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Recently, a noncompact regularization of the(3yauge theory on a lattice has been investigated numeri-
cally. The results have been interpreted as an indication that the physical volume is larger than in the Wilson
theory with the same number of sites. In its original formulation the noncompact regularization is directly
applicable to Ufl) theories for anyn but to SUf) theories fom=2 only. In this paper we extend it to Sk
for any n and investigate some of its properties.
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[. INTRODUCTION umes, the importance of noncompact gauge fields, especially
in their coupling with matter fields, has been advocated in
One of the present problems of lattice gauge theories ithe investigation of a possible fixed point of QED at finite
how to increase the physical volume where the numericatoupling[6]. Moreover, perturbative calculations should be
simulations are performed. The physical size of the lattice igasier since one does not have to expand the link variables of
indeed a major limitation in the study of hadronic structurethe Wilson theory in terms of the gauge fields. Perturbative
functions[1] and light hadron spectroscopg], and in the calculations are at least necessary to make contact with the
evaluation of the rati&’/e [3]. continuum formulation, but other applications like the study
Recently, the size of the physical volume was investigatedf renormalons should also be mentiorj&ll Finally, in nu-
in a noncompact regularization and compared to that in thenerical simulations one might expect a faster approach to the
Wilson regularization for the gauge group @U[4]. The  scaling, the more so the more important is the summation of
comparison was made by determining in the two caséth  the tadpole$8] generated by the expansion of the link vari-
lattices of the same number of sitélse physical value of the ables.
lattice spacing in regions of the scaling window with the If one defines the covariant derivative in close analogy to
same physical properties. The authors concluded that thine continuum as an ordinary discrete derivative plus the
noncompact regularization provides a larger volume. It thereappropriate element of the algebra of the group, the lattice
fore appears interesting to repeat the simulation for thesymmetry is broken, but it can be maintained by introducing
physically relevant S(B) theory, but in its original formula- compensating auxiliary fields which decouple in the con-
tion this regularization is directly applicable to )(theories  tinuum limit [9,10]. Such a regularization has been studied
for any n but to SU{) theories forn=2 only. It is the exhaustively in the case of $8). Specifically, the renormal-
purpose of the present paper to extend it to ®Ubr anyn  ization group parameter has been evaluated, and the pertur-
and to investigate some of its properties. bative properties have been shown to agree withcher’s
As is well known, a formal discretization of gauge theo- calculation in Wilson regularizatiof11,12. Moreover,
ries breaks gauge invariance. To avoid this inconvenienc®onte Carlo simulation§13,4] gave results compatible with
Wilson assumed5] as dynamical variables elements of the Wilson’s theory; in particular, they reproduced the correct
gauge group instead of the gauge fields that exist in th&alue of the string tension, thus proving confinement with
group algebra. In this way one gets a theory with an exacsuch a regularizatiofil3]. What makes the issue worth fur-
symmetry which has the desired formal continuum limit.ther study is the conclusion by the authors[4f that the
This theory is said to be compact because the dynamicaihysical volume is larger than in the Wilson theory with the
variables are compact. same number of sites. This is what we expect heuristically
The success of Wilson’s regularization is by now cel-for a regularization closer to the continuum.
ebrated in textbooks. But one might wonder whether its ex- In the original formulation of this noncompact regulariza-
act lattice symmetry can also be realized without compactition, with the exception of the case=2, invariance with
fying the variables, and if this might have some advantagesespect to SU{) implies invariance with respect to oJ.
with respect to specific issues, reducing the artifacts of th&@he aim of this paper is to construct a potential that breaks
lattice. In addition to the possibility of having larger vol- the U(n) invariance down to SU{) and to investigate some
of its properties. For simplicity, explicit formulas will be
given forn=3, but the generalization is obvious. The cou-
*Email address: palumbof@Inf.infn.it pling to matter fields is also obvious and will therefore not be
"Email address: roberto.scimia@Inf.infn.it discussed.
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In Sec. Il we report, for the convenience of the reader, the
regularization for Ug). In Sec. Il we show how to construct
a SU(n) invariant theory. In Secs. IV and V we derive the
Ward identities and the formulation in a background gauge,
which might be useful in perturbative calculations. In the
Appendix we report the explicit expression for thg3y
breaking potential.

