!5Dm~x!Dn~x1m!2Dn~x!Dm~x1n!. ~8!

We notice that in such a formulation the measure in the p
tition function is flat.

In the formal continuum limit the fieldsm becomes in-
variant and decouples together witham , so that these seem
to be the auxiliary fields. But the situation can be different
the quantum level. To control the decoupling of the redu
dant fields in the presence of quantum effects we use the
that in a noncompact regularization, as well asLY M , there
are other local invariants, which can be used to construc
appropriate potential and to give divergent masses to
fields that must stay decoupled. One such potential is

n
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L15b1(
m

TrFDm
† ~x!Dm~x!2

1

a2G 2

5b1(
m

H 12

a2
sm

2 ~x!1
8

a2
am

a ~x!am
a ~x!2

12

a
sm~x!@sm

2 ~x!1xm
2 ~x!#2

8

a
@3sm~x!am

a ~x!am
a ~x!12sm~x!Am

a ~x!Am
a ~x!

12xm~x!Am
a ~x!am

a ~x!#13@sm
2 ~x!1xm

2 ~x!#21
4

3
@Am

2 ~x!1am
2 ~x!#214Am

a ~x!Am
a ~x!@sm

2 ~x!13xm
2 ~x!#

14am
a ~x!am

a ~x!@3sm
2 ~x!1xm

2 ~x!#116sm~x!xm~x!Am
a ~x!am

a ~x!18dbc
a F @Am

a ~x!Am
b ~x!1am

a ~x!am
b ~x!#S sm~x!am

c ~x!

1xm~x!Am
c ~x!2

1

a
am

c ~x! D G18 f ab
h f cd

h Am
a ~x!am

b ~x!Am
c ~x!am

d ~x!12dab
h dcd

h @Am
a ~x!Am

b ~x!Am
c ~x!Am

d ~x!

1am
a ~x!am

b ~x!am
c ~x!am

d ~x!12Am
a ~x!Am

b ~x!am
c ~x!am

d ~x!#18dab
h f cd

h Am
a ~x!am

b ~x!@Am
c ~x!Am

d ~x!1am
c ~x!am

d ~x!#J . ~9!
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We see thatL1 provides the desired divergent masses to
auxiliary fields in the trivial vacuum. A more general anal
sis of the mass spectrum will be given in Sec. IV. There
other invariant terms, which can be used, for instance
make the propagator of some of the auxiliary fields stric
local on the lattice@11#, but we will ignore them for simplic-
ity.

The effect ofL1 can be well understood by adopting
definition of the covariant derivative where the Abelian fiel
are, in a polar representation,

Dm~x!5D̂m~x!expifm~x!, ~10!

where

D̂m5rm11@ i ~A8!m
a 2~a8!m

a #Ta . ~11!

Because ofL1, ther field acquires a nonvanishing expect
tion value ^rm&51/a. The U~3! symmetry is ‘‘spontane-
ously’’ broken, and the components offm are the Goldston
bosons.2 As we will see by studying the Ward identities, th
physical fields arefm andAm8 .

It is worth noticing that in the absence of spontaneo
symmetry breaking there is not even a discrete derivat
the term 1/a being absent in the definition ofDm . The
present definition of gauge theories on a lattice can then
regarded as a matrix model where the space-time dyna
is generated by a spontaneous breaking of the gauge sym
try.

III. THE NONCOMPACT REGULARIZATION FOR SU „n…

A derivative covariant with respect to SU(n) transforma-
tions only must in general contain all the fields of the U(n)

2Needless to say, the U~3! symmetry remains exact. While fo
^rm&50 it is realized linearly, for̂rm&Þ0 it is realized nonlinearly.
07450
e

e
to

s
e,

be
ics

e-

theory, the only difference being that both Abelian fieldssm
andxm become auxiliary. So we cannot restrict ourselves
the SU(n) symmetry by changing the covariant derivativ
and at the same time the potentialL1 does not generate
mass for thex field. Moreover, as will be confirmed in th
next section by the Ward identities, no U(n) invariant poten-
tial can generate a mass for both Abelian fields. We m
therefore explicitly break the U~3! symmetry in order to give
the would-be Goldstone bosons a mass, actually a diver
mass.