II. THE NONCOMPACT REGULARIZATION FOR U (3)

We first consider the regularization of k) gauge theo-
ries. Forn=1 we get a truly noncompact QED, namely,
noncompact also in the coupling with the matter fields.

We want to construct a covariant derivati#®, which
transforms according to

D, (x)=g(X)D,(x)g"(x+ ), (1)

wheng(x) is an element of Uf). A simple discretization of
the continuum would give

D=V, +i(x, J+A Ty, 2

whereV,, is the ordinary right discrete derivative, agg and
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(A%(X) =A%(X)+ A, 0%(x) + 2f5 0P () AS (x)
—ao,(x)A,0%(x)—afd A (X)A ,0°(x)

—adi.ab(X)A,0°(x) —aad(x)A,6°(x),
(a5(X) = ad(x)+2f5.6°(x) el (X)

—aff.ab (XA, 0°(x) +ay,(X)A,6%(X)

+adi Ab(X)A, 0°(x) +aAL(x)A ,6°(x),

6

2
() =X, (¥)+4,6%x) — 332, 004,6%(X)

—ao,(X)A,6°(x),

2
(0,(x) =0,x)+ gaAZ(x)AMGa(x)

A2 are the Abelian and non-Abelian gauge fields, respec-
tively. We adopt for the generators of &) in the funda- +ay, (XA, 6%x).
mental representation the normalizatibns
Since all the fields are mixed with one another by the gauge
transformations, we cannot say at this point which are the
physical fields. They are selected by the action as we will see
by studying the Ward identities.

A lattice action invariant under the above transformations

4 .
{Ta,Tb}=§5ab]l+2dngc, [Ta, Tpl=2ifg Te. (3

As is well known, with such a definition of the covariant
derivative it is impossible to satisfy the transformation rule;
of Eq. (1). The way out that we reconsider here is based on
the use of auxiliary compensating fields. It turns out that the
lattice covariant derivative transforms in the right way if it

acts on a fieldy in the fundamental representation according

1
to ‘CYM(X):ZBTrF;VF,uVI (7)

(D h)(X) =D ,(X) h(x+ m—éwx), (4  whereF ,, is the stress tensor

whereD , has the following form:
Fu(X)=D,(X)D,(X+u)=D,(X)D,(x+v). (8

1
. H A @a
Du(x) a 700+, () [T [IA, = a),00]Ta - (8) We notice that in such a formulation the measure in the par-

tition function is flat.
In the above equatioa s the lattice spacing, and, ande, In the formal continuum limit the fieldr, becomes in-
are the additional fields necessary to enforce the lattice gaugeriant and decouples together with, , so that these seem
invariance. With a little abuse of language we will also callto be the auxiliary fields. But the situation can be different at
D, a covariant derivative. The action of(8) on the fields, the quantum level. To control the decoupling of the redun-
for g(x)=1—iT,0%(x)—i16%(x), is dant fields in the presence of quantum effects we use the fact

that in a noncompact regularization, as well &g, there

are other local invariants, which can be used to construct an

These normalizations are slightly different from those used inappropriate potential and to give divergent masses to the

[10]. fields that must stay decoupled. One such potential is
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2

/31—,312 Tr| D

1
X)D,(X)— —
a
8 a 12 2 2 8 a a a a
—BlE —o (x)+a—a ()@ (x) = — 0, (0[07,(X) + x, ()] = S [8307,(x) @ (X) @ (¥) + 20, ()AL AL(X)
a a 2 2 2 4 2 2 2 a a 2 2
+2x, 0 AL () @, (0 ]+ 3Lo, (%) + XL (¥) 7+ ZTALCO + @, () 17+ 4AL 0 AL Lo, () +3x,(X)]
+4a%(X) a3 (X[ 30%(X) + X5(X) ]+ 160,(X) x .(X) A2 (X) @ (X) + 8}, [AZ(X)AZ(X)—i—ai(x)aﬂ(x)](a#(x)ai(x)