The casen52 is exceptional, because for SU~2! transfor-
mations, namely, foru050, Eqs.~6! do not mix the multiplet
Am ,sm with the multipletam ,xm . Therefore we can break
U~2! by omitting the latter fields to get a SU~2! invariant
theory. This case has already been exhaustively studied@10–
13#.

There are two terms~whose expression will be spelled ou
in the Appendix! that break the U~3! invariance of the action
explicitly:

L25b2

1

a (
m

@detDm~x!1detDm
† ~x!#, ~12!

L285b28
i

a (
m

@detDm~x!2detDm
† ~x!#.

~13!

But we can always get rid of one of them by the glob
transformation

Dm5Dm8 expiam . ~14!

For instance, we can get rid ofL28 by setting in the above
equationa5(1/3)arctan(b2 /b28). We assume this to be th
case.

We now determine the minima of the action at const
fields in the presence ofL2. We assume that the color sym
9-3
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metry is not spontaneously broken. As a consequence
colored fields cannot develop a nonvanishing expecta
value, neither can they mix with the auxiliary Abelian field
By adopting the Abelian polar representation of Eq.~10! we
minimizeL2 with respect tof̄m at fixed r̄m , and then mini-
mize the resulting action with respect tor̄m .

By noticing that

L̄25b2

2

a
r̄m

3 cos~3f̄m! ~15!

we obtain the stationarity condition

sin 3f̄m50. ~16!

Assuming b2,0, the minimum of L2 occurs at f̄m
50,2p/3,4p/3, namely, the covariant derivative at the min
mum belongs to the center of SU~3!.3

Next we require, as a normalization condition, that t
total action have one and only one minimum atr̄m51. To
achieve this result we find it necessary to add another po
tial term:

L35b3

1

a2 (
m

TrFDm
† ~x!Dm~x!2

1

a2G
5b3

1

a2 (
m

F2
6

a
sm~x!13sm

2 ~x!13xm
2 ~x!

12am
a ~x!am

a ~x!12Am
a ~x!Am

a ~x!G . ~17!

This term seems to give a mass also to all the colored fie
but it has already been shown that this is not the case
SU~2!, and the proof will be generalized in the next sectio

Taking into account that at the minimum

L̄2522
ub2u

a
r̄m

3 , ~18!

we then have, omitting some constant terms,

L̄5(
m

H 3b1S r̄m
2 2

1

a2D 2

22
ub2u

a
r̄m

3 J 1
3b3

a2
r̄m

2 . ~19!

This Lagrangian density is stationary for

r̄m
(0)50, r̄m

(6)5
1

4ab1
@ ub2u6Ab2

218b1~2b12b3!#.

~20!

3All the minima are therefore in one-to-one correspondence w
those of the Wilson theory, and the difficulty raised in Ref.@11# in
connection with this degeneracy can then be overcome as in
compact regularization.
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Since the potential diverges for divergentr, r̄ (1) is cer-
tainly a minimum. If r̄ (2),0, r50 is a maximum; ifr̄ (2)

.0, r50 is a minimum which must be discarded; therefo
in both cases we must requirer̄ (1)51/a, which givesub2u
5b3 , 4b1.b3.

If r̄ (2),0 we must further impose thatL̄(r5 r̄ (1))
,L̄(r50). This strengthens the above inequality to 3b1
.b3. In conclusion we have

ub2u5b3 , 3b1.b3 . ~21!

The masses of the auxiliary fields turn out to be

mr
25

6

a2 ~4b12b3!, mf
2 5

18

a2 b3 , ma
25

8

a2 ~2b11b3!.

~22!

In conclusion the full classical Lagrangian is

LG5LY M1L11L21L3 ~23!

and the partition function is

Z5E Dsm~x!Dxm~x!Dam~x!DAm~x!

3expH 2a4(
x

LG~x!J . ~24!

We emphasize that the integration measure is flat.

IV. WARD IDENTITIES

To determine the mass spectrum and identify the phys
fields we investigate the Ward identities.

We start with U~3! invariance and we assume that th
color symmetry is not spontaneously broken. Therefore
effective actionG must be stationary,

]G

]Am
a ~x!

5
]G

]am
a ~x!

5
]G

]xm~x!
5

]G

]sm~x!
50 ~25!

for

Am
a ~x!5am

a ~x!50, xm5x̄m , sm~x!5s̄m . ~26!

Because of gauge invariance we have

dG5(
m,x

Fdxm~x!
]G

]xm~x!
1dsm~x!

]G

]sm~x!G
1 (

a,m,x
F dAm

a ~x!
]G

]Am
a ~x!

1dam
a ~x!

]G

]am
a ~x!

G50.

~27!

Introducing the explicit expressions for the variations a
integrating by parts we obtain

h

he
9-4
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dG5(
m,x

ua~x!H 2

3
aDm

(2)Fam
a ~x!

]G

]xm~x!
2Am

a ~x!
]G

]sm~x!G2Dm
(2) ]G

]Am
a ~x!

12 f bc
a Am

b ~x!
]G

]Am
c ~x!

1aDm
(2)Fsm~x!

]G

]Am
a ~x!

2 f bc
a Am

b ~x!
]G

]Am
c ~x!

1dbc
a am

b ~x!
]G

]Am
c ~x!

G12 f bc
a am

b ~x!
]G

]am
c ~x!

1aDm
(2)F2xm~x!

]G

]am
a ~x!

2 f bc
a am

b ~x!
]G

]am
c ~x!

2dbc
a Am

b ~x!
]G

]am
c ~x!

G J 2(
m,x

u0~x!aDm
(2)H ~12asm~x!!

]G

]xm~x!
1axm~x!

]G

]sm~x!
2am

a ~x!
]G

]Am
a ~x!

1Am
a ~x!

]G

]am
a ~x!

J
50. ~28!
t
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We first assumeua50. By taking the derivative with respec
to xn and tosn we get at the minimum

~12as̄m!
]2G

]xn~y!]xm~x!
1ax̄m

]2G

]xn~y!]sm~x!
50,

~12as̄m!
]2G

]sn~y!]xm~x!
1ax̄m

]2G

]sn~y!]sm~x!
50.

~29!

Analogously, if we assumeu050 and take the derivative
with respect toAm ,am we get

~12as̄m!
]2G

]An~y!]Am~x!
1ax̄m

]2G

]An~y!]am~x!
50,

~12as̄m!
]2G

]an~y!]Am~x!
1ax̄m

]2G

]an~y!]am~x!
50.

~30!

These equations show that in general there is a combina
of the fieldsxm ,sm

xm8 ~x!5
1

a
$2sm@12asm~x!#1acmxm~x!% ~31!

and a combination of the fieldsAm ,am

Am8 ~x!52smam~x!1cmAm~x!, ~32!

with

cm5
12as̄m

@~12as̄m!21a2x̄m
2 #1/2

, sm5
ax̄m

@~12as̄m!21a2x̄m
2 #1/2

,

~33!

which are massless. These are the physical fields. The a
auxiliary fields are the orthogonal combinations

sm8 ~x!5
1

a
$12cm@12asm~x!#2asmxm~x!%,

am8 ~x!5cmam~x!1smAm~x!. ~34!
07450
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The rotation to the primed fields is obtained by multiplyin
Dm by an element of the center of SU~3!.

In SU~3! invariant theories we have only Eq.~30!, so that
a mass for both Abelian fields is no longer forbidden. In th
case both Abelian fields are auxiliary.