+ 8T RGA2 (X) ab (X)AS(X) e (X) + 2dR,def A% (X)AD (X)AS (X)A%(X)

1
FXO0AL 0 = Zal(x)

+ a8 (x) b (%) a5(x) a5 (X) + 2A% ()AL (X) @, (X) a () ]+ 8dD,FLGAL () @b ()AL (X)AL(X) + a’(X) ai(x)]] ()

We see thatC, provides the desired divergent masses to theheory, the only difference being that both Abelian fietds
auxiliary fields in the trivial vacuum. A more general analy- and y,, become auxiliary. So we cannot restrict ourselves to
sis of the mass spectrum will be given in Sec. IV. There arehe SUf) symmetry by changing the covariant derivative,
other invariant terms, which can be used, for instance, t@and at the same time the potentid] does not generate a
make the propagator of some of the auxiliary fields strictymass for they field. Moreover, as will be confirmed in the
local on the latticg11], but we will ignore them for simplic-  next section by the Ward identities, no)(invariant poten-
ity. tial can generate a mass for both Abelian fields. We must
The effect of £; can be well understood by adopting a therefore explicitly break the (3) symmetry in order to give
definition of the covariant derivative where the Abelian fieldsthe would-be Goldstone bosons a mass, actually a divergent

are, in a polar representation, mass.
. The casen=2 is exceptional, because for &) transfor-
D,.(x)=D ,(x)expid,(X), (100 mations, namely, fo#,=0, Egs.(6) do not mix the multiplet
A, o, with the multipleta,, ,y,. Therefore we can break
where U(2) by omitting the latter fields to get a $2) invariant
. ) theory. This case has already been exhaustively stidizd
D,=pul+[I(A),—(a')]T,. 1D 13

There are two term@vhose expression will be spelled out
in the Appendix that break the (B) invariance of the action
explicitly:

Because ofZ,, the p field acquires a nonvanishing expecta-

tion value (p,)=1/a. The U3) symmetry is “spontane-

ously” broken, and the components ¢f, are the Goldston

bosons’. As we will see by studying the Ward identities, the 1

physical fields arep,, andAl’L /:2=,825 E [detDM(x)+detDL(x)], (12
It is worth noticing that in the absence of spontaneous #

symmetry breaking there is not even a discrete derivative,

the term 14 being absent in the definition db,. The /3§=,8§|— > [detD ,(x)— detD(x)].

present definition of gauge theories on a lattice can then be "

regarded as a matrix model where the space-time dynamics (13

is generated by a spontaneous breaking of the gauge symme-

try. But we can always get rid of one of them by the global

transformation

IIl. THE NONCOMPACT REGULARIZATION FOR SU (n) D,u: D;Lexpi a,. (14)

A derivative covariant with respect to Skl transforma-
tions only must in general contain all the fields of then))(  For instance, we can get rid @, by setting in the above
equationa= (1/3)arctanf,/B5). We assume this to be the
case.
°Needless to say, the (8) symmetry remains exact. While for We now determine the minima of the action at constant
(p,)=0 itis realized linearly, fofp ) #0 it is realized nonlinearly. ~ fields in the presence af,. We assume that the color sym-
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metry is not spontaneously broken. As a consequence thgince the potential diverges for divergemt p(+) is cer-
colored fields cannot develop a nonvanishing expectatlor[lalnly a minimum pr( )<0, p=0 is a maximum; pr

value, ne_|ther can thgy mix with the auxma}ry Abelian fields. >0, p=0 is a minimum which must be discarded:; therefore
By adopting the Abelian polar representation of Ef)) we ) . .

L . — . — . in both cases we must requipé™) = 1/a, which gives|z3,|
minimize £, with respect tog,, at fixedp,, , and then mini- e 4,3 > B..

. . . . - ’ 1
mize the resulting action with respect g, . If p(7)<0 we must further impose thaL‘(p p(+))

By noticing that
y g </:(p—0). This strengthens the above inequality t8,3
> B3. In conclusion we have

— 2, —
Lo=PB2 2P, COL3¢,) (15
B2l =B3,  3B1>Bs. (21
we obtain the stationarity condition The masses of the auxiliary fields turn out to be
sin3¢,=0. (16) 6 18 8
: Mp=—3(4B1=B3), Mi=_3Bs, M=—(2B:1+py).
Assuming $,<0, the minimum of £, occurs at ¢, (22
=0,27/3,4w/3, namely, the covariant derivative at the mini- . _ o
mum belongs to the center of &3).3 In conclusion the full classical Lagrangian is

Next we require, as a normalization condition, that the

total action have one and only one minimump_%tzl. To
achieve this result we find it necessary to add another pote

EGZEYM+£1+£2+L3 (23)

nd the partition function is

tial term:
=| D D D DA
Bt S T DD, (0 j TP P COPAL
a~ u a
1 xexp[ —a*>, LG(X)}. (24)
=Bz 2 ——o W0 +307,(x) +3x5(X) "
M

We emphasize that the integration measure is flat.

+2a,() @ () + 2A%0)AL(X) |- 17) IV. WARD IDENTITIES

To determine the mass spectrum and identify the physical
elds we investigate the Ward identities.

We start with U3) invariance and we assume that the
‘color symmetry is not spontaneously broken. Therefore the
effective actionl” must be stationary,

This term seems to give a mass also to all the colored fieId?

but it has already been shown that this is not the case fo |I

SU(2), and the proof will be generalized in the next section.
Taking into account that at the minimum

- 2@? , (18) ar ar ar ar
a’"# = = = =0 (25)
INL(X)  dad(x)  IXu(X) o ,(X)

Lo=

we then have, omitting some constant terms,
for

1

2
L=%[3,81(;i—¥ - @;3 +i235i (19) AL(X)=a2(X)=0, X,=Xu, Ou(X)=0,. (26

) . o ) Because of gauge invariance we have
This Lagrangian density is stationary for

ar
1 ST =2, | x (X)———+ 8c ,(X)
=0, =g 1Bal = BE 861251~ ). o | 0xu() 00, ()
(20) ar ar
+ 2 SR~ o+ 8 () -
2, #(x) (X)
3All the minima are therefore in one-to-one correspondence with (27

those of the Wilson theory, and the difficulty raised in Héfl] in
connection with this degeneracy can then be overcome as in the Introducing the explicit expressions for the variations and
compact regularization. integrating by parts we obtain
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T
a0 A

afy ()

2
ST=, 63(x){ =aAl™)
% ()[3 H do ,(X)
ar
+

IAL(X)

d3.ab(x) +2fpab(x)

— 3 ANX)

IA;,(X)

—dp A% (%)

(?a;(x) X

=0.

CYC (X) M

ar
] - 0°(x)aA§;)[ (1— aou(x))&x—(
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or
IAL(X)

ar _
+ aAEL )
IAL(X)

(=)
" 9AR(x)

"

0 (X)

+ 2fgcA,3(x)

+aAl’)

—f2 aP(x
202(x) bottu )aa;(x)

M T a0
7,00 N oaac0 T Taag

= Xu(X)

o

) +ayu(x)

(28)

We first assumé, = 0. By taking the derivative with respect The rotation to the primed fields is obtained by multiplying

to x, and too, we get at the minimum

- 92T L 9T 0
—ao,)—————tay,—————=0,
T X, ) X ax () de (X)
°T T 9T 0
e — a _—
37, (V) ax.()  XEGa,(y)de ,(x)
(29)

(1-ao,)

Analogously, if we assum@#°=0 and take the derivatives
with respect toA , ,a,, we get
&°T 8T

(a0 YA, 0 X GA (yaa,x) O

2°T _ 9°T B
G (Y)A,) X Ga () dan ()
(30

(1-ao,)

D, by an element of the center of &).