V. THE BACKGROUND GAUGE AND THE
BECCHI-ROUET-STORA SYMMETRY

Even though the very motivation of the lattice regulariz
tion is to perform numerical simulations, perturbative calc
lations are nevertheless needed, at least to determine
asymptotic scaling region through the comparison with c
tinuum theory. Since the background gauge is particula
suitable for such a calculation@14#, in this section we formu-
late the noncompact regularization in a background gaug

A background field can be introduced in close analo
with the continuum~see, for example,@15# and references
therein! by performing a shift of the gauge fields. We defin
a background covariant derivative, which depends solely
the background fields, and the quantum fluctuation with
spect to these fields,

Dm~x!5DB,m~x!1Qm~x!, ~35!

where

DB,m~x!5F1

a
2sB,m~x!1 ixB,m~x!G11@ iAB,m

a ~x!

2aB,m
a ~x!#Ta ,

Qm~x!5@2sQ,m~x!1 ixQ,m~x!#11@ iAQ,m
a ~x!

2aQ,m
a ~x!#Ta . ~36!

A gauge transformation of the covariant derivativeDm ,

Dm8 ~x!5@DB,m~x!1Qm~x!#8

5g~x!@DB,m~x!1Qm~x!#g†~x1m!, ~37!

can be interpreted, among others, in the two following wa
Interpretation I

„DB,m~x!…85DB,m~x!,
9-5
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„Qm~x!…85g~x!@DB,m~x!1Qm~x!#g†~x1m!2DB,m~x!.
~38!

Interpretation II

„DB,m~x!…85g~x!DB,m~x!g†~x1m!,

„Qm~x!…85g~x!Qm~x!g†~x1m!. ~39!

According to the first interpretation the background deriv
tive is invariant, while following the second interpretation
transforms as the full covariant derivative. In the second c
the quantum fluctuation undergoes a rotation like a ma
field in the adjoint representation.

The presence of the background field enables us to in
duce a gauge fixing term that breaks the symmetry with
spect to the first interpretation, while preserving the symm
try according to the second one. The resulting effect
action is a gauge invariant functional of the background fi
@15#.

To define the gauge fixed theory we follow, for examp
Ref. @17#. The fundamental fields of the quantum theory a

DB,m ,Qm~x!,c~x!,c̄~x!,b~x! ~40!

where c(x),c̄(x) are scalar Grassmann fields with, respe
tively, positive and negative unit ghost number and canon
dimension equal to 1 whileb(x) is a real scalarc-number
field with vanishing ghost number and canonical dimens
equal to 2; the gauge quantum and background fields o
ously have vanishing ghost number. The quantum Lagra
ian is renormalizable by power counting, Becchi-Rouet-St
~BRS! invariant, and with zero ghost number@16#.

We now determine the equations for a BRS transform
tion of the various fields. It is worth noticing that the BR
symmetry corresponds to the gauge symmetry broken by
gauge fixing term; therefore we determine the BRS equat
starting from those for an infinitesimal gauge transformat
according to the first interpretation which are, forg(x).1
2 iua(x)Ta ,

dDB,m~x!50,

dQm~x!52 iua~x!TaDm~x!1 iD m~x!ua~x1m!Ta .
~41!

A BRS transformation is obtained by means of thes op-
erator, whose action on the various fields is specified by
following equations:

s DB,m50,

s Qm~x!52 ic~x!Qm~x!1 iQmc~x1m!2 ic~x!DB,m~x!

1 iD B,mc~x1m!,

s c~x!52 iK ~x!, ~42!
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s c̄~x!5b~x!,

s b~x!50.

K(x) is determined so as to obtain the nilpotency of thes
operator: namely,

K~x!5c~x!c~x!. ~43!

The quantum theory is defined by the path integral

Z@DB,m~x!#5E DQm~x!Dc~x!Dc̄~x!Db~x!

3expH 2(
x,m

@LG~x!1LBRS~x!#J ~44!

where

LBRS~x!52lb Tr s$c̄~x!@G~x!2b~x!#%

52lb Tr$b~x!G~x!2b~x!b~x!%

1lb Tr$c̄~x!sG~x!%

5Lg f~x!1Lghost~x!. ~45!