In SU(3) invariant theories we have only EO0), so that
a mass for both Abelian fields is no longer forbidden. In this
case both Abelian fields are auxiliary.

V. THE BACKGROUND GAUGE AND THE
BECCHI-ROUET-STORA SYMMETRY

Even though the very motivation of the lattice regulariza-
tion is to perform numerical simulations, perturbative calcu-
lations are nevertheless needed, at least to determine the
asymptotic scaling region through the comparison with con-
tinuum theory. Since the background gauge is particularly
suitable for such a calculatidii4], in this section we formu-
late the noncompact regularization in a background gauge.

A background field can be introduced in close analogy
with the continuum(see, for example[15] and references
therein by performing a shift of the gauge fields. We define
a background covariant derivative, which depends solely on
the background fields, and the quantum fluctuation with re-

These equations show that in general there is a combinati(gbect to these fields

of the fieldsy, ,o,

1

X,Q(X)=5{—Su[l—aaﬂ(X)]+aCMXM(X)} (3D

and a combination of the field%M ay,
AL (X)==s,a,(X)+C ALX), (32

with
1-ao, ax,

c,= — , S,= — ,
g [(1_ao_lu)2+a2;i]l/2 ~® [(1_aa.lu)2+a2;i]1/2
(33

which are massless. These are the physical fields. The actual

auxiliary fields are the orthogonal combinations
) 1
o, (X)= 5{1—cﬁ[l—aa#(x)]—asﬂxﬂ(x)},

a, (X)=c a,(X)+s,A,(X). (39

D, (x)=Dg ,(X)+Q,(x), (35
where

1 : :

DB,M(X) = 5 - O-B,,u,(x) + IXB,,U,(X) 1+ [IAg,;L(X)
o aaB,,u(X)]Taa
Qu(X)=[—0q,.(X) +ixq () ]1+[IAG ,(X)

— g, (0]T,. (36)

A gauge transformation of the covariant derivatde,
D, (x)=[Dg ,(X)+Q,(x)]’
=9(X)[Dp,,(x)+Q,(0)]1g"(x+x),  (37)

can be interpreted, among others, in the two following ways.
Interpretation |

(DB,/.L(X)), = DB,[.L(X)v
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(Qu(¥)' =g(¥)[Dg ,(x)+Q,(x)1g"(x+ ) - DB,p,(X()éS) s ax)=b(x),

Interpretation 1l s b(x)=0.

, + K(x) is determined so as to obtain the nilpotency of ¢he
(Dg (X)) =9(X)Dg ,(X)g"(X+ ), operator: namely,

Q) =9(x)Q,()g"(x+u). (39 K(X)=c(X)c(X). (43

According to the first interpretation the background deriva-py,4 quantum theory is defined by the path integral
tive is invariant, while following the second interpretation it

transforms as the full covariant derivative. In the second case
the quantum fluctuation undergoes a rotation like a matter _ S
field in the adjoint representation. Z[Ds,.(x)] f DR Pe()De(x)Db(X)
The presence of the background field enables us to intro-
duce a gauge fixing term that breaks the symmetry with re- ><exp[ =2 [Le(X)+Lerd )]} (44)
spect to the first interpretation, while preserving the symme- X1
try according to the second one. The resulting effective
action is a gauge invariant functional of the background fieldVere
[15].
To define the gauge fixed theory we follow, for example, LardX)=—\BTr s{?(x)[g(x) —b(x)]}
Ref.[17]. The fundamental fields of the quantum theory are
=—=ABTr{b(x)G(x)—b(x)b(x)}

Ds, Q. (X),c(X),c(X),b(x) (40) +NBTHCc(X)SG(X)}

wherec(x),c(x) are scalar Grassmann fields with, respec- = Lg1(X) + Lghos{X). (49
tively, positive and negative unit ghost number and canonic

. s 0 - . .
dimension equal to 1 whil®(x) is a real scalac-number alrhe quantityG(x) =iG"(x)1+ G*(x) T, is the gauge fixing

: rf:onstraint and\ is a real positive parameter. We can get rid

equal to 2; the gauge quantum and background fields obyvRf theb(x) field with a Gaussian integration, so obtaining
ously have vanishing ghost number. The quantum Lagrang-
ian is renormalizable by power counting, Becchi-Rouet-Stora B . a
(BRS) invariant, and with zero ghost numbfgir6]. Lgi(¥) == 5GHX)GHX). (46)
We now determine the equations for a BRS transforma-
tion of the various fields. It is worth noticing that the BRS A gauge fixing term that preserves the exact gauge symmetry
symmetry corresponds to the gauge symmetry broken by thir transformations of the background field is
gauge fixing term; therefore we determine the BRS equations
starting from those for an infinitesimal gauge transformation

according to the first interpretation which are, fp(x)=1 G(x)= I— 2 [DJEQ (X—uw)Q, (X—pu)
—i63(X) T, 2% g
5D ,(X)=0, ~Qu(0DE ,(x)]-H.c.p. (47
8Q,(X)= =1 67(X)TaD ,(X) +iD ,(X) 03(x+ ) T4 Following the second interpretati@f{(x) varies according to
- (G(x))" =9(x)G(x)g"(x). (48)

A BRS transformation is obtained by means of thep-
erator, whose action on the various fields is specified by thas a consequence the gauge fixing term is invariant under
following equations: gauge transformations of the background field and the effec-
tive action is a gauge invariant functional of the latter.
s Dg =0,
VI. SUMMARY

S Qu(X)=—ic(x)Q(X) +iQ c(x+ u) —ic(X)Dg ,(X) We have reconsidered a lattice regularization of gauge
theories which makes use of auxiliary fields in order to en-
force exact gauge invariance with noncompact fields. The
form of the covariant derivative, fon>2, is the same for

s o(x) = —iK(x), (42 U(n) and SUg) theories. This means that the physical Abe-

+iDg, ,C(X+ u),
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lian field of the Uf) theory must become an additional aux- ing that a perturbative treatment can be done in close anal-
iliary field in the SUQ) theory. This can be guaranteed at the0gy With the continuum, avoiding the cumbersome expan-
quantum level by explicitly breaking the b} symmetry in ~ sion of the link variables.
such a way as to generate a divergent mass for this field. The
terms of the Lagrangian that realize this condition have been ACKNOWLEDGMENTS
exhibited and their effect investigated. The regularization can This work was partially supported by EEC under RTN
now be used on essentially the same footing for every contract HPRN-CT-2000-00131
We have also investigated the Ward identities of the ef- '
fective action, confirming that the mass spectrum has the APPENDIX
desired properties. Finally, we have formulated the theory in
the background gauge and written the BRS identities, show- In this Appendix we report the explicit expression #0y:

1 ) 2
Lo=B2 > | —detD,(x)—detD!(x)+ i

7

1
2325%

6 6 2 2 2 a a a a 3 2
;UM(X)— L0 =X, 0] = ZIALOAL(X) = @, (X) @, (X) ]+ 207,(X) = 607, (X) X, (X)

8
+Ax,, ()AS(X) ey (X) + 20, (X)[ A (X)A%(X) — a;(x)az(x)]—4§l d3.{2A% (X) A% (X) a5 (x)

7
+aS (O[AL(X)AL(X) — ad(X) e (x) ]}~ 424 d3{2A% () A2 (x) % (X) + ad (X[ AL AL (X) — a5 (x) ad(X) T}

—8dEAAL(O[AL(X) arf,(X) +AL(X) s (X)]+ e [ ASL(X)AL(X) + a5 (X) al,(X) T} = 8dzd AL ()AL (X) 5(X)
+AL(X) @ () ]+ an(O[AL AL (X) + ap () ap ()]} = 8dGAAZ [ AL(X) e, (X) + AL (X) a5 (X) ]+ ()

X[AL(X)AT(X) + i (X) el (x) ]} = BdZ AZ(X)[AS(X) a5 (x) + AL (X) ars (X) ]+ s (X)[ A% ()AL (X)

+as(x)aS(x)]} . (A1)
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