The quantityG(x)5 iG0(x)11G a(x)Ta is the gauge fixing
constraint andl is a real positive parameter. We can get r
of the b(x) field with a Gaussian integration, so obtaining

Lg f~x!52
lb

2
G a~x!G a~x!. ~46!

A gauge fixing term that preserves the exact gauge symm
for transformations of the background field is

G~x!5
i

2 H(
m

@DB,m
† ~x2m!Qm~x2m!

2Qm~x!DB,m
† ~x!#2H.c.J . ~47!

Following the second interpretationG(x) varies according to

„G~x!…85g~x!G~x!g†~x!. ~48!

As a consequence the gauge fixing term is invariant un
gauge transformations of the background field and the ef
tive action is a gauge invariant functional of the latter.

VI. SUMMARY

We have reconsidered a lattice regularization of gau
theories which makes use of auxiliary fields in order to e
force exact gauge invariance with noncompact fields. T
form of the covariant derivative, forn.2, is the same for
U(n) and SU(n) theories. This means that the physical Ab
9-6
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lian field of the U(n) theory must become an additional au
iliary field in the SU(n) theory. This can be guaranteed at t
quantum level by explicitly breaking the U(n) symmetry in
such a way as to generate a divergent mass for this field.
terms of the Lagrangian that realize this condition have b
exhibited and their effect investigated. The regularization
now be used on essentially the same footing for everyn.

We have also investigated the Ward identities of the
fective action, confirming that the mass spectrum has
desired properties. Finally, we have formulated the theory
the background gauge and written the BRS identities, sh
. B
,

07450
he
n
n

f-
e
n
-

ing that a perturbative treatment can be done in close a
ogy with the continuum, avoiding the cumbersome exp
sion of the link variables.
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APPENDIX

In this Appendix we report the explicit expression forL2:
L25b2

1

a (
m

F2detDm~x!2detDm
† ~x!1

2

a3G
5b2

1

a (
m

H 6

a2
sm~x!2

6

a
@sm

2 ~x!2xm
2 ~x!#2

2

a
@Am

a ~x!Am
a ~x!2am

a ~x!am
a ~x!#12sm

3 ~x!26sm~x!xm
2 ~x!

14xm~x!Am
a ~x!am

a ~x!12sm~x!@Am
a ~x!Am

a ~x!2am
a ~x!am

a ~x!#24(
a51

8

daa
8 $2Am

8 ~x!Am
a ~x!am

a ~x!

1am
8 ~x!@Am

a ~x!Am
a ~x!2am

a ~x!am
a ~x!#%24(

a54

7

daa
3 $2Am

3 ~x!Am
a ~x!am

a ~x!1am
3 ~x!@Am

a ~x!Am
a ~x!2am

a ~x!am
a ~x!#%

28d57
1 $Am

1 ~x!@Am
5 ~x!am

7 ~x!1Am
7 ~x!am

5 ~x!#1am
1 ~x!@Am

5 ~x!Am
7 ~x!1am

5 ~x!am
7 ~x!#%28d46

1 $Am
1 ~x!@Am

4 ~x!am
6 ~x!

1Am
6 ~x!am

4 ~x!#1am
1 ~x!@Am

4 ~x!Am
6 ~x!1am

4 ~x!am
6 ~x!#%28d47

2 $Am
2 ~x!@Am

4 ~x!am
7 ~x!1Am

4 ~x!am
5 ~x!#1am

2 ~x!

3@Am
4 ~x!Am

7 ~x!1am
4 ~x!am

7 ~x!#%28d56
2 $Am

2 ~x!@Am
5 ~x!am

6 ~x!1Am
6 ~x!am

5 ~x!#1am
2 ~x!@Am

5 ~x!Am
6 ~x!

1am
5 ~x!am

6 ~x!#%J . ~A1!
